code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-03 20:48 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Album', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=255, unique=True, verbose_name='Назва')), ('image', models.ImageField(upload_to='albums/', verbose_name='Головне зображення')), ('description', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Photo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Заголовок')), ('description', models.TextField(verbose_name='Опис')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='Дата створення')), ('album', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='photos', to='gallary.Album')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='photos', to=settings.AUTH_USER_MODEL, verbose_name='Завантажено')), ], ), ]
aodarc/flowers_room
apps/gallary/migrations/0001_initial.py
Python
mit
1,751
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (c) 2011-2020, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. """ Satellite Functions ^^^^^^^^^^^^^^^^^^^ .. autosummary:: :nosignatures: :toctree: generated/ {} """ __all__ = ["correct_parallax", "dist_from_orbit"] __doc__ = __doc__.format("\n ".join(__all__)) import numpy as np def correct_parallax(sr_xy, nbin, drt, alpha): """Adjust the geo-locations of the SR pixels With *SR*, we refer to precipitation radars based on space-born platforms such as TRMM or GPM. The `sr_xy` coordinates of the SR beam footprints need to be in the azimuthal equidistant projection of the ground radar. This ensures that the ground radar is fixed at xy-coordinate (0, 0), and every SR bin has its relative xy-coordinates with respect to the ground radar site. Parameters ---------- sr_xy : :class:`numpy:numpy.ndarray` Array of xy-coordinates of shape (nscans, nbeams, 2) nbin : int Number of bins along SR beam. drt : float Gate lenght of SR in meter. alpha: :class:`numpy:numpy.ndarray` Array of local zenith angles of the SR beams with shape (nscans, nbeams). Returns ------- sr_xyp : :class:`numpy:numpy.ndarray` Array of parallax corrected coordinates of shape (nscans, nbeams, nbins, 2). r_sr_inv : :class:`numpy:numpy.ndarray` Array of ranges from ground to SR platform of shape (nbins). z_sr : :class:`numpy:numpy.ndarray` Array of SR bin altitudes of shape (nscans, nbeams, nbins). """ # get x,y-grids sr_x = sr_xy[..., 0] sr_y = sr_xy[..., 1] # create range array from ground to satellite r_sr_inv = np.arange(nbin) * drt # calculate height of bin z_sr = r_sr_inv * np.cos(np.deg2rad(alpha))[..., np.newaxis] # calculate bin ground xy-displacement length ds = r_sr_inv * np.sin(np.deg2rad(alpha))[..., np.newaxis] # calculate x,y-differences between ground coordinate # and center ground coordinate [25th element] center = int(np.floor(len(sr_x[-1]) / 2.0)) xdiff = sr_x - sr_x[:, center][:, np.newaxis] ydiff = sr_y - sr_y[:, center][:, np.newaxis] # assuming ydiff and xdiff being a triangles adjacent and # opposite this calculates the xy-angle of the SR scan ang = np.arctan2(ydiff, xdiff) # calculate displacement dx, dy from displacement length dx = ds * np.cos(ang)[..., np.newaxis] dy = ds * np.sin(ang)[..., np.newaxis] # subtract displacement from SR ground coordinates sr_xp = sr_x[..., np.newaxis] - dx sr_yp = sr_y[..., np.newaxis] - dy return np.stack((sr_xp, sr_yp), axis=3), r_sr_inv, z_sr def dist_from_orbit(sr_alt, alpha, beta, r_sr_inv, re): """Returns range distances of SR bins (in meters) as seen from the orbit With *SR*, we refer to precipitation radars based on space-born platforms such as TRMM or GPM. Parameters ---------- sr_alt : float SR orbit height in meters. alpha: :class:`numpy:numpy.ndarray` Array of local zenith angles of the SR beams with shape (nscans, nbeams). beta: :class:`numpy:numpy.ndarray` Off-Nadir scan angle with shape (nbeams). r_sr_inv : :class:`numpy:numpy.ndarray` Array of ranges from ground to SR platform of shape (nbins). re : float earth radius [m] Returns ------- ranges : :class:`numpy:numpy.ndarray` Array of shape (nbeams, nbins) of PR bin range distances from SR platform in orbit. """ ro = ( (re + sr_alt) * np.cos(np.radians(alpha - beta[np.newaxis, :])) - re ) / np.cos(np.radians(alpha)) return ro[..., np.newaxis] - r_sr_inv
wradlib/wradlib
wradlib/georef/satellite.py
Python
mit
3,810
# 2014-01 Jason Roebuck # Product of work for GEOG 590 @ Portland State University # May be used for whatever! # github.com/jtroe/GEOG-590 - Fork me on github! def main(): # Declare a good, old fashioned greeting. greeting = 'Hello, Portland!' print greeting # print a separator print '======' # prints every character from 'Hello, Portland!' on it's very own line! for char in greeting: print char print '======' # should print 'Hell Portland!' print greeting[0:4], greeting[7:] print '======' # declare a list of smurf strings mySmurfList = ['Papa', 'Smurfette', 'Hefty', 'Brainy', 'Grouchy', 'Clumsy'] for smurf in mySmurfList: # if string length is greater than 4, print it! Sorry, papa. if len(smurf) > 4: print smurf print '======' # equivalent of the more traditional for loop. # instead of getting the actual object of the list, gets the index # for(int i = 0; i < mySmurfList.Length; i++) <= C# equivalent for i in range(len(mySmurfList)): print mySmurfList[i] if __name__ == "__main__": main()
jtroe/GEOG-590
Assignment1/helloworld.py
Python
unlicense
1,136
from django.conf.urls import patterns, url from web import views urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'^login', views.cosergate_login, name='login'), url(r'^logout', views.cosergate_logout, name='logout'), url(r'^signup', views.cosergate_signup, name='signup'), url(r'^home', views.home, name='home'), url(r'^account', views.account, name='account') )
tapionx/cosergate
web/urls.py
Python
agpl-3.0
397
import unittest import numpy import six import chainer from chainer.backends import cuda from chainer import links from chainer import testing from chainer.testing import attr from chainer.testing import condition def _batch_renormalization(expander, gamma, beta, x, mean, var, eps, test, r, d): mean = mean[expander] if test: std = numpy.sqrt(var[expander]) r, d = 1, 0 else: std = numpy.sqrt(var[expander] + eps) y_expect = gamma * ((x - mean) / std * r + d) + beta return y_expect @testing.parameterize(*(testing.product({ 'test': [True, False], 'ndim': [0, 1, 2, 3], 'dtype': [numpy.float16, numpy.float32, numpy.float64], }))) class BatchRenormalizationTest(unittest.TestCase): def setUp(self): self.expander = (None, Ellipsis) + (None,) * self.ndim self.aggr_axes = (0,) + tuple(six.moves.range(2, self.ndim + 2)) self.rmax = self.dtype(3) self.dmax = self.dtype(5) self.link = links.BatchRenormalization(3, rmax=self.rmax, dmax=self.dmax, dtype=self.dtype) gamma = self.link.gamma.data gamma[...] = numpy.random.uniform(.5, 1, gamma.shape) beta = self.link.beta.data beta[...] = numpy.random.uniform(-1, 1, beta.shape) self.link.cleargrads() self.gamma = gamma.copy()[self.expander] # fixed on CPU self.beta = beta.copy()[self.expander] # fixed on CPU shape = (5, 3) + (2,) * self.ndim self.x = numpy.random.uniform(-1, 1, shape).astype(self.dtype) self.gy = numpy.random.uniform(-1, 1, shape).astype(self.dtype) if self.test: self.mean = numpy.random.uniform(-1, 1, (3,)).astype(self.dtype) self.var = numpy.random.uniform(0.5, 1, (3,)).astype(self.dtype) self.link.avg_mean[...] = self.mean self.link.avg_var[...] = self.var self.running_mean = self.mean self.running_var = self.var else: self.mean = self.x.mean(axis=self.aggr_axes) self.var = self.x.var(axis=self.aggr_axes) # Need to add some noise to running_mean and running_var, # otherwise we will always get r=1, d=0 self.running_mean = self.mean + numpy.random.uniform( -1, 1, self.mean.shape).astype(self.dtype) self.running_var = numpy.abs(self.var + numpy.random.uniform( -1, 1, self.var.shape).astype(self.dtype)) self.link.avg_mean[...] = self.running_mean self.link.avg_var[...] = self.running_var self.check_forward_optionss = {'atol': 1e-4, 'rtol': 1e-3} self.check_backward_optionss = {'atol': 1e-4, 'rtol': 1e-3} if self.dtype == numpy.float16: self.check_forward_optionss = {'atol': 1e-3, 'rtol': 1e-2} self.check_backward_optionss = {'atol': 5e-1, 'rtol': 1e-1} def check_forward(self, x_data): with chainer.using_config('train', not self.test): x = chainer.Variable(x_data) y = self.link(x) self.assertEqual(y.data.dtype, self.dtype) sigma_batch = numpy.sqrt(self.var) running_sigma = numpy.sqrt(self.running_var) r = numpy.clip(sigma_batch / running_sigma, 1.0 / self.rmax, self.rmax) d = numpy.clip((self.mean - self.running_mean) / running_sigma, -self.dmax, self.dmax) y_expect = _batch_renormalization( self.expander, self.gamma, self.beta, self.x, self.mean, self.var, self.link.eps, self.test, r[self.expander], d[self.expander]) testing.assert_allclose( y_expect, y.data, **self.check_forward_optionss) @condition.retry(3) def test_forward_cpu(self): self.check_forward(self.x) @attr.gpu @condition.retry(3) def test_forward_gpu(self): self.link.to_gpu() self.check_forward(cuda.to_gpu(self.x)) @attr.multi_gpu(2) @condition.retry(3) def test_forward_multi_gpu(self): with cuda.get_device_from_id(1): self.link.to_gpu() x = cuda.to_gpu(self.x) with cuda.get_device_from_id(0): self.check_forward(x) @testing.parameterize( {'nx': 10, 'ny': 10}, # TODO(Kenta Oono) # Pass the case below (this test does not pass when nx != ny). # {'nx': 10, 'ny': 15} ) class TestPopulationStatistics(unittest.TestCase): def setUp(self): self.decay = 0.9 self.size = 3 self.link = links.BatchRenormalization(self.size, self.decay) self.x = numpy.random.uniform( -1, 1, (self.nx, self.size)).astype(numpy.float32) self.y = numpy.random.uniform( -1, 1, (self.ny, self.size)).astype(numpy.float32) def check_statistics(self, x, y): x = chainer.Variable(x) self.link(x, finetune=True) mean = self.x.mean(axis=0) testing.assert_allclose(mean, self.link.avg_mean) unbiased_var = self.x.var(axis=0) * self.nx / (self.nx - 1) testing.assert_allclose(unbiased_var, self.link.avg_var) with chainer.using_config('train', False): y = chainer.Variable(y) self.link(y, finetune=True) testing.assert_allclose(mean, self.link.avg_mean) testing.assert_allclose(unbiased_var, self.link.avg_var) @condition.retry(3) def test_statistics_cpu(self): self.check_statistics(self.x, self.y) @attr.gpu @condition.retry(3) def test_statistics_gpu(self): self.link.to_gpu() self.check_statistics(cuda.to_gpu(self.x), cuda.to_gpu(self.y)) def check_statistics2(self, x, y): x = chainer.Variable(x) y = chainer.Variable(y) self.link(x, finetune=True) self.link(y, finetune=True) mean = (self.x.sum(axis=0) + self.y.sum(axis=0)) / (self.nx + self.ny) var = (self.x.var(axis=0) * self.nx + self.y.var(axis=0) * self.ny) / (self.nx + self.ny) # TODO(Kenta Oono) # Fix the estimate of the unbiased variance. # Unbiased variance should be (nx + ny) / (nx + ny - 1) times of # the variance. # But the multiplier is ny / (ny - 1) in current implementation # these two values are different when nx is not equal to ny. unbiased_var = var * self.ny / (self.ny - 1) testing.assert_allclose(mean, self.link.avg_mean) testing.assert_allclose(unbiased_var, self.link.avg_var) @condition.retry(3) def test_statistics2_cpu(self): self.check_statistics2(self.x, self.y) @attr.gpu @condition.retry(3) def test_statistics2_gpu(self): self.link.to_gpu() self.check_statistics2( cuda.to_gpu(self.x), cuda.to_gpu(self.y)) testing.run_module(__name__, __file__)
rezoo/chainer
tests/chainer_tests/links_tests/normalization_tests/test_batch_renormalization.py
Python
mit
6,996
# IDLEX EXTENSION from __future__ import print_function ## """ ## Copyright(C) 2011-2012 The Board of Trustees of the University of Illinois. ## All rights reserved. ## ## Developed by: Roger D. Serwy ## University of Illinois ## ## Permission is hereby granted, free of charge, to any person obtaining ## a copy of this software and associated documentation files (the ## "Software"), to deal with the Software without restriction, including ## without limitation the rights to use, copy, modify, merge, publish, ## distribute, sublicense, and/or sell copies of the Software, and to ## permit persons to whom the Software is furnished to do so, subject to ## the following conditions: ## ## + Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimers. ## + Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimers in the ## documentation and/or other materials provided with the distribution. ## + Neither the names of Roger D. Serwy, the University of Illinois, nor ## the names of its contributors may be used to endorse or promote ## products derived from this Software without specific prior written ## permission. ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ## OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ## MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ## IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ## ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF ## CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH ## THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE. ## ## """ config_extension_def = """ [idlexManager] enable=1 missing= """ version = '???' # updated from idlexMain.py import sys import os import re import imp import __main__ if sys.version < '3': from StringIO import StringIO from Tkinter import * import tkFileDialog import tkMessageBox else: from io import StringIO from tkinter import * import tkinter.filedialog as tkFileDialog import tkinter.messagebox as tkMessageBox StandardError = Exception from idlelib.configHandler import idleConf, IdleConfParser import idlelib.textView as textView import webbrowser def update_globals(): # for calling from idlex.py global IDLEX_URL global UPDATE_URL global DEV_EMAIL IDLEX_URL = 'http://idlex.sourceforge.net/' UPDATE_URL = '%supdate.html?version=%s' % (IDLEX_URL, version) DEV_EMAIL = 'serwy@illinois.edu' update_globals() PATCH_MENU = False # Patch "Configure Extensions..." into options menu class idlexManager(object): if not PATCH_MENU: menudefs = [ ('options', [('Configure Extensions...', '<<idlex-configure>>'), None, ]), ] else: menudefs = [] menudefs.append( ('help', [None, ('About Idle_X', '<<idlex-about>>'), ('Check for IdleX Updates', '<<idlex-update>>')])) def __init__(self, editwin): self.editwin = editwin editwin.text.bind('<<idlex-configure>>', self.idlex_configure_event) editwin.text.bind('<<idlex-about>>', self.idlex_about_event) editwin.text.bind('<<idlex-update>>', self.idlex_update_event) if PATCH_MENU: self.patch_menu() def close(self): idleConf.SaveUserCfgFiles() def idlex_update_event(self, ev=None): idlexUpdate(self.editwin.text) def idlex_configure_event(self, ev=None): idlexConfig(self.editwin.top) def idlex_about_event(self, ev=None): a = idlexAbout(self.editwin.top) def patch_menu(self): # patch "Configure Extensions" into the Options menu e = self.editwin f = e.menudict['options'] text = e.text eventname = '<<idlex-configure>>' def command(text=text, eventname=eventname): text.event_generate(eventname) f.insert_command(2, label="Configure Extensions...", command=command) class idlexAbout(Toplevel): # some code borrowed from aboutDialog.py, covered by the PSF License. def __init__(self, parent): Toplevel.__init__(self, parent) title = 'About IdleX'# (version %s)' % __version__ self.configure(borderwidth=5) self.geometry("+%d+%d" % (parent.winfo_rootx()+30, parent.winfo_rooty()+30)) self.CreateWidgets() self.resizable(height=FALSE, width=FALSE) self.title(title) self.transient(parent) self.grab_set() self.protocol("WM_DELETE_WINDOW", self.close) self.parent = parent self.buttonOk.focus_set() self.bind('<Return>',self.close) self.bind('<Escape>',self.close) self.wait_window() def CreateWidgets(self): frameMain = Frame(self, borderwidth=2, relief=SUNKEN) frameButtons = Frame(self) frameButtons.pack(side=BOTTOM, fill=X) frameMain.pack(side=TOP, expand=TRUE, fill=BOTH) self.buttonUpdate = Button(frameButtons, text='Check for Updates', command=self.check_updates) self.buttonUpdate.pack(padx=5, pady=5, side=LEFT) self.buttonOk = Button(frameButtons, text='Close', command=self.close) self.buttonOk.pack(padx=5, pady=5, side=RIGHT) t = Text(frameMain) t.configure(width=40, height=15, bg="#6091b0", fg="#FFFFFF", padx=10, pady=10, wrap=WORD, borderwidth=0) t.pack(expand=TRUE, fill=BOTH, side=LEFT) vbar = Scrollbar(frameMain, name='vbar') vbar.pack(side=RIGHT, fill=Y) vbar['command'] = t.yview t['yscrollcommand'] = vbar.set t.tag_configure('CAP', font=('courier', 24, 'bold')) t.tag_configure('MINICAP', font=('courier', 20, 'bold')) t.tag_configure('TITLE', background="#b37900", foreground="#ffcf61", relief=RIDGE, borderwidth=5, justify=LEFT, ) # make IdleX title t.insert('insert', ' I', 'CAP TITLE') t.insert('insert', 'DLE', 'MINICAP TITLE') t.insert('insert', 'X ', 'CAP TITLE') t.insert('insert', '\n'*1) # make message msg = ['IDLE Extensions for Python', 'version %s' % version, '', 'email: %s' % DEV_EMAIL, 'www: %s' % IDLEX_URL, '', 'Copyright(C) 2011-2012 The Board of Trustees of the University of Illinois.', 'All rights reserved.', '', 'See LICENSE.txt for more details', '', 'IdleX includes some third-party extensions that are covered by their respective licenses and copyrights as found in the "license" directory.', '', 'SearchBar.py and Squeezer.py', 'Copyright (c) 2011 Tal Einat', 'All rights reserved.', '', 'IDLE2HTML.py', 'Copyright (c) 2001-2010 Python Software Foundation; All Rights Reserved.', '\n'*4, ] t.insert('insert', '\n'.join(msg)) t.config(state=DISABLED) def close(self, event=None): self.destroy() def check_updates(self, ev=None): idlexUpdate(self.parent) return "break" class idlexUpdate: def __init__(self, text): if sys.platform[:3] == 'win': try: os.startfile(UPDATE_URL) except WindowsError as why: tkMessageBox.showerror(title='Unable to load IdleX update page.', message=str(why), parent=text) else: webbrowser.open(UPDATE_URL) class idlexConfig(Toplevel): def __init__(self, parent): Toplevel.__init__(self, parent) self.restart = False # Flag for displaying restart dialog self.protocol("WM_DELETE_WINDOW", self.close) self.gui = {} self.parent = parent self.build_gui() self.populate_gui() def close(self, ev=None): if self.restart: self.recommend_restart() self.destroy() def build_gui(self): top = self top.title('IdleX Extension Manager') top.configure(borderwidth=5) parent = self.parent top.geometry("=+%d+%d" % (parent.winfo_rootx()+20, parent.winfo_rooty()+30)) mainFrame = LabelFrame(top, borderwidth=0) mainFrame.pack(side=TOP, fill=BOTH, expand=True, padx=3, pady=3) ### gui for enable/disable extension f2 = LabelFrame(mainFrame, borderwidth=2, relief=GROOVE, text='Enable/Disable Extensions:') lbframe = Frame(f2, borderwidth=0) scrollbar = Scrollbar(lbframe, orient=VERTICAL) lb = Listbox(lbframe, yscrollcommand=scrollbar.set) scrollbar.config(command=lb.yview) scrollbar.pack(side=RIGHT, fill=Y) lb.pack(side=TOP, fill=BOTH, expand=True) lbframe.pack(side=TOP, fill=BOTH, padx=6, pady=6, expand=True) lb.bind("<Double-Button-1>", self.toggle) tog_B = Button(f2, text='Enable/Disable', command=self.toggle) tog_B.pack(side=LEFT, padx=6, pady=3) clear_B = Button(f2, text='Use Extension Defaults', command=self.clear_custom) clear_B.pack(side=LEFT, padx=6, pady=3) f2.pack(side=TOP, fill=BOTH, expand=True) self.gui['extension_list'] = lb ### dialog close_B = Button(mainFrame, text='Close', command=self.close) close_B.pack(side=RIGHT) def populate_gui(self): IDLE_DEFAULT_EXT = extensionManager.IDLE_EXTENSIONS ext_list = idleConf.GetExtensions(active_only=False) ext_list.sort(key=str.lower) if 'idlexManager' in ext_list: ext_list.remove('idlexManager') # idlex enabled by default. lb = self.gui['extension_list'] lb.delete(0, END) # reset the list for item in ext_list: ext_found = True try: extensionManager.find_extension(item) except ImportError: ext_found = False en = idleConf.GetOption('extensions', item, 'enable', type='int') info = '' if item in IDLE_DEFAULT_EXT: info += ' (built-in) ' if not ext_found: if item not in IDLE_DEFAULT_EXT: if sys.modules.get('idlexlib.extensions.%s' % item) is not None: info += ' (RESTART TO UNLOAD) ' else: info += ' (NOT FOUND IN PATH) ' if en: enstr = '1' else: enstr = '0' text = ' [%s] %s %s' % (enstr, item, info) lb.insert(END, text) self.extensions = ext_list def get_sel(self): LB = self.gui['extension_list'] sel = LB.curselection() if not sel: return None else: return int(sel[0]) def toggle(self, ev=None): """ Toggle the selected extension's enable status """ sel = self.get_sel() if sel is None: return item = self.extensions[sel] en = not idleConf.GetOption('extensions', item, 'enable', type='bool', default=True) en = int(en) idleConf.SetOption('extensions', item, 'enable', '%s' % en) idleConf.SaveUserCfgFiles() self.repopulate_list() self.restart = True def repopulate_list(self): sel = self.get_sel() # remember the list box settings lb = self.gui['extension_list'] y = lb.yview() self.populate_gui() if sel > lb.index(END): sel = lb.index(END) # restore the list box settings lb.yview_moveto(y[0]) lb.activate(sel) lb.select_set(sel) lb.focus_set() def clear_custom(self): """ Delete the configuration for an extension from the user configuration found in .idlerc/config-extensions.cfg """ sel = self.get_sel() if sel is None: return ext_name = self.extensions[sel] idleConf.userCfg['extensions'].remove_section(ext_name) idleConf.userCfg['extensions'].remove_section(ext_name + '_cfgBindings') # reload this extension config extensionManager.reload_cfg(ext_name) self.repopulate_list() def recommend_restart(self): msg = """The extension configuration has changed. Changes will take effect on newly opened editors and shells. A restart is recommended, but not required. """ msg = re.sub(r"[\s]{2,}", " ", msg) tkMessageBox.showinfo(parent=self, title="IDLE Restart Recommended", message=msg) ################################################################ ## ##def _about(): ## root = Tk() ## idlexAbout(root) ## root.mainloop() ## ##if __name__ == '__main__': ## _about()
technologiescollege/Blockly-rduino-communication
scripts_XP/Lib/site-packages/idlexlib/extensions/idlexManager.py
Python
gpl-3.0
13,899
#!/usr/bin/env python #-*- coding: utf-8 -*- from Tkinter import FLAT from ttk import Style ######################################################################## class TkStyles(object): #---------------------------------------------------------------------- @classmethod def create_styles(self): """""" styles = Style() styles.configure("TNotebook", background="#afc8e1", borderwidth=0, relief=FLAT, highlightthickness=0) #styles.configure("Treeview", borderwidth=0, relief=FLAT, width=100) #styles.configure("TSeparator")
PinguinoIDE/pinguino-ide-tk
tkgui/ide/styles.py
Python
gpl-2.0
582
""" The minimum needed to take a response and render a response - url mapper utility - wsgiwrapper """ import json from werkzeug.wrappers import Response def add_ressource_uri(response, obj): obj["ressource_uri"] = "/{0}/{1}/".format( response.ressource_name, obj[response.model.pk_field.name]) return obj class JsonResponse(object): """ A werkzeug Response rendering a json representation of the object(s) This class is callable. you should do : .. code-block:: python: view = JsonResponse(model, ressource_name, formaters=formaters, **options) return view(objects) """ render_format = "json" def __init__(self, model, ressource_name, formaters=["add_ressource_uri"], **options): self.model = model self.ressource_name = ressource_name self.formaters = formaters def __call__(self, *args, **kwargs): """ Return a response object """ meta = None if "meta" in kwargs: meta = kwargs.pop("meta") if "objs" in kwargs: objs = self.format(kwargs.pop('objs')) if meta: response = {"meta": meta, "object_list": objs} else: response = objs return Response(json.dumps(response), mimetype="application/json", **kwargs) else: response = "" if args: response = json.dumps(*args) return Response(response, mimetype="application/json", **kwargs) def format(self, objs): """ Format the output using formaters listed in self.formaters """ if isinstance(objs, list): for elem in objs: for formater in self.formaters: if hasattr(formater, '__call__'): elem = formater(self, elem) else: elem = globals()[formater](self, elem) if isinstance(objs, dict): for formater in self.formaters: if hasattr(formater, '__call__'): objs = formater(self, objs) else: objs = globals()[formater](self, objs) return objs
boblefrag/python-rest-api-framework
rest_api_framework/views.py
Python
mit
2,433
# coding: utf-8 from setuptools import setup, find_packages setup( name='tc_librato', version="0.0.1", description='Thumbor Librato extensions', author='Peter Schröder, Sebastian Eichner', author_email='peter.schroeder@jimdo.com, sebastian.eichner@jimdo.com', zip_safe=False, include_package_data=True, packages=find_packages(), install_requires=[ 'thumbor', 'librato-metrics', ] )
thumbor-community/librato
setup.py
Python
mit
441
"""Chatroom game.""" import logging from dallinger import networks from dallinger.compat import unicode from dallinger.config import get_config from dallinger.experiment import Experiment from dallinger.nodes import Agent try: from .bots import Bot Bot = Bot # Make name "Bot" importable without triggering style warnings except ImportError: pass logger = logging.getLogger(__file__) def extra_parameters(): config = get_config() config.register("network", unicode) config.register("repeats", int) config.register("n", int) class CoordinationChatroom(Experiment): """Define the structure of the experiment.""" def __init__(self, session=None): """Initialize the experiment.""" super(CoordinationChatroom, self).__init__(session) if session: self.setup() def configure(self): config = get_config() self.experiment_repeats = repeats = config.get("repeats") self.network_class = config.get("network") self.quorum = config.get("n") # Recruit for all networks at once self.initial_recruitment_size = repeats * self.quorum def create_network(self): """Create a new network by reading the configuration file.""" class_ = getattr(networks, self.network_class) return class_(max_size=self.quorum) def choose_network(self, networks, participant): # Choose first available network rather than random return networks[0] def info_post_request(self, node, info): """Run when a request to create an info is complete.""" for agent in node.neighbors(): node.transmit(what=info, to_whom=agent) def create_node(self, participant, network): """Create a node for a participant.""" return Agent(network=network, participant=participant)
Dallinger/Dallinger
demos/dlgr/demos/chatroom/experiment.py
Python
mit
1,854
from __future__ import print_function, absolute_import, division import re import copy import operator import itertools import warnings import mmap from distutils.version import LooseVersion import sys import pytest import astropy from astropy import stats from astropy.io import fits from astropy import units as u from astropy.wcs import WCS from astropy.wcs import _wcs from astropy.tests.helper import assert_quantity_allclose from astropy.convolution import Gaussian2DKernel, Tophat2DKernel from astropy.utils.exceptions import AstropyWarning import numpy as np from .. import (BooleanArrayMask, FunctionMask, LazyMask, CompositeMask) from ..spectral_cube import (OneDSpectrum, Projection, VaryingResolutionOneDSpectrum, LowerDimensionalObject) from ..np_compat import allbadtonan from .. import spectral_axis from .. import base_class from .. import utils from .. import SpectralCube, VaryingResolutionSpectralCube, DaskSpectralCube from . import path from .helpers import assert_allclose, assert_array_equal try: import casatools ia = casatools.image() casaOK = True except ImportError: try: from taskinit import ia casaOK = True except ImportError: casaOK = False WINDOWS = sys.platform == "win32" # needed to test for warnings later warnings.simplefilter('always', UserWarning) warnings.simplefilter('error', utils.UnsupportedIterationStrategyWarning) warnings.simplefilter('error', utils.NotImplementedWarning) warnings.simplefilter('error', utils.WCSMismatchWarning) warnings.simplefilter('error', FutureWarning) warnings.filterwarnings(action='ignore', category=FutureWarning, module='reproject') try: import yt YT_INSTALLED = True YT_LT_301 = LooseVersion(yt.__version__) < LooseVersion('3.0.1') except ImportError: YT_INSTALLED = False YT_LT_301 = False try: import scipy scipyOK = True except ImportError: scipyOK = False import os # if ON_TRAVIS is set, we're on travis. on_travis = bool(os.environ.get('ON_TRAVIS')) from radio_beam import Beam, Beams from radio_beam.utils import BeamError NUMPY_LT_19 = LooseVersion(np.__version__) < LooseVersion('1.9.0') def cube_and_raw(filename, use_dask=None): if use_dask is None: raise ValueError('use_dask should be explicitly set') p = path(filename) if os.path.splitext(p)[-1] == '.fits': with fits.open(p) as hdulist: d = hdulist[0].data c = SpectralCube.read(p, format='fits', mode='readonly', use_dask=use_dask) elif os.path.splitext(p)[-1] == '.image': ia.open(p) d = ia.getchunk() ia.unlock() ia.close() ia.done() c = SpectralCube.read(p, format='casa_image', use_dask=use_dask) else: raise ValueError("Unsupported filetype") return c, d def test_arithmetic_warning(data_vda_jybeam_lower, recwarn, use_dask): cube, data = cube_and_raw(data_vda_jybeam_lower, use_dask=use_dask) assert not cube._is_huge # make sure the small cube raises a warning about loading into memory with pytest.warns(UserWarning, match='requires loading the entire'): cube + 5*cube.unit def test_huge_disallowed(data_vda_jybeam_lower, use_dask): cube, data = cube_and_raw(data_vda_jybeam_lower, use_dask=use_dask) assert not cube._is_huge # We need to reduce the memory threshold rather than use a large cube to # make sure we don't use too much memory during testing. from .. import cube_utils OLD_MEMORY_THRESHOLD = cube_utils.MEMORY_THRESHOLD try: cube_utils.MEMORY_THRESHOLD = 10 assert cube._is_huge with pytest.raises(ValueError, match='entire cube into memory'): cube + 5*cube.unit if use_dask: with pytest.raises(ValueError, match='entire cube into memory'): cube.mad_std() else: with pytest.raises(ValueError, match='entire cube into memory'): cube.max(how='cube') cube.allow_huge_operations = True # just make sure it doesn't fail cube + 5*cube.unit finally: cube_utils.MEMORY_THRESHOLD = OLD_MEMORY_THRESHOLD del cube class BaseTest(object): @pytest.fixture(autouse=True) def setup_method_fixture(self, request, data_adv, use_dask): c, d = cube_and_raw(data_adv, use_dask=use_dask) mask = BooleanArrayMask(d > 0.5, c._wcs) c._mask = mask self.c = c self.mask = mask self.d = d class BaseTestMultiBeams(object): @pytest.fixture(autouse=True) def setup_method_fixture(self, request, data_adv_beams, use_dask): c, d = cube_and_raw(data_adv_beams, use_dask=use_dask) mask = BooleanArrayMask(d > 0.5, c._wcs) c._mask = mask self.c = c self.mask = mask self.d = d @pytest.fixture def filename(request): return request.getfixturevalue(request.param) translist = [('data_advs', [0, 1, 2, 3]), ('data_dvsa', [2, 3, 0, 1]), ('data_sdav', [0, 2, 1, 3]), ('data_sadv', [0, 1, 2, 3]), ('data_vsad', [3, 0, 1, 2]), ('data_vad', [2, 0, 1]), ('data_vda', [0, 2, 1]), ('data_adv', [0, 1, 2]), ] translist_vrsc = [('data_vda_beams', [0, 2, 1])] class TestSpectralCube(object): @pytest.mark.parametrize(('filename', 'trans'), translist + translist_vrsc, indirect=['filename']) def test_consistent_transposition(self, filename, trans, use_dask): """data() should return velocity axis first, then world 1, then world 0""" c, d = cube_and_raw(filename, use_dask=use_dask) expected = np.squeeze(d.transpose(trans)) assert_allclose(c._get_filled_data(), expected) @pytest.mark.parametrize(('filename', 'view'), ( ('data_adv', np.s_[:, :,:]), ('data_adv', np.s_[::2, :, :2]), ('data_adv', np.s_[0]), ), indirect=['filename']) def test_world(self, filename, view, use_dask): p = path(filename) # d = fits.getdata(p) # wcs = WCS(p) # c = SpectralCube(d, wcs) c = SpectralCube.read(p) wcs = c.wcs # shp = d.shape # inds = np.indices(d.shape) shp = c.shape inds = np.indices(c.shape) pix = np.column_stack([i.ravel() for i in inds[::-1]]) world = wcs.all_pix2world(pix, 0).T world = [w.reshape(shp) for w in world] world = [w[view] * u.Unit(wcs.wcs.cunit[i]) for i, w in enumerate(world)][::-1] w2 = c.world[view] for result, expected in zip(w2, world): assert_allclose(result, expected) # Test world_flattened here, too w2_flat = c.flattened_world(view=view) for result, expected in zip(w2_flat, world): print(result.shape, expected.flatten().shape) assert_allclose(result, expected.flatten()) @pytest.mark.parametrize('view', (np.s_[:, :,:], np.s_[:2, :3, ::2])) def test_world_transposes_3d(self, view, data_adv, data_vad, use_dask): c1, d1 = cube_and_raw(data_adv, use_dask=use_dask) c2, d2 = cube_and_raw(data_vad, use_dask=use_dask) for w1, w2 in zip(c1.world[view], c2.world[view]): assert_allclose(w1, w2) @pytest.mark.parametrize('view', (np.s_[:, :,:], np.s_[:2, :3, ::2], np.s_[::3, ::2, :1], np.s_[:], )) def test_world_transposes_4d(self, view, data_advs, data_sadv, use_dask): c1, d1 = cube_and_raw(data_advs, use_dask=use_dask) c2, d2 = cube_and_raw(data_sadv, use_dask=use_dask) for w1, w2 in zip(c1.world[view], c2.world[view]): assert_allclose(w1, w2) @pytest.mark.parametrize(('filename','masktype','unit','suffix'), itertools.product(('data_advs', 'data_dvsa', 'data_sdav', 'data_sadv', 'data_vsad', 'data_vad', 'data_adv',), (BooleanArrayMask, LazyMask, FunctionMask, CompositeMask), ('Hz', u.Hz), ('.fits', '.image') if casaOK else ('.fits',) ), indirect=['filename']) def test_with_spectral_unit(self, filename, masktype, unit, suffix, use_dask): if suffix == '.image': if not use_dask: pytest.skip() import casatasks filename = str(filename) casatasks.importfits(filename, filename.replace('.fits', '.image')) filename = filename.replace('.fits', '.image') cube, data = cube_and_raw(filename, use_dask=use_dask) cube_freq = cube.with_spectral_unit(unit) if masktype == BooleanArrayMask: # don't use data here: # data haven't necessarily been rearranged to the correct shape by # cube_utils.orient mask = BooleanArrayMask(cube.filled_data[:].value>0, wcs=cube._wcs) elif masktype == LazyMask: mask = LazyMask(lambda x: x>0, cube=cube) elif masktype == FunctionMask: mask = FunctionMask(lambda x: x>0) elif masktype == CompositeMask: mask1 = FunctionMask(lambda x: x>0) mask2 = LazyMask(lambda x: x>0, cube) mask = CompositeMask(mask1, mask2) cube2 = cube.with_mask(mask) cube_masked_freq = cube2.with_spectral_unit(unit) if suffix == '.fits': assert cube_freq._wcs.wcs.ctype[cube_freq._wcs.wcs.spec] == 'FREQ-W2F' assert cube_masked_freq._wcs.wcs.ctype[cube_masked_freq._wcs.wcs.spec] == 'FREQ-W2F' assert cube_masked_freq._mask._wcs.wcs.ctype[cube_masked_freq._mask._wcs.wcs.spec] == 'FREQ-W2F' elif suffix == '.image': # this is *not correct* but it's a known failure in CASA: CASA's # image headers don't support any of the FITS spectral standard, so # it just ends up as 'FREQ'. This isn't on us to fix so this is # really an "xfail" that we hope will change... assert cube_freq._wcs.wcs.ctype[cube_freq._wcs.wcs.spec] == 'FREQ' assert cube_masked_freq._wcs.wcs.ctype[cube_masked_freq._wcs.wcs.spec] == 'FREQ' assert cube_masked_freq._mask._wcs.wcs.ctype[cube_masked_freq._mask._wcs.wcs.spec] == 'FREQ' # values taken from header rest = 1.42040571841E+09*u.Hz crval = -3.21214698632E+05*u.m/u.s outcv = crval.to(u.m, u.doppler_optical(rest)).to(u.Hz, u.spectral()) assert_allclose(cube_freq._wcs.wcs.crval[cube_freq._wcs.wcs.spec], outcv.to(u.Hz).value) assert_allclose(cube_masked_freq._wcs.wcs.crval[cube_masked_freq._wcs.wcs.spec], outcv.to(u.Hz).value) assert_allclose(cube_masked_freq._mask._wcs.wcs.crval[cube_masked_freq._mask._wcs.wcs.spec], outcv.to(u.Hz).value) @pytest.mark.parametrize(('operation', 'value'), ((operator.mul, 0.5*u.K), (operator.truediv, 0.5*u.K), )) def test_apply_everywhere(self, operation, value, data_advs, use_dask): c1, d1 = cube_and_raw(data_advs, use_dask=use_dask) # append 'o' to indicate that it has been operated on c1o = c1._apply_everywhere(operation, value, check_units=True) d1o = operation(u.Quantity(d1, u.K), value) assert np.all(d1o == c1o.filled_data[:]) # allclose fails on identical data? #assert_allclose(d1o, c1o.filled_data[:]) @pytest.mark.parametrize(('operation', 'value'), ((operator.add, 0.5*u.K), (operator.sub, 0.5*u.K),)) def test_apply_everywhere_plusminus(self, operation, value, data_advs, use_dask): c1, d1 = cube_and_raw(data_advs, use_dask=use_dask) assert c1.unit == value.unit # append 'o' to indicate that it has been operated on # value.value: the __add__ function explicitly drops the units c1o = c1._apply_everywhere(operation, value.value, check_units=False) d1o = operation(u.Quantity(d1, u.K), value) assert c1o.unit == c1.unit assert c1o.unit == value.unit assert np.all(d1o == c1o.filled_data[:]) del c1 del c1o # This test appears to leave things open even if we delete variables #@pytest.mark.parametrize(('operation', 'value'), # ((operator.div if hasattr(operator,'div') else operator.floordiv, 0.5*u.K),)) #def test_apply_everywhere_floordivide(self, operation, value, data_advs, use_dask): # c1, d1 = cube_and_raw(data_advs, use_dask=use_dask) # # floordiv doesn't work, which is why it's NotImplemented # with pytest.raises(u.UnitCoversionError): # c1o = c1._apply_everywhere(operation, value) # del c1 @pytest.mark.parametrize(('filename', 'trans'), translist, indirect=['filename']) def test_getitem(self, filename, trans, use_dask): c, d = cube_and_raw(filename, use_dask=use_dask) expected = np.squeeze(d.transpose(trans)) assert_allclose(c[0,:,:].value, expected[0,:,:]) assert_allclose(c[:,:,0].value, expected[:,:,0]) assert_allclose(c[:,0,:].value, expected[:,0,:]) # Not implemented: #assert_allclose(c[0,0,:].value, expected[0,0,:]) #assert_allclose(c[0,:,0].value, expected[0,:,0]) assert_allclose(c[:,0,0].value, expected[:,0,0]) assert_allclose(c[1,:,:].value, expected[1,:,:]) assert_allclose(c[:,:,1].value, expected[:,:,1]) assert_allclose(c[:,1,:].value, expected[:,1,:]) # Not implemented: #assert_allclose(c[1,1,:].value, expected[1,1,:]) #assert_allclose(c[1,:,1].value, expected[1,:,1]) assert_allclose(c[:,1,1].value, expected[:,1,1]) c2 = c.with_spectral_unit(u.km/u.s, velocity_convention='radio') assert_allclose(c2[0,:,:].value, expected[0,:,:]) assert_allclose(c2[:,:,0].value, expected[:,:,0]) assert_allclose(c2[:,0,:].value, expected[:,0,:]) # Not implemented: #assert_allclose(c2[0,0,:].value, expected[0,0,:]) #assert_allclose(c2[0,:,0].value, expected[0,:,0]) assert_allclose(c2[:,0,0].value, expected[:,0,0]) assert_allclose(c2[1,:,:].value, expected[1,:,:]) assert_allclose(c2[:,:,1].value, expected[:,:,1]) assert_allclose(c2[:,1,:].value, expected[:,1,:]) # Not implemented: #assert_allclose(c2[1,1,:].value, expected[1,1,:]) #assert_allclose(c2[1,:,1].value, expected[1,:,1]) assert_allclose(c2[:,1,1].value, expected[:,1,1]) @pytest.mark.parametrize(('filename', 'trans'), translist_vrsc, indirect=['filename']) def test_getitem_vrsc(self, filename, trans, use_dask): c, d = cube_and_raw(filename, use_dask=use_dask) expected = np.squeeze(d.transpose(trans)) # No pv slices for VRSC. assert_allclose(c[0,:,:].value, expected[0,:,:]) # Not implemented: #assert_allclose(c[0,0,:].value, expected[0,0,:]) #assert_allclose(c[0,:,0].value, expected[0,:,0]) assert_allclose(c[:,0,0].value, expected[:,0,0]) assert_allclose(c[1,:,:].value, expected[1,:,:]) # Not implemented: #assert_allclose(c[1,1,:].value, expected[1,1,:]) #assert_allclose(c[1,:,1].value, expected[1,:,1]) assert_allclose(c[:,1,1].value, expected[:,1,1]) c2 = c.with_spectral_unit(u.km/u.s, velocity_convention='radio') assert_allclose(c2[0,:,:].value, expected[0,:,:]) # Not implemented: #assert_allclose(c2[0,0,:].value, expected[0,0,:]) #assert_allclose(c2[0,:,0].value, expected[0,:,0]) assert_allclose(c2[:,0,0].value, expected[:,0,0]) assert_allclose(c2[1,:,:].value, expected[1,:,:]) # Not implemented: #assert_allclose(c2[1,1,:].value, expected[1,1,:]) #assert_allclose(c2[1,:,1].value, expected[1,:,1]) assert_allclose(c2[:,1,1].value, expected[:,1,1]) class TestArithmetic(object): # FIXME: in the tests below we need to manually do self.c1 = self.d1 = None # because if we try and do this in a teardown method, the open-files check # gets done first. This is an issue that should be resolved in pytest-openfiles. @pytest.fixture(autouse=True) def setup_method_fixture(self, request, data_adv_simple, use_dask): self.c1, self.d1 = cube_and_raw(data_adv_simple, use_dask=use_dask) @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)) def test_add(self,value): d2 = self.d1 + value c2 = self.c1 + value*u.K assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K with pytest.raises(ValueError, match="Can only add cube objects from SpectralCubes or Quantities with a unit attribute."): # c1 is something with Kelvin units, but you can't add a scalar _ = self.c1 + value with pytest.raises(u.UnitConversionError, match=re.escape("'Jy' (spectral flux density) and 'K' (temperature) are not convertible")): # c1 is something with Kelvin units, but you can't add a scalar _ = self.c1 + value*u.Jy # cleanup self.c1 = self.d1 = None def test_add_cubes(self): d2 = self.d1 + self.d1 c2 = self.c1 + self.c1 assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K self.c1 = self.d1 = None @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)) def test_subtract(self, value): d2 = self.d1 - value c2 = self.c1 - value*u.K assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K # regression test #251: the _data attribute must not be a quantity assert not hasattr(c2._data, 'unit') self.c1 = self.d1 = None def test_subtract_cubes(self): d2 = self.d1 - self.d1 c2 = self.c1 - self.c1 assert np.all(d2 == c2.filled_data[:].value) assert np.all(c2.filled_data[:].value == 0) assert c2.unit == u.K # regression test #251: the _data attribute must not be a quantity assert not hasattr(c2._data, 'unit') self.c1 = self.d1 = None @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)) def test_mul(self, value): d2 = self.d1 * value c2 = self.c1 * value assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K self.c1 = self.d1 = None def test_mul_cubes(self): d2 = self.d1 * self.d1 c2 = self.c1 * self.c1 assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K**2 self.c1 = self.d1 = None @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)) def test_div(self, value): d2 = self.d1 / value c2 = self.c1 / value assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K self.c1 = self.d1 = None def test_div_cubes(self): d2 = self.d1 / self.d1 c2 = self.c1 / self.c1 assert np.all((d2 == c2.filled_data[:].value) | (np.isnan(c2.filled_data[:]))) assert np.all((c2.filled_data[:] == 1) | (np.isnan(c2.filled_data[:]))) assert c2.unit == u.one self.c1 = self.d1 = None @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)) def test_floordiv(self, value): with pytest.raises(NotImplementedError, match=re.escape("Floor-division (division with truncation) " "is not supported.")): c2 = self.c1 // value self.c1 = self.d1 = None @pytest.mark.parametrize(('value'),(1,1.0,2,2.0)*u.K) def test_floordiv_fails(self, value): with pytest.raises(NotImplementedError, match=re.escape("Floor-division (division with truncation) " "is not supported.")): c2 = self.c1 // value self.c1 = self.d1 = None def test_floordiv_cubes(self): with pytest.raises(NotImplementedError, match=re.escape("Floor-division (division with truncation) " "is not supported.")): c2 = self.c1 // self.c1 self.c1 = self.d1 = None @pytest.mark.parametrize(('value'), (1,1.0,2,2.0)) def test_pow(self, value): d2 = self.d1 ** value c2 = self.c1 ** value assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K**value self.c1 = self.d1 = None def test_cube_add(self): c2 = self.c1 + self.c1 d2 = self.d1 + self.d1 assert np.all(d2 == c2.filled_data[:].value) assert c2.unit == u.K self.c1 = self.d1 = None class TestFilters(BaseTest): def test_mask_data(self): c, d = self.c, self.d expected = np.where(d > .5, d, np.nan) assert_allclose(c._get_filled_data(), expected) expected = np.where(d > .5, d, 0) assert_allclose(c._get_filled_data(fill=0), expected) self.c = self.d = None @pytest.mark.parametrize('operation', (operator.lt, operator.gt, operator.le, operator.ge)) def test_mask_comparison(self, operation): c, d = self.c, self.d dmask = operation(d, 0.6) & self.c.mask.include() cmask = operation(c, 0.6*u.K) assert (self.c.mask.include() & cmask.include()).sum() == dmask.sum() assert np.all(c.with_mask(cmask).mask.include() == dmask) np.testing.assert_almost_equal(c.with_mask(cmask).sum().value, d[dmask].sum()) self.c = self.d = None def test_flatten(self): c, d = self.c, self.d expected = d[d > 0.5] assert_allclose(c.flattened(), expected) self.c = self.d = None def test_flatten_weights(self): c, d = self.c, self.d expected = d[d > 0.5] ** 2 assert_allclose(c.flattened(weights=d), expected) self.c = self.d = None def test_slice(self): c, d = self.c, self.d expected = d[:3, :2, ::2] expected = expected[expected > 0.5] assert_allclose(c[0:3, 0:2, 0::2].flattened(), expected) self.c = self.d = None class TestNumpyMethods(BaseTest): def _check_numpy(self, cubemethod, array, func): for axis in [None, 0, 1, 2]: for how in ['auto', 'slice', 'cube', 'ray']: expected = func(array, axis=axis) actual = cubemethod(axis=axis) assert_allclose(actual, expected) def test_sum(self): d = np.where(self.d > 0.5, self.d, np.nan) self._check_numpy(self.c.sum, d, allbadtonan(np.nansum)) # Need a secondary check to make sure it works with no # axis keyword being passed (regression test for issue introduced in # 150) assert np.all(self.c.sum().value == np.nansum(d)) self.c = self.d = None def test_max(self): d = np.where(self.d > 0.5, self.d, np.nan) self._check_numpy(self.c.max, d, np.nanmax) self.c = self.d = None def test_min(self): d = np.where(self.d > 0.5, self.d, np.nan) self._check_numpy(self.c.min, d, np.nanmin) self.c = self.d = None def test_argmax(self): d = np.where(self.d > 0.5, self.d, -10) self._check_numpy(self.c.argmax, d, np.nanargmax) self.c = self.d = None def test_argmin(self): d = np.where(self.d > 0.5, self.d, 10) self._check_numpy(self.c.argmin, d, np.nanargmin) self.c = self.d = None @pytest.mark.parametrize('iterate_rays', (True,False)) def test_median(self, iterate_rays, use_dask): # Make sure that medians ignore empty/bad/NaN values m = np.empty(self.d.shape[1:]) for y in range(m.shape[0]): for x in range(m.shape[1]): ray = self.d[:, y, x] # the cube mask is for values >0.5 ray = ray[ray > 0.5] m[y, x] = np.median(ray) if use_dask: if iterate_rays: self.c = self.d = None pytest.skip() else: scmed = self.c.median(axis=0) else: scmed = self.c.median(axis=0, iterate_rays=iterate_rays) assert_allclose(scmed, m) assert not np.any(np.isnan(scmed.value)) assert scmed.unit == self.c.unit self.c = self.d = None @pytest.mark.skipif('NUMPY_LT_19') def test_bad_median_apply(self): # this is a test for manually-applied numpy medians, which are different # from the cube.median method that does "the right thing" # # for regular median, we expect a failure, which is why we don't use # regular median. scmed = self.c.apply_numpy_function(np.median, axis=0) # this checks whether numpy <=1.9.3 has a bug? # as far as I can tell, np==1.9.3 no longer has this bug/feature #if LooseVersion(np.__version__) <= LooseVersion('1.9.3'): # # print statements added so we get more info in the travis builds # print("Numpy version is: {0}".format(LooseVersion(np.__version__))) # assert np.count_nonzero(np.isnan(scmed)) == 5 #else: # print("Numpy version is: {0}".format(LooseVersion(np.__version__))) assert np.count_nonzero(np.isnan(scmed)) == 6 scmed = self.c.apply_numpy_function(np.nanmedian, axis=0) assert np.count_nonzero(np.isnan(scmed)) == 0 # use a more aggressive mask to force there to be some all-nan axes m2 = self.c>0.74*self.c.unit scmed = self.c.with_mask(m2).apply_numpy_function(np.nanmedian, axis=0) assert np.count_nonzero(np.isnan(scmed)) == 1 self.c = self.d = None @pytest.mark.parametrize('iterate_rays', (True,False)) def test_bad_median(self, iterate_rays, use_dask): # This should have the same result as np.nanmedian, though it might be # faster if bottleneck loads if use_dask: if iterate_rays: self.c = self.d = None pytest.skip() else: scmed = self.c.median(axis=0) else: scmed = self.c.median(axis=0, iterate_rays=iterate_rays) assert np.count_nonzero(np.isnan(scmed)) == 0 m2 = self.c>0.74*self.c.unit if use_dask: scmed = self.c.with_mask(m2).median(axis=0) else: scmed = self.c.with_mask(m2).median(axis=0, iterate_rays=iterate_rays) assert np.count_nonzero(np.isnan(scmed)) == 1 self.c = self.d = None @pytest.mark.parametrize(('pct', 'iterate_rays'), (zip((3,25,50,75,97)*2,(True,)*5 + (False,)*5))) def test_percentile(self, pct, iterate_rays, use_dask): m = np.empty(self.d.sum(axis=0).shape) for y in range(m.shape[0]): for x in range(m.shape[1]): ray = self.d[:, y, x] ray = ray[ray > 0.5] m[y, x] = np.percentile(ray, pct) if use_dask: if iterate_rays: self.c = self.d = None pytest.skip() else: scpct = self.c.percentile(pct, axis=0) else: scpct = self.c.percentile(pct, axis=0, iterate_rays=iterate_rays) assert_allclose(scpct, m) assert not np.any(np.isnan(scpct.value)) assert scpct.unit == self.c.unit self.c = self.d = None @pytest.mark.parametrize('method', ('sum', 'min', 'max', 'std', 'mad_std', 'median', 'argmin', 'argmax')) def test_transpose(self, method, data_adv, data_vad, use_dask): c1, d1 = cube_and_raw(data_adv, use_dask=use_dask) c2, d2 = cube_and_raw(data_vad, use_dask=use_dask) for axis in [None, 0, 1, 2]: assert_allclose(getattr(c1, method)(axis=axis), getattr(c2, method)(axis=axis)) if not use_dask: # check that all these accept progressbar kwargs assert_allclose(getattr(c1, method)(axis=axis, progressbar=True), getattr(c2, method)(axis=axis, progressbar=True)) self.c = self.d = None @pytest.mark.parametrize('method', ('argmax_world', 'argmin_world')) def test_transpose_arg_world(self, method, data_adv, data_vad, use_dask): c1, d1 = cube_and_raw(data_adv, use_dask=use_dask) c2, d2 = cube_and_raw(data_vad, use_dask=use_dask) # The spectral axis should work in all of these test cases. axis = 0 assert_allclose(getattr(c1, method)(axis=axis), getattr(c2, method)(axis=axis)) if not use_dask: # check that all these accept progressbar kwargs assert_allclose(getattr(c1, method)(axis=axis, progressbar=True), getattr(c2, method)(axis=axis, progressbar=True)) # But the spatial axes should fail since the pixel axes are correlated to # the WCS celestial axes. Currently this will happen for ALL celestial axes. for axis in [1, 2]: with pytest.raises(utils.WCSCelestialError, match=re.escape(f"{method} requires the celestial axes")): assert_allclose(getattr(c1, method)(axis=axis), getattr(c2, method)(axis=axis)) self.c = self.d = None @pytest.mark.parametrize('method', ('argmax_world', 'argmin_world')) def test_arg_world(self, method, data_adv, use_dask): c1, d1 = cube_and_raw(data_adv, use_dask=use_dask) # Pixel operation is same name with "_world" removed. arg0_pixel = getattr(c1, method.split("_")[0])(axis=0) arg0_world = np.take_along_axis(c1.spectral_axis[:, np.newaxis, np.newaxis], arg0_pixel[np.newaxis, :, :], axis=0).squeeze() assert_allclose(getattr(c1, method)(axis=0), arg0_world) self.c = self.d = None class TestSlab(BaseTest): def test_closest_spectral_channel(self): c = self.c ms = u.m / u.s assert c.closest_spectral_channel(-321214.698632 * ms) == 0 assert c.closest_spectral_channel(-319926.48366321 * ms) == 1 assert c.closest_spectral_channel(-318638.26869442 * ms) == 2 assert c.closest_spectral_channel(-320000 * ms) == 1 assert c.closest_spectral_channel(-340000 * ms) == 0 assert c.closest_spectral_channel(0 * ms) == 3 self.c = self.d = None def test_spectral_channel_bad_units(self): with pytest.raises(u.UnitsError, match=re.escape("'value' should be in frequency equivalent or velocity units (got s)")): self.c.closest_spectral_channel(1 * u.s) with pytest.raises(u.UnitsError, match=re.escape("Spectral axis is in velocity units and 'value' is in frequency-equivalent units - use SpectralCube.with_spectral_unit first to convert the cube to frequency-equivalent units, or search for a velocity instead")): self.c.closest_spectral_channel(1. * u.Hz) self.c = self.d = None def test_slab(self): ms = u.m / u.s c2 = self.c.spectral_slab(-320000 * ms, -318600 * ms) assert_allclose(c2._data, self.d[1:3]) assert c2._mask is not None self.c = self.d = None def test_slab_reverse_limits(self): ms = u.m / u.s c2 = self.c.spectral_slab(-318600 * ms, -320000 * ms) assert_allclose(c2._data, self.d[1:3]) assert c2._mask is not None self.c = self.d = None def test_slab_preserves_wcs(self): # regression test ms = u.m / u.s crpix = list(self.c._wcs.wcs.crpix) self.c.spectral_slab(-318600 * ms, -320000 * ms) assert list(self.c._wcs.wcs.crpix) == crpix self.c = self.d = None class TestSlabMultiBeams(BaseTestMultiBeams, TestSlab): """ same tests with multibeams """ pass # class TestRepr(BaseTest): # def test_repr(self): # assert repr(self.c) == """ # SpectralCube with shape=(4, 3, 2) and unit=K: # n_x: 2 type_x: RA---SIN unit_x: deg range: 24.062698 deg: 24.063349 deg # n_y: 3 type_y: DEC--SIN unit_y: deg range: 29.934094 deg: 29.935209 deg # n_s: 4 type_s: VOPT unit_s: km / s range: -321.215 km / s: -317.350 km / s # """.strip() # self.c = self.d = None # def test_repr_withunit(self): # self.c._unit = u.Jy # assert repr(self.c) == """ # SpectralCube with shape=(4, 3, 2) and unit=Jy: # n_x: 2 type_x: RA---SIN unit_x: deg range: 24.062698 deg: 24.063349 deg # n_y: 3 type_y: DEC--SIN unit_y: deg range: 29.934094 deg: 29.935209 deg # n_s: 4 type_s: VOPT unit_s: km / s range: -321.215 km / s: -317.350 km / s # """.strip() # self.c = self.d = None @pytest.mark.skipif('not YT_INSTALLED') class TestYt(): @pytest.fixture(autouse=True) def setup_method_fixture(self, request, data_adv, use_dask): print("HERE") self.cube = SpectralCube.read(data_adv, use_dask=use_dask) # Without any special arguments print(self.cube) print(self.cube.to_yt) self.ytc1 = self.cube.to_yt() # With spectral factor = 0.5 self.spectral_factor = 0.5 self.ytc2 = self.cube.to_yt(spectral_factor=self.spectral_factor) # With nprocs = 4 self.nprocs = 4 self.ytc3 = self.cube.to_yt(nprocs=self.nprocs) print("DONE") def test_yt(self): # The following assertions just make sure everything is # kosher with the datasets generated in different ways ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3 ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset assert_array_equal(ds1.domain_dimensions, ds2.domain_dimensions) assert_array_equal(ds2.domain_dimensions, ds3.domain_dimensions) assert_allclose(ds1.domain_left_edge.value, ds2.domain_left_edge.value) assert_allclose(ds2.domain_left_edge.value, ds3.domain_left_edge.value) assert_allclose(ds1.domain_width.value, ds2.domain_width.value*np.array([1,1,1.0/self.spectral_factor])) assert_allclose(ds1.domain_width.value, ds3.domain_width.value) assert self.nprocs == len(ds3.index.grids) ds1.index ds2.index ds3.index unit1 = ds1.field_info["fits","flux"].units unit2 = ds2.field_info["fits","flux"].units unit3 = ds3.field_info["fits","flux"].units ds1.quan(1.0,unit1) ds2.quan(1.0,unit2) ds3.quan(1.0,unit3) self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None @pytest.mark.skipif('YT_LT_301', reason='yt 3.0 has a FITS-related bug') def test_yt_fluxcompare(self): # Now check that we can compute quantities of the flux # and that they are equal ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3 ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset dd1 = ds1.all_data() dd2 = ds2.all_data() dd3 = ds3.all_data() flux1_tot = dd1.quantities.total_quantity("flux") flux2_tot = dd2.quantities.total_quantity("flux") flux3_tot = dd3.quantities.total_quantity("flux") flux1_min, flux1_max = dd1.quantities.extrema("flux") flux2_min, flux2_max = dd2.quantities.extrema("flux") flux3_min, flux3_max = dd3.quantities.extrema("flux") assert flux1_tot == flux2_tot assert flux1_tot == flux3_tot assert flux1_min == flux2_min assert flux1_min == flux3_min assert flux1_max == flux2_max assert flux1_max == flux3_max self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None def test_yt_roundtrip_wcs(self): # Now test round-trip conversions between yt and world coordinates ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3 ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset yt_coord1 = ds1.domain_left_edge + np.random.random(size=3)*ds1.domain_width world_coord1 = ytc1.yt2world(yt_coord1) assert_allclose(ytc1.world2yt(world_coord1), yt_coord1.value) yt_coord2 = ds2.domain_left_edge + np.random.random(size=3)*ds2.domain_width world_coord2 = ytc2.yt2world(yt_coord2) assert_allclose(ytc2.world2yt(world_coord2), yt_coord2.value) yt_coord3 = ds3.domain_left_edge + np.random.random(size=3)*ds3.domain_width world_coord3 = ytc3.yt2world(yt_coord3) assert_allclose(ytc3.world2yt(world_coord3), yt_coord3.value) self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None def test_read_write_rountrip(tmpdir, data_adv, use_dask): cube = SpectralCube.read(data_adv, use_dask=use_dask) tmp_file = str(tmpdir.join('test.fits')) cube.write(tmp_file) cube2 = SpectralCube.read(tmp_file, use_dask=use_dask) assert cube.shape == cube.shape assert_allclose(cube._data, cube2._data) if (((hasattr(_wcs, '__version__') and LooseVersion(_wcs.__version__) < LooseVersion('5.9')) or not hasattr(_wcs, '__version__'))): # see https://github.com/astropy/astropy/pull/3992 for reasons: # we should upgrade this for 5.10 when the absolute accuracy is # maximized assert cube._wcs.to_header_string() == cube2._wcs.to_header_string() # in 5.11 and maybe even 5.12, the round trip fails. Maybe # https://github.com/astropy/astropy/issues/4292 will solve it? @pytest.mark.parametrize(('memmap', 'base'), ((True, mmap.mmap), (False, None))) def test_read_memmap(memmap, base, data_adv): cube = SpectralCube.read(data_adv, memmap=memmap) bb = cube.base while hasattr(bb, 'base'): bb = bb.base if base is None: assert bb is None else: assert isinstance(bb, base) def _dummy_cube(use_dask): data = np.array([[[0, 1, 2, 3, 4]]]) wcs = WCS(naxis=3) wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL'] def lower_threshold(data, wcs, view=()): return data[view] > 0 m1 = FunctionMask(lower_threshold) cube = SpectralCube(data, wcs=wcs, mask=m1, use_dask=use_dask) return cube def test_with_mask(use_dask): def upper_threshold(data, wcs, view=()): return data[view] < 3 m2 = FunctionMask(upper_threshold) cube = _dummy_cube(use_dask) cube2 = cube.with_mask(m2) assert_allclose(cube._get_filled_data(), [[[np.nan, 1, 2, 3, 4]]]) assert_allclose(cube2._get_filled_data(), [[[np.nan, 1, 2, np.nan, np.nan]]]) def test_with_mask_with_boolean_array(use_dask): cube = _dummy_cube(use_dask) mask = np.random.random(cube.shape) > 0.5 cube2 = cube.with_mask(mask, inherit_mask=False) assert isinstance(cube2._mask, BooleanArrayMask) assert cube2._mask._wcs is cube._wcs assert cube2._mask._mask is mask def test_with_mask_with_good_array_shape(use_dask): cube = _dummy_cube(use_dask) mask = np.zeros((1, 5), dtype=np.bool) cube2 = cube.with_mask(mask, inherit_mask=False) assert isinstance(cube2._mask, BooleanArrayMask) np.testing.assert_equal(cube2._mask._mask, mask.reshape((1, 1, 5))) def test_with_mask_with_bad_array_shape(use_dask): cube = _dummy_cube(use_dask) mask = np.zeros((5, 5), dtype=np.bool) with pytest.raises(ValueError) as exc: cube.with_mask(mask) assert exc.value.args[0] == ("Mask shape is not broadcastable to data shape: " "(5, 5) vs (1, 1, 5)") class TestMasks(BaseTest): @pytest.mark.parametrize('op', (operator.gt, operator.lt, operator.le, operator.ge)) def test_operator_threshold(self, op): # choose thresh to exercise proper equality tests thresh = self.d.ravel()[0] m = op(self.c, thresh*u.K) self.c._mask = m expected = self.d[op(self.d, thresh)] actual = self.c.flattened() assert_allclose(actual, expected) self.c = self.d = None def test_preserve_spectral_unit(data_advs, use_dask): # astropy.wcs has a tendancy to change spectral units from e.g. km/s to # m/s, so we have a workaround - check that it works. cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube_freq = cube.with_spectral_unit(u.GHz) assert cube_freq.wcs.wcs.cunit[2] == 'Hz' # check internal assert cube_freq.spectral_axis.unit is u.GHz # Check that this preferred unit is propagated new_cube = cube_freq.with_fill_value(fill_value=3.4) assert new_cube.spectral_axis.unit is u.GHz def test_endians(use_dask): """ Test that the endianness checking returns something in Native form (this is only needed for non-numpy functions that worry about the endianness of their data) WARNING: Because the endianness is machine-dependent, this may fail on different architectures! This is because numpy automatically converts little-endian to native in the dtype parameter; I need a workaround for this. """ pytest.importorskip('bottleneck') big = np.array([[[1],[2]]], dtype='>f4') lil = np.array([[[1],[2]]], dtype='<f4') mywcs = WCS(naxis=3) mywcs.wcs.ctype[0] = 'RA' mywcs.wcs.ctype[1] = 'DEC' mywcs.wcs.ctype[2] = 'VELO' bigcube = SpectralCube(data=big, wcs=mywcs, use_dask=use_dask) xbig = bigcube._get_filled_data(check_endian=True) lilcube = SpectralCube(data=lil, wcs=mywcs, use_dask=use_dask) xlil = lilcube._get_filled_data(check_endian=True) assert xbig.dtype.byteorder == '=' assert xlil.dtype.byteorder == '=' xbig = bigcube._get_filled_data(check_endian=False) xlil = lilcube._get_filled_data(check_endian=False) assert xbig.dtype.byteorder == '>' assert xlil.dtype.byteorder == '=' def test_header_naxis(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) assert cube.header['NAXIS'] == 3 # NOT data.ndim == 4 assert cube.header['NAXIS1'] == data.shape[3] assert cube.header['NAXIS2'] == data.shape[2] assert cube.header['NAXIS3'] == data.shape[1] assert 'NAXIS4' not in cube.header def test_slicing(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask) # just to check that we're starting in the right place assert cube.shape == (2,3,4) sl = cube[:,1,:] assert sl.shape == (2,4) v = cube[1:2,:,:] assert v.shape == (1,3,4) # make sure this works. Not sure what keys to test for... v.header assert cube[:,:,:].shape == (2,3,4) assert cube[:,:].shape == (2,3,4) assert cube[:].shape == (2,3,4) assert cube[:1,:1,:1].shape == (1,1,1) @pytest.mark.parametrize(('view','naxis'), [((slice(None), 1, slice(None)), 2), ((1, slice(None), slice(None)), 2), ((slice(None), slice(None), 1), 2), ((slice(None), slice(None), slice(1)), 3), ((slice(1), slice(1), slice(1)), 3), ((slice(None, None, -1), slice(None), slice(None)), 3), ]) def test_slice_wcs(view, naxis, data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) sl = cube[view] assert sl.wcs.naxis == naxis # Ensure slices work without a beam cube._beam = None sl = cube[view] assert sl.wcs.naxis == naxis def test_slice_wcs_reversal(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) view = (slice(None,None,-1), slice(None), slice(None)) rcube = cube[view] rrcube = rcube[view] np.testing.assert_array_equal(np.diff(cube.spectral_axis), -np.diff(rcube.spectral_axis)) np.testing.assert_array_equal(rrcube.spectral_axis.value, cube.spectral_axis.value) np.testing.assert_array_equal(rcube.spectral_axis.value, cube.spectral_axis.value[::-1]) np.testing.assert_array_equal(rrcube.world_extrema.value, cube.world_extrema.value) # check that the lon, lat arrays are *entirely* unchanged np.testing.assert_array_equal(rrcube.spatial_coordinate_map[0].value, cube.spatial_coordinate_map[0].value) np.testing.assert_array_equal(rrcube.spatial_coordinate_map[1].value, cube.spatial_coordinate_map[1].value) def test_spectral_slice_preserve_units(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube = cube.with_spectral_unit(u.km/u.s) sl = cube[:,0,0] assert cube._spectral_unit == u.km/u.s assert sl._spectral_unit == u.km/u.s assert cube.spectral_axis.unit == u.km/u.s assert sl.spectral_axis.unit == u.km/u.s def test_header_units_consistent(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube_ms = cube.with_spectral_unit(u.m/u.s) cube_kms = cube.with_spectral_unit(u.km/u.s) cube_Mms = cube.with_spectral_unit(u.Mm/u.s) assert cube.header['CUNIT3'] == 'km s-1' assert cube_ms.header['CUNIT3'] == 'm s-1' assert cube_kms.header['CUNIT3'] == 'km s-1' assert cube_Mms.header['CUNIT3'] == 'Mm s-1' # Wow, the tolerance here is really terrible... assert_allclose(cube_Mms.header['CDELT3'], cube.header['CDELT3']/1e3,rtol=1e-3,atol=1e-5) assert_allclose(cube.header['CDELT3'], cube_kms.header['CDELT3'],rtol=1e-2,atol=1e-5) assert_allclose(cube.header['CDELT3']*1e3, cube_ms.header['CDELT3'],rtol=1e-2,atol=1e-5) cube_freq = cube.with_spectral_unit(u.Hz) assert cube_freq.header['CUNIT3'] == 'Hz' cube_freq_GHz = cube.with_spectral_unit(u.GHz) assert cube_freq_GHz.header['CUNIT3'] == 'GHz' def test_spectral_unit_conventions(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube_frq = cube.with_spectral_unit(u.Hz) cube_opt = cube.with_spectral_unit(u.km/u.s, rest_value=cube_frq.spectral_axis[0], velocity_convention='optical') cube_rad = cube.with_spectral_unit(u.km/u.s, rest_value=cube_frq.spectral_axis[0], velocity_convention='radio') cube_rel = cube.with_spectral_unit(u.km/u.s, rest_value=cube_frq.spectral_axis[0], velocity_convention='relativistic') # should all be exactly 0 km/s for x in (cube_rel.spectral_axis[0], cube_rad.spectral_axis[0], cube_opt.spectral_axis[0]): np.testing.assert_almost_equal(0,x.value) assert cube_rel.spectral_axis[1] != cube_rad.spectral_axis[1] assert cube_opt.spectral_axis[1] != cube_rad.spectral_axis[1] assert cube_rel.spectral_axis[1] != cube_opt.spectral_axis[1] assert cube_rel.velocity_convention == u.doppler_relativistic assert cube_rad.velocity_convention == u.doppler_radio assert cube_opt.velocity_convention == u.doppler_optical def test_invalid_spectral_unit_conventions(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) with pytest.raises(ValueError, match=("Velocity convention must be radio, optical, " "or relativistic.")): cube.with_spectral_unit(u.km/u.s, velocity_convention='invalid velocity convention') @pytest.mark.parametrize('rest', (50, 50*u.K)) def test_invalid_rest(rest, data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) with pytest.raises(ValueError, match=("Rest value must be specified as an astropy " "quantity with spectral equivalence.")): cube.with_spectral_unit(u.km/u.s, velocity_convention='radio', rest_value=rest) def test_airwave_to_wave(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._wcs.wcs.ctype[2] = 'AWAV' cube._wcs.wcs.cunit[2] = 'm' cube._spectral_unit = u.m cube._wcs.wcs.cdelt[2] = 1e-7 cube._wcs.wcs.crval[2] = 5e-7 ax1 = cube.spectral_axis ax2 = cube.with_spectral_unit(u.m).spectral_axis np.testing.assert_almost_equal(spectral_axis.air_to_vac(ax1).value, ax2.value) @pytest.mark.parametrize(('func','how','axis','filename'), itertools.product(('sum','std','max','min','mean'), ('slice','cube','auto'), (0,1,2), ('data_advs', 'data_advs_nobeam'), ), indirect=['filename']) def test_twod_numpy(func, how, axis, filename, use_dask): # Check that a numpy function returns the correct result when applied along # one axis # This is partly a regression test for #211 cube, data = cube_and_raw(filename, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K if use_dask: if how != 'cube': pytest.skip() else: proj = getattr(cube,func)(axis=axis) else: proj = getattr(cube,func)(axis=axis, how=how) # data has a redundant 1st axis dproj = getattr(data,func)(axis=(0,axis+1)).squeeze() assert isinstance(proj, Projection) np.testing.assert_equal(proj.value, dproj) assert cube.unit == proj.unit @pytest.mark.parametrize(('func','how','axis','filename'), itertools.product(('sum','std','max','min','mean'), ('slice','cube','auto'), ((0,1),(1,2),(0,2)), ('data_advs', 'data_advs_nobeam'), ), indirect=['filename']) def test_twod_numpy_twoaxes(func, how, axis, filename, use_dask): # Check that a numpy function returns the correct result when applied along # one axis # This is partly a regression test for #211 cube, data = cube_and_raw(filename, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K with warnings.catch_warnings(record=True) as wrn: if use_dask: if how != 'cube': pytest.skip() else: spec = getattr(cube,func)(axis=axis) else: spec = getattr(cube,func)(axis=axis, how=how) if func == 'mean' and axis != (1,2): assert 'Averaging over a spatial and a spectral' in str(wrn[-1].message) # data has a redundant 1st axis dspec = getattr(data.squeeze(),func)(axis=axis) if axis == (1,2): assert isinstance(spec, OneDSpectrum) assert cube.unit == spec.unit np.testing.assert_almost_equal(spec.value, dspec) else: np.testing.assert_almost_equal(spec, dspec) def test_preserves_header_values(data_advs, use_dask): # Check that the non-WCS header parameters are preserved during projection cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K cube._header['OBJECT'] = 'TestName' if use_dask: proj = cube.sum(axis=0) else: proj = cube.sum(axis=0, how='auto') assert isinstance(proj, Projection) assert proj.header['OBJECT'] == 'TestName' assert proj.hdu.header['OBJECT'] == 'TestName' def test_preserves_header_meta_values(data_advs, use_dask): # Check that additional parameters in meta are preserved cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube.meta['foo'] = 'bar' assert cube.header['FOO'] == 'bar' # check that long keywords are also preserved cube.meta['too_long_keyword'] = 'too_long_information' assert 'too_long_keyword=too_long_information' in cube.header['COMMENT'] if use_dask: proj = cube.sum(axis=0) else: proj = cube.sum(axis=0, how='auto') # Checks that the header is preserved when passed to LDOs for ldo in (proj, cube[:,0,0]): assert isinstance(ldo, LowerDimensionalObject) assert ldo.header['FOO'] == 'bar' assert ldo.hdu.header['FOO'] == 'bar' # make sure that the meta preservation works on the LDOs themselves too ldo.meta['bar'] = 'foo' assert ldo.header['BAR'] == 'foo' assert 'too_long_keyword=too_long_information' in ldo.header['COMMENT'] @pytest.mark.parametrize(('func', 'filename'), itertools.product(('sum','std','max','min','mean'), ('data_advs', 'data_advs_nobeam',), ), indirect=['filename']) def test_oned_numpy(func, filename, use_dask): # Check that a numpy function returns an appropriate spectrum cube, data = cube_and_raw(filename, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K spec = getattr(cube,func)(axis=(1,2)) dspec = getattr(data,func)(axis=(2,3)).squeeze() assert isinstance(spec, (OneDSpectrum, VaryingResolutionOneDSpectrum)) # data has a redundant 1st axis np.testing.assert_equal(spec.value, dspec) assert cube.unit == spec.unit def test_oned_slice(data_advs, use_dask): # Check that a slice returns an appropriate spectrum cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K spec = cube[:,0,0] assert isinstance(spec, OneDSpectrum) # data has a redundant 1st axis np.testing.assert_equal(spec.value, data[0,:,0,0]) assert cube.unit == spec.unit assert spec.header['BUNIT'] == cube.header['BUNIT'] def test_oned_slice_beams(data_sdav_beams, use_dask): # Check that a slice returns an appropriate spectrum cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K spec = cube[:,0,0] assert isinstance(spec, VaryingResolutionOneDSpectrum) # data has a redundant 1st axis np.testing.assert_equal(spec.value, data[:,0,0,0]) assert cube.unit == spec.unit assert spec.header['BUNIT'] == cube.header['BUNIT'] assert hasattr(spec, 'beams') assert 'BMAJ' in spec.hdulist[1].data.names def test_subcube_slab_beams(data_sdav_beams, use_dask): cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask) slcube = cube[1:] assert all(slcube.hdulist[1].data['CHAN'] == np.arange(slcube.shape[0])) try: # Make sure Beams has been sliced correctly assert all(cube.beams[1:] == slcube.beams) except TypeError: # in 69eac9241220d3552c06b173944cb7cdebeb47ef, radio_beam switched to # returning a single value assert cube.beams[1:] == slcube.beams # collapsing to one dimension raywise doesn't make sense and is therefore # not supported. @pytest.mark.parametrize('how', ('auto', 'cube', 'slice')) def test_oned_collapse(how, data_advs, use_dask): # Check that an operation along the spatial dims returns an appropriate # spectrum cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K if use_dask: if how != 'cube': pytest.skip() else: spec = cube.mean(axis=(1,2)) else: spec = cube.mean(axis=(1,2), how=how) assert isinstance(spec, OneDSpectrum) # data has a redundant 1st axis np.testing.assert_equal(spec.value, data.mean(axis=(0,2,3))) assert cube.unit == spec.unit assert spec.header['BUNIT'] == cube.header['BUNIT'] def test_oned_collapse_beams(data_sdav_beams, use_dask): # Check that an operation along the spatial dims returns an appropriate # spectrum cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask) cube._meta['BUNIT'] = 'K' cube._unit = u.K spec = cube.mean(axis=(1,2)) assert isinstance(spec, VaryingResolutionOneDSpectrum) # data has a redundant 1st axis np.testing.assert_equal(spec.value, data.mean(axis=(1,2,3))) assert cube.unit == spec.unit assert spec.header['BUNIT'] == cube.header['BUNIT'] assert hasattr(spec, 'beams') assert 'BMAJ' in spec.hdulist[1].data.names def test_preserve_bunit(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) assert cube.header['BUNIT'] == 'K' hdul = fits.open(data_advs) hdu = hdul[0] hdu.header['BUNIT'] = 'Jy' cube = SpectralCube.read(hdu) assert cube.unit == u.Jy assert cube.header['BUNIT'] == 'Jy' hdul.close() def test_preserve_beam(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) beam = Beam.from_fits_header(str(data_advs)) assert cube.beam == beam def test_beam_attach_to_header(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) header = cube._header.copy() del header["BMAJ"], header["BMIN"], header["BPA"] newcube = SpectralCube(data=data, wcs=cube.wcs, header=header, beam=cube.beam) assert cube.header["BMAJ"] == newcube.header["BMAJ"] assert cube.header["BMIN"] == newcube.header["BMIN"] assert cube.header["BPA"] == newcube.header["BPA"] # Should be in meta too assert newcube.meta['beam'] == cube.beam def test_beam_custom(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) header = cube._header.copy() beam = Beam.from_fits_header(header) del header["BMAJ"], header["BMIN"], header["BPA"] newcube = SpectralCube(data=data, wcs=cube.wcs, header=header) # newcube should now not have a beam # Should raise exception try: newcube.beam except utils.NoBeamError: pass # Attach the beam newcube = newcube.with_beam(beam=beam) assert newcube.beam == cube.beam # Header should be updated assert cube.header["BMAJ"] == newcube.header["BMAJ"] assert cube.header["BMIN"] == newcube.header["BMIN"] assert cube.header["BPA"] == newcube.header["BPA"] # Should be in meta too assert newcube.meta['beam'] == cube.beam # Try changing the beam properties newbeam = Beam(beam.major * 2) newcube2 = newcube.with_beam(beam=newbeam) assert newcube2.beam == newbeam # Header should be updated assert newcube2.header["BMAJ"] == newbeam.major.value assert newcube2.header["BMIN"] == newbeam.minor.value assert newcube2.header["BPA"] == newbeam.pa.value # Should be in meta too assert newcube2.meta['beam'] == newbeam def test_cube_with_no_beam(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) header = cube._header.copy() beam = Beam.from_fits_header(header) del header["BMAJ"], header["BMIN"], header["BPA"] newcube = SpectralCube(data=data, wcs=cube.wcs, header=header) # Accessing beam raises an error try: newcube.beam except utils.NoBeamError: pass # But is still has a beam attribute assert hasattr(newcube, "_beam") # Attach the beam newcube = newcube.with_beam(beam=beam) # But now it should have an accessible beam try: newcube.beam except utils.NoBeamError as exc: raise exc def test_multibeam_custom(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) # Make a new set of beams that differs from the original. new_beams = Beams([1.] * cube.shape[0] * u.deg) # Attach the beam newcube = cube.with_beams(new_beams, raise_error_jybm=False) try: assert all(new_beams == newcube.beams) except TypeError: # in 69eac9241220d3552c06b173944cb7cdebeb47ef, radio_beam switched to # returning a single value assert new_beams == newcube.beams @pytest.mark.openfiles_ignore @pytest.mark.xfail(raises=ValueError, strict=True) def test_multibeam_custom_wrongshape(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) # Make a new set of beams that differs from the original. new_beams = Beams([1.] * cube.shape[0] * u.deg) # Attach the beam cube.with_beams(new_beams[:1], raise_error_jybm=False) @pytest.mark.openfiles_ignore @pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True) def test_multibeam_jybm_error(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) # Make a new set of beams that differs from the original. new_beams = Beams([1.] * cube.shape[0] * u.deg) # Attach the beam newcube = cube.with_beams(new_beams, raise_error_jybm=True) def test_multibeam_slice(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert isinstance(cube, VaryingResolutionSpectralCube) np.testing.assert_almost_equal(cube.beams[0].major.value, 0.4) np.testing.assert_almost_equal(cube.beams[0].minor.value, 0.1) np.testing.assert_almost_equal(cube.beams[3].major.value, 0.4) scube = cube[:2,:,:] np.testing.assert_almost_equal(scube.beams[0].major.value, 0.4) np.testing.assert_almost_equal(scube.beams[0].minor.value, 0.1) np.testing.assert_almost_equal(scube.beams[1].major.value, 0.3) np.testing.assert_almost_equal(scube.beams[1].minor.value, 0.2) flatslice = cube[0,:,:] np.testing.assert_almost_equal(flatslice.header['BMAJ'], (0.4/3600.)) # Test returning a VRODS spec = cube[:, 0, 0] assert (cube.beams == spec.beams).all() # And make sure that Beams gets slice for part of a spectrum spec_part = cube[:1, 0, 0] assert cube.beams[0] == spec.beams[0] def test_basic_unit_conversion(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) assert cube.unit == u.K mKcube = cube.to(u.mK) np.testing.assert_almost_equal(mKcube.filled_data[:].value, (cube.filled_data[:].value * 1e3)) def test_basic_unit_conversion_beams(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) cube._unit = u.K # want beams, but we want to force the unit to be something non-beamy cube._meta['BUNIT'] = 'K' assert cube.unit == u.K mKcube = cube.to(u.mK) np.testing.assert_almost_equal(mKcube.filled_data[:].value, (cube.filled_data[:].value * 1e3)) bunits_list = [u.Jy / u.beam, u.K, u.Jy / u.sr, u.Jy / u.pix, u.Jy / u.arcsec**2, u.mJy / u.beam, u.mK] @pytest.mark.parametrize(('init_unit'), bunits_list) def test_unit_conversions_general(data_advs, use_dask, init_unit): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = init_unit.to_string() cube._unit = init_unit # Check all unit conversion combos: for targ_unit in bunits_list: newcube = cube.to(targ_unit) if init_unit == targ_unit: np.testing.assert_almost_equal(newcube.filled_data[:].value, cube.filled_data[:].value) else: roundtrip_cube = newcube.to(init_unit) np.testing.assert_almost_equal(roundtrip_cube.filled_data[:].value, cube.filled_data[:].value) @pytest.mark.parametrize(('init_unit'), bunits_list) def test_multibeam_unit_conversions_general(data_vda_beams, use_dask, init_unit): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) cube._meta['BUNIT'] = init_unit.to_string() cube._unit = init_unit # Check all unit conversion combos: for targ_unit in bunits_list: newcube = cube.to(targ_unit) if init_unit == targ_unit: np.testing.assert_almost_equal(newcube.filled_data[:].value, cube.filled_data[:].value) else: roundtrip_cube = newcube.to(init_unit) np.testing.assert_almost_equal(roundtrip_cube.filled_data[:].value, cube.filled_data[:].value) def test_beam_jpix_checks_array(data_advs, use_dask): ''' Ensure round-trip consistency in our defined K -> Jy/pix conversions. ''' cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = 'Jy / beam' cube._unit = u.Jy/u.beam jtok = cube.beam.jtok(cube.with_spectral_unit(u.GHz).spectral_axis) pixperbeam = cube.pixels_per_beam * u.pix cube_jypix = cube.to(u.Jy / u.pix) np.testing.assert_almost_equal(cube_jypix.filled_data[:].value, (cube.filled_data[:].value / pixperbeam).value) Kcube = cube.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, (cube_jypix.filled_data[:].value * jtok[:,None,None] * pixperbeam).value) # Round trips. roundtrip_cube = cube_jypix.to(u.Jy / u.beam) np.testing.assert_almost_equal(cube.filled_data[:].value, roundtrip_cube.filled_data[:].value) Kcube_from_jypix = cube_jypix.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, Kcube_from_jypix.filled_data[:].value) def test_multibeam_jpix_checks_array(data_vda_beams, use_dask): ''' Ensure round-trip consistency in our defined K -> Jy/pix conversions. ''' cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) cube._meta['BUNIT'] = 'Jy / beam' cube._unit = u.Jy/u.beam # NOTE: We are no longer using jtok_factors for conversions. This may need to be removed # in the future jtok = cube.jtok_factors() pixperbeam = cube.pixels_per_beam * u.pix cube_jypix = cube.to(u.Jy / u.pix) np.testing.assert_almost_equal(cube_jypix.filled_data[:].value, (cube.filled_data[:].value / pixperbeam[:, None, None]).value) Kcube = cube.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, (cube_jypix.filled_data[:].value * jtok[:,None,None] * pixperbeam[:, None, None]).value) # Round trips. roundtrip_cube = cube_jypix.to(u.Jy / u.beam) np.testing.assert_almost_equal(cube.filled_data[:].value, roundtrip_cube.filled_data[:].value) Kcube_from_jypix = cube_jypix.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, Kcube_from_jypix.filled_data[:].value) def test_beam_jtok_array(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) cube._meta['BUNIT'] = 'Jy / beam' cube._unit = u.Jy/u.beam jtok = cube.beam.jtok(cube.with_spectral_unit(u.GHz).spectral_axis) # test that the beam equivalencies are correctly automatically defined Kcube = cube.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, (cube.filled_data[:].value * jtok[:,None,None]).value) def test_multibeam_jtok_array(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert cube.meta['BUNIT'].strip() == 'Jy / beam' assert cube.unit.is_equivalent(u.Jy/u.beam) #equiv = [bm.jtok_equiv(frq) for bm, frq in zip(cube.beams, cube.with_spectral_unit(u.GHz).spectral_axis)] jtok = u.Quantity([bm.jtok(frq) for bm, frq in zip(cube.beams, cube.with_spectral_unit(u.GHz).spectral_axis)]) # don't try this, it's nonsense for the multibeam case # Kcube = cube.to(u.K, equivalencies=equiv) # np.testing.assert_almost_equal(Kcube.filled_data[:].value, # (cube.filled_data[:].value * # jtok[:,None,None]).value) # test that the beam equivalencies are correctly automatically defined Kcube = cube.to(u.K) np.testing.assert_almost_equal(Kcube.filled_data[:].value, (cube.filled_data[:].value * jtok[:,None,None]).value) def test_beam_jtok(data_advs, use_dask): # regression test for an error introduced when the previous test was solved # (the "is this an array?" test used len(x) where x could be scalar) cube, data = cube_and_raw(data_advs, use_dask=use_dask) # technically this should be jy/beam, but astropy's equivalency doesn't # handle this yet cube._meta['BUNIT'] = 'Jy' cube._unit = u.Jy equiv = cube.beam.jtok_equiv(np.median(cube.with_spectral_unit(u.GHz).spectral_axis)) jtok = cube.beam.jtok(np.median(cube.with_spectral_unit(u.GHz).spectral_axis)) Kcube = cube.to(u.K, equivalencies=equiv) np.testing.assert_almost_equal(Kcube.filled_data[:].value, (cube.filled_data[:].value * jtok).value) def test_varyres_moment(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert isinstance(cube, VaryingResolutionSpectralCube) # the beams are very different, but for this test we don't care cube.beam_threshold = 1.0 with pytest.warns(UserWarning, match="Arithmetic beam averaging is being performed"): m0 = cube.moment0() assert_quantity_allclose(m0.meta['beam'].major, 0.35*u.arcsec) def test_varyres_unitconversion_roundtrip(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert isinstance(cube, VaryingResolutionSpectralCube) assert cube.unit == u.Jy/u.beam roundtrip = cube.to(u.mJy/u.beam).to(u.Jy/u.beam) assert_quantity_allclose(cube.filled_data[:], roundtrip.filled_data[:]) # you can't straightforwardly roundtrip to Jy/beam yet # it requires a per-beam equivalency, which is why there's # a specific hack to go from Jy/beam (in each channel) -> K def test_append_beam_to_hdr(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) orig_hdr = fits.getheader(data_advs) assert cube.header['BMAJ'] == orig_hdr['BMAJ'] assert cube.header['BMIN'] == orig_hdr['BMIN'] assert cube.header['BPA'] == orig_hdr['BPA'] def test_cube_with_swapped_axes(data_vda, use_dask): """ Regression test for #208 """ cube, data = cube_and_raw(data_vda, use_dask=use_dask) # Check that masking works (this should apply a lazy mask) cube.filled_data[:] def test_jybeam_upper(data_vda_jybeam_upper, use_dask): cube, data = cube_and_raw(data_vda_jybeam_upper, use_dask=use_dask) assert cube.unit == u.Jy/u.beam assert hasattr(cube, 'beam') np.testing.assert_almost_equal(cube.beam.sr.value, (((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value) def test_jybeam_lower(data_vda_jybeam_lower, use_dask): cube, data = cube_and_raw(data_vda_jybeam_lower, use_dask=use_dask) assert cube.unit == u.Jy/u.beam assert hasattr(cube, 'beam') np.testing.assert_almost_equal(cube.beam.sr.value, (((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value) def test_jybeam_whitespace(data_vda_jybeam_whitespace, use_dask): # Regression test for #257 (https://github.com/radio-astro-tools/spectral-cube/pull/257) cube, data = cube_and_raw(data_vda_jybeam_whitespace, use_dask=use_dask) assert cube.unit == u.Jy/u.beam assert hasattr(cube, 'beam') np.testing.assert_almost_equal(cube.beam.sr.value, (((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value) def test_beam_proj_meta(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) moment = cube.moment0(axis=0) # regression test for #250 assert 'beam' in moment.meta assert 'BMAJ' in moment.hdu.header slc = cube[0,:,:] assert 'beam' in slc.meta proj = cube.max(axis=0) assert 'beam' in proj.meta def test_proj_meta(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) moment = cube.moment0(axis=0) assert 'BUNIT' in moment.meta assert moment.meta['BUNIT'] == 'K' slc = cube[0,:,:] assert 'BUNIT' in slc.meta assert slc.meta['BUNIT'] == 'K' proj = cube.max(axis=0) assert 'BUNIT' in proj.meta assert proj.meta['BUNIT'] == 'K' def test_pix_sign(data_advs, use_dask): cube, data = cube_and_raw(data_advs, use_dask=use_dask) s,y,x = (cube._pix_size_slice(ii) for ii in range(3)) assert s>0 assert y>0 assert x>0 cube.wcs.wcs.cdelt *= -1 s,y,x = (cube._pix_size_slice(ii) for ii in range(3)) assert s>0 assert y>0 assert x>0 cube.wcs.wcs.pc *= -1 s,y,x = (cube._pix_size_slice(ii) for ii in range(3)) assert s>0 assert y>0 assert x>0 def test_varyres_moment_logic_issue364(data_vda_beams, use_dask): """ regression test for issue364 """ cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert isinstance(cube, VaryingResolutionSpectralCube) # the beams are very different, but for this test we don't care cube.beam_threshold = 1.0 with pytest.warns(UserWarning, match="Arithmetic beam averaging is being performed"): # note that cube.moment(order=0) is different from cube.moment0() # because cube.moment0() calls cube.moment(order=0, axis=(whatever)), # but cube.moment doesn't necessarily have to receive the axis kwarg m0 = cube.moment(order=0) # note that this is just a sanity check; one should never use the average beam assert_quantity_allclose(m0.meta['beam'].major, 0.35*u.arcsec) @pytest.mark.skipif('not casaOK') @pytest.mark.parametrize('filename', ['data_vda_beams', 'data_vda_beams_image'], indirect=['filename']) def test_mask_bad_beams(filename, use_dask): """ Prior to #543, this tested two different scenarios of beam masking. After that, the tests got mucked up because we can no longer have minor>major in the beams. """ if 'image' in str(filename) and not use_dask: pytest.skip() cube, data = cube_and_raw(filename, use_dask=use_dask) assert isinstance(cube, base_class.MultiBeamMixinClass) # make sure all of the beams are initially good (finite) assert np.all(cube.goodbeams_mask) # make sure cropping the cube maintains the mask assert np.all(cube[:3].goodbeams_mask) # middle two beams have same area masked_cube = cube.mask_out_bad_beams(0.01, reference_beam=Beam(0.3*u.arcsec, 0.2*u.arcsec, 60*u.deg)) assert np.all(masked_cube.mask.include()[:,0,0] == [False,True,True,False]) assert np.all(masked_cube.goodbeams_mask == [False,True,True,False]) mean = masked_cube.mean(axis=0) assert np.all(mean == cube[1:3,:,:].mean(axis=0)) #doesn't test anything any more # masked_cube2 = cube.mask_out_bad_beams(0.5,) # mean2 = masked_cube2.mean(axis=0) # assert np.all(mean2 == (cube[2,:,:]+cube[1,:,:])/2) # assert np.all(masked_cube2.goodbeams_mask == [False,True,True,False]) def test_convolve_to_equal(data_vda, use_dask): cube, data = cube_and_raw(data_vda, use_dask=use_dask) convolved = cube.convolve_to(cube.beam) assert np.all(convolved.filled_data[:].value == cube.filled_data[:].value) # And one channel plane = cube[0] convolved = plane.convolve_to(cube.beam) assert np.all(convolved.value == plane.value) # Pass a kwarg to the convolution function convolved = plane.convolve_to(cube.beam, nan_treatment='fill') def test_convolve_to(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) convolved = cube.convolve_to(Beam(0.5*u.arcsec)) # Pass a kwarg to the convolution function convolved = cube.convolve_to(Beam(0.5*u.arcsec), nan_treatment='fill') def test_convolve_to_jybeam_onebeam(point_source_5_one_beam, use_dask): cube, data = cube_and_raw(point_source_5_one_beam, use_dask=use_dask) convolved = cube.convolve_to(Beam(10*u.arcsec)) # The peak of the point source should remain constant in Jy/beam np.testing.assert_allclose(convolved[:, 5, 5].value, cube[:, 5, 5].value, atol=1e-5, rtol=1e-5) assert cube.unit == u.Jy / u.beam def test_convolve_to_jybeam_multibeams(point_source_5_spectral_beams, use_dask): cube, data = cube_and_raw(point_source_5_spectral_beams, use_dask=use_dask) convolved = cube.convolve_to(Beam(10*u.arcsec)) # The peak of the point source should remain constant in Jy/beam np.testing.assert_allclose(convolved[:, 5, 5].value, cube[:, 5, 5].value, atol=1e-5, rtol=1e-5) assert cube.unit == u.Jy / u.beam def test_convolve_to_with_bad_beams(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) convolved = cube.convolve_to(Beam(0.5*u.arcsec)) # From: https://github.com/radio-astro-tools/radio-beam/pull/87 # updated exception to BeamError when the beam cannot be deconvolved. # BeamError is not new in the radio_beam package, only its use here. # Keeping the ValueError for testing against <v0.3.3 versions with pytest.raises((BeamError, ValueError), match="Beam could not be deconvolved"): # should not work: biggest beam is 0.4" convolved = cube.convolve_to(Beam(0.35*u.arcsec)) # middle two beams are smaller than 0.4 masked_cube = cube.mask_channels([False, True, True, False]) # should work: biggest beam is 0.3 arcsec (major) convolved = masked_cube.convolve_to(Beam(0.35*u.arcsec)) # this is a copout test; should really check for correctness... assert np.all(np.isfinite(convolved.filled_data[1:3])) def test_jybeam_factors(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert_allclose(cube.jtok_factors(), [15111171.12641629, 10074201.06746361, 10074287.73828087, 15111561.14508185], rtol=5e-7 ) def test_channelmask_singlebeam(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) masked_cube = cube.mask_channels([False, True, True, False]) assert np.all(masked_cube.mask.include()[:,0,0] == [False, True, True, False]) def test_mad_std(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) if int(astropy.__version__[0]) < 2: with pytest.raises(NotImplementedError) as exc: cube.mad_std() else: # mad_std run manually on data result = np.array([[0.3099842, 0.2576232], [0.1822292, 0.6101782], [0.2819404, 0.2084236]]) np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result) mcube = cube.with_mask(cube < 0.98*u.K) result2 = np.array([[0.3099842, 0.2576232], [0.1822292, 0.6101782], [0.2819404, 0.2084236]]) np.testing.assert_almost_equal(mcube.mad_std(axis=0).value, result2) def test_mad_std_nan(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) # HACK in a nan data[1, 1, 0] = np.nan hdu = copy.copy(cube.hdu) hdu.data = copy.copy(data) # use the include-everything mask so we're really testing that nan is # ignored oldmask = copy.copy(cube.mask) if use_dask: cube = DaskSpectralCube.read(hdu) else: cube = SpectralCube.read(hdu) if int(astropy.__version__[0]) < 2: with pytest.raises(NotImplementedError) as exc: cube.mad_std() else: # mad_std run manually on data # (note: would have entry [1,0] = nan in bad case) result = np.array([[0.30998422, 0.25762317], [0.24100427, 0.6101782 ], [0.28194039, 0.20842358]]) resultB = stats.mad_std(data, axis=0, ignore_nan=True) # this test is to make sure we're testing against the right stuff np.testing.assert_almost_equal(result, resultB) assert cube.mask.include().sum() == 23 np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result) # run the test with the inclusive mask cube._mask = oldmask assert cube.mask.include().sum() == 24 np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result) # try to force closure del hdu del cube del data del oldmask del result def test_mad_std_params(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) # mad_std run manually on data result = np.array([[0.3099842, 0.2576232], [0.1822292, 0.6101782], [0.2819404, 0.2084236]]) if use_dask: np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result) cube.mad_std(axis=1) cube.mad_std(axis=(1, 2)) else: np.testing.assert_almost_equal(cube.mad_std(axis=0, how='cube').value, result) np.testing.assert_almost_equal(cube.mad_std(axis=0, how='ray').value, result) with pytest.raises(NotImplementedError): cube.mad_std(axis=0, how='slice') with pytest.raises(NotImplementedError): cube.mad_std(axis=1, how='slice') with pytest.raises(NotImplementedError): cube.mad_std(axis=(1,2), how='ray') def test_caching(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) assert len(cube._cache) == 0 worldextrema = cube.world_extrema assert len(cube._cache) == 1 # see https://stackoverflow.com/questions/46181936/access-a-parent-class-property-getter-from-the-child-class world_extrema_function = base_class.SpatialCoordMixinClass.world_extrema.fget.wrapped_function assert cube.world_extrema is cube._cache[(world_extrema_function, ())] np.testing.assert_almost_equal(worldextrema.value, cube.world_extrema.value) def test_spatial_smooth_g2d(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) # Guassian 2D smoothing test g2d = Gaussian2DKernel(3) cube_g2d = cube.spatial_smooth(g2d) # Check first slice result0 = np.array([[0.0585795, 0.0588712], [0.0612525, 0.0614312], [0.0576757, 0.057723 ]]) np.testing.assert_almost_equal(cube_g2d[0].value, result0) # Check third slice result2 = np.array([[0.027322 , 0.027257 ], [0.0280423, 0.02803 ], [0.0259688, 0.0260123]]) np.testing.assert_almost_equal(cube_g2d[2].value, result2) def test_spatial_smooth_preserves_unit(data_adv, use_dask): """ Regression test for issue527 """ cube, data = cube_and_raw(data_adv, use_dask=use_dask) cube._unit = u.K # Guassian 2D smoothing test g2d = Gaussian2DKernel(3) cube_g2d = cube.spatial_smooth(g2d) assert cube_g2d.unit == u.K def test_spatial_smooth_t2d(data_adv, use_dask): cube, data = cube_and_raw(data_adv, use_dask=use_dask) # Tophat 2D smoothing test t2d = Tophat2DKernel(3) cube_t2d = cube.spatial_smooth(t2d) # Check first slice result0 = np.array([[0.1265607, 0.1265607], [0.1265607, 0.1265607], [0.1265607, 0.1265607]]) np.testing.assert_almost_equal(cube_t2d[0].value, result0) # Check third slice result2 = np.array([[0.0585135, 0.0585135], [0.0585135, 0.0585135], [0.0585135, 0.0585135]]) np.testing.assert_almost_equal(cube_t2d[2].value, result2) @pytest.mark.openfiles_ignore @pytest.mark.parametrize('filename', ['point_source_5_one_beam', 'point_source_5_spectral_beams'], indirect=['filename']) @pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True) def test_spatial_smooth_jybm_error(filename, use_dask): '''Raise an error when Jy/beam units are getting spatially smoothed. This tests SCs and VRSCs''' cube, data = cube_and_raw(filename, use_dask=use_dask) # Tophat 2D smoothing test t2d = Tophat2DKernel(3) cube_t2d = cube.spatial_smooth(t2d) @pytest.mark.openfiles_ignore @pytest.mark.parametrize('filename', ['point_source_5_one_beam', 'point_source_5_spectral_beams'], indirect=['filename']) @pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True) def test_spatial_smooth_median_jybm_error(filename, use_dask): '''Raise an error when Jy/beam units are getting spatially median smoothed. This tests SCs and VRSCs''' cube, data = cube_and_raw(filename, use_dask=use_dask) cube_median = cube.spatial_smooth_median(3) def test_spatial_smooth_median(data_adv, use_dask): pytest.importorskip('scipy.ndimage') cube, data = cube_and_raw(data_adv, use_dask=use_dask) cube_median = cube.spatial_smooth_median(3) # Check first slice result0 = np.array([[0.8172354, 0.9038805], [0.7068793, 0.8172354], [0.7068793, 0.7068793]]) np.testing.assert_almost_equal(cube_median[0].value, result0) # Check third slice result2 = np.array([[0.3038468, 0.3038468], [0.303744 , 0.3038468], [0.1431722, 0.303744 ]]) np.testing.assert_almost_equal(cube_median[2].value, result2) @pytest.mark.parametrize('num_cores', (None, 1)) def test_spectral_smooth_median(num_cores, data_adv, use_dask): pytest.importorskip('scipy.ndimage') cube, data = cube_and_raw(data_adv, use_dask=use_dask) cube_spectral_median = cube.spectral_smooth_median(3, num_cores=num_cores) # Check first slice result = np.array([0.9038805, 0.1431722, 0.1431722, 0.9662900]) np.testing.assert_almost_equal(cube_spectral_median[:,1,1].value, result) @pytest.mark.skipif('WINDOWS') def test_spectral_smooth_median_4cores(data_adv, use_dask): pytest.importorskip('joblib') pytest.importorskip('scipy.ndimage') cube, data = cube_and_raw(data_adv, use_dask=use_dask) cube_spectral_median = cube.spectral_smooth_median(3, num_cores=4) # Check first slice result = np.array([0.9038805, 0.1431722, 0.1431722, 0.9662900]) np.testing.assert_almost_equal(cube_spectral_median[:,1,1].value, result) def update_function(): print("Update Function Call") @pytest.mark.skipif('WINDOWS') def test_smooth_update_function_parallel(capsys, data_adv): pytest.importorskip('joblib') pytest.importorskip('scipy.ndimage') cube, data = cube_and_raw(data_adv, use_dask=False) # this is potentially a major disaster: if update_function can't be # pickled, it won't work, which is why update_function is (very badly) # defined outside of this function cube_spectral_median = cube.spectral_smooth_median(3, num_cores=4, update_function=update_function) sys.stdout.flush() captured = capsys.readouterr() assert captured.out == "Update Function Call\n"*6 def test_smooth_update_function_serial(capsys, data_adv): # This function only makes sense for the plain SpectralCube class pytest.importorskip('scipy.ndimage') cube, data = cube_and_raw(data_adv, use_dask=False) def update_function(): print("Update Function Call") cube_spectral_median = cube.spectral_smooth_median(3, num_cores=1, parallel=False, update_function=update_function) captured = capsys.readouterr() assert captured.out == "Update Function Call\n"*6 @pytest.mark.skipif('not scipyOK') def test_parallel_bad_params(data_adv): # This function only makes sense for the plain SpectralCube class cube, data = cube_and_raw(data_adv, use_dask=False) with pytest.raises(ValueError, match=("parallel execution was not requested, but " "multiple cores were: these are incompatible " "options. Either specify num_cores=1 or " "parallel=True")): with warnings.catch_warnings(): # FITSFixed warnings can pop up here and break the raises check warnings.simplefilter('ignore', AstropyWarning) cube.spectral_smooth_median(3, num_cores=2, parallel=False, update_function=update_function) with warnings.catch_warnings(record=True) as wrn: warnings.simplefilter('ignore', AstropyWarning) cube.spectral_smooth_median(3, num_cores=1, parallel=True, update_function=update_function) assert ("parallel=True was specified but num_cores=1. " "Joblib will be used to run the task with a " "single thread.") in str(wrn[-1].message) def test_initialization_from_units(data_adv, use_dask): """ Regression test for issue 447 """ cube, data = cube_and_raw(data_adv, use_dask=use_dask) newcube = SpectralCube(data=cube.filled_data[:], wcs=cube.wcs) assert newcube.unit == cube.unit def test_varyres_spectra(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) assert isinstance(cube, VaryingResolutionSpectralCube) sp = cube[:,0,0] assert isinstance(sp, VaryingResolutionOneDSpectrum) assert hasattr(sp, 'beams') sp = cube.mean(axis=(1,2)) assert isinstance(sp, VaryingResolutionOneDSpectrum) assert hasattr(sp, 'beams') def test_median_2axis(data_adv, use_dask): """ As of this writing the bottleneck.nanmedian did not accept an axis that is a tuple/list so this test is to make sure that is properly taken into account. """ cube, data = cube_and_raw(data_adv, use_dask=use_dask) cube_median = cube.median(axis=(1, 2)) # Check first slice result0 = np.array([0.7620573, 0.3086828, 0.3037954, 0.7455546]) np.testing.assert_almost_equal(cube_median.value, result0) def test_varyres_mask(data_vda_beams, use_dask): cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask) cube._beams.major.value[0] = 0.9 cube._beams.minor.value[0] = 0.05 cube._beams.major.value[3] = 0.6 cube._beams.minor.value[3] = 0.09 # mask out one beams goodbeams = cube.identify_bad_beams(0.5, ) assert all(goodbeams == np.array([False, True, True, True])) mcube = cube.mask_out_bad_beams(0.5) assert hasattr(mcube, '_goodbeams_mask') assert all(mcube.goodbeams_mask == goodbeams) assert len(mcube.beams) == 3 sp_masked = mcube[:,0,0] assert hasattr(sp_masked, '_goodbeams_mask') assert all(sp_masked.goodbeams_mask == goodbeams) assert len(sp_masked.beams) == 3 try: assert mcube.unmasked_beams == cube.beams except ValueError: # older versions of beams assert np.all(mcube.unmasked_beams == cube.beams) try: # check that slicing works too assert mcube[:5].unmasked_beams == cube[:5].beams except ValueError: assert np.all(mcube[:5].unmasked_beams == cube[:5].beams) def test_mask_none(use_dask): # Regression test for issues that occur when mask is None data = np.arange(24).reshape((2, 3, 4)) wcs = WCS(naxis=3) wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL'] cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask) assert_quantity_allclose(cube[0, :, :], [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] * u.Jy / u.beam) assert_quantity_allclose(cube[:, 0, 0], [0, 12] * u.Jy / u.beam) @pytest.mark.parametrize('filename', ['data_vda', 'data_vda_beams'], indirect=['filename']) def test_mask_channels_preserve_mask(filename, use_dask): # Regression test for a bug that caused the mask to not be preserved. cube, data = cube_and_raw(filename, use_dask=use_dask) # Add a mask to the cube mask = np.ones(cube.shape, dtype=bool) mask[:, ::2, ::2] = False cube = cube.with_mask(mask) # Mask by channels cube = cube.mask_channels([False, True, False, True]) # Check final mask is a combination of both expected_mask = mask.copy() expected_mask[::2] = False np.testing.assert_equal(cube.mask.include(), expected_mask) def test_minimal_subcube(use_dask): if not use_dask: pytest.importorskip('scipy') data = np.arange(210, dtype=float).reshape((5, 6, 7)) data[0] = np.nan data[2] = np.nan data[4] = np.nan data[:,0] = np.nan data[:,3:4] = np.nan data[:, :, 0:2] = np.nan data[:, :, 4:7] = np.nan wcs = WCS(naxis=3) wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL'] cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask) cube = cube.with_mask(np.isfinite(data)) subcube = cube.minimal_subcube() assert subcube.shape == (3, 5, 2) def test_minimal_subcube_nomask(use_dask): if not use_dask: pytest.importorskip('scipy') data = np.arange(210, dtype=float).reshape((5, 6, 7)) wcs = WCS(naxis=3) wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL'] cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask) # verify that there is no mask assert cube._mask is None # this should not raise an Exception subcube = cube.minimal_subcube() # shape is unchanged assert subcube.shape == (5, 6, 7) def test_regression_719(data_adv, use_dask): """ Issue 719: exception raised when checking for beam """ cube, data = cube_and_raw(data_adv, use_dask=use_dask) # force unit for use below cube._unit = u.Jy/u.beam assert hasattr(cube, 'beam') slc = cube[0,:,:] # check that the hasattr tests work from .. cube_utils import _has_beam, _has_beams assert _has_beam(slc) assert not _has_beams(slc) # regression test: full example that broke mx = cube.max(axis=0) beam = cube.beam cfrq = 100*u.GHz # This should not raise an exception mx_K = (mx*u.beam).to(u.K, u.brightness_temperature(beam_area=beam, frequency=cfrq))
keflavich/spectral-cube
spectral_cube/tests/test_spectral_cube.py
Python
bsd-3-clause
96,662
"""The gearbest component."""
jnewland/home-assistant
homeassistant/components/gearbest/__init__.py
Python
apache-2.0
30
#!/usr/bin/env python # # VM Backup extension # # Copyright 2015 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.7+ # import os.path from Common import CommonVariables from ConfigParser import ConfigParser from ConfigUtil import ConfigUtil from ConfigUtil import ConfigKeyValuePair class EncryptionConfig(object): def __init__(self, encryption_environment,logger): self.encryptionEnvironment = encryption_environment self.passphrase_file_name = None self.bek_filesystem = None self.volume_type = None self.secret_id = None self.encryption_config = ConfigUtil(encryption_environment.encryption_config_file_path,'azure_crypt_config',logger) def config_file_exists(self): return self.encryption_config.config_file_exists() def get_bek_filename(self): return self.encryption_config.get_config(CommonVariables.PassphraseFileNameKey) def get_bek_filesystem(self): return self.encryption_config.get_config(CommonVariables.BekVolumeFileSystemKey) def get_secret_id(self): return self.encryption_config.get_config(CommonVariables.SecretUriKey) def commit(self): key_value_pairs = [] command = ConfigKeyValuePair(CommonVariables.PassphraseFileNameKey,self.passphrase_file_name) key_value_pairs.append(command) bek_file_system = ConfigKeyValuePair(CommonVariables.BekVolumeFileSystemKey,CommonVariables.BekVolumeFileSystem) key_value_pairs.append(bek_file_system) parameters = ConfigKeyValuePair(CommonVariables.SecretUriKey,self.secret_id) key_value_pairs.append(parameters) self.encryption_config.save_configs(key_value_pairs)
thomas1206/azure-linux-extensions
VMEncryption/main/EncryptionConfig.py
Python
apache-2.0
2,233
# -*- coding: utf-8 -*- """ Pearson Correlation model: Inferring a correlation coefficient. Chapter 5.1, Bayesian Cognitive Modeling. Created Aug/2015 by Johannes Keyser <j.keyser@donders.ru.nl> TODO: Not running yet, because of matrix manipulation mysteries in PyMC3/Theano. """ import pymc3 as pm import numpy as np import pandas as pd import theano.tensor as tt dataset = 1 # choose data set 1 or 2 (where 2 is just the first, twice) data1 = np.array([[0.8, 102], [1.0, 98], [0.5, 100], [0.9, 105], [0.7, 103], [0.4, 110], [1.2, 99], [1.4, 87], [0.6, 113], [1.1, 89], [1.3, 93]]) if dataset == 1: x = data1 elif dataset == 2: x = np.vstack((data1, data1)) # from help(tt.stacklists), but doesn't work at all! #import theano.function #a, b, c, d = tt.scalars('abcd') #X = tt.stacklists([[a, b], [c, d]]) #f = theano.function([a, b, c, d], X) model = pm.Model() with model: # priors mu = pm.Normal('mu', mu=0, tau=1/100**2, shape=(2,1)) lmbda = pm.Gamma('lambda', alpha=0.001, beta=0.001, shape=(2,1)) r = pm.Uniform('r', lower=-1, upper=1) sigma = pm.Deterministic('sigma', tt.sqrt(1/lmbda)) # Reparameterization #FIXME: How to create (and then inverse) a simple 2x2 matrix??? T = tt.stacklists([[1/lmbda[0] , r*sigma[0]*sigma[1]], [r*sigma[0]*sigma[1], 1/lmbda[1]]]) # T = tt.stack([1/lmbda[0] , r*sigma[0]*sigma[1], # r*sigma[0]*sigma[1], 1/lmbda[1]]) # TI = tt.invert(T) # TI = tt.matrix(T) # TODO? Side-step inversion by doing it myself, i.e. 1/det(A)*reshuffle(A)? testtau = pm.constant(np.eye(2)) # works... pm.det(testtau) # works... x = pm.MvNormal('x', mu=0, tau=testtau) # # Reparameterization # sigma[1] <- 1/sqrt(lambda[1]) # sigma[2] <- 1/sqrt(lambda[2]) # T[1,1] <- 1/lambda[1] # T[1,2] <- r*sigma[1]*sigma[2] # T[2,1] <- r*sigma[1]*sigma[2] # T[2,2] <- 1/lambda[2] # TI[1:2,1:2] <- inverse(T[1:2,1:2]) # data come from a Gaussian # x = pm.Normal('x', mu=mu, sd=sigma, observed=x) # instantiate sampler stepFunc = pm.Metropolis() # or try pm.NUTS() # draw posterior samples (in 4 parallel running chains) Nsample = 1000 Nchains = 2 traces = pm.sample(Nsample, step=stepFunc, njobs=Nchains) plotVars = ('mu','sigma') axs = pm.traceplot(traces, vars=plotVars, combined=False) # plot joint posterior samples tstr = 'Joint posterior samples' post = np.vstack([traces['mu'], traces['sigma']]) post = post.transpose() df = pd.DataFrame(post, columns=plotVars) ax = df.plot(kind='scatter', x=plotVars[0], y=plotVars[1], alpha=.1, title=tstr)
JoKeyser/BCMinPyMC3
ch5-1_Correlation1.py
Python
gpl-3.0
2,683
#! /usr/bin/env python # do nothing as NMRPipe goes into inf loop.
google-code-export/nmrglue
tests/pipe_proc_tests/dev.py
Python
bsd-3-clause
68
from __future__ import division, print_function import matplotlib.pyplot as plt import numpy as np from numpy.random import rand from time import time """ INPUT: quantized mains fdiff OUTPUT: appliance fdiff Code taken from Lasagne and nolearn! """ SEQ_LENGTH = 400 N_HIDDEN = 5 N_SEQ_PER_BATCH = 30 # Number of sequences per batch LEARNING_RATE = 1e-1 # SGD learning rate N_ITERATIONS = 100 # Number of training iterations N_INPUT_FEATURES = 10 N_OUTPUTS = 1 input_shape = (N_SEQ_PER_BATCH, SEQ_LENGTH, N_INPUT_FEATURES) output_shape = (N_SEQ_PER_BATCH, SEQ_LENGTH, N_OUTPUTS) ############### GENERATE DATA ############################## def quantized(inp, all_hot=True): N_BINS = 10 out = np.zeros(shape=(N_SEQ_PER_BATCH, SEQ_LENGTH, N_BINS)) for i_batch in range(N_SEQ_PER_BATCH): for i_element in range(SEQ_LENGTH): hist, _ = np.histogram(inp[i_batch, i_element, 0], bins=N_BINS, range=(-1, 1)) if all_hot: where = np.where(hist==1)[0][0] if where > 5: hist[5:where] = 1 elif where < 5: hist[where:5] = 1 out[i_batch,i_element,:] = hist return (out * 2) - 1 def gen_single_appliance(power, on_duration, min_off_duration=20, fdiff=True): length = SEQ_LENGTH + 1 if fdiff else SEQ_LENGTH appliance_power = np.zeros(length) i = 0 while i < length: if np.random.binomial(n=1, p=0.2): end = min(i + on_duration, length) appliance_power[i:end] = power i += on_duration + min_off_duration else: i += 1 return np.diff(appliance_power) if fdiff else appliance_power def gen_batches_of_single_appliance(*args, **kwargs): batches = np.zeros(shape=(N_SEQ_PER_BATCH, SEQ_LENGTH, 1)) for i in range(N_SEQ_PER_BATCH): batches[i, :, :] = gen_single_appliance(*args, **kwargs).reshape(SEQ_LENGTH, 1) return batches def gen_unquantized_data(n_appliances=2, appliance_powers=[10,30], appliance_on_durations=[10,2], validation=False): '''Generate a simple energy disaggregation data. :parameters: :returns: - X : np.ndarray, shape=(n_batch, length, 1) Input sequence - y : np.ndarray, shape=(n_batch, length, 1) Target sequence, appliance 1 ''' y = gen_batches_of_single_appliance(power=appliance_powers[0], on_duration=appliance_on_durations[0]) X = y.copy() for power, on_duration in zip(appliance_powers, appliance_on_durations)[1:]: X += gen_batches_of_single_appliance(power=power, on_duration=on_duration) max_power = np.sum(appliance_powers) return X / max_power, y / max_power def gen_data(*args, **kwargs): X, y = gen_unquantized_data(*args, **kwargs) return quantized(X), y class ansi: # from dnouri/nolearn/nolearn/lasagne.py BLUE = '\033[94m' GREEN = '\033[32m' ENDC = '\033[0m' ######################## Neural network class ######################## class Net(object): # Much of this code is adapted from craffel/nntools/examples/lstm.py def __init__(self): print("Initialising network...") import theano import theano.tensor as T import lasagne from lasagne.layers import (InputLayer, LSTMLayer, ReshapeLayer, ConcatLayer, DenseLayer) theano.config.compute_test_value = 'raise' # Construct LSTM RNN: One LSTM layer and one dense output layer l_in = InputLayer(shape=input_shape) # setup fwd and bck LSTM layer. l_fwd = LSTMLayer( l_in, N_HIDDEN, backwards=False, learn_init=True, peepholes=True) l_bck = LSTMLayer( l_in, N_HIDDEN, backwards=True, learn_init=True, peepholes=True) # concatenate forward and backward LSTM layers concat_shape = (N_SEQ_PER_BATCH * SEQ_LENGTH, N_HIDDEN) l_fwd_reshape = ReshapeLayer(l_fwd, concat_shape) l_bck_reshape = ReshapeLayer(l_bck, concat_shape) l_concat = ConcatLayer([l_fwd_reshape, l_bck_reshape], axis=1) l_recurrent_out = DenseLayer(l_concat, num_units=N_OUTPUTS, nonlinearity=None) l_out = ReshapeLayer(l_recurrent_out, output_shape) input = T.tensor3('input') target_output = T.tensor3('target_output') # add test values input.tag.test_value = rand( *input_shape).astype(theano.config.floatX) target_output.tag.test_value = rand( *output_shape).astype(theano.config.floatX) print("Compiling Theano functions...") # Cost = mean squared error cost = T.mean((l_out.get_output(input) - target_output)**2) # Use NAG for training all_params = lasagne.layers.get_all_params(l_out) updates = lasagne.updates.nesterov_momentum(cost, all_params, LEARNING_RATE) # Theano functions for training, getting output, and computing cost self.train = theano.function( [input, target_output], cost, updates=updates, on_unused_input='warn', allow_input_downcast=True) self.y_pred = theano.function( [input], l_out.get_output(input), on_unused_input='warn', allow_input_downcast=True) self.compute_cost = theano.function( [input, target_output], cost, on_unused_input='warn', allow_input_downcast=True) print("Done initialising network.") def training_loop(self): # column 0 = training cost # column 1 = validation cost self.costs = np.zeros(shape=(N_ITERATIONS, 2)) self.costs[:,:] = np.nan # Generate a "validation" sequence whose cost we will compute X_val, y_val = gen_data(validation=True) assert X_val.shape == input_shape assert y_val.shape == output_shape # Adapted from dnouri/nolearn/nolearn/lasagne.py print(""" Epoch | Train cost | Valid cost | Train / Val | Dur per epoch --------|--------------|--------------|---------------|---------------\ """) # Training loop for n in range(N_ITERATIONS): t0 = time() # for calculating training duration X, y = gen_data() train_cost = self.train(X, y).flatten()[0] validation_cost = self.compute_cost(X_val, y_val).flatten()[0] self.costs[n] = train_cost, validation_cost if n==N_ITERATIONS-1 or not n % 10: duration = time() - t0 is_best_train = train_cost == np.nanmin(self.costs[:,0]) is_best_valid = validation_cost == np.nanmin(self.costs[:,1]) print(" {:>5} | {}{:>10.6f}{} | {}{:>10.6f}{} |" " {:>11.6f} | {:>3.1f}s".format( n, ansi.BLUE if is_best_train else "", train_cost, ansi.ENDC if is_best_train else "", ansi.GREEN if is_best_valid else "", validation_cost, ansi.ENDC if is_best_valid else "", train_cost / validation_cost, duration )) def plot_costs(self, ax=None): if ax is None: ax = plt.gca() ax.plot(self.costs[:,0], label='training') ax.plot(self.costs[:,1], label='validation') ax.set_xlabel('Iteration') ax.set_ylabel('Cost') ax.legend() plt.show() return ax def plot_estimates(self, axes=None): if axes is None: _, axes = plt.subplots(2, sharex=True) X, y = gen_unquantized_data() y_predictions = self.y_pred(quantized(X)) axes[0].set_title('Appliance forward difference') axes[0].plot(y_predictions[0,:,0], label='Estimates') axes[0].plot(y[0,:,0], label='Appliance ground truth') axes[0].legend() axes[1].set_title('Aggregate') axes[1].plot(X[0,:,0], label='Fdiff') axes[1].plot(np.cumsum(X[0,:,0]), label='Cumsum') axes[1].legend() plt.show() if __name__ == "__main__": net = Net() net.training_loop() net.plot_costs() net.plot_estimates()
JackKelly/neuralnilm_prototype
scripts/experiment033.py
Python
mit
8,485
''' Created on Jul 7, 2017 @author: alvarna ''' from __future__ import print_function import codecs import os import inspect from sanskrit_parser.lexical_analyzer.sandhi import Sandhi from sanskrit_parser.base.sanskrit_base import SanskritObject, SLP1 import logging import re import six import json logger = logging.getLogger(__name__) def sandhi_join_pass(sandhiobj, split, join): objs = map(lambda x: SanskritObject(x, encoding=SLP1), split) joins = sandhiobj.join(*objs) d = { "input": map(to_devanagari, split), "expected": to_devanagari(join), "file": filename, "line": linenum} if joins and join in joins: res = True else: d["actual"] = map(to_devanagari, joins) if joins else None res = False s = json.dumps(d, ensure_ascii=False) + "\n" return (res, s) def sandhi_split_pass(sandhiobj, split, join): splits = sandhiobj.split_all(SanskritObject(join, encoding=SLP1)) d = { "input": to_devanagari(join), "expected": map(to_devanagari, split), # "actual": map(to_devanagari, splits) if splits else None, "file": filename, "line": linenum} if splits and split in splits: res = True else: res = False s = json.dumps(d, ensure_ascii=False) + "\n" return (res, s) def load_reference_data(): files = [ 'refs.txt', '2.karnabhara-ext.txt', '130-short-stories-extracted.txt', 'vetalkatha_ext.txt', '4.dutaghatotgajam-ext.txt', '3.dutavakyam-ext.txt', 'madyama_ext.txt', 'vrubhangam_ext.txt', 'balaramayanam_ext.txt', '5.balacharitham-ext.txt', '1.abhishakanatakam-ext.txt', '7.charudattam-ext.txt', 'vinodini-ext.txt', 'astanga-hridayam-sandhi-extract1-27.txt', 'madhavi-ext.txt', 'manjusa-ext.txt', 'tarkabhasha-ext.txt', 'Rajkathakunj_ext.txt', 'Aakhyanvallari_ext.txt', 'sanskritkathashatkam1_ext.txt', 'nyayasara-ext.txt', 'tarkchudamani-ext.txt', 'Sanskritkathakunj_ext.txt', 'agnipuran-1-111-sandhi_ext.txt', 'vyutpattivada-ext.txt' ] sandhi_references = [] base_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) directory = os.path.join(base_dir, "sandhi_test_data") for filename in files: sandhi_references.extend(load_reference_data_from_file(os.path.join(directory, filename))) return sandhi_references def clean_references(splits, full): def _dumpchars(str): # Remove whitespace characters s = re.sub(r"\W+", "", str) # Random characters in UOHD files for c in ",'-;().?!\"0123456789": s = s.replace(c, '') # Some bad visargas s = s.replace(':', 'H') # UOHD RHS has word-ending anusvaras s = re.sub('M$', 'm', s) return s full = _dumpchars(full) splits = list(map(_dumpchars, splits)) if splits[-1] == '': splits.pop() if splits[0] == '': splits.pop(0) if len(splits) != 2: return None # UOHD errors, final visarga is sometimes missing if len(splits[-1]) > 1 and splits[-1][-2:] == "AH" and \ full[-1] == "A": full = full + "H" if len(splits[-1]) > 1 and splits[-1][-2:] == "aH" and \ full[-1] == "a": full = full + "H" if splits[-1][-1] == "A" and len(full) > 1 and full[-2:] == "AH": splits[-1] = splits[-1] + "H" if splits[-1][-1] == "a" and len(full) > 1 and full[-2:] == "aH": splits[-1] = splits[-1] + "H" # UOHD stores sandhied final words! # This is not a full fix full = re.sub("o$", "aH", full) full = re.sub("d$", "t", full) return splits, full def load_reference_data_from_file(filename): sandhi_references = [] basename = os.path.basename(filename) logger.debug("Processing tests from file %s", basename) with codecs.open(filename, "rb", 'utf-8') as f: for linenum, line in enumerate(f): line = line.strip() if line.startswith('#') or line == '': continue ref = SanskritObject(line).transcoded(SLP1) if "=>" in line: joined, splits = map(six.text_type.strip, ref.split("=>")) elif "=" in line: splits, joined = map(six.text_type.strip, ref.split("=")) else: continue split = list(map(six.text_type.strip, splits.split('+'))) clean = clean_references(split, joined) if clean: split, joined = clean sandhi_references.append((tuple(split), joined, basename, linenum + 1)) return sandhi_references def to_devanagari(obj): if isinstance(obj, (six.text_type, six.string_types)): obj = SanskritObject(obj, encoding=SLP1) if isinstance(obj, SanskritObject): return obj.devanagari() else: return map(to_devanagari, obj) if __name__ == "__main__": base_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) directory = os.path.join(base_dir, "sandhi_test_data") join_passing = codecs.open(os.path.join(directory, "sandhi_join_passing.txt"), "w", encoding='utf-8') join_failing = codecs.open(os.path.join(directory, "sandhi_join_failing.txt"), "w", encoding='utf-8') split_passing = codecs.open(os.path.join(directory, "sandhi_split_passing.txt"), "w", encoding='utf-8') split_failing = codecs.open(os.path.join(directory, "sandhi_split_failing.txt"), "w", encoding='utf-8') sandhiobj = Sandhi() num_join_pass, num_join_fail, num_split_pass, num_split_fail = 0, 0, 0, 0 for split, join, filename, linenum in load_reference_data(): (res, s) = sandhi_join_pass(sandhiobj, split, join) if res: join_passing.write(s) num_join_pass += 1 else: join_failing.write(s) num_join_fail += 1 (res, s) = sandhi_split_pass(sandhiobj, split, join) if res: split_passing.write(s) num_split_pass += 1 else: split_failing.write(s) num_split_fail += 1 join_passing.close() join_failing.close() split_failing.close() split_failing.close() print("Join:") print("Pass: {0} / {2} Fail: {1} / {2}".format(num_join_pass, num_join_fail, (num_join_fail + num_join_pass))) print("Split:") print("Pass: {0} / {2} Fail: {1} / {2}".format(num_split_pass, num_split_fail, (num_split_fail + num_split_pass)))
kmadathil/sanskrit_parser
tests/generate_sandhi_pass_fail.py
Python
mit
6,680
from django.apps import AppConfig class LauncherConfig(AppConfig): name = 'launcher'
hikelee/launcher
launcher/apps.py
Python
mit
91
from opencog.atomspace import types, TruthValue, get_type_name import formulas from pln.rule import Rule ''' Some Rules evaluate various kinds of logical links based explicitly on set membership. A set = a ConceptNode. Other Rules calculate them heuristically, based on set probabilities and logical links. ''' # Todo: try to separate these rules further into several files by # category. The rules in this file were under the header 'inheritance # rules' in rules.py, but may need to be further classified. __VERBOSE__ = False BOOLEAN_LINKS = [types.AndLink, types.OrLink, types.NotLink] FIRST_ORDER_LINKS = [types.InheritanceLink, types.SubsetLink, types.IntensionalInheritanceLink, types.SimilarityLink, types.ExtensionalSimilarityLink, types.IntensionalSimilarityLink] HIGHER_ORDER_LINKS = [types.ImplicationLink, types.EquivalenceLink] class InversionRule(Rule): """ A->B entails B->A """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, name = "InversionRule<%s>"%(get_type_name(link_type),), outputs=[chainer.link(link_type, [B, A])], inputs=[chainer.link(link_type, [A, B]), A, B], formula=formulas.inversionFormula) class DeductionRule(Rule): """ A->B, B->C entails A->C """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() C = chainer.new_variable() Rule.__init__(self, name = "DeductionRule<%s>"%(get_type_name(link_type),), formula=formulas.deductionIndependenceBasedFormula, outputs=[chainer.link(link_type, [A, C])], inputs=[chainer.link(link_type, [A, B]), chainer.link(link_type, [B, C]), B, C]) # Todo: It doesn't have the right formula class DeductionGeometryRule(Rule): """ A->B, B->C entails A->C. Uses concept geometry. """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() C = chainer.new_variable() Rule.__init__(self, name="DeductionGeometryRule<%s>"%(get_type_name(link_type),), formula=formulas.deductionGeometryFormula, outputs=[chainer.link(link_type, [A, C])], inputs=[chainer.link(link_type, [A, B]), chainer.link(link_type, [B, C])]) # TODO add macro-rules for Abduction and Induction based on Deduction # and Inversion ''' deduction S is M, M is L, then S is L induction M is S, M is L, then S is L invert same same abduction S is M, L is M, then S is L invert ''' class InductionRule(Rule): """ M->S, M->L, S->L """ def __init__(self, chainer, link_type): S = chainer.new_variable() M = chainer.new_variable() L = chainer.new_variable() Rule.__init__(self, name="InductionRule<%s>"%(get_type_name(link_type),), outputs=[chainer.link(link_type, [S, L])], inputs=[chainer.link(link_type, [M, S]), chainer.link(link_type, [M, L]), S, M, L], formula=formulas.inductionFormula) class AbductionRule(Rule): """ S is M, L is M, S->L """ def __init__(self, chainer, link_type): S = chainer.new_variable() M = chainer.new_variable() L = chainer.new_variable() Rule.__init__(self, name="AbductionRule<%s>"%(get_type_name(link_type),), outputs=[chainer.link(link_type, [S, L])], inputs=[chainer.link(link_type, [S, M]), chainer.link(link_type, [L, M]), S, M, L], formula=formulas.abductionFormula) class TransitiveSimilarityRule(Rule): """ Similarity A B, Similarity B C => Similarity A C """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() C = chainer.new_variable() Rule.__init__(self, name="TransitiveSimilarityRule<%s>"%(get_type_name(link_type),), formula=formulas.transitiveSimilarityFormula, outputs=[chainer.link(link_type, [A, C])], inputs=[chainer.link(link_type, [A, B]), chainer.link(link_type, [B, C]), A, B, C]) class PreciseModusPonensRule(Rule): """ Given P(A->B) and P(NOT(A)->B) and sA, estimate sB """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() notA = chainer.link(types.NotLink, [A]) Rule.__init__(self, name="PreciseModusPonensRule<%s>"%(get_type_name(link_type),), outputs=[B], inputs=[chainer.link(link_type, [A, B]), chainer.link(link_type, [notA, B]), A], formula=formulas.preciseModusPonensFormula) class ModusPonensRule(Rule): """ Given P(A->B) and sA, estimate sB """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, name="ModusPonensRule<%s>"%(get_type_name(link_type),), outputs=[B], inputs=[chainer.link(link_type, [A, B]), A], formula=formulas.modusPonensFormula) class SymmetricModusPonensRule(Rule): """ Given (Similarity A B) and sA, estimate sB """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, name="SymmetricModusPonensRule<%s>"%(get_type_name(link_type),), outputs=[B], inputs=[chainer.link(link_type, [A, B]), A], formula=formulas.symmetricModusPonensFormula) class TermProbabilityRule(Rule): def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() AB = chainer.link(link_type, [A, B]) BA = chainer.link(link_type, [B, A]) Rule.__init__(self, name="TermProbabilityRule<%s>"%(get_type_name(link_type),), outputs=[B], inputs=[AB, BA, A], formula=formulas.termProbabilityFormula) class InheritanceRule(Rule): """ Create a (mixed) InheritanceLink based on the SubsetLink and IntensionalInheritanceLink (based on the definition of mixed InheritanceLinks) """ def __init__(self, chainer): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, outputs=[chainer.link(types.InheritanceLink, [A, B])], inputs=[chainer.link(types.SubsetLink, [A, B]), chainer.link(types.IntensionalInheritanceLink, [A, B])], formula=formulas.inheritanceFormula) class SimilarityRule(Rule): """ SimilarityLink A B |A and B| / |A or B| """ def __init__(self, chainer): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, outputs=[chainer.link(types.SimilarityLink, [A, B])], inputs=[chainer.link(types.AndLink, [A, B]), chainer.link(types.OrLink, [A, B])], formula=formulas.extensionalSimilarityFormula) class SubsetRule1(Rule): """ SubsetLink A B |A and B| / |A| = P(B|A) """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, name="SubsetRule<%s>"%(get_type_name(link_type),), outputs=[chainer.link(link_type, [A, B])], inputs=[chainer.link(types.AndLink, [A, B]), A], formula=formulas.subsetFormula) class AndToSubsetRule1(Rule): """ SubsetLink A B |A and B| / |A| = P(B|A) """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() Rule.__init__(self, name="AndToSubsetRule1<%s>"%(get_type_name(link_type),), outputs=[chainer.link(link_type, [A, B])], inputs=[chainer.link(types.AndLink, [A, B]), A], formula=formulas.subsetFormula) class AndToSubsetRuleN(Rule): """ SubsetLink And(A B C) D |And(A B C D)| / |And A B C| = P(B|A) """ def __init__(self, chainer, link_type, N): vars = chainer.make_n_variables(N) lhs = chainer.link(types.AndLink, vars[:-1]) rhs = vars[-1] Rule.__init__(self, name="AndToSubsetRuleN<%s,%s>"%(get_type_name(link_type),N), outputs=[chainer.link(link_type, [lhs, rhs])], inputs=[chainer.link(types.AndLink, vars), lhs], formula=formulas.subsetFormula) class AndAs1stArgInsideLinkRule(Rule): """ ANDLink InheritanceLink A C InheritanceLink B C |- InheritanceLink ANDLink A B C Created to create AndLinks inside InheritanceLinks (original use case: context rules); could be useful for other link types as well @see: https://github.com/opencog/opencog/pull/904 """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() C = chainer.new_variable() AndAB = chainer.link(types.AndLink, [A, B]) Rule.__init__(self, name="AndAs1stArgInsideLinkRule<%s>" %(get_type_name(link_type)), inputs=[C, chainer.link(link_type, [A, C]), chainer.link(link_type, [B, C]), A, B], outputs=[chainer.link(link_type, [AndAB, C]), AndAB], formula=formulas.andAs1stArgInsideLinkFormula) class AndAs2ndArgInsideLinkRule(Rule): """ ANDLink InheritanceLink A B InheritanceLink A C |- InheritanceLink A ANDLink B C """ def __init__(self, chainer, link_type): A = chainer.new_variable() B = chainer.new_variable() C = chainer.new_variable() AndBC = chainer.link(types.AndLink, [B, C]) Rule.__init__(self, name="AndAs2ndArgInsideLinkRule<%s>" %(get_type_name(link_type)), inputs=[chainer.link(types.InheritanceLink, [A, B]), chainer.link(types.InheritanceLink, [A, C]), A, B, C], outputs=[chainer.link(types.InheritanceLink, [A, AndBC]), AndBC], formula=formulas.andAs2ndArgInsideLinkFormula)
printedheart/opencog
opencog/python/pln_old/rules/inheritance_rules.py
Python
agpl-3.0
11,834
import pytest from pygeoid.constants.solar_system_gm import get_body_gm, gm_moon def test_get_body_gm(): with pytest.raises(ValueError): body = get_body_gm('no_name_body') body_gm = get_body_gm('moon') assert gm_moon == body_gm
ioshchepkov/pygeoid
pygeoid/constants/test/test_solar_system_gm.py
Python
mit
253
#!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print("[x] Sent 'hello World'!") connection.close()
peter-wangxu/python_play
rabbitmq_test/hello_world/send.py
Python
apache-2.0
358
from z3 import BitVecVal, BV2Int, If, LShR, UDiv, ULT, UGT, URem def ADD(x, y): return x + y def MUL(x, y): return x * y def SUB(x, y): return x - y def DIV(x, y): return If(y == 0, 0, UDiv(x, y)) def SDIV(x, y): return If(y == 0, 0, x / y) def MOD(x, y): return If(y == 0, 0, URem(x, y)) def SMOD(x, y): return If(y == 0, 0, x % y) def LT(x, y): return If(ULT(x, y), BitVecVal(1, x.size()), BitVecVal(0, x.size())) def GT(x, y): return If(UGT(x, y), BitVecVal(1, x.size()), BitVecVal(0, x.size())) def SLT(x, y): return If(x < y, BitVecVal(1, x.size()), BitVecVal(0, x.size())) def SGT(x, y): return If(x > y, BitVecVal(1, x.size()), BitVecVal(0, x.size())) def EQ(x, y): return If(x == y, BitVecVal(1, x.size()), BitVecVal(0, x.size())) def ISZERO(x): return If(x == 0, BitVecVal(1, x.size()), BitVecVal(0, x.size())) def AND(x, y): return x & y def OR(x, y): return x | y def NOT(x): return ~(x) def SHL(x, y): return y << x def SHR(x, y): return LShR(y, x) def SAR(x, y): return y >> x def BYTE(i, x): bit = (i + 1) * 8 return If( UGT(i, x.size() / 8 - 1), BitVecVal(0, x.size()), (LShR(x, (x.size() - bit))) & 0xff ) def SIGNEXTEND(i, x): bitBV = i * 8 + 7 bitInt = BV2Int(i) * 8 + 7 test = BitVecVal(1, x.size()) << bitBV mask = test - 1 return If( bitInt >= x.size(), x, If( (x & test) == 0, x & mask, x | ~mask ) )
ethereum/solidity
test/formal/opcodes.py
Python
gpl-3.0
1,395
""" Parser for silme-compatible translation formats. """ import codecs import silme from collections import OrderedDict from copy import copy from silme.format.dtd import FormatParser as DTDParser from silme.format.ini import FormatParser as IniParser from silme.format.inc import FormatParser as IncParser from silme.format.properties import FormatParser as PropertiesParser from pontoon.sync.exceptions import ParseError, SyncError from pontoon.sync.utils import ( create_parent_directory, escape_quotes, unescape_quotes, ) from pontoon.sync.formats.base import ParsedResource from pontoon.sync.vcs.models import VCSTranslation class SilmeEntity(VCSTranslation): def __init__(self, silme_object, comments=None, order=0, copy_string=True): """ :param copy_string: If True, copy the string from the silme_object. Otherwise, self.strings will be an empty dict. Used for creating empty copies of translations from source resources. """ self.silme_object = silme_object self.comments = comments or [] self.order = order if copy_string: self.strings = {None: self.silme_object.value} else: self.strings = {} @property def key(self): return self.silme_object.id @property def context(self): return self.key @property def source_string(self): return self.silme_object.value @property def source_string_plural(self): return "" @property def fuzzy(self): return False @fuzzy.setter def fuzzy(self, fuzzy): pass # We don't use fuzzy in silme @property def source(self): return [] def __eq__(self, other): return self.key == other.key and self.strings.get(None) == other.strings.get( None ) def __ne__(self, other): return not self.__eq__(other) def __bool__(self): # python 3 return bool(self.strings) class SilmeResource(ParsedResource): def __init__(self, parser, path, source_resource=None): self.parser = parser self.path = path self.source_resource = source_resource self.entities = OrderedDict() # Preserve entity order. # Bug 1193860: unescape quotes in some files self.escape_quotes_on = "mobile/android/base" in path and parser is DTDParser # Copy entities from the source_resource if it's available. if source_resource: for key, entity in source_resource.entities.items(): self.entities[key] = copy_source_entity(entity) try: # Only uncomment MOZ_LANGPACK_CONTRIBUTORS if this is a .inc # file and a source resource (i.e. it has no source resource # itself). self.structure = parser.get_structure( read_file( path, uncomment_moz_langpack=parser is IncParser and not source_resource, ) ) # Parse errors are handled gracefully by silme # No need to catch them here except OSError as err: # If the file doesn't exist, but we have a source resource, # we can keep going, we'll just not have any translations. if source_resource: return else: raise ParseError(err) comments = [] current_order = 0 for obj in self.structure: if isinstance(obj, silme.core.entity.Entity): if self.escape_quotes_on: obj.value = unescape_quotes(obj.value) entity = SilmeEntity(obj, comments, current_order) self.entities[entity.key] = entity current_order += 1 comments = [] elif isinstance(obj, silme.core.structure.Comment): for comment in obj: # Silme groups comments together, so we strip # whitespace and split them up. lines = str(comment).strip().split("\n") comments += [line.strip() for line in lines] @property def translations(self): return list(self.entities.values()) def save(self, locale): """ Load the source resource, modify it with changes made to this Resource instance, and save it over the locale-specific resource. """ if self.source_resource is None: raise SyncError( "Cannot save silme resource {}: No source resource given.".format( self.path ) ) # Only uncomment MOZ_LANGPACK_CONTRIBUTORS if we have a # translation for it new_structure = self.parser.get_structure( read_file( self.source_resource.path, uncomment_moz_langpack=self.entities.get( "MOZ_LANGPACK_CONTRIBUTORS", False ), ) ) # Update translations in the copied resource. entities = [ SilmeEntity(obj) for obj in new_structure if isinstance(obj, silme.core.entity.Entity) ] for silme_entity in entities: key = silme_entity.key translated_entity = self.entities.get(key) if translated_entity and None in translated_entity.strings: translation = translated_entity.strings[None] if self.escape_quotes_on: translation = escape_quotes(translation) new_structure.modify_entity(key, translation) else: # Remove untranslated entity and following newline pos = new_structure.entity_pos(key) new_structure.remove_entity(key) try: line = new_structure[pos] except IndexError: # No newline at end of file continue if isinstance(line, str) and line.startswith("\n"): line = line[len("\n") :] new_structure[pos] = line if len(line) == 0: new_structure.remove_element(pos) # Temporary fix for bug 1236281 until bug 721211 lands if ( self.path.endswith("browser/chrome/browser/browser.properties") and locale.code == "zh-CN" ): new_entity = silme.core.entity.Entity( "browser.startup.homepage", "https://start.firefoxchina.cn" ) new_structure.add_entity(new_entity) new_structure.add_string("\n") create_parent_directory(self.path) with codecs.open(self.path, "w", "utf-8") as f: f.write(self.parser.dump_structure(new_structure)) def read_file(path, uncomment_moz_langpack=False): """Read the resource at the given path.""" with codecs.open(path, "r", "utf-8") as f: # .inc files have a special commented-out entity called # MOZ_LANGPACK_CONTRIBUTORS. We optionally un-comment it before # parsing so locales can translate it. if uncomment_moz_langpack: lines = [] for line in f: if line.startswith("# #define MOZ_LANGPACK_CONTRIBUTORS"): line = line[2:] lines.append(line) content = "".join(lines) else: content = f.read() return content def copy_source_entity(entity): """ Copy an entity from a source file to a new SilmeEntity instance. The new copy will have an empty strings attribute so that entities that are copied but not modified during sync will not be saved in the translated resource. """ return SilmeEntity( entity.silme_object, copy(entity.comments), # Members are strings, shallow is fine. entity.order, copy_string=False, ) def parse(parser, path, source_path=None, locale=None): # TODO: Cache the source resource to avoid re-parsing it a bunch. if source_path is not None: source_resource = SilmeResource(parser, source_path) else: source_resource = None return SilmeResource(parser, path, source_resource=source_resource) def parse_properties(path, source_path=None, locale=None): return parse(PropertiesParser, path, source_path) def parse_ini(path, source_path=None, locale=None): return parse(IniParser, path, source_path) def parse_inc(path, source_path=None, locale=None): return parse(IncParser, path, source_path) def parse_dtd(path, source_path=None, locale=None): return parse(DTDParser, path, source_path)
mathjazz/pontoon
pontoon/sync/formats/silme.py
Python
bsd-3-clause
8,834
from __future__ import absolute_import, unicode_literals from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.importlib import import_module HIPCHAT_BACKEND = getattr(settings, 'HIPCHAT_BACKEND', 'djhipchat.backends.locmem.HipChatBackend') def get_backend(backend=None, **kwargs): path = backend or settings.HIPCHAT_BACKEND try: mod_name, klass_name = path.rsplit('.', 1) mod = import_module(mod_name) except ImportError as e: raise ImproperlyConfigured( ('Error importing HipChat backend module %s: "%s"' % (mod_name, e))) try: klass = getattr(mod, klass_name) except AttributeError: raise ImproperlyConfigured(('Module "%s" does not define a ' '"%s" class' % (mod_name, klass_name))) return klass(**kwargs) def send_message(room_id, message, sender=None, message_format='html', notify=False, color='yellow'): """ Sends a message to HipChat. :param room_id: The ID of the Room to send to. :param sender: The text name of the sender. :param message: The text or HTML of the message. :param message_format: 'text' or 'html'. :param notify: Whether to trigger a notification for users in the room. :param color: The color of the message. """ sender = (sender or getattr(settings, 'HIPCHAT_DEFAULT_SENDER', '') or 'Django') return get_backend().send_message(room_id, message, sender, message_format, notify, color)
paulcwatts/djhipchat2
djhipchat/__init__.py
Python
bsd-3-clause
1,669
from PyQt5.QtCore import pyqtSlot, pyqtSignal, Qt from PyQt5.QtWidgets import QDialog from urh.signalprocessing.Filter import Filter, FilterType from urh.ui.ui_filter_dialog import Ui_FilterDialog class FilterDialog(QDialog): filter_accepted = pyqtSignal(Filter) def __init__(self, dsp_filter: Filter, parent=None): super().__init__(parent) self.ui = Ui_FilterDialog() self.ui.setupUi(self) self.setWindowFlags(Qt.Window) self.error_message = "" self.set_dsp_filter_status(dsp_filter.filter_type) self.create_connects() def set_dsp_filter_status(self, dsp_filter_type: FilterType): if dsp_filter_type == FilterType.moving_average: self.ui.radioButtonMovingAverage.setChecked(True) self.ui.lineEditCustomTaps.setEnabled(False) self.ui.spinBoxNumTaps.setEnabled(True) elif dsp_filter_type == FilterType.dc_correction: self.ui.radioButtonDCcorrection.setChecked(True) self.ui.lineEditCustomTaps.setEnabled(False) self.ui.spinBoxNumTaps.setEnabled(False) else: self.ui.radioButtonCustomTaps.setChecked(True) self.ui.spinBoxNumTaps.setEnabled(True) self.ui.lineEditCustomTaps.setEnabled(True) def create_connects(self): self.ui.radioButtonMovingAverage.clicked.connect(self.on_radio_button_moving_average_clicked) self.ui.radioButtonCustomTaps.clicked.connect(self.on_radio_button_custom_taps_clicked) self.ui.radioButtonDCcorrection.clicked.connect(self.on_radio_button_dc_correction_clicked) self.ui.spinBoxNumTaps.valueChanged.connect(self.set_error_status) self.ui.lineEditCustomTaps.textEdited.connect(self.set_error_status) self.ui.buttonBox.accepted.connect(self.on_accept_clicked) self.ui.buttonBox.rejected.connect(self.reject) def build_filter(self) -> Filter: if self.ui.radioButtonMovingAverage.isChecked(): n = self.ui.spinBoxNumTaps.value() return Filter([1/n for _ in range(n)], filter_type=FilterType.moving_average) elif self.ui.radioButtonDCcorrection.isChecked(): return Filter([], filter_type=FilterType.dc_correction) else: # custom filter try: taps = eval(self.ui.lineEditCustomTaps.text()) try: taps = list(map(float, taps)) self.error_message = "" return Filter(taps) except (ValueError, TypeError) as e: self.error_message = "Error casting taps:\n" + str(e) return None except SyntaxError as e: self.error_message = "Error parsing taps:\n" + str(e) return None def set_error_status(self): dsp_filter = self.build_filter() if dsp_filter is None: self.ui.lineEditCustomTaps.setStyleSheet("background: red") self.ui.lineEditCustomTaps.setToolTip(self.error_message) elif len(dsp_filter.taps) != self.ui.spinBoxNumTaps.value(): self.ui.lineEditCustomTaps.setStyleSheet("background: yellow") self.ui.lineEditCustomTaps.setToolTip("The number of the filter taps does not match the configured number of taps. I will use your configured filter taps.") else: self.ui.lineEditCustomTaps.setStyleSheet("") self.ui.lineEditCustomTaps.setToolTip("") @pyqtSlot(bool) def on_radio_button_moving_average_clicked(self, checked: bool): if checked: self.set_dsp_filter_status(FilterType.moving_average) @pyqtSlot(bool) def on_radio_button_custom_taps_clicked(self, checked: bool): if checked: self.set_dsp_filter_status(FilterType.custom) self.set_error_status() @pyqtSlot(bool) def on_radio_button_dc_correction_clicked(self, checked: bool): if checked: self.set_dsp_filter_status(FilterType.dc_correction) @pyqtSlot() def on_accept_clicked(self): dsp_filter = self.build_filter() self.filter_accepted.emit(dsp_filter) self.accept()
jopohl/urh
src/urh/controller/dialogs/FilterDialog.py
Python
gpl-3.0
4,227
# -*- coding: utf-8 -*- import sys import time import random import operator from openpyxl import Workbook from openpyxl import load_workbook from openpyxl.styles import Font, Alignment from datetime import datetime from collections import OrderedDict date_format = "%d.%m.%Y" #Muotoillaan päivämäärän esitysmuoto db = "exsec.xlsx" #Oletustietokanta, jos käynnistettäessä ei anneta parametrinä muuta wos = "{}".format(time.strftime("%Y")) #Asettaa # 1. Tallentaa keikkadataa Excel-tiedostoon # 2. Lukee keikkadataa Excel-tiedostoon # 3. Muokkaa keikkadataa Excel-tiedostossa # 4. Näyttää tekemättömiä tehtäviä datan perusteella def init_db(): """Yrittää avata excel-tiedoston asetetuilla otsikoilla, mikäli valmista ei löydy""" try: wb = load_workbook(filename = db) #yrittää aukaista tietokannan except: #jos tietokantaa ei löydy, luo uuden tietokannan print("Luodaan uusi tietokanta") wb = Workbook() ws = wb.active ws.title = wos kirjaimet = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M"] tekstit = ["ID", "Nimi", "Työpäivät", "Työpäiviä", "Tapahtumapaikka", "Toimeksiantaja", "Status", "Laskutusperuste", "Työn määrä (h)", "Laskutettu summa", "Saatu summa", "Artistit", "Artistien määrä"] leveydet = [7, 20, 40, 20, 20, 20, 20, 20, 20, 20, 20, 250, 20] align = Alignment(horizontal="center", vertical="center") fontotsikko, fontteksti = Font(name="Calibri", size=12, bold=True), Font(name="Calibri", size=11, bold=False) for i in range(0, 13): #käy läpi listat luoden sarakkeiden otsikot solu = "{}1".format(kirjaimet[i]) ws[solu] = tekstit[i] ws[solu].alignment = align ws[solu].font = fontotsikko ws.column_dimensions[kirjaimet[i]].width = leveydet[i] wb.save(db) def get_wb(): """Yrittää avata keikkadatan Excel-tiedostosta.""" wb = load_workbook(filename = db) sr = wb[wos] return wb, sr def get_value_list(column, tba = True): """Luo listan valitun sarakkeen löydetyistä arvoista.""" wb, sr = get_wb() value_list = [] #alustaa tyhjän listan for row in range(2, sr.max_column): #Käy läpi arvosarakkeet value = get_value(column, row, tba) #hakee arvon if value != None: #Lisää arvon listaan vain jos se ei ole tyhjä value_list.append(value) return value_list def get_value(column, row, tba = True): """Hakee annetun solun arvon""" wb, sr = get_wb() cell = "{}{}".format(column, row) value = sr[cell].value if tba == True: #Oletuksena asettaa tyhjän solun arvoksi TBA if value == None: value = "-TBA-" return value def set_value(value, cell): """Asettaa annetun solun arvon halutuksi""" wb, sr = get_wb() align = Alignment(horizontal="center", vertical="center") fontotsikko = Font(name="Calibri", size=12, bold=True) fontteksti = Font(name="Calibri", size=11, bold=False) if sr[cell].value == None: #tarkistaa onko solu tyhjä sr[cell] = value sr[cell].alignment = align sr[cell].font = fontteksti else: #varoittaa, jos solussa on jo sisältöä print("Virhe! Solu ei {} ole tyhjä.".format(cell)) while True: #Yrittää avata tiedoston, ja varoittaa jos se on jo auki muualla try: wb.save(db) except PermissionError: #tarkistaa onko tiedosto avoinna muualla vahvistus = input("Virhe! Tiedosto on jo avoinna. Sulje tiedosto muualta jatkaaksesi.") #input odottaa käyttäjän toimea ennen kuin funktio jatkaa else: break #poistuu kun tallentaminen onnistuu def lisaa_keikka(): """Kyselee kysymyspatteriston ja tallentaa vastaukset.""" wb, sr = get_wb() empty_row = sr.max_row + 1 set_ID(empty_row) set_name(empty_row) set_dates(empty_row) set_place(empty_row) set_company(empty_row) set_status(empty_row) set_billing(empty_row) set_hours(empty_row) set_bsum(empty_row) set_gsum(empty_row) set_artist(empty_row) def set_ID(row): uusi_id = False #Oletetaan että luotu ID löytyy jo listasta id_list = get_value_list("A", False) if id_list == []: id = random.randint(1000, 9999) #Luo satunnaisen nelinumeroisen numeron else: while uusi_id == False: #Luupataan niin kauan kun ID löytyy listasta id = random.randint(1000, 9999) #Luo satunnaisen nelinumeroisen numeron try: id_list.index(id) #Etsii luotua ID:tä listasta except ValueError: uusi_id = True #Poistuu kun syntyy aiemmin käyttämätön ID set_value(id, "A{}".format(row)) def set_name(row): tapahtuman_nimi = input("Tapahtuman nimi? ") #Kyselee nimen set_value(tapahtuman_nimi, "B{}".format(row)) def set_dates(row): paivat_valmis = False while paivat_valmis == False: tyopaivat, tyopaivat_count = "", 0 paivat = input("Työpäivät? ") if paivat == "": tyopaivat_count = "" paivat_valmis = True else: paivat = paivat.split(", ") paivat_count = len(paivat) for paiva in paivat: try: datetime.strptime(paiva, date_format) except ValueError: print("Päivämäärä virheellisessä muodossa") else: tyopaivat_count += 1 tyopaivat += paiva if tyopaivat_count < paivat_count: tyopaivat += "," if tyopaivat_count == paivat_count: paivat_valmis = True set_value(tyopaivat, "C{}".format(row)) set_value(paivat_count, "D{}".format(row)) def set_place(row): tapahtumapaikka = input("Tapahtumapaikka? ") #Kyselee paikan set_value(tapahtumapaikka, "E{}".format(row)) def set_company(row): toimeksiantaja = input("Toimeksiantaja? ") #Kyselee toimeksiantajan if toimeksiantaja == "lp": toimeksiantaja = "Livepaletti Oy" if toimeksiantaja == "ew": toimeksiantaja = "Eventworks Oy" set_value(toimeksiantaja, "F{}".format(row)) def set_status(row): while True: status = input("Keikan status? ") #Kyselee statuksen if status == "1": status = "Ennakkotilattu" break elif status == "2": status = "Tilattu" break elif status == "3": status = "Tuotannossa" break elif status == "4": status = "Laskutettu" break elif status == "5": status = "Valmis" break elif status == "" or status == "Ennakkotilattu" or status == "Tilattu" or status == "Tuotannossa" or status == "Laskutettu" or status == "Valmis": break else: print("") print("Virheellinen status! Anna arvo 1-5.") print("1: Ennakkotilattu. 2: Tilattu. 3: Tuotannossa. 4: Laskutettu. 5: Valmis.") print("") set_value(status, "G{}".format(row)) def set_billing(row): while True: laskutusperuste = input("Laskutusperuste? ").lower() #Kyselee toimeksiantajan if laskutusperuste == "": break elif laskutusperuste == "p" or laskutusperuste == "d": laskutusperuste = "Päivä" break elif laskutusperuste == "t" or laskutusperuste == "h": laskutusperuste = "Tunti" break elif laskutusperuste == "u": laskutusperuste = "Urakka" break elif laskutusperuste == "s": lisatiedot = input("Laskutusperusteen lisätiedot: ") laskutusperuste = "Sekalainen: %s" % (lisatiedot) break else: print("Virheellinen toiminto!") print("P (päivä), T (tunti), U (urakka), S (sekalainen) ") print(" ") set_value(laskutusperuste, "H{}".format(row)) def set_hours(row): while True: tyon_maara = input("Tehtyjen työtuntien määrä? ") if tyon_maara == "": break else: try: float(tyon_maara) except ValueError: print("Virhe! Et antanut numeroa!") else: break set_value(tyon_maara, "I{}".format(row)) def set_bsum(row): while True: laskutettu_summa = input("Laskutettu summa? ") if laskutettu_summa == "": break else: try: float(laskutettu_summa) except ValueError: print("Virheellinen summa. Syötä numeerinen arvo.") else: laskutettu_summa = format(float(laskutettu_summa), ".2f") break set_value(laskutettu_summa, "J{}".format(row)) def set_gsum(row): while True: saatu_summa = input("Saatu summa? ") if saatu_summa == "": break else: try: float(saatu_summa) except ValueError: print("Virheellinen summa. Syötä numeerinen arvo.") else: saatu_summa = format(float(saatu_summa), ".2f") break set_value(saatu_summa, "K{}".format(row)) def set_artist(row): artistit = input("Artistit? ") artistitdata = "" if artistit == "ei": artistitdata += "Ei artisteja" elif artistit != "": artistit = artistit.replace(", ", ",") artistit_lista = artistit.split(",") artistit_count = str(len(artistit_lista)) set_value(artistit, "L{}".format(row)) set_value(artistit_count, "M{}".format(row)) def nayta_keikat(): """Tulostaa tallennetut keikat tiedostosta.""" first_day_list = [] #alustaa listan id_list, date_list = get_value_list("A", False), get_value_list("C", False) for date in date_list: #käy läpi päivät paivat = date.split(",") #hajottaa päivät omaan listaansa if len(paivat) >= 1: #jos päiviä on annettu first_day_list.append(paivat[0]) #lisää ekan päivän uuteen listaan if len(id_list) > len(first_day_list): #tarkistaa onko kaikkii tapahtumiin annettu päivä for _ in range(len(id_list)-len(first_day_list)): #jos tapahtumasta puuttuu päivä first_day_list.append(str(time.strftime(date_format))) #näyttää tapahtuman päällimäisenä (tänä päivänä) id_list.sort(key=dict(zip(id_list, first_day_list)).get) #järjestää id:t päivien mukaan järjestykseen if len(id_list) == 0: #varoittaa jos tapahtumia ei ole print("Virhe. Tietokanta '{}' on tyhjä".format(db)) else: for id in id_list: #tulostaa kaikki tapahtumat, jos tapahtumia on tulosta_keikka(id) def tulosta_keikka(id): """Tulostaa formatoidusti keikkadatan.""" id_list = get_value_list("A") rn = id_list.index(int(id)) + 2 #Tietokannan offset listan indexiin tyot = get_value("C", rn) if tyot == "-TBA-": #Jos tietoa ei ole annettu, näyttää TBA eka_tyopaiva, vika_tyopaiva = "-TBA-", "-TBA-" else: try: #Yrittää luoda työpäivistä listan tyot = tyot.split(",") except AttributeError: #jos on vain yksi päivä tyot = tyot.strftime(date_format) eka_tyopaiva, vika_tyopaiva = tyot, tyot else: #jos on useita päiviä eka_tyopaiva, vika_tyopaiva = tyot[0], tyot[-1] artistit = get_value("L", rn) if artistit != "-TBA-" or artistit != "Ei artisteja": #Tarkistaa jos artistit on kerrottu artistit = artistit.split(",") #Luo artisteista listan if len(artistit) >= 4: #näyttää korkeintaan neljä artistia poiminta = 4 else: poiminta = len(artistit) random.shuffle(artistit) #sekoittaa artistit artistit = ", ".join(artistit[:poiminta]) #luo artisteista tekstin artistiteksti = "{}kpl, mm. {}.".format(get_value("M", rn), artistit) #muotoilee artistitekstin else: artistiteksti = artistit #Jos artisteja ei ole kerrottu print("") print("{}: {}. {} - {} @{} via {}.".format(get_value("A", rn), get_value("B", rn), eka_tyopaiva, vika_tyopaiva, get_value("E", rn), get_value("F", rn))) print("----- Status: {}. Laskutusperuste: {}.".format(get_value("G", rn), get_value("H", rn))) print("----- Tehty {} päivässä {}h töitä. Laskutettu: {}e, josta saatu: {}e.".format(get_value("D", rn), get_value("I", rn), get_value("J", rn), get_value("K", rn))) print("----- Artistit: {}".format(artistiteksti)) def muokkaa_keikkaa(): """Kysyy mitä keikkaa ja mitä tietoa muokataan.""" onko_id, id_list = False, get_value_list("A", False) #Olettaa asioita while onko_id == False: #pyörittää kunnes luotu ID löytyy tietokannasta id = input("Syötä olemassaoleva ID: ") if id.lower() == "l": #takaovi pois funktiosta onko_id = True else: try: id_list.index(int(id)) #etsii annettua ID:tä tietokannasta except ValueError: #jos ID:tä ei löydy print("Virheellinen ID!") for id in id_list: #Tulostaa listan olemassa olevista ID:stä rn = id_list.index(int(id)) + 2 #Listan offset tietokantaan print("{}: {}".format(get_value("A", rn), get_value("B", rn))) print("") else: #jos ID löytyy tulosta_keikka(id) onko_id = True while True: #Kun tapahtuma löytyy, niin kysytään miten sitä muokataan print("") toiminto = input("Valitse toiminto: ").lower() if toiminto == "l" or toiminto == "v": #ja taas parikin takaovea takaisin päävalikkoon print("Muokkaus valmis. Poistutaan.") break elif toiminto == "a": #esimerkki muokkaustoiminnosta print("Muokataan ID:tä") else: #tulostaa sallitut komennot print("Virheellinen komento! ") print("Sallitut kommennot ovat: ") print("L - Lopeta tai V - Valmis") def main(): """Pyörittää päävalikkoa, kunnes käyttäjä haluaa poistua.""" global db #antaa muokata muuttujaa globaalisti if len(sys.argv) == 2: #tarkistetaan annettiinko parametrinä tiedoston nimeä db = "{}.xlsx".format(sys.argv[1]) init_db() #Tarkistaa onko tietokantaa olemassa tai luo uudet print(" ") #Kaikki printit ovat 22 kirjainta pitkiä print("*** KEIKKASIHTEERI ***") print("* Päävalikko *") print(" ") while True: print(" ") valinta = input("Kuinka voin palvella? ").lower() #päävalikon toimintovalinta if valinta == ("u"): print("Lisätään uusi keikka. ") lisaa_keikka() elif valinta == ("m"): print("Näytetään keikkalista.") nayta_keikat() elif valinta == ("h"): print("Muokataan keikkaa. ") muokkaa_keikkaa() elif valinta == ("l"): #takaovi pois print("Kiitos käynnistä. ") break else: #tulostaa sallitut toiminnot print("Virheellinen komento! ") print(" ") print("Sallitut komennot ovat") print("*u - Uusi keikka. ") print("*m - Menneet keikat. ") print("*h - Hallitse keikkaa.") print("*l - Lopeta. ") main()
oskarijarvelin/exsec
exsec.py
Python
gpl-3.0
16,163
import csv import copy as cp from sklearn.preprocessing import normalize from sklearn.preprocessing import scale from sklearn.decomposition import PCA Data=[] with open('WineDataSet.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') hold=[] count=0 count1=0 for row in readCSV: hold=[] count = 0 if count1 !=0: for i in row: if count != 0: hold.append(i) count += 1 Data.append(cp.deepcopy(hold)) count1 += 1 print(Data) pcaNorm=PCA(n_components=3) NormData=normalize(Data) pcaNorm.fit(NormData) WineDataNorm=pcaNorm.transform(NormData) irisData = [ [ 5.1, 3.5, 1.4, 0.2 ], [ 4.9, 3, 1.4, 0.2 ], [ 4.7, 3.2, 1.3, 0.2 ], [ 4.6, 3.1, 1.5, 0.2 ], [ 5, 3.6, 1.4, 0.2 ], [ 5.4, 3.9, 1.7, 0.4 ], [ 4.6, 3.4, 1.4, 0.3 ], [ 5, 3.4, 1.5, 0.2 ], [ 4.4, 2.9, 1.4, 0.2 ], [ 4.9, 3.1, 1.5, 0.1 ], [ 5.4, 3.7, 1.5, 0.2 ], [ 4.8, 3.4, 1.6, 0.2 ], [ 4.8, 3, 1.4, 0.1 ], [ 4.3, 3, 1.1, 0.1 ], [ 5.8, 4, 1.2, 0.2 ], [ 5.7, 4.4, 1.5, 0.4 ], [ 5.4, 3.9, 1.3, 0.4 ], [ 5.1, 3.5, 1.4, 0.3 ], [ 5.7, 3.8, 1.7, 0.3 ], [ 5.1, 3.8, 1.5, 0.3 ], [ 5.4, 3.4, 1.7, 0.2 ], [ 5.1, 3.7, 1.5, 0.4 ], [ 4.6, 3.6, 1, 0.2 ], [ 5.1, 3.3, 1.7, 0.5 ], [ 4.8, 3.4, 1.9, 0.2 ], [ 5, 3, 1.6, 0.2 ], [ 5, 3.4, 1.6, 0.4 ], [ 5.2, 3.5, 1.5, 0.2 ], [ 5.2, 3.4, 1.4, 0.2 ], [ 4.7, 3.2, 1.6, 0.2 ], [ 4.8, 3.1, 1.6, 0.2 ], [ 5.4, 3.4, 1.5, 0.4 ], [ 5.2, 4.1, 1.5, 0.1 ], [ 5.5, 4.2, 1.4, 0.2 ], [ 4.9, 3.1, 1.5, 0.1 ], [ 5, 3.2, 1.2, 0.2 ], [ 5.5, 3.5, 1.3, 0.2 ], [ 4.9, 3.1, 1.5, 0.1 ], [ 4.4, 3, 1.3, 0.2 ], [ 5.1, 3.4, 1.5, 0.2 ], [ 5, 3.5, 1.3, 0.3 ], [ 4.5, 2.3, 1.3, 0.3 ], [ 4.4, 3.2, 1.3, 0.2 ], [ 5, 3.5, 1.6, 0.6 ], [ 5.1, 3.8, 1.9, 0.4 ], [ 4.8, 3, 1.4, 0.3 ], [ 5.1, 3.8, 1.6, 0.2 ], [ 4.6, 3.2, 1.4, 0.2 ], [ 5.3, 3.7, 1.5, 0.2 ], [ 5, 3.3, 1.4, 0.2 ], [ 7, 3.2, 4.7, 1.4 ], [ 6.4, 3.2, 4.5, 1.5 ], [ 6.9, 3.1, 4.9, 1.5 ], [ 5.5, 2.3, 4, 1.3 ], [ 6.5, 2.8, 4.6, 1.5 ], [ 5.7, 2.8, 4.5, 1.3 ], [ 6.3, 3.3, 4.7, 1.6 ], [ 4.9, 2.4, 3.3, 1 ], [ 6.6, 2.9, 4.6, 1.3 ], [ 5.2, 2.7, 3.9, 1.4 ], [ 5, 2, 3.5, 1 ], [ 5.9, 3, 4.2, 1.5 ], [ 6, 2.2, 4, 1 ], [ 6.1, 2.9, 4.7, 1.4 ], [ 5.6, 2.9, 3.6, 1.3 ], [ 6.7, 3.1, 4.4, 1.4 ], [ 5.6, 3, 4.5, 1.5 ], [ 5.8, 2.7, 4.1, 1 ], [ 6.2, 2.2, 4.5, 1.5 ], [ 5.6, 2.5, 3.9, 1.1 ], [ 5.9, 3.2, 4.8, 1.8 ], [ 6.1, 2.8, 4, 1.3 ], [ 6.3, 2.5, 4.9, 1.5 ], [ 6.1, 2.8, 4.7, 1.2 ], [ 6.4, 2.9, 4.3, 1.3 ], [ 6.6, 3, 4.4, 1.4 ], [ 6.8, 2.8, 4.8, 1.4 ], [ 6.7, 3, 5, 1.7 ], [ 6, 2.9, 4.5, 1.5 ], [ 5.7, 2.6, 3.5, 1 ], [ 5.5, 2.4, 3.8, 1.1 ], [ 5.5, 2.4, 3.7, 1 ], [ 5.8, 2.7, 3.9, 1.2 ], [ 6, 2.7, 5.1, 1.6 ], [ 5.4, 3, 4.5, 1.5 ], [ 6, 3.4, 4.5, 1.6 ], [ 6.7, 3.1, 4.7, 1.5 ], [ 6.3, 2.3, 4.4, 1.3 ], [ 5.6, 3, 4.1, 1.3 ], [ 5.5, 2.5, 4, 1.3 ], [ 5.5, 2.6, 4.4, 1.2 ], [ 6.1, 3, 4.6, 1.4 ], [ 5.8, 2.6, 4, 1.2 ], [ 5, 2.3, 3.3, 1 ], [ 5.6, 2.7, 4.2, 1.3 ], [ 5.7, 3, 4.2, 1.2 ], [ 5.7, 2.9, 4.2, 1.3 ], [ 6.2, 2.9, 4.3, 1.3 ], [ 5.1, 2.5, 3, 1.1 ], [ 5.7, 2.8, 4.1, 1.3 ], [ 6.3, 3.3, 6, 2.5 ], [ 5.8, 2.7, 5.1, 1.9 ], [ 7.1, 3, 5.9, 2.1 ], [ 6.3, 2.9, 5.6, 1.8 ], [ 6.5, 3, 5.8, 2.2 ], [ 7.6, 3, 6.6, 2.1 ], [ 4.9, 2.5, 4.5, 1.7 ], [ 7.3, 2.9, 6.3, 1.8 ], [ 6.7, 2.5, 5.8, 1.8 ], [ 7.2, 3.6, 6.1, 2.5 ], [ 6.5, 3.2, 5.1, 2 ], [ 6.4, 2.7, 5.3, 1.9 ], [ 6.8, 3, 5.5, 2.1 ], [ 5.7, 2.5, 5, 2 ], [ 5.8, 2.8, 5.1, 2.4 ], [ 6.4, 3.2, 5.3, 2.3 ], [ 6.5, 3, 5.5, 1.8 ], [ 7.7, 3.8, 6.7, 2.2 ], [ 7.7, 2.6, 6.9, 2.3 ], [ 6, 2.2, 5, 1.5 ], [ 6.9, 3.2, 5.7, 2.3 ], [ 5.6, 2.8, 4.9, 2 ], [ 7.7, 2.8, 6.7, 2 ], [ 6.3, 2.7, 4.9, 1.8 ], [ 6.7, 3.3, 5.7, 2.1 ], [ 7.2, 3.2, 6, 1.8 ], [ 6.2, 2.8, 4.8, 1.8 ], [ 6.1, 3, 4.9, 1.8 ], [ 6.4, 2.8, 5.6, 2.1 ], [ 7.2, 3, 5.8, 1.6 ], [ 7.4, 2.8, 6.1, 1.9 ], [ 7.9, 3.8, 6.4, 2 ], [ 6.4, 2.8, 5.6, 2.2 ], [ 6.3, 2.8, 5.1, 1.5 ], [ 6.1, 2.6, 5.6, 1.4 ], [ 7.7, 3, 6.1, 2.3 ], [ 6.3, 3.4, 5.6, 2.4 ], [ 6.4, 3.1, 5.5, 1.8 ], [ 6, 3, 4.8, 1.8 ], [ 6.9, 3.1, 5.4, 2.1 ], [ 6.7, 3.1, 5.6, 2.4 ], [ 6.9, 3.1, 5.1, 2.3 ], [ 5.8, 2.7, 5.1, 1.9 ], [ 6.8, 3.2, 5.9, 2.3 ], [ 6.7, 3.3, 5.7, 2.5 ], [ 6.7, 3, 5.2, 2.3 ], [ 6.3, 2.5, 5, 1.9 ], [ 6.5, 3, 5.2, 2 ], [ 6.2, 3.4, 5.4, 2.3 ], [ 5.9, 3, 5.1, 1.8 ], ] Examples = { 'WineNormalized And PCA': { 'data': WineDataNorm, 'k': [2,3,4,5] } }
WmHHooper/aima-python
submissions/Colburn/myKMeans.py
Python
mit
4,864
# Author: Bichen Wu (bichen@berkeley.edu) 08/25/2016 """Model configuration for pascal dataset""" import numpy as np from config.config import base_model_config def kitti_squeezeDet_config(): """Specify the parameters to tune below.""" mc = base_model_config('PASCAL_VOC')#base_model_config('KITTI') mc.IMAGE_WIDTH = 1242 mc.IMAGE_HEIGHT = 375 mc.BATCH_SIZE = 20 mc.WEIGHT_DECAY = 0.0001 mc.LEARNING_RATE = 0.01 mc.DECAY_STEPS = 10000 mc.MAX_GRAD_NORM = 1.0 mc.MOMENTUM = 0.9 mc.LR_DECAY_FACTOR = 0.5 mc.LOSS_COEF_BBOX = 5.0 mc.LOSS_COEF_CONF_POS = 75.0 mc.LOSS_COEF_CONF_NEG = 100.0 mc.LOSS_COEF_CLASS = 1.0 mc.PLOT_PROB_THRESH = 0.4 mc.NMS_THRESH = 0.4 mc.PROB_THRESH = 0.005 mc.TOP_N_DETECTION = 64 mc.DATA_AUGMENTATION = True mc.DRIFT_X = 150 mc.DRIFT_Y = 100 mc.EXCLUDE_HARD_EXAMPLES = False mc.ANCHOR_BOX = set_anchors(mc) mc.ANCHORS = len(mc.ANCHOR_BOX) mc.ANCHOR_PER_GRID = 9 return mc def set_anchors(mc): H, W, B = 22, 76, 9 anchor_shapes = np.reshape( [np.array( [[ 36., 37.], [ 366., 174.], [ 115., 59.], [ 162., 87.], [ 38., 90.], [ 258., 173.], [ 224., 108.], [ 78., 170.], [ 72., 43.]])] * H * W, (H, W, B, 2) ) center_x = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, W+1)*float(mc.IMAGE_WIDTH)/(W+1)]*H*B), (B, H, W) ), (1, 2, 0) ), (H, W, B, 1) ) center_y = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, H+1)*float(mc.IMAGE_HEIGHT)/(H+1)]*W*B), (B, W, H) ), (2, 1, 0) ), (H, W, B, 1) ) anchors = np.reshape( np.concatenate((center_x, center_y, anchor_shapes), axis=3), (-1, 4) ) return anchors
Walter1218/self_driving_car_ND
squeezeDet/src/config/kitti_squeezeDet_config.py
Python
mit
2,066
# -*- coding: utf-8 -*- # Copyright (C) 2010 by RoboLab - University of Extremadura # # This file is part of RoboComp # # RoboComp is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # RoboComp is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with RoboComp. If not, see <http://www.gnu.org/licenses/>. # import Ice, threading from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * import math import RoboCompRGBD global RoboCompRGBD replay_plugin_identifier = 'rgbd_hal' def getReplayClass(): return RGBDI() def getRecordClass(proxy): return RGBDRecorder(proxy) def getGraphicalUserInterface(): return RGBDGUI() class RGBDGUI(QWidget): def __init__(self, parent=None): QWidget.__init__(self,parent) self.show() self.measure = None self.configuration = None def getSize(self): return QSize(500, 500) def setConfiguration(self, configuration): self.configuration = configuration def setMeasure(self, measure): self.measure = measure def paintEvent(self, event): pass class RGBDI(RoboCompRGBD.RGBD): def __init__(self): self.measure = None self.configuration = None def setConfiguration(self, configuration): self.configuration = configuration def setMeasure(self, measure): self.measure = measure def getImage(self, measue): return self.measure def getMeasure(self): return self.measure def getData(self, current = None): return self.measure def getRGBDParams(self, current = None): return self.configuration class RGBDRecorder: def __init__(self, proxy): global RoboCompRGBD self.proxy = RoboCompRGBD.RGBDPrx.checkedCast(proxy) def getConfiguration(self): return True def getMeasure(self): self.measure = self.proxy.getImage() return self.measure def measure(self): return self.measure
robocomp/robocomp
tools/rcreplay/rgbd.py
Python
gpl-3.0
2,317
# -*- coding: utf-8 -*- # coding: UTF-8 # # Copyright 2010-2015 The pygit2 contributors # # This file is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License, version 2, # as published by the Free Software Foundation. # # In addition to the permissions in the GNU General Public License, # the authors give you unlimited permission to link the compiled # version of this file into combinations with other programs, # and to distribute those combinations without any restriction # coming from the use of this file. (The General Public License # restrictions do apply in other respects; for example, they cover # modification of the file, and distribution when not linked into # a combined executable.) # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301, USA. """Setup file for pygit2.""" # Import from the future from __future__ import print_function # Import from the Standard Library import codecs from distutils.command.build import build from distutils.command.sdist import sdist from distutils import log import os from os import getenv, listdir, pathsep from os.path import abspath, isfile from setuptools import setup, Extension, Command import shlex from subprocess import Popen, PIPE import sys import unittest # Get cffi major version try: import cffi except ImportError: cffi_major_version = None else: cffi_major_version = cffi.__version_info__[0] # Import stuff from pygit2/_utils.py without loading the whole pygit2 package sys.path.insert(0, 'pygit2') from _build import __version__, get_libgit2_paths if cffi_major_version == 0: from _run import ffi, preamble, C_KEYWORDS ffi.verify(preamble, **C_KEYWORDS) del sys.path[0] # Python 2 support # See https://github.com/libgit2/pygit2/pull/180 for a discussion about this. # Using six isn't an option here yet, we don't necessarily have six installed if sys.version_info[0] == 2: u = lambda s: unicode(s, 'utf-8') else: u = str libgit2_bin, libgit2_include, libgit2_lib = get_libgit2_paths() pygit2_exts = [os.path.join('src', name) for name in listdir('src') if name.endswith('.c')] class TestCommand(Command): """Command for running unittests without install.""" user_options = [("args=", None, '''The command args string passed to unittest framework, such as --args="-v -f"''')] def initialize_options(self): self.args = '' def finalize_options(self): pass def run(self): self.run_command('build') bld = self.distribution.get_command_obj('build') # Add build_lib in to sys.path so that unittest can found DLLs and libs sys.path = [abspath(bld.build_lib)] + sys.path test_argv0 = [sys.argv[0] + ' test --args='] # For transfering args to unittest, we have to split args by ourself, # so that command like: # # python setup.py test --args="-v -f" # # can be executed, and the parameter '-v -f' can be transfering to # unittest properly. test_argv = test_argv0 + shlex.split(self.args) unittest.main(None, defaultTest='test.test_suite', argv=test_argv) class sdist_files_from_git(sdist): def get_file_list(self): popen = Popen(['git', 'ls-files'], stdout=PIPE, stderr=PIPE, universal_newlines=True) stdoutdata, stderrdata = popen.communicate() if popen.returncode != 0: print(stderrdata) sys.exit() for line in stdoutdata.splitlines(): # Skip hidden files at the root if line[0] == '.': continue self.filelist.append(line) # Ok self.filelist.sort() self.filelist.remove_duplicates() self.write_manifest() classifiers = [ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: Version Control"] with codecs.open('README.rst', 'r', 'utf-8') as readme: long_description = readme.read() cmdclass = { 'test': TestCommand, 'sdist': sdist_files_from_git, } # On Windows, we install the git2.dll too. class BuildWithDLLs(build): def _get_dlls(self): # return a list of (FQ-in-name, relative-out-name) tuples. ret = [] bld_ext = self.distribution.get_command_obj('build_ext') compiler_type = bld_ext.compiler.compiler_type libgit2_dlls = [] if compiler_type == 'msvc': libgit2_dlls.append('git2.dll') elif compiler_type == 'mingw32': libgit2_dlls.append('libgit2.dll') look_dirs = [libgit2_bin] + getenv("PATH", "").split(pathsep) target = abspath(self.build_lib) for bin in libgit2_dlls: for look in look_dirs: f = os.path.join(look, bin) if isfile(f): ret.append((f, target)) break else: log.warn("Could not find required DLL %r to include", bin) log.debug("(looked in %s)", look_dirs) return ret def run(self): build.run(self) for s, d in self._get_dlls(): self.copy_file(s, d) # On Windows we package up the dlls with the plugin. if os.name == 'nt': cmdclass['build'] = BuildWithDLLs extra_args = { 'ext_modules': [ Extension('_pygit2', pygit2_exts, libraries=['git2'], include_dirs=[libgit2_include], library_dirs=[libgit2_lib]), # FFI is added in the build step ], } if cffi_major_version == 0: extra_args['ext_modules'].append(ffi.verifier.get_extension()) else: extra_args['cffi_modules'] = ['pygit2/_run.py:ffi'] setup(name='pygit2', description='Python bindings for libgit2.', keywords='git', version=__version__, url='http://github.com/libgit2/pygit2', classifiers=classifiers, license='GPLv2 with linking exception', maintainer=u('J. David Ibáñez'), maintainer_email='jdavid.ibp@gmail.com', long_description=long_description, packages=['pygit2'], package_data={'pygit2': ['decl.h']}, setup_requires=['cffi'], install_requires=['cffi', 'six'], zip_safe=False, cmdclass=cmdclass, **extra_args)
Sheeo/pygit2
setup.py
Python
gpl-2.0
6,812
# # # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Configuration management for Ganeti This module provides the interface to the Ganeti cluster configuration. The configuration data is stored on every node but is updated on the master only. After each update, the master distributes the data to the other nodes. Currently, the data storage format is JSON. YAML was slow and consuming too much memory. """ # pylint: disable=R0904 # R0904: Too many public methods import copy import os import random import logging import time import threading import itertools from ganeti import errors from ganeti import utils from ganeti import constants import ganeti.wconfd as wc from ganeti import objects from ganeti import serializer from ganeti import uidpool from ganeti import netutils from ganeti import runtime from ganeti import pathutils from ganeti import network def GetWConfdContext(ec_id, livelock): """Prepare a context for communication with WConfd. WConfd needs to know the identity of each caller to properly manage locks and detect job death. This helper function prepares the identity object given a job ID (optional) and a livelock file. @type ec_id: int, or None @param ec_id: the job ID or None, if the caller isn't a job @type livelock: L{ganeti.utils.livelock.LiveLock} @param livelock: a livelock object holding the lockfile needed for WConfd @return: the WConfd context """ if ec_id is None: return (threading.current_thread().getName(), livelock.GetPath(), os.getpid()) else: return (ec_id, livelock.GetPath(), os.getpid()) def GetConfig(ec_id, livelock, **kwargs): """A utility function for constructing instances of ConfigWriter. It prepares a WConfd context and uses it to create a ConfigWriter instance. @type ec_id: int, or None @param ec_id: the job ID or None, if the caller isn't a job @type livelock: L{ganeti.utils.livelock.LiveLock} @param livelock: a livelock object holding the lockfile needed for WConfd @type kwargs: dict @param kwargs: Any additional arguments for the ConfigWriter constructor @rtype: L{ConfigWriter} @return: the ConfigWriter context """ kwargs['wconfdcontext'] = GetWConfdContext(ec_id, livelock) kwargs['wconfd'] = wc.Client() return ConfigWriter(**kwargs) def _ConfigSync(shared=0): """Configuration synchronization decorator. """ def wrap(fn): def sync_function(*args, **kwargs): with args[0].GetConfigManager(shared): return fn(*args, **kwargs) return sync_function return wrap # job id used for resource management at config upgrade time _UPGRADE_CONFIG_JID = "jid-cfg-upgrade" def _ValidateConfig(data): """Verifies that a configuration dict looks valid. This only verifies the version of the configuration. @raise errors.ConfigurationError: if the version differs from what we expect """ if data['version'] != constants.CONFIG_VERSION: raise errors.ConfigVersionMismatch(constants.CONFIG_VERSION, data['version']) class TemporaryReservationManager(object): """A temporary resource reservation manager. This is used to reserve resources in a job, before using them, making sure other jobs cannot get them in the meantime. """ def __init__(self): self._ec_reserved = {} def Reserved(self, resource): for holder_reserved in self._ec_reserved.values(): if resource in holder_reserved: return True return False def Reserve(self, ec_id, resource): if self.Reserved(resource): raise errors.ReservationError("Duplicate reservation for resource '%s'" % str(resource)) if ec_id not in self._ec_reserved: self._ec_reserved[ec_id] = set([resource]) else: self._ec_reserved[ec_id].add(resource) def DropECReservations(self, ec_id): if ec_id in self._ec_reserved: del self._ec_reserved[ec_id] def GetReserved(self): all_reserved = set() for holder_reserved in self._ec_reserved.values(): all_reserved.update(holder_reserved) return all_reserved def GetECReserved(self, ec_id): """ Used when you want to retrieve all reservations for a specific execution context. E.g when commiting reserved IPs for a specific network. """ ec_reserved = set() if ec_id in self._ec_reserved: ec_reserved.update(self._ec_reserved[ec_id]) return ec_reserved def Generate(self, existing, generate_one_fn, ec_id): """Generate a new resource of this type """ assert callable(generate_one_fn) all_elems = self.GetReserved() all_elems.update(existing) retries = 64 while retries > 0: new_resource = generate_one_fn() if new_resource is not None and new_resource not in all_elems: break else: raise errors.ConfigurationError("Not able generate new resource" " (last tried: %s)" % new_resource) self.Reserve(ec_id, new_resource) return new_resource def _MatchNameComponentIgnoreCase(short_name, names): """Wrapper around L{utils.text.MatchNameComponent}. """ return utils.MatchNameComponent(short_name, names, case_sensitive=False) def _CheckInstanceDiskIvNames(disks): """Checks if instance's disks' C{iv_name} attributes are in order. @type disks: list of L{objects.Disk} @param disks: List of disks @rtype: list of tuples; (int, string, string) @return: List of wrongly named disks, each tuple contains disk index, expected and actual name """ result = [] for (idx, disk) in enumerate(disks): exp_iv_name = "disk/%s" % idx if disk.iv_name != exp_iv_name: result.append((idx, exp_iv_name, disk.iv_name)) return result class ConfigManager(object): """Locks the configuration and exposes it to be read or modified. """ def __init__(self, config_writer, shared=False): assert isinstance(config_writer, ConfigWriter), \ "invalid argument: Not a ConfigWriter" self._config_writer = config_writer self._shared = shared def __enter__(self): try: self._config_writer._OpenConfig(self._shared) # pylint: disable=W0212 except Exception: logging.debug("Opening configuration failed") try: self._config_writer._CloseConfig(False) # pylint: disable=W0212 except Exception: # pylint: disable=W0703 logging.debug("Closing configuration failed as well") raise def __exit__(self, exc_type, exc_value, traceback): # save the configuration, if this was a write opreration that succeeded if exc_type is not None: logging.debug("Configuration operation failed," " the changes will not be saved") # pylint: disable=W0212 self._config_writer._CloseConfig(not self._shared and exc_type is None) return False def _UpdateIvNames(base_idx, disks): """Update the C{iv_name} attribute of disks. @type disks: list of L{objects.Disk} """ for (idx, disk) in enumerate(disks): disk.iv_name = "disk/%s" % (base_idx + idx) class ConfigWriter(object): """The interface to the cluster configuration. WARNING: The class is no longer thread-safe! Each thread must construct a separate instance. @ivar _all_rms: a list of all temporary reservation managers """ def __init__(self, cfg_file=None, offline=False, _getents=runtime.GetEnts, accept_foreign=False, wconfdcontext=None, wconfd=None): self.write_count = 0 self._config_data = None self._SetConfigData(None) self._offline = offline if cfg_file is None: self._cfg_file = pathutils.CLUSTER_CONF_FILE else: self._cfg_file = cfg_file self._getents = _getents self._temporary_ids = TemporaryReservationManager() self._all_rms = [self._temporary_ids] # Note: in order to prevent errors when resolving our name later, # we compute it here once and reuse it; it's # better to raise an error before starting to modify the config # file than after it was modified self._my_hostname = netutils.Hostname.GetSysName() self._cfg_id = None self._wconfdcontext = wconfdcontext self._wconfd = wconfd self._accept_foreign = accept_foreign self._lock_count = 0 self._lock_current_shared = None def _ConfigData(self): return self._config_data def OutDate(self): self._config_data = None def _SetConfigData(self, cfg): self._config_data = cfg def _GetWConfdContext(self): return self._wconfdcontext # this method needs to be static, so that we can call it on the class @staticmethod def IsCluster(): """Check if the cluster is configured. """ return os.path.exists(pathutils.CLUSTER_CONF_FILE) @_ConfigSync(shared=1) def GetNdParams(self, node): """Get the node params populated with cluster defaults. @type node: L{objects.Node} @param node: The node we want to know the params for @return: A dict with the filled in node params """ nodegroup = self._UnlockedGetNodeGroup(node.group) return self._ConfigData().cluster.FillND(node, nodegroup) @_ConfigSync(shared=1) def GetNdGroupParams(self, nodegroup): """Get the node groups params populated with cluster defaults. @type nodegroup: L{objects.NodeGroup} @param nodegroup: The node group we want to know the params for @return: A dict with the filled in node group params """ return self._UnlockedGetNdGroupParams(nodegroup) def _UnlockedGetNdGroupParams(self, group): """Get the ndparams of the group. @type group: L{objects.NodeGroup} @param group: The group we want to know the params for @rtype: dict of str to int @return: A dict with the filled in node group params """ return self._ConfigData().cluster.FillNDGroup(group) @_ConfigSync(shared=1) def GetGroupSshPorts(self): """Get a map of group UUIDs to SSH ports. @rtype: dict of str to int @return: a dict mapping the UUIDs to the SSH ports """ port_map = {} for uuid, group in self._config_data.nodegroups.items(): ndparams = self._UnlockedGetNdGroupParams(group) port = ndparams.get(constants.ND_SSH_PORT) port_map[uuid] = port return port_map @_ConfigSync(shared=1) def GetInstanceDiskParams(self, instance): """Get the disk params populated with inherit chain. @type instance: L{objects.Instance} @param instance: The instance we want to know the params for @return: A dict with the filled in disk params """ node = self._UnlockedGetNodeInfo(instance.primary_node) nodegroup = self._UnlockedGetNodeGroup(node.group) return self._UnlockedGetGroupDiskParams(nodegroup) @_ConfigSync() def SetInstanceDiskTemplate(self, inst_uuid, disk_template): """Set the instance's disk template to the given value. @type inst_uuid: string @param inst_uuid: The UUID of the instance object @type disk_template: string @param disk_template: The new disk template of the instance """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) # Update the disk template of the instance instance.disk_template = disk_template def _UnlockedGetInstanceDisks(self, inst_uuid): """Return the disks' info for the given instance @type inst_uuid: string @param inst_uuid: The UUID of the instance we want to know the disks for @rtype: List of L{objects.Disk} @return: A list with all the disks' info """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) return [self._UnlockedGetDiskInfo(disk_uuid) for disk_uuid in instance.disks] @_ConfigSync(shared=1) def GetInstanceDisks(self, inst_uuid): """Return the disks' info for the given instance This is a simple wrapper over L{_UnlockedGetInstanceDisks}. """ return self._UnlockedGetInstanceDisks(inst_uuid) def _UnlockedAddDisk(self, disk): """Add a disk to the config. @type disk: L{objects.Disk} @param disk: The disk object """ if not isinstance(disk, objects.Disk): raise errors.ProgrammerError("Invalid type passed to _UnlockedAddDisk") logging.info("Adding disk %s to configuration", disk.uuid) self._CheckUniqueUUID(disk, include_temporary=False) disk.serial_no = 1 disk.ctime = disk.mtime = time.time() disk.UpgradeConfig() self._ConfigData().disks[disk.uuid] = disk self._ConfigData().cluster.serial_no += 1 def _UnlockedAttachInstanceDisk(self, inst_uuid, disk_uuid, idx=None): """Attach a disk to an instance. @type inst_uuid: string @param inst_uuid: The UUID of the instance object @type disk_uuid: string @param disk_uuid: The UUID of the disk object @type idx: int @param idx: the index of the newly attached disk; if not passed, the disk will be attached as the last one. """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Instance %s doesn't exist" % inst_uuid) if disk_uuid not in self._ConfigData().disks: raise errors.ConfigurationError("Disk %s doesn't exist" % disk_uuid) if idx is None: idx = len(instance.disks) else: if idx < 0: raise IndexError("Not accepting negative indices other than -1") elif idx > len(instance.disks): raise IndexError("Got disk index %s, but there are only %s" % (idx, len(instance.disks))) # Disk must not be attached anywhere else for inst in self._ConfigData().instances.values(): if disk_uuid in inst.disks: raise errors.ReservationError("Disk %s already attached to instance %s" % (disk_uuid, inst.name)) instance.disks.insert(idx, disk_uuid) instance_disks = self._UnlockedGetInstanceDisks(inst_uuid) _UpdateIvNames(idx, instance_disks[idx:]) instance.serial_no += 1 instance.mtime = time.time() @_ConfigSync() def AddInstanceDisk(self, inst_uuid, disk, idx=None): """Add a disk to the config and attach it to instance. This is a simple wrapper over L{_UnlockedAddDisk} and L{_UnlockedAttachInstanceDisk}. """ self._UnlockedAddDisk(disk) self._UnlockedAttachInstanceDisk(inst_uuid, disk.uuid, idx) def _UnlockedDetachInstanceDisk(self, inst_uuid, disk_uuid): """Detach a disk from an instance. @type inst_uuid: string @param inst_uuid: The UUID of the instance object @type disk_uuid: string @param disk_uuid: The UUID of the disk object """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Instance %s doesn't exist" % inst_uuid) if disk_uuid not in self._ConfigData().disks: raise errors.ConfigurationError("Disk %s doesn't exist" % disk_uuid) # Check if disk is attached to the instance if disk_uuid not in instance.disks: raise errors.ProgrammerError("Disk %s is not attached to an instance" % disk_uuid) idx = instance.disks.index(disk_uuid) instance.disks.remove(disk_uuid) instance_disks = self._UnlockedGetInstanceDisks(inst_uuid) _UpdateIvNames(idx, instance_disks[idx:]) instance.serial_no += 1 instance.mtime = time.time() def _UnlockedRemoveDisk(self, disk_uuid): """Remove the disk from the configuration. @type disk_uuid: string @param disk_uuid: The UUID of the disk object """ if disk_uuid not in self._ConfigData().disks: raise errors.ConfigurationError("Disk %s doesn't exist" % disk_uuid) # Disk must not be attached anywhere for inst in self._ConfigData().instances.values(): if disk_uuid in inst.disks: raise errors.ReservationError("Cannot remove disk %s. Disk is" " attached to instance %s" % (disk_uuid, inst.name)) # Remove disk from config file del self._ConfigData().disks[disk_uuid] self._ConfigData().cluster.serial_no += 1 @_ConfigSync() def RemoveInstanceDisk(self, inst_uuid, disk_uuid): """Detach a disk from an instance and remove it from the config. This is a simple wrapper over L{_UnlockedDetachInstanceDisk} and L{_UnlockedRemoveDisk}. """ self._UnlockedDetachInstanceDisk(inst_uuid, disk_uuid) self._UnlockedRemoveDisk(disk_uuid) def _UnlockedGetDiskInfo(self, disk_uuid): """Returns information about a disk. It takes the information from the configuration file. @param disk_uuid: UUID of the disk @rtype: L{objects.Disk} @return: the disk object """ if disk_uuid not in self._ConfigData().disks: return None return self._ConfigData().disks[disk_uuid] @_ConfigSync(shared=1) def GetDiskInfo(self, disk_uuid): """Returns information about a disk. This is a simple wrapper over L{_UnlockedGetDiskInfo}. """ return self._UnlockedGetDiskInfo(disk_uuid) def _AllInstanceNodes(self, inst_uuid): """Compute the set of all disk-related nodes for an instance. This abstracts away some work from '_UnlockedGetInstanceNodes' and '_UnlockedGetInstanceSecondaryNodes'. @type inst_uuid: string @param inst_uuid: The UUID of the instance we want to get nodes for @rtype: set of strings @return: A set of names for all the nodes of the instance """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) instance_disks = self._UnlockedGetInstanceDisks(inst_uuid) all_nodes = [] for disk in instance_disks: all_nodes.extend(disk.all_nodes) return (set(all_nodes), instance) def _UnlockedGetInstanceNodes(self, inst_uuid): """Get all disk-related nodes for an instance. For non-DRBD, this will be empty, for DRBD it will contain both the primary and the secondaries. @type inst_uuid: string @param inst_uuid: The UUID of the instance we want to get nodes for @rtype: list of strings @return: A list of names for all the nodes of the instance """ (all_nodes, instance) = self._AllInstanceNodes(inst_uuid) # ensure that primary node is always the first all_nodes.discard(instance.primary_node) return (instance.primary_node, ) + tuple(all_nodes) @_ConfigSync(shared=1) def GetInstanceNodes(self, inst_uuid): """Get all disk-related nodes for an instance. This is just a wrapper over L{_UnlockedGetInstanceNodes} """ return self._UnlockedGetInstanceNodes(inst_uuid) def _UnlockedGetInstanceSecondaryNodes(self, inst_uuid): """Get the list of secondary nodes. @type inst_uuid: string @param inst_uuid: The UUID of the instance we want to get nodes for @rtype: list of strings @return: A list of names for all the secondary nodes of the instance """ (all_nodes, instance) = self._AllInstanceNodes(inst_uuid) all_nodes.discard(instance.primary_node) return tuple(all_nodes) @_ConfigSync(shared=1) def GetInstanceSecondaryNodes(self, inst_uuid): """Get the list of secondary nodes. This is a simple wrapper over L{_UnlockedGetInstanceSecondaryNodes}. """ return self._UnlockedGetInstanceSecondaryNodes(inst_uuid) def _UnlockedGetInstanceLVsByNode(self, inst_uuid, lvmap=None): """Provide a mapping of node to LVs a given instance owns. @type inst_uuid: string @param inst_uuid: The UUID of the instance we want to compute the LVsByNode for @type lvmap: dict @param lvmap: Optional dictionary to receive the 'node' : ['lv', ...] data. @rtype: dict or None @return: None if lvmap arg is given, otherwise, a dictionary of the form { 'node_uuid' : ['volume1', 'volume2', ...], ... }; volumeN is of the form "vg_name/lv_name", compatible with GetVolumeList() """ def _MapLVsByNode(lvmap, devices, node_uuid): """Recursive helper function.""" if not node_uuid in lvmap: lvmap[node_uuid] = [] for dev in devices: if dev.dev_type == constants.DT_PLAIN: lvmap[node_uuid].append(dev.logical_id[0] + "/" + dev.logical_id[1]) elif dev.dev_type in constants.DTS_DRBD: if dev.children: _MapLVsByNode(lvmap, dev.children, dev.logical_id[0]) _MapLVsByNode(lvmap, dev.children, dev.logical_id[1]) elif dev.children: _MapLVsByNode(lvmap, dev.children, node_uuid) instance = self._UnlockedGetInstanceInfo(inst_uuid) if instance is None: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) if lvmap is None: lvmap = {} ret = lvmap else: ret = None _MapLVsByNode(lvmap, self._UnlockedGetInstanceDisks(instance.uuid), instance.primary_node) return ret @_ConfigSync(shared=1) def GetInstanceLVsByNode(self, inst_uuid, lvmap=None): """Provide a mapping of node to LVs a given instance owns. This is a simple wrapper over L{_UnlockedGetInstanceLVsByNode} """ return self._UnlockedGetInstanceLVsByNode(inst_uuid, lvmap=lvmap) @_ConfigSync(shared=1) def GetGroupDiskParams(self, group): """Get the disk params populated with inherit chain. @type group: L{objects.NodeGroup} @param group: The group we want to know the params for @return: A dict with the filled in disk params """ return self._UnlockedGetGroupDiskParams(group) def _UnlockedGetGroupDiskParams(self, group): """Get the disk params populated with inherit chain down to node-group. @type group: L{objects.NodeGroup} @param group: The group we want to know the params for @return: A dict with the filled in disk params """ data = self._ConfigData().cluster.SimpleFillDP(group.diskparams) assert isinstance(data, dict), "Not a dictionary: " + str(data) return data @_ConfigSync(shared=1) def GetPotentialMasterCandidates(self): """Gets the list of node names of potential master candidates. @rtype: list of str @return: list of node names of potential master candidates """ # FIXME: Note that currently potential master candidates are nodes # but this definition will be extended once RAPI-unmodifiable # parameters are introduced. nodes = self._UnlockedGetAllNodesInfo() return [node_info.name for node_info in nodes.values()] def GenerateMAC(self, net_uuid, _ec_id): """Generate a MAC for an instance. This should check the current instances for duplicates. """ return self._wconfd.GenerateMAC(self._GetWConfdContext(), net_uuid) def ReserveMAC(self, mac, _ec_id): """Reserve a MAC for an instance. This only checks instances managed by this cluster, it does not check for potential collisions elsewhere. """ self._wconfd.ReserveMAC(self._GetWConfdContext(), mac) def _UnlockedCommitTemporaryIps(self, _ec_id): """Commit all reserved IP address to their respective pools """ if self._offline: raise errors.ProgrammerError("Can't call CommitTemporaryIps" " in offline mode") ips = self._wconfd.ListReservedIps(self._GetWConfdContext()) for action, address, net_uuid in ips: self._UnlockedCommitIp(action, net_uuid, address) def _UnlockedCommitIp(self, action, net_uuid, address): """Commit a reserved IP address to an IP pool. The IP address is taken from the network's IP pool and marked as free. """ nobj = self._UnlockedGetNetwork(net_uuid) if nobj is None: raise errors.ProgrammerError("Network '%s' not found" % (net_uuid, )) pool = network.AddressPool(nobj) if action == constants.RESERVE_ACTION: pool.Reserve(address) elif action == constants.RELEASE_ACTION: pool.Release(address) def ReleaseIp(self, net_uuid, address, _ec_id): """Give a specific IP address back to an IP pool. The IP address is returned to the IP pool and marked as reserved. """ if net_uuid: if self._offline: raise errors.ProgrammerError("Can't call ReleaseIp in offline mode") self._wconfd.ReleaseIp(self._GetWConfdContext(), net_uuid, address) def GenerateIp(self, net_uuid, _ec_id): """Find a free IPv4 address for an instance. """ if self._offline: raise errors.ProgrammerError("Can't call GenerateIp in offline mode") return self._wconfd.GenerateIp(self._GetWConfdContext(), net_uuid) def ReserveIp(self, net_uuid, address, _ec_id, check=True): """Reserve a given IPv4 address for use by an instance. """ if self._offline: raise errors.ProgrammerError("Can't call ReserveIp in offline mode") return self._wconfd.ReserveIp(self._GetWConfdContext(), net_uuid, address, check) def ReserveLV(self, lv_name, _ec_id): """Reserve an VG/LV pair for an instance. @type lv_name: string @param lv_name: the logical volume name to reserve """ return self._wconfd.ReserveLV(self._GetWConfdContext(), lv_name) def GenerateDRBDSecret(self, _ec_id): """Generate a DRBD secret. This checks the current disks for duplicates. """ return self._wconfd.GenerateDRBDSecret(self._GetWConfdContext()) # FIXME: After _AllIDs is removed, move it to config_mock.py def _AllLVs(self): """Compute the list of all LVs. """ lvnames = set() for instance in self._ConfigData().instances.values(): node_data = self._UnlockedGetInstanceLVsByNode(instance.uuid) for lv_list in node_data.values(): lvnames.update(lv_list) return lvnames def _AllNICs(self): """Compute the list of all NICs. """ nics = [] for instance in self._ConfigData().instances.values(): nics.extend(instance.nics) return nics def _AllIDs(self, include_temporary): """Compute the list of all UUIDs and names we have. @type include_temporary: boolean @param include_temporary: whether to include the _temporary_ids set @rtype: set @return: a set of IDs """ existing = set() if include_temporary: existing.update(self._temporary_ids.GetReserved()) existing.update(self._AllLVs()) existing.update(self._ConfigData().instances.keys()) existing.update(self._ConfigData().nodes.keys()) existing.update([i.uuid for i in self._AllUUIDObjects() if i.uuid]) return existing def _GenerateUniqueID(self, ec_id): """Generate an unique UUID. This checks the current node, instances and disk names for duplicates. @rtype: string @return: the unique id """ existing = self._AllIDs(include_temporary=False) return self._temporary_ids.Generate(existing, utils.NewUUID, ec_id) @_ConfigSync(shared=1) def GenerateUniqueID(self, ec_id): """Generate an unique ID. This is just a wrapper over the unlocked version. @type ec_id: string @param ec_id: unique id for the job to reserve the id to """ return self._GenerateUniqueID(ec_id) def _AllMACs(self): """Return all MACs present in the config. @rtype: list @return: the list of all MACs """ result = [] for instance in self._ConfigData().instances.values(): for nic in instance.nics: result.append(nic.mac) return result def _AllDRBDSecrets(self): """Return all DRBD secrets present in the config. @rtype: list @return: the list of all DRBD secrets """ def helper(disk, result): """Recursively gather secrets from this disk.""" if disk.dev_type == constants.DT_DRBD8: result.append(disk.logical_id[5]) if disk.children: for child in disk.children: helper(child, result) result = [] for disk in self._ConfigData().disks.values(): helper(disk, result) return result @staticmethod def _VerifyDisks(data, result): """Per-disk verification checks Extends L{result} with diagnostic information about the disks. @type data: see L{_ConfigData} @param data: configuration data @type result: list of strings @param result: list containing diagnostic messages """ instance_disk_uuids = [d for insts in data.instances.values() for d in insts.disks] for disk_uuid in data.disks: disk = data.disks[disk_uuid] result.extend(["disk %s error: %s" % (disk.uuid, msg) for msg in disk.Verify()]) if disk.uuid != disk_uuid: result.append("disk '%s' is indexed by wrong UUID '%s'" % (disk.name, disk_uuid)) if disk.uuid not in instance_disk_uuids: result.append("disk '%s' is not attached to any instance" % disk.uuid) def _UnlockedVerifyConfig(self): """Verify function. @rtype: list @return: a list of error messages; a non-empty list signifies configuration errors """ # pylint: disable=R0914 result = [] seen_macs = [] ports = {} data = self._ConfigData() cluster = data.cluster # First call WConfd to perform its checks, if we're not offline if not self._offline: try: self._wconfd.VerifyConfig() except errors.ConfigVerifyError, err: try: for msg in err.args[1]: result.append(msg) except IndexError: pass def _helper(owner, attr, value, template): try: utils.ForceDictType(value, template) except errors.GenericError, err: result.append("%s has invalid %s: %s" % (owner, attr, err)) def _helper_nic(owner, params): try: objects.NIC.CheckParameterSyntax(params) except errors.ConfigurationError, err: result.append("%s has invalid nicparams: %s" % (owner, err)) def _helper_ipolicy(owner, ipolicy, iscluster): try: objects.InstancePolicy.CheckParameterSyntax(ipolicy, iscluster) except errors.ConfigurationError, err: result.append("%s has invalid instance policy: %s" % (owner, err)) for key, value in ipolicy.items(): if key == constants.ISPECS_MINMAX: for k in range(len(value)): _helper_ispecs(owner, "ipolicy/%s[%s]" % (key, k), value[k]) elif key == constants.ISPECS_STD: _helper(owner, "ipolicy/" + key, value, constants.ISPECS_PARAMETER_TYPES) else: # FIXME: assuming list type if key in constants.IPOLICY_PARAMETERS: exp_type = float # if the value is int, it can be converted into float convertible_types = [int] else: exp_type = list convertible_types = [] # Try to convert from allowed types, if necessary. if any(isinstance(value, ct) for ct in convertible_types): try: value = exp_type(value) ipolicy[key] = value except ValueError: pass if not isinstance(value, exp_type): result.append("%s has invalid instance policy: for %s," " expecting %s, got %s" % (owner, key, exp_type.__name__, type(value))) def _helper_ispecs(owner, parentkey, params): for (key, value) in params.items(): fullkey = "/".join([parentkey, key]) _helper(owner, fullkey, value, constants.ISPECS_PARAMETER_TYPES) # check cluster parameters _helper("cluster", "beparams", cluster.SimpleFillBE({}), constants.BES_PARAMETER_TYPES) _helper("cluster", "nicparams", cluster.SimpleFillNIC({}), constants.NICS_PARAMETER_TYPES) _helper_nic("cluster", cluster.SimpleFillNIC({})) _helper("cluster", "ndparams", cluster.SimpleFillND({}), constants.NDS_PARAMETER_TYPES) _helper_ipolicy("cluster", cluster.ipolicy, True) for disk_template in cluster.diskparams: if disk_template not in constants.DTS_HAVE_ACCESS: continue access = cluster.diskparams[disk_template].get(constants.LDP_ACCESS, constants.DISK_KERNELSPACE) if access not in constants.DISK_VALID_ACCESS_MODES: result.append( "Invalid value of '%s:%s': '%s' (expected one of %s)" % ( disk_template, constants.LDP_ACCESS, access, utils.CommaJoin(constants.DISK_VALID_ACCESS_MODES) ) ) self._VerifyDisks(data, result) # per-instance checks for instance_uuid in data.instances: instance = data.instances[instance_uuid] if instance.uuid != instance_uuid: result.append("instance '%s' is indexed by wrong UUID '%s'" % (instance.name, instance_uuid)) if instance.primary_node not in data.nodes: result.append("instance '%s' has invalid primary node '%s'" % (instance.name, instance.primary_node)) for snode in self._UnlockedGetInstanceSecondaryNodes(instance.uuid): if snode not in data.nodes: result.append("instance '%s' has invalid secondary node '%s'" % (instance.name, snode)) for idx, nic in enumerate(instance.nics): if nic.mac in seen_macs: result.append("instance '%s' has NIC %d mac %s duplicate" % (instance.name, idx, nic.mac)) else: seen_macs.append(nic.mac) if nic.nicparams: filled = cluster.SimpleFillNIC(nic.nicparams) owner = "instance %s nic %d" % (instance.name, idx) _helper(owner, "nicparams", filled, constants.NICS_PARAMETER_TYPES) _helper_nic(owner, filled) # disk template checks if not instance.disk_template in data.cluster.enabled_disk_templates: result.append("instance '%s' uses the disabled disk template '%s'." % (instance.name, instance.disk_template)) # parameter checks if instance.beparams: _helper("instance %s" % instance.name, "beparams", cluster.FillBE(instance), constants.BES_PARAMETER_TYPES) # check that disks exists for disk_uuid in instance.disks: if disk_uuid not in data.disks: result.append("Instance '%s' has invalid disk '%s'" % (instance.name, disk_uuid)) instance_disks = self._UnlockedGetInstanceDisks(instance.uuid) # gather the drbd ports for duplicate checks for (idx, dsk) in enumerate(instance_disks): if dsk.dev_type in constants.DTS_DRBD: tcp_port = dsk.logical_id[2] if tcp_port not in ports: ports[tcp_port] = [] ports[tcp_port].append((instance.name, "drbd disk %s" % idx)) # gather network port reservation net_port = getattr(instance, "network_port", None) if net_port is not None: if net_port not in ports: ports[net_port] = [] ports[net_port].append((instance.name, "network port")) wrong_names = _CheckInstanceDiskIvNames(instance_disks) if wrong_names: tmp = "; ".join(("name of disk %s should be '%s', but is '%s'" % (idx, exp_name, actual_name)) for (idx, exp_name, actual_name) in wrong_names) result.append("Instance '%s' has wrongly named disks: %s" % (instance.name, tmp)) # cluster-wide pool of free ports for free_port in cluster.tcpudp_port_pool: if free_port not in ports: ports[free_port] = [] ports[free_port].append(("cluster", "port marked as free")) # compute tcp/udp duplicate ports keys = ports.keys() keys.sort() for pnum in keys: pdata = ports[pnum] if len(pdata) > 1: txt = utils.CommaJoin(["%s/%s" % val for val in pdata]) result.append("tcp/udp port %s has duplicates: %s" % (pnum, txt)) # highest used tcp port check if keys: if keys[-1] > cluster.highest_used_port: result.append("Highest used port mismatch, saved %s, computed %s" % (cluster.highest_used_port, keys[-1])) if not data.nodes[cluster.master_node].master_candidate: result.append("Master node is not a master candidate") # master candidate checks mc_now, mc_max, _ = self._UnlockedGetMasterCandidateStats() if mc_now < mc_max: result.append("Not enough master candidates: actual %d, target %d" % (mc_now, mc_max)) # node checks for node_uuid, node in data.nodes.items(): if node.uuid != node_uuid: result.append("Node '%s' is indexed by wrong UUID '%s'" % (node.name, node_uuid)) if [node.master_candidate, node.drained, node.offline].count(True) > 1: result.append("Node %s state is invalid: master_candidate=%s," " drain=%s, offline=%s" % (node.name, node.master_candidate, node.drained, node.offline)) if node.group not in data.nodegroups: result.append("Node '%s' has invalid group '%s'" % (node.name, node.group)) else: _helper("node %s" % node.name, "ndparams", cluster.FillND(node, data.nodegroups[node.group]), constants.NDS_PARAMETER_TYPES) used_globals = constants.NDC_GLOBALS.intersection(node.ndparams) if used_globals: result.append("Node '%s' has some global parameters set: %s" % (node.name, utils.CommaJoin(used_globals))) # nodegroups checks nodegroups_names = set() for nodegroup_uuid in data.nodegroups: nodegroup = data.nodegroups[nodegroup_uuid] if nodegroup.uuid != nodegroup_uuid: result.append("node group '%s' (uuid: '%s') indexed by wrong uuid '%s'" % (nodegroup.name, nodegroup.uuid, nodegroup_uuid)) if utils.UUID_RE.match(nodegroup.name.lower()): result.append("node group '%s' (uuid: '%s') has uuid-like name" % (nodegroup.name, nodegroup.uuid)) if nodegroup.name in nodegroups_names: result.append("duplicate node group name '%s'" % nodegroup.name) else: nodegroups_names.add(nodegroup.name) group_name = "group %s" % nodegroup.name _helper_ipolicy(group_name, cluster.SimpleFillIPolicy(nodegroup.ipolicy), False) if nodegroup.ndparams: _helper(group_name, "ndparams", cluster.SimpleFillND(nodegroup.ndparams), constants.NDS_PARAMETER_TYPES) # drbd minors check # FIXME: The check for DRBD map needs to be implemented in WConfd # IP checks default_nicparams = cluster.nicparams[constants.PP_DEFAULT] ips = {} def _AddIpAddress(ip, name): ips.setdefault(ip, []).append(name) _AddIpAddress(cluster.master_ip, "cluster_ip") for node in data.nodes.values(): _AddIpAddress(node.primary_ip, "node:%s/primary" % node.name) if node.secondary_ip != node.primary_ip: _AddIpAddress(node.secondary_ip, "node:%s/secondary" % node.name) for instance in data.instances.values(): for idx, nic in enumerate(instance.nics): if nic.ip is None: continue nicparams = objects.FillDict(default_nicparams, nic.nicparams) nic_mode = nicparams[constants.NIC_MODE] nic_link = nicparams[constants.NIC_LINK] if nic_mode == constants.NIC_MODE_BRIDGED: link = "bridge:%s" % nic_link elif nic_mode == constants.NIC_MODE_ROUTED: link = "route:%s" % nic_link elif nic_mode == constants.NIC_MODE_OVS: link = "ovs:%s" % nic_link else: raise errors.ProgrammerError("NIC mode '%s' not handled" % nic_mode) _AddIpAddress("%s/%s/%s" % (link, nic.ip, nic.network), "instance:%s/nic:%d" % (instance.name, idx)) for ip, owners in ips.items(): if len(owners) > 1: result.append("IP address %s is used by multiple owners: %s" % (ip, utils.CommaJoin(owners))) return result def _UnlockedVerifyConfigAndLog(self, feedback_fn=None): """Verify the configuration and log any errors. The errors get logged as critical errors and also to the feedback function, if given. @param feedback_fn: Callable feedback function @rtype: list @return: a list of error messages; a non-empty list signifies configuration errors """ assert feedback_fn is None or callable(feedback_fn) # Warn on config errors, but don't abort the save - the # configuration has already been modified, and we can't revert; # the best we can do is to warn the user and save as is, leaving # recovery to the user config_errors = self._UnlockedVerifyConfig() if config_errors: errmsg = ("Configuration data is not consistent: %s" % (utils.CommaJoin(config_errors))) logging.critical(errmsg) if feedback_fn: feedback_fn(errmsg) return config_errors @_ConfigSync(shared=1) def VerifyConfig(self): """Verify function. This is just a wrapper over L{_UnlockedVerifyConfig}. @rtype: list @return: a list of error messages; a non-empty list signifies configuration errors """ return self._UnlockedVerifyConfig() @_ConfigSync() def AddTcpUdpPort(self, port): """Adds a new port to the available port pool. @warning: this method does not "flush" the configuration (via L{_WriteConfig}); callers should do that themselves once the configuration is stable """ if not isinstance(port, int): raise errors.ProgrammerError("Invalid type passed for port") self._ConfigData().cluster.tcpudp_port_pool.add(port) @_ConfigSync(shared=1) def GetPortList(self): """Returns a copy of the current port list. """ return self._ConfigData().cluster.tcpudp_port_pool.copy() @_ConfigSync() def AllocatePort(self): """Allocate a port. The port will be taken from the available port pool or from the default port range (and in this case we increase highest_used_port). """ # If there are TCP/IP ports configured, we use them first. if self._ConfigData().cluster.tcpudp_port_pool: port = self._ConfigData().cluster.tcpudp_port_pool.pop() else: port = self._ConfigData().cluster.highest_used_port + 1 if port >= constants.LAST_DRBD_PORT: raise errors.ConfigurationError("The highest used port is greater" " than %s. Aborting." % constants.LAST_DRBD_PORT) self._ConfigData().cluster.highest_used_port = port return port @_ConfigSync() def ComputeDRBDMap(self): """Compute the used DRBD minor/nodes. This is just a wrapper over a call to WConfd. @return: dictionary of node_uuid: dict of minor: instance_uuid; the returned dict will have all the nodes in it (even if with an empty list). """ if self._offline: raise errors.ProgrammerError("Can't call ComputeDRBDMap in offline mode") else: return dict(map(lambda (k, v): (k, dict(v)), self._wconfd.ComputeDRBDMap())) def AllocateDRBDMinor(self, node_uuids, inst_uuid): """Allocate a drbd minor. This is just a wrapper over a call to WConfd. The free minor will be automatically computed from the existing devices. A node can be given multiple times in order to allocate multiple minors. The result is the list of minors, in the same order as the passed nodes. @type inst_uuid: string @param inst_uuid: the instance for which we allocate minors """ assert isinstance(inst_uuid, basestring), \ "Invalid argument '%s' passed to AllocateDRBDMinor" % inst_uuid if self._offline: raise errors.ProgrammerError("Can't call AllocateDRBDMinor" " in offline mode") result = self._wconfd.AllocateDRBDMinor(inst_uuid, node_uuids) logging.debug("Request to allocate drbd minors, input: %s, returning %s", node_uuids, result) return result def _UnlockedReleaseDRBDMinors(self, inst_uuid): """Release temporary drbd minors allocated for a given instance. This is just a wrapper over a call to WConfd. @type inst_uuid: string @param inst_uuid: the instance for which temporary minors should be released """ assert isinstance(inst_uuid, basestring), \ "Invalid argument passed to ReleaseDRBDMinors" # in offline mode we allow the calls to release DRBD minors, # because then nothing can be allocated anyway; # this is useful for testing if not self._offline: self._wconfd.ReleaseDRBDMinors(inst_uuid) @_ConfigSync() def ReleaseDRBDMinors(self, inst_uuid): """Release temporary drbd minors allocated for a given instance. This should be called on the error paths, on the success paths it's automatically called by the ConfigWriter add and update functions. This function is just a wrapper over L{_UnlockedReleaseDRBDMinors}. @type inst_uuid: string @param inst_uuid: the instance for which temporary minors should be released """ self._UnlockedReleaseDRBDMinors(inst_uuid) @_ConfigSync(shared=1) def GetConfigVersion(self): """Get the configuration version. @return: Config version """ return self._ConfigData().version @_ConfigSync(shared=1) def GetClusterName(self): """Get cluster name. @return: Cluster name """ return self._ConfigData().cluster.cluster_name @_ConfigSync(shared=1) def GetMasterNode(self): """Get the UUID of the master node for this cluster. @return: Master node UUID """ return self._ConfigData().cluster.master_node @_ConfigSync(shared=1) def GetMasterNodeName(self): """Get the hostname of the master node for this cluster. @return: Master node hostname """ return self._UnlockedGetNodeName(self._ConfigData().cluster.master_node) @_ConfigSync(shared=1) def GetMasterNodeInfo(self): """Get the master node information for this cluster. @rtype: objects.Node @return: Master node L{objects.Node} object """ return self._UnlockedGetNodeInfo(self._ConfigData().cluster.master_node) @_ConfigSync(shared=1) def GetMasterIP(self): """Get the IP of the master node for this cluster. @return: Master IP """ return self._ConfigData().cluster.master_ip @_ConfigSync(shared=1) def GetMasterNetdev(self): """Get the master network device for this cluster. """ return self._ConfigData().cluster.master_netdev @_ConfigSync(shared=1) def GetMasterNetmask(self): """Get the netmask of the master node for this cluster. """ return self._ConfigData().cluster.master_netmask @_ConfigSync(shared=1) def GetUseExternalMipScript(self): """Get flag representing whether to use the external master IP setup script. """ return self._ConfigData().cluster.use_external_mip_script @_ConfigSync(shared=1) def GetFileStorageDir(self): """Get the file storage dir for this cluster. """ return self._ConfigData().cluster.file_storage_dir @_ConfigSync(shared=1) def GetSharedFileStorageDir(self): """Get the shared file storage dir for this cluster. """ return self._ConfigData().cluster.shared_file_storage_dir @_ConfigSync(shared=1) def GetGlusterStorageDir(self): """Get the Gluster storage dir for this cluster. """ return self._ConfigData().cluster.gluster_storage_dir @_ConfigSync(shared=1) def GetHypervisorType(self): """Get the hypervisor type for this cluster. """ return self._ConfigData().cluster.enabled_hypervisors[0] @_ConfigSync(shared=1) def GetRsaHostKey(self): """Return the rsa hostkey from the config. @rtype: string @return: the rsa hostkey """ return self._ConfigData().cluster.rsahostkeypub @_ConfigSync(shared=1) def GetDsaHostKey(self): """Return the dsa hostkey from the config. @rtype: string @return: the dsa hostkey """ return self._ConfigData().cluster.dsahostkeypub @_ConfigSync(shared=1) def GetDefaultIAllocator(self): """Get the default instance allocator for this cluster. """ return self._ConfigData().cluster.default_iallocator @_ConfigSync(shared=1) def GetDefaultIAllocatorParameters(self): """Get the default instance allocator parameters for this cluster. @rtype: dict @return: dict of iallocator parameters """ return self._ConfigData().cluster.default_iallocator_params @_ConfigSync(shared=1) def GetPrimaryIPFamily(self): """Get cluster primary ip family. @return: primary ip family """ return self._ConfigData().cluster.primary_ip_family @_ConfigSync(shared=1) def GetMasterNetworkParameters(self): """Get network parameters of the master node. @rtype: L{object.MasterNetworkParameters} @return: network parameters of the master node """ cluster = self._ConfigData().cluster result = objects.MasterNetworkParameters( uuid=cluster.master_node, ip=cluster.master_ip, netmask=cluster.master_netmask, netdev=cluster.master_netdev, ip_family=cluster.primary_ip_family) return result @_ConfigSync(shared=1) def GetInstallImage(self): """Get the install image location @rtype: string @return: location of the install image """ return self._ConfigData().cluster.install_image @_ConfigSync() def SetInstallImage(self, install_image): """Set the install image location @type install_image: string @param install_image: location of the install image """ self._ConfigData().cluster.install_image = install_image @_ConfigSync(shared=1) def GetInstanceCommunicationNetwork(self): """Get cluster instance communication network @rtype: string @return: instance communication network, which is the name of the network used for instance communication """ return self._ConfigData().cluster.instance_communication_network @_ConfigSync() def SetInstanceCommunicationNetwork(self, network_name): """Set cluster instance communication network @type network_name: string @param network_name: instance communication network, which is the name of the network used for instance communication """ self._ConfigData().cluster.instance_communication_network = network_name @_ConfigSync(shared=1) def GetZeroingImage(self): """Get the zeroing image location @rtype: string @return: the location of the zeroing image """ return self._config_data.cluster.zeroing_image @_ConfigSync(shared=1) def GetCompressionTools(self): """Get cluster compression tools @rtype: list of string @return: a list of tools that are cleared for use in this cluster for the purpose of compressing data """ return self._ConfigData().cluster.compression_tools @_ConfigSync() def SetCompressionTools(self, tools): """Set cluster compression tools @type tools: list of string @param tools: a list of tools that are cleared for use in this cluster for the purpose of compressing data """ self._ConfigData().cluster.compression_tools = tools @_ConfigSync() def AddNodeGroup(self, group, ec_id, check_uuid=True): """Add a node group to the configuration. This method calls group.UpgradeConfig() to fill any missing attributes according to their default values. @type group: L{objects.NodeGroup} @param group: the NodeGroup object to add @type ec_id: string @param ec_id: unique id for the job to use when creating a missing UUID @type check_uuid: bool @param check_uuid: add an UUID to the group if it doesn't have one or, if it does, ensure that it does not exist in the configuration already """ self._UnlockedAddNodeGroup(group, ec_id, check_uuid) def _UnlockedAddNodeGroup(self, group, ec_id, check_uuid): """Add a node group to the configuration. """ logging.info("Adding node group %s to configuration", group.name) # Some code might need to add a node group with a pre-populated UUID # generated with ConfigWriter.GenerateUniqueID(). We allow them to bypass # the "does this UUID" exist already check. if check_uuid: self._EnsureUUID(group, ec_id) try: existing_uuid = self._UnlockedLookupNodeGroup(group.name) except errors.OpPrereqError: pass else: raise errors.OpPrereqError("Desired group name '%s' already exists as a" " node group (UUID: %s)" % (group.name, existing_uuid), errors.ECODE_EXISTS) group.serial_no = 1 group.ctime = group.mtime = time.time() group.UpgradeConfig() self._ConfigData().nodegroups[group.uuid] = group self._ConfigData().cluster.serial_no += 1 @_ConfigSync() def RemoveNodeGroup(self, group_uuid): """Remove a node group from the configuration. @type group_uuid: string @param group_uuid: the UUID of the node group to remove """ logging.info("Removing node group %s from configuration", group_uuid) if group_uuid not in self._ConfigData().nodegroups: raise errors.ConfigurationError("Unknown node group '%s'" % group_uuid) assert len(self._ConfigData().nodegroups) != 1, \ "Group '%s' is the only group, cannot be removed" % group_uuid del self._ConfigData().nodegroups[group_uuid] self._ConfigData().cluster.serial_no += 1 def _UnlockedLookupNodeGroup(self, target): """Lookup a node group's UUID. @type target: string or None @param target: group name or UUID or None to look for the default @rtype: string @return: nodegroup UUID @raises errors.OpPrereqError: when the target group cannot be found """ if target is None: if len(self._ConfigData().nodegroups) != 1: raise errors.OpPrereqError("More than one node group exists. Target" " group must be specified explicitly.") else: return self._ConfigData().nodegroups.keys()[0] if target in self._ConfigData().nodegroups: return target for nodegroup in self._ConfigData().nodegroups.values(): if nodegroup.name == target: return nodegroup.uuid raise errors.OpPrereqError("Node group '%s' not found" % target, errors.ECODE_NOENT) @_ConfigSync(shared=1) def LookupNodeGroup(self, target): """Lookup a node group's UUID. This function is just a wrapper over L{_UnlockedLookupNodeGroup}. @type target: string or None @param target: group name or UUID or None to look for the default @rtype: string @return: nodegroup UUID """ return self._UnlockedLookupNodeGroup(target) def _UnlockedGetNodeGroup(self, uuid): """Lookup a node group. @type uuid: string @param uuid: group UUID @rtype: L{objects.NodeGroup} or None @return: nodegroup object, or None if not found """ if uuid not in self._ConfigData().nodegroups: return None return self._ConfigData().nodegroups[uuid] @_ConfigSync(shared=1) def GetNodeGroup(self, uuid): """Lookup a node group. @type uuid: string @param uuid: group UUID @rtype: L{objects.NodeGroup} or None @return: nodegroup object, or None if not found """ return self._UnlockedGetNodeGroup(uuid) def _UnlockedGetAllNodeGroupsInfo(self): """Get the configuration of all node groups. """ return dict(self._ConfigData().nodegroups) @_ConfigSync(shared=1) def GetAllNodeGroupsInfo(self): """Get the configuration of all node groups. """ return self._UnlockedGetAllNodeGroupsInfo() @_ConfigSync(shared=1) def GetAllNodeGroupsInfoDict(self): """Get the configuration of all node groups expressed as a dictionary of dictionaries. """ return dict(map(lambda (uuid, ng): (uuid, ng.ToDict()), self._UnlockedGetAllNodeGroupsInfo().items())) @_ConfigSync(shared=1) def GetNodeGroupList(self): """Get a list of node groups. """ return self._ConfigData().nodegroups.keys() @_ConfigSync(shared=1) def GetNodeGroupMembersByNodes(self, nodes): """Get nodes which are member in the same nodegroups as the given nodes. """ ngfn = lambda node_uuid: self._UnlockedGetNodeInfo(node_uuid).group return frozenset(member_uuid for node_uuid in nodes for member_uuid in self._UnlockedGetNodeGroup(ngfn(node_uuid)).members) @_ConfigSync(shared=1) def GetMultiNodeGroupInfo(self, group_uuids): """Get the configuration of multiple node groups. @param group_uuids: List of node group UUIDs @rtype: list @return: List of tuples of (group_uuid, group_info) """ return [(uuid, self._UnlockedGetNodeGroup(uuid)) for uuid in group_uuids] @_ConfigSync() def AddInstance(self, instance, ec_id): """Add an instance to the config. This should be used after creating a new instance. @type instance: L{objects.Instance} @param instance: the instance object """ if not isinstance(instance, objects.Instance): raise errors.ProgrammerError("Invalid type passed to AddInstance") all_macs = self._AllMACs() for nic in instance.nics: if nic.mac in all_macs: raise errors.ConfigurationError("Cannot add instance %s:" " MAC address '%s' already in use." % (instance.name, nic.mac)) self._CheckUniqueUUID(instance, include_temporary=False) instance.serial_no = 1 instance.ctime = instance.mtime = time.time() self._ConfigData().instances[instance.uuid] = instance self._ConfigData().cluster.serial_no += 1 self._UnlockedReleaseDRBDMinors(instance.uuid) # FIXME: After RemoveInstance is moved to WConfd, use its internal # function from TempRes module instead. self._UnlockedCommitTemporaryIps(ec_id) def _EnsureUUID(self, item, ec_id): """Ensures a given object has a valid UUID. @param item: the instance or node to be checked @param ec_id: the execution context id for the uuid reservation """ if not item.uuid: item.uuid = self._GenerateUniqueID(ec_id) else: self._CheckUniqueUUID(item, include_temporary=True) def _CheckUniqueUUID(self, item, include_temporary): """Checks that the UUID of the given object is unique. @param item: the instance or node to be checked @param include_temporary: whether temporarily generated UUID's should be included in the check. If the UUID of the item to be checked is a temporarily generated one, this has to be C{False}. """ if not item.uuid: raise errors.ConfigurationError("'%s' must have an UUID" % (item.name,)) if item.uuid in self._AllIDs(include_temporary=include_temporary): raise errors.ConfigurationError("Cannot add '%s': UUID %s already" " in use" % (item.name, item.uuid)) def _SetInstanceStatus(self, inst_uuid, status, disks_active, admin_state_source): """Set the instance's status to a given value. @rtype: L{objects.Instance} @return: the updated instance object """ if inst_uuid not in self._ConfigData().instances: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) instance = self._ConfigData().instances[inst_uuid] if status is None: status = instance.admin_state if disks_active is None: disks_active = instance.disks_active if admin_state_source is None: admin_state_source = instance.admin_state_source assert status in constants.ADMINST_ALL, \ "Invalid status '%s' passed to SetInstanceStatus" % (status,) if instance.admin_state != status or \ instance.disks_active != disks_active or \ instance.admin_state_source != admin_state_source: instance.admin_state = status instance.disks_active = disks_active instance.admin_state_source = admin_state_source instance.serial_no += 1 instance.mtime = time.time() return instance @_ConfigSync() def MarkInstanceUp(self, inst_uuid): """Mark the instance status to up in the config. This also sets the instance disks active flag. @rtype: L{objects.Instance} @return: the updated instance object """ return self._SetInstanceStatus(inst_uuid, constants.ADMINST_UP, True, constants.ADMIN_SOURCE) @_ConfigSync() def MarkInstanceOffline(self, inst_uuid): """Mark the instance status to down in the config. This also clears the instance disks active flag. @rtype: L{objects.Instance} @return: the updated instance object """ return self._SetInstanceStatus(inst_uuid, constants.ADMINST_OFFLINE, False, constants.ADMIN_SOURCE) @_ConfigSync() def RemoveInstance(self, inst_uuid): """Remove the instance from the configuration. """ if inst_uuid not in self._ConfigData().instances: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) # If a network port has been allocated to the instance, # return it to the pool of free ports. inst = self._ConfigData().instances[inst_uuid] network_port = getattr(inst, "network_port", None) if network_port is not None: self._ConfigData().cluster.tcpudp_port_pool.add(network_port) instance = self._UnlockedGetInstanceInfo(inst_uuid) # FIXME: After RemoveInstance is moved to WConfd, use its internal # function from TempRes module. for nic in instance.nics: if nic.network and nic.ip: # Return all IP addresses to the respective address pools self._UnlockedCommitIp(constants.RELEASE_ACTION, nic.network, nic.ip) del self._ConfigData().instances[inst_uuid] self._ConfigData().cluster.serial_no += 1 @_ConfigSync() def RenameInstance(self, inst_uuid, new_name): """Rename an instance. This needs to be done in ConfigWriter and not by RemoveInstance combined with AddInstance as only we can guarantee an atomic rename. """ if inst_uuid not in self._ConfigData().instances: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) inst = self._ConfigData().instances[inst_uuid] inst.name = new_name instance_disks = self._UnlockedGetInstanceDisks(inst_uuid) for (_, disk) in enumerate(instance_disks): if disk.dev_type in [constants.DT_FILE, constants.DT_SHARED_FILE]: # rename the file paths in logical and physical id file_storage_dir = os.path.dirname(os.path.dirname(disk.logical_id[1])) disk.logical_id = (disk.logical_id[0], utils.PathJoin(file_storage_dir, inst.name, os.path.basename(disk.logical_id[1]))) # Force update of ssconf files self._ConfigData().cluster.serial_no += 1 @_ConfigSync() def MarkInstanceDown(self, inst_uuid): """Mark the status of an instance to down in the configuration. This does not touch the instance disks active flag, as shut down instances can still have active disks. @rtype: L{objects.Instance} @return: the updated instance object """ return self._SetInstanceStatus(inst_uuid, constants.ADMINST_DOWN, None, constants.ADMIN_SOURCE) @_ConfigSync() def MarkInstanceUserDown(self, inst_uuid): """Mark the status of an instance to user down in the configuration. This does not touch the instance disks active flag, as user shut down instances can still have active disks. """ self._SetInstanceStatus(inst_uuid, constants.ADMINST_DOWN, None, constants.USER_SOURCE) @_ConfigSync() def MarkInstanceDisksActive(self, inst_uuid): """Mark the status of instance disks active. @rtype: L{objects.Instance} @return: the updated instance object """ return self._SetInstanceStatus(inst_uuid, None, True, None) @_ConfigSync() def MarkInstanceDisksInactive(self, inst_uuid): """Mark the status of instance disks inactive. @rtype: L{objects.Instance} @return: the updated instance object """ return self._SetInstanceStatus(inst_uuid, None, False, None) def _UnlockedGetInstanceList(self): """Get the list of instances. This function is for internal use, when the config lock is already held. """ return self._ConfigData().instances.keys() @_ConfigSync(shared=1) def GetInstanceList(self): """Get the list of instances. @return: array of instances, ex. ['instance2-uuid', 'instance1-uuid'] """ return self._UnlockedGetInstanceList() def ExpandInstanceName(self, short_name): """Attempt to expand an incomplete instance name. """ # Locking is done in L{ConfigWriter.GetAllInstancesInfo} all_insts = self.GetAllInstancesInfo().values() expanded_name = _MatchNameComponentIgnoreCase( short_name, [inst.name for inst in all_insts]) if expanded_name is not None: # there has to be exactly one instance with that name inst = (filter(lambda n: n.name == expanded_name, all_insts)[0]) return (inst.uuid, inst.name) else: return (None, None) def _UnlockedGetInstanceInfo(self, inst_uuid): """Returns information about an instance. This function is for internal use, when the config lock is already held. """ if inst_uuid not in self._ConfigData().instances: return None return self._ConfigData().instances[inst_uuid] @_ConfigSync(shared=1) def GetInstanceInfo(self, inst_uuid): """Returns information about an instance. It takes the information from the configuration file. Other information of an instance are taken from the live systems. @param inst_uuid: UUID of the instance @rtype: L{objects.Instance} @return: the instance object """ return self._UnlockedGetInstanceInfo(inst_uuid) @_ConfigSync(shared=1) def GetInstanceNodeGroups(self, inst_uuid, primary_only=False): """Returns set of node group UUIDs for instance's nodes. @rtype: frozenset """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if not instance: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) if primary_only: nodes = [instance.primary_node] else: nodes = self._UnlockedGetInstanceNodes(instance.uuid) return frozenset(self._UnlockedGetNodeInfo(node_uuid).group for node_uuid in nodes) @_ConfigSync(shared=1) def GetInstanceNetworks(self, inst_uuid): """Returns set of network UUIDs for instance's nics. @rtype: frozenset """ instance = self._UnlockedGetInstanceInfo(inst_uuid) if not instance: raise errors.ConfigurationError("Unknown instance '%s'" % inst_uuid) networks = set() for nic in instance.nics: if nic.network: networks.add(nic.network) return frozenset(networks) @_ConfigSync(shared=1) def GetMultiInstanceInfo(self, inst_uuids): """Get the configuration of multiple instances. @param inst_uuids: list of instance UUIDs @rtype: list @return: list of tuples (instance UUID, instance_info), where instance_info is what would GetInstanceInfo return for the node, while keeping the original order """ return [(uuid, self._UnlockedGetInstanceInfo(uuid)) for uuid in inst_uuids] @_ConfigSync(shared=1) def GetMultiInstanceInfoByName(self, inst_names): """Get the configuration of multiple instances. @param inst_names: list of instance names @rtype: list @return: list of tuples (instance, instance_info), where instance_info is what would GetInstanceInfo return for the node, while keeping the original order """ result = [] for name in inst_names: instance = self._UnlockedGetInstanceInfoByName(name) result.append((instance.uuid, instance)) return result @_ConfigSync(shared=1) def GetAllInstancesInfo(self): """Get the configuration of all instances. @rtype: dict @return: dict of (instance, instance_info), where instance_info is what would GetInstanceInfo return for the node """ return self._UnlockedGetAllInstancesInfo() def _UnlockedGetAllInstancesInfo(self): my_dict = dict([(inst_uuid, self._UnlockedGetInstanceInfo(inst_uuid)) for inst_uuid in self._UnlockedGetInstanceList()]) return my_dict @_ConfigSync(shared=1) def GetInstancesInfoByFilter(self, filter_fn): """Get instance configuration with a filter. @type filter_fn: callable @param filter_fn: Filter function receiving instance object as parameter, returning boolean. Important: this function is called while the configuration locks is held. It must not do any complex work or call functions potentially leading to a deadlock. Ideally it doesn't call any other functions and just compares instance attributes. """ return dict((uuid, inst) for (uuid, inst) in self._ConfigData().instances.items() if filter_fn(inst)) @_ConfigSync(shared=1) def GetInstanceInfoByName(self, inst_name): """Get the L{objects.Instance} object for a named instance. @param inst_name: name of the instance to get information for @type inst_name: string @return: the corresponding L{objects.Instance} instance or None if no information is available """ return self._UnlockedGetInstanceInfoByName(inst_name) def _UnlockedGetInstanceInfoByName(self, inst_name): for inst in self._UnlockedGetAllInstancesInfo().values(): if inst.name == inst_name: return inst return None def _UnlockedGetInstanceName(self, inst_uuid): inst_info = self._UnlockedGetInstanceInfo(inst_uuid) if inst_info is None: raise errors.OpExecError("Unknown instance: %s" % inst_uuid) return inst_info.name @_ConfigSync(shared=1) def GetInstanceName(self, inst_uuid): """Gets the instance name for the passed instance. @param inst_uuid: instance UUID to get name for @type inst_uuid: string @rtype: string @return: instance name """ return self._UnlockedGetInstanceName(inst_uuid) @_ConfigSync(shared=1) def GetInstanceNames(self, inst_uuids): """Gets the instance names for the passed list of nodes. @param inst_uuids: list of instance UUIDs to get names for @type inst_uuids: list of strings @rtype: list of strings @return: list of instance names """ return self._UnlockedGetInstanceNames(inst_uuids) @_ConfigSync() def SetInstancePrimaryNode(self, inst_uuid, target_node_uuid): """Sets the primary node of an existing instance @param inst_uuid: instance UUID @type inst_uuid: string @param target_node_uuid: the new primary node UUID @type target_node_uuid: string """ self._UnlockedGetInstanceInfo(inst_uuid).primary_node = target_node_uuid @_ConfigSync() def SetDiskNodes(self, disk_uuid, nodes): """Sets the nodes of an existing disk @param disk_uuid: disk UUID @type disk_uuid: string @param nodes: the new nodes for the disk @type nodes: list of node uuids """ self._UnlockedGetDiskInfo(disk_uuid).nodes = nodes def _UnlockedGetInstanceNames(self, inst_uuids): return [self._UnlockedGetInstanceName(uuid) for uuid in inst_uuids] def _UnlockedAddNode(self, node, ec_id): """Add a node to the configuration. @type node: L{objects.Node} @param node: a Node instance """ logging.info("Adding node %s to configuration", node.name) self._EnsureUUID(node, ec_id) node.serial_no = 1 node.ctime = node.mtime = time.time() self._UnlockedAddNodeToGroup(node.uuid, node.group) assert node.uuid in self._ConfigData().nodegroups[node.group].members self._ConfigData().nodes[node.uuid] = node self._ConfigData().cluster.serial_no += 1 @_ConfigSync() def AddNode(self, node, ec_id): """Add a node to the configuration. @type node: L{objects.Node} @param node: a Node instance """ self._UnlockedAddNode(node, ec_id) @_ConfigSync() def RemoveNode(self, node_uuid): """Remove a node from the configuration. """ logging.info("Removing node %s from configuration", node_uuid) if node_uuid not in self._ConfigData().nodes: raise errors.ConfigurationError("Unknown node '%s'" % node_uuid) self._UnlockedRemoveNodeFromGroup(self._ConfigData().nodes[node_uuid]) del self._ConfigData().nodes[node_uuid] self._ConfigData().cluster.serial_no += 1 def ExpandNodeName(self, short_name): """Attempt to expand an incomplete node name into a node UUID. """ # Locking is done in L{ConfigWriter.GetAllNodesInfo} all_nodes = self.GetAllNodesInfo().values() expanded_name = _MatchNameComponentIgnoreCase( short_name, [node.name for node in all_nodes]) if expanded_name is not None: # there has to be exactly one node with that name node = (filter(lambda n: n.name == expanded_name, all_nodes)[0]) return (node.uuid, node.name) else: return (None, None) def _UnlockedGetNodeInfo(self, node_uuid): """Get the configuration of a node, as stored in the config. This function is for internal use, when the config lock is already held. @param node_uuid: the node UUID @rtype: L{objects.Node} @return: the node object """ if node_uuid not in self._ConfigData().nodes: return None return self._ConfigData().nodes[node_uuid] @_ConfigSync(shared=1) def GetNodeInfo(self, node_uuid): """Get the configuration of a node, as stored in the config. This is just a locked wrapper over L{_UnlockedGetNodeInfo}. @param node_uuid: the node UUID @rtype: L{objects.Node} @return: the node object """ return self._UnlockedGetNodeInfo(node_uuid) @_ConfigSync(shared=1) def GetNodeInstances(self, node_uuid): """Get the instances of a node, as stored in the config. @param node_uuid: the node UUID @rtype: (list, list) @return: a tuple with two lists: the primary and the secondary instances """ pri = [] sec = [] for inst in self._ConfigData().instances.values(): if inst.primary_node == node_uuid: pri.append(inst.uuid) if node_uuid in self._UnlockedGetInstanceSecondaryNodes(inst.uuid): sec.append(inst.uuid) return (pri, sec) @_ConfigSync(shared=1) def GetNodeGroupInstances(self, uuid, primary_only=False): """Get the instances of a node group. @param uuid: Node group UUID @param primary_only: Whether to only consider primary nodes @rtype: frozenset @return: List of instance UUIDs in node group """ if primary_only: nodes_fn = lambda inst: [inst.primary_node] else: nodes_fn = lambda inst: self._UnlockedGetInstanceNodes(inst.uuid) return frozenset(inst.uuid for inst in self._ConfigData().instances.values() for node_uuid in nodes_fn(inst) if self._UnlockedGetNodeInfo(node_uuid).group == uuid) def _UnlockedGetHvparamsString(self, hvname): """Return the string representation of the list of hyervisor parameters of the given hypervisor. @see: C{GetHvparams} """ result = "" hvparams = self._ConfigData().cluster.hvparams[hvname] for key in hvparams: result += "%s=%s\n" % (key, hvparams[key]) return result @_ConfigSync(shared=1) def GetHvparamsString(self, hvname): """Return the hypervisor parameters of the given hypervisor. @type hvname: string @param hvname: name of a hypervisor @rtype: string @return: string containing key-value-pairs, one pair on each line; format: KEY=VALUE """ return self._UnlockedGetHvparamsString(hvname) def _UnlockedGetNodeList(self): """Return the list of nodes which are in the configuration. This function is for internal use, when the config lock is already held. @rtype: list """ return self._ConfigData().nodes.keys() @_ConfigSync(shared=1) def GetNodeList(self): """Return the list of nodes which are in the configuration. """ return self._UnlockedGetNodeList() def _UnlockedGetOnlineNodeList(self): """Return the list of nodes which are online. """ all_nodes = [self._UnlockedGetNodeInfo(node) for node in self._UnlockedGetNodeList()] return [node.uuid for node in all_nodes if not node.offline] @_ConfigSync(shared=1) def GetOnlineNodeList(self): """Return the list of nodes which are online. """ return self._UnlockedGetOnlineNodeList() @_ConfigSync(shared=1) def GetVmCapableNodeList(self): """Return the list of nodes which are not vm capable. """ all_nodes = [self._UnlockedGetNodeInfo(node) for node in self._UnlockedGetNodeList()] return [node.uuid for node in all_nodes if node.vm_capable] @_ConfigSync(shared=1) def GetNonVmCapableNodeList(self): """Return the list of nodes' uuids which are not vm capable. """ all_nodes = [self._UnlockedGetNodeInfo(node) for node in self._UnlockedGetNodeList()] return [node.uuid for node in all_nodes if not node.vm_capable] @_ConfigSync(shared=1) def GetNonVmCapableNodeNameList(self): """Return the list of nodes' names which are not vm capable. """ all_nodes = [self._UnlockedGetNodeInfo(node) for node in self._UnlockedGetNodeList()] return [node.name for node in all_nodes if not node.vm_capable] @_ConfigSync(shared=1) def GetMultiNodeInfo(self, node_uuids): """Get the configuration of multiple nodes. @param node_uuids: list of node UUIDs @rtype: list @return: list of tuples of (node, node_info), where node_info is what would GetNodeInfo return for the node, in the original order """ return [(uuid, self._UnlockedGetNodeInfo(uuid)) for uuid in node_uuids] def _UnlockedGetAllNodesInfo(self): """Gets configuration of all nodes. @note: See L{GetAllNodesInfo} """ return dict([(node_uuid, self._UnlockedGetNodeInfo(node_uuid)) for node_uuid in self._UnlockedGetNodeList()]) @_ConfigSync(shared=1) def GetAllNodesInfo(self): """Get the configuration of all nodes. @rtype: dict @return: dict of (node, node_info), where node_info is what would GetNodeInfo return for the node """ return self._UnlockedGetAllNodesInfo() def _UnlockedGetNodeInfoByName(self, node_name): for node in self._UnlockedGetAllNodesInfo().values(): if node.name == node_name: return node return None @_ConfigSync(shared=1) def GetNodeInfoByName(self, node_name): """Get the L{objects.Node} object for a named node. @param node_name: name of the node to get information for @type node_name: string @return: the corresponding L{objects.Node} instance or None if no information is available """ return self._UnlockedGetNodeInfoByName(node_name) @_ConfigSync(shared=1) def GetNodeGroupInfoByName(self, nodegroup_name): """Get the L{objects.NodeGroup} object for a named node group. @param nodegroup_name: name of the node group to get information for @type nodegroup_name: string @return: the corresponding L{objects.NodeGroup} instance or None if no information is available """ for nodegroup in self._UnlockedGetAllNodeGroupsInfo().values(): if nodegroup.name == nodegroup_name: return nodegroup return None def _UnlockedGetNodeName(self, node_spec): if isinstance(node_spec, objects.Node): return node_spec.name elif isinstance(node_spec, basestring): node_info = self._UnlockedGetNodeInfo(node_spec) if node_info is None: raise errors.OpExecError("Unknown node: %s" % node_spec) return node_info.name else: raise errors.ProgrammerError("Can't handle node spec '%s'" % node_spec) @_ConfigSync(shared=1) def GetNodeName(self, node_spec): """Gets the node name for the passed node. @param node_spec: node to get names for @type node_spec: either node UUID or a L{objects.Node} object @rtype: string @return: node name """ return self._UnlockedGetNodeName(node_spec) def _UnlockedGetNodeNames(self, node_specs): return [self._UnlockedGetNodeName(node_spec) for node_spec in node_specs] @_ConfigSync(shared=1) def GetNodeNames(self, node_specs): """Gets the node names for the passed list of nodes. @param node_specs: list of nodes to get names for @type node_specs: list of either node UUIDs or L{objects.Node} objects @rtype: list of strings @return: list of node names """ return self._UnlockedGetNodeNames(node_specs) @_ConfigSync(shared=1) def GetNodeGroupsFromNodes(self, node_uuids): """Returns groups for a list of nodes. @type node_uuids: list of string @param node_uuids: List of node UUIDs @rtype: frozenset """ return frozenset(self._UnlockedGetNodeInfo(uuid).group for uuid in node_uuids) def _UnlockedGetMasterCandidateUuids(self): """Get the list of UUIDs of master candidates. @rtype: list of strings @return: list of UUIDs of all master candidates. """ return [node.uuid for node in self._ConfigData().nodes.values() if node.master_candidate] @_ConfigSync(shared=1) def GetMasterCandidateUuids(self): """Get the list of UUIDs of master candidates. @rtype: list of strings @return: list of UUIDs of all master candidates. """ return self._UnlockedGetMasterCandidateUuids() def _UnlockedGetMasterCandidateStats(self, exceptions=None): """Get the number of current and maximum desired and possible candidates. @type exceptions: list @param exceptions: if passed, list of nodes that should be ignored @rtype: tuple @return: tuple of (current, desired and possible, possible) """ mc_now = mc_should = mc_max = 0 for node in self._ConfigData().nodes.values(): if exceptions and node.uuid in exceptions: continue if not (node.offline or node.drained) and node.master_capable: mc_max += 1 if node.master_candidate: mc_now += 1 mc_should = min(mc_max, self._ConfigData().cluster.candidate_pool_size) return (mc_now, mc_should, mc_max) @_ConfigSync(shared=1) def GetMasterCandidateStats(self, exceptions=None): """Get the number of current and maximum possible candidates. This is just a wrapper over L{_UnlockedGetMasterCandidateStats}. @type exceptions: list @param exceptions: if passed, list of nodes that should be ignored @rtype: tuple @return: tuple of (current, max) """ return self._UnlockedGetMasterCandidateStats(exceptions) @_ConfigSync() def MaintainCandidatePool(self, exception_node_uuids): """Try to grow the candidate pool to the desired size. @type exception_node_uuids: list @param exception_node_uuids: if passed, list of nodes that should be ignored @rtype: list @return: list with the adjusted nodes (L{objects.Node} instances) """ mc_now, mc_max, _ = self._UnlockedGetMasterCandidateStats( exception_node_uuids) mod_list = [] if mc_now < mc_max: node_list = self._ConfigData().nodes.keys() random.shuffle(node_list) for uuid in node_list: if mc_now >= mc_max: break node = self._ConfigData().nodes[uuid] if (node.master_candidate or node.offline or node.drained or node.uuid in exception_node_uuids or not node.master_capable): continue mod_list.append(node) node.master_candidate = True node.serial_no += 1 mc_now += 1 if mc_now != mc_max: # this should not happen logging.warning("Warning: MaintainCandidatePool didn't manage to" " fill the candidate pool (%d/%d)", mc_now, mc_max) if mod_list: self._ConfigData().cluster.serial_no += 1 return mod_list def _UnlockedAddNodeToGroup(self, node_uuid, nodegroup_uuid): """Add a given node to the specified group. """ if nodegroup_uuid not in self._ConfigData().nodegroups: # This can happen if a node group gets deleted between its lookup and # when we're adding the first node to it, since we don't keep a lock in # the meantime. It's ok though, as we'll fail cleanly if the node group # is not found anymore. raise errors.OpExecError("Unknown node group: %s" % nodegroup_uuid) if node_uuid not in self._ConfigData().nodegroups[nodegroup_uuid].members: self._ConfigData().nodegroups[nodegroup_uuid].members.append(node_uuid) def _UnlockedRemoveNodeFromGroup(self, node): """Remove a given node from its group. """ nodegroup = node.group if nodegroup not in self._ConfigData().nodegroups: logging.warning("Warning: node '%s' has unknown node group '%s'" " (while being removed from it)", node.uuid, nodegroup) nodegroup_obj = self._ConfigData().nodegroups[nodegroup] if node.uuid not in nodegroup_obj.members: logging.warning("Warning: node '%s' not a member of its node group '%s'" " (while being removed from it)", node.uuid, nodegroup) else: nodegroup_obj.members.remove(node.uuid) @_ConfigSync() def AssignGroupNodes(self, mods): """Changes the group of a number of nodes. @type mods: list of tuples; (node name, new group UUID) @param mods: Node membership modifications """ groups = self._ConfigData().nodegroups nodes = self._ConfigData().nodes resmod = [] # Try to resolve UUIDs first for (node_uuid, new_group_uuid) in mods: try: node = nodes[node_uuid] except KeyError: raise errors.ConfigurationError("Unable to find node '%s'" % node_uuid) if node.group == new_group_uuid: # Node is being assigned to its current group logging.debug("Node '%s' was assigned to its current group (%s)", node_uuid, node.group) continue # Try to find current group of node try: old_group = groups[node.group] except KeyError: raise errors.ConfigurationError("Unable to find old group '%s'" % node.group) # Try to find new group for node try: new_group = groups[new_group_uuid] except KeyError: raise errors.ConfigurationError("Unable to find new group '%s'" % new_group_uuid) assert node.uuid in old_group.members, \ ("Inconsistent configuration: node '%s' not listed in members for its" " old group '%s'" % (node.uuid, old_group.uuid)) assert node.uuid not in new_group.members, \ ("Inconsistent configuration: node '%s' already listed in members for" " its new group '%s'" % (node.uuid, new_group.uuid)) resmod.append((node, old_group, new_group)) # Apply changes for (node, old_group, new_group) in resmod: assert node.uuid != new_group.uuid and old_group.uuid != new_group.uuid, \ "Assigning to current group is not possible" node.group = new_group.uuid # Update members of involved groups if node.uuid in old_group.members: old_group.members.remove(node.uuid) if node.uuid not in new_group.members: new_group.members.append(node.uuid) # Update timestamps and serials (only once per node/group object) now = time.time() for obj in frozenset(itertools.chain(*resmod)): # pylint: disable=W0142 obj.serial_no += 1 obj.mtime = now # Force ssconf update self._ConfigData().cluster.serial_no += 1 def _BumpSerialNo(self): """Bump up the serial number of the config. """ self._ConfigData().serial_no += 1 self._ConfigData().mtime = time.time() def _AllUUIDObjects(self): """Returns all objects with uuid attributes. """ return (self._ConfigData().instances.values() + self._ConfigData().nodes.values() + self._ConfigData().nodegroups.values() + self._ConfigData().networks.values() + self._ConfigData().disks.values() + self._AllNICs() + [self._ConfigData().cluster]) def GetConfigManager(self, shared=False): """Returns a ConfigManager, which is suitable to perform a synchronized block of configuration operations. WARNING: This blocks all other configuration operations, so anything that runs inside the block should be very fast, preferably not using any IO. """ return ConfigManager(self, shared) def _AddLockCount(self, count): self._lock_count += count return self._lock_count def _LockCount(self): return self._lock_count def _OpenConfig(self, shared): """Read the config data from WConfd or disk. """ if self._AddLockCount(1) > 1: if self._lock_current_shared and not shared: self._AddLockCount(-1) raise errors.ConfigurationError("Can't request an exclusive" " configuration lock while holding" " shared") else: return # we already have the lock, do nothing else: self._lock_current_shared = shared # Read the configuration data. If offline, read the file directly. # If online, call WConfd. if self._offline: try: raw_data = utils.ReadFile(self._cfg_file) data_dict = serializer.Load(raw_data) # Make sure the configuration has the right version _ValidateConfig(data_dict) data = objects.ConfigData.FromDict(data_dict) except errors.ConfigVersionMismatch: raise except Exception, err: raise errors.ConfigurationError(err) self._cfg_id = utils.GetFileID(path=self._cfg_file) if (not hasattr(data, "cluster") or not hasattr(data.cluster, "rsahostkeypub")): raise errors.ConfigurationError("Incomplete configuration" " (missing cluster.rsahostkeypub)") if not data.cluster.master_node in data.nodes: msg = ("The configuration denotes node %s as master, but does not" " contain information about this node" % data.cluster.master_node) raise errors.ConfigurationError(msg) master_info = data.nodes[data.cluster.master_node] if master_info.name != self._my_hostname and not self._accept_foreign: msg = ("The configuration denotes node %s as master, while my" " hostname is %s; opening a foreign configuration is only" " possible in accept_foreign mode" % (master_info.name, self._my_hostname)) raise errors.ConfigurationError(msg) self._SetConfigData(data) # Upgrade configuration if needed self._UpgradeConfig(saveafter=True) else: if shared: if self._config_data is None: logging.debug("Requesting config, as I have no up-to-date copy") dict_data = self._wconfd.ReadConfig() else: logging.debug("My config copy is up to date.") dict_data = None else: # poll until we acquire the lock while True: dict_data = \ self._wconfd.LockConfig(self._GetWConfdContext(), bool(shared)) logging.debug("Received config from WConfd.LockConfig [shared=%s]", bool(shared)) if dict_data is not None: break time.sleep(random.random()) try: if dict_data is not None: self._SetConfigData(objects.ConfigData.FromDict(dict_data)) except Exception, err: raise errors.ConfigurationError(err) # Transitional fix until ConfigWriter is completely rewritten into # Haskell self._UpgradeConfig() def _CloseConfig(self, save): """Release resources relating the config data. """ if self._AddLockCount(-1) > 0: return # we still have the lock, do nothing if save: try: logging.debug("Writing configuration and unlocking it") self._WriteConfig(releaselock=True) except Exception, err: logging.critical("Can't write the configuration: %s", str(err)) raise elif not self._offline: logging.debug("Unlocking configuration without writing") self._wconfd.UnlockConfig(self._GetWConfdContext()) # TODO: To WConfd def _UpgradeConfig(self, saveafter=False): """Run any upgrade steps. This method performs both in-object upgrades and also update some data elements that need uniqueness across the whole configuration or interact with other objects. @warning: if 'saveafter' is 'True', this function will call L{_WriteConfig()} so it needs to be called only from a "safe" place. """ # Keep a copy of the persistent part of _config_data to check for changes # Serialization doesn't guarantee order in dictionaries oldconf = copy.deepcopy(self._ConfigData().ToDict()) # In-object upgrades self._ConfigData().UpgradeConfig() for item in self._AllUUIDObjects(): if item.uuid is None: item.uuid = self._GenerateUniqueID(_UPGRADE_CONFIG_JID) if not self._ConfigData().nodegroups: default_nodegroup_name = constants.INITIAL_NODE_GROUP_NAME default_nodegroup = objects.NodeGroup(name=default_nodegroup_name, members=[]) self._UnlockedAddNodeGroup(default_nodegroup, _UPGRADE_CONFIG_JID, True) for node in self._ConfigData().nodes.values(): if not node.group: node.group = self._UnlockedLookupNodeGroup(None) # This is technically *not* an upgrade, but needs to be done both when # nodegroups are being added, and upon normally loading the config, # because the members list of a node group is discarded upon # serializing/deserializing the object. self._UnlockedAddNodeToGroup(node.uuid, node.group) modified = (oldconf != self._ConfigData().ToDict()) if modified and saveafter: self._WriteConfig() self._UnlockedDropECReservations(_UPGRADE_CONFIG_JID) else: if self._offline: self._UnlockedVerifyConfigAndLog() def _WriteConfig(self, destination=None, releaselock=False): """Write the configuration data to persistent storage. """ if destination is None: destination = self._cfg_file # Save the configuration data. If offline, write the file directly. # If online, call WConfd. if self._offline: self._BumpSerialNo() txt = serializer.DumpJson( self._ConfigData().ToDict(_with_private=True), private_encoder=serializer.EncodeWithPrivateFields ) getents = self._getents() try: fd = utils.SafeWriteFile(destination, self._cfg_id, data=txt, close=False, gid=getents.confd_gid, mode=0640) except errors.LockError: raise errors.ConfigurationError("The configuration file has been" " modified since the last write, cannot" " update") try: self._cfg_id = utils.GetFileID(fd=fd) finally: os.close(fd) else: try: if releaselock: self._wconfd.WriteConfigAndUnlock(self._GetWConfdContext(), self._ConfigData().ToDict()) else: self._wconfd.WriteConfig(self._GetWConfdContext(), self._ConfigData().ToDict()) except errors.LockError: raise errors.ConfigurationError("The configuration file has been" " modified since the last write, cannot" " update") self.write_count += 1 def _GetAllHvparamsStrings(self, hypervisors): """Get the hvparams of all given hypervisors from the config. @type hypervisors: list of string @param hypervisors: list of hypervisor names @rtype: dict of strings @returns: dictionary mapping the hypervisor name to a string representation of the hypervisor's hvparams """ hvparams = {} for hv in hypervisors: hvparams[hv] = self._UnlockedGetHvparamsString(hv) return hvparams @staticmethod def _ExtendByAllHvparamsStrings(ssconf_values, all_hvparams): """Extends the ssconf_values dictionary by hvparams. @type ssconf_values: dict of strings @param ssconf_values: dictionary mapping ssconf_keys to strings representing the content of ssconf files @type all_hvparams: dict of strings @param all_hvparams: dictionary mapping hypervisor names to a string representation of their hvparams @rtype: same as ssconf_values @returns: the ssconf_values dictionary extended by hvparams """ for hv in all_hvparams: ssconf_key = constants.SS_HVPARAMS_PREF + hv ssconf_values[ssconf_key] = all_hvparams[hv] return ssconf_values def _UnlockedGetSsconfValues(self): """Return the values needed by ssconf. @rtype: dict @return: a dictionary with keys the ssconf names and values their associated value """ fn = "\n".join instance_names = utils.NiceSort( [inst.name for inst in self._UnlockedGetAllInstancesInfo().values()]) node_infos = self._UnlockedGetAllNodesInfo().values() node_names = [node.name for node in node_infos] node_pri_ips = ["%s %s" % (ninfo.name, ninfo.primary_ip) for ninfo in node_infos] node_snd_ips = ["%s %s" % (ninfo.name, ninfo.secondary_ip) for ninfo in node_infos] node_vm_capable = ["%s=%s" % (ninfo.name, str(ninfo.vm_capable)) for ninfo in node_infos] instance_data = fn(instance_names) off_data = fn(node.name for node in node_infos if node.offline) on_data = fn(node.name for node in node_infos if not node.offline) mc_data = fn(node.name for node in node_infos if node.master_candidate) mc_ips_data = fn(node.primary_ip for node in node_infos if node.master_candidate) node_data = fn(node_names) node_pri_ips_data = fn(node_pri_ips) node_snd_ips_data = fn(node_snd_ips) node_vm_capable_data = fn(node_vm_capable) cluster = self._ConfigData().cluster cluster_tags = fn(cluster.GetTags()) master_candidates_certs = fn("%s=%s" % (mc_uuid, mc_cert) for mc_uuid, mc_cert in cluster.candidate_certs.items()) hypervisor_list = fn(cluster.enabled_hypervisors) all_hvparams = self._GetAllHvparamsStrings(constants.HYPER_TYPES) uid_pool = uidpool.FormatUidPool(cluster.uid_pool, separator="\n") nodegroups = ["%s %s" % (nodegroup.uuid, nodegroup.name) for nodegroup in self._ConfigData().nodegroups.values()] nodegroups_data = fn(utils.NiceSort(nodegroups)) networks = ["%s %s" % (net.uuid, net.name) for net in self._ConfigData().networks.values()] networks_data = fn(utils.NiceSort(networks)) ssconf_values = { constants.SS_CLUSTER_NAME: cluster.cluster_name, constants.SS_CLUSTER_TAGS: cluster_tags, constants.SS_FILE_STORAGE_DIR: cluster.file_storage_dir, constants.SS_SHARED_FILE_STORAGE_DIR: cluster.shared_file_storage_dir, constants.SS_GLUSTER_STORAGE_DIR: cluster.gluster_storage_dir, constants.SS_MASTER_CANDIDATES: mc_data, constants.SS_MASTER_CANDIDATES_IPS: mc_ips_data, constants.SS_MASTER_CANDIDATES_CERTS: master_candidates_certs, constants.SS_MASTER_IP: cluster.master_ip, constants.SS_MASTER_NETDEV: cluster.master_netdev, constants.SS_MASTER_NETMASK: str(cluster.master_netmask), constants.SS_MASTER_NODE: self._UnlockedGetNodeName(cluster.master_node), constants.SS_NODE_LIST: node_data, constants.SS_NODE_PRIMARY_IPS: node_pri_ips_data, constants.SS_NODE_SECONDARY_IPS: node_snd_ips_data, constants.SS_NODE_VM_CAPABLE: node_vm_capable_data, constants.SS_OFFLINE_NODES: off_data, constants.SS_ONLINE_NODES: on_data, constants.SS_PRIMARY_IP_FAMILY: str(cluster.primary_ip_family), constants.SS_INSTANCE_LIST: instance_data, constants.SS_RELEASE_VERSION: constants.RELEASE_VERSION, constants.SS_HYPERVISOR_LIST: hypervisor_list, constants.SS_MAINTAIN_NODE_HEALTH: str(cluster.maintain_node_health), constants.SS_UID_POOL: uid_pool, constants.SS_NODEGROUPS: nodegroups_data, constants.SS_NETWORKS: networks_data, constants.SS_ENABLED_USER_SHUTDOWN: str(cluster.enabled_user_shutdown), } ssconf_values = self._ExtendByAllHvparamsStrings(ssconf_values, all_hvparams) bad_values = [(k, v) for k, v in ssconf_values.items() if not isinstance(v, (str, basestring))] if bad_values: err = utils.CommaJoin("%s=%s" % (k, v) for k, v in bad_values) raise errors.ConfigurationError("Some ssconf key(s) have non-string" " values: %s" % err) return ssconf_values @_ConfigSync(shared=1) def GetSsconfValues(self): """Wrapper using lock around _UnlockedGetSsconf(). """ return self._UnlockedGetSsconfValues() @_ConfigSync(shared=1) def GetVGName(self): """Return the volume group name. """ return self._ConfigData().cluster.volume_group_name @_ConfigSync() def SetVGName(self, vg_name): """Set the volume group name. """ self._ConfigData().cluster.volume_group_name = vg_name self._ConfigData().cluster.serial_no += 1 @_ConfigSync(shared=1) def GetDRBDHelper(self): """Return DRBD usermode helper. """ return self._ConfigData().cluster.drbd_usermode_helper @_ConfigSync() def SetDRBDHelper(self, drbd_helper): """Set DRBD usermode helper. """ self._ConfigData().cluster.drbd_usermode_helper = drbd_helper self._ConfigData().cluster.serial_no += 1 @_ConfigSync(shared=1) def GetMACPrefix(self): """Return the mac prefix. """ return self._ConfigData().cluster.mac_prefix @_ConfigSync(shared=1) def GetClusterInfo(self): """Returns information about the cluster @rtype: L{objects.Cluster} @return: the cluster object """ return self._ConfigData().cluster @_ConfigSync(shared=1) def HasAnyDiskOfType(self, dev_type): """Check if in there is at disk of the given type in the configuration. """ return self._ConfigData().HasAnyDiskOfType(dev_type) @_ConfigSync(shared=1) def GetDetachedConfig(self): """Returns a detached version of a ConfigManager, which represents a read-only snapshot of the configuration at this particular time. """ return DetachedConfig(self._ConfigData()) @_ConfigSync() def Update(self, target, feedback_fn, ec_id=None): """Notify function to be called after updates. This function must be called when an object (as returned by GetInstanceInfo, GetNodeInfo, GetCluster) has been updated and the caller wants the modifications saved to the backing store. Note that all modified objects will be saved, but the target argument is the one the caller wants to ensure that it's saved. @param target: an instance of either L{objects.Cluster}, L{objects.Node} or L{objects.Instance} which is existing in the cluster @param feedback_fn: Callable feedback function """ if self._ConfigData() is None: raise errors.ProgrammerError("Configuration file not read," " cannot save.") def check_serial(target, current): if current is None: raise errors.ConfigurationError("Configuration object unknown") elif current.serial_no != target.serial_no: raise errors.ConfigurationError("Configuration object updated since" " it has been read: %d != %d", current.serial_no, target.serial_no) def replace_in(target, tdict): check_serial(target, tdict.get(target.uuid)) tdict[target.uuid] = target update_serial = False if isinstance(target, objects.Cluster): check_serial(target, self._ConfigData().cluster) self._ConfigData().cluster = target elif isinstance(target, objects.Node): replace_in(target, self._ConfigData().nodes) update_serial = True elif isinstance(target, objects.Instance): replace_in(target, self._ConfigData().instances) elif isinstance(target, objects.NodeGroup): replace_in(target, self._ConfigData().nodegroups) elif isinstance(target, objects.Network): replace_in(target, self._ConfigData().networks) elif isinstance(target, objects.Disk): replace_in(target, self._ConfigData().disks) else: raise errors.ProgrammerError("Invalid object type (%s) passed to" " ConfigWriter.Update" % type(target)) target.serial_no += 1 target.mtime = now = time.time() if update_serial: # for node updates, we need to increase the cluster serial too self._ConfigData().cluster.serial_no += 1 self._ConfigData().cluster.mtime = now if isinstance(target, objects.Instance): self._UnlockedReleaseDRBDMinors(target.uuid) if ec_id is not None: # Commit all ips reserved by OpInstanceSetParams and OpGroupSetParams # FIXME: After RemoveInstance is moved to WConfd, use its internal # functions from TempRes module. self._UnlockedCommitTemporaryIps(ec_id) # Just verify the configuration with our feedback function. # It will get written automatically by the decorator. self._UnlockedVerifyConfigAndLog(feedback_fn=feedback_fn) def _UnlockedDropECReservations(self, _ec_id): """Drop per-execution-context reservations """ # FIXME: Remove the following two lines after all reservations are moved to # wconfd. for rm in self._all_rms: rm.DropECReservations(_ec_id) if not self._offline: self._wconfd.DropAllReservations(self._GetWConfdContext()) def DropECReservations(self, ec_id): self._UnlockedDropECReservations(ec_id) @_ConfigSync(shared=1) def GetAllNetworksInfo(self): """Get configuration info of all the networks. """ return dict(self._ConfigData().networks) def _UnlockedGetNetworkList(self): """Get the list of networks. This function is for internal use, when the config lock is already held. """ return self._ConfigData().networks.keys() @_ConfigSync(shared=1) def GetNetworkList(self): """Get the list of networks. @return: array of networks, ex. ["main", "vlan100", "200] """ return self._UnlockedGetNetworkList() @_ConfigSync(shared=1) def GetNetworkNames(self): """Get a list of network names """ names = [net.name for net in self._ConfigData().networks.values()] return names def _UnlockedGetNetwork(self, uuid): """Returns information about a network. This function is for internal use, when the config lock is already held. """ if uuid not in self._ConfigData().networks: return None return self._ConfigData().networks[uuid] @_ConfigSync(shared=1) def GetNetwork(self, uuid): """Returns information about a network. It takes the information from the configuration file. @param uuid: UUID of the network @rtype: L{objects.Network} @return: the network object """ return self._UnlockedGetNetwork(uuid) @_ConfigSync() def AddNetwork(self, net, ec_id, check_uuid=True): """Add a network to the configuration. @type net: L{objects.Network} @param net: the Network object to add @type ec_id: string @param ec_id: unique id for the job to use when creating a missing UUID """ self._UnlockedAddNetwork(net, ec_id, check_uuid) def _UnlockedAddNetwork(self, net, ec_id, check_uuid): """Add a network to the configuration. """ logging.info("Adding network %s to configuration", net.name) if check_uuid: self._EnsureUUID(net, ec_id) net.serial_no = 1 net.ctime = net.mtime = time.time() self._ConfigData().networks[net.uuid] = net self._ConfigData().cluster.serial_no += 1 def _UnlockedLookupNetwork(self, target): """Lookup a network's UUID. @type target: string @param target: network name or UUID @rtype: string @return: network UUID @raises errors.OpPrereqError: when the target network cannot be found """ if target is None: return None if target in self._ConfigData().networks: return target for net in self._ConfigData().networks.values(): if net.name == target: return net.uuid raise errors.OpPrereqError("Network '%s' not found" % target, errors.ECODE_NOENT) @_ConfigSync(shared=1) def LookupNetwork(self, target): """Lookup a network's UUID. This function is just a wrapper over L{_UnlockedLookupNetwork}. @type target: string @param target: network name or UUID @rtype: string @return: network UUID """ return self._UnlockedLookupNetwork(target) @_ConfigSync() def RemoveNetwork(self, network_uuid): """Remove a network from the configuration. @type network_uuid: string @param network_uuid: the UUID of the network to remove """ logging.info("Removing network %s from configuration", network_uuid) if network_uuid not in self._ConfigData().networks: raise errors.ConfigurationError("Unknown network '%s'" % network_uuid) del self._ConfigData().networks[network_uuid] self._ConfigData().cluster.serial_no += 1 def _UnlockedGetGroupNetParams(self, net_uuid, node_uuid): """Get the netparams (mode, link) of a network. Get a network's netparams for a given node. @type net_uuid: string @param net_uuid: network uuid @type node_uuid: string @param node_uuid: node UUID @rtype: dict or None @return: netparams """ node_info = self._UnlockedGetNodeInfo(node_uuid) nodegroup_info = self._UnlockedGetNodeGroup(node_info.group) netparams = nodegroup_info.networks.get(net_uuid, None) return netparams @_ConfigSync(shared=1) def GetGroupNetParams(self, net_uuid, node_uuid): """Locking wrapper of _UnlockedGetGroupNetParams() """ return self._UnlockedGetGroupNetParams(net_uuid, node_uuid) @_ConfigSync(shared=1) def CheckIPInNodeGroup(self, ip, node_uuid): """Check IP uniqueness in nodegroup. Check networks that are connected in the node's node group if ip is contained in any of them. Used when creating/adding a NIC to ensure uniqueness among nodegroups. @type ip: string @param ip: ip address @type node_uuid: string @param node_uuid: node UUID @rtype: (string, dict) or (None, None) @return: (network name, netparams) """ if ip is None: return (None, None) node_info = self._UnlockedGetNodeInfo(node_uuid) nodegroup_info = self._UnlockedGetNodeGroup(node_info.group) for net_uuid in nodegroup_info.networks.keys(): net_info = self._UnlockedGetNetwork(net_uuid) pool = network.AddressPool(net_info) if pool.Contains(ip): return (net_info.name, nodegroup_info.networks[net_uuid]) return (None, None) @_ConfigSync(shared=1) def GetCandidateCerts(self): """Returns the candidate certificate map. """ return self._ConfigData().cluster.candidate_certs @_ConfigSync() def AddNodeToCandidateCerts(self, node_uuid, cert_digest, info_fn=logging.info, warn_fn=logging.warn): """Adds an entry to the candidate certificate map. @type node_uuid: string @param node_uuid: the node's UUID @type cert_digest: string @param cert_digest: the digest of the node's client SSL certificate @type info_fn: function @param info_fn: logging function for information messages @type warn_fn: function @param warn_fn: logging function for warning messages """ cluster = self._ConfigData().cluster if node_uuid in cluster.candidate_certs: old_cert_digest = cluster.candidate_certs[node_uuid] if old_cert_digest == cert_digest: if info_fn is not None: info_fn("Certificate digest for node %s already in config." "Not doing anything." % node_uuid) return else: if warn_fn is not None: warn_fn("Overriding differing certificate digest for node %s" % node_uuid) cluster.candidate_certs[node_uuid] = cert_digest @_ConfigSync() def RemoveNodeFromCandidateCerts(self, node_uuid, warn_fn=logging.warn): """Removes the entry of the given node in the certificate map. @type node_uuid: string @param node_uuid: the node's UUID @type warn_fn: function @param warn_fn: logging function for warning messages """ cluster = self._ConfigData().cluster if node_uuid not in cluster.candidate_certs: if warn_fn is not None: warn_fn("Cannot remove certifcate for node %s, because it's not" " in the candidate map." % node_uuid) return del cluster.candidate_certs[node_uuid] def FlushConfig(self): """Force the distribution of configuration to master candidates. It is not necessary to hold a lock for this operation, it is handled internally by WConfd. """ if not self._offline: self._wconfd.FlushConfig() class DetachedConfig(ConfigWriter): def __init__(self, config_data): super(DetachedConfig, self).__init__(self, offline=True) self._SetConfigData(config_data) @staticmethod def _WriteCallError(): raise errors.ProgrammerError("DetachedConfig supports only read-only" " operations") def _OpenConfig(self, shared): if not shared: DetachedConfig._WriteCallError() def _CloseConfig(self, save): if save: DetachedConfig._WriteCallError()
ganeti-github-testing/ganeti-test-1
lib/config.py
Python
bsd-2-clause
117,521
import torch from termcolor import cprint, colored as c def num_flat_features(x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features def forward_tracer(self, input, output): cprint(c("--> " + self.__class__.__name__, 'red') + " ===forward==> ") # print('') # print('input: ', type(input)) # print('input[0]: ', type(input[0])) # print('output: ', type(output)) # print('') # print('input size:', input[0].size()) # print('output size:', output.data.size()) # print('output norm:', output.data.norm()) def backward_tracer(self, input, output): cprint(c("--> " + self.__class__.__name__, 'red') + " ===backward==> ") CHARS = "\x00 ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz01234567890.,;:?\"'\n\r\t~!@#$%^&*()-=_+<>{}[]|\\`~\xa0" CHAR_DICT = {ch: i for i, ch in enumerate(CHARS)} class Char2Vec(): def __init__(self, size=None, chars=None): if chars is None: self.chars = CHARS else: self.chars = chars self.char_dict = {ch: i for i, ch in enumerate(CHARS)} if size: self.size = size else: self.size = len(CHARS) def one_hot(self, source): y = torch.LongTensor([[self.char_dict[char]] for char in source]) y_onehot = torch.zeros(len(source), self.size) y_onehot.scatter_(1, y, 1) return y_onehot def char_code(self, source): return torch.LongTensor([self.char_dict[char] for char in source]) def vec2str(self, vec): chars = [self.chars[ind] for ind in vec.cpu().data.numpy()] return ''.join(chars) if __name__ == "__main__": # test print(Char2Vec(65).one_hot("B")) encoded = list(map(Char2Vec(65).one_hot, "Mary has a little lamb.")) print(encoded)
kinshuk4/MoocX
misc/deep_learning_notes/pytorch_playground/utils.py
Python
mit
1,898
# -*- coding: utf-8 -*- # from django.urls import path from rest_framework.routers import DefaultRouter from .. import api app_name = 'orgs' router = DefaultRouter() # 将会删除 router.register(r'org/(?P<org_id>[0-9a-zA-Z\-]{36})/membership/admins', api.OrgMembershipAdminsViewSet, 'membership-admins') router.register(r'org/(?P<org_id>[0-9a-zA-Z\-]{36})/membership/users', api.OrgMembershipUsersViewSet, 'membership-users'), # 替换为这个 router.register(r'orgs/(?P<org_id>[0-9a-zA-Z\-]{36})/membership/admins', api.OrgMembershipAdminsViewSet, 'membership-admins-2') router.register(r'orgs/(?P<org_id>[0-9a-zA-Z\-]{36})/membership/users', api.OrgMembershipUsersViewSet, 'membership-users-2'), router.register(r'orgs', api.OrgViewSet, 'org') urlpatterns = [ ] urlpatterns += router.urls
liuzheng712/jumpserver
apps/orgs/urls/api_urls.py
Python
gpl-2.0
866
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import datetime import threading from applicationinsights import TelemetryClient from applicationinsights.exceptions import enable from azclishell import __version__ from azure.cli.core._profile import Profile from azure.cli.core.telemetry import _user_agrees_to_telemetry INSTRUMENTATION_KEY = '762871d5-45a2-4d67-bf47-e396caf53d9d' def my_context(tel_client): """ context for the application """ tel_client.context.application.id = 'Azure CLI Shell' tel_client.context.application.ver = __version__ tel_client.context.user.id = Profile().get_installation_id() tel_client.context.instrumentation_key = INSTRUMENTATION_KEY class Telemetry(TelemetryClient): """ base telemetry sessions """ start_time = None end_time = None def track_ssg(self, gesture, cmd): """ track shell specific gestures """ self.track_event('Shell Specific Gesture', {gesture : cmd}) def track_key(self, key): """ tracks the special key bindings """ self.track_event('Key Press', {"key": key}) @_user_agrees_to_telemetry def start(self): """ starts recording stuff """ self.start_time = str(datetime.datetime.now()) @_user_agrees_to_telemetry def conclude(self): """ concludings recording stuff """ self.end_time = str(datetime.datetime.now()) self.track_event('Run', {'start time' : self.start_time, 'end time' : self.end_time}) thread1 = TelThread(self.flush) thread1.start() class TelThread(threading.Thread): """ telemetry thread for exiting """ def __init__(self, threadfunc): threading.Thread.__init__(self) self.threadfunc = threadfunc def run(self): self.threadfunc() TC = Telemetry(INSTRUMENTATION_KEY) enable(INSTRUMENTATION_KEY) my_context(TC)
oakeyc/azure-cli-shell
azclishell/telemetry.py
Python
mit
2,206
#!/usr/bin/env python # Copyright JS Foundation and other contributors, http://js.foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import collections import hashlib import os import platform import subprocess import sys import settings if sys.version_info.major >= 3: import runners.util as util # pylint: disable=import-error else: sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/runners') import util OUTPUT_DIR = os.path.join(settings.PROJECT_DIR, 'build', 'tests') Options = collections.namedtuple('Options', ['name', 'build_args', 'test_args', 'skip']) Options.__new__.__defaults__ = ([], [], False) def skip_if(condition, desc): return desc if condition else False OPTIONS_COMMON = ['--lto=off'] OPTIONS_PROFILE_MIN = ['--profile=minimal'] OPTIONS_PROFILE_ES51 = ['--profile=es5.1'] OPTIONS_PROFILE_ESNEXT = ['--profile=es.next', '--function-to-string=on'] OPTIONS_STACK_LIMIT = ['--stack-limit=96'] OPTIONS_GC_MARK_LIMIT = ['--gc-mark-limit=16'] OPTIONS_MEM_STRESS = ['--mem-stress-test=on'] OPTIONS_DEBUG = ['--debug'] OPTIONS_SNAPSHOT = ['--snapshot-save=on', '--snapshot-exec=on', '--jerry-cmdline-snapshot=on'] OPTIONS_UNITTESTS = ['--unittests=on', '--jerry-cmdline=off', '--error-messages=on', '--snapshot-save=on', '--snapshot-exec=on', '--vm-exec-stop=on', '--vm-throw=on', '--line-info=on', '--mem-stats=on'] OPTIONS_DOCTESTS = ['--doctests=on', '--jerry-cmdline=off', '--error-messages=on', '--snapshot-save=on', '--snapshot-exec=on', '--vm-exec-stop=on'] # Test options for unittests JERRY_UNITTESTS_OPTIONS = [ Options('unittests-es.next', OPTIONS_COMMON + OPTIONS_UNITTESTS + OPTIONS_PROFILE_ESNEXT + ['--promise-callback=on']), Options('doctests-es.next', OPTIONS_COMMON + OPTIONS_DOCTESTS + OPTIONS_PROFILE_ESNEXT + ['--promise-callback=on']), Options('unittests-es5.1', OPTIONS_COMMON + OPTIONS_UNITTESTS + OPTIONS_PROFILE_ES51), Options('doctests-es5.1', OPTIONS_COMMON + OPTIONS_DOCTESTS + OPTIONS_PROFILE_ES51), Options('unittests-es5.1-init-fini', OPTIONS_COMMON + OPTIONS_UNITTESTS + OPTIONS_PROFILE_ES51 + ['--cmake-param=-DFEATURE_INIT_FINI=ON'], skip=skip_if((sys.platform == 'win32'), 'FEATURE_INIT_FINI build flag isn\'t supported on Windows,' + ' because Microsoft Visual C/C++ Compiler doesn\'t support' + ' library constructors and destructors.')), Options('unittests-es5.1-math', OPTIONS_COMMON + OPTIONS_UNITTESTS + OPTIONS_PROFILE_ES51 + ['--jerry-math=on']), ] # Test options for jerry-tests JERRY_TESTS_OPTIONS = [ Options('jerry_tests-es.next', OPTIONS_COMMON + OPTIONS_PROFILE_ESNEXT + OPTIONS_STACK_LIMIT + OPTIONS_GC_MARK_LIMIT + OPTIONS_MEM_STRESS), Options('jerry_tests-es5.1', OPTIONS_COMMON + OPTIONS_PROFILE_ES51 + OPTIONS_STACK_LIMIT + OPTIONS_GC_MARK_LIMIT), Options('jerry_tests-es5.1-snapshot', OPTIONS_COMMON + OPTIONS_PROFILE_ES51 + OPTIONS_SNAPSHOT + OPTIONS_STACK_LIMIT + OPTIONS_GC_MARK_LIMIT, ['--snapshot']), Options('jerry_tests-es5.1-cpointer_32bit', OPTIONS_COMMON + OPTIONS_PROFILE_ES51 + OPTIONS_STACK_LIMIT + OPTIONS_GC_MARK_LIMIT + ['--cpointer-32bit=on', '--mem-heap=1024']), Options('jerry_tests-es5.1-external_context', OPTIONS_COMMON + OPTIONS_PROFILE_ES51 + OPTIONS_STACK_LIMIT + OPTIONS_GC_MARK_LIMIT + ['--external-context=on']), ] # Test options for test262 TEST262_TEST_SUITE_OPTIONS = [ Options('test262_tests', OPTIONS_PROFILE_ES51), ] # Test options for test262-es2015 TEST262_ES2015_TEST_SUITE_OPTIONS = [ Options('test262_tests_es2015', OPTIONS_PROFILE_ESNEXT + ['--line-info=on', '--error-messages=on']), ] # Test options for test262-esnext TEST262_ESNEXT_TEST_SUITE_OPTIONS = [ Options('test262_tests_esnext', OPTIONS_PROFILE_ESNEXT + ['--line-info=on', '--error-messages=on', '--mem-heap=20480']), ] # Test options for jerry-debugger DEBUGGER_TEST_OPTIONS = [ Options('jerry_debugger_tests', ['--jerry-debugger=on']) ] # Test options for buildoption-test JERRY_BUILDOPTIONS = [ Options('buildoption_test-lto', ['--lto=on']), Options('buildoption_test-error_messages', ['--error-messages=on']), Options('buildoption_test-logging', ['--logging=on']), Options('buildoption_test-amalgam', ['--amalgam=on']), Options('buildoption_test-valgrind', ['--valgrind=on']), Options('buildoption_test-mem_stats', ['--mem-stats=on']), Options('buildoption_test-show_opcodes', ['--show-opcodes=on']), Options('buildoption_test-show_regexp_opcodes', ['--show-regexp-opcodes=on']), Options('buildoption_test-cpointer_32bit', ['--compile-flag=-m32', '--cpointer-32bit=on', '--system-allocator=on'], skip=skip_if( platform.system() != 'Linux' or (platform.machine() != 'i386' and platform.machine() != 'x86_64'), '-m32 is only supported on x86[-64]-linux') ), Options('buildoption_test-jerry_math', ['--jerry-math=on']), Options('buildoption_test-no_lcache_prophashmap', ['--compile-flag=-DJERRY_LCACHE=0', '--compile-flag=-DJERRY_PROPERTY_HASHMAP=0']), Options('buildoption_test-external_context', ['--external-context=on']), Options('buildoption_test-shared_libs', ['--shared-libs=on'], skip=skip_if((sys.platform == 'win32'), 'Not yet supported, link failure on Windows')), Options('buildoption_test-cmdline_test', ['--jerry-cmdline-test=on'], skip=skip_if((sys.platform == 'win32'), 'rand() can\'t be overriden on Windows (benchmarking.c)')), Options('buildoption_test-cmdline_snapshot', ['--jerry-cmdline-snapshot=on']), Options('buildoption_test-recursion_limit', OPTIONS_STACK_LIMIT), Options('buildoption_test-gc-mark_limit', OPTIONS_GC_MARK_LIMIT), Options('buildoption_test-jerry-debugger', ['--jerry-debugger=on']), Options('buildoption_test-module-off', ['--compile-flag=-DJERRY_MODULE_SYSTEM=0', '--lto=off']), Options('buildoption_test-builtin-proxy-off', ['--compile-flag=-DJERRY_BUILTIN_PROXY=0']), ] def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--toolchain', metavar='FILE', help='Add toolchain file') parser.add_argument('-q', '--quiet', action='store_true', help='Only print out failing tests') parser.add_argument('--buildoptions', metavar='LIST', help='Add a comma separated list of extra build options to each test') parser.add_argument('--skip-list', metavar='LIST', help='Add a comma separated list of patterns of the excluded JS-tests') parser.add_argument('--outdir', metavar='DIR', default=OUTPUT_DIR, help='Specify output directory (default: %(default)s)') parser.add_argument('--check-signed-off', metavar='TYPE', nargs='?', choices=['strict', 'tolerant', 'gh-actions'], const='strict', help='Run signed-off check (%(choices)s; default type if not given: %(const)s)') parser.add_argument('--check-cppcheck', action='store_true', help='Run cppcheck') parser.add_argument('--check-doxygen', action='store_true', help='Run doxygen') parser.add_argument('--check-pylint', action='store_true', help='Run pylint') parser.add_argument('--check-format', action='store_true', help='Run format check') parser.add_argument('--check-license', action='store_true', help='Run license check') parser.add_argument('--check-magic-strings', action='store_true', help='Run "magic string source code generator should be executed" check') parser.add_argument('--build-debug', action='store_true', help='Build debug version jerryscript') parser.add_argument('--jerry-debugger', action='store_true', help='Run jerry-debugger tests') parser.add_argument('--jerry-tests', action='store_true', help='Run jerry-tests') parser.add_argument('--test262', action='store_true', help='Run test262 - ES5.1') parser.add_argument('--test262-es2015', default=False, const='default', nargs='?', choices=['default', 'all', 'update'], help='Run test262 - ES2015. default: all tests except excludelist, ' + 'all: all tests, update: all tests and update excludelist') parser.add_argument('--test262-esnext', default=False, const='default', nargs='?', choices=['default', 'all', 'update'], help='Run test262 - ESnext. default: all tests except excludelist, ' + 'all: all tests, update: all tests and update excludelist') parser.add_argument('--test262-test-list', metavar='LIST', help='Add a comma separated list of tests or directories to run in test262 test suite') parser.add_argument('--unittests', action='store_true', help='Run unittests (including doctests)') parser.add_argument('--buildoption-test', action='store_true', help='Run buildoption-test') parser.add_argument('--all', '--precommit', action='store_true', help='Run all tests') if len(sys.argv) == 1: parser.print_help() sys.exit(1) script_args = parser.parse_args() if script_args.test262_test_list and not \ (script_args.test262 or script_args.test262_es2015 or script_args.test262_esnext): print("--test262-test-list is only allowed with --test262 or --test262-es2015 or --test262-esnext\n") parser.print_help() sys.exit(1) return script_args BINARY_CACHE = {} TERM_NORMAL = '\033[0m' TERM_YELLOW = '\033[1;33m' TERM_BLUE = '\033[1;34m' TERM_RED = '\033[1;31m' def report_command(cmd_type, cmd, env=None): sys.stderr.write('%s%s%s\n' % (TERM_BLUE, cmd_type, TERM_NORMAL)) if env is not None: sys.stderr.write(''.join('%s%s=%r \\%s\n' % (TERM_BLUE, var, val, TERM_NORMAL) for var, val in sorted(env.items()))) sys.stderr.write('%s%s%s\n' % (TERM_BLUE, (' \\%s\n\t%s' % (TERM_NORMAL, TERM_BLUE)).join(cmd), TERM_NORMAL)) def report_skip(job): sys.stderr.write('%sSkipping: %s' % (TERM_YELLOW, job.name)) if job.skip: sys.stderr.write(' (%s)' % job.skip) sys.stderr.write('%s\n' % TERM_NORMAL) def create_binary(job, options): build_args = job.build_args[:] build_dir_path = os.path.join(options.outdir, job.name) if options.build_debug: build_args.extend(OPTIONS_DEBUG) build_dir_path = os.path.join(options.outdir, job.name + '-debug') if options.buildoptions: for option in options.buildoptions.split(','): if option not in build_args: build_args.append(option) build_cmd = util.get_python_cmd_prefix() build_cmd.append(settings.BUILD_SCRIPT) build_cmd.extend(build_args) build_cmd.append('--builddir=%s' % build_dir_path) install_dir_path = os.path.join(build_dir_path, 'local') build_cmd.append('--install=%s' % install_dir_path) if options.toolchain: build_cmd.append('--toolchain=%s' % options.toolchain) report_command('Build command:', build_cmd) binary_key = tuple(sorted(build_args)) if binary_key in BINARY_CACHE: ret, build_dir_path = BINARY_CACHE[binary_key] sys.stderr.write('(skipping: already built at %s with returncode %d)\n' % (build_dir_path, ret)) return ret, build_dir_path try: subprocess.check_output(build_cmd) ret = 0 except subprocess.CalledProcessError as err: print(err.output) ret = err.returncode BINARY_CACHE[binary_key] = (ret, build_dir_path) return ret, build_dir_path def get_binary_path(build_dir_path): executable_extension = '.exe' if sys.platform == 'win32' else '' return os.path.join(build_dir_path, 'local', 'bin', 'jerry' + executable_extension) def hash_binary(bin_path): blocksize = 65536 hasher = hashlib.sha1() with open(bin_path, 'rb') as bin_file: buf = bin_file.read(blocksize) while buf: hasher.update(buf) buf = bin_file.read(blocksize) return hasher.hexdigest() def iterate_test_runner_jobs(jobs, options): tested_paths = set() tested_hashes = {} for job in jobs: ret_build, build_dir_path = create_binary(job, options) if ret_build: yield job, ret_build, None if build_dir_path in tested_paths: sys.stderr.write('(skipping: already tested with %s)\n' % build_dir_path) continue else: tested_paths.add(build_dir_path) bin_path = get_binary_path(build_dir_path) bin_hash = hash_binary(bin_path) if bin_hash in tested_hashes: sys.stderr.write('(skipping: already tested with equivalent %s)\n' % tested_hashes[bin_hash]) continue else: tested_hashes[bin_hash] = build_dir_path test_cmd = util.get_python_cmd_prefix() test_cmd.extend([settings.TEST_RUNNER_SCRIPT, '--engine', bin_path]) yield job, ret_build, test_cmd def run_check(runnable, env=None): report_command('Test command:', runnable, env=env) if env is not None: full_env = dict(os.environ) full_env.update(env) env = full_env proc = subprocess.Popen(runnable, env=env) proc.wait() return proc.returncode def run_jerry_debugger_tests(options): ret_build = ret_test = 0 for job in DEBUGGER_TEST_OPTIONS: ret_build, build_dir_path = create_binary(job, options) if ret_build: print("\n%sBuild failed%s\n" % (TERM_RED, TERM_NORMAL)) break for channel in ["websocket", "rawpacket"]: for test_file in os.listdir(settings.DEBUGGER_TESTS_DIR): if test_file.endswith(".cmd"): test_case, _ = os.path.splitext(test_file) test_case_path = os.path.join(settings.DEBUGGER_TESTS_DIR, test_case) test_cmd = [ settings.DEBUGGER_TEST_RUNNER_SCRIPT, get_binary_path(build_dir_path), channel, settings.DEBUGGER_CLIENT_SCRIPT, os.path.relpath(test_case_path, settings.PROJECT_DIR) ] if job.test_args: test_cmd.extend(job.test_args) ret_test |= run_check(test_cmd) return ret_build | ret_test def run_jerry_tests(options): ret_build = ret_test = 0 for job, ret_build, test_cmd in iterate_test_runner_jobs(JERRY_TESTS_OPTIONS, options): if ret_build: break test_cmd.append('--test-dir') test_cmd.append(settings.JERRY_TESTS_DIR) if options.quiet: test_cmd.append("-q") skip_list = [] if '--profile=es.next' in job.build_args: skip_list.append(os.path.join('es5.1', '')) else: skip_list.append(os.path.join('es.next', '')) if options.skip_list: skip_list.append(options.skip_list) if skip_list: test_cmd.append("--skip-list=" + ",".join(skip_list)) if job.test_args: test_cmd.extend(job.test_args) ret_test |= run_check(test_cmd, env=dict(TZ='UTC')) return ret_build | ret_test def run_test262_test_suite(options): ret_build = ret_test = 0 jobs = [] if options.test262: jobs.extend(TEST262_TEST_SUITE_OPTIONS) if options.test262_es2015: jobs.extend(TEST262_ES2015_TEST_SUITE_OPTIONS) if options.test262_esnext: jobs.extend(TEST262_ESNEXT_TEST_SUITE_OPTIONS) for job in jobs: ret_build, build_dir_path = create_binary(job, options) if ret_build: print("\n%sBuild failed%s\n" % (TERM_RED, TERM_NORMAL)) break test_cmd = util.get_python_cmd_prefix() + [ settings.TEST262_RUNNER_SCRIPT, '--engine', get_binary_path(build_dir_path), '--test262-object', '--test-dir', settings.TEST262_TEST_SUITE_DIR ] if job.name.endswith('es2015'): test_cmd.append('--es2015') test_cmd.append(options.test262_es2015) elif job.name.endswith('esnext'): test_cmd.append('--esnext') test_cmd.append(options.test262_esnext) else: test_cmd.append('--es51') if job.test_args: test_cmd.extend(job.test_args) if options.test262_test_list: test_cmd.append('--test262-test-list') test_cmd.append(options.test262_test_list) ret_test |= run_check(test_cmd, env=dict(TZ='America/Los_Angeles')) return ret_build | ret_test def run_unittests(options): ret_build = ret_test = 0 for job in JERRY_UNITTESTS_OPTIONS: if job.skip: report_skip(job) continue ret_build, build_dir_path = create_binary(job, options) if ret_build: print("\n%sBuild failed%s\n" % (TERM_RED, TERM_NORMAL)) break if sys.platform == 'win32': if options.build_debug: build_config = "Debug" else: build_config = "MinSizeRel" else: build_config = "" ret_test |= run_check( util.get_python_cmd_prefix() + [settings.UNITTEST_RUNNER_SCRIPT] + [os.path.join(build_dir_path, 'tests', build_config)] + (["-q"] if options.quiet else []) ) return ret_build | ret_test def run_buildoption_test(options): for job in JERRY_BUILDOPTIONS: if job.skip: report_skip(job) continue ret, _ = create_binary(job, options) if ret: print("\n%sBuild failed%s\n" % (TERM_RED, TERM_NORMAL)) break return ret Check = collections.namedtuple('Check', ['enabled', 'runner', 'arg']) def main(options): checks = [ Check(options.check_signed_off, run_check, [settings.SIGNED_OFF_SCRIPT] + {'tolerant': ['--tolerant'], 'gh-actions': ['--gh-actions']}.get(options.check_signed_off, [])), Check(options.check_cppcheck, run_check, [settings.CPPCHECK_SCRIPT]), Check(options.check_doxygen, run_check, [settings.DOXYGEN_SCRIPT]), Check(options.check_pylint, run_check, [settings.PYLINT_SCRIPT]), Check(options.check_format, run_check, [settings.FORMAT_SCRIPT]), Check(options.check_license, run_check, [settings.LICENSE_SCRIPT]), Check(options.check_magic_strings, run_check, [settings.MAGIC_STRINGS_SCRIPT]), Check(options.jerry_debugger, run_jerry_debugger_tests, options), Check(options.jerry_tests, run_jerry_tests, options), Check(options.test262 or options.test262_es2015 or options.test262_esnext, run_test262_test_suite, options), Check(options.unittests, run_unittests, options), Check(options.buildoption_test, run_buildoption_test, options), ] for check in checks: if check.enabled or options.all: ret = check.runner(check.arg) if ret: sys.exit(ret) if __name__ == "__main__": main(get_arguments())
robertsipka/jerryscript
tools/run-tests.py
Python
apache-2.0
20,729
#!/usr/bin/env python3 import os import io import sys import re import xml.etree.ElementTree as ET # on msys, use crlf output nl = None if sys.platform == 'msys': nl = "\r\n" # Get the file, relative to this script's location (same directory) # that way we're not sensitive to CWD pathname = os.path.abspath(os.path.dirname(sys.argv[0])) + os.path.sep # open the file for write f = open(pathname + 'vk_dispatch_defs.h', mode='w', newline = nl) # open XML registry registry = ET.parse(pathname + 'vk.xml').getroot() # f.write the file, starting with a template header f.write(''' /****************************************************************************** * The MIT License (MIT) * * Copyright (c) 2019 Baldur Karlsson * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. ******************************************************************************/ /****************************************************************************** * Generated from Khronos's vk.xml: '''.lstrip()) def prefix_star(line): if line == '': return ' *' else: return ' * ' + line # Print the first two comments with the license for comment in registry.findall('comment')[0:2]: f.write("\n".join([prefix_star(line.strip()) for line in comment.text.split('\n')])) f.write(''' ******************************************************************************/ // This file is autogenerated with gen_dispatch_table.py - any changes will be overwritten next time // that script is run. // $ ./gen_spirv_code.py #pragma once #include "official/vulkan.h" // this file is autogenerated, so don't worry about clang-format issues // clang-format off '''.lstrip()) platform_defines = {} # Cache the platform defines that protect each platform name for plat in registry.findall('platforms/platform'): platform_defines[plat.attrib['name']] = plat.attrib['protect'] # Process all commands and categorise into instance or device commands = {} INSTANCE_CMD = 1 DEVICE_CMD = 2 # Some special cases we manually set commands['vkCreateInstance'] = INSTANCE_CMD commands['vkEnumerateInstanceVersion'] = INSTANCE_CMD commands['vkEnumerateInstanceLayerProperties'] = INSTANCE_CMD commands['vkEnumerateInstanceExtensionProperties'] = INSTANCE_CMD import xml for cmd in registry.findall('commands/command'): if 'alias' in cmd.attrib: name = cmd.attrib['name'] alias = cmd.attrib['alias'] if alias not in commands: raise ValueError('alias {} of {} defined, but {} is unknown'.format(name, alias, alias)) commands[name] = commands[alias] continue name = cmd.find('proto/name').text if name in commands: continue first_param_type = cmd.find('param/type').text if first_param_type == 'VkInstance' or first_param_type == 'VkPhysicalDevice': commands[name] = INSTANCE_CMD elif first_param_type == 'VkDevice' or first_param_type == 'VkQueue' or first_param_type == 'VkCommandBuffer': commands[name] = DEVICE_CMD else: raise ValueError('type {} of first parameter to {} is unexpected'.format(first_param_type, name)) inst_commands = "" dev_commands = "" processed_commands = [] # some commands come from multiple extensions. Include them only in the first def process_feature(root, name): global inst_commands, dev_commands, processed_commands inst = "" dev = "" for req in root.findall('require'): for cmd in req.findall('command'): function = cmd.attrib['name'] if function in processed_commands: continue processed_commands.append(function) if function not in commands: raise ValueError('command {} referenced by {} is unknown'.format(function, name)) table = commands[function] if table == INSTANCE_CMD: inst += '\n PFN_{} {};'.format(function, function[2:]) elif table == DEVICE_CMD: dev += '\n PFN_{} {};'.format(function, function[2:]) else: raise ValueError('command {} has unknown table type {}'.format(function, table)) if 'platform' in root.attrib: if inst != "": inst = '\n#ifdef {plat}{inst}\n#endif // {plat}'.format(plat = platform_defines[root.attrib['platform']], inst = inst) if dev != "": dev = '\n#ifdef {plat}{dev}\n#endif // {plat}'.format(plat = platform_defines[root.attrib['platform']], dev = dev) if inst != "": inst_commands += " // {name}{inst}\n\n".format(**locals()) if dev != "": dev_commands += " // {name}{dev}\n\n".format(**locals()) # Look at all features for feat in registry.findall('feature'): # Only process vulkan features if 'api' in feat.attrib and feat.attrib['api'] == 'vulkan': process_feature(feat, feat.attrib['comment']) # And all extensions (with KHR extensions sorted to the front) def ext_sort(ext): if 'KHR' in ext.attrib['name']: return int(ext.attrib['number']) return 10000000 + int(ext.attrib['number']) for ext in sorted(registry.findall('extensions/extension'), key=ext_sort): # Only process vulkan extensions if 'supported' in ext.attrib and ext.attrib['supported'] == 'vulkan': process_feature(ext, ext.attrib['name']) inst_commands = inst_commands.strip() dev_commands = dev_commands.strip() f.write(''' struct VkInstDispatchTable {{ {inst_commands} }}; struct VkDevDispatchTable {{ {dev_commands} // for consistency with macros, we declare the CreateDevice pointer here // even though it won't actually ever get used and is on the instance dispatch chain PFN_vkCreateDevice CreateDevice; }};'''.format(**locals()))
TurtleRockStudios/renderdoc_public
renderdoc/driver/vulkan/gen_dispatch_table.py
Python
mit
6,772
# -*- coding: utf-8 -*- # # Copyright (c) 2016 NORDUnet A/S # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # 3. Neither the name of the NORDUnet nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # from eduid_webapp.signup.app import signup_init_app app = signup_init_app(name='signup2') if __name__ == '__main__': app.logger.info(f'Starting {app}...') app.run()
SUNET/eduid-webapp
src/eduid_webapp/signup/run.py
Python
bsd-3-clause
1,792
# encoding: utf-8 import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): from sentry.utils.models import update for project in orm['sentry.Project'].objects.all(): orm['sentry.ProjectKey'].objects.create( project=project, user=None, ) def backwards(self, orm): pass models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sentry.event': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_column': "'message_id'"}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'event_set'", 'null': 'True', 'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'server_name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'site': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'time_spent': ('django.db.models.fields.FloatField', [], {'null': 'True'}) }, 'sentry.filtervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value'),)", 'object_name': 'FilterValue'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.group': { 'Meta': {'unique_together': "(('project', 'logger', 'culprit', 'checksum'),)", 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'views': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.View']", 'symmetrical': 'False', 'blank': 'True'}) }, 'sentry.groupbookmark': { 'Meta': {'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Project']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_bookmark_set'", 'to': "orm['auth.User']"}) }, 'sentry.groupmeta': { 'Meta': {'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.messagecountbyminute': { 'Meta': {'unique_together': "(('project', 'group', 'date'),)", 'object_name': 'MessageCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.messagefiltervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value', 'group'),)", 'object_name': 'MessageFilterValue'}, 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.messageindex': { 'Meta': {'unique_together': "(('column', 'value', 'object_id'),)", 'object_name': 'MessageIndex'}, 'column': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.option': { 'Meta': {'object_name': 'Option'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.pendingprojectmember': { 'Meta': {'unique_together': "(('project', 'email'),)", 'object_name': 'PendingProjectMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pending_member_set'", 'to': "orm['sentry.Project']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'sentry.project': { 'Meta': {'object_name': 'Project'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_owned_project_set'", 'null': 'True', 'to': "orm['auth.User']"}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Team']", 'null': 'True'}) }, 'sentry.projectcountbyminute': { 'Meta': {'unique_together': "(('project', 'date'),)", 'object_name': 'ProjectCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.projectdomain': { 'Meta': {'unique_together': "(('project', 'domain'),)", 'object_name': 'ProjectDomain'}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'domain_set'", 'to': "orm['sentry.Project']"}) }, 'sentry.projectkey': { 'Meta': {'object_name': 'ProjectKey'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']"}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'secret_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}) }, 'sentry.projectmember': { 'Meta': {'unique_together': "(('project', 'user'),)", 'object_name': 'ProjectMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_set'", 'to': "orm['sentry.Project']"}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'secret_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_project_set'", 'to': "orm['auth.User']"}) }, 'sentry.projectoption': { 'Meta': {'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']"}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.searchdocument': { 'Meta': {'unique_together': "(('project', 'group'),)", 'object_name': 'SearchDocument'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_changed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Project']"}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'total_events': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'sentry.searchtoken': { 'Meta': {'unique_together': "(('document', 'field', 'token'),)", 'object_name': 'SearchToken'}, 'document': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'token_set'", 'to': "orm['sentry.SearchDocument']"}), 'field': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '64'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.team': { 'Meta': {'object_name': 'Team'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}) }, 'sentry.teammember': { 'Meta': {'unique_together': "(('team', 'user'),)", 'object_name': 'TeamMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.Team']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sentry_teammember_set'", 'to': "orm['auth.User']"}) }, 'sentry.view': { 'Meta': {'object_name': 'View'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'verbose_name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'verbose_name_plural': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}) } } complete_apps = ['sentry']
simmetria/sentry
src/sentry/migrations/0049_create_default_project_keys.py
Python
bsd-3-clause
20,194
from datetime import date from django.test.utils import override_settings from .base import SitemapTestsBase class HTTPSSitemapTests(SitemapTestsBase): protocol = 'https' urls = 'django.contrib.sitemaps.tests.urls.https' def test_secure_sitemap_index(self): "A secure sitemap index can be rendered" response = self.client.get('/secure/index.xml') self.assertEqual(response.content, ("""<?xml version="1.0" encoding="UTF-8"?> <sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <sitemap><loc>%s/secure/sitemap-simple.xml</loc></sitemap> </sitemapindex> """ % self.base_url).encode('utf-8')) def test_secure_sitemap_section(self): "A secure sitemap section can be rendered" response = self.client.get('/secure/sitemap-simple.xml') self.assertEqual(response.content, ("""<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>%s/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % (self.base_url, date.today())).encode('utf-8')) @override_settings(SECURE_PROXY_SSL_HEADER=False) class HTTPSDetectionSitemapTests(SitemapTestsBase): extra = {'wsgi.url_scheme': 'https'} def test_sitemap_index_with_https_request(self): "A sitemap index requested in HTTPS is rendered with HTTPS links" response = self.client.get('/simple/index.xml', **self.extra) self.assertEqual(response.content, ("""<?xml version="1.0" encoding="UTF-8"?> <sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <sitemap><loc>%s/simple/sitemap-simple.xml</loc></sitemap> </sitemapindex> """ % self.base_url.replace('http://', 'https://')).encode('utf-8')) def test_sitemap_section_with_https_request(self): "A sitemap section requested in HTTPS is rendered with HTTPS links" response = self.client.get('/simple/sitemap-simple.xml', **self.extra) self.assertEqual(response.content, ("""<?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <url><loc>%s/location/</loc><lastmod>%s</lastmod><changefreq>never</changefreq><priority>0.5</priority></url> </urlset> """ % (self.base_url.replace('http://', 'https://'), date.today())).encode('utf-8'))
vsajip/django
django/contrib/sitemaps/tests/https.py
Python
bsd-3-clause
2,330
from enum import Enum, EnumFactory __all__ = ["Enum", "EnumFactory"]
mkaluza/python-enum
enum/__init__.py
Python
gpl-3.0
70
#-------------------------------------------------------------------- # Software: InVesalius - Software de Reconstrucao 3D de Imagens Medicas # Copyright: (C) 2001 Centro de Pesquisas Renato Archer # Homepage: http://www.softwarepublico.gov.br # Contact: invesalius@cti.gov.br # License: GNU - GPL 2 (LICENSE.txt/LICENCA.txt) #-------------------------------------------------------------------- # Este programa e software livre; voce pode redistribui-lo e/ou # modifica-lo sob os termos da Licenca Publica Geral GNU, conforme # publicada pela Free Software Foundation; de acordo com a versao 2 # da Licenca. # # Este programa eh distribuido na expectativa de ser util, mas SEM # QUALQUER GARANTIA; sem mesmo a garantia implicita de # COMERCIALIZACAO ou de ADEQUACAO A QUALQUER PROPOSITO EM # PARTICULAR. Consulte a Licenca Publica Geral GNU para obter mais # detalhes. #-------------------------------------------------------------------- import wx import invesalius.project as prj from invesalius.pubsub import pub as Publisher from invesalius.gui import utils from invesalius import constants as const ORIENTATION_LABEL = { const.AXIAL: _("Axial"), const.CORONAL: _("Coronal"), const.SAGITAL: _("Sagital"), } class ProjectProperties(wx.Dialog): def __init__(self, parent): super().__init__(id=-1, name='', parent=parent, style=wx.DEFAULT_FRAME_STYLE, title=_('Project Properties')) self.Center(wx.BOTH) self._init_gui() def _init_gui(self): project = prj.Project() self.name_txt = wx.TextCtrl(self, -1, value=project.name) self.name_txt.SetMinSize((utils.calc_width_needed(self.name_txt, 30), -1)) modality_txt = wx.TextCtrl(self, -1, value=project.modality, style=wx.TE_READONLY) try: orientation = ORIENTATION_LABEL[project.original_orientation] except KeyError: orientation = _("Other") orientation_txt = wx.TextCtrl(self, -1, value=orientation, style=wx.TE_READONLY) sx, sy, sz = project.spacing spacing_txt_x = wx.TextCtrl(self, -1, value=f"{sx:.5}", style=wx.TE_READONLY) spacing_txt_y = wx.TextCtrl(self, -1, value=f"{sy:.5}", style=wx.TE_READONLY) spacing_txt_z = wx.TextCtrl(self, -1, value=f"{sz:.5}", style=wx.TE_READONLY) name_sizer = wx.BoxSizer(wx.HORIZONTAL) name_sizer.Add(wx.StaticText(self, -1, _('Name')), 0, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) name_sizer.Add(self.name_txt, 1, wx.EXPAND | wx.ALL, 5) modality_sizer = wx.BoxSizer(wx.HORIZONTAL) modality_sizer.Add(wx.StaticText(self, -1, _('Modality')), 0, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) modality_sizer.Add(modality_txt, 1, wx.EXPAND | wx.ALL, 5) orientation_sizer = wx.BoxSizer(wx.HORIZONTAL) orientation_sizer.Add(wx.StaticText(self, -1, _('Orientation')), 0, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) orientation_sizer.Add(orientation_txt, 1, wx.EXPAND | wx.ALL, 5) spacing_sizer = wx.BoxSizer(wx.HORIZONTAL) spacing_sizer.Add(wx.StaticText(self, -1, _('Spacing')), 0, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) spacing_sizer.Add(spacing_txt_x, 1, wx.EXPAND | wx.ALL, 5) spacing_sizer.Add(spacing_txt_y, 1, wx.EXPAND | wx.ALL, 5) spacing_sizer.Add(spacing_txt_z, 1, wx.EXPAND | wx.ALL, 5) btn_sizer = wx.StdDialogButtonSizer() btn_ok = wx.Button(self, wx.ID_OK) btn_ok.SetDefault() btn_cancel = wx.Button(self, wx.ID_CANCEL) btn_sizer.AddButton(btn_ok) btn_sizer.AddButton(btn_cancel) btn_sizer.Realize() main_sizer = wx.BoxSizer(wx.VERTICAL) main_sizer.Add(name_sizer, 1, wx.EXPAND) main_sizer.Add(modality_sizer, 1, wx.EXPAND) main_sizer.Add(orientation_sizer, 1, wx.EXPAND) main_sizer.Add(spacing_sizer, 1, wx.EXPAND) main_sizer.Add(btn_sizer, 1, wx.EXPAND | wx.ALL, 5) self.SetSizer(main_sizer) main_sizer.Fit(self) self.Layout()
paulojamorim/invesalius3
invesalius/gui/project_properties.py
Python
gpl-2.0
4,085
#!/usr/bin/env python # -*- coding: utf-8 -*- # # These tests run only under Linux and Python 2.x + # This is the Travis CI environment. # from pycompat import python as py from pycompat import system import sys import unittest class TestPyCompat(unittest.TestCase): def test_python_is_64bits(self): self.assertEqual(py.is_64bits, not py.is_32bits) def test_is_cpython(self): self.assertEqual(py.is_cpython, not py.is_pypy) def test_immutability(self): with self.assertRaises(AttributeError): py.is2xx = 1 def test_python_is1xx(self): self.assertFalse(py.is1xx) def test_python_is2xx(self): self.assertEqual(py.is2xx, sys.version_info[0] == 2) def test_python_is3xx(self): self.assertEqual(py.is3xx, sys.version_info[0] == 3) def test_python_is_eqx(self): self.assertTrue(py.is_eq(sys.version_info[0])) def test_python_is_eqxx(self): self.assertTrue(py.is_eq(sys.version_info[0], sys.version_info[1])) def test_python_is_eqxxx(self): self.assertTrue(py.is_eq(sys.version_info[0], sys.version_info[1], sys.version_info[2])) def test_python_is_gtx(self): self.assertTrue(py.is_gt(sys.version_info[0] - 1)) def test_python_is_gtxx(self): self.assertTrue(py.is_gt(sys.version_info[0], sys.version_info[1] - 1)) def test_python_is_gtxxx(self): self.assertTrue(py.is_gt(sys.version_info[0], sys.version_info[1], sys.version_info[2] - 1)) def test_python_is_ltx(self): self.assertTrue(py.is_lt(sys.version_info[0] + 1)) def test_python_is_ltxx(self): self.assertTrue(py.is_lt(sys.version_info[0], sys.version_info[1] + 1)) def test_python_is_ltxxx(self): self.assertTrue(py.is_lt(sys.version_info[0], sys.version_info[1], sys.version_info[2] + 1)) def test_system_is_windows(self): self.assertFalse(system.is_windows) def test_system_is_cygwin(self): self.assertFalse(system.is_cygwin) def test_system_is_mac_os(self): self.assertFalse(system.is_mac_os) def test_system_is_linux(self): self.assertTrue(system.is_linux) if __name__ == '__main__': unittest.main()
alexandrevicenzi/pycompat
tests/test.py
Python
mit
2,225
# # For information about atomic writes, see # -> http://stupidpythonideas.blogspot.com/2014/07/getting-atomic-writes-right.html # # Basically, if you're using Python 3.3+, good to go. Otherwise # we'll try our best, but no guarantees. # import os if hasattr(os, 'replace'): # Python 3.3+ file_replace = os.replace elif os.name != 'nt': # Not Windows file_replace = os.rename else: # Windows def file_replace(src, dst): try: os.unlink(dst) except FileNotFoundError: pass os.rename(src, dst)
virtuald/git-source-track
git_source_track/compat.py
Python
apache-2.0
594
# Copyright (C) 2008-2009 Open Society Institute # Thomas Moroz: tmoroz.org # 2010-2011 Large Blue # Fergus Doyle: fergus.doyle@largeblue.com # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License Version 2 as published # by the Free Software Foundation. You may not use, modify or distribute # this program under any other version of the GNU General Public License. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. import unittest from repoze.bfg import testing from zope.interface import implements from zope.interface import Interface from zope.interface import taggedValue from repoze.bfg.testing import cleanUp from testfixtures import LogCapture class JQueryLivesearchViewTests(unittest.TestCase): def setUp(self): cleanUp() def tearDown(self): cleanUp() def _callFUT(self, context, request): from opencore.views.search import jquery_livesearch_view return jquery_livesearch_view(context, request) def test_no_parameter(self): context = testing.DummyModel() request = testing.DummyRequest() from zope.interface import Interface from opencore.models.interfaces import ICatalogSearch testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) response = self._callFUT(context, request) self.assertEqual(response.status, '400 Bad Request') def test_with_parameter_noresults(self): def dummy_factory(context, request, term): def results(): return 0, [], None return results from repoze.lemonade.testing import registerListItem from opencore.models.interfaces import IGroupSearchFactory registerListItem(IGroupSearchFactory, dummy_factory, 'dummy1', title='Dummy1', sort_key=1) context = testing.DummyModel() request = testing.DummyRequest() dummycontent = testing.DummyModel() request.params = { 'val': 'somesearch', } response = self._callFUT(context, request) self.assertEqual(response.status, '200 OK') from simplejson import loads results = loads(response.body) self.assertEqual(len(results), 2) self.assertEqual(results[0]['rowclass'], 'showall') self.assertEqual(results[0]['header'], '') self.assertEqual(results[0]['title'], 'Show All') self.assertEqual(results[1]['header'], 'Dummy1') self.assertEqual(results[1]['title'], 'No Result') def test_with_parameter_withresults(self): def dummy_factory1(context, request, term): pass def dummy_factory2(context, request, term): def results(): return 1, [1], lambda x: testing.DummyModel(title='yo') return results from repoze.lemonade.testing import registerListItem from opencore.models.interfaces import IGroupSearchFactory registerListItem(IGroupSearchFactory, dummy_factory1, 'dummy1', title='Dummy1', sort_key=1) registerListItem(IGroupSearchFactory, dummy_factory2, 'dummy2', title='Dummy2', sort_key=2) context = testing.DummyModel() request = testing.DummyRequest() dummycontent = testing.DummyModel() request.params = { 'val': 'somesearch', } response = self._callFUT(context, request) self.assertEqual(response.status, '200 OK') from simplejson import loads results = loads(response.body) self.assertEqual(len(results), 3) self.assertEqual(results[0]['rowclass'], 'showall') self.assertEqual(results[0]['header'], '') self.assertEqual(results[0]['title'], 'Show All') self.assertEqual(results[1]['header'], 'Dummy2') self.assertEqual(results[1]['title'], 'yo') self.assertEqual(response.content_type, 'application/x-json') class SearchResultsViewTests(unittest.TestCase): def setUp(self): self.log = LogCapture() cleanUp() testing.registerDummyRenderer('opencore.views:templates/generic_layout.pt') testing.registerDummyRenderer( 'opencore.views:templates/community_layout.pt') def tearDown(self): self.log.uninstall() cleanUp() def _callFUT(self, context, request): from opencore.views.search import SearchResultsView from opencore.views.api import get_template_api request.api = get_template_api(context, request) view = SearchResultsView(context, request) view.type_to_result_dict[DummyContent] = 'test-content' return view() def test_no_searchterm(self): from webob.multidict import MultiDict context = testing.DummyModel() request = testing.DummyRequest(params=MultiDict()) from opencore.models.interfaces import ICatalogSearch testing.registerAdapter(DummyEmptySearch, (Interface), ICatalogSearch) result = self._callFUT(context, request) #self.assertEqual(result.status, '404 Not Found') def test_bad_kind(self): from webob.multidict import MultiDict context = testing.DummyModel() request = testing.DummyRequest( params=MultiDict({'kind':'unknown', 'body':'yo'})) from zope.interface import Interface from opencore.models.interfaces import ICatalogSearch from webob.exc import HTTPBadRequest testing.registerAdapter(DummyEmptySearch, (Interface), ICatalogSearch) self.assertRaises(HTTPBadRequest, self._callFUT, context, request) def test_none_kind(self): from webob.multidict import MultiDict context = testing.DummyModel() request = testing.DummyRequest(params=MultiDict({'body':'yo'})) from zope.interface import Interface from opencore.models.interfaces import ICatalogSearch from repoze.lemonade.testing import registerContentFactory registerContentFactory(DummyContent, IDummyContent) testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) result = self._callFUT(context, request) self.assertEqual(result['terms'], ['yo']) self.assertEqual(len(result['results']), 1) def test_known_kind(self): from webob.multidict import MultiDict from opencore.models.interfaces import IGroupSearchFactory from repoze.lemonade.testing import registerContentFactory from zope.interface import Interface content = DummyContent() def search_factory(*arg, **kw): return DummySearchFactory(content) testing.registerUtility( search_factory, IGroupSearchFactory, name='People') context = testing.DummyModel() request = testing.DummyRequest( params=MultiDict({'body':'yo', 'kind':'People'})) from opencore.models.interfaces import ICatalogSearch registerContentFactory(DummyContent, IDummyContent) testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) result = self._callFUT(context, request) self.assertEqual(result['terms'], ['yo', 'People']) self.assertEqual(len(result['results']), 1) def test_community_search(self): context = testing.DummyModel() context.title = 'Citizens' from webob.multidict import MultiDict from opencore.models.interfaces import ICommunity from zope.interface import directlyProvides directlyProvides(context, ICommunity) request = testing.DummyRequest(params=MultiDict({'body':'yo'})) from zope.interface import Interface from opencore.models.interfaces import ICatalogSearch from repoze.lemonade.testing import registerContentFactory registerContentFactory(DummyContent, IDummyContent) testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) result = self._callFUT(context, request) self.assertEqual(result['community'], 'Citizens') self.assertEqual(result['terms'], ['yo']) self.assertEqual(len(result['results']), 1) def test_parse_error(self): from webob.multidict import MultiDict context = testing.DummyModel() request = testing.DummyRequest(params=MultiDict({'body':'the'})) from zope.interface import Interface from opencore.models.interfaces import ICatalogSearch from repoze.lemonade.testing import registerContentFactory registerContentFactory(DummyContent, IDummyContent) testing.registerAdapter(ParseErrorSearch, (Interface), ICatalogSearch) result = self._callFUT(context, request) self.assertEqual(len(result['terms']), 0) self.assertEqual(len(result['results']), 0) self.assertEqual(result['error'], "Error: 'the' is nonsense") class GetBatchTests(unittest.TestCase): def setUp(self): cleanUp() def tearDown(self): cleanUp() def _callFUT(self, context, request): from opencore.views.search import get_batch return get_batch(context, request) def test_without_kind_with_terms(self): from webob.multidict import MultiDict from opencore.models.interfaces import ICatalogSearch testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) request = testing.DummyRequest( params=MultiDict({'body':'yo'})) context = testing.DummyModel() result = self._callFUT(context, request) self.assertEqual(result[0]['total'], 1) def test_without_kind_without_terms(self): from webob.multidict import MultiDict from opencore.models.interfaces import ICatalogSearch testing.registerAdapter(DummySearch, (Interface), ICatalogSearch) request = testing.DummyRequest(params=MultiDict({})) context = testing.DummyModel() result = self._callFUT(context, request) self.assertEqual(len(result), 2) def test_with_kind_with_body(self): from opencore.models.interfaces import IGroupSearchFactory from repoze.lemonade.testing import registerListItem from webob.multidict import MultiDict content = DummyContent() def search_factory(*arg, **kw): return DummySearchFactory(content) registerListItem(IGroupSearchFactory, search_factory, 'dummy1', title='Dummy1', sort_key=1) request = testing.DummyRequest( params=MultiDict({'body':'yo', 'kind':'dummy1'})) context = testing.DummyModel() result = self._callFUT(context, request) self.assertEqual(result[0]['total'], 1) def test_bad_kind_with_body(self): from webob.multidict import MultiDict from webob.exc import HTTPBadRequest request = testing.DummyRequest( params=MultiDict({'body':'yo', 'kind':'doesntexist'})) context = testing.DummyModel() self.assertRaises(HTTPBadRequest, self._callFUT, context, request) def test_with_kind_without_body(self): from opencore.models.interfaces import IGroupSearchFactory from repoze.lemonade.testing import registerListItem from webob.multidict import MultiDict def dummy_factory(context, request, term): def results(): return 0, [], None return results registerListItem(IGroupSearchFactory, dummy_factory, 'dummy1', title='Dummy1', sort_key=1) request = testing.DummyRequest( params=MultiDict({'kind':'dummy1'})) context = testing.DummyModel() result = self._callFUT(context, request) self.assertEqual(result, (None, ())) class MakeQueryTests(unittest.TestCase): def setUp(self): cleanUp() def tearDown(self): cleanUp() def _callFUT(self, params): from webob.multidict import MultiDict from opencore.views.search import make_query context = testing.DummyModel() request = testing.DummyRequest(params=MultiDict(params)) return make_query(context, request) def test_body_field(self): from repoze.lemonade.interfaces import IContent query, terms = self._callFUT({'body': 'yo'}) self.assertEqual(query, { 'texts': 'yo', 'interfaces': {'operator': 'or', 'query': []}, 'sort_index': 'texts', }) self.assertEqual(terms, ['yo']) def test_creator_field(self): from zope.interface import Interface from zope.interface import implements from opencore.models.interfaces import ICatalogSearch from opencore.models.interfaces import IProfile searched_for = {} class Profile: implements(IProfile) profile = Profile() profile.__name__ = 'admin' class ProfileSearch: def __init__(self, context): pass def __call__(self, **kw): searched_for.update(kw) return 1, [1], lambda x: profile testing.registerAdapter(ProfileSearch, (Interface), ICatalogSearch) query, terms = self._callFUT({'creator': 'Ad'}) self.assertEquals(searched_for, {'texts': 'Ad', 'interfaces': [IProfile]}) from repoze.lemonade.interfaces import IContent self.assertEqual(query, { 'creator': {'query': ['admin'], 'operator': 'or'}, 'interfaces': {'operator': 'or', 'query': []}, }) self.assertEqual(terms, ['Ad']) def test_types_field(self): from opencore.models.interfaces import IComment from repoze.lemonade.testing import registerContentFactory registerContentFactory(DummyContent, IComment) query, terms = self._callFUT( {'types': 'opencore_models_interfaces_IComment'}) self.assertEqual(query, {'interfaces': {'query': [IComment], 'operator': 'or'}}) self.assertEqual(terms, ['Comment']) def test_tags_field(self): from repoze.lemonade.interfaces import IContent query, terms = self._callFUT({'tags': 'a'}) self.assertEqual(query, { 'interfaces': {'operator': 'or', 'query': []}, 'tags': {'query': ['a'], 'operator': 'or'}, }) self.assertEqual(terms, ['a']) def test_year_field(self): from repoze.lemonade.interfaces import IContent query, terms = self._callFUT({'year': '1990'}) self.assertEqual(query, {'creation_date': (6311520, 6626483), 'interfaces': {'operator': 'or', 'query': []}}) self.assertEqual(terms, [1990]) class AdvancedSearchViewTests(unittest.TestCase): def setUp(self): cleanUp() def tearDown(self): cleanUp() def test_advancedsearch_view(self): from opencore.models.interfaces import IComment from repoze.lemonade.testing import registerContentFactory registerContentFactory(DummyContent, IComment) context = testing.DummyModel() request = testing.DummyRequest() from opencore.views.api import get_template_api request.api = get_template_api(context, request) from opencore.views.search import advancedsearch_view result = advancedsearch_view(context, request) self.assertEqual( result['post_url'], 'http://example.com/searchresults.html') self.assertEqual(result['type_choices'], [ ('Comment', 'opencore_models_interfaces_IComment'), ]) self.assertFalse('2006' in result['year_choices']) self.assertTrue('2007' in result['year_choices']) class DummySearch: def __init__(self, context): pass def __call__(self, **kw): return 1, [1], lambda x: dummycontent class DummyEmptySearch: def __init__(self, context): pass def __call__(self, **kw): return 0, [], lambda x: None class ParseErrorSearch: def __init__(self, context): pass def __call__(self, texts, **kw): from zope.index.text.parsetree import ParseError raise ParseError("'%s' is nonsense" % texts) class DummySearchFactory: def __init__(self, content): self.content = content def get_batch(self): return {'entries':[self.content], 'total':1} class IDummyContent(Interface): taggedValue('name', 'dummy') class DummyContent(testing.DummyModel): implements(IDummyContent) dummycontent = DummyContent()
amarandon/opencore
opencore/views/tests/test_search.py
Python
gpl-2.0
17,417
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Input pipeline tests.""" from absl.testing import parameterized import jax import tensorflow as tf import tensorflow_datasets as tfds from spin_spherical_cnns import input_pipeline from spin_spherical_cnns.configs import default class InputPipelineTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters("spherical_mnist/rotated", "spherical_mnist/canonical") def test_create_datasets_spherical_mnist(self, dataset): rng = jax.random.PRNGKey(42) config = default.get_config() config.dataset = dataset config.per_device_batch_size = 8 config.eval_pad_last_batch = False dataset_loaded = False if not dataset_loaded: splits = input_pipeline.create_datasets(config, rng) self.assertEqual(splits.info.features["label"].num_classes, 10) self.assertEqual(splits.train.element_spec["input"].shape, (1, 8, 64, 64, 1, 1)) self.assertEqual(splits.train.element_spec["label"].shape, (1, 8)) self.assertEqual(splits.validation.element_spec["input"].shape, (1, 8, 64, 64, 1, 1)) self.assertEqual(splits.validation.element_spec["label"].shape, (1, 8)) self.assertEqual(splits.test.element_spec["input"].shape, (1, 8, 64, 64, 1, 1)) self.assertEqual(splits.test.element_spec["label"].shape, (1, 8)) if __name__ == "__main__": tf.test.main()
google-research/google-research
spin_spherical_cnns/input_pipeline_test.py
Python
apache-2.0
2,021
""" Handles setting up voters so an election can be called """ import logging import socket import threading import time import SocketServer from .config import Config from .fle import FastLeaderElection from .serialization import read_string, write_string from .state import State from .vote import Vote class Voter(threading.Thread): """ A peer receives connections from peers w/ > id and connects to peers w/ a lower id. It then sends & receives votes until a leader is elected. """ class ServerHandler(SocketServer.BaseRequestHandler): def handle(self): """ loop & exchange votes w/ the remote peer's vote TODO: check if a connection exists for this peer & reject if so """ myid = self.server.voter.config.myid voter = self.server.voter self.request.settimeout(10) while voter.running: try: data = read_string(self.request) except socket.timeout: # that's ok, just try again continue if data is None: logging.error("client went away") break try: othervote = Vote.parse(data) logging.info("received vote from client: %s", othervote) voter.update_vote(othervote) except ValueError: logging.error("badly serialized vote: %s", data) break self.request.sendall(write_string(voter.vote)) class Server(SocketServer.ThreadingMixIn, SocketServer.TCPServer): allow_reuse_address = True voter = None class Client(threading.Thread): """ handles connection to a remote peer """ TIMEOUT = 5 def __init__(self, voter, pconfig): super(Voter.Client, self).__init__() self.setDaemon(True) self.running = False self.voter = voter self.pconfig = pconfig self.myid = voter.config.myid self.start() def run(self): """ main loop """ logging.info("Connecting to peer %d (myid=%d)", self.pconfig.peer_id, self.myid) self.running = True timeout = Voter.Client.TIMEOUT endpoint = self.pconfig.election_endpoint voter = self.voter while self.running: # first, lets connect try: sock = socket.create_connection(endpoint, timeout) except socket.error as se: logging.error("connection error: %s", se) time.sleep(3) continue # next, send out vote every 60 secs while self.running: try: sock.sendall(write_string(voter.vote)) data = read_string(sock) if data is None: logging.error("server went away") our_vote_changed = False try: othervote = Vote.parse(data) logging.info("received vote from server: %s", othervote) our_vote_changed = voter.update_vote(othervote) except ValueError: logging.error("badly serialized vote: %s", data) sock.close() break # if our vote changed, don't sleep! send it out immediately if not our_vote_changed: # sleep for 60 seconds, but in small bits to check if we are still running for _ in xrange(0, 600): if not self.running: break time.sleep(0.1) except socket.error as se: logging.error("failed to read/write: %s", se) sock.close() break logging.info("exiting Voter.Client's main loop") def __init__(self, confs, zxid=0x0): """ parse conf """ super(Voter, self).__init__() self.setDaemon(True) self.running = False self.config = Config.parse(confs) self.state = State.LOOKING self.zxid = zxid # initially, we vote for ourselves myid = self.config.myid self.fle_lock = threading.Lock() self.fle = FastLeaderElection(self.config.members) self.fle.update( Vote(self.config.myid, self.state, self.config.myid, self.zxid) ) self.start() @property def vote(self): """ this voter's vote """ return self.fle.get(self.config.myid) def update_vote(self, othervote): """ update the vote (and check if our vote needs to change) """ assert othervote.myid != self.config.myid self.fle.update(othervote) # should our vote change? with self.fle_lock: if othervote > self.vote: newvote = Vote(self.vote.myid, self.state, othervote.proposed_id, othervote.zxid) self.fle.update(newvote) return True return False @property def leader_id(self): """ the elected leader, if any """ return self.fle.leader_id def run(self): self.running = True server = Voter.Server(self.config.election_endpoint, Voter.ServerHandler) server.voter = self ip, port = server.server_address self.name = "Voter({}:{})".format(ip, port) server_thread = threading.Thread(target=server.serve_forever) server_thread.name = "VoterServer({}:{})".format(ip, port) server_thread.daemon = True server_thread.start() logging.info("Server loop running in thread: %s", server_thread.name) clients = [] for pconfig in self.config.peers: if self.config.myid > pconfig.peer_id: clients.append(Voter.Client(self, pconfig)) while self.running: time.sleep(0.5) # shutdown for client in clients: client.running = False while client.isAlive(): time.sleep(0.1) server.shutdown() server = None
rgs1/pyzab
pyzab/voter.py
Python
apache-2.0
6,612
""" Interface for Cobbler's XMLRPC API(s). there are two: a read-only API that koan uses a read-write API that requires logins Copyright 2007-2008, Red Hat, Inc Michael DeHaan <mdehaan@redhat.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ import sys import socket import time import os import base64 import SimpleXMLRPCServer import xmlrpclib import random import stat import base64 import fcntl import string import traceback import glob import sub_process as subprocess import api as cobbler_api import utils from cexceptions import * import item_distro import item_profile import item_system import item_repo import item_image from utils import * from utils import _ # FIXME: make configurable? TOKEN_TIMEOUT = 60*60 # 60 minutes CACHE_TIMEOUT = 10*60 # 10 minutes TOKEN_CACHE = {} # ********************************************************************* # ********************************************************************* class CobblerXMLRPCInterface: """ This is the interface used for all XMLRPC methods, for instance, as used by koan or CobblerWeb note: public methods take an optional parameter token that is just here for consistancy with the ReadWrite API. Read write operations do require the token. """ def __init__(self,api,enable_auth_if_relevant): self.api = api self.auth_enabled = enable_auth_if_relevant self.logger = self.api.logger self.token_cache = TOKEN_CACHE self.object_cache = {} self.timestamp = self.api.last_modified_time() random.seed(time.time()) def __sorter(self,a,b): return cmp(a["name"],b["name"]) def last_modified_time(self): """ Return the time of the last modification to any object so that we can tell if we need to check for any other modified objects via more specific calls. """ return self.api.last_modified_time() def update(self, token=None): # no longer neccessary return True def internal_cache_update(self, collection_type, name): self._log("DEBUG: adding to %s, %s" % (collection_type, name)) if name is None: return False data = self.api.deserialize_item_raw(collection_type, name) if collection_type == "distro": obj = item_distro.Distro(self.api._config) obj.from_datastruct(data) self.api.add_distro(obj, False, False) if collection_type == "profile": subprofile = False if data.has_key("parent") and data["parent"] != "": subprofile = True obj = item_profile.Profile(self.api._config, is_subobject = subprofile) obj.from_datastruct(data) self.api.add_profile(obj, False, False) if collection_type == "system": obj = item_system.System(self.api._config) obj.from_datastruct(data) self.api.add_system(obj, False, False, False) if collection_type == "repo": obj = item_repo.Repo(self.api._config) obj.from_datastruct(data) self.api.add_repo(obj, False, False) if collection_type == "image": obj = item_image.Image(self.api._config) obj.from_datastruct(data) self.api.add_image(obj, False, False) return True def internal_cache_remove(self, collection_type, name): self._log("DEBUG: removing from %s, %s" % (collection_type, name)) data = self.api.deserialize_item_raw(collection_type, name) if data is None: if collection_type == "distro": self.api.remove_distro(name, delete=False, recursive=True, with_triggers=False) if collection_type == "profile": self.api.remove_profile(name, delete=False, recursive=True, with_triggers=False) if collection_type == "system": self.api.remove_system(name, delete=False, recursive=True, with_triggers=False) if collection_type == "repo": self.api.remove_repo(name, delete=False, recursive=True, with_triggers=False) if collection_type == "image": self.api.remove_image(name, delete=False, recursive=True, with_triggers=False) return True def ping(self): return True def get_user_from_token(self,token): if not TOKEN_CACHE.has_key(token): raise CX(_("invalid token: %s") % token) else: return self.token_cache[token][1] def _log(self,msg,user=None,token=None,name=None,object_id=None,attribute=None,debug=False,error=False): # add the user editing the object, if supplied m_user = "?" if user is not None: m_user = user if token is not None: try: m_user = self.get_user_from_token(token) except: # invalid or expired token? m_user = "???" msg = "REMOTE %s; user(%s)" % (msg, m_user) if name is not None: msg = "%s; name(%s)" % (msg, name) if object_id is not None: msg = "%s; object_id(%s)" % (msg, object_id) # add any attributes being modified, if any if attribute: msg = "%s; attribute(%s)" % (msg, attribute) # log to the correct logger if error: logger = self.logger.error elif debug: logger = self.logger.debug else: logger = self.logger.info logger(msg) def get_size(self,collection_name,**rest): """ Returns the number of entries in a collection (but not the actual collection) for WUI/TUI interfaces that want to paginate the results. """ data = self.__get_all(collection_name) return len(data) def __get_all(self,collection_name,page=None,results_per_page=None): """ Helper method to return all data to the WebUI or another caller without going through the process of loading all the data into objects and recalculating. Supports pagination for WUI or TUI based interfaces. """ # FIXME: a global lock or module around data access loading # would be useful for non-db backed storage if collection_name == "settings": data = self.api.deserialize_raw("settings") return self.xmlrpc_hacks(data) else: contents = [] if collection_name.startswith("distro"): contents = self.api.distros() elif collection_name.startswith("profile"): contents = self.api.profiles() elif collection_name.startswith("system"): contents = self.api.systems() elif collection_name.startswith("repo"): contents = self.api.repos() elif collection_name.startswith("image"): contents = self.api.images() else: raise CX("internal error, collection name is %s" % collection_name) # FIXME: speed this up data = contents.to_datastruct_with_cache() total_items = len(data) data.sort(self.__sorter) if page is not None and results_per_page is not None: page = int(page) results_per_page = int(results_per_page) if page < 0: return [] if results_per_page <= 0: return [] start_point = (results_per_page * page) end_point = (results_per_page * page) + results_per_page if start_point > total_items: start_point = total_items - 1 # correct ??? if end_point > total_items: end_point = total_items data = self.xmlrpc_hacks(data[start_point:end_point]) return self.xmlrpc_hacks(data) def get_kickstart_templates(self,token=None,**rest): """ Returns all of the kickstarts that are in use by the system. """ self._log("get_kickstart_templates",token=token) #self.check_access(token, "get_kickstart_templates") return utils.get_kickstart_templates(self.api) def is_kickstart_in_use(self,ks,token=None,**rest): self._log("is_kickstart_in_use",token=token) for x in self.api.profiles(): if x.kickstart is not None and x.kickstart == ks: return True for x in self.api.systems(): if x.kickstart is not None and x.kickstart == ks: return True return False def generate_kickstart(self,profile=None,system=None,REMOTE_ADDR=None,REMOTE_MAC=None,**rest): self._log("generate_kickstart") return self.api.generate_kickstart(profile,system) def get_settings(self,token=None,**rest): """ Return the contents of /etc/cobbler/settings, which is a hash. """ self._log("get_settings",token=token) results = self.api.settings().to_datastruct() self._log("my settings are: %s" % results) return self.xmlrpc_hacks(results) def get_repo_config_for_profile(self,profile_name,**rest): """ Return the yum configuration a given profile should use to obtain all of it's cobbler associated repos. """ obj = self.api.find_profile(profile_name) if obj is None: return "# object not found: %s" % profile_name return self.api.get_repo_config_for_profile(obj) def get_repo_config_for_system(self,system_name,**rest): """ Return the yum configuration a given profile should use to obtain all of it's cobbler associated repos. """ obj = self.api.find_system(system_name) if obj is None: return "# object not found: %s" % system_name return self.api.get_repo_config_for_system(obj) def get_template_file_for_profile(self,profile_name,path,**rest): """ Return the templated file requested for this profile """ obj = self.api.find_profile(profile_name) if obj is None: return "# object not found: %s" % profile_name return self.api.get_template_file_for_profile(obj,path) def get_template_file_for_system(self,system_name,path,**rest): """ Return the templated file requested for this system """ obj = self.api.find_system(system_name) if obj is None: return "# object not found: %s" % system_name return self.api.get_template_file_for_system(obj,path) def register_new_system(self,info,token=None,**rest): """ If register_new_installs is enabled in settings, this allows /usr/bin/cobbler-register (part of the koan package) to add new system records remotely if they don't already exist. There is a cobbler_register snippet that helps with doing this automatically for new installs but it can also be used for existing installs. See "AutoRegistration" on the Wiki. """ enabled = self.api.settings().register_new_installs if not str(enabled) in [ "1", "y", "yes", "true" ]: raise CX("registration is disabled in cobbler settings") # validate input name = info.get("name","") profile = info.get("profile","") hostname = info.get("hostname","") interfaces = info.get("interfaces",{}) ilen = len(interfaces.keys()) if name == "": raise CX("no system name submitted") if profile == "": raise CX("profile not submitted") if ilen == 0: raise CX("no interfaces submitted") if ilen >= 64: raise CX("too many interfaces submitted") # validate things first name = info.get("name","") inames = interfaces.keys() if self.api.find_system(name=name): raise CX("system name conflicts") if hostname != "" and self.api.find_system(hostname=hostname): raise CX("hostname conflicts") for iname in inames: mac = info["interfaces"][iname].get("mac_address","") ip = info["interfaces"][iname].get("ip_address","") if ip.find("/") != -1: raise CX("no CIDR ips are allowed") if mac == "": raise CX("missing MAC address for interface %s" % iname) if mac != "": system = self.api.find_system(mac_address=mac) if system is not None: raise CX("mac conflict: %s" % mac) if ip != "": system = self.api.find_system(ip_address=ip) if system is not None: raise CX("ip conflict: %s"% ip) # looks like we can go ahead and create a system now obj = self.api.new_system() obj.set_profile(profile) obj.set_name(name) if hostname != "": obj.set_hostname(hostname) obj.set_netboot_enabled(False) for iname in inames: mac = info["interfaces"][iname].get("mac_address","") ip = info["interfaces"][iname].get("ip_address","") netmask = info["interfaces"][iname].get("netmask","") obj.set_mac_address(mac, iname) if hostname != "": obj.set_dns_name(hostname, iname) if ip != "": obj.set_ip_address(ip, iname) if netmask != "": obj.set_subnet(netmask, iname) self.api.add_system(obj) return 0 def disable_netboot(self,name,token=None,**rest): """ This is a feature used by the pxe_just_once support, see manpage. Sets system named "name" to no-longer PXE. Disabled by default as this requires public API access and is technically a read-write operation. """ self._log("disable_netboot",token=token,name=name) # used by nopxe.cgi if not self.api.settings().pxe_just_once: # feature disabled! return False systems = self.api.systems() obj = systems.find(name=name) if obj == None: # system not found! return False obj.set_netboot_enabled(0) # disabling triggers and sync to make this extremely fast. systems.add(obj,save=True,with_triggers=False,with_sync=False,quick_pxe_update=True) return True def upload_log_data(self, sys_name, file, size, offset, data, token=None,**rest): """ This is a logger function used by the "anamon" logging system to upload all sorts of auxilliary data from Anaconda. As it's a bit of a potential log-flooder, it's off by default and needs to be enabled in /etc/cobbler/settings. """ self._log("upload_log_data (file: '%s', size: %s, offset: %s)" % (file, size, offset), token=token, name=sys_name) # Check if enabled in self.api.settings() if not self.api.settings().anamon_enabled: # feature disabled! return False # Find matching system record systems = self.api.systems() obj = systems.find(name=sys_name) if obj == None: # system not found! self._log("upload_log_data - system '%s' not found" % sys_name, token=token, name=sys_name) return False return self.__upload_file(sys_name, file, size, offset, data) def __upload_file(self, sys_name, file, size, offset, data): ''' system: the name of the system name: the name of the file size: size of contents (bytes) data: base64 encoded file contents offset: the offset of the chunk files can be uploaded in chunks, if so the size describes the chunk rather than the whole file. the offset indicates where the chunk belongs the special offset -1 is used to indicate the final chunk''' contents = base64.decodestring(data) del data if offset != -1: if size is not None: if size != len(contents): return False #XXX - have an incoming dir and move after upload complete # SECURITY - ensure path remains under uploadpath tt = string.maketrans("/","+") fn = string.translate(file, tt) if fn.startswith('..'): raise CX(_("invalid filename used: %s") % fn) # FIXME ... get the base dir from cobbler settings() udir = "/var/log/cobbler/anamon/%s" % sys_name if not os.path.isdir(udir): os.mkdir(udir, 0755) fn = "%s/%s" % (udir, fn) try: st = os.lstat(fn) except OSError, e: if e.errno == errno.ENOENT: pass else: raise else: if not stat.S_ISREG(st.st_mode): raise CX(_("destination not a file: %s") % fn) fd = os.open(fn, os.O_RDWR | os.O_CREAT, 0644) # log_error("fd=%r" %fd) try: if offset == 0 or (offset == -1 and size == len(contents)): #truncate file fcntl.lockf(fd, fcntl.LOCK_EX|fcntl.LOCK_NB) try: os.ftruncate(fd, 0) # log_error("truncating fd %r to 0" %fd) finally: fcntl.lockf(fd, fcntl.LOCK_UN) if offset == -1: os.lseek(fd,0,2) else: os.lseek(fd,offset,0) #write contents fcntl.lockf(fd, fcntl.LOCK_EX|fcntl.LOCK_NB, len(contents), 0, 2) try: os.write(fd, contents) # log_error("wrote contents") finally: fcntl.lockf(fd, fcntl.LOCK_UN, len(contents), 0, 2) if offset == -1: if size is not None: #truncate file fcntl.lockf(fd, fcntl.LOCK_EX|fcntl.LOCK_NB) try: os.ftruncate(fd, size) # log_error("truncating fd %r to size %r" % (fd,size)) finally: fcntl.lockf(fd, fcntl.LOCK_UN) finally: os.close(fd) return True def run_install_triggers(self,mode,objtype,name,ip,token=None,**rest): """ This is a feature used to run the pre/post install triggers. See CobblerTriggers on Wiki for details """ self._log("run_install_triggers",token=token) if mode != "pre" and mode != "post": return False if objtype != "system" and objtype !="profile": return False # the trigger script is called with name,mac, and ip as arguments 1,2, and 3 # we do not do API lookups here because they are rather expensive at install # time if reinstalling all of a cluster all at once. # we can do that at "cobbler check" time. utils.run_triggers(self.api, None, "/var/lib/cobbler/triggers/install/%s/*" % mode, additional=[objtype,name,ip]) return True def version(self,token=None,**rest): """ Return the cobbler version for compatibility testing with remote applications. See api.py for documentation. """ self._log("version",token=token) return self.api.version() def extended_version(self,token=None,**rest): """ Returns the full dictionary of version information. See api.py for documentation. """ self._log("version",token=token) return self.api.version(extended=True) def get_distros(self,page=None,results_per_page=None,token=None,**rest): """ Returns all cobbler distros as an array of hashes. """ self._log("get_distros",token=token) return self.__get_all("distro",page,results_per_page) def __find(self,find_function,criteria={},expand=False,token=None): name = criteria.get("name",None) if name is not None: del criteria["name"] if not expand: data = [x.name for x in find_function(name, True, True, **criteria)] else: data = [x.to_datastruct_with_cache() for x in find_function(name, True, True, **criteria)] return self.xmlrpc_hacks(data) def find_distro(self,criteria={},expand=False,token=None,**rest): self._log("find_distro", token=token) # FIXME DEBUG self._log(criteria) data = self.__find(self.api.find_distro,criteria,expand=expand,token=token) # FIXME DEBUG self._log(data) return data def find_profile(self,criteria={},expand=False,token=None,**rest): self._log("find_profile", token=token) data = self.__find(self.api.find_profile,criteria,expand=expand,token=token) return data def find_system(self,criteria={},expand=False,token=None,**rest): self._log("find_system", token=token) data = self.__find(self.api.find_system,criteria,expand=expand,token=token) return data def find_repo(self,criteria={},expand=False,token=None,**rest): self._log("find_repo", token=token) data = self.__find(self.api.find_repo,criteria,expand=expand,token=token) return data def find_image(self,criteria={},expand=False,token=None,**rest): self._log("find_image", token=token) data = self.__find(self.api.find_image,criteria,expand=expand,token=token) return data def get_distros_since(self,mtime): """ Return all of the distro objects that have been modified after mtime. """ data = self.api.get_distros_since(mtime, collapse=True) return self.xmlrpc_hacks(data) def get_profiles_since(self,mtime): """ See documentation for get_distros_since """ data = self.api.get_profiles_since(mtime, collapse=True) return self.xmlrpc_hacks(data) def get_systems_since(self,mtime): """ See documentation for get_distros_since """ data = self.api.get_systems_since(mtime, collapse=True) return self.xmlrpc_hacks(data) def get_repos_since(self,mtime): """ See documentation for get_distros_since """ data = self.api.get_repos_since(mtime, collapse=True) return self.xmlrpc_hacks(data) def get_images_since(self,mtime): """ See documentation for get_distros_since """ data = self.api.get_images_since(mtime, collapse=True) return self.xmlrpc_hacks(data) def get_profiles(self,page=None,results_per_page=None,token=None,**rest): """ Returns all cobbler profiles as an array of hashes. """ self._log("get_profiles",token=token) return self.__get_all("profile",page,results_per_page) def get_systems(self,page=None,results_per_page=None,token=None,**rest): """ Returns all cobbler systems as an array of hashes. """ self._log("get_systems",token=token) return self.__get_all("system",page,results_per_page) def get_repos(self,page=None,results_per_page=None,token=None,**rest): """ Returns all cobbler repos as an array of hashes. """ self._log("get_repos",token=token) return self.__get_all("repo",page,results_per_page) def get_repos_compatible_with_profile(self,profile=None,token=None,**rest): """ Get repos that can be used with a given profile name """ self._log("get_repos_compatible_with_profile",token=token) profile = self.api.find_profile(profile) if profile is None: return -1 results = [] distro = profile.get_conceptual_parent() repos = self.get_repos() for r in repos: # there be dragons! # accept all repos that are src/noarch # but otherwise filter what repos are compatible # with the profile based on the arch of the distro. if r["arch"] is None or r["arch"] in [ "", "noarch", "src" ]: results.append(r) else: # some backwards compatibility fuzz # repo.arch is mostly a text field # distro.arch is i386/x86_64/ia64/s390x/etc if r["arch"] in [ "i386", "x86", "i686" ]: if distro.arch in [ "i386", "x86" ]: results.append(r) elif r["arch"] in [ "x86_64" ]: if distro.arch in [ "x86_64" ]: results.append(r) elif r["arch"].startswith("s390"): if distro.arch in [ "s390x" ]: results.append(r) else: if distro.arch == r["arch"]: results.append(r) return results def get_images(self,page=None,results_per_page=None,token=None,**rest): """ Returns all cobbler images as an array of hashes. """ self._log("get_images",token=token) return self.__get_all("image",page,results_per_page) def __get_specific(self,collection_type,name,flatten=False): """ Internal function to return a hash representation of a given object if it exists, otherwise an empty hash will be returned. """ result = self.api.deserialize_item_raw(collection_type, name) if result is None: return {} if flatten: result = utils.flatten(result) return self.xmlrpc_hacks(result) def get_distro(self,name,flatten=False,token=None,**rest): """ Returns the distro named "name" as a hash. """ self._log("get_distro",token=token,name=name) return self.__get_specific("distro",name,flatten=flatten) def get_profile(self,name,flatten=False,token=None,**rest): """ Returns the profile named "name" as a hash. """ self._log("get_profile",token=token,name=name) return self.__get_specific("profile",name,flatten=flatten) def get_system(self,name,flatten=False,token=None,**rest): """ Returns the system named "name" as a hash. """ self._log("get_system",name=name,token=token) return self.__get_specific("system",name,flatten=flatten) # this is used by the puppet external nodes feature def find_system_by_dns_name(self,dns_name): # FIXME: implement using api.py's find API # and expose generic finds for other methods # WARNING: this function is /not/ expected to stay in cobbler long term systems = self.get_systems() for x in systems: for y in x["interfaces"]: if x["interfaces"][y]["dns_name"] == dns_name: name = x["name"] return self.get_system_for_koan(name) return {} def get_repo(self,name,flatten=False,token=None,**rest): """ Returns the repo named "name" as a hash. """ self._log("get_repo",name=name,token=token) return self.__get_specific("repo",name,flatten=flatten) def get_image(self,name,flatten=False,token=None,**rest): """ Returns the repo named "name" as a hash. """ self._log("get_image",name=name,token=token) return self.__get_specific("image",name,flatten=flatten) def get_distro_as_rendered(self,name,token=None,**rest): """ Return the distribution as passed through cobbler's inheritance/graph engine. Shows what would be installed, not the input data. """ return self.get_distro_for_koan(self,name) def get_distro_for_koan(self,name,token=None,**rest): """ Same as get_distro_as_rendered. """ self._log("get_distro_as_rendered",name=name,token=token) obj = self.api.find_distro(name=name) if obj is not None: return self.xmlrpc_hacks(utils.blender(self.api, True, obj)) return self.xmlrpc_hacks({}) def get_profile_as_rendered(self,name,token=None,**rest): """ Return the profile as passed through cobbler's inheritance/graph engine. Shows what would be installed, not the input data. """ return self.get_profile_for_koan(name,token) def get_profile_for_koan(self,name,token=None,**rest): """ Same as get_profile_as_rendered """ self._log("get_profile_as_rendered", name=name, token=token) obj = self.api.find_profile(name=name) if obj is not None: return self.xmlrpc_hacks(utils.blender(self.api, True, obj)) return self.xmlrpc_hacks({}) def get_system_as_rendered(self,name,token=None,**rest): """ Return the system as passed through cobbler's inheritance/graph engine. Shows what would be installed, not the input data. """ return self.get_system_for_koan(self,name) def get_system_for_koan(self,name,token=None,**rest): """ Same as get_system_as_rendered. """ self._log("get_system_as_rendered",name=name,token=token) obj = self.api.find_system(name=name) if obj is not None: return self.xmlrpc_hacks(utils.blender(self.api, True, obj)) return self.xmlrpc_hacks({}) def get_repo_as_rendered(self,name,token=None,**rest): """ Return the repo as passed through cobbler's inheritance/graph engine. Shows what would be installed, not the input data. """ return self.get_repo_for_koan(self,name) def get_repo_for_koan(self,name,token=None,**rest): """ Same as get_repo_as_rendered. """ self._log("get_repo_as_rendered",name=name,token=token) obj = self.api.find_repo(name=name) if obj is not None: return self.xmlrpc_hacks(utils.blender(self.api, True, obj)) return self.xmlrpc_hacks({}) def get_image_as_rendered(self,name,token=None,**rest): """ Return the image as passed through cobbler's inheritance/graph engine. Shows what would be installed, not the input data. """ return self.get_image_for_koan(self,name) def get_image_for_koan(self,name,token=None,**rest): """ Same as get_image_as_rendered. """ self._log("get_image_as_rendered",name=name,token=token) obj = self.api.find_image(name=name) if obj is not None: return self.xmlrpc_hacks(utils.blender(self.api, True, obj)) return self.xmlrpc_hacks({}) def get_random_mac(self,token=None,**rest): """ Wrapper for utils.get_random_mac Used in the webui """ self._log("get_random_mac",token=None) return utils.get_random_mac(self.api) def xmlrpc_hacks(self,data): """ Convert None in XMLRPC to just '~' to make extra sure a client that can't allow_none can deal with this. ALSO: a weird hack ensuring that when dicts with integer keys (or other types) are transmitted with string keys. """ if data is None: data = '~' elif type(data) == list: data = [ self.xmlrpc_hacks(x) for x in data ] elif type(data) == dict: data2 = {} for key in data.keys(): keydata = data[key] data2[str(key)] = self.xmlrpc_hacks(data[key]) return data2 return data def get_status(self,**rest): """ Returns the same information as `cobbler status` """ return self.api.status() ###### # READ WRITE METHODS BELOW REQUIRE A TOKEN, use login() # TO OBTAIN ONE ###### def __get_random(self,length): urandom = open("/dev/urandom") b64 = base64.encodestring(urandom.read(length)) urandom.close() b64 = b64.replace("\n","") return b64 def __make_token(self,user): """ Returns a new random token. """ b64 = self.__get_random(25) self.token_cache[b64] = (time.time(), user) return b64 def __invalidate_expired_tokens(self): """ Deletes any login tokens that might have expired. """ timenow = time.time() for token in self.token_cache.keys(): (tokentime, user) = self.token_cache[token] if (timenow > tokentime + TOKEN_TIMEOUT): self._log("expiring token",token=token,debug=True) del self.token_cache[token] # and also expired objects for oid in self.object_cache.keys(): (tokentime, entry) = self.object_cache[oid] if (timenow > tokentime + CACHE_TIMEOUT): del self.object_cache[oid] def __validate_user(self,input_user,input_password): """ Returns whether this user/pass combo should be given access to the cobbler read-write API. For the system user, this answer is always "yes", but it is only valid for the socket interface. FIXME: currently looks for users in /etc/cobbler/auth.conf Would be very nice to allow for PAM and/or just Kerberos. """ return self.api.authenticate(input_user,input_password) def __validate_token(self,token): """ Checks to see if an API method can be called when the given token is passed in. Updates the timestamp of the token automatically to prevent the need to repeatedly call login(). Any method that needs access control should call this before doing anything else. """ self.__invalidate_expired_tokens() #if not self.auth_enabled: # user = self.get_user_from_token(token) # # old stuff, preserving for future usage # # if user == "<system>": # # self.token_cache[token] = (time.time(), user) # update to prevent timeout # # return True if self.token_cache.has_key(token): user = self.get_user_from_token(token) if user == "<system>": # system token is only valid over Unix socket return False self.token_cache[token] = (time.time(), user) # update to prevent timeout return True else: self._log("invalid token",token=token) raise CX(_("invalid token: %s" % token)) def __name_to_object(self,resource,name): if resource.find("distro") != -1: return self.api.find_distro(name) if resource.find("profile") != -1: return self.api.find_profile(name) if resource.find("system") != -1: return self.api.find_system(name) if resource.find("repo") != -1: return self.api.find_repo(name) return None def check_access_no_fail(self,token,resource,arg1=None,arg2=None): """ This is called by the WUI to decide whether an element is editable or not. It differs form check_access in that it is supposed to /not/ log the access checks (TBA) and does not raise exceptions. """ need_remap = False for x in [ "distro", "profile", "system", "repo" ]: if arg1 is not None and resource.find(x) != -1: need_remap = True break if need_remap: # we're called with an object name, but need an object arg1 = self.__name_to_object(resource,arg1) try: self.check_access(token,resource,arg1,arg2) return True except: utils.log_exc(self.logger) return False def check_access(self,token,resource,arg1=None,arg2=None): validated = self.__validate_token(token) user = self.get_user_from_token(token) if not self.auth_enabled: # for public read-only XMLRPC, permit access self._log("permitting read-only access") return True rc = self.__authorize(token,resource,arg1,arg2) self._log("authorization result: %s" % rc) if not rc: raise CX(_("authorization failure for user %s" % user)) return rc def login(self,login_user,login_password): """ Takes a username and password, validates it, and if successful returns a random login token which must be used on subsequent method calls. The token will time out after a set interval if not used. Re-logging in permitted. """ self._log("login attempt", user=login_user) if self.__validate_user(login_user,login_password): token = self.__make_token(login_user) self._log("login succeeded",user=login_user) return token else: self._log("login failed",user=login_user) raise CX(_("login failed: %s") % login_user) def __authorize(self,token,resource,arg1=None,arg2=None): user = self.get_user_from_token(token) args = [ resource, arg1, arg2 ] self._log("calling authorize for resource %s" % args, user=user) rc = self.api.authorize(user,resource,arg1,arg2) if rc: return True else: raise CX(_("user does not have access to resource: %s") % resource) def logout(self,token): """ Retires a token ahead of the timeout. """ self._log("logout", token=token) if self.token_cache.has_key(token): del self.token_cache[token] return True return False def token_check(self,token): """ This is a demo function that does not return anything useful. """ self.__validate_token(token) return True def sync(self,token): """ Run sync code, which should complete before XMLRPC timeout. We can't do reposync this way. Would be nice to send output over AJAX/other later. """ # FIXME: performance self._log("sync",token=token) self.check_access(token,"sync") return self.api.sync() def hardlink(self,token): """ Hardlink trees and repos to save disk space. Caution: long running op. Until we have a task engine, this may lock other folks out of the web app, so use wisely. It may also be timeout prone. """ self._log("hardlink",token=token) self.check_access(token,"hardlink") return self.api.hardlink() def new_distro(self,token): """ Creates a new (unconfigured) distro object. It works something like this: token = remote.login("user","pass") distro_id = remote.new_distro(token) remote.modify_distro(distro_id, 'name', 'example-distro', token) remote.modify_distro(distro_id, 'kernel', '/foo/vmlinuz', token) remote.modify_distro(distro_id, 'initrd', '/foo/initrd.img', token) remote.save_distro(distro_id, token) """ self._log("new_distro",token=token) self.check_access(token,"new_distro") d = item_distro.Distro(self.api._config) key = "___NEW___distro::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), d) return key def new_profile(self,token): """ Creates a new (unconfigured) profile object. See the documentation for new_distro as it works exactly the same. """ self._log("new_profile",token=token) self.check_access(token,"new_profile") p = item_profile.Profile(self.api._config) key = "___NEW___profile::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), p) return key def new_subprofile(self,token): """ A subprofile is a profile that inherits directly from another profile, not a distro. In addition to the normal profile setup, setting the parent variable to the name of an existing profile is also mandatory. Systems can be assigned to subprofiles just like they were regular profiles. The same XMLRPC API methods work on them as profiles also. """ self._log("new_subprofile",token=token) self.check_access(token,"new_subprofile") p = item_profile.Profile(self.api._config,is_subobject=True) key = "___NEW___profile::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), p) return key def new_system(self,token): """ Creates a new (unconfigured) system object. See the documentation for new_distro as it works exactly the same. """ self._log("new_system",token=token) self.check_access(token,"new_system") s = item_system.System(self.api._config) key = "___NEW___system::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), s) return key def new_repo(self,token): """ Creates a new (unconfigured) repo object. See the documentation for new_distro as it works exactly the same. """ self._log("new_repo",token=token) self.check_access(token,"new_repo") r = item_repo.Repo(self.api._config) key = "___NEW___repo::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), r) return key def new_image(self,token): """ Creates a new (unconfigured) image object. See the documentation for new_distro as it works exactly the same. """ self._log("new_image",token=token) self.check_access(token,"new_image") i = item_image.Image(self.api._config) key = "___NEW___image::%s" % self.__get_random(25) self.object_cache[key] = (time.time(), i) return key def get_distro_handle(self,name,token=None): """ Given the name of an distro (or other search parameters), return an object id that can be passed in to modify_distro() or save_distro() commands. Raises an exception if no object can be matched. """ self._log("get_distro_handle",token=token,name=name) found = self.api.find_distro(name) return "distro::%s" % found.name def get_profile_handle(self,name,token=None): """ Given the name of a profile (or other search parameters), return an object id that can be passed in to modify_profile() or save_profile() commands. Raises an exception if no object can be matched. """ self._log("get_profile_handle",token=token,name=name) found = self.api.find_profile(name) return "profile::%s" % found.name def get_system_handle(self,name,token=None): """ Given the name of an system (or other search parameters), return an object id that can be passed in to modify_system() or save_system() commands. Raises an exception if no object can be matched. """ self._log("get_system_handle",name=name,token=token) found = self.api.find_system(name) return "system::%s" % found.name def get_repo_handle(self,name,token=None): """ Given the name of an repo (or other search parameters), return an object id that can be passed in to modify_repo() or save_repo() commands. Raises an exception if no object can be matched. """ self._log("get_repo_handle",name=name,token=token) found = self.api.find_repo(name) return "repo::%s" % found.name def get_image_handle(self,name,token=None): """ Given the name of an image (or other search parameters), return an object id that can be passed in to modify_image() or save_image() commands. Raises an exception if no object can be matched. """ self._log("get_image_handle",name=name,token=token) found = self.api.find_image(name) return "image::%s" % found.name def save_distro(self,object_id,token,editmode="bypass"): """ Saves a newly created or modified distro object to disk. """ self._log("save_distro",object_id=object_id,token=token) obj = self.__get_object(object_id) self.check_access(token,"save_distro",obj) if editmode == "new": return self.api.add_distro(obj,check_for_duplicate_names=True) else: return self.api.add_distro(obj) def save_profile(self,object_id,token,editmode="bypass"): """ Saves a newly created or modified profile object to disk. """ self._log("save_profile",token=token,object_id=object_id) obj = self.__get_object(object_id) self.check_access(token,"save_profile",obj) if editmode == "new": return self.api.add_profile(obj,check_for_duplicate_names=True) else: return self.api.add_profile(obj) def save_system(self,object_id,token,editmode="bypass"): """ Saves a newly created or modified system object to disk. """ self._log("save_system",token=token,object_id=object_id) obj = self.__get_object(object_id) self.check_access(token,"save_system",obj) if editmode == "new": return self.api.add_system(obj,check_for_duplicate_names=True,check_for_duplicate_netinfo=True) elif editmode == "edit": return self.api.add_system(obj,check_for_duplicate_netinfo=True) else: return self.api.add_system(obj) def save_repo(self,object_id,token=None,editmode="bypass"): """ Saves a newly created or modified repo object to disk. """ self._log("save_repo",object_id=object_id,token=token) obj = self.__get_object(object_id) self.check_access(token,"save_repo",obj) if editmode == "new": return self.api.add_repo(obj,check_for_duplicate_names=True) else: return self.api.add_repo(obj) def save_image(self,object_id,token=None,editmode="bypass"): """ Saves a newly created or modified repo object to disk. """ self._log("save_image",object_id=object_id,token=token) obj = self.__get_object(object_id) self.check_access(token,"save_image",obj) if editmode == "new": return self.api.add_image(obj,check_for_duplicate_names=True) else: return self.api.add_image(obj) ## FIXME: refactor out all of the boilerplate stuff like ^^ def copy_distro(self,object_id,newname,token=None): """ All copy methods are pretty much the same. Get an object handle, pass in the new name for it. """ self._log("copy_distro",object_id=object_id,token=token) self.check_access(token,"copy_distro") obj = self.__get_object(object_id) return self.api.copy_distro(obj,newname) def copy_profile(self,object_id,newname,token=None): self._log("copy_profile",object_id=object_id,token=token) self.check_access(token,"copy_profile") obj = self.__get_object(object_id) return self.api.copy_profile(obj,newname) def copy_system(self,object_id,newname,token=None): self._log("copy_system",object_id=object_id,token=token) self.check_access(token,"copy_system") obj = self.__get_object(object_id) return self.api.copy_system(obj,newname) def copy_repo(self,object_id,newname,token=None): self._log("copy_repo",object_id=object_id,token=token) self.check_access(token,"copy_repo") obj = self.__get_object(object_id) return self.api.copy_repo(obj,newname) def copy_image(self,object_id,newname,token=None): self._log("copy_image",object_id=object_id,token=token) self.check_access(token,"copy_image") obj = self.__get_object(object_id) return self.api.copy_image(obj,newname) def rename_distro(self,object_id,newname,token=None): """ All rename methods are pretty much the same. Get an object handle, pass in a new name for it. Rename will modify dependencies to point them at the new object. """ self._log("rename_distro",object_id=object_id,token=token) obj = self.__get_object(object_id) return self.api.rename_distro(obj,newname) def rename_profile(self,object_id,newname,token=None): self._log("rename_profile",object_id=object_id,token=token) self.check_access(token,"rename_profile") obj = self.__get_object(object_id) return self.api.rename_profile(obj,newname) def rename_system(self,object_id,newname,token=None): self._log("rename_system",object_id=object_id,token=token) self.check_access(token,"rename_system") obj = self.__get_object(object_id) return self.api.rename_system(obj,newname) def rename_repo(self,object_id,newname,token=None): self._log("rename_repo",object_id=object_id,token=token) self.check_access(token,"rename_repo") obj = self.__get_object(object_id) return self.api.rename_repo(obj,newname) def rename_image(self,object_id,newname,token=None): self._log("rename_image",object_id=object_id,token=token) self.check_access(token,"rename_image") obj = self.__get_object(object_id) return self.api.rename_image(obj,newname) def __get_object(self, object_id): if object_id.startswith("___NEW___"): return self.object_cache[object_id][1] (otype, oname) = object_id.split("::",1) if otype == "distro": return self.api.find_distro(oname) elif otype == "profile": return self.api.find_profile(oname) elif otype == "system": return self.api.find_system(oname) elif otype == "repo": return self.api.find_repo(oname) elif otype == "image": return self.api.find_image(oname) else: return "invalid" def __call_method(self, obj, attribute, arg): """ Internal function used by the modify routines. """ method = obj.remote_methods().get(attribute, None) if method == None: raise CX(_("object has no method: %s") % attribute) return method(arg) def modify_distro(self,object_id,attribute,arg,token): """ Allows modification of certain attributes on newly created or existing distro object handle. """ obj = self.__get_object(object_id) self.check_access(token, "modify_distro", obj, attribute) return self.__call_method(obj, attribute, arg) def modify_profile(self,object_id,attribute,arg,token): """ Allows modification of certain attributes on newly created or existing profile object handle. """ obj = self.__get_object(object_id) self.check_access(token, "modify_profile", obj, attribute) return self.__call_method(obj, attribute, arg) def modify_system(self,object_id,attribute,arg,token): """ Allows modification of certain attributes on newly created or existing system object handle. """ obj = self.__get_object(object_id) self.check_access(token, "modify_system", obj, attribute) return self.__call_method(obj, attribute, arg) def modify_repo(self,object_id,attribute,arg,token): """ Allows modification of certain attributes on newly created or existing repo object handle. """ obj = self.__get_object(object_id) self.check_access(token, "modify_repo", obj, attribute) return self.__call_method(obj, attribute, arg) def modify_image(self,object_id,attribute,arg,token): """ Allows modification of certain attributes on newly created or existing image object handle. """ ## FIXME: lots of boilerplate to remove here, move to utils.py obj = self.__get_object(object_id) self.check_access(token, "modify_image", obj, attribute) return self.__call_method(obj, attribute, arg) def remove_distro(self,name,token,recursive=1): """ Deletes a distro from a collection. Note that this just requires the name of the distro, not a handle. """ self._log("remove_distro (%s)" % recursive,name=name,token=token) self.check_access(token, "remove_distro", name) rc = self.api.remove_distro(name,recursive=True) return rc def remove_profile(self,name,token,recursive=1): """ Deletes a profile from a collection. Note that this just requires the name """ self._log("remove_profile (%s)" % recursive,name=name,token=token) self.check_access(token, "remove_profile", name) rc = self.api.remove_profile(name,recursive=True) return rc def remove_system(self,name,token,recursive=1): """ Deletes a system from a collection. Note that this just requires the name of the distro, not a handle. """ self._log("remove_system (%s)" % recursive,name=name,token=token) self.check_access(token, "remove_system", name) rc = self.api.remove_system(name) return rc def remove_repo(self,name,token,recursive=1): """ Deletes a repo from a collection. Note that this just requires the name of the repo, not a handle. """ self._log("remove_repo (%s)" % recursive,name=name,token=token) self.check_access(token, "remove_repo", name) rc = self.api.remove_repo(name, recursive=True) return rc def remove_image(self,name,token,recursive=1): """ Deletes a image from a collection. Note that this just requires the name of the image, not a handle. """ self._log("remove_image (%s)" % recursive,name=name,token=token) self.check_access(token, "remove_image", name) rc = self.api.remove_image(name, recursive=True) return rc def read_or_write_kickstart_template(self,kickstart_file,is_read,new_data,token): """ Allows the WebUI to be used as a kickstart file editor. For security reasons we will only allow kickstart files to be edited if they reside in /var/lib/cobbler/kickstarts/ or /etc/cobbler. This limits the damage doable by Evil who has a cobbler password but not a system password. Also if living in /etc/cobbler the file must be a kickstart file. """ if is_read: what = "read_kickstart_template" else: what = "write_kickstart_template" self._log(what,name=kickstart_file,token=token) self.check_access(token,what,kickstart_file,is_read) if kickstart_file.find("..") != -1 or not kickstart_file.startswith("/"): raise CX(_("tainted file location")) if not kickstart_file.startswith("/etc/cobbler/") and not kickstart_file.startswith("/var/lib/cobbler/kickstarts"): raise CX(_("unable to view or edit kickstart in this location")) if kickstart_file.startswith("/etc/cobbler/"): if not kickstart_file.endswith(".ks") and not kickstart_file.endswith(".cfg"): # take care to not allow config files to be altered. raise CX(_("this does not seem to be a kickstart file")) if not is_read and not os.path.exists(kickstart_file): raise CX(_("new files must go in /var/lib/cobbler/kickstarts")) if is_read: fileh = open(kickstart_file,"r") data = fileh.read() fileh.close() return data else: if new_data == -1: # delete requested if not self.is_kickstart_in_use(kickstart_file,token): os.remove(kickstart_file) else: raise CX(_("attempt to delete in-use file")) else: fileh = open(kickstart_file,"w+") fileh.write(new_data) fileh.close() return True def power_system(self,object_id,power=None,token=None): """ Allows poweron/poweroff/reboot of a system """ obj = self.__get_object(object_id) self.check_access(token, "power_system", obj) if power=="on": rc=self.api.power_on(obj) elif power=="off": rc=self.api.power_off(obj) elif power=="reboot": rc=self.api.reboot(obj) else: raise CX(_("invalid power mode '%s', expected on/off/reboot" % power)) return rc def deploy(self, object_id, virt_host=None, virt_group=None, token=None): """ Deploy a system """ obj = self.__get_object(object_id) self.check_access(token, "deploy", obj) rc = self.api.deploy(obj, virt_host=virt_host, virt_group=virt_group) return rc # ********************************************************************************* # ********************************************************************************* class CobblerXMLRPCServer(SimpleXMLRPCServer.SimpleXMLRPCServer): def __init__(self, args): self.allow_reuse_address = True SimpleXMLRPCServer.SimpleXMLRPCServer.__init__(self,args) # ********************************************************************************* # ********************************************************************************* class ProxiedXMLRPCInterface: def __init__(self,api,proxy_class,enable_auth_if_relevant=True): self.proxied = proxy_class(api,enable_auth_if_relevant) self.logger = self.proxied.api.logger def _dispatch(self, method, params, **rest): if not hasattr(self.proxied, method): self.logger.error("remote:unknown method %s" % method) raise CX(_("Unknown remote method")) method_handle = getattr(self.proxied, method) try: return method_handle(*params) except Exception, e: utils.log_exc(self.logger) raise e # ********************************************************************* # ********************************************************************* def _test_setup_modules(authn="authn_testing",authz="authz_allowall",pxe_once=1): # rewrite modules.conf so we know we can use the testing module # for xmlrpc rw testing (Makefile will put the user value back) import yaml import Cheetah.Template as Template MODULES_TEMPLATE = "installer_templates/modules.conf.template" DEFAULTS = "installer_templates/defaults" fh = open(DEFAULTS) data = yaml.load(fh.read()) fh.close() data["authn_module"] = authn data["authz_module"] = authz data["pxe_once"] = pxe_once t = Template.Template(file=MODULES_TEMPLATE, searchList=[data]) open("/etc/cobbler/modules.conf","w+").write(t.respond()) def _test_setup_settings(pxe_once=1): # rewrite modules.conf so we know we can use the testing module # for xmlrpc rw testing (Makefile will put the user value back) import yaml import Cheetah.Template as Template MODULES_TEMPLATE = "installer_templates/settings.template" DEFAULTS = "installer_templates/defaults" fh = open(DEFAULTS) data = yaml.load(fh.read()) fh.close() data["pxe_once"] = pxe_once t = Template.Template(file=MODULES_TEMPLATE, searchList=[data]) open("/etc/cobbler/settings","w+").write(t.respond()) def _test_bootstrap_restart(): rc1 = subprocess.call(["/sbin/service","cobblerd","restart"],shell=False,close_fds=True) assert rc1 == 0 rc2 = subprocess.call(["/sbin/service","httpd","restart"],shell=False,close_fds=True) assert rc2 == 0 time.sleep(5) _test_remove_objects() def _test_remove_objects(): api = cobbler_api.BootAPI() # local handle # from ro tests d0 = api.find_distro("distro0") i0 = api.find_image("image0") r0 = api.find_image("repo0") # from rw tests d1 = api.find_distro("distro1") i1 = api.find_image("image1") r1 = api.find_image("repo1") if d0 is not None: api.remove_distro(d0, recursive = True) if i0 is not None: api.remove_image(i0) if r0 is not None: api.remove_repo(r0) if d1 is not None: api.remove_distro(d1, recursive = True) if i1 is not None: api.remove_image(i1) if r1 is not None: api.remove_repo(r1) def test_xmlrpc_ro(): _test_bootstrap_restart() server = xmlrpclib.Server("http://127.0.0.1/cobbler_api") time.sleep(2) # delete all distributions distros = server.get_distros() profiles = server.get_profiles() systems = server.get_systems() repos = server.get_repos() images = server.get_systems() settings = server.get_settings() assert type(distros) == type([]) assert type(profiles) == type([]) assert type(systems) == type([]) assert type(repos) == type([]) assert type(images) == type([]) assert type(settings) == type({}) # now populate with something more useful # using the non-remote API api = cobbler_api.BootAPI() # local handle before_distros = len(api.distros()) before_profiles = len(api.profiles()) before_systems = len(api.systems()) before_repos = len(api.repos()) before_images = len(api.images()) fake = open("/tmp/cobbler.fake","w+") fake.write("") fake.close() distro = api.new_distro() distro.set_name("distro0") distro.set_kernel("/tmp/cobbler.fake") distro.set_initrd("/tmp/cobbler.fake") api.add_distro(distro) repo = api.new_repo() repo.set_name("repo0") if not os.path.exists("/tmp/empty"): os.mkdir("/tmp/empty",770) repo.set_mirror("/tmp/empty") files = glob.glob("rpm-build/*.rpm") if len(files) == 0: raise Exception("Tests must be run from the cobbler checkout directory.") subprocess.call("cp rpm-build/*.rpm /tmp/empty",shell=True,close_fds=True) api.add_repo(repo) profile = api.new_profile() profile.set_name("profile0") profile.set_distro("distro0") profile.set_kickstart("/var/lib/cobbler/kickstarts/sample.ks") profile.set_repos(["repo0"]) api.add_profile(profile) system = api.new_system() system.set_name("system0") system.set_hostname("hostname0") system.set_gateway("192.168.1.1") system.set_profile("profile0") system.set_dns_name("hostname0","eth0") api.add_system(system) image = api.new_image() image.set_name("image0") image.set_file("/tmp/cobbler.fake") api.add_image(image) # reposync is required in order to create the repo config files api.reposync(name="repo0") # FIXME: the following tests do not yet look to see that all elements # retrieved match what they were created with, but we presume this # all works. It is not a high priority item to test but do not assume # this is a complete test of access functions. def comb(haystack, needle): for x in haystack: if x["name"] == needle: return True return False distros = server.get_distros() assert len(distros) == before_distros + 1 assert comb(distros, "distro0") profiles = server.get_profiles() print "BEFORE: %s" % before_profiles print "CURRENT: %s" % len(profiles) for p in profiles: print " PROFILES: %s" % p["name"] for p in api.profiles(): print " API : %s" % p.name assert len(profiles) == before_profiles + 1 assert comb(profiles, "profile0") systems = server.get_systems() # assert len(systems) == before_systems + 1 assert comb(systems, "system0") repos = server.get_repos() # FIXME: disable temporarily # assert len(repos) == before_repos + 1 assert comb(repos, "repo0") images = server.get_images() # assert len(images) == before_images + 1 assert comb(images, "image0") # now test specific gets distro = server.get_distro("distro0") assert distro["name"] == "distro0" assert type(distro["kernel_options"] == type({})) profile = server.get_profile("profile0") assert profile["name"] == "profile0" assert type(profile["kernel_options"] == type({})) system = server.get_system("system0") assert system["name"] == "system0" assert type(system["kernel_options"] == type({})) repo = server.get_repo("repo0") assert repo["name"] == "repo0" image = server.get_image("image0") assert image["name"] == "image0" # now test the calls koan uses # the difference is that koan's object types are flattened somewhat # and also that they are passed through utils.blender() so they represent # not the object but the evaluation of the object tree at that object. server.update() # should be unneeded distro = server.get_distro_for_koan("distro0") assert distro["name"] == "distro0" assert type(distro["kernel_options"] == type("")) profile = server.get_profile_for_koan("profile0") assert profile["name"] == "profile0" assert type(profile["kernel_options"] == type("")) system = server.get_system_for_koan("system0") assert system["name"] == "system0" assert type(system["kernel_options"] == type("")) repo = server.get_repo_for_koan("repo0") assert repo["name"] == "repo0" image = server.get_image_for_koan("image0") assert image["name"] == "image0" # now test some of the additional webui calls # compatible profiles, etc assert server.ping() == True assert server.get_size("distros") == 1 assert server.get_size("profiles") == 1 assert server.get_size("systems") == 1 assert server.get_size("repos") == 1 assert server.get_size("images") == 1 templates = server.get_kickstart_templates("???") assert "/var/lib/cobbler/kickstarts/sample.ks" in templates assert server.is_kickstart_in_use("/var/lib/cobbler/kickstarts/sample.ks","???") == True assert server.is_kickstart_in_use("/var/lib/cobbler/kickstarts/legacy.ks","???") == False generated = server.generate_kickstart("profile0") assert type(generated) == type("") assert generated.find("ERROR") == -1 assert generated.find("url") != -1 assert generated.find("network") != -1 yumcfg = server.get_repo_config_for_profile("profile0") assert type(yumcfg) == type("") assert yumcfg.find("ERROR") == -1 assert yumcfg.find("http://") != -1 yumcfg = server.get_repo_config_for_system("system0") assert type(yumcfg) == type("") assert yumcfg.find("ERROR") == -1 assert yumcfg.find("http://") != -1 server.register_mac("CC:EE:FF:GG:AA:AA","profile0") systems = server.get_systems() found = False for s in systems: if s["name"] == "CC:EE:FF:GG:AA:AA": for iname in s["interfaces"]: if s["interfaces"]["iname"].get("mac_address") == "CC:EE:FF:GG:AA:AA": found = True break if found: break # FIXME: mac registration test code needs a correct settings file in order to # be enabled. # assert found == True # FIXME: the following tests don't work if pxe_just_once is disabled in settings so we need # to account for this by turning it on... # basically we need to rewrite the settings file # system = server.get_system("system0") # assert system["netboot_enabled"] == "True" # rc = server.disable_netboot("system0") # assert rc == True # ne = server.get_system("system0")["netboot_enabled"] # assert ne == False # FIXME: tests for new built-in configuration management feature # require that --template-files attributes be set. These do not # retrieve the kickstarts but rather config files (see Wiki topics). # This is probably better tested at the URL level with urlgrabber, one layer # up, in a different set of tests.. # FIXME: tests for rendered kickstart retrieval, same as above assert server.run_install_triggers("pre","profile","profile0","127.0.0.1") assert server.run_install_triggers("post","profile","profile0","127.0.0.1") assert server.run_install_triggers("pre","system","system0","127.0.0.1") assert server.run_install_triggers("post","system","system0","127.0.0.1") ver = server.version() assert (str(ver)[0] == "?" or str(ver).find(".") != -1) # do removals via the API since the read-only API can't do them # and the read-write tests are seperate _test_remove_objects() # this last bit mainly tests the tests, to ensure we've left nothing behind # not XMLRPC. Tests polluting the user config is not desirable even though # we do save/restore it. # assert (len(api.distros()) == before_distros) # assert (len(api.profiles()) == before_profiles) # assert (len(api.systems()) == before_systems) # assert (len(api.images()) == before_images) # assert (len(api.repos()) == before_repos) def test_xmlrpc_rw(): # ideally we need tests for the various auth modes, not just one # and the ownership module, though this will provide decent coverage. _test_setup_modules(authn="authn_testing",authz="authz_allowall") _test_bootstrap_restart() server = xmlrpclib.Server("http://127.0.0.1/cobbler_api") # remote api = cobbler_api.BootAPI() # local instance, /DO/ ping cobblerd # note if authn_testing is not engaged this will not work # test getting token, will raise remote exception on fail token = server.login("testing","testing") # create distro did = server.new_distro(token) server.modify_distro(did, "name", "distro1", token) server.modify_distro(did, "kernel", "/tmp/cobbler.fake", token) server.modify_distro(did, "initrd", "/tmp/cobbler.fake", token) server.modify_distro(did, "kopts", { "dog" : "fido", "cat" : "fluffy" }, token) # hash or string server.modify_distro(did, "ksmeta", "good=sg1 evil=gould", token) # hash or string server.modify_distro(did, "breed", "redhat", token) server.modify_distro(did, "os-version", "rhel5", token) server.modify_distro(did, "owners", "sam dave", token) # array or string server.modify_distro(did, "mgmt-classes", "blip", token) # list or string server.modify_distro(did, "template-files", "/tmp/cobbler.fake=/tmp/a /etc/fstab=/tmp/b",token) # hash or string server.modify_distro(did, "comment", "...", token) server.modify_distro(did, "redhat_management_key", "ALPHA", token) server.modify_distro(did, "redhat_management_server", "rhn.example.com", token) server.save_distro(did, token) # use the non-XMLRPC API to check that it's added seeing we tested XMLRPC RW APIs above # this makes extra sure it's been committed to disk. api.deserialize() assert api.find_distro("distro1") != None pid = server.new_profile(token) server.modify_profile(pid, "name", "profile1", token) server.modify_profile(pid, "distro", "distro1", token) server.modify_profile(pid, "enable-menu", True, token) server.modify_profile(pid, "kickstart", "/var/lib/cobbler/kickstarts/sample.ks", token) server.modify_profile(pid, "kopts", { "level" : "11" }, token) server.modify_profile(pid, "kopts-post", "noapic", token) server.modify_profile(pid, "virt-auto-boot", 0, token) server.modify_profile(pid, "virt-file-size", 20, token) server.modify_profile(pid, "virt-ram", 2048, token) server.modify_profile(pid, "repos", [], token) server.modify_profile(pid, "template-files", {}, token) server.modify_profile(pid, "virt-path", "VolGroup00", token) server.modify_profile(pid, "virt-bridge", "virbr1", token) server.modify_profile(pid, "virt-cpus", 2, token) server.modify_profile(pid, "owners", [ "sam", "dave" ], token) server.modify_profile(pid, "mgmt-classes", "one two three", token) server.modify_profile(pid, "comment", "...", token) server.modify_profile(pid, "name_servers", ["one","two"], token) server.modify_profile(pid, "name_servers_search", ["one","two"], token) server.modify_profile(pid, "redhat_management_key", "BETA", token) server.modify_distro(did, "redhat_management_server", "sat.example.com", token) server.save_profile(pid, token) api.deserialize() assert api.find_profile("profile1") != None sid = server.new_system(token) server.modify_system(sid, 'name', 'system1', token) server.modify_system(sid, 'hostname', 'system1', token) server.modify_system(sid, 'gateway', '127.0.0.1', token) server.modify_system(sid, 'profile', 'profile1', token) server.modify_system(sid, 'kopts', { "dog" : "fido" }, token) server.modify_system(sid, 'kopts-post', { "cat" : "fluffy" }, token) server.modify_system(sid, 'kickstart', '/var/lib/cobbler/kickstarts/sample.ks', token) server.modify_system(sid, 'netboot-enabled', True, token) server.modify_system(sid, 'virt-path', "/opt/images", token) server.modify_system(sid, 'virt-type', 'qemu', token) server.modify_system(sid, 'name_servers', 'one two three four', token) server.modify_system(sid, 'name_servers_search', 'one two three four', token) server.modify_system(sid, 'modify-interface', { "macaddress-eth0" : "AA:BB:CC:EE:EE:EE", "ipaddress-eth0" : "192.168.10.50", "gateway-eth0" : "192.168.10.1", "virtbridge-eth0" : "virbr0", "dnsname-eth0" : "foo.example.com", "static-eth0" : False, "dhcptag-eth0" : "section2", "staticroutes-eth0" : "a:b:c d:e:f" }, token) server.modify_system(sid, 'modify-interface', { "static-eth1" : False, "staticroutes-eth1" : [ "g:h:i", "j:k:l" ] }, token) server.modify_system(sid, "mgmt-classes", [ "one", "two", "three"], token) server.modify_system(sid, "template-files", {}, token) server.modify_system(sid, "comment", "...", token) server.modify_system(sid, "power_address", "power.example.org", token) server.modify_system(sid, "power_type", "ipmitool", token) server.modify_system(sid, "power_user", "Admin", token) server.modify_system(sid, "power_pass", "magic", token) server.modify_system(sid, "power_id", "7", token) server.modify_system(sid, "redhat_management_key", "GAMMA", token) server.modify_distro(did, "redhat_management_server", "spacewalk.example.com", token) server.save_system(sid,token) api.deserialize() assert api.find_system("system1") != None # FIXME: add some checks on object contents iid = server.new_image(token) server.modify_image(iid, "name", "image1", token) server.modify_image(iid, "image-type", "iso", token) server.modify_image(iid, "breed", "redhat", token) server.modify_image(iid, "os-version", "rhel5", token) server.modify_image(iid, "arch", "x86_64", token) server.modify_image(iid, "file", "nfs://server/path/to/x.iso", token) server.modify_image(iid, "owners", [ "alex", "michael" ], token) server.modify_image(iid, "virt-auto-boot", 0, token) server.modify_image(iid, "virt-cpus", 1, token) server.modify_image(iid, "virt-file-size", 5, token) server.modify_image(iid, "virt-bridge", "virbr0", token) server.modify_image(iid, "virt-path", "VolGroup01", token) server.modify_image(iid, "virt-ram", 1024, token) server.modify_image(iid, "virt-type", "xenpv", token) server.modify_image(iid, "comment", "...", token) server.save_image(iid, token) api.deserialize() assert api.find_image("image1") != None # FIXME: add some checks on object contents # FIXME: repo adds rid = server.new_repo(token) server.modify_repo(rid, "name", "repo1", token) server.modify_repo(rid, "arch", "x86_64", token) server.modify_repo(rid, "mirror", "http://example.org/foo/x86_64", token) server.modify_repo(rid, "keep-updated", True, token) server.modify_repo(rid, "priority", "50", token) server.modify_repo(rid, "rpm-list", [], token) server.modify_repo(rid, "createrepo-flags", "--verbose", token) server.modify_repo(rid, "yumopts", {}, token) server.modify_repo(rid, "owners", [ "slash", "axl" ], token) server.modify_repo(rid, "mirror-locally", True, token) server.modify_repo(rid, "environment", {}, token) server.modify_repo(rid, "comment", "...", token) server.save_repo(rid, token) api.deserialize() assert api.find_repo("repo1") != None # FIXME: add some checks on object contents # test handle lookup did = server.get_distro_handle("distro1", token) assert did != None rid = server.get_repo_handle("repo1", token) assert rid != None iid = server.get_image_handle("image1", token) assert iid != None # test renames rc = server.rename_distro(did, "distro2", token) assert rc == True # object has changed due to parent rename, get a new handle pid = server.get_profile_handle("profile1", token) assert pid != None rc = server.rename_profile(pid, "profile2", token) assert rc == True # object has changed due to parent rename, get a new handle sid = server.get_system_handle("system1", token) assert sid != None rc = server.rename_system(sid, "system2", token) assert rc == True rc = server.rename_repo(rid, "repo2", token) assert rc == True rc = server.rename_image(iid, "image2", token) assert rc == True # FIXME: make the following code unneccessary api.clear() api.deserialize() assert api.find_distro("distro2") != None assert api.find_profile("profile2") != None assert api.find_repo("repo2") != None assert api.find_image("image2") != None assert api.find_system("system2") != None # BOOKMARK: currently here in terms of test testing. for d in api.distros(): print "FOUND DISTRO: %s" % d.name assert api.find_distro("distro1") == None assert api.find_profile("profile1") == None assert api.find_repo("repo1") == None assert api.find_image("image1") == None assert api.find_system("system1") == None did = server.get_distro_handle("distro2", token) assert did != None pid = server.get_profile_handle("profile2", token) assert pid != None rid = server.get_repo_handle("repo2", token) assert rid != None sid = server.get_system_handle("system2", token) assert sid != None iid = server.get_image_handle("image2", token) assert iid != None # test copies server.copy_distro(did, "distro1", token) server.copy_profile(pid, "profile1", token) server.copy_repo(rid, "repo1", token) server.copy_image(iid, "image1", token) server.copy_system(sid, "system1", token) api.deserialize() assert api.find_distro("distro2") != None assert api.find_profile("profile2") != None assert api.find_repo("repo2") != None assert api.find_image("image2") != None assert api.find_system("system2") != None assert api.find_distro("distro1") != None assert api.find_profile("profile1") != None assert api.find_repo("repo1") != None assert api.find_image("image1") != None assert api.find_system("system1") != None assert server.last_modified_time() > 0 print server.get_distros_since(2) assert len(server.get_distros_since(2)) > 0 assert len(server.get_profiles_since(2)) > 0 assert len(server.get_systems_since(2)) > 0 assert len(server.get_images_since(2)) > 0 assert len(server.get_repos_since(2)) > 0 assert len(server.get_distros_since(2)) > 0 now = time.time() the_future = time.time() + 99999 assert len(server.get_distros_since(the_future)) == 0 # it would be cleaner to do this from the distro down # and the server.update calls would then be unneeded. server.remove_system("system1", token) server.update() server.remove_profile("profile1", token) server.update() server.remove_distro("distro1", token) server.remove_repo("repo1", token) server.remove_image("image1", token) server.remove_system("system2", token) # again, calls are needed because we're deleting in the wrong # order. A fix is probably warranted for this. server.update() server.remove_profile("profile2", token) server.update() server.remove_distro("distro2", token) server.remove_repo("repo2", token) server.remove_image("image2", token) # have to update the API as it has changed api.update() d1 = api.find_distro("distro1") assert d1 is None assert api.find_profile("profile1") is None assert api.find_repo("repo1") is None assert api.find_image("image1") is None assert api.find_system("system1") is None for x in api.distros(): print "DISTRO REMAINING: %s" % x.name assert api.find_distro("distro2") is None assert api.find_profile("profile2") is None assert api.find_repo("repo2") is None assert api.find_image("image2") is None assert api.find_system("system2") is None # FIXME: should not need cleanup as we've done it above _test_remove_objects()
javiplx/cobbler-debian
cobbler/remote.py
Python
gpl-2.0
82,406
#!/usr/bin/python3 # -*- coding: UTF-8 -*- """ 本模块用于ADC的读值 ================== 修改时间:2017-3-23 19:09:31 作者:YaHei(zk) 联系方式:929391459@qq.com """ from .pinmap import PinMap pins = PinMap('/proc', 'adc', 6) def analog_read(channel): """ 返回模拟口的ADC读值, A0、A1为6位ADC,返回值范围为0-63; A2、A3、A4、A5为12位ADC,返回值范围为0-4095 """ with open(pins.get_path(channel), 'r') as f: return int(f.read(32).split(':')[1].strip())
wangxuxin/SmartHome
SmartHomeServer/SmartHome/pcduino/adc.py
Python
gpl-3.0
540
""" Pipeline Preprocessing algorithms for Quicklook """ import numpy as np import os,sys import astropy import astropy.io.fits as fits from desispec import io from desispec.io import read_raw,read_image from desispec.io.meta import findfile from desispec.io.fluxcalibration import read_average_flux_calibration from desispec.calibfinder import findcalibfile from desispec.quicklook import pas from desispec.quicklook import qlexceptions,qllogger from desispec.image import Image as im from desispec.frame import Frame as fr from desispec.io.xytraceset import read_xytraceset from desispec.maskbits import ccdmask qlog=qllogger.QLLogger("QuickLook",20) log=qlog.getlog() class Initialize(pas.PipelineAlg): """ This PA takes information from the fibermap and raw header and adds it to the general info section of the merged dictionary """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Ready" rawtype=astropy.io.fits.hdu.hdulist.HDUList pas.PipelineAlg.__init__(self,name,rawtype,rawtype,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): log.critical("Incompatible input!") sys.exit("Was expecting {} got {}".format(type(self.__inpType__),type(args[0]))) raw=args[0] flavor=kwargs['Flavor'] peaks=None fibermap=None if flavor != 'bias' and flavor != 'dark': fibermap=kwargs['FiberMap'] peaks=kwargs['Peaks'] camera=kwargs['Camera'] return self.run_pa(raw,fibermap,camera,peaks,flavor) def run_pa(self,raw,fibermap,camera,peaks,flavor): import pytz import datetime from desitarget.targetmask import desi_mask from desispec.fluxcalibration import isStdStar #- Create general info dictionary to be sent to merged json general_info={} #- Get information from raw header general_info['PROGRAM']=program=raw[0].header['PROGRAM'].upper() calibs=['arcs','flat','bias','dark'] if not flavor in calibs: general_info['AIRMASS']=raw[0].header['AIRMASS'] general_info['SEEING']=raw[0].header['SEEING'] #- Get information from fibermap #- Limit flux info to fibers in camera minfiber=int(camera[1])*500 maxfiber=minfiber+499 fibermags=[] for flux in ['FLUX_G','FLUX_R','FLUX_Z']: fibermags.append(22.5-2.5*np.log10(fibermap[flux][minfiber:maxfiber+1])) #- Set sky/no flux fibers to 30 mag for i in range(3): skyfibs=np.where(fibermags[i]==0.)[0] noflux=np.where(fibermags[i]==np.inf)[0] badmags=np.array(list(set(skyfibs) | set(noflux))) fibermags[i][badmags]=30. general_info['FIBER_MAGS']=fibermags #- Limit RA and DEC to 5 decimal places targetra=fibermap['TARGET_RA'][minfiber:maxfiber+1] general_info['RA']=[float("%.5f"%ra) for ra in targetra] targetdec=fibermap['TARGET_DEC'][minfiber:maxfiber+1] general_info['DEC']=[float("%.5f"%dec) for dec in targetdec] #- Find fibers in camera per target type elgfibers=np.where((fibermap['DESI_TARGET']&desi_mask.ELG)!=0)[0] general_info['ELG_FIBERID']=[elgfib for elgfib in elgfibers if minfiber <= elgfib <= maxfiber] lrgfibers=np.where((fibermap['DESI_TARGET']&desi_mask.LRG)!=0)[0] general_info['LRG_FIBERID']=[lrgfib for lrgfib in lrgfibers if minfiber <= lrgfib <= maxfiber] qsofibers=np.where((fibermap['DESI_TARGET']&desi_mask.QSO)!=0)[0] general_info['QSO_FIBERID']=[qsofib for qsofib in qsofibers if minfiber <= qsofib <= maxfiber] skyfibers=np.where((fibermap['DESI_TARGET']&desi_mask.SKY)!=0)[0] general_info['SKY_FIBERID']=[skyfib for skyfib in skyfibers if minfiber <= skyfib <= maxfiber] general_info['NSKY_FIB']=len(general_info['SKY_FIBERID']) stdfibers=np.where(isStdStar(fibermap))[0] general_info['STAR_FIBERID']=[stdfib for stdfib in stdfibers if minfiber <= stdfib <= maxfiber] general_info['EXPTIME']=raw[0].header['EXPTIME'] # general_info['FITS_DESISPEC_VERION']=raw[0].header['FITS_DESISPEC_VERSION'] # general_info['PROC_DESISPEC_VERION']=raw[0].header['PROC_DESISPEC_VERSION'] # general_info['PROC_QuickLook_VERION']=raw[0].header['PROC_QuickLook_VERSION'] #- Get peaks from configuration file if not flavor != 'arcs' and flavor in calibs: general_info['B_PEAKS']=peaks['B_PEAKS'] general_info['R_PEAKS']=peaks['R_PEAKS'] general_info['Z_PEAKS']=peaks['Z_PEAKS'] #- Get current time information general_info['QLrun_datime_UTC']=datetime.datetime.now(tz=pytz.utc).isoformat() return (raw,general_info) class Preproc(pas.PipelineAlg): #- TODO: currently io itself seems to have the preproc inside it. And preproc does bias, pi # xelflat, etc in one step. from desispec.maskbits import ccdmask def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Preproc" rawtype=astropy.io.fits.hdu.hdulist.HDUList pas.PipelineAlg.__init__(self,name,rawtype,im,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Was expecting {} got {}".format(type(self.__inpType__),type(args[0]))) input_raw=args[0][0] dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] if 'camera' not in kwargs: #raise qlexceptions.ParameterException("Need Camera to run preprocess on raw files") log.critical("Need Camera to run preprocess on raw files") sys.exit() else: camera=kwargs["camera"] if camera.upper() not in input_raw: raise IOError('Camera {} not in raw input'.format(camera)) if "Bias" in kwargs: bias=kwargs["Bias"] else: bias=False if "Pixflat" in kwargs: pixflat=kwargs["Pixflat"] else: pixflat=False if "Mask" in kwargs: mask=kwargs["Mask"] else: mask=False return self.run_pa(input_raw,camera,bias=bias,pixflat=pixflat,mask=mask,dumpfile=dumpfile) def run_pa(self,input_raw,camera,bias=False,pixflat=False,mask=True,dumpfile='ttt1.fits'): import desispec.preproc rawimage=input_raw[camera.upper()].data header=input_raw[camera.upper()].header primary_header=input_raw[0].header if 'INHERIT' in header and header['INHERIT']: h0 = input_raw[0].header for key in h0: if key not in header: header[key] = h0[key] #- WARNING!!!This is a hack for QL to run on old raw images for QLF to be working on old set of data #if "PROGRAM" not in header: # log.warning("Temporary hack for QL to add header key PROGRAM. Only to facilitate QLF to work on their dataset. Remove this after some time and run with new data set") # header["PROGRAM"]= 'dark' #if header["FLAVOR"] not in [None,'bias','arc','flat','science']: # header["FLAVOR"] = 'science' img = desispec.preproc.preproc(rawimage,header,primary_header,bias=bias,pixflat=pixflat,mask=mask) if img.mask is not None : img.pix *= (img.mask==0) if dumpfile is not None: night = img.meta['NIGHT'] expid = img.meta['EXPID'] io.write_image(dumpfile, img) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return img class Flexure(pas.PipelineAlg): """ Use desi_compute_trace_shifts to output modified psf file """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Flexure" pas.PipelineAlg.__init__(self,name,im,fr,config,logger) def run(self,*args,**kwargs): if 'preprocFile' not in kwargs: #raise qlexceptions.ParameterException("Must provide preproc file for desi_compute_trace_shifts") log.critical("Must provide preproc file for desi_compute_trace_shifts") sys.exit() if 'inputPSFFile' not in kwargs: #raise qlexceptions.ParameterException("Must provide input psf file desi_compute_trace_shifts") log.critical("Must provide input psf file desi_compute_trace_shifts") sys.exit() if 'outputPSFFile' not in kwargs: #raise qlexceptions.ParameterException("Must provide output psf file") log.critical("Must provide output psf file") sys.exit() preproc_file=kwargs["preprocFile"] input_file=kwargs["inputPSFFile"] output_file=kwargs["outputPSFFile"] return self.run_pa(preproc_file,input_file,output_file,args) def run_pa(self,preproc_file,input_file,output_file,args): from desispec.util import runcmd #- Generate modified psf file cmd="desi_compute_trace_shifts --image {} --psf {} --outpsf {}".format(preproc_file,input_file,output_file) if runcmd(cmd) !=0: raise RuntimeError('desi_compute_trace_shifts failed, psftrace not written') #- return image object to pass to boxcar for extraction img=args[0] return img class BoxcarExtract(pas.PipelineAlg): from desispec.quicklook.qlboxcar import do_boxcar from desispec.maskbits import ccdmask def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="BoxcarExtract" pas.PipelineAlg.__init__(self,name,im,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "PSFFile" not in kwargs: #raise qlexceptions.ParameterException("Need PSF File") log.critical("Need PSF File") sys.exit() input_image=args[0] dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] flavor=kwargs["Flavor"] psf_filename=kwargs["PSFFile"] #psf = PSF(psf_filename) tset = read_xytraceset(psf_filename) boxwidth=kwargs["BoxWidth"] nspec=kwargs["Nspec"] quickRes=kwargs["QuickResolution"] if "QuickResolution" in kwargs else False if "usesigma" in kwargs: usesigma=kwargs["usesigma"] else: usesigma = False if "Wavelength" not in kwargs: wstart = np.ceil(tset.wavemin) wstop = np.floor(tset.wavemax) dw = 0.5 else: wavelength=kwargs["Wavelength"] if kwargs["Wavelength"] is not None: #- should be in wstart,wstop,dw format wstart, wstop, dw = [float(w) for w in wavelength] else: wstart = np.ceil(tset.wavemin) wstop = np.floor(tset.wavemax) dw = 0.5 wave = np.arange(wstart, wstop+dw/2.0, dw) if "Specmin" not in kwargs: specmin=0 else: specmin=kwargs["Specmin"] if kwargs["Specmin"] is None: specmin=0 if "Nspec" not in kwargs: nspec = tset.nspec else: nspec=kwargs["Nspec"] if nspec is None: nspec=tset.nspec specmax = specmin + nspec camera = input_image.meta['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph*500 + specmin if "FiberMap" not in kwargs: fibermap = None fibers = np.arange(fibermin, fibermin+nspec, dtype='i4') else: fibermap=kwargs["FiberMap"] fibermap = fibermap[fibermin:fibermin+nspec] fibers = fibermap['FIBER'] if "Outfile" in kwargs: outfile=kwargs["Outfile"] else: outfile=None maskFile=None if "MaskFile" in kwargs: maskFile=kwargs['MaskFile'] #- Add some header keys relevant for this extraction input_image.meta['NSPEC'] = (nspec, 'Number of spectra') input_image.meta['WAVEMIN'] = (wstart, 'First wavelength [Angstroms]') input_image.meta['WAVEMAX'] = (wstop, 'Last wavelength [Angstroms]') input_image.meta['WAVESTEP']= (dw, 'Wavelength step size [Angstroms]') return self.run_pa(input_image,flavor,tset,wave,boxwidth,nspec, fibers=fibers,fibermap=fibermap,dumpfile=dumpfile, maskFile=maskFile,usesigma=usesigma,quick_resolution=quickRes) def run_pa(self,input_image,flavor,tset,outwave,boxwidth,nspec, fibers=None,fibermap=None,dumpfile=None, maskFile=None,usesigma=False,quick_resolution=False): from desispec.quicklook.qlboxcar import do_boxcar #import desispec.tset flux,ivar,Rdata=do_boxcar(input_image, tset, outwave, boxwidth=boxwidth, nspec=nspec,maskFile=maskFile,usesigma=usesigma, quick_resolution=quick_resolution) #- write to a frame object qndiag=21 wsigma=None if quick_resolution: log.warning("deprecated, please use QFrame format to store sigma values") wsigma=np.zeros(flux.shape) if tset.ysig_vs_wave_traceset is not None : dw = np.gradient(outwave) for i in range(nspec): ysig = tset.ysig_vs_wave(i,outwave) y = tset.y_vs_wave(i,outwave) dydw = np.gradient(y)/dw wsigma[i] = ysig/dydw # in A frame = fr(outwave, flux, ivar, resolution_data=Rdata,fibers=fibers, meta=input_image.meta, fibermap=fibermap, wsigma=wsigma,ndiag=qndiag) if dumpfile is not None: night = frame.meta['NIGHT'] expid = frame.meta['EXPID'] io.write_frame(dumpfile, frame) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return frame def get_default_config(self): return {("BoxWidth",2.5,"Boxcar halfwidth"), ("PSFFile","%%PSFFile","PSFFile to use"), ("DeltaW",0.5,"Binwidth of extrapolated wavelength array"), ("Nspec",500,"number of spectra to extract") } # TODO 2d extraction runs fine as well. Will need more testing of the setup. class Extraction_2d(pas.PipelineAlg): """ Offline 2D extraction for offline QuickLook """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="2D Extraction" # using specter.extract.ex2d pas.PipelineAlg.__init__(self,name,im,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "PSFFile_sp" not in kwargs: #raise qlexceptions.ParameterException("Need PSF File") log.critical("Need PSF File") sys.exit() from specter.psf import load_psf input_image=args[0] psffile=kwargs["PSFFile_sp"] psf=load_psf(psffile) if "Wavelength" not in kwargs: wstart = np.ceil(psf.wmin_all) wstop = np.floor(psf.wmax_all) dw = 0.5 else: wavelength=kwargs["Wavelength"] if kwargs["Wavelength"] is not None: #- should be in wstart,wstop,dw format wstart, wstop, dw = [float(w) for w in wavelength] else: wstart = np.ceil(psf.wmin_all) wstop = np.floor(psf.wmax_all) dw = 0.5 wave = np.arange(wstart, wstop+dw/2.0, dw) if "Specmin" not in kwargs: specmin=0 else: specmin=kwargs["Specmin"] if kwargs["Specmin"] is None: specmin=0 if "Nspec" not in kwargs: nspec = psf.nspec else: nspec=kwargs["Nspec"] if nspec is None: nspec=psf.nspec specmax = specmin + nspec camera = input_image.meta['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph*500 + specmin if "FiberMap" not in kwargs: fibermap = None fibers = np.arange(fibermin, fibermin+nspec, dtype='i4') else: fibermap=kwargs["FiberMap"] fibermap = fibermap[fibermin:fibermin+nspec] fibers = fibermap['FIBER'] if "Regularize" in kwargs: regularize=kwargs["Regularize"] else: regularize=False if "ndecorr" in kwargs: ndecorr=ndecorr else: ndecorr=True bundlesize=25 #- hard coded if "Outfile" in kwargs: outfile=kwargs["Outfile"] else: outfile=None if "Nwavestep" in kwargs: wavesize=kwargs["Nwavestep"] else: wavesize=50 return self.run_pa(input_image,psf,specmin,nspec,wave,regularize=regularize,ndecorr=ndecorr, bundlesize=bundlesize, wavesize=wavesize,outfile=outfile,fibers=fibers,fibermap=fibermap) def run_pa(self,input_image,psf,specmin,nspec,wave,regularize=None,ndecorr=True,bundlesize=25,wavesize=50, outfile=None,fibers=None,fibermap=None): import specter from specter.extract import ex2d flux,ivar,Rdata=ex2d(input_image.pix,input_image.ivar*(input_image.mask==0),psf,specmin,nspec,wave,regularize=regularize,ndecorr=ndecorr,bundlesize=bundlesize,wavesize=wavesize) #- Augment input image header for output input_image.meta['NSPEC'] = (nspec, 'Number of spectra') input_image.meta['WAVEMIN'] = (wave[0], 'First wavelength [Angstroms]') input_image.meta['WAVEMAX'] = (wave[-1], 'Last wavelength [Angstroms]') input_image.meta['WAVESTEP']= (wave[1]-wave[0], 'Wavelength step size [Angstroms]') input_image.meta['SPECTER'] = (specter.__version__, 'https://github.com/desihub/specter') #input_image.meta['IN_PSF'] = (_trim(psf_file), 'Input spectral PSF') #input_image.meta['IN_IMG'] = (_trim(input_file), 'Input image') frame = fr(wave, flux, ivar, resolution_data=Rdata,fibers=fibers, meta=input_image.meta, fibermap=fibermap) if outfile is not None: #- writing to a frame file if needed. io.write_frame(outfile,frame) log.debug("wrote frame output file %s"%outfile) return frame class ComputeFiberflat(pas.PipelineAlg): """ PA to compute fiberflat field correction from a DESI continuum lamp frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ComputeFiberflat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_frame=args[0] #- frame object to calculate fiberflat from if "outputFile" not in kwargs: #raise qlexceptions.ParameterException("Need output file name to write fiberflat File") log.critical("Need output file name to write fiberflat File") sys.exit() outputfile=kwargs["outputFile"] return self.run_pa(input_frame,outputfile) def run_pa(self,input_frame,outputfile): from desispec.fiberflat import compute_fiberflat import desispec.io.fiberflat as ffIO fiberflat=compute_fiberflat(input_frame) ffIO.write_fiberflat(outputfile,fiberflat,header=input_frame.meta) log.debug("Fiberflat file wrtten. Exiting Quicklook for this configuration") #- File written no need to go further # !!!!! SAMI to whoever wrote this # PA's or any other components *CANNOT* call sys.exit()!! this needs to be fixed!!!!! sys.exit(0) class ComputeFiberflat_QL(pas.PipelineAlg): """ PA to compute fiberflat field correction from a DESI continuum lamp frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ComputeFiberflat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_frame=args[0] #- frame object to calculate fiberflat from if "outputFile" not in kwargs: #raise qlexceptions.ParameterException("Need output file name to write fiberflat File") log.critical("Need output file name to write fiberflat File") sys.exit() outputfile=kwargs["outputFile"] return self.run_pa(input_frame,outputfile) def run_pa(self,frame,outputfile): from desispec.fiberflat import FiberFlat import desispec.io.fiberflat as ffIO from desispec.linalg import cholesky_solve nwave=frame.nwave nfibers=frame.nspec wave = frame.wave #- this will become part of output too flux = frame.flux sumFlux=np.zeros((nwave)) realFlux=np.zeros(flux.shape) ivar = frame.ivar*(frame.mask==0) #deconv for fib in range(nfibers): Rf=frame.R[fib].todense() B=flux[fib] try: realFlux[fib]=cholesky_solve(Rf,B) except: log.warning("cholesky_solve failed for fiber {}, using numpy.linalg.solve instead.".format(fib)) realFlux[fib]=np.linalg.solve(Rf,B) sumFlux+=realFlux[fib] #iflux=nfibers/sumFlux flat = np.zeros(flux.shape) flat_ivar=np.zeros(ivar.shape) avg=sumFlux/nfibers for fib in range(nfibers): Rf=frame.R[fib] # apply and reconvolute M=Rf.dot(avg) M0=(M==0) flat[fib]=(~M0)*flux[fib]/(M+M0) +M0 flat_ivar[fib]=ivar[fib]*M**2 fibflat=FiberFlat(frame.wave.copy(),flat,flat_ivar,frame.mask.copy(),avg) #fiberflat=compute_fiberflat(input_frame) ffIO.write_fiberflat(outputfile,fibflat,header=frame.meta) log.info("Wrote fiberflat file {}".format(outputfile)) fflatfile = ffIO.read_fiberflat(outputfile) return fflatfile class ApplyFiberFlat(pas.PipelineAlg): """ PA to Apply the fiberflat field to the given frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ApplyFiberFlat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "FiberFlatFile" not in kwargs: #raise qlexceptions.ParameterException("Need Fiberflat file") log.critical("Need Fiberflat file") sys.exit() input_frame=args[0] fiberflat=kwargs["FiberFlatFile"] return self.run_pa(input_frame,fiberflat) def run_pa(self,input_frame,fiberflat): from desispec.fiberflat import apply_fiberflat apply_fiberflat(input_frame,fiberflat) return input_frame class ApplyFiberFlat_QL(pas.PipelineAlg): """ PA to Apply the fiberflat field (QL) to the given frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Apply FiberFlat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "FiberFlatFile" not in kwargs: #raise qlexceptions.ParameterException("Need Fiberflat file") log.critical("Need Fiberflat file") sys.exit() input_frame=args[0] dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] fiberflat=kwargs["FiberFlatFile"] return self.run_pa(input_frame,fiberflat,dumpfile=dumpfile) def run_pa(self,input_frame,fiberflat,dumpfile=None): from desispec.quicklook.quickfiberflat import apply_fiberflat fframe=apply_fiberflat(input_frame,fiberflat) if dumpfile is not None: night = fframe.meta['NIGHT'] expid = fframe.meta['EXPID'] io.write_frame(dumpfile, fframe) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return fframe class ComputeSky(pas.PipelineAlg): """ PA to compute sky model from a DESI frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ComputeSky" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "FiberFlatFile" not in kwargs: #- need this as fiberflat has to apply to frame first #raise qlexceptions.ParameterException("Need Fiberflat frame file") log.critical("Need Fiberflat frame file!") sys.exit() input_frame=args[0] #- frame object to calculate sky from if "FiberMap" in kwargs: fibermap=kwargs["FiberMap"] if "Outfile" not in kwargs: #raise qlexceptions.ParameterException("Need output file name to write skymodel") log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) fiberflat=kwargs["FiberFlatFile"] outputfile=kwargs["Outfile"] return self.run_pa(input_frame,fiberflat,outputfile) def run_pa(self,input_frame,fiberflat,outputfile): from desispec.fiberflat import apply_fiberflat from desispec.sky import compute_sky from desispec.io.sky import write_sky #- First apply fiberflat to sky fibers apply_fiberflat(input_frame,fiberflat) #- calculate the model skymodel=compute_sky(input_frame) write_sky(outputfile,skymodel,input_frame.meta) log.debug("Sky Model file wrtten. Exiting pipeline for this configuration") sys.exit(0) class ComputeSky_QL(pas.PipelineAlg): """ PA to compute sky model from a DESI frame """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ComputeSky_QL" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_frame=args[0] #- frame object to calculate sky from. Should be fiber flat corrected if "FiberMap" in kwargs: fibermap=kwargs["FiberMap"] else: fibermap=None if "Apply_resolution" in kwargs: apply_resolution=kwargs["Apply_resolution"] if "Outfile" not in kwargs: #raise qlexceptions.ParameterException("Need output file name to write skymodel") log.critical("Need output file name to write skymodel!") sys.exit() outputfile=kwargs["Outfile"] return self.run_pa(input_frame,outputfile,fibermap=fibermap,apply_resolution=apply_resolution) def run_pa(self,input_frame,outputfile,fibermap=None,apply_resolution=False): #- input frame should be already fiberflat fielded from desispec.io.sky import write_sky from desispec.quicklook.quicksky import compute_sky skymodel=compute_sky(input_frame,fibermap,apply_resolution=apply_resolution) write_sky(outputfile,skymodel,input_frame.meta) # SEE ABOVE COMMENT!!!! log.debug("Sky Model file wrtten. Exiting the pipeline for this configuration") sys.exit(0) class SkySub(pas.PipelineAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="SkySub" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "SkyFile" not in kwargs: #raise qlexceptions.ParameterException("Need Skymodel file") log.critical("Need Skymodel file!") sys.exit() input_frame=args[0] #- this must be flat field applied before sky subtraction in the pipeline skyfile=kwargs["SkyFile"] #- Read sky model file itself from an argument from desispec.io.sky import read_sky skymodel=read_sky(skyfile) return self.run_pa(input_frame,skymodel) def run_pa(self,input_frame,skymodel): from desispec.sky import subtract_sky subtract_sky(input_frame,skymodel) return (input_frame, skymodel) class SkySub_QL(pas.PipelineAlg): """ This is for QL Sky subtraction. The input frame object should be fiber flat corrected. Unlike offline, if no skymodel file is given as input, a sky compute method is called to create a skymodel object and then subtraction is performed. Outputing that skymodel to a file is optional and can be configured. """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="SkySub_QL" pas.PipelineAlg.__init__(self,name,fr,type(tuple),config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_frame=args[0] #- this must be flat field applied before sky subtraction in the pipeline dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] if "SkyFile" in kwargs: from desispec.io.sky import read_sky skyfile=kwargs["SkyFile"] #- Read sky model file itself from an argument log.debug("Using given sky file %s for subtraction"%skyfile) skymodel=read_sky(skyfile) else: if "Outskyfile" in kwargs: outskyfile=kwargs["Outskyfile"] else: outskyfile=None log.debug("No sky file given. Computing sky first") from desispec.quicklook.quicksky import compute_sky if "Apply_resolution" in kwargs: apply_resolution=kwargs["Apply_resolution"] log.debug("Apply fiber to fiber resolution variation in computing sky") else: apply_resolution = False fibermap=input_frame.fibermap skymodel=compute_sky(input_frame,fibermap,apply_resolution=apply_resolution) if outskyfile is not None: from desispec.io.sky import write_sky log.debug("writing an output sky model file %s "%outskyfile) write_sky(outskyfile,skymodel,input_frame.meta) #- now do the subtraction return self.run_pa(input_frame,skymodel,dumpfile=dumpfile) def run_pa(self,input_frame,skymodel,dumpfile=None): from desispec.quicklook.quicksky import subtract_sky sframe=subtract_sky(input_frame,skymodel) if dumpfile is not None: night = sframe.meta['NIGHT'] expid = sframe.meta['EXPID'] io.write_frame(dumpfile, sframe) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return (sframe,skymodel) class ApplyFluxCalibration(pas.PipelineAlg): """PA to apply flux calibration to the given sframe """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Apply Flux Calibration" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0][0])): log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0][0]))) input_frame=args[0][0] if "outputfile" in kwargs: outputfile=kwargs["outputfile"] else: log.critical("Must provide output file to write cframe") sys.exit() return self.run_pa(input_frame,outputfile=outputfile) def run_pa(self,frame,outputfile=None): night=frame.meta['NIGHT'] camera=frame.meta['CAMERA'] expid=frame.meta['EXPID'] rawfile=findfile('raw',night,expid,rawdata_dir=os.environ['QL_SPEC_DATA']) rawfits=fits.open(rawfile) primary_header=rawfits[0].header image=read_raw(rawfile,camera) fluxcalib_filename=findcalibfile([image.meta,primary_header],"FLUXCALIB") fluxcalib = read_average_flux_calibration(fluxcalib_filename) log.info("read average calib in {}".format(fluxcalib_filename)) seeing = frame.meta["SEEING"] airmass = frame.meta["AIRMASS"] exptime = frame.meta["EXPTIME"] exposure_calib = fluxcalib.value(seeing=seeing,airmass=airmass) for q in range(frame.nspec) : fiber_calib=np.interp(frame.wave[q],fluxcalib.wave,exposure_calib)*exptime inv_calib = (fiber_calib>0)/(fiber_calib + (fiber_calib==0)) frame.flux[q] *= inv_calib frame.ivar[q] *= fiber_calib**2*(fiber_calib>0) write_qframe(outputfile,frame) log.info("Wrote flux calibrated frame file %s after %s"%(outputfile,self.name)) return frame class ResolutionFit(pas.PipelineAlg): """ Fitting of Arc lines on extracted arc spectra, polynomial expansion of the fitted sigmas, and updating the coefficients to the new traceset file """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ResolutionFit" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "PSFoutfile" not in kwargs: #raise qlexceptions.ParameterException("Missing psfoutfile in the arguments") log.critical("Missing psfoutfile in the arguments!") sys.exit() psfoutfile=kwargs["PSFoutfile"] psfinfile=kwargs["PSFinputfile"] if "usesigma" in kwargs: usesigma=kwargs["usesigma"] else: usesigma = False tset = read_xytraceset(psfinfile) domain=(tset.wavemin,tset.wavemax) input_frame=args[0] linelist=None if "Linelist" in kwargs: linelist=kwargs["Linelist"] npoly=2 if "NPOLY" in kwargs: npoly=kwargs["NPOLY"] nbins=2 if "NBINS" in kwargs: nbins=kwargs["NBINS"] return self.run_pa(input_frame,psfinfile,psfoutfile,usesigma,linelist=linelist,npoly=npoly,nbins=nbins,domain=domain) def run_pa(self,input_frame,psfinfile,outfile,usesigma,linelist=None,npoly=2,nbins=2,domain=None): from desispec.quicklook.arcprocess import process_arc,write_psffile from desispec.quicklook.palib import get_resolution wcoeffs,wavemin,wavemax =process_arc(input_frame,linelist=linelist,npoly=npoly,nbins=nbins,domain=domain) write_psffile(psfinfile,wcoeffs,wavemin,wavemax,outfile) log.debug("Wrote xytraceset file {}".format(outfile)) #- update the arc frame resolution from new coeffs tset = read_xytraceset(outfile) input_frame.resolution_data=get_resolution(input_frame.wave,input_frame.nspec,tset,usesigma=usesigma) return (tset,input_frame) # ======================= # qproc algorithms # ======================= from desispec.sky import SkyModel from desispec.qproc.io import write_qframe from desispec.qproc.qextract import qproc_boxcar_extraction from desispec.qproc.qfiberflat import qproc_apply_fiberflat from desispec.qproc.qsky import qproc_sky_subtraction class Extract_QP(pas.PipelineAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Extract_QP" pas.PipelineAlg.__init__(self,name,im,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "PSFFile" not in kwargs: #raise qlexceptions.ParameterException("Need PSF File") log.critical("Need PSF file!") sys.exit() input_image=args[0] dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] psf_filename=kwargs["PSFFile"] print("psf_filename=",psf_filename) traceset = read_xytraceset(psf_filename) width=kwargs["FullWidth"] nspec=kwargs["Nspec"] if "Wavelength" not in kwargs: wstart = np.ceil(traceset.wavemin) wstop = np.floor(traceset.wavemax) dw = 0.5 else: wavelength=kwargs["Wavelength"] print('kwargs["Wavelength"]=',kwargs["Wavelength"]) if kwargs["Wavelength"] is not None: #- should be in wstart,wstop,dw format wstart, wstop, dw = [float(w) for w in wavelength] else: wstart = np.ceil(traceset.wmin) wstop = np.floor(traceset.wmax) dw = 0.5 wave = np.arange(wstart, wstop+dw/2.0, dw) if "Specmin" not in kwargs: specmin=0 else: specmin=kwargs["Specmin"] if kwargs["Specmin"] is None: specmin=0 if "Nspec" not in kwargs: nspec = traceset.nspec else: nspec=kwargs["Nspec"] if nspec is None: nspec=traceset.nspec specmax = specmin + nspec camera = input_image.meta['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph*500 + specmin if "FiberMap" not in kwargs: fibermap = None fibers = np.arange(fibermin, fibermin+nspec, dtype='i4') else: fibermap=kwargs["FiberMap"] fibermap = fibermap[fibermin:fibermin+nspec] fibers = fibermap['FIBER'] if "Outfile" in kwargs: outfile=kwargs["Outfile"] else: outfile=None maskFile=None if "MaskFile" in kwargs: maskFile=kwargs['MaskFile'] #- Add some header keys relevant for this extraction input_image.meta['NSPEC'] = (nspec, 'Number of spectra') input_image.meta['WAVEMIN'] = (wstart, 'First wavelength [Angstroms]') input_image.meta['WAVEMAX'] = (wstop, 'Last wavelength [Angstroms]') input_image.meta['WAVESTEP']= (dw, 'Wavelength step size [Angstroms]') return self.run_pa(input_image,traceset,wave,width,nspec, fibers=fibers,fibermap=fibermap,dumpfile=dumpfile, maskFile=maskFile) def run_pa(self,input_image,traceset,outwave,width,nspec, fibers=None,fibermap=None,dumpfile=None, maskFile=None): qframe = qproc_boxcar_extraction(traceset,input_image,fibers=fibers, width=width, fibermap=fibermap) if dumpfile is not None: write_qframe(dumpfile, qframe, fibermap=fibermap) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return qframe def get_default_config(self): return {("FullWidth",7,"Boxcar full width"), ("PSFFile","%%PSFFile","PSFFile to use"), ("DeltaW",0.5,"Binwidth of extrapolated wavelength array"), ("Nspec",500,"number of spectra to extract") } class ComputeFiberflat_QP(pas.PipelineAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="ComputeFiberflat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_frame=args[0] #- frame object to calculate fiberflat from if "outputFile" not in kwargs: raise qlexceptions.ParameterException("Need output file name to write fiberflat File") outputfile=kwargs["outputFile"] return self.run_pa(input_frame,outputfile) def run_pa(self,qframe,outputfile): from desispec.qproc.qfiberflat import qproc_compute_fiberflat import desispec.io.fiberflat as ffIO fibflat=qproc_compute_fiberflat(qframe) ffIO.write_fiberflat(outputfile,fibflat,header=qframe.meta) log.info("Wrote fiberflat file {}".format(outputfile)) fflatfile = ffIO.read_fiberflat(outputfile) return fflatfile class ApplyFiberFlat_QP(pas.PipelineAlg): """ PA to Apply the fiberflat field (QP) to the given qframe """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="Apply FiberFlat" pas.PipelineAlg.__init__(self,name,fr,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) if "FiberFlatFile" not in kwargs: #raise qlexceptions.ParameterException("Need Fiberflat file") log.critical("Need Fiberflat file!") sys.exit() input_qframe=args[0] dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] fiberflat=kwargs["FiberFlatFile"] return self.run_pa(input_qframe,fiberflat,dumpfile=dumpfile) def run_pa(self,qframe,fiberflat,dumpfile=None): qproc_apply_fiberflat(qframe,fiberflat) if dumpfile is not None: night = qframe.meta['NIGHT'] expid = qframe.meta['EXPID'] write_qframe(dumpfile, qframe) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) return qframe class SkySub_QP(pas.PipelineAlg): """ Sky subtraction. The input frame object should be fiber flat corrected. No sky model is saved for now """ def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="SkySub_QP" pas.PipelineAlg.__init__(self,name,fr,type(tuple),config,logger) def run(self,*args,**kwargs): if len(args) == 0 : #raise qlexceptions.ParameterException("Missing input parameter") log.critical("Missing input parameter!") sys.exit() if not self.is_compatible(type(args[0])): #raise qlexceptions.ParameterException("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) log.critical("Incompatible input!") sys.exit("Incompatible input. Was expecting %s got %s"%(type(self.__inpType__),type(args[0]))) input_qframe=args[0] #- this must be flat field applied before sky subtraction in the pipeline dumpfile=None if "dumpfile" in kwargs: dumpfile=kwargs["dumpfile"] #- now do the subtraction return self.run_pa(input_qframe,dumpfile=dumpfile) def run_pa(self,qframe,dumpfile=None): skymodel = qproc_sky_subtraction(qframe,return_skymodel=True) #qproc_sky_subtraction(qframe) if dumpfile is not None: night = qframe.meta['NIGHT'] expid = qframe.meta['EXPID'] write_qframe(dumpfile, qframe) log.debug("Wrote intermediate file %s after %s"%(dumpfile,self.name)) # convert for QA # sframe=qframe.asframe() # tmpsky=np.interp(sframe.wave,qframe.wave[0],skymodel[0]) # skymodel = SkyModel(sframe.wave,np.tile(tmpsky,(sframe.nspec,1)),np.ones(sframe.flux.shape),np.zeros(sframe.flux.shape,dtype="int32")) return (qframe,skymodel)
desihub/desispec
py/desispec/quicklook/procalgs.py
Python
bsd-3-clause
51,722
# -*- coding: utf-8 -*- # Copyright 2011 Jiří Janoušek <janousek.jiri@gmail.com> # Copyright 2014 Jaap Karssenberg <jaap.karssenberg@gmail.com> import logging logger = logging.getLogger("zim.objectmanager") from zim.signals import SignalEmitter, SIGNAL_AFTER from zim.utils import WeakSet from zim.config.dicts import ConfigDict, String import zim.plugins ## TODO remove singleton contruction, add ref to plugin manager ## to allow fallback object widget to have toolbar to load plugin class _ObjectManager(object): '''Manages custom objects.''' def __init__(self): self.factories = {} self.objects = {'fallback': WeakSet()} self.window_extensions = {} def register_object(self, type, factory, window_extension=None): '''Register a factory method or class for a specific object type. @param type: the object type as string (unique name) @param factory: can be either an object class or a method, @param window_extension: dictionary - the plugin related window_extension should callable and return objects. When constructing objects this factory will be called as:: factory(attrib, text) Where: - C{attrib} is a dict with attributes - C{text} is the main text source of the object @returns: a previously set factory for C{type} or C{None} ''' logger.debug('Registered object %s', type) type = type.lower() old = self.factories.get(type) self.factories[type] = factory self.objects[type] = WeakSet() self.window_extensions[type] = window_extension return old def unregister_object(self, type): '''Unregister a specific object type. @returns: C{True} on success, C{False} if given type has not been registered. ''' type = type.lower() if type in self.factories: del self.factories[type] del self.objects[type] return True else: return False def is_registered(self, type): '''Returns C{True} if object type has already been registered.''' return type.lower() in self.factories def get_object(self, type, attrib, text): '''Returns a new object for given type with given attributes @param type: the object type as string @param attrib: dict with attributes @param text: main source of the object @returns: a new object instance, either created by the factory method for C{type}, or an instance of L{FallbackObject} ''' type = type.lower() if type in self.factories: factory = self.factories[type] obj = factory(attrib, text) self.objects[type].add(obj) else: factory = FallbackObject obj = factory(attrib, text) self.objects['fallback'].add(obj) return obj def get_active_objects(self, type): '''Returns an iterator for active objects for a specific type. (Objects are 'active' as long as they are not destroyed.) ''' if type in self.objects: return iter(self.objects[type]) else: return [] def find_plugin(self, type): '''Find a plugin to handle a specific object type. Intended to suggest plugins to the user that can be loaded. @param type: object type as string @returns: a 5-tuple of the plugin name, a boolean for the dependency check, the plugin class, or C{None} and the related plugin window_extension ''' for name in zim.plugins.PluginManager.list_installed_plugins(): # XXX try: klass = zim.plugins.PluginManager.get_plugin_class(name) # XXX types = klass.plugin_info.get('object_types') if types and type in types: activatable = klass.check_dependencies_ok() win_ext = self.window_extensions[type] if type in self.window_extensions else None return (name, klass.plugin_info['name'], activatable, klass, win_ext) except: logger.exception('Could not load plugin %s', name) continue return None ObjectManager = _ObjectManager() # Singleton object class CustomObjectClass(SignalEmitter): ''' Base Class for custom objects. Signal: * 'modified-changed' -- modification state has been changed ''' OBJECT_ATTR = { 'type': String('object') } # define signals we want to use - (closure type, return type and arg types) __signals__ = { 'modified-changed': (SIGNAL_AFTER, None, ()), } def __init__(self, attrib, data): self._attrib = ConfigDict(attrib) self._attrib.define(self.OBJECT_ATTR) self._data = data if data is not None else '' self.modified = False def get_modified(self): '''Returns True if object has been modified.''' return self.modified def set_modified(self, modified): '''Sets modification state of object and emits signal if needed.''' if self.modified != modified: self.modified = modified self.emit("modified-changed") def get_widget(self): '''Returns a new gtk widget for this object''' raise NotImplemented def get_attrib(self): '''Returns object attributes. The 'type' attribute stores type of object.''' return self._attrib.dump() def get_data(self): '''Returns serialized data of object.''' return self._data def dump(self, format, dumper, linker=None): '''Dumps current object. Returns None if format is not supported.''' return None class FallbackObject(CustomObjectClass): '''Fallback object displays data as TextView and preserves attributes unmodified. ''' def __init__(self, attrib, data): CustomObjectClass.__init__(self, attrib, data) self.buffer = None def get_widget(self): import gtk from zim.gui.objectmanager import FallbackObjectWidget if not self.buffer: self.buffer = gtk.TextBuffer() self.buffer.set_text(self._data) self.buffer.connect('modified-changed', self.on_modified_changed) self.buffer.set_modified(False) self._data = None type = self._attrib['type'] return FallbackObjectWidget(type, self.buffer) def get_data(self): if self.buffer: bounds = self.buffer.get_bounds() return self.buffer.get_text(bounds[0], bounds[1]) else: return self._data def set_data(self, text): if self.buffer: self.buffer.set_text(text) else: self._data = text def on_modified_changed(self, buffer): '''Callback for TextBuffer's modifications.''' if buffer.get_modified(): self.set_modified(True) buffer.set_modified(False) def set_label(self, label): '''Sets label at the top area of widget.''' self.label.set_text(label)
Osndok/zim-desktop-wiki
zim/objectmanager.py
Python
gpl-2.0
6,232
from cssselect import HTMLTranslator from lxml import etree import re from capybara.utils import inner_content class HTML(object): def __init__(self, source): if not source: source = "<html/>" parser = etree.HTMLParser(encoding="utf-8") tree = etree.HTML(source, parser=parser) for element in tree.xpath("//textarea"): content = inner_content(element) content = re.sub("\A\n", "", content) for child in element.getchildren(): element.remove(child) element.text = content self.tree = tree def css(self, css): return etree.XPath(HTMLTranslator().css_to_xpath(css))(self.tree) def xpath(self, xpath): return self.tree.xpath(xpath)
elliterate/capybara.py
capybara/html.py
Python
mit
780
# -*- coding: utf-8 -*- # Copyright (C) 2011-2012 Patrick Totzke <patricktotzke@gmail.com> # Copyright © 2017 Dylan Baker # This file is released under the GNU GPL, version 3 or a later revision. # For further details see the COPYING file from __future__ import absolute_import from __future__ import division from datetime import timedelta from datetime import datetime from collections import deque from cStringIO import StringIO import logging import mimetypes import os import re import shlex import subprocess import email from email.generator import Generator from email.mime.audio import MIMEAudio from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import urwid import magic from twisted.internet import reactor from twisted.internet.protocol import ProcessProtocol from twisted.internet.defer import Deferred def split_commandline(s, comments=False, posix=True): """ splits semi-colon separated commandlines """ # shlex seems to remove unescaped quotes and backslashes s = s.replace('\\', '\\\\') s = s.replace('\'', '\\\'') s = s.replace('\"', '\\\"') # encode s to utf-8 for shlex if isinstance(s, unicode): s = s.encode('utf-8') lex = shlex.shlex(s, posix=posix) lex.whitespace_split = True lex.whitespace = ';' if not comments: lex.commenters = '' return list(lex) def split_commandstring(cmdstring): """ split command string into a list of strings to pass on to subprocess.Popen and the like. This simply calls shlex.split but works also with unicode bytestrings. """ if isinstance(cmdstring, unicode): cmdstring = cmdstring.encode('utf-8', errors='ignore') return shlex.split(cmdstring) def string_sanitize(string, tab_width=8): r""" strips, and replaces non-printable characters :param tab_width: number of spaces to replace tabs with. Read from `globals.tabwidth` setting if `None` :type tab_width: int or `None` >>> string_sanitize(' foo\rbar ', 8) ' foobar ' >>> string_sanitize('foo\tbar', 8) 'foo bar' >>> string_sanitize('foo\t\tbar', 8) 'foo bar' """ string = string.replace('\r', '') lines = list() for line in string.split('\n'): tab_count = line.count('\t') if tab_count > 0: line_length = 0 new_line = list() for i, chunk in enumerate(line.split('\t')): line_length += len(chunk) new_line.append(chunk) if i < tab_count: next_tab_stop_in = tab_width - (line_length % tab_width) new_line.append(' ' * next_tab_stop_in) line_length += next_tab_stop_in lines.append(''.join(new_line)) else: lines.append(line) return '\n'.join(lines) def string_decode(string, enc='ascii'): """ safely decodes string to unicode bytestring, respecting `enc` as a hint. """ if enc is None: enc = 'ascii' try: string = unicode(string, enc, errors='replace') except LookupError: # malformed enc string string = string.decode('ascii', errors='replace') except TypeError: # already unicode pass return string def shorten(string, maxlen): """shortens string if longer than maxlen, appending ellipsis""" if 1 < maxlen < len(string): string = string[:maxlen - 1] + u'\u2026' return string[:maxlen] def shorten_author_string(authors_string, maxlength): """ Parse a list of authors concatenated as a text string (comma separated) and smartly adjust them to maxlength. 1) If the complete list of sender names does not fit in maxlength, it tries to shorten names by using only the first part of each. 2) If the list is still too long, hide authors according to the following priority: - First author is always shown (if too long is shorten with ellipsis) - If possible, last author is also shown (if too long, uses ellipsis) - If there are more than 2 authors in the thread, show the maximum of them. More recent senders have higher priority. - If it is finally necessary to hide any author, an ellipsis between first and next authors is added. """ # I will create a list of authors by parsing author_string. I use # deque to do popleft without performance penalties authors = deque() # If author list is too long, it uses only the first part of each # name (gmail style) short_names = len(authors_string) > maxlength for au in authors_string.split(", "): if short_names: author_as_list = au.split() if len(author_as_list) > 0: authors.append(author_as_list[0]) else: authors.append(au) # Author chain will contain the list of author strings to be # concatenated using commas for the final formatted author_string. authors_chain = deque() if len(authors) == 0: return u'' # reserve space for first author first_au = shorten(authors.popleft(), maxlength) remaining_length = maxlength - len(first_au) # Tries to add an ellipsis if no space to show more than 1 author if authors and maxlength > 3 and remaining_length < 3: first_au = shorten(first_au, maxlength - 3) remaining_length += 3 # Tries to add as more authors as possible. It takes into account # that if any author will be hidden, and ellipsis should be added while authors and remaining_length >= 3: au = authors.pop() if len(au) > 1 and (remaining_length == 3 or (authors and remaining_length < 7)): authors_chain.appendleft(u'\u2026') break else: if authors: # 5= ellipsis + 2 x comma and space used as separators au_string = shorten(au, remaining_length - 5) else: # 2 = comma and space used as separator au_string = shorten(au, remaining_length - 2) remaining_length -= len(au_string) + 2 authors_chain.appendleft(au_string) # Add the first author to the list and concatenate list authors_chain.appendleft(first_au) authorsstring = ', '.join(authors_chain) return authorsstring def pretty_datetime(d): """ translates :class:`datetime` `d` to a "sup-style" human readable string. >>> now = datetime.now() >>> now.strftime('%c') 'Sat 31 Mar 2012 14:47:26 ' >>> pretty_datetime(now) u'just now' >>> pretty_datetime(now - timedelta(minutes=1)) u'1min ago' >>> pretty_datetime(now - timedelta(hours=5)) u'5h ago' >>> pretty_datetime(now - timedelta(hours=12)) u'02:54am' >>> pretty_datetime(now - timedelta(days=1)) u'yest 02pm' >>> pretty_datetime(now - timedelta(days=2)) u'Thu 02pm' >>> pretty_datetime(now - timedelta(days=7)) u'Mar 24' >>> pretty_datetime(now - timedelta(days=356)) u'Apr 2011' """ ampm = d.strftime('%p').lower() if len(ampm): hourfmt = '%I' + ampm hourminfmt = '%I:%M' + ampm else: hourfmt = '%Hh' hourminfmt = '%H:%M' now = datetime.now() today = now.date() if d.date() == today or d > now - timedelta(hours=6): delta = datetime.now() - d if delta.seconds < 60: string = 'just now' elif delta.seconds < 3600: string = '%dmin ago' % (delta.seconds // 60) elif delta.seconds < 6 * 3600: string = '%dh ago' % (delta.seconds // 3600) else: string = d.strftime(hourminfmt) elif d.date() == today - timedelta(1): string = d.strftime('yest ' + hourfmt) elif d.date() > today - timedelta(7): string = d.strftime('%a ' + hourfmt) elif d.year != today.year: string = d.strftime('%b %Y') else: string = d.strftime('%b %d') return string_decode(string, 'UTF-8') def call_cmd(cmdlist, stdin=None): """ get a shell commands output, error message and return value and immediately return. .. warning:: This returns with the first screen content for interactive commands. :param cmdlist: shellcommand to call, already splitted into a list accepted by :meth:`subprocess.Popen` :type cmdlist: list of str :param stdin: string to pipe to the process :type stdin: str :return: triple of stdout, stderr, return value of the shell command :rtype: str, str, int """ try: proc = subprocess.Popen( cmdlist, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE if stdin is not None else None) out, err = proc.communicate(stdin) ret = proc.returncode except OSError as e: out = b'' err = e.strerror ret = e.errno out = string_decode(out, urwid.util.detected_encoding) err = string_decode(err, urwid.util.detected_encoding) return out, err, ret def call_cmd_async(cmdlist, stdin=None, env=None): """ get a shell commands output, error message and return value as a deferred. :type cmdlist: list of str :param stdin: string to pipe to the process :type stdin: str :return: deferred that calls back with triple of stdout, stderr and return value of the shell command :rtype: `twisted.internet.defer.Deferred` """ class _EverythingGetter(ProcessProtocol): def __init__(self, deferred): self.deferred = deferred self.outBuf = StringIO() self.errBuf = StringIO() self.outReceived = self.outBuf.write self.errReceived = self.errBuf.write def processEnded(self, status): termenc = urwid.util.detected_encoding out = string_decode(self.outBuf.getvalue(), termenc) err = string_decode(self.errBuf.getvalue(), termenc) if status.value.exitCode == 0: self.deferred.callback(out) else: terminated_obj = status.value terminated_obj.stderr = err self.deferred.errback(terminated_obj) d = Deferred() environment = os.environ if env is not None: environment.update(env) logging.debug('ENV = %s', environment) logging.debug('CMD = %s', cmdlist) proc = reactor.spawnProcess(_EverythingGetter(d), executable=cmdlist[0], env=environment, args=cmdlist) if stdin: logging.debug('writing to stdin') proc.write(stdin) proc.closeStdin() return d def guess_mimetype(blob): """ uses file magic to determine the mime-type of the given data blob. :param blob: file content as read by file.read() :type blob: data :returns: mime-type, falls back to 'application/octet-stream' :rtype: str """ mimetype = 'application/octet-stream' # this is a bit of a hack to support different versions of python magic. # Hopefully at some point this will no longer be necessary # # the version with open() is the bindings shipped with the file source from # http://darwinsys.com/file/ - this is what is used by the python-magic # package on Debian/Ubuntu. However, it is not available on pypi/via pip. # # the version with from_buffer() is available at # https://github.com/ahupp/python-magic and directly installable via pip. # # for more detail see https://github.com/pazz/alot/pull/588 if hasattr(magic, 'open'): m = magic.open(magic.MAGIC_MIME_TYPE) m.load() magictype = m.buffer(blob) elif hasattr(magic, 'from_buffer'): # cf. issue #841 magictype = magic.from_buffer(blob, mime=True) or magictype else: raise Exception('Unknown magic API') # libmagic does not always return proper mimetype strings, cf. issue #459 if re.match(r'\w+\/\w+', magictype): mimetype = magictype return mimetype def guess_encoding(blob): """ uses file magic to determine the encoding of the given data blob. :param blob: file content as read by file.read() :type blob: data :returns: encoding :rtype: str """ # this is a bit of a hack to support different versions of python magic. # Hopefully at some point this will no longer be necessary # # the version with open() is the bindings shipped with the file source from # http://darwinsys.com/file/ - this is what is used by the python-magic # package on Debian/Ubuntu. However it is not available on pypi/via pip. # # the version with from_buffer() is available at # https://github.com/ahupp/python-magic and directly installable via pip. # # for more detail see https://github.com/pazz/alot/pull/588 if hasattr(magic, 'open'): m = magic.open(magic.MAGIC_MIME_ENCODING) m.load() return m.buffer(blob) elif hasattr(magic, 'from_buffer'): m = magic.Magic(mime_encoding=True) return m.from_buffer(blob) else: raise Exception('Unknown magic API') def libmagic_version_at_least(version): """ checks if the libmagic library installed is more recent than a given version. :param version: minimum version expected in the form XYY (i.e. 5.14 -> 514) with XYY >= 513 """ if hasattr(magic, 'open'): magic_wrapper = magic._libraries['magic'] elif hasattr(magic, 'from_buffer'): magic_wrapper = magic.libmagic else: raise Exception('Unknown magic API') if not hasattr(magic_wrapper, 'magic_version'): # The magic_version function has been introduced in libmagic 5.13, # if it's not present, we can't guess right, so let's assume False return False return magic_wrapper.magic_version >= version # TODO: make this work on blobs, not paths def mimewrap(path, filename=None, ctype=None): """Take the contents of the given path and wrap them into an email MIME part according to the content type. The content type is auto detected from the actual file contents and the file name if it is not given. :param path: the path to the file contents :type path: str :param filename: the file name to use in the generated MIME part :type filename: str or None :param ctype: the content type of the file contents in path :type ctype: str or None :returns: the message MIME part storing the data from path :rtype: subclasses of email.mime.base.MIMEBase """ with open(path, 'rb') as f: content = f.read() if not ctype: ctype = guess_mimetype(content) # libmagic < 5.12 incorrectly detects excel/powerpoint files as # 'application/msword' (see #179 and #186 in libmagic bugtracker) # This is a workaround, based on file extension, useful as long # as distributions still ship libmagic 5.11. if (ctype == 'application/msword' and not libmagic_version_at_least(513)): mimetype, _ = mimetypes.guess_type(path) if mimetype: ctype = mimetype maintype, subtype = ctype.split('/', 1) if maintype == 'text': part = MIMEText(content.decode(guess_encoding(content), 'replace'), _subtype=subtype, _charset='utf-8') elif maintype == 'image': part = MIMEImage(content, _subtype=subtype) elif maintype == 'audio': part = MIMEAudio(content, _subtype=subtype) else: part = MIMEBase(maintype, subtype) part.set_payload(content) # Encode the payload using Base64 email.encoders.encode_base64(part) # Set the filename parameter if not filename: filename = os.path.basename(path) part.add_header('Content-Disposition', 'attachment', filename=filename) return part def shell_quote(text): """Escape the given text for passing it to the shell for interpretation. The resulting string will be parsed into one "word" (in the sense used in the shell documentation, see sh(1)) by the shell. :param text: the text to quote :type text: str :returns: the quoted text :rtype: str """ return "'%s'" % text.replace("'", """'"'"'""") def humanize_size(size): """Create a nice human readable representation of the given number (understood as bytes) using the "KiB" and "MiB" suffixes to indicate kibibytes and mebibytes. A kibibyte is defined as 1024 bytes (as opposed to a kilobyte which is 1000 bytes) and a mibibyte is 1024**2 bytes (as opposed to a megabyte which is 1000**2 bytes). :param size: the number to convert :type size: int :returns: the human readable representation of size :rtype: str """ for factor, format_string in ((1, '%i'), (1024, '%iKiB'), (1024 * 1024, '%.1fMiB')): if size / factor < 1024: return format_string % (size / factor) return format_string % (size / factor) def parse_mailcap_nametemplate(tmplate='%s'): """this returns a prefix and suffix to be used in the tempfile module for a given mailcap nametemplate string""" nt_list = tmplate.split('%s') template_prefix = '' template_suffix = '' if len(nt_list) == 2: template_suffix = nt_list[1] template_prefix = nt_list[0] else: template_suffix = tmplate return (template_prefix, template_suffix) def parse_mailto(mailto_str): """ Interpret mailto-string :param mailto_str: the string to interpret. Must conform to :rfc:2368. :type mailto_str: str :return: the header fields and the body found in the mailto link as a tuple of length two :rtype: tuple(dict(str->list(str)), str) """ if mailto_str.startswith('mailto:'): import urllib to_str, parms_str = mailto_str[7:].partition('?')[::2] headers = {} body = u'' to = urllib.unquote(to_str) if to: headers['To'] = [to] for s in parms_str.split('&'): key, value = s.partition('=')[::2] key = key.capitalize() if key == 'Body': body = urllib.unquote(value) elif value: headers[key] = [urllib.unquote(value)] return (headers, body) else: return (None, None) def mailto_to_envelope(mailto_str): """ Interpret mailto-string into a :class:`alot.db.envelope.Envelope` """ from alot.db.envelope import Envelope headers, body = parse_mailto(mailto_str) return Envelope(bodytext=body, headers=headers) def RFC3156_canonicalize(text): """ Canonicalizes plain text (MIME-encoded usually) according to RFC3156. This function works as follows (in that order): 1. Convert all line endings to \\\\r\\\\n (DOS line endings). 2. Ensure the text ends with a newline (\\\\r\\\\n). 3. Encode all occurences of "From " at the beginning of a line to "From=20" in order to prevent other mail programs to replace this with "> From" (to avoid MBox conflicts) and thus invalidate the signature. :param text: text to canonicalize (already encoded as quoted-printable) :rtype: str """ text = re.sub("\r?\n", "\r\n", text) if not text.endswith("\r\n"): text += "\r\n" text = re.sub("^From ", "From=20", text, flags=re.MULTILINE) return text def email_as_string(mail): """ Converts the given message to a string, without mangling "From" lines (like as_string() does). :param mail: email to convert to string :rtype: str """ fp = StringIO() g = Generator(fp, mangle_from_=False, maxheaderlen=78) g.flatten(mail) as_string = RFC3156_canonicalize(fp.getvalue()) if isinstance(mail, MIMEMultipart): # Get the boundary for later boundary = mail.get_boundary() # Workaround for http://bugs.python.org/issue14983: # Insert a newline before the outer mail boundary so that other mail # clients can verify the signature when sending an email which contains # attachments. as_string = re.sub(r'--(\r\n)--' + boundary, r'--\g<1>\g<1>--' + boundary, as_string, flags=re.MULTILINE) return as_string
fnurl/alot
alot/helper.py
Python
gpl-3.0
20,813
from pytest import raises from pyglet.window.key import SPACE, RETURN from pyglet_pages.controls import Button class Works(Exception): pass class CustomButton(Button): def activate(self, symbol, modifiers): raise Works() def test_default_button(): b = Button('Test') with raises(NotImplementedError): b.on_key_press(RETURN, 0) def test_button(): b = CustomButton('Test') with raises(Works): b.on_key_press(RETURN, 0)
chrisnorman7/pyglet-pages
tests/button_test.py
Python
mpl-2.0
505
# domahes a = [1, -20, 38, 0, 44] b = [88, -20, 48, 4, 33, 2] if len(a) > len(b): x = a else: x = b x1 = int(len(x)) x0 = [] for i in x1: if a[i-1] < b[i-1]: x0.add(a[i-1]) if a[i-1] > b[i-1]: x0.add(b[i-1]) print(x0)
domahes88/domahes
dop - 2 - n1.py
Python
apache-2.0
250
# # (c) 2017 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json import re from ansible import constants as C from ansible.module_utils._text import to_text, to_bytes from ansible.errors import AnsibleConnectionFailure, AnsibleError from ansible.plugins.netconf import NetconfBase from ansible.plugins.netconf import ensure_connected try: from ncclient import manager from ncclient.operations import RPCError from ncclient.transport.errors import SSHUnknownHostError from ncclient.xml_ import to_ele, to_xml, new_ele except ImportError: raise AnsibleError("ncclient is not installed") class Netconf(NetconfBase): def get_text(self, ele, tag): try: return to_text(ele.find(tag).text, errors='surrogate_then_replace').strip() except AttributeError: pass def get_device_info(self): device_info = dict() device_info['network_os'] = 'junos' ele = new_ele('get-software-information') data = self.execute_rpc(to_xml(ele)) reply = to_ele(data) sw_info = reply.find('.//software-information') device_info['network_os_version'] = self.get_text(sw_info, 'junos-version') device_info['network_os_hostname'] = self.get_text(sw_info, 'host-name') device_info['network_os_model'] = self.get_text(sw_info, 'product-model') return device_info @ensure_connected def execute_rpc(self, name): """RPC to be execute on remote device :name: Name of rpc in string format""" return self.rpc(name) @ensure_connected def load_configuration(self, *args, **kwargs): """Loads given configuration on device :format: Format of configuration (xml, text, set) :action: Action to be performed (merge, replace, override, update) :target: is the name of the configuration datastore being edited :config: is the configuration in string format.""" if kwargs.get('config'): if kwargs.get('format', 'xml') == 'xml': kwargs['config'] = to_ele(kwargs['config']) try: return self.m.load_configuration(*args, **kwargs).data_xml except RPCError as exc: raise Exception(to_xml(exc.xml)) def get_capabilities(self): result = dict() result['rpc'] = self.get_base_rpc() + ['commit', 'discard_changes', 'validate', 'lock', 'unlock', 'copy_copy', 'execute_rpc', 'load_configuration', 'get_configuration', 'command', 'reboot', 'halt'] result['network_api'] = 'netconf' result['device_info'] = self.get_device_info() result['server_capabilities'] = [c for c in self.m.server_capabilities] result['client_capabilities'] = [c for c in self.m.client_capabilities] result['session_id'] = self.m.session_id result['device_operations'] = self.get_device_operations(result['server_capabilities']) return json.dumps(result) @staticmethod def guess_network_os(obj): try: m = manager.connect( host=obj._play_context.remote_addr, port=obj._play_context.port or 830, username=obj._play_context.remote_user, password=obj._play_context.password, key_filename=obj._play_context.private_key_file, hostkey_verify=C.HOST_KEY_CHECKING, look_for_keys=C.PARAMIKO_LOOK_FOR_KEYS, allow_agent=obj._play_context.allow_agent, timeout=obj._play_context.timeout ) except SSHUnknownHostError as exc: raise AnsibleConnectionFailure(str(exc)) guessed_os = None for c in m.server_capabilities: if re.search('junos', c): guessed_os = 'junos' m.close_session() return guessed_os @ensure_connected def get_configuration(self, *args, **kwargs): """Retrieve all or part of a specified configuration. :format: format in configuration should be retrieved :filter: specifies the portion of the configuration to retrieve (by default entire configuration is retrieved)""" return self.m.get_configuration(*args, **kwargs).data_xml @ensure_connected def compare_configuration(self, *args, **kwargs): """Compare configuration :rollback: rollback id""" return self.m.compare_configuration(*args, **kwargs).data_xml @ensure_connected def halt(self): """reboot the device""" return self.m.halt().data_xml @ensure_connected def reboot(self): """reboot the device""" return self.m.reboot().data_xml
fxfitz/ansible
lib/ansible/plugins/netconf/junos.py
Python
gpl-3.0
5,514
from __future__ import unicode_literals from .common import InfoExtractor from ..utils import remove_end class CharlieRoseIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?charlierose\.com/(?:video|episode)(?:s|/player)/(?P<id>\d+)' _TESTS = [{ 'url': 'https://charlierose.com/videos/27996', 'md5': 'fda41d49e67d4ce7c2411fd2c4702e09', 'info_dict': { 'id': '27996', 'ext': 'mp4', 'title': 'Remembering Zaha Hadid', 'thumbnail': r're:^https?://.*\.jpg\?\d+', 'description': 'We revisit past conversations with Zaha Hadid, in memory of the world renowned Iraqi architect.', 'subtitles': { 'en': [{ 'ext': 'vtt', }], }, }, }, { 'url': 'https://charlierose.com/videos/27996', 'only_matching': True, }, { 'url': 'https://charlierose.com/episodes/30887?autoplay=true', 'only_matching': True, }] _PLAYER_BASE = 'https://charlierose.com/video/player/%s' def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(self._PLAYER_BASE % video_id, video_id) title = remove_end(self._og_search_title(webpage), ' - Charlie Rose') info_dict = self._parse_html5_media_entries( self._PLAYER_BASE % video_id, webpage, video_id, m3u8_entry_protocol='m3u8_native')[0] self._sort_formats(info_dict['formats']) self._remove_duplicate_formats(info_dict['formats']) info_dict.update({ 'id': video_id, 'title': title, 'thumbnail': self._og_search_thumbnail(webpage), 'description': self._og_search_description(webpage), }) return info_dict
valmynd/MediaFetcher
src/plugins/youtube_dl/youtube_dl/extractor/charlierose.py
Python
gpl-3.0
1,554
# -*- coding: utf-8 -*- # # Copyright 2012 - 2013 Brian R. D'Urso # # This file is part of Python Instrument Control System, also known as Pythics. # # Pythics is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pythics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Pythics. If not, see <http://www.gnu.org/licenses/>. # # # load libraries # import logging import numpy as np # setup the logger logger = logging.getLogger('log') #logger.setLevel(logging.DEBUG) logger.setLevel(logging.INFO) # # basic functionality: initialize, start, stop, clear # def initialize(shell, **kwargs): # setup the logger sh = logging.StreamHandler(kwargs['messages']) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') sh.setFormatter(formatter) logger.addHandler(sh) # setup the python shell shell.interact(kwargs.copy()) clear(**kwargs) def clear(messages, plot_1, plot_2, multiple_mu_initial, multiple_mu_final, **kwargs): plot_1.clear() messages.clear() plot_1.set_plot_properties( title='Logistic Map', x_label='time', y_label='x', x_scale='linear', y_scale='linear', aspect_ratio='auto') plot_2.set_plot_properties( title='Logistic Map', x_label=r'$\mu$', y_label='x', x_scale='linear', y_scale='linear', tight_autoscale=True, aspect_ratio='auto', dpi=300) plot_1.new_curve('tx', memory='growable', animated=True, line_color='blue') plot_2.new_image('map', colormap='Greys', animated=False, extent=(0, multiple_mu_final.value, 0.0, 1.0)) # # run: the simulation # def run_single(single_x0, single_mu, single_N, stop, messages, plot_1, plot_2, **kwargs): x0 = single_x0.value mu = single_mu.value N = single_N.value # allocate data arrays xs = np.zeros(N) ts = np.arange(N) # the calculation logger.info('starting calculation') xs[0] = x0 for i in range(N-1): xs[i+1] = mu*xs[i]*(1-xs[i]) # plot all the data at the end data = np.column_stack((ts, xs)) plot_1.set_data('tx', data, rescale=True) # reset the stop button in case it was pushed stop.value = False logger.info('done') def run_multiple(multiple_mu_initial, multiple_mu_final, multiple_mu_N_steps, multiple_N_used, multiple_N_total, multiple_N_bins, multiple_x0, stop, messages, plot_1, plot_2, **kwargs): x0 = multiple_x0.value mu_initial = multiple_mu_initial.value mu_final = multiple_mu_final.value N_mu = multiple_mu_N_steps.value N_total = multiple_N_total.value N_used = multiple_N_used.value N_bins = multiple_N_bins.value # allocate data arrays xs = np.zeros(N_total) ts = np.arange(N_total) image_data = np.zeros((N_bins, N_mu), dtype=np.uint8) plot_2.set_data('map', image_data) # the calculation logger.info('starting calculation') data = np.column_stack((ts, xs)) plot_1.set_data('tx', data, rescale=True) mus = np.linspace(mu_initial, mu_final, N_mu) for n in range(N_mu): mu = mus[n] xs[0] = x0 for i in range(N_total-1): xs[i+1] = mu*xs[i]*(1-xs[i]) mu_data = np.histogram(xs[-N_used:], bins=N_bins, range=(0.0, 1.0))[0] mu_data = np.clip(mu_data, 0, 1) image_data[::-1,n] += mu_data if (n % 10) == 0: # update plot data = np.column_stack((ts, xs)) plot_1.set_data('tx', data) # update image plot_2.set_data('map', image_data) if stop.value: break # update plot data = np.column_stack((ts, xs)) plot_1.set_data('tx', data) # update image plot_2.set_data('map', image_data) # reset the stop button in case it was pushed5 stop.value = False logger.info('done')
dursobr/Pythics
pythics/examples/logistic_map.py
Python
gpl-3.0
4,362
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: ec2_eip short_description: associate an EC2 elastic IP with an instance. description: - This module associates AWS EC2 elastic IP addresses with instances version_added: "1.4" options: device_id: description: - The id of the device for the EIP. Can be an EC2 Instance id or Elastic Network Interface (ENI) id. required: false aliases: [ instance_id ] version_added: "2.0" public_ip: description: - The elastic IP address to associate with the instance. - If absent, allocate a new address required: false state: description: - If present, associate the IP with the instance. - If absent, disassociate the IP with the instance. required: false choices: ['present', 'absent'] default: present region: description: - the EC2 region to use required: false default: null aliases: [ ec2_region ] in_vpc: description: - allocate an EIP inside a VPC or not required: false default: false version_added: "1.4" reuse_existing_ip_allowed: description: - Reuse an EIP that is not associated to an instance (when available), instead of allocating a new one. required: false default: false version_added: "1.6" release_on_disassociation: description: - whether or not to automatically release the EIP when it is disassociated required: false default: false version_added: "2.0" extends_documentation_fragment: aws author: "Lorin Hochstein (@lorin) <lorin@nimbisservices.com>" author: "Rick Mendes (@rickmendes) <rmendes@illumina.com>" notes: - This module will return C(public_ip) on success, which will contain the public IP address associated with the instance. - There may be a delay between the time the Elastic IP is assigned and when the cloud instance is reachable via the new address. Use wait_for and pause to delay further playbook execution until the instance is reachable, if necessary. - This module returns multiple changed statuses on disassociation or release. It returns an overall status based on any changes occuring. It also returns individual changed statuses for disassociation and release. ''' EXAMPLES = ''' - name: associate an elastic IP with an instance ec2_eip: device_id=i-1212f003 ip=93.184.216.119 - name: associate an elastic IP with a device ec2_eip: device_id=eni-c8ad70f3 ip=93.184.216.119 - name: disassociate an elastic IP from an instance ec2_eip: device_id=i-1212f003 ip=93.184.216.119 state=absent - name: disassociate an elastic IP with a device ec2_eip: device_id=eni-c8ad70f3 ip=93.184.216.119 state=absent - name: allocate a new elastic IP and associate it with an instance ec2_eip: device_id=i-1212f003 - name: allocate a new elastic IP without associating it to anything action: ec2_eip register: eip - name: output the IP debug: msg="Allocated IP is {{ eip.public_ip }}" - name: another way of allocating an elastic IP without associating it to anything ec2_eip: state='present' - name: provision new instances with ec2 ec2: keypair=mykey instance_type=c1.medium image=emi-40603AD1 wait=yes''' ''' group=webserver count=3 register: ec2 - name: associate new elastic IPs with each of the instances ec2_eip: "device_id={{ item }}" with_items: ec2.instance_ids - name: allocate a new elastic IP inside a VPC in us-west-2 ec2_eip: region=us-west-2 in_vpc=yes register: eip - name: output the IP debug: msg="Allocated IP inside a VPC is {{ eip.public_ip }}" ''' try: import boto.ec2 HAS_BOTO = True except ImportError: HAS_BOTO = False class EIPException(Exception): pass def associate_ip_and_device(ec2, address, device_id, check_mode, isinstance=True): if address_is_associated_with_device(ec2, address, device_id, isinstance): return {'changed': False} # If we're in check mode, nothing else to do if not check_mode: if isinstance: if address.domain == "vpc": res = ec2.associate_address(device_id, allocation_id=address.allocation_id) else: res = ec2.associate_address(device_id, public_ip=address.public_ip) else: res = ec2.associate_address(network_interface_id=device_id, allocation_id=address.allocation_id) if not res: raise EIPException('association failed') return {'changed': True} def disassociate_ip_and_device(ec2, address, device_id, check_mode, isinstance=True): if not address_is_associated_with_device(ec2, address, device_id, isinstance): return {'changed': False} # If we're in check mode, nothing else to do if not check_mode: if address.domain == 'vpc': res = ec2.disassociate_address( association_id=address.association_id) else: res = ec2.disassociate_address(public_ip=address.public_ip) if not res: raise EIPException('disassociation failed') return {'changed': True} def _find_address_by_ip(ec2, public_ip): try: return ec2.get_all_addresses([public_ip])[0] except boto.exception.EC2ResponseError as e: if "Address '{}' not found.".format(public_ip) not in e.message: raise def _find_address_by_device_id(ec2, device_id, isinstance=True): if isinstance: addresses = ec2.get_all_addresses(None, {'instance-id': device_id}) else: addresses = ec2.get_all_addresses(None, {'network-interface-id': device_id}) if addresses: return addresses[0] def find_address(ec2, public_ip, device_id, isinstance=True): """ Find an existing Elastic IP address """ if public_ip: return _find_address_by_ip(ec2, public_ip) elif device_id and isinstance: return _find_address_by_device_id(ec2, device_id) elif device_id: return _find_address_by_device_id(ec2, device_id, isinstance=False) def address_is_associated_with_device(ec2, address, device_id, isinstance=True): """ Check if the elastic IP is currently associated with the device """ address = ec2.get_all_addresses(address.public_ip) if address: if isinstance: return address and address[0].instance_id == device_id else: return address and address[0].network_interface_id == device_id return False def allocate_address(ec2, domain, reuse_existing_ip_allowed): """ Allocate a new elastic IP address (when needed) and return it """ if reuse_existing_ip_allowed: domain_filter = {'domain': domain or 'standard'} all_addresses = ec2.get_all_addresses(filters=domain_filter) if domain == 'vpc': unassociated_addresses = [a for a in all_addresses if not a.association_id] else: unassociated_addresses = [a for a in all_addresses if not a.instance_id] if unassociated_addresses: return unassociated_addresses[0] return ec2.allocate_address(domain=domain) def release_address(ec2, address, check_mode): """ Release a previously allocated elastic IP address """ # If we're in check mode, nothing else to do if not check_mode: if not address.release(): EIPException('release failed') return {'changed': True} def find_device(ec2, device_id, isinstance=True): """ Attempt to find the EC2 instance and return it """ if isinstance: try: reservations = ec2.get_all_reservations(instance_ids=[device_id]) except boto.exception.EC2ResponseError, e: module.fail_json(msg=str(e)) if len(reservations) == 1: instances = reservations[0].instances if len(instances) == 1: return instances[0] else: try: interfaces = ec2.get_all_network_interfaces(network_interface_ids=[device_id]) except boto.exception.EC2ResponseError, e: module.fail_json(msg=str(e)) if len(interfaces) == 1: return interfaces[0] raise EIPException("could not find instance" + device_id) def ensure_present(ec2, domain, address, device_id, reuse_existing_ip_allowed, check_mode, isinstance=True): changed = False # Return the EIP object since we've been given a public IP if not address: if check_mode: return {'changed': True} address = allocate_address(ec2, domain, reuse_existing_ip_allowed) changed = True if device_id: # Allocate an IP for instance since no public_ip was provided if isinstance: instance = find_device(ec2, device_id) if reuse_existing_ip_allowed: if len(instance.vpc_id) > 0 and domain is None: raise EIPException("You must set 'in_vpc' to true to associate an instance with an existing ip in a vpc") # Associate address object (provided or allocated) with instance assoc_result = associate_ip_and_device(ec2, address, device_id, check_mode) else: instance = find_device(ec2, device_id, isinstance=False) # Associate address object (provided or allocated) with instance assoc_result = associate_ip_and_device(ec2, address, device_id, check_mode, isinstance=False) if instance.vpc_id: domain = 'vpc' changed = changed or assoc_result['changed'] return {'changed': changed, 'public_ip': address.public_ip} def ensure_absent(ec2, domain, address, device_id, check_mode, isinstance=True): if not address: return {'changed': False} # disassociating address from instance if device_id: if isinstance: return disassociate_ip_and_device(ec2, address, device_id, check_mode) else: return disassociate_ip_and_device(ec2, address, device_id, check_mode, isinstance=False) # releasing address else: return release_address(ec2, address, check_mode) def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict( device_id=dict(required=False, aliases=['instance_id']), public_ip=dict(required=False, aliases=['ip']), state=dict(required=False, default='present', choices=['present', 'absent']), in_vpc=dict(required=False, type='bool', default=False), reuse_existing_ip_allowed=dict(required=False, type='bool', default=False), release_on_disassociation=dict(required=False, type='bool', default=False), wait_timeout=dict(default=300), )) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True ) if not HAS_BOTO: module.fail_json(msg='boto required for this module') ec2 = ec2_connect(module) device_id = module.params.get('device_id') instance_id = module.params.get('instance_id') public_ip = module.params.get('public_ip') state = module.params.get('state') in_vpc = module.params.get('in_vpc') domain = 'vpc' if in_vpc else None reuse_existing_ip_allowed = module.params.get('reuse_existing_ip_allowed') release_on_disassociation = module.params.get('release_on_disassociation') if instance_id: warnings = ["instance_id is no longer used, please use device_id going forward"] is_instance = True device_id = instance_id else: if device_id and device_id.startswith('i-'): is_instance = True elif device_id: is_instance = False try: if device_id: address = find_address(ec2, public_ip, device_id, isinstance=is_instance) else: address = False if state == 'present': if device_id: result = ensure_present(ec2, domain, address, device_id, reuse_existing_ip_allowed, module.check_mode, isinstance=is_instance) else: address = allocate_address(ec2, domain, reuse_existing_ip_allowed) result = {'changed': True, 'public_ip': address.public_ip} else: if device_id: disassociated = ensure_absent(ec2, domain, address, device_id, module.check_mode, isinstance=is_instance) if release_on_disassociation and disassociated['changed']: released = release_address(ec2, address, module.check_mode) result = {'changed': True, 'disassociated': disassociated, 'released': released} else: result = {'changed': disassociated['changed'], 'disassociated': disassociated, 'released': {'changed': False}} else: address = find_address(ec2, public_ip, None) released = release_address(ec2, address, module.check_mode) result = {'changed': released['changed'], 'disassociated': {'changed': False}, 'released': released} except (boto.exception.EC2ResponseError, EIPException) as e: module.fail_json(msg=str(e)) if instance_id: result['warnings'] = warnings module.exit_json(**result) # import module snippets from ansible.module_utils.basic import * # noqa from ansible.module_utils.ec2 import * # noqa if __name__ == '__main__': main()
garyjyao1/ansible
lib/ansible/modules/core/cloud/amazon/ec2_eip.py
Python
gpl-3.0
14,390
from django_tex.environment import environment def hhmm_format(value): total_seconds = value.total_seconds() hours, remainder = divmod(total_seconds, 3600) minutes, seconds = divmod(remainder, 60) return "{:n}:{:02n}".format(hours, minutes) def test_environment(**options): env = environment(**options) env.filters.update({"hhmm_format": hhmm_format}) return env
weinbusch/django-tex
tests/environment.py
Python
mit
395
""" Vanilla RNN Parallelizes scan over sequences by using mini-batches. @author Graham Taylor """ import numpy as np import theano import theano.tensor as T from sklearn.base import BaseEstimator import logging import time import os import datetime import cPickle as pickle import random logger = logging.getLogger(__name__) import matplotlib.pyplot as plt plt.ion() mode = theano.Mode(linker='cvm') #mode = 'DEBUG_MODE' class RNN(object): """ Recurrent neural network class Supported output types: real : linear output units, use mean-squared error binary : binary output units, use cross-entropy error softmax : single softmax out, use cross-entropy error """ def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh, output_type='real', only_output_after=False): self.input = input self.activation = activation self.output_type = output_type self.only_output_after = only_output_after self.batch_size = T.iscalar() # theta is a vector of all trainable parameters # it represents the value of W, W_in, W_out, h0, bh, by theta_shape = n_hidden ** 2 + n_in * n_hidden + n_hidden * n_out + \ n_hidden + n_hidden + n_out self.theta = theano.shared(value=np.zeros(theta_shape, dtype=theano.config.floatX)) # Parameters are reshaped views of theta param_idx = 0 # pointer to somewhere along parameter vector # recurrent weights as a shared variable self.W = self.theta[param_idx:(param_idx + n_hidden ** 2)].reshape( (n_hidden, n_hidden)) self.W.name = 'W' '''W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX)''' W_init = np.identity(n_hidden, dtype=theano.config.floatX) param_idx += n_hidden ** 2 # input to hidden layer weights self.W_in = self.theta[param_idx:(param_idx + n_in * \ n_hidden)].reshape((n_in, n_hidden)) self.W_in.name = 'W_in' W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_in * n_hidden # hidden to output layer weights self.W_out = self.theta[param_idx:(param_idx + n_hidden * \ n_out)].reshape((n_hidden, n_out)) self.W_out.name = 'W_out' W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_hidden * n_out self.h0 = self.theta[param_idx:(param_idx + n_hidden)] self.h0.name = 'h0' h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.bh = self.theta[param_idx:(param_idx + n_hidden)] self.bh.name = 'bh' bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.by = self.theta[param_idx:(param_idx + n_out)] self.by.name = 'by' by_init = np.zeros((n_out,), dtype=theano.config.floatX) param_idx += n_out assert(param_idx == theta_shape) # for convenience self.params = [self.W, self.W_in, self.W_out, self.h0, self.bh, self.by] # shortcut to norms (for monitoring) self.l2_norms = {} for param in self.params: self.l2_norms[param] = T.sqrt(T.sum(param ** 2)) # initialize parameters # DEBUG_MODE gives division by zero error when we leave parameters # as zeros self.theta.set_value(np.concatenate([x.ravel() for x in (W_init, W_in_init, W_out_init, h0_init, bh_init, by_init)])) self.theta_update = theano.shared( value=np.zeros(theta_shape, dtype=theano.config.floatX)) # recurrent function (using tanh activation function) and arbitrary output # activation function def step(x_t, h_tm1): h_t = self.activation(T.dot(x_t, self.W_in) + \ T.dot(h_tm1, self.W) + self.bh) y_t = T.dot(h_t, self.W_out) + self.by return h_t, y_t # the hidden state `h` for the entire sequence, and the output for the # entire sequence `y` (first dimension is always time) # Note the implementation of weight-sharing h0 across variable-size # batches using T.ones multiplying h0 # Alternatively, T.alloc approach is more robust [self.h, self.y_pred], _ = theano.scan(step, sequences=self.input, outputs_info=[T.alloc(self.h0, self.input.shape[1], n_hidden), None]) # outputs_info=[T.ones(shape=(self.input.shape[1], # self.h0.shape[0])) * self.h0, None]) # sometimes we only care about the final output # a matrix (batch_size, n_out) if only_output_after: self.y_pred = self.y_pred[-1] # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = 0 self.L1 += abs(self.W.sum()) self.L1 += abs(self.W_in.sum()) self.L1 += abs(self.W_out.sum()) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = 0 self.L2_sqr += (self.W ** 2).sum() self.L2_sqr += (self.W_in ** 2).sum() self.L2_sqr += (self.W_out ** 2).sum() if self.output_type == 'real': self.loss = lambda y: self.mse(y) elif self.output_type == 'binary': # push through sigmoid self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid self.y_out = T.round(self.p_y_given_x) # round to {0,1} self.loss = lambda y: self.nll_binary(y) elif self.output_type == 'softmax': # push through softmax, computing vector of class-membership # probabilities in symbolic form # # T.nnet.softmax will not operate on T.tensor3 types, only matrices # We take our n_steps x n_seq x n_classes output from the net # and reshape it into a (n_steps * n_seq) x n_classes matrix # apply softmax, then reshape back if self.only_output_after: self.p_y_given_x = T.nnet.softmax(self.y_pred) else: y_p = self.y_pred y_p_m = T.reshape(y_p, (y_p.shape[0] * y_p.shape[1], -1)) y_p_s = T.nnet.softmax(y_p_m) self.p_y_given_x = T.reshape(y_p_s, y_p.shape) # compute prediction as class whose probability is maximal self.y_out = T.argmax(self.p_y_given_x, axis=-1) self.loss = lambda y: self.nll_multiclass(y) else: raise NotImplementedError def mse(self, y): # error between output and target return T.mean((self.y_pred - y) ** 2) def nll_binary(self, y): # negative log likelihood based on binary cross entropy error return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y)) def nll_multiclass(self, y): # negative log likelihood based on multiclass cross entropy error # # Theano's advanced indexing is limited # therefore we reshape our n_steps x n_seq x n_classes tensor3 of probs # to a (n_steps * n_seq) x n_classes matrix of probs # so that we can use advanced indexing (i.e. get the probs which # correspond to the true class) # the labels y also must be flattened when we do this to use the # advanced indexing if self.only_output_after: return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) else: p_y = self.p_y_given_x p_y_m = T.reshape(p_y, (p_y.shape[0] * p_y.shape[1], -1)) y_f = y.flatten(ndim=1) return -T.mean(T.log(p_y_m)[T.arange(p_y_m.shape[0]), y_f]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred print "ydims", y.ndim, self.y_out.ndim if y.ndim != self.y_out.ndim: raise TypeError('y should have the same shape as self.y_out', ('y', y.type, 'y_out', self.y_out.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_out, y)) else: raise NotImplementedError() class MetaRNN(BaseEstimator): def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01, n_epochs=100, batch_size=100, L1_reg=0.00, L2_reg=0.00, learning_rate_decay=1, activation='tanh', output_type='real', final_momentum=0.9, initial_momentum=0.5, momentum_switchover=5, grad_max=10, only_output_after=False, snapshot_every=None, snapshot_path='/tmp'): self.n_in = int(n_in) self.n_hidden = int(n_hidden) self.n_out = int(n_out) self.learning_rate = float(learning_rate) self.learning_rate_decay = float(learning_rate_decay) self.n_epochs = int(n_epochs) self.batch_size = int(batch_size) self.L1_reg = float(L1_reg) self.L2_reg = float(L2_reg) self.activation = activation self.output_type = output_type self.initial_momentum = float(initial_momentum) self.final_momentum = float(final_momentum) self.momentum_switchover = int(momentum_switchover) self.grad_max = grad_max self.only_output_after = only_output_after if snapshot_every is not None: self.snapshot_every = int(snapshot_every) else: self.snapshot_every = None self.snapshot_path = snapshot_path self.ready() def ready(self): # input (where first dimension is time) self.x = T.tensor3(name='x') # target (where first dimension is time) if self.output_type == 'real': self.y = T.tensor3(name='y', dtype=theano.config.floatX) elif self.output_type == 'binary': self.y = T.tensor3(name='y', dtype='int32') elif self.output_type == 'softmax': # now it is a matrix (T x n_seq) if self.only_output_after: self.y = T.vector(name='y', dtype='int32') else: self.y = T.matrix(name='y', dtype='int32') else: raise NotImplementedError # learning rate self.lr = T.scalar() if self.activation == 'tanh': activation = T.tanh elif self.activation == 'sigmoid': activation = T.nnet.sigmoid elif self.activation == 'relu': activation = lambda x: x * (x > 0) elif self.activation == 'cappedrelu': activation = lambda x: T.minimum(x * (x > 0), 6) else: raise NotImplementedError self.rnn = RNN(input=self.x, n_in=self.n_in, n_hidden=self.n_hidden, n_out=self.n_out, activation=activation, output_type=self.output_type, only_output_after=self.only_output_after) if self.output_type == 'real': self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_pred, mode=mode) elif self.output_type == 'binary': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=T.round(self.rnn.p_y_given_x), mode=mode) elif self.output_type == 'softmax': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_out, mode=mode) else: raise NotImplementedError def shared_dataset(self, data_xy, borrow=True): """ Load the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=True) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=True) if self.output_type in ('binary', 'softmax'): return shared_x, T.cast(shared_y, 'int32') else: return shared_x, shared_y def __getstate__(self): """ Return state sequence.""" params = self._get_params() # parameters set in constructor theta = self.rnn.theta.get_value() state = (params, theta) return state def _set_weights(self, theta): """ Set fittable parameters from weights sequence. """ self.rnn.theta.set_value(theta) def __setstate__(self, state): """ Set parameters from state sequence. """ params, theta = state self.set_params(**params) self.ready() self._set_weights(theta) def save(self, fpath='.', fname=None): """ Save a pickled representation of Model state. """ fpathstart, fpathext = os.path.splitext(fpath) if fpathext == '.pkl': # User supplied an absolute path to a pickle file fpath, fname = os.path.split(fpath) elif fname is None: # Generate filename based on date date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s.pkl' % (class_name, date_str) fabspath = os.path.join(fpath, fname) logger.info("Saving to %s ..." % fabspath) file = open(fabspath, 'wb') state = self.__getstate__() pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def load(self, path): """ Load model parameters from path. """ logger.info("Loading from %s ..." % path) file = open(path, 'rb') state = pickle.load(file) self.__setstate__(state) file.close() def optional_output(self, train_set_x, show_norms=True, show_output=True): """ Produces some debugging output. """ if show_norms: norm_output = [] for param in self.rnn.params: norm_output.append('%s: %6.4f' % (param.name, self.get_norms[param]())) logger.info("norms: {" + ', '.join(norm_output) + "}") if show_output: # show output for a single case if self.output_type == 'binary': output_fn = self.predict_proba else: output_fn = self.predict logger.info("sample output: " + \ str(output_fn(train_set_x.get_value( borrow=True)[:, 0, :][:, np.newaxis, :]).flatten())) def fit(self, X_train, Y_train, X_test=None, Y_test=None, validate_every=100, optimizer='sgd', compute_zero_one=False, show_norms=True, show_output=True): """ Fit model Pass in X_test, Y_test to compute test error and report during training. X_train : ndarray (T x n_in) Y_train : ndarray (T x n_out) validation_frequency : int in terms of number of epochs optimizer : string Optimizer type. Possible values: 'sgd' : batch stochastic gradient descent 'cg' : nonlinear conjugate gradient algorithm (scipy.optimize.fmin_cg) 'bfgs' : quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (scipy.optimize.fmin_bfgs) 'l_bfgs_b' : Limited-memory BFGS (scipy.optimize.fmin_l_bfgs_b) compute_zero_one : bool in the case of binary output, compute zero-one error in addition to cross-entropy error show_norms : bool Show L2 norms of individual parameter groups while training. show_output : bool Show the model output on first training case while training. """ if X_test is not None: assert(Y_test is not None) self.interactive = True test_set_x, test_set_y = self.shared_dataset((X_test, Y_test)) else: self.interactive = False train_set_x, train_set_y = self.shared_dataset((X_train, Y_train)) if compute_zero_one: assert(self.output_type == 'binary' \ or self.output_type == 'softmax') # compute number of minibatches for training # note that cases are the second dimension, not the first n_train = train_set_x.get_value(borrow=True).shape[1] n_train_batches = int(np.ceil(1.0 * n_train / self.batch_size)) if self.interactive: n_test = test_set_x.get_value(borrow=True).shape[1] n_test_batches = int(np.ceil(1.0 * n_test / self.batch_size)) #validate_every is specified in terms of epochs validation_frequency = validate_every * n_train_batches ###################### # BUILD ACTUAL MODEL # ###################### logger.info('... building the model') index = T.lscalar('index') # index to a [mini]batch n_ex = T.lscalar('n_ex') # total number of examples # learning rate (may change) l_r = T.scalar('l_r', dtype=theano.config.floatX) mom = T.scalar('mom', dtype=theano.config.floatX) # momentum print "building cost graph" cost = self.rnn.loss(self.y) \ + self.L1_reg * self.rnn.L1 \ + self.L2_reg * self.rnn.L2_sqr print "cost done" # Proper implementation of variable-batch size evaluation # Note that classifier.errors() returns the mean error # But the last batch may be a smaller size # So we keep around the effective_batch_size (whose last element may # be smaller than the rest) # And weight the reported error by the batch_size when we average # Also, by keeping batch_start and batch_stop as symbolic variables, # we make the theano function easier to read batch_start = index * self.batch_size batch_stop = T.minimum(n_ex, (index + 1) * self.batch_size) effective_batch_size = batch_stop - batch_start get_batch_size = theano.function(inputs=[index, n_ex], outputs=effective_batch_size) def symbY(sharedY, start, stop, final_only): if final_only: return sharedY[batch_start:batch_stop] else: return sharedY[:, batch_start:batch_stop] print "compute train error" compute_train_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: symbY(train_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode) print "done compute train error" if compute_zero_one: compute_train_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: symbY(train_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode) if self.interactive: compute_test_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: symbY(test_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode) if compute_zero_one: compute_test_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: symbY(test_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode) self.get_norms = {} for param in self.rnn.params: self.get_norms[param] = theano.function(inputs=[], outputs=self.rnn.l2_norms[param], mode=mode) # compute the gradient of cost with respect to theta using BPTT gtheta = T.grad(cost, self.rnn.theta) if optimizer == 'sgd': updates = {} theta = self.rnn.theta theta_update = self.rnn.theta_update # careful here, update to the shared variable # cannot depend on an updated other shared variable # since updates happen in parallel # so we need to be explicit upd = mom * theta_update - l_r * gtheta updates[theta_update] = upd updates[theta] = theta + upd # compiling a Theano function `train_model` that returns the # cost, but in the same time updates the parameter of the # model based on the rules defined in `updates` train_model = theano.function(inputs=[index, n_ex, l_r, mom], outputs=cost, updates=updates, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: symbY(train_set_y,batch_start,batch_stop,self.only_output_after)}, mode=mode) ############### # TRAIN MODEL # ############### logger.info('... training') epoch = 0 while (epoch < self.n_epochs): epoch = epoch + 1 effective_momentum = self.final_momentum \ if epoch > self.momentum_switchover \ else self.initial_momentum for minibatch_idx in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_idx, n_train, self.learning_rate, effective_momentum) # iteration number (how many weight updates have we made?) # epoch is 1-based, index is 0 based iter = (epoch - 1) * n_train_batches + minibatch_idx + 1 if iter % validation_frequency == 0: # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in xrange(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in xrange(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in xrange(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in xrange(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, mb %i/%i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, tr loss %f ' 'te loss %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, mb %i/%i, train loss %f' ' train zo %f ' 'lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, train loss %f' ' lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, self.learning_rate)) self.optional_output(train_set_x, show_norms, show_output) self.learning_rate *= self.learning_rate_decay if self.snapshot_every is not None: if (epoch + 1) % self.snapshot_every == 0: date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s-snapshot-%d.pkl' % (class_name, date_str, epoch + 1) fabspath = os.path.join(self.snapshot_path, fname) self.save(fpath=fabspath) elif optimizer == 'cg' or optimizer == 'bfgs' \ or optimizer == 'l_bfgs_b': # compile a theano function that returns the cost of a minibatch batch_cost = theano.function(inputs=[index, n_ex], outputs=cost, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: symbY(train_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode, name="batch_cost") # compile a theano function that returns the gradient of the # minibatch with respect to theta batch_grad = theano.function(inputs=[index, n_ex], outputs=T.grad(cost, self.rnn.theta), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: symbY(train_set_y, batch_start, batch_stop, self.only_output_after)}, mode=mode, name="batch_grad") # creates a function that computes the average cost on the training # set def train_fn(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_losses = [batch_cost(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] return np.average(train_losses, weights=train_batch_sizes) # creates a function that computes the average gradient of cost # with respect to theta def train_fn_grad(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_grads = [batch_grad(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] return np.average(train_grads, weights=train_batch_sizes, axis=0) # validation function, prints useful output after each iteration def callback(theta_value): self.epoch += 1 if (self.epoch) % validate_every == 0: self.rnn.theta.set_value(theta_value, borrow=True) # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in xrange(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in xrange(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in xrange(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in xrange(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f' % \ (self.epoch, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one)) else: logger.info('epoch %i, tr loss %f, te loss %f' % \ (self.epoch, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, train loss %f' ', train zo %f ' % \ (self.epoch, this_train_loss, this_train_zero_one)) else: logger.info('epoch %i, train loss %f ' % \ (self.epoch, this_train_loss)) self.optional_output(train_set_x, show_norms, show_output) ############### # TRAIN MODEL # ############### logger.info('... training') # using scipy conjugate gradient optimizer import scipy.optimize if optimizer == 'cg': of = scipy.optimize.fmin_cg elif optimizer == 'bfgs': of = scipy.optimize.fmin_bfgs elif optimizer == 'l_bfgs_b': of = scipy.optimize.fmin_l_bfgs_b logger.info("Optimizing using %s..." % of.__name__) start_time = time.clock() # keep track of epochs externally # these get updated through callback self.epoch = 0 # interface to l_bfgs_b is different than that of cg, bfgs # however, this will be changed in scipy 0.11 # unified under scipy.optimize.minimize if optimizer == 'cg' or optimizer == 'bfgs': best_theta = of( f=train_fn, x0=self.rnn.theta.get_value(), # x0=np.zeros(self.rnn.theta.get_value().shape, # dtype=theano.config.floatX), fprime=train_fn_grad, callback=callback, disp=1, retall=1, maxiter=self.n_epochs) elif optimizer == 'l_bfgs_b': best_theta, f_best_theta, info = of( func=train_fn, x0=self.rnn.theta.get_value(), fprime=train_fn_grad, iprint=validate_every, maxfun=self.n_epochs) # max number of feval end_time = time.clock() print "Optimization time: %f" % (end_time - start_time) else: raise NotImplementedError def test_real(n_epochs=1000): """ Test RNN with real-valued outputs. """ n_hidden = 10 n_in = 5 n_out = 3 n_steps = 10 n_seq = 10 # per batch n_batches = 10 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) targets[1:, :, 0] = seq[:-1, :, 3] # delayed 1 targets[1:, :, 1] = seq[:-1, :, 2] # delayed 1 targets[2:, :, 2] = seq[:-2, :, 0] # delayed 2 targets += 0.01 * np.random.standard_normal(targets.shape) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.01, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', L2_reg=1e-3) model.fit(seq, targets, validate_every=100, optimizer='sgd') plt.close('all') fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, 0, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.plot(targets[:, 0, :]) guess = model.predict(seq[:, 0, :][:, np.newaxis, :]) guessed_targets = plt.plot(guess.squeeze(), linestyle='--') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_title('solid: true output, dashed: model output') def test_binary(multiple_out=False, n_epochs=1000, optimizer='cg'): """ Test RNN with binary outputs. """ n_hidden = 10 n_in = 5 if multiple_out: n_out = 2 else: n_out = 1 n_steps = 10 n_seq = 10 # per batch n_batches = 50 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) # whether lag 1 (dim 3) is greater than lag 2 (dim 0) targets[2:, :, 0] = np.cast[np.int](seq[1:-1, :, 3] > seq[:-2, :, 0]) if multiple_out: # whether product of lag 1 (dim 4) and lag 1 (dim 2) # is less than lag 2 (dim 0) targets[2:, :, 1] = np.cast[np.int]( (seq[1:-1, :, 4] * seq[1:-1, :, 2]) > seq[:-2, :, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', output_type='binary') model.fit(seq, targets, validate_every=100, compute_zero_one=True, optimizer=optimizer) seqs = xrange(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.step(xrange(n_steps), targets[:, seq_num, :], marker='o') guess = model.predict_proba(seq[:, seq_num, :][:, np.newaxis, :]) guessed_targets = plt.step(xrange(n_steps), guess.squeeze()) plt.setp(guessed_targets, linestyle='--', marker='d') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_ylim((-0.1, 1.1)) ax2.set_title('solid: true output, dashed: model output (prob)') def test_softmax(n_epochs=250, optimizer='cg'): """ Test RNN with softmax outputs. """ n_hidden = 10 n_in = 5 n_steps = 10 n_seq = 10 # per batch n_batches = 50 n_classes = 3 n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches), dtype=np.int) thresh = 0.5 # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh # class 1 # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh # class 2 # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh # class 0 targets[2:, :][seq[1:-1, :, 3] > seq[:-2, :, 0] + thresh] = 1 targets[2:, :][seq[1:-1, :, 3] < seq[:-2, :, 0] - thresh] = 2 #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='relu', output_type='softmax') model.fit(seq, targets, validate_every=10, compute_zero_one=True, optimizer=optimizer) seqs = xrange(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num]) ax1.set_title('input') ax2 = plt.subplot(212) # blue line will represent true classes true_targets = plt.step(xrange(n_steps), targets[:, seq_num], marker='o') # show probabilities (in b/w) output by model guess = model.predict_proba(seq[:, seq_num][:, np.newaxis]) guessed_probs = plt.imshow(guess.squeeze().T, interpolation='nearest', cmap='gray') ax2.set_title('blue: true class, grayscale: probs assigned by model') def test_softmax2(n_epochs=250, optimizer='sgd'): """ Test RNN with a single softmax output after the sequence. """ n_hidden = 50 n_in = 1 n_steps = 50 n_classes = 4 batch_size = 10 n_seq=100*n_classes n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # simple distributions test seq = np.zeros((n_seq, n_steps, n_in)) eachSize = (n_seq/n_classes, n_steps, 1) seq[:n_seq/n_classes] = np.random.uniform(0,1,eachSize) # uniform positive seq[n_seq/n_classes:2*n_seq/n_classes] = np.random.uniform(-1,0,eachSize) # uniform negativ seq[2*n_seq/n_classes:3*n_seq/n_classes] = np.random.uniform(1,2,eachSize) # uniform [1,2] seq[3*n_seq/n_classes:] = np.random.gamma(shape=1.0, size=eachSize) # gamma (mostly between 0 and 3) targets = np.repeat(np.asarray(range(n_classes)), n_seq/n_classes) #targets = np.expand_dims(targets, axis=1) print seq.shape, targets.shape d = zip(seq, targets) random.shuffle(d) seq = np.asarray([i[0] for i in d]) targets = np.asarray([i[1] for i in d]) print seq.shape, targets.shape seq = seq.transpose(1,0,2) #targets = targets.transpose(1,0) print seq.shape, targets.shape model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.00001, batch_size=batch_size, learning_rate_decay=0.999, n_epochs=n_epochs, activation='relu', grad_max=10, output_type='softmax', only_output_after=True) model.fit(seq, targets, validate_every=10, compute_zero_one=True) seqs = xrange(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[seq_num]) ax1.set_title('input') ax2 = plt.subplot(212) # blue line will represent true classes true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o') # show probabilities (in b/w) output by model guess = model.predict_proba(seq[seq_num]) guessed_probs = plt.imshow(guess.T, interpolation='nearest', cmap='gray') ax2.set_title('blue: true class, grayscale: probs assigned by model') def load_data_np(datafile): print '... loading data' # Load the dataset with open(datafile) as f: [tr, val, tst] = pickle.load(f) return tr[0], tr[1] def test_mnist(n_epochs=250, optimizer='sgd'): """ Test RNN with softmax outputs on the mnist data set. """ n_hidden = 100 n_in = 1 n_steps = 784 n_classes = 10 batch_size = 20 n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # load mnist from os.path import expanduser home = expanduser("~") seq, y = load_data_np(home+"/datasets/mnistSMALL.pkl") seq = np.expand_dims(seq, axis=2) #seq, y = seq[:100], y[:100] n_seq = len(seq) # steps first for ungodly reasons seq = seq.transpose(1,0,2) targets = y model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.0000001, batch_size=batch_size, learning_rate_decay=0.999, n_epochs=n_epochs, activation='relu', grad_max=10, output_type='softmax', only_output_after=True) model.fit(seq, targets, validate_every=10, compute_zero_one=True) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) t0 = time.time() #test_real(n_epochs=1000) #test_binary(optimizer='sgd', n_epochs=1000) #test_softmax(n_epochs=500, optimizer='sgd') #test_softmax2(n_epochs=500, optimizer='sgd') test_mnist(n_epochs=500, optimizer='sgd') print "Elapsed time: %f" % (time.time() - t0)
ebuchman/theano-rnn
rnn_minibatch.py
Python
bsd-3-clause
44,781
#python import k3d import testing import copy source_file = "papagayo_example.dat" setup = testing.setup_scalar_source_test("PapagayoLipsyncReader") setup.source.frame_rate = 30 setup.source.interpolate = True setup.source.interpolation_time = 0.2 setup.source.papagayo_file = k3d.filesystem.generic_path(testing.source_path() + "/lipsync/" + source_file) test_cases = \ [ [0.0,{"rest":1.0}], [1.98,{"E":0.24000000000000021,"etc":0.75999999999999979}], [2.0,{"E":0.5,"etc":0.5}], [4.34,{"E":0.69999999999999463,"MBP":0.30000000000000537}], ] mouths = ["AI","E","etc","FV","L","MBP","O","rest","U","WQ"] for test_case in test_cases: setup.source.time = test_case[0] source_mouth_value = 0.0 mouths_in_zero = copy.deepcopy(mouths) for mouth,reference_value in test_case[1].iteritems(): exec("source_mouth_value = setup.source."+mouth) testing.require_scalar_value(source_mouth_value,reference_value) mouths_in_zero.remove(mouth) #Check the other mouths are in zero for mouth in mouths_in_zero: exec("source_mouth_value = setup.source."+mouth) testing.require_scalar_value(source_mouth_value,0.0)
barche/k3d
tests/double/source.PapagayoLipsyncReader.py
Python
gpl-2.0
1,134
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ """Wordcount exercise Google's Python class The main() below is already defined and complete. It calls print_words() and print_top() functions which you write. 1. For the --count flag, implement a print_words(filename) function that counts how often each word appears in the text and prints: word1 count1 word2 count2 ... Print the above list in order sorted by word (python will sort punctuation to come before letters -- that's fine). Store all the words as lowercase, so 'The' and 'the' count as the same word. 2. For the --topcount flag, implement a print_top(filename) which is similar to print_words() but which prints just the top 20 most common words sorted so the most common word is first, then the next most common, and so on. Use str.split() (no arguments) to split on all whitespace. Workflow: don't build the whole program at once. Get it to an intermediate milestone and print your data structure and sys.exit(0). When that's working, try for the next milestone. Optional: define a helper function to avoid code duplication inside print_words() and print_top(). """ import sys # +++your code here+++ # Define print_words(filename) and print_top(filename) functions. # You could write a helper utility function that reads a file # and builds and returns a word/count dict for it. # Then print_words() and print_top() can just call the utility function. ### def print_words(filename): f = open(filename, 'rU') print_words('alice.txt') # This basic command line argument parsing code is provided and # calls the print_words() and print_top() functions which you must define. def main(): if len(sys.argv) != 3: print 'usage: ./wordcount.py {--count | --topcount} file' sys.exit(1) option = sys.argv[1] filename = sys.argv[2] if option == '--count': print_words(filename) elif option == '--topcount': print_top(filename) else: print 'unknown option: ' + option sys.exit(1) if __name__ == '__main__': main()
ssarber/google-python-exercises
basic/wordcount.py
Python
apache-2.0
2,205
# -*- coding: utf-8 -*- class OAuthUser: def __init__(self, access_token, user_id): self.user_id = user_id self.access_token = access_token self.email = None self.title = None self.name = None self.avatar_url = None self.description = None def __str__(self): return (f"OAuthUser(user_id={self.user_id}, " f" access_token='{self.access_token}'")
lcgong/alchemy
busiserv/login/user.py
Python
gpl-3.0
439
import sys import json from os import path from argparse import ArgumentParser sys.path.append(path.dirname(path.dirname(path.abspath(__file__))) + '/utils/') from algorithm_utils import set_algorithms_output_data from health_check_lib import HealthCheckLocalDT def main(args): # Parse arguments sys.argv = args parser = ArgumentParser() parser.add_argument('-local_step_dbs', required=True, help='Path to local db.') args, unknown = parser.parse_known_args() local_dbs = path.abspath(args.local_step_dbs) local_out = HealthCheckLocalDT.load(local_dbs) nodes = {} nodes["active_nodes"] = local_out.get_data() # Return the algorithm's output set_algorithms_output_data(json.dumps(nodes)) if __name__ == '__main__': main()
madgik/exareme
Exareme-Docker/src/mip-algorithms/HEALTH_CHECK/global.py
Python
mit
808
import re filename = 'baladhuri_futuh.txt' text = open(filename, mode='r', encoding='utf-8').read() def index_generator(word, text): juz = 'الجزء:' safha = 'الصفحة:' page_regex = juz + r' \d+ ¦ ' + safha + r' \d+' search_regex = word + r'.+?(' + page_regex + ')' pagination = re.findall(search_regex, text, re.DOTALL) return pagination index = index_generator('فرضة', text) for page in index: print(page)
jedlitools/find-for-me
ex12_index_generator.py
Python
mit
453
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import unittest from airflow.models import DAG, DagRun, TaskInstance as TI from airflow.operators.branch_operator import BaseBranchOperator from airflow.operators.dummy_operator import DummyOperator from airflow.utils import timezone from airflow.utils.session import create_session from airflow.utils.state import State from airflow.utils.types import DagRunType DEFAULT_DATE = timezone.datetime(2016, 1, 1) INTERVAL = datetime.timedelta(hours=12) class ChooseBranchOne(BaseBranchOperator): def choose_branch(self, context): return 'branch_1' class ChooseBranchOneTwo(BaseBranchOperator): def choose_branch(self, context): return ['branch_1', 'branch_2'] class TestBranchOperator(unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() with create_session() as session: session.query(DagRun).delete() session.query(TI).delete() def setUp(self): self.dag = DAG('branch_operator_test', default_args={ 'owner': 'airflow', 'start_date': DEFAULT_DATE}, schedule_interval=INTERVAL) self.branch_1 = DummyOperator(task_id='branch_1', dag=self.dag) self.branch_2 = DummyOperator(task_id='branch_2', dag=self.dag) self.branch_3 = None self.branch_op = None def tearDown(self): super().tearDown() with create_session() as session: session.query(DagRun).delete() session.query(TI).delete() def test_without_dag_run(self): """This checks the defensive against non existent tasks in a dag run""" self.branch_op = ChooseBranchOne(task_id="make_choice", dag=self.dag) self.branch_1.set_upstream(self.branch_op) self.branch_2.set_upstream(self.branch_op) self.dag.clear() self.branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) with create_session() as session: tis = session.query(TI).filter( TI.dag_id == self.dag.dag_id, TI.execution_date == DEFAULT_DATE ) for ti in tis: if ti.task_id == 'make_choice': self.assertEqual(ti.state, State.SUCCESS) elif ti.task_id == 'branch_1': # should exist with state None self.assertEqual(ti.state, State.NONE) elif ti.task_id == 'branch_2': self.assertEqual(ti.state, State.SKIPPED) else: raise Exception def test_branch_list_without_dag_run(self): """This checks if the BranchOperator supports branching off to a list of tasks.""" self.branch_op = ChooseBranchOneTwo(task_id='make_choice', dag=self.dag) self.branch_1.set_upstream(self.branch_op) self.branch_2.set_upstream(self.branch_op) self.branch_3 = DummyOperator(task_id='branch_3', dag=self.dag) self.branch_3.set_upstream(self.branch_op) self.dag.clear() self.branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) with create_session() as session: tis = session.query(TI).filter( TI.dag_id == self.dag.dag_id, TI.execution_date == DEFAULT_DATE ) expected = { "make_choice": State.SUCCESS, "branch_1": State.NONE, "branch_2": State.NONE, "branch_3": State.SKIPPED, } for ti in tis: if ti.task_id in expected: self.assertEqual(ti.state, expected[ti.task_id]) else: raise Exception def test_with_dag_run(self): self.branch_op = ChooseBranchOne(task_id="make_choice", dag=self.dag) self.branch_1.set_upstream(self.branch_op) self.branch_2.set_upstream(self.branch_op) self.dag.clear() dagrun = self.dag.create_dagrun( run_type=DagRunType.MANUAL, start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING ) self.branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) tis = dagrun.get_task_instances() for ti in tis: if ti.task_id == 'make_choice': self.assertEqual(ti.state, State.SUCCESS) elif ti.task_id == 'branch_1': self.assertEqual(ti.state, State.NONE) elif ti.task_id == 'branch_2': self.assertEqual(ti.state, State.SKIPPED) else: raise Exception def test_with_skip_in_branch_downstream_dependencies(self): self.branch_op = ChooseBranchOne(task_id="make_choice", dag=self.dag) self.branch_op >> self.branch_1 >> self.branch_2 self.branch_op >> self.branch_2 self.dag.clear() dagrun = self.dag.create_dagrun( run_type=DagRunType.MANUAL, start_date=timezone.utcnow(), execution_date=DEFAULT_DATE, state=State.RUNNING ) self.branch_op.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) tis = dagrun.get_task_instances() for ti in tis: if ti.task_id == 'make_choice': self.assertEqual(ti.state, State.SUCCESS) elif ti.task_id == 'branch_1': self.assertEqual(ti.state, State.NONE) elif ti.task_id == 'branch_2': self.assertEqual(ti.state, State.NONE) else: raise Exception
wooga/airflow
tests/operators/test_branch_operator.py
Python
apache-2.0
6,484
class StreamlinkError(Exception): """Any error caused by Streamlink will be caught with this exception.""" class PluginError(StreamlinkError): """Plugin related error.""" class FatalPluginError(PluginError): """ Plugin related error that cannot be recovered from Plugin's should use this Exception when errors that can never be recovered from are encountered. For example, when a user's input is required an none can be given. """ class NoStreamsError(StreamlinkError): def __init__(self, url): self.url = url err = "No streams found on this URL: {0}".format(url) Exception.__init__(self, err) class NoPluginError(PluginError): """No relevant plugin has been loaded.""" class StreamError(StreamlinkError): """Stream related error.""" __all__ = ["StreamlinkError", "PluginError", "NoPluginError", "NoStreamsError", "StreamError"]
chhe/streamlink
src/streamlink/exceptions.py
Python
bsd-2-clause
928
from .iotd_service import IotdService
astrobin/astrobin
astrobin_apps_iotd/services/__init__.py
Python
agpl-3.0
38
#! /usr/bin/env python3 """ Cruft checker and hole filler for overrides @contact: Debian FTPMaster <ftpmaster@debian.org> @copyright: 2000, 2001, 2002, 2004, 2006 James Troup <james@nocrew.org> @opyright: 2005 Jeroen van Wolffelaar <jeroen@wolffelaar.nl> @copyright: 2011 Joerg Jaspert <joerg@debian.org> @license: GNU General Public License version 2 or later """ # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ################################################################################ ###################################################################### # NB: dak check-overrides is not a good idea with New Incoming as it # # doesn't take into account accepted. You can minimize the impact # # of this by running it immediately after dak process-accepted but # # that's still racy because 'dak process-new' doesn't lock with 'dak # # process-accepted'. A better long term fix is the evil plan for # # accepted to be in the DB. # ###################################################################### # dak check-overrides should now work fine being done during # cron.daily, for example just before 'dak make-overrides' (after 'dak # process-accepted' and 'dak make-suite-file-list'). At that point, # queue/accepted should be empty and installed, so... dak # check-overrides does now take into account suites sharing overrides # TODO: # * Only update out-of-sync overrides when corresponding versions are equal to # some degree # * consistency checks like: # - section=debian-installer only for udeb and # dsc # - priority=optional if dsc # - (suite, package, 'dsc') is unique, # - just as (suite, package, (u)deb) (yes, across components!) # - sections match their component (each component has an own set of sections, # could probably be reduced...) ################################################################################ import sys import apt_pkg from daklib.config import Config from daklib.dbconn import * from daklib import daklog from daklib import utils ################################################################################ Options = None #: Commandline arguments parsed into this Logger = None #: Our logging object sections = {} priorities = {} blacklist = {} ################################################################################ def usage(exit_code=0): print("""Usage: dak check-overrides Check for cruft in overrides. -n, --no-action don't do anything -h, --help show this help and exit""") sys.exit(exit_code) ################################################################################ def process(osuite, affected_suites, originosuite, component, otype, session): global Logger, Options, sections, priorities o = get_suite(osuite, session) if o is None: utils.fubar("Suite '%s' not recognised." % (osuite)) osuite_id = o.suite_id originosuite_id = None if originosuite: oo = get_suite(originosuite, session) if oo is None: utils.fubar("Suite '%s' not recognised." % (originosuite)) originosuite_id = oo.suite_id c = get_component(component, session) if c is None: utils.fubar("Component '%s' not recognised." % (component)) component_id = c.component_id ot = get_override_type(otype, session) if ot is None: utils.fubar("Type '%s' not recognised. (Valid types are deb, udeb and dsc)" % (otype)) type_id = ot.overridetype_id dsc_type_id = get_override_type("dsc", session).overridetype_id source_priority_id = get_priority("optional", session).priority_id if otype == "deb" or otype == "udeb": packages = {} # TODO: Fix to use placeholders (check how to with arrays) q = session.execute(""" SELECT b.package FROM binaries b JOIN bin_associations ba ON b.id = ba.bin JOIN suite ON ba.suite = suite.id JOIN files_archive_map af ON b.file = af.file_id AND suite.archive_id = af.archive_id WHERE b.type = :otype AND ba.suite IN (%s) AND af.component_id = :component_id """ % (",".join([str(i) for i in affected_suites])), {'otype': otype, 'component_id': component_id}) for i in q.fetchall(): packages[i[0]] = 0 src_packages = {} q = session.execute(""" SELECT s.source FROM source s JOIN src_associations sa ON s.id = sa.source JOIN suite ON sa.suite = suite.id JOIN files_archive_map af ON s.file = af.file_id AND suite.archive_id = af.archive_id WHERE sa.suite IN (%s) AND af.component_id = :component_id """ % (",".join([str(i) for i in affected_suites])), {'component_id': component_id}) for i in q.fetchall(): src_packages[i[0]] = 0 # ----------- # Drop unused overrides q = session.execute("""SELECT package, priority, section, maintainer FROM override WHERE suite = :suite_id AND component = :component_id AND type = :type_id""", {'suite_id': osuite_id, 'component_id': component_id, 'type_id': type_id}) # We're already within a transaction if otype == "dsc": for i in q.fetchall(): package = i[0] if package in src_packages: src_packages[package] = 1 else: if package in blacklist: utils.warn("%s in incoming, not touching" % package) continue Logger.log(["removing unused override", osuite, component, otype, package, priorities[i[1]], sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""DELETE FROM override WHERE package = :package AND suite = :suite_id AND component = :component_id AND type = :type_id AND created < now() - interval '14 days'""", {'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'type_id': type_id}) # create source overrides based on binary overrides, as source # overrides not always get created q = session.execute("""SELECT package, priority, section, maintainer FROM override WHERE suite = :suite_id AND component = :component_id""", {'suite_id': osuite_id, 'component_id': component_id}) for i in q.fetchall(): package = i[0] if package not in src_packages or src_packages[package]: continue src_packages[package] = 1 Logger.log(["add missing override", osuite, component, otype, package, "source", sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""INSERT INTO override (package, suite, component, priority, section, type, maintainer) VALUES (:package, :suite_id, :component_id, :priority_id, :section_id, :type_id, :maintainer)""", {'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'priority_id': source_priority_id, 'section_id': i[2], 'type_id': dsc_type_id, 'maintainer': i[3]}) # Check whether originosuite has an override for us we can # copy if originosuite: q = session.execute("""SELECT origin.package, origin.priority, origin.section, origin.maintainer, target.priority, target.section, target.maintainer FROM override origin LEFT JOIN override target ON (origin.package = target.package AND target.suite = :suite_id AND origin.component = target.component AND origin.type = target.type) WHERE origin.suite = :originsuite_id AND origin.component = :component_id AND origin.type = :type_id""", {'suite_id': osuite_id, 'originsuite_id': originosuite_id, 'component_id': component_id, 'type_id': type_id}) for i in q.fetchall(): package = i[0] if package not in src_packages or src_packages[package]: if i[4] and (i[1] != i[4] or i[2] != i[5] or i[3] != i[6]): Logger.log(["syncing override", osuite, component, otype, package, "source", sections[i[5]], i[6], "source", sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""UPDATE override SET priority = :priority, section = :section, maintainer = :maintainer WHERE package = :package AND suite = :suite_id AND component = :component_id AND type = :type_id""", {'priority': i[1], 'section': i[2], 'maintainer': i[3], 'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'type_id': dsc_type_id}) continue # we can copy src_packages[package] = 1 Logger.log(["copying missing override", osuite, component, otype, package, "source", sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""INSERT INTO override (package, suite, component, priority, section, type, maintainer) VALUES (:package, :suite_id, :component_id, :priority_id, :section_id, :type_id, :maintainer)""", {'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'priority_id': source_priority_id, 'section_id': i[2], 'type_id': dsc_type_id, 'maintainer': i[3]}) for package, hasoverride in list(src_packages.items()): if not hasoverride: utils.warn("%s has no override!" % package) else: # binary override for i in q.fetchall(): package = i[0] if package in packages: packages[package] = 1 else: if package in blacklist: utils.warn("%s in incoming, not touching" % package) continue Logger.log(["removing unused override", osuite, component, otype, package, priorities[i[1]], sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""DELETE FROM override WHERE package = :package AND suite = :suite_id AND component = :component_id AND type = :type_id AND created < now() - interval '14 days'""", {'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'type_id': type_id}) # Check whether originosuite has an override for us we can # copy if originosuite: q = session.execute("""SELECT origin.package, origin.priority, origin.section, origin.maintainer, target.priority, target.section, target.maintainer FROM override origin LEFT JOIN override target ON (origin.package = target.package AND target.suite = :suite_id AND origin.component = target.component AND origin.type = target.type) WHERE origin.suite = :originsuite_id AND origin.component = :component_id AND origin.type = :type_id""", {'suite_id': osuite_id, 'originsuite_id': originosuite_id, 'component_id': component_id, 'type_id': type_id}) for i in q.fetchall(): package = i[0] if package not in packages or packages[package]: if i[4] and (i[1] != i[4] or i[2] != i[5] or i[3] != i[6]): Logger.log(["syncing override", osuite, component, otype, package, priorities[i[4]], sections[i[5]], i[6], priorities[i[1]], sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""UPDATE override SET priority = :priority_id, section = :section_id, maintainer = :maintainer WHERE package = :package AND suite = :suite_id AND component = :component_id AND type = :type_id""", {'priority_id': i[1], 'section_id': i[2], 'maintainer': i[3], 'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'type_id': type_id}) continue # we can copy packages[package] = 1 Logger.log(["copying missing override", osuite, component, otype, package, priorities[i[1]], sections[i[2]], i[3]]) if not Options["No-Action"]: session.execute("""INSERT INTO override (package, suite, component, priority, section, type, maintainer) VALUES (:package, :suite_id, :component_id, :priority_id, :section_id, :type_id, :maintainer)""", {'package': package, 'suite_id': osuite_id, 'component_id': component_id, 'priority_id': i[1], 'section_id': i[2], 'type_id': type_id, 'maintainer': i[3]}) for package, hasoverride in list(packages.items()): if not hasoverride: utils.warn("%s has no override!" % package) session.commit() sys.stdout.flush() ################################################################################ def main(): global Logger, Options, sections, priorities cnf = Config() Arguments = [('h', "help", "Check-Overrides::Options::Help"), ('n', "no-action", "Check-Overrides::Options::No-Action")] for i in ["help", "no-action"]: key = "Check-Overrides::Options::%s" % i if key not in cnf: cnf[key] = "" apt_pkg.parse_commandline(cnf.Cnf, Arguments, sys.argv) Options = cnf.subtree("Check-Overrides::Options") if Options["Help"]: usage() session = DBConn().session() # init sections, priorities: # We need forward and reverse sections = get_sections(session) for name, entry in list(sections.items()): sections[entry] = name priorities = get_priorities(session) for name, entry in list(priorities.items()): priorities[entry] = name if not Options["No-Action"]: Logger = daklog.Logger("check-overrides") else: Logger = daklog.Logger("check-overrides", 1) for suite in session.query(Suite).filter(Suite.overrideprocess == True): # noqa:E712 originosuite = None originremark = '' if suite.overrideorigin is not None: originosuite = get_suite(suite.overrideorigin, session) if originosuite is None: utils.fubar("%s has an override origin suite of %s but it doesn't exist!" % (suite.suite_name, suite.overrideorigin)) originosuite = originosuite.suite_name originremark = " taking missing from %s" % originosuite print("Processing %s%s..." % (suite.suite_name, originremark)) # Get a list of all suites that use the override file of 'suite.suite_name' as # well as the suite ocodename = suite.codename suiteids = [x.suite_id for x in session.query(Suite).filter(Suite.overridecodename == ocodename).all()] if suite.suite_id not in suiteids: suiteids.append(suite.suite_id) if len(suiteids) < 1: utils.fubar("Couldn't find id's of all suites: %s" % suiteids) for component in session.query(Component).all(): # It is crucial for the dsc override creation based on binary # overrides that 'dsc' goes first component_name = component.component_name otypes = ['dsc'] for ot in session.query(OverrideType): if ot.overridetype == 'dsc': continue otypes.append(ot.overridetype) for otype in otypes: print("Processing %s [%s - %s]" % (suite.suite_name, component_name, otype)) sys.stdout.flush() process(suite.suite_name, suiteids, originosuite, component_name, otype, session) Logger.close() ################################################################################ if __name__ == '__main__': main()
Debian/dak
dak/check_overrides.py
Python
gpl-2.0
19,666
#!/usr/bin/env python3 import time import pyclamster import logging import numpy as np import os import pickle logging.basicConfig(level=logging.DEBUG) start_time = time.time() # read an image img = pyclamster.image.Image(os.path.join("examples/images/wolf/", "Image_20160527_144000_UTCp1_3.jpg")) # convert to grayscale img.image = img.convert("L") # resize image img.image = img.resize((200,200)) ### create rectified coordinates ### outshape=(300,300) # size of output image rect_azimuth_offset = 3/2 * np.pi # north angle of rectified image rect_clockwise = True rect_x,rect_y=np.meshgrid( np.linspace(-20,20,num=outshape[1]),# image x coordinate goes right np.linspace(20,-20,num=outshape[0]) # image y coordinate goes up ) rect_z = 4 # rectify for height rect_z rect_coord = pyclamster.coordinates.Coordinates3d( x = rect_x, y = rect_y, z = rect_z, azimuth_offset = rect_azimuth_offset, azimuth_clockwise = rect_clockwise, shape=outshape ) ### create spherical coordinates of original image ### # read calibration of wolf-3-camera calibrationfile = "examples/calibration/wolf-3-calibration.pk" calibration = pickle.load(open(calibrationfile,"rb")) # get calibrated coordinates img.coordinates = calibration.create_coordinates(img.data.shape) img.coordinates.z = rect_z ### create rectification map ### distmapfile = "examples/fisheye/fisheye-wolf-distmap.pk" if True and os.path.exists(distmapfile): # use distmap from file logging.debug("read rectifiation map from file") distmap = pickle.load(open(distmapfile,"rb")) else: # calculate distmap # based on regular grid logging.debug("calculating rectification map") distmap = pyclamster.fisheye.FisheyeProjection.distortionMap( in_coord=img.coordinates, out_coord=rect_coord, method="nearest" ,basedon="spherical") ### rectify image ## rectimage = img.applyDistortionMap(distmap) ### plot results ### import matplotlib.pyplot as plt plt.subplot(3,4,1) plt.title("original image (fix)") plt.imshow(img.data, interpolation="nearest", cmap='Greys_r') plt.subplot(3,4,2) plt.title("image radius (calculated)") plt.imshow(img.coordinates.radiush, interpolation="nearest") plt.colorbar() plt.subplot(3,4,3) plt.title("rectified r (calculated)") plt.imshow(rect_coord.radiush,interpolation="nearest") plt.colorbar() plt.subplot(3,4,4) plt.title("rectified image (calculated)") plt.imshow(rectimage.data, interpolation="nearest", cmap='Greys_r') plt.subplot(3,4,5) plt.title("image elevation (fix)") plt.imshow(img.coordinates.elevation,interpolation="nearest") plt.colorbar() plt.subplot(3,4,9) plt.title("image azimuth (fix)") plt.imshow(img.coordinates.azimuth,interpolation="nearest") plt.colorbar() plt.subplot(3,4,6) plt.title("image x (calculated)") plt.imshow(img.coordinates.x,interpolation="nearest") plt.colorbar() plt.subplot(3,4,10) plt.title("image y (calculated)") plt.imshow(img.coordinates.y,interpolation="nearest") plt.colorbar() plt.subplot(3,4,7) plt.title("rectified x (fix)") plt.imshow(rect_coord.x,interpolation="nearest") plt.colorbar() plt.subplot(3,4,11) plt.title("rectified y (fix)") plt.imshow(rect_coord.y,interpolation="nearest") plt.colorbar() plt.subplot(3,4,8) plt.title("rectified elevation (calculated)") plt.imshow(rect_coord.elevation,interpolation="nearest") plt.colorbar() plt.subplot(3,4,12) plt.title("rectified azimuth (calculated)") plt.imshow(rect_coord.azimuth,interpolation="nearest") plt.colorbar() logging.debug("Time elapsed: {0:.3f} s".format(time.time()-start_time)) plt.show()
LEX2016WoKaGru/pyClamster
examples/fisheye/fisheye-wolf.py
Python
gpl-3.0
3,571
# -*- coding: utf-8 -*- from django.conf import settings import requests ERRORS = { 'missing-input-secret': 'reCAPTCHA: O campo chave está vazio', 'invalid-input-secret': 'reCAPTCHA: O campo chave está errado ou inválido', 'missing-input-response': 'reCAPTCHA: O campo de resposta está vazio', 'invalid-input-response': 'reCAPTCHA: O campo de resposta está errado ' 'ou inválido', 'bad-request': 'reCAPTCHA: A requisição está errada ou inválida', } def verify(captcha_response, remote_ip=None): url = "https://www.google.com/recaptcha/api/siteverify" params = { 'secret': settings.RECAPTCHA_PRIVATE_KEY, 'response': captcha_response, } if remote_ip: params['remoteip'] = remote_ip verify_response = requests.get(url, params=params, verify=False) return verify_response.json()
labhackercd/colab-edemocracia-plugin
src/colab_edemocracia/captcha.py
Python
gpl-3.0
890
# -*- coding: utf-8 -*- # # IoC documentation build configuration file, created by # sphinx-quickstart on Fri Mar 29 01:43:00 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sensio.sphinx.refinclude', 'sensio.sphinx.configurationblock', 'sensio.sphinx.phpcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Sonata ~ NewsBundle' copyright = u'2010-2015, Thomas Rabaix' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. #version = '0.0.1' # The full version, including alpha/beta/rc tags. #release = '0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- import sphinx_rtd_theme # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). #latex_documents = [ # ('index', 'PythonElement.tex', u'Python Documentation', # u'Thomas Rabaix', 'manual'), #] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples #(source start file, name, description, authors, manual section). #man_pages = [ # ('index', 'ioc', u'IoC Documentation', # [u'Thomas Rabaix'], 1) #] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) #texinfo_documents = [ # ('index', 'IoC', u'IoC Documentation', # u'Thomas Rabaix', 'IoC', 'One line description of project.', # 'Miscellaneous'), #] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
kinkinweb/lhvb
vendor/sonata-project/news-bundle/Resources/doc/conf.py
Python
mit
7,892
#! /usr/bin/env python3 """ This file is part of Pybakalib. Pybakalib is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Pybakalib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Pybakalib. If not, see <http://www.gnu.org/licenses/>. """ from datetime import datetime class MarksModule(list): def __init__(self, module_marks): super(MarksModule, self).__init__() if module_marks['results']['predmety'] is None: return s = module_marks['results']['predmety']['predmet'] subjects = s if isinstance(s, list) else [s] for subj in subjects: self.append(Subject(subj)) def get_subject(self, name): for subj in self: if subj.name == name: return subj return None def list_subject_names(self): return [subj.name for subj in self] def get_all_averages(self, weights): averages = [] for subj in self: averages.append((subj.name, subj.get_weighted_average(weights))) averages.sort(key=lambda x: x[1] if x[1] is not None else float('-inf'), reverse=True) return averages class Subject(object): def __init__(self, dict_subject): self.marks = [] # type: List[Mark] self.name = dict_subject['nazev'] # type: str self.abbreviation = dict_subject['zkratka'] # type: str if 'znamky' in dict_subject and dict_subject['znamky'] is not None: # check for empty subjects z = dict_subject['znamky']['znamka'] marks = z if isinstance(z, list) else [z] for mark in marks: self.add_mark(Mark(mark)) self.marks.sort(key=lambda x: x.date) def add_mark(self, mark): self.marks.append(mark) def get_marks(self): return self.marks def get_weighted_average(self, weights, up_to=-1): """ Returns weighted average of marks. If there are no marks, returns -1. :keyword up_to Optional number of marks from beginning, for which to calculate average. """ up_to = len(self.marks) if up_to == -1 else up_to w_sum = sum([s.get_weight(weights) for s in self.marks[:up_to]]) a_sum = sum([s.get_weight(weights) * float(s) for s in self.marks[:up_to]]) if w_sum == 0: return None else: return round(a_sum / w_sum, 2) class Mark(object): def __init__(self, dict_mark, mark=1, label='pololetní práce'): self.mark = mark # type: str self.label = label # type: str self.date = None # type: datetime self.description = None # type: str self.caption = None # type: str if dict_mark is not None: self.mark = dict_mark['znamka'] self.caption = dict_mark['caption'] self.description = dict_mark['poznamka'] self.label = dict_mark['ozn'] self.date = datetime.strptime(dict_mark['udeleno'], "%y%m%d%H%M") def __float__(self): try: return float(self.mark.replace('-', '.5')) except: return 0.0 def get_weight(self, weights): if float(self) == 0: return 0 return weights[self.label]
vakabus/pybakalib
pybakalib/modules/marks.py
Python
gpl-2.0
3,802
""" Implementation of Burger's equation with nonlinear solve in each timestep """ import sys from dolfin import * from dolfin_adjoint import * n = 30 mesh = UnitIntervalMesh(n) V = FunctionSpace(mesh, "CG", 2) def Dt(u, u_, timestep): return (u - u_)/timestep def main(ic, nu, annotate=False): u_ = Function(ic, name="Velocity") u = Function(V, name="VelocityNext") v = TestFunction(V) timestep = Constant(1.0/n) F = (Dt(u, u_, timestep)*v + u*u.dx(0)*v + nu*u.dx(0)*v.dx(0))*dx bc = DirichletBC(V, 0.0, "on_boundary") t = 0.0 end = 0.2 while (t <= end): solve(F == 0, u, bc, annotate=annotate) u_.assign(u, annotate=annotate) t += float(timestep) adj_inc_timestep() return u_ if __name__ == "__main__": ic = project(Expression("sin(2*pi*x[0])"), V) nu = Constant(0.0001, name="nu") forward = main(ic, nu, annotate=True) J = Functional(forward*forward*dx*dt[FINISH_TIME] + forward*forward*dx*dt[START_TIME]) Jm = assemble(forward*forward*dx + ic*ic*dx) m = [FunctionControl("Velocity"), Control(nu)] dJdm = compute_gradient(J, m, forget=False) def Jfunc(m): if hasattr(m, 'vector'): info_green("Perturbing initial condition!!") lic = m lnu = nu else: info_green("Perturbing diffusivity!!") lic = ic lnu = m forward = main(lic, lnu, annotate=False) return assemble(forward*forward*dx + lic*lic*dx) minconv = taylor_test(Jfunc, m, Jm, dJdm) assert minconv > 1.7
pf4d/dolfin-adjoint
tests_dolfin/list_parameter/list_parameter.py
Python
lgpl-3.0
1,607
# Generated by Django 2.2.5 on 2019-09-16 15:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('registration', '0016_auto_20190914_0836'), ] operations = [ migrations.AddField( model_name='entry', name='source_id', field=models.CharField(blank=True, db_index=True, max_length=100, null=True, unique=True), ), ]
dbinetti/barberscore
project/apps/registration/migrations/0017_entry_source_id.py
Python
bsd-2-clause
443
#!/usr/bin/env vpython # # Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # # Runs WebLayer instrumentation tests against arbitrary versions of tests, the # client, and the implementation. # # Example usage, testing M80 tests and client against master implementation: # autoninja -C out/Release weblayer_instrumentation_test_versions_apk # cipd install --root /tmp/M80 chromium/testing/weblayer-x86 m80 # out/Release/bin/run_weblayer_instrumentation_test_versions_apk \ # --test-runner-outdir out/Release # --client-outdir /tmp/M80/out/Release # --implementation-outdir out/Release import argparse import logging import operator import os import re import subprocess import sys CUR_DIR = os.path.dirname(os.path.realpath(__file__)) # Find src root starting from either the release bin directory or original path. if os.path.basename(CUR_DIR) == 'bin': SRC_DIR = os.path.dirname(os.path.dirname(os.path.dirname(CUR_DIR))) else: SRC_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname( CUR_DIR)))) TYP_DIR = os.path.join( SRC_DIR, 'third_party', 'catapult', 'third_party', 'typ') if TYP_DIR not in sys.path: sys.path.insert(0, TYP_DIR) import typ # Mapping of operator string in the expectation file tags to actual operator. OP_MAP = {'gte': operator.ge, 'lte': operator.le} def tag_matches(tag, impl_version='trunk', client_version='trunk'): """Test if specified versions match the tag. Args: tag: skew test expectation tag, e.g. 'impl_lte_5' or 'client_lte_2'. impl_version: WebLayer implementation version number or 'trunk'. client_version: WebLayer implementation version number or 'trunk'. Returns: True if the specified versions match the tag. Raises: AssertionError if the tag is invalid. """ # 'All' is special cased to match anything. if tag == 'all': return True # Extract the three components from the tag. match = re.match(r'(client|impl)_([gl]te)_([0-9]+)', tag) assert match is not None, ( 'tag must be of the form "{client,impl}_{gte,lte}_$version", found %r' % tag) target_str, op_str, tag_version_str = match.groups() # If a version is specified see if the tag refers to the same target or # return False otherwise. if impl_version != 'trunk' and target_str != 'impl': return False if client_version != 'trunk' and target_str != 'client': return False version = impl_version if impl_version != 'trunk' else client_version assert type(version) == int, 'Specified version must be an integer.' tag_version = int(tag_version_str) op = OP_MAP[op_str] return op(version, tag_version) def tests_to_skip(expectation_contents, impl_version='trunk', client_version='trunk'): """Get list of tests to skip for the given version. Args: expectation_contents: String containing expectation file contents. impl_version: WebLayer implementation version number or 'trunk'. client_version: WebLayer implementation version number or 'trunk'. Returns: List of test names to skip. Raises: AssertionError if both versions are 'trunk'. """ assert impl_version != 'trunk' or client_version != 'trunk' parser = typ.expectations_parser.TaggedTestListParser(expectation_contents) tests = [] for expectation in parser.expectations: assert len(expectation.tags) == 1, ( 'Only one tag is allowed per expectation.') assert len(expectation.results) == 1 and ( typ.json_results.ResultType.Skip in expectation.results), ( 'Only "Skip" is supported in the skew test expectations.') # Iterate over the first (and only) item since can't index over a frozenset. tag = iter(expectation.tags).next() if tag_matches(tag, impl_version, client_version): tests.append(expectation.test) return tests def main(): """Wrapper to call weblayer instrumentation tests with different versions.""" parser = argparse.ArgumentParser( description='Run weblayer instrumentation tests at different versions.') parser.add_argument( '--test-runner-outdir', required=True, help='Local build output directory for finding the test runner.') parser.add_argument( '--client-outdir', required=True, help='Build output directory for WebLayer client.') parser.add_argument( '--implementation-outdir', required=True, help='Build output directory for WebLayer implementation.') parser.add_argument( '--test-expectations', required=False, default='', help=('Test expectations file describing which tests are failing at ' 'different versions.')) # There are two Webview apks that are available for WebLayer skew tests. # crbug.com/1163652. parser.add_argument( '--webview-apk-path', required=True, help=('Relative path for the WebLayer implementation library apk. ' 'The path is relative to the WebLayer implementation ' 'output directory.')) version_group = parser.add_mutually_exclusive_group(required=True) version_group.add_argument( '--client-version', default='trunk', help=('Version of the client being used if not trunk. Only set one of ' '--client-version and --impl-version.')) version_group.add_argument( '--impl-version', default='trunk', help=('Version of the implementation being used if not trunk. Only set ' 'one of --client-version and --impl-version.')) args, remaining_args = parser.parse_known_args() logging.basicConfig(level=logging.INFO) # The command line is derived from the resulting command line from # run_weblayer_instrumentation_test_apk but with parameterized client and # implementation. test_runner_srcdir = os.path.normpath( os.path.join(args.test_runner_outdir, '..', '..')) executable_path = os.path.join(test_runner_srcdir, 'build/android/test_runner.py') executable_args = [ 'instrumentation', '--output-directory', args.client_outdir, '--runtime-deps-path', os.path.join(args.client_outdir, ('gen.runtime/weblayer/browser/android/javatests/' + 'weblayer_instrumentation_test_apk.runtime_deps')), '--test-apk', os.path.join(args.client_outdir, 'apks/WebLayerInstrumentationTest.apk'), '--test-jar', os.path.join(args.client_outdir, 'test.lib.java/WebLayerInstrumentationTest.jar'), '--apk-under-test', os.path.join(args.client_outdir, 'apks/WebLayerShellSystemWebView.apk'), '--use-webview-provider', os.path.join(args.implementation_outdir, args.webview_apk_path), '--additional-apk', os.path.join(args.client_outdir, 'apks/ChromiumNetTestSupport.apk')] cmd = [sys.executable, executable_path] + executable_args + remaining_args # Pass along the implementation version if it's set so that tests can # be filtered through the @MinWebLayerVersion annotation. # Note: The Chrome Android command line library requires the flag be passed # with "=" rather than as two arguments. if args.impl_version != 'trunk': cmd.append('--impl-version=%s' % args.impl_version) tests = [] if args.test_expectations: if args.impl_version != 'trunk': args.impl_version = int(args.impl_version) if args.client_version != 'trunk': args.client_version = int(args.client_version) with open(args.test_expectations) as expectations_file: contents = expectations_file.read() tests = tests_to_skip(contents, impl_version=args.impl_version, client_version=args.client_version) if tests: logging.info('Filtering known failing tests: %s', tests) cmd.append('--test-filter=-%s' % ':'.join(tests)) logging.info(' '.join(cmd)) return subprocess.call(cmd) if __name__ == '__main__': sys.exit(main())
nwjs/chromium.src
weblayer/browser/android/javatests/weblayer_instrumentation_test_versions.py
Python
bsd-3-clause
8,101
# coding: utf8 # Author: Rodrigo Bistolfi # Date: 03/2013 """ Test cases for Nikola ReST extensions. A base class ReSTExtensionTestCase provides the tests basic behaivor. Subclasses must override the "sample" class attribute with the ReST markup. The sample will be rendered as HTML using publish_parts() by setUp(). One method is provided for checking the resulting HTML: * assertHTMLContains(element, attributes=None, text=None) The HTML is parsed with lxml for checking against the data you provide. The method takes an element argument, a string representing the *name* of an HTML tag, like "script" or "iframe". We will try to find this tag in the document and perform the tests on it. You can pass a dictionary to the attributes kwarg representing the name and the value of the tag attributes. The text kwarg takes a string argument, which will be tested against the contents of the HTML element. One last caveat: you need to url unquote your urls if you are going to test attributes like "src" or "link", since the HTML rendered by docutils will be always unquoted. """ from __future__ import unicode_literals try: from io import StringIO except ImportError: from StringIO import StringIO # NOQA from docutils.core import publish_parts from lxml import html import mock import unittest import nikola.plugins.compile_rest from nikola.utils import _reload from base import BaseTestCase class ReSTExtensionTestCase(BaseTestCase): """ Base class for testing ReST extensions """ sample = None def setUp(self): """ Parse cls.sample into a HTML document tree """ super(ReSTExtensionTestCase, self).setUp() self.setHtmlFromRst(self.sample) def setHtmlFromRst(self, rst): """ Create html output from rst string """ self.html = publish_parts(rst, writer_name="html")["body"] self.html_doc = html.parse(StringIO(self.html)) def assertHTMLContains(self, element, attributes=None, text=None): """ Test if HTML document includes an element with the given attributes and text content """ try: tag = next(self.html_doc.iter(element)) except StopIteration: raise Exception("<{}> not in {}".format(element, self.html)) else: if attributes: arg_attrs = set(attributes.items()) tag_attrs = set(tag.items()) self.assertTrue(arg_attrs.issubset(tag_attrs)) if text: self.assertIn(text, tag.text) class ReSTExtensionTestCaseTestCase(ReSTExtensionTestCase): """ Simple test for our base class :) """ sample = '.. raw:: html\n\n <iframe src="foo" height="bar">spam</iframe>' def test_test(self): self.assertHTMLContains("iframe", attributes={"src": "foo"}, text="spam") self.assertRaises(Exception, self.assertHTMLContains, "eggs", {}) class GistTestCase(ReSTExtensionTestCase): """ Test GitHubGist. We will replace get_raw_gist() and get_raw_gist_with_filename() monkeypatching the GitHubGist class for avoiding network dependency """ gist_type = nikola.plugins.compile_rest.GitHubGist sample = '.. gist:: fake_id\n :file: spam.py' sample_without_filename = '.. gist:: fake_id2' def setUp(self): """ Patch GitHubGist for avoiding network dependency """ self.gist_type.get_raw_gist_with_filename = lambda *_: 'raw_gist_file' self.gist_type.get_raw_gist = lambda *_: "raw_gist" _reload(nikola.plugins.compile_rest) def test_gist(self): """ Test the gist directive with filename """ self.setHtmlFromRst(self.sample) output = 'https://gist.github.com/fake_id.js?file=spam.py' self.assertHTMLContains("script", attributes={"src": output}) self.assertHTMLContains("pre", text="raw_gist_file") def test_gist_without_filename(self): """ Test the gist directive without filename """ self.setHtmlFromRst(self.sample_without_filename) output = 'https://gist.github.com/fake_id2.js' self.assertHTMLContains("script", attributes={"src": output}) self.assertHTMLContains("pre", text="raw_gist") class GistIntegrationTestCase(ReSTExtensionTestCase): """ Test requests integration. The gist plugin uses requests to fetch gist contents and place it in a noscript tag. """ sample = '.. gist:: 1812835' def test_gist_integration(self): """ Fetch contents of the gist from GH and render in a noscript tag """ text = ('Be alone, that is the secret of invention: be alone, that is' ' when ideas are born. -- Nikola Tesla') self.assertHTMLContains('pre', text=text) class SlidesTestCase(ReSTExtensionTestCase): """ Slides test case """ sample = '.. slides:: IMG.jpg\n' def test_slides(self): """ Test the slides js generation and img tag creation """ self.assertHTMLContains("img", attributes={"src": "IMG.jpg"}) class SoundCloudTestCase(ReSTExtensionTestCase): """ SoundCloud test case """ sample = '.. soundcloud:: SID\n :height: 400\n :width: 600' def test_soundcloud(self): """ Test SoundCloud iframe tag generation """ self.assertHTMLContains("iframe", attributes={"src": ("https://w.soundcloud.com" "/player/?url=http://" "api.soundcloud.com/" "tracks/SID"), "height": "400", "width": "600"}) class VimeoTestCase(ReSTExtensionTestCase): """Vimeo test. Set Vimeo.request_size to False for avoiding querying the Vimeo api over the network """ sample = '.. vimeo:: VID\n :height: 400\n :width: 600' def setUp(self): """ Disable query of the vimeo api over the wire """ nikola.plugins.compile_rest.Vimeo.request_size = False super(VimeoTestCase, self).setUp() _reload(nikola.plugins.compile_rest) def test_vimeo(self): """ Test Vimeo iframe tag generation """ self.assertHTMLContains("iframe", attributes={"src": ("http://player.vimeo.com/" "video/VID"), "height": "400", "width": "600"}) class YoutubeTestCase(ReSTExtensionTestCase): """ Youtube test case """ sample = '.. youtube:: YID\n :height: 400\n :width: 600' def test_youtube(self): """ Test Youtube iframe tag generation """ self.assertHTMLContains("iframe", attributes={"src": ("http://www.youtube.com/" "embed/YID?rel=0&hd=1&" "wmode=transparent"), "height": "400", "width": "600"}) class ListingTestCase(ReSTExtensionTestCase): """ Listing test case and CodeBlock alias tests """ sample = '.. listing:: nikola.py python' sample2 = '.. code-block:: python\n\n import antigravity' sample3 = '.. sourcecode:: python\n\n import antigravity' opener_mock = mock.mock_open(read_data="import antigravity\n") opener_mock.return_value.readlines.return_value = "import antigravity\n" def setUp(self): """ Inject a mock open function for not generating a test site """ self.f = StringIO("import antigravity\n") #_reload(nikola.plugins.compile_rest) def test_listing(self): """ Test that we can render a file object contents without errors """ with mock.patch("nikola.plugins.compile_rest.listing.codecs_open", self.opener_mock, create=True): self.setHtmlFromRst(self.sample) def test_codeblock_alias(self): """ Test CodeBlock aliases """ with mock.patch("nikola.plugins.compile_rest.listing.codecs_open", self.opener_mock, create=True): self.setHtmlFromRst(self.sample2) self.setHtmlFromRst(self.sample3) if __name__ == "__main__": unittest.main()
servalproject/nikola
tests/test_rst_extensions.py
Python
mit
8,282
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2015 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from twisted.internet import defer, reactor from twisted.enterprise import adbapi from synapse.storage._base import LoggingTransaction, SQLBaseStore from synapse.storage.engines import create_engine import argparse import curses import logging import sys import time import traceback import yaml logger = logging.getLogger("port_from_sqlite_to_postgres") BOOLEAN_COLUMNS = { "events": ["processed", "outlier"], "rooms": ["is_public"], "event_edges": ["is_state"], "presence_list": ["accepted"], } APPEND_ONLY_TABLES = [ "event_content_hashes", "event_reference_hashes", "event_signatures", "event_edge_hashes", "events", "event_json", "state_events", "room_memberships", "feedback", "topics", "room_names", "rooms", "local_media_repository", "local_media_repository_thumbnails", "remote_media_cache", "remote_media_cache_thumbnails", "redactions", "event_edges", "event_auth", "received_transactions", "sent_transactions", "transaction_id_to_pdu", "users", "state_groups", "state_groups_state", "event_to_state_groups", "rejections", ] end_error_exec_info = None class Store(object): """This object is used to pull out some of the convenience API from the Storage layer. *All* database interactions should go through this object. """ def __init__(self, db_pool, engine): self.db_pool = db_pool self.database_engine = engine _simple_insert_txn = SQLBaseStore.__dict__["_simple_insert_txn"] _simple_insert = SQLBaseStore.__dict__["_simple_insert"] _simple_select_onecol_txn = SQLBaseStore.__dict__["_simple_select_onecol_txn"] _simple_select_onecol = SQLBaseStore.__dict__["_simple_select_onecol"] _simple_select_one_onecol = SQLBaseStore.__dict__["_simple_select_one_onecol"] _simple_select_one_onecol_txn = SQLBaseStore.__dict__["_simple_select_one_onecol_txn"] _simple_update_one = SQLBaseStore.__dict__["_simple_update_one"] _simple_update_one_txn = SQLBaseStore.__dict__["_simple_update_one_txn"] _execute_and_decode = SQLBaseStore.__dict__["_execute_and_decode"] def runInteraction(self, desc, func, *args, **kwargs): def r(conn): try: i = 0 N = 5 while True: try: txn = conn.cursor() return func( LoggingTransaction(txn, desc, self.database_engine, []), *args, **kwargs ) except self.database_engine.module.DatabaseError as e: if self.database_engine.is_deadlock(e): logger.warn("[TXN DEADLOCK] {%s} %d/%d", desc, i, N) if i < N: i += 1 conn.rollback() continue raise except Exception as e: logger.debug("[TXN FAIL] {%s} %s", desc, e) raise return self.db_pool.runWithConnection(r) def execute(self, f, *args, **kwargs): return self.runInteraction(f.__name__, f, *args, **kwargs) def execute_sql(self, sql, *args): def r(txn): txn.execute(sql, args) return txn.fetchall() return self.runInteraction("execute_sql", r) def insert_many_txn(self, txn, table, headers, rows): sql = "INSERT INTO %s (%s) VALUES (%s)" % ( table, ", ".join(k for k in headers), ", ".join("%s" for _ in headers) ) try: txn.executemany(sql, rows) except: logger.exception( "Failed to insert: %s", table, ) raise class Porter(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) @defer.inlineCallbacks def setup_table(self, table): if table in APPEND_ONLY_TABLES: # It's safe to just carry on inserting. next_chunk = yield self.postgres_store._simple_select_one_onecol( table="port_from_sqlite3", keyvalues={"table_name": table}, retcol="rowid", allow_none=True, ) total_to_port = None if next_chunk is None: if table == "sent_transactions": next_chunk, already_ported, total_to_port = ( yield self._setup_sent_transactions() ) else: yield self.postgres_store._simple_insert( table="port_from_sqlite3", values={"table_name": table, "rowid": 1} ) next_chunk = 1 already_ported = 0 if total_to_port is None: already_ported, total_to_port = yield self._get_total_count_to_port( table, next_chunk ) else: def delete_all(txn): txn.execute( "DELETE FROM port_from_sqlite3 WHERE table_name = %s", (table,) ) txn.execute("TRUNCATE %s CASCADE" % (table,)) yield self.postgres_store.execute(delete_all) yield self.postgres_store._simple_insert( table="port_from_sqlite3", values={"table_name": table, "rowid": 0} ) next_chunk = 1 already_ported, total_to_port = yield self._get_total_count_to_port( table, next_chunk ) defer.returnValue((table, already_ported, total_to_port, next_chunk)) @defer.inlineCallbacks def handle_table(self, table, postgres_size, table_size, next_chunk): if not table_size: return self.progress.add_table(table, postgres_size, table_size) select = ( "SELECT rowid, * FROM %s WHERE rowid >= ? ORDER BY rowid LIMIT ?" % (table,) ) while True: def r(txn): txn.execute(select, (next_chunk, self.batch_size,)) rows = txn.fetchall() headers = [column[0] for column in txn.description] return headers, rows headers, rows = yield self.sqlite_store.runInteraction("select", r) if rows: next_chunk = rows[-1][0] + 1 self._convert_rows(table, headers, rows) def insert(txn): self.postgres_store.insert_many_txn( txn, table, headers[1:], rows ) self.postgres_store._simple_update_one_txn( txn, table="port_from_sqlite3", keyvalues={"table_name": table}, updatevalues={"rowid": next_chunk}, ) yield self.postgres_store.execute(insert) postgres_size += len(rows) self.progress.update(table, postgres_size) else: return def setup_db(self, db_config, database_engine): db_conn = database_engine.module.connect( **{ k: v for k, v in db_config.get("args", {}).items() if not k.startswith("cp_") } ) database_engine.prepare_database(db_conn) db_conn.commit() @defer.inlineCallbacks def run(self): try: sqlite_db_pool = adbapi.ConnectionPool( self.sqlite_config["name"], **self.sqlite_config["args"] ) postgres_db_pool = adbapi.ConnectionPool( self.postgres_config["name"], **self.postgres_config["args"] ) sqlite_engine = create_engine("sqlite3") postgres_engine = create_engine("psycopg2") self.sqlite_store = Store(sqlite_db_pool, sqlite_engine) self.postgres_store = Store(postgres_db_pool, postgres_engine) yield self.postgres_store.execute( postgres_engine.check_database ) # Step 1. Set up databases. self.progress.set_state("Preparing SQLite3") self.setup_db(sqlite_config, sqlite_engine) self.progress.set_state("Preparing PostgreSQL") self.setup_db(postgres_config, postgres_engine) # Step 2. Get tables. self.progress.set_state("Fetching tables") sqlite_tables = yield self.sqlite_store._simple_select_onecol( table="sqlite_master", keyvalues={ "type": "table", }, retcol="name", ) postgres_tables = yield self.postgres_store._simple_select_onecol( table="information_schema.tables", keyvalues={ "table_schema": "public", }, retcol="distinct table_name", ) tables = set(sqlite_tables) & set(postgres_tables) self.progress.set_state("Creating tables") logger.info("Found %d tables", len(tables)) def create_port_table(txn): txn.execute( "CREATE TABLE port_from_sqlite3 (" " table_name varchar(100) NOT NULL UNIQUE," " rowid bigint NOT NULL" ")" ) try: yield self.postgres_store.runInteraction( "create_port_table", create_port_table ) except Exception as e: logger.info("Failed to create port table: %s", e) self.progress.set_state("Setting up") # Set up tables. setup_res = yield defer.gatherResults( [ self.setup_table(table) for table in tables if table not in ["schema_version", "applied_schema_deltas"] and not table.startswith("sqlite_") ], consumeErrors=True, ) # Process tables. yield defer.gatherResults( [ self.handle_table(*res) for res in setup_res ], consumeErrors=True, ) self.progress.done() except: global end_error_exec_info end_error_exec_info = sys.exc_info() logger.exception("") finally: reactor.stop() def _convert_rows(self, table, headers, rows): bool_col_names = BOOLEAN_COLUMNS.get(table, []) bool_cols = [ i for i, h in enumerate(headers) if h in bool_col_names ] def conv(j, col): if j in bool_cols: return bool(col) return col for i, row in enumerate(rows): rows[i] = tuple( conv(j, col) for j, col in enumerate(row) if j > 0 ) @defer.inlineCallbacks def _setup_sent_transactions(self): # Only save things from the last day yesterday = int(time.time()*1000) - 86400000 # And save the max transaction id from each destination select = ( "SELECT rowid, * FROM sent_transactions WHERE rowid IN (" "SELECT max(rowid) FROM sent_transactions" " GROUP BY destination" ")" ) def r(txn): txn.execute(select) rows = txn.fetchall() headers = [column[0] for column in txn.description] ts_ind = headers.index('ts') return headers, [r for r in rows if r[ts_ind] < yesterday] headers, rows = yield self.sqlite_store.runInteraction( "select", r, ) self._convert_rows("sent_transactions", headers, rows) inserted_rows = len(rows) max_inserted_rowid = max(r[0] for r in rows) def insert(txn): self.postgres_store.insert_many_txn( txn, "sent_transactions", headers[1:], rows ) yield self.postgres_store.execute(insert) def get_start_id(txn): txn.execute( "SELECT rowid FROM sent_transactions WHERE ts >= ?" " ORDER BY rowid ASC LIMIT 1", (yesterday,) ) rows = txn.fetchall() if rows: return rows[0][0] else: return 1 next_chunk = yield self.sqlite_store.execute(get_start_id) next_chunk = max(max_inserted_rowid + 1, next_chunk) yield self.postgres_store._simple_insert( table="port_from_sqlite3", values={"table_name": "sent_transactions", "rowid": next_chunk} ) def get_sent_table_size(txn): txn.execute( "SELECT count(*) FROM sent_transactions" " WHERE ts >= ?", (yesterday,) ) size, = txn.fetchone() return int(size) remaining_count = yield self.sqlite_store.execute( get_sent_table_size ) total_count = remaining_count + inserted_rows defer.returnValue((next_chunk, inserted_rows, total_count)) @defer.inlineCallbacks def _get_remaining_count_to_port(self, table, next_chunk): rows = yield self.sqlite_store.execute_sql( "SELECT count(*) FROM %s WHERE rowid >= ?" % (table,), next_chunk, ) defer.returnValue(rows[0][0]) @defer.inlineCallbacks def _get_already_ported_count(self, table): rows = yield self.postgres_store.execute_sql( "SELECT count(*) FROM %s" % (table,), ) defer.returnValue(rows[0][0]) @defer.inlineCallbacks def _get_total_count_to_port(self, table, next_chunk): remaining, done = yield defer.gatherResults( [ self._get_remaining_count_to_port(table, next_chunk), self._get_already_ported_count(table), ], consumeErrors=True, ) remaining = int(remaining) if remaining else 0 done = int(done) if done else 0 defer.returnValue((done, remaining + done)) ############################################## ###### The following is simply UI stuff ###### ############################################## class Progress(object): """Used to report progress of the port """ def __init__(self): self.tables = {} self.start_time = int(time.time()) def add_table(self, table, cur, size): self.tables[table] = { "start": cur, "num_done": cur, "total": size, "perc": int(cur * 100 / size), } def update(self, table, num_done): data = self.tables[table] data["num_done"] = num_done data["perc"] = int(num_done * 100 / data["total"]) def done(self): pass class CursesProgress(Progress): """Reports progress to a curses window """ def __init__(self, stdscr): self.stdscr = stdscr curses.use_default_colors() curses.curs_set(0) curses.init_pair(1, curses.COLOR_RED, -1) curses.init_pair(2, curses.COLOR_GREEN, -1) self.last_update = 0 self.finished = False self.total_processed = 0 self.total_remaining = 0 super(CursesProgress, self).__init__() def update(self, table, num_done): super(CursesProgress, self).update(table, num_done) self.total_processed = 0 self.total_remaining = 0 for table, data in self.tables.items(): self.total_processed += data["num_done"] - data["start"] self.total_remaining += data["total"] - data["num_done"] self.render() def render(self, force=False): now = time.time() if not force and now - self.last_update < 0.2: # reactor.callLater(1, self.render) return self.stdscr.clear() rows, cols = self.stdscr.getmaxyx() duration = int(now) - int(self.start_time) minutes, seconds = divmod(duration, 60) duration_str = '%02dm %02ds' % (minutes, seconds,) if self.finished: status = "Time spent: %s (Done!)" % (duration_str,) else: if self.total_processed > 0: left = float(self.total_remaining) / self.total_processed est_remaining = (int(now) - self.start_time) * left est_remaining_str = '%02dm %02ds remaining' % divmod(est_remaining, 60) else: est_remaining_str = "Unknown" status = ( "Time spent: %s (est. remaining: %s)" % (duration_str, est_remaining_str,) ) self.stdscr.addstr( 0, 0, status, curses.A_BOLD, ) max_len = max([len(t) for t in self.tables.keys()]) left_margin = 5 middle_space = 1 items = self.tables.items() items.sort( key=lambda i: (i[1]["perc"], i[0]), ) for i, (table, data) in enumerate(items): if i + 2 >= rows: break perc = data["perc"] color = curses.color_pair(2) if perc == 100 else curses.color_pair(1) self.stdscr.addstr( i+2, left_margin + max_len - len(table), table, curses.A_BOLD | color, ) size = 20 progress = "[%s%s]" % ( "#" * int(perc*size/100), " " * (size - int(perc*size/100)), ) self.stdscr.addstr( i+2, left_margin + max_len + middle_space, "%s %3d%% (%d/%d)" % (progress, perc, data["num_done"], data["total"]), ) if self.finished: self.stdscr.addstr( rows-1, 0, "Press any key to exit...", ) self.stdscr.refresh() self.last_update = time.time() def done(self): self.finished = True self.render(True) self.stdscr.getch() def set_state(self, state): self.stdscr.clear() self.stdscr.addstr( 0, 0, state + "...", curses.A_BOLD, ) self.stdscr.refresh() class TerminalProgress(Progress): """Just prints progress to the terminal """ def update(self, table, num_done): super(TerminalProgress, self).update(table, num_done) data = self.tables[table] print "%s: %d%% (%d/%d)" % ( table, data["perc"], data["num_done"], data["total"], ) def set_state(self, state): print state + "..." ############################################## ############################################## if __name__ == "__main__": parser = argparse.ArgumentParser( description="A script to port an existing synapse SQLite database to" " a new PostgreSQL database." ) parser.add_argument("-v", action='store_true') parser.add_argument( "--sqlite-database", required=True, help="The snapshot of the SQLite database file. This must not be" " currently used by a running synapse server" ) parser.add_argument( "--postgres-config", type=argparse.FileType('r'), required=True, help="The database config file for the PostgreSQL database" ) parser.add_argument( "--curses", action='store_true', help="display a curses based progress UI" ) parser.add_argument( "--batch-size", type=int, default=1000, help="The number of rows to select from the SQLite table each" " iteration [default=1000]", ) args = parser.parse_args() logging_config = { "level": logging.DEBUG if args.v else logging.INFO, "format": "%(asctime)s - %(name)s - %(lineno)d - %(levelname)s - %(message)s" } if args.curses: logging_config["filename"] = "port-synapse.log" logging.basicConfig(**logging_config) sqlite_config = { "name": "sqlite3", "args": { "database": args.sqlite_database, "cp_min": 1, "cp_max": 1, "check_same_thread": False, }, } postgres_config = yaml.safe_load(args.postgres_config) if "database" in postgres_config: postgres_config = postgres_config["database"] if "name" not in postgres_config: sys.stderr.write("Malformed database config: no 'name'") sys.exit(2) if postgres_config["name"] != "psycopg2": sys.stderr.write("Database must use 'psycopg2' connector.") sys.exit(3) def start(stdscr=None): if stdscr: progress = CursesProgress(stdscr) else: progress = TerminalProgress() porter = Porter( sqlite_config=sqlite_config, postgres_config=postgres_config, progress=progress, batch_size=args.batch_size, ) reactor.callWhenRunning(porter.run) reactor.run() if args.curses: curses.wrapper(start) else: start() if end_error_exec_info: exc_type, exc_value, exc_traceback = end_error_exec_info traceback.print_exception(exc_type, exc_value, exc_traceback)
illicitonion/synapse
scripts/port_from_sqlite_to_postgres.py
Python
apache-2.0
22,586
import unittest import wradlib as wrl import numpy as np import zlib import tempfile import os import datetime import io # import StringIO from collections import OrderedDict class IOTest(unittest.TestCase): # testing functions related to readDX def test__getTimestampFromFilename(self): filename = 'raa00-dx_10488-200608050000-drs---bin' self.assertEqual(wrl.io._getTimestampFromFilename(filename), datetime.datetime(2006,8,5,0)) filename = 'raa00-dx_10488-0608050000-drs---bin' self.assertEqual(wrl.io._getTimestampFromFilename(filename), datetime.datetime(2006,8,5,0)) def test_getDXTimestamp(self): filename = 'raa00-dx_10488-200608050000-drs---bin' self.assertEqual(wrl.io.getDXTimestamp(filename).__str__(), '2006-08-05 00:00:00+00:00') filename = 'raa00-dx_10488-0608050000-drs---bin' self.assertEqual(wrl.io.getDXTimestamp(filename).__str__(), '2006-08-05 00:00:00+00:00') def test_unpackDX(self): pass def test_readDX(self): pass def test_writePolygon2Text(self): poly1 = [[0.,0.,0.,0.],[0.,1.,0.,1.],[1.,1.,0.,2.],[0.,0.,0.,0.]] poly2 = [[0.,0.,0.,0.],[0.,1.,0.,1.],[1.,1.,0.,2.],[0.,0.,0.,0.]] polygons = [poly1, poly2] res = ['Polygon\n', '0 0\n', '0 0.000000 0.000000 0.000000 0.000000\n', '1 0.000000 1.000000 0.000000 1.000000\n', '2 1.000000 1.000000 0.000000 2.000000\n', '3 0.000000 0.000000 0.000000 0.000000\n', '1 0\n', '0 0.000000 0.000000 0.000000 0.000000\n', '1 0.000000 1.000000 0.000000 1.000000\n', '2 1.000000 1.000000 0.000000 2.000000\n', '3 0.000000 0.000000 0.000000 0.000000\n', 'END\n'] tmp = tempfile.NamedTemporaryFile() wrl.io.writePolygon2Text(tmp.name, polygons) self.assertEqual(open(tmp.name, 'r').readlines(), res) class PickleTest(unittest.TestCase): def test_pickle(self): arr = np.zeros((124, 248), dtype=np.int16) tmp = tempfile.NamedTemporaryFile() wrl.io.to_pickle(tmp.name, arr) res = wrl.io.from_pickle(tmp.name) self.assertTrue(np.allclose(arr, res)) class HDF5Test(unittest.TestCase): def test_to_hdf5(self): arr = np.zeros((124, 248), dtype=np.int16) metadata = {'test': 12.} tmp = tempfile.NamedTemporaryFile() wrl.io.to_hdf5(tmp.name, arr, metadata=metadata) res, resmeta = wrl.io.from_hdf5(tmp.name) self.assertTrue(np.allclose(arr, res)) self.assertDictEqual(metadata, resmeta) class RadolanTest(unittest.TestCase): def test_get_radolan_header_token(self): keylist = ['BY', 'VS', 'SW', 'PR', 'INT', 'GP', 'MS', 'LV', 'CS', 'MX', 'BG'] head = wrl.io.get_radolan_header_token() for key in keylist: self.assertIsNone(head[key]) def test_get_radolan_header_token_pos(self): header = 'RW030950100000814BY1620130VS 3SW 2.13.1PR E-01INT 60GP 900x 900' \ 'MS 58<boo,ros,emd,hnr,pro,ess,asd,neu,nhb,oft,tur,isn,fbg,mem>' test_head = wrl.io.get_radolan_header_token() test_head['PR'] = (43, 48) test_head['GP'] = (57, 66) test_head['INT'] = (51, 55) test_head['SW'] = (32, 41) test_head['VS'] = (28, 30) test_head['MS'] = (68, 128) test_head['BY'] = (19, 26) head = wrl.io.get_radolan_header_token_pos(header) self.assertDictEqual(head, test_head) def test_decode_radolan_runlength_line(self): testarr = [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 9., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] testline = b'\x10\x98\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xd9\n' testattrs = {'ncol': 460, 'nodataflag': 0} arr = np.fromstring(testline, np.uint8).astype(np.uint8) line = wrl.io.decode_radolan_runlength_line(arr, testattrs) self.assertTrue(np.allclose(line, testarr)) def test_read_radolan_runlength_line(self): testline = b'\x10\x98\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xf9\xd9\n' testarr = np.fromstring(testline, np.uint8).astype(np.uint8) fid, temp_path = tempfile.mkstemp() tmp_id = open(temp_path, 'wb') tmp_id.write(testline) tmp_id.close() tmp_id = open(temp_path, 'rb') line = wrl.io.read_radolan_runlength_line(tmp_id) tmp_id.close() os.close(fid) os.remove(temp_path) self.assertTrue(np.allclose(line, testarr)) def test_decode_radolan_runlength_array(self): pg_file = os.path.dirname(__file__) + '/../../examples/data/raa00-pc_10015-1408030905-dwd---bin.gz' pg_fid = wrl.io.get_radolan_filehandle(pg_file) header = wrl.io.read_radolan_header(pg_fid) attrs = wrl.io.parse_DWD_quant_composite_header(header) data = wrl.io.read_radolan_binary_array(pg_fid, attrs['datasize']) attrs['nodataflag'] = 255 arr = wrl.io.decode_radolan_runlength_array(data, attrs) self.assertEqual(arr.shape, (460, 460)) def test_read_radolan_binary_array(self): rw_file = os.path.dirname(__file__) + '/../../examples/data/raa01-rw_10000-1408030950-dwd---bin.gz' rw_fid = wrl.io.get_radolan_filehandle(rw_file) header = wrl.io.read_radolan_header(rw_fid) attrs = wrl.io.parse_DWD_quant_composite_header(header) data = wrl.io.read_radolan_binary_array(rw_fid, attrs['datasize']) self.assertEqual(len(data), attrs['datasize']) rw_fid = wrl.io.get_radolan_filehandle(rw_file) header = wrl.io.read_radolan_header(rw_fid) attrs = wrl.io.parse_DWD_quant_composite_header(header) self.assertRaises(IOError, lambda: wrl.io.read_radolan_binary_array(rw_fid, attrs['datasize'] + 10)) def test_get_radolan_filehandle(self): rw_file = os.path.dirname(__file__) + '/../../examples/data/raa01-rw_10000-1408030950-dwd---bin.gz' rw_fid = wrl.io.get_radolan_filehandle(rw_file) self.assertEqual(rw_file, rw_fid.name) def test_read_radolan_header(self): rx_header = b'RW030950100000814BY1620130VS 3SW 2.13.1PR E-01INT 60GP 900x 900' \ b'MS 58<boo,ros,emd,hnr,pro,ess,asd,neu,nhb,oft,tur,isn,fbg,mem>' buf = io.BytesIO(rx_header + b"\x03") header = wrl.io.read_radolan_header(buf) self.assertEqual(header, rx_header.decode()) def test_parse_DWD_quant_composite_header(self): rx_header = 'RW030950100000814BY1620130VS 3SW 2.13.1PR E-01INT 60GP 900x 900' \ 'MS 58<boo,ros,emd,hnr,pro,ess,asd,neu,nhb,oft,tur,isn,fbg,mem>' test_rx = {'maxrange': '150 km', 'radarlocations': ['boo', 'ros', 'emd', 'hnr', 'pro', 'ess', 'asd', 'neu', 'nhb', 'oft', 'tur', 'isn', 'fbg', 'mem'], 'nrow': 900, 'intervalseconds': 3600, 'precision': 0.1, 'datetime': datetime.datetime(2014, 8, 3, 9, 50), 'ncol': 900, 'radolanversion': '2.13.1', 'producttype': 'RW', 'radarid': '10000', 'datasize': 1620001,} pg_header = 'PG030905100000814BY20042LV 6 1.0 19.0 28.0 37.0 46.0 55.0CS0MX 0MS 82' \ '<boo,ros,emd,hnr,pro,ess,asd,neu,nhb,oft,tur,isn,fbg,mem,czbrd> are used, ' \ 'BG460460' test_pg = {'radarlocations': ['boo', 'ros', 'emd', 'hnr', 'pro', 'ess', 'asd', 'neu', 'nhb', 'oft', 'tur', 'isn', 'fbg', 'mem', 'czbrd'], 'nrow': 460, 'level': [1., 19., 28., 37., 46., 55.], 'datetime': datetime.datetime(2014, 8, 3, 9, 5), 'ncol': 460, 'producttype': 'PG', 'radarid': '10000', 'nlevel': 6, 'indicator': 'near ground level', 'imagecount': 0, 'datasize': 19889} rx = wrl.io.parse_DWD_quant_composite_header(rx_header) pg = wrl.io.parse_DWD_quant_composite_header(pg_header) for key, value in rx.items(): self.assertEqual(value, test_rx[key]) for key, value in pg.items(): if type(value) == np.ndarray: self.assertTrue(np.allclose(value, test_pg[key])) else: self.assertEqual(value, test_pg[key]) def test_read_RADOLAN_composite(self): rw_file = os.path.dirname(__file__) + '/../../examples/data/raa01-rw_10000-1408030950-dwd---bin.gz' test_attrs = {'maxrange': '150 km', 'radarlocations': ['boo', 'ros', 'emd', 'hnr', 'pro', 'ess', 'asd', 'neu', 'nhb', 'oft', 'tur', 'isn', 'fbg', 'mem'], 'nrow': 900, 'intervalseconds': 3600, 'precision': 0.1, 'datetime': datetime.datetime(2014, 8, 3, 9, 50), 'ncol': 900, 'radolanversion': '2.13.1', 'producttype': 'RW', 'nodataflag': -9999, 'datasize': 1620000, 'radarid': '10000'} # test for complete file data, attrs = wrl.io.read_RADOLAN_composite(rw_file) self.assertEqual(data.shape, (900, 900)) for key, value in attrs.items(): if type(value) == np.ndarray: self.assertIn(value.dtype, [np.int32, np.int64]) else: self.assertEqual(value, test_attrs[key]) # test for loaddata=False data, attrs = wrl.io.read_RADOLAN_composite(rw_file, loaddata=False) self.assertEqual(data, None) for key, value in attrs.items(): if type(value) == np.ndarray: self.assertEqual(value.dtype, np.int64) else: self.assertEqual(value, test_attrs[key]) self.assertRaises(KeyError, lambda: attrs['nodataflag']) class RainbowTest(unittest.TestCase): def test_read_rainbow(self): pass def test_find_key(self): indict = {'A': {'AA': {'AAA': 0, 'X': 1}, 'AB': {'ABA': 2, 'X': 3}, 'AC': {'ACA': 4, 'X': 5}}} outdict = [{'X': 1, 'AAA': 0}, {'X': 5, 'ACA': 4}, {'ABA': 2, 'X': 3}] try: self.assertCountEqual(list(wrl.io.find_key('X', indict)), outdict) self.assertCountEqual(list(wrl.io.find_key('Y', indict)), []) except AttributeError: self.assertItemsEqual(list(wrl.io.find_key('X', indict)), outdict) self.assertItemsEqual(list(wrl.io.find_key('Y', indict)), []) def test_decompress(self): dstring = b'very special compressed string' cstring = zlib.compress(dstring) self.assertEqual(wrl.io.decompress(cstring), dstring) def test_get_RB_data_layout(self): self.assertEqual(wrl.io.get_RB_data_layout(8), (1, '>u1')) self.assertEqual(wrl.io.get_RB_data_layout(16), (2, '>u2')) self.assertEqual(wrl.io.get_RB_data_layout(32), (4, '>u4')) self.assertRaises(ValueError, lambda: wrl.io.get_RB_data_layout(128)) def test_get_RB_data_attribute(self): xmltodict = wrl.util.import_optional('xmltodict') data = xmltodict.parse('<slicedata time="13:30:05" date="2013-04-26"> \ #<rayinfo refid="startangle" blobid="0" rays="361" depth="16"/> \ #<rawdata blobid="1" rays="361" type="dBuZ" bins="400" min="-31.5" max="95.5" depth="8"/> \ #</slicedata>') data = list(wrl.io.find_key('@blobid', data)) self.assertEqual(wrl.io.get_RB_data_attribute(data[0], 'blobid'), 0) self.assertEqual(wrl.io.get_RB_data_attribute(data[1], 'blobid'), 1) self.assertEqual(wrl.io.get_RB_data_attribute(data[0], 'rays'), 361) self.assertIsNone(wrl.io.get_RB_data_attribute(data[0], 'bins')) self.assertEqual(wrl.io.get_RB_data_attribute(data[1], 'rays'), 361) self.assertEqual(wrl.io.get_RB_data_attribute(data[1], 'bins'), 400) self.assertRaises(KeyError, lambda: wrl.io.get_RB_data_attribute(data[0], 'Nonsense')) self.assertEqual(wrl.io.get_RB_data_attribute(data[0], 'depth'), 16) def test_get_RB_blob_attribute(self): xmltodict = wrl.util.import_optional('xmltodict') xmldict = xmltodict.parse('<BLOB blobid="0" size="737" compression="qt"></BLOB>') self.assertEqual(wrl.io.get_RB_blob_attribute(xmldict, 'compression'), 'qt') self.assertEqual(wrl.io.get_RB_blob_attribute(xmldict, 'size'), '737') self.assertEqual(wrl.io.get_RB_blob_attribute(xmldict, 'blobid'), '0') self.assertRaises(KeyError, lambda: wrl.io.get_RB_blob_attribute(xmldict, 'Nonsense')) def test_map_RB_data(self): indata = b'0123456789' outdata8 = np.array([48, 49, 50, 51, 52, 53, 54, 55, 56, 57], dtype=np.uint8) outdata16 = np.array([12337, 12851, 13365, 13879, 14393], dtype=np.uint16) outdata32 = np.array([808530483, 875902519], dtype=np.uint32) self.assertTrue(np.allclose(wrl.io.map_RB_data(indata, 8), outdata8)) self.assertTrue(np.allclose(wrl.io.map_RB_data(indata, 16), outdata16)) self.assertTrue(np.allclose(wrl.io.map_RB_data(indata, 32), outdata32)) def test_get_RB_blob_data(self): datastring = b'<BLOB blobid="0" size="737" compression="qt"></BLOB>' self.assertRaises(EOFError, lambda: wrl.io.get_RB_blob_data(datastring, 1)) if __name__ == '__main__': unittest.main()
jjhelmus/wradlib
wradlib/tests/test_io.py
Python
mit
16,073
# # deluge/ui/web/server.py # # Copyright (C) 2009-2010 Damien Churchill <damoxc@gmail.com> # # Deluge is free software. # # You may redistribute it and/or modify it under the terms of the # GNU General Public License, as published by the Free Software # Foundation; either version 3 of the License, or (at your option) # any later version. # # deluge is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with deluge. If not, write to: # The Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor # Boston, MA 02110-1301, USA. # # In addition, as a special exception, the copyright holders give # permission to link the code of portions of this program with the OpenSSL # library. # You must obey the GNU General Public License in all respects for all of # the code used other than OpenSSL. If you modify file(s) with this # exception, you may extend this exception to your version of the file(s), # but you are not obligated to do so. If you do not wish to do so, delete # this exception statement from your version. If you delete this exception # statement from all source files in the program, then also delete it here. # # import os import time import locale import shutil import urllib import fnmatch import gettext import hashlib import logging import tempfile import mimetypes import pkg_resources from twisted.application import service, internet from twisted.internet import reactor, defer, error from twisted.internet.ssl import SSL from twisted.web import http, resource, server, static from deluge import common, component, configmanager from deluge.core.rpcserver import check_ssl_keys from deluge.log import setupLogger, LOG as _log from deluge.ui import common as uicommon from deluge.ui.tracker_icons import TrackerIcons from deluge.ui.web.auth import Auth from deluge.ui.web.common import Template, compress from deluge.ui.web.json_api import JSON, WebApi from deluge.ui.web.pluginmanager import PluginManager log = logging.getLogger(__name__) # Initialize gettext try: locale.setlocale(locale.LC_ALL, "") if hasattr(locale, "bindtextdomain"): locale.bindtextdomain("deluge", pkg_resources.resource_filename("deluge", "i18n")) if hasattr(locale, "textdomain"): locale.textdomain("deluge") gettext.bindtextdomain("deluge", pkg_resources.resource_filename("deluge", "i18n")) gettext.textdomain("deluge") gettext.install("deluge", pkg_resources.resource_filename("deluge", "i18n")) except Exception, e: log.error("Unable to initialize gettext/locale: %s", e) _ = gettext.gettext current_dir = os.path.dirname(__file__) CONFIG_DEFAULTS = { # Misc Settings "enabled_plugins": [], "default_daemon": "", # Auth Settings "pwd_salt": "c26ab3bbd8b137f99cd83c2c1c0963bcc1a35cad", "pwd_sha1": "2ce1a410bcdcc53064129b6d950f2e9fee4edc1e", "session_timeout": 3600, "sessions": {}, # UI Settings "sidebar_show_zero": False, "sidebar_multiple_filters": True, "show_session_speed": False, "show_sidebar": True, "theme": "gray", "first_login": True, # Server Settings "base": "/", "port": 8112, "https": False, "pkey": "ssl/daemon.pkey", "cert": "ssl/daemon.cert" } UI_CONFIG_KEYS = ( "theme", "sidebar_show_zero", "sidebar_multiple_filters", "show_session_speed", "base", "first_login" ) OLD_CONFIG_KEYS = ( "port", "enabled_plugins", "base", "sidebar_show_zero", "sidebar_show_trackers", "show_keyword_search", "show_sidebar", "https" ) def rpath(*paths): """Convert a relative path into an absolute path relative to the location of this script. """ return os.path.join(current_dir, *paths) class GetText(resource.Resource): def render(self, request): request.setHeader("content-type", "text/javascript; encoding=utf-8") template = Template(filename=rpath("gettext.js")) return compress(template.render(), request) class Upload(resource.Resource): """ Twisted Web resource to handle file uploads """ def render(self, request): """ Saves all uploaded files to the disk and returns a list of filenames, each on a new line. """ # Block all other HTTP methods. if request.method != "POST": request.setResponseCode(http.NOT_ALLOWED) return "" if "file" not in request.args: request.setResponseCode(http.OK) return common.json.dumps({ 'success': True, 'files': [] }) tempdir = tempfile.mkdtemp(prefix="delugeweb-") log.debug("uploading files to %s", tempdir) filenames = [] for upload in request.args.get("file"): fd, fn = tempfile.mkstemp('.torrent', dir=tempdir) os.write(fd, upload) os.close(fd) filenames.append(fn) log.debug("uploaded %d file(s)", len(filenames)) request.setHeader("content-type", "text/html") request.setResponseCode(http.OK) return compress(common.json.dumps({ 'success': True, 'files': filenames }), request) class Render(resource.Resource): def getChild(self, path, request): request.render_file = path return self def render(self, request): if not hasattr(request, "render_file"): request.setResponseCode(http.INTERNAL_SERVER_ERROR) return "" filename = os.path.join("render", request.render_file) template = Template(filename=rpath(filename)) request.setHeader("content-type", "text/html") request.setResponseCode(http.OK) return compress(template.render(), request) class Tracker(resource.Resource): def __init__(self): resource.Resource.__init__(self) try: self.tracker_icons = component.get("TrackerIcons") except KeyError: self.tracker_icons = TrackerIcons() def getChild(self, path, request): request.tracker_name = path return self def on_got_icon(self, icon, request): headers = {} if icon: request.setHeader("cache-control", "public, must-revalidate, max-age=86400") request.setHeader("content-type", icon.get_mimetype()) request.setResponseCode(http.OK) request.write(icon.get_data()) request.finish() else: request.setResponseCode(http.NOT_FOUND) request.finish() def render(self, request): d = self.tracker_icons.get(request.tracker_name) d.addCallback(self.on_got_icon, request) return server.NOT_DONE_YET class Flag(resource.Resource): def getChild(self, path, request): request.country = path return self def render(self, request): headers = {} path = ("data", "pixmaps", "flags", request.country.lower() + ".png") filename = pkg_resources.resource_filename("deluge", os.path.join(*path)) if os.path.exists(filename): request.setHeader("cache-control", "public, must-revalidate, max-age=86400") request.setHeader("content-type", "image/png") data = open(filename, "rb") request.setResponseCode(http.OK) return data.read() else: request.setResponseCode(http.NOT_FOUND) return "" class LookupResource(resource.Resource, component.Component): def __init__(self, name, *directories): resource.Resource.__init__(self) component.Component.__init__(self, name) self.__paths = {} for directory in directories: self.addDirectory(directory) def addDirectory(self, directory, path=""): log.debug("Adding directory `%s` with path `%s`", directory, path) paths = self.__paths.setdefault(path, []) paths.append(directory) def removeDirectory(self, directory, path=""): log.debug("Removing directory `%s`", directory) self.__paths[path].remove(directory) def getChild(self, path, request): if hasattr(request, 'lookup_path'): request.lookup_path = os.path.join(request.lookup_path, path) else: request.lookup_path = path return self def render(self, request): log.debug("Requested path: '%s'", request.lookup_path) path = os.path.dirname(request.lookup_path) if path not in self.__paths: request.setResponseCode(http.NOT_FOUND) return "<h1>404 - Not Found</h1>" filename = os.path.basename(request.path) for directory in self.__paths[path]: if os.path.join(directory, filename): path = os.path.join(directory, filename) log.debug("Serving path: '%s'", path) mime_type = mimetypes.guess_type(path) request.setHeader("content-type", mime_type[0]) return compress(open(path, "rb").read(), request) request.setResponseCode(http.NOT_FOUND) return "<h1>404 - Not Found</h1>" class ScriptResource(resource.Resource, component.Component): def __init__(self): resource.Resource.__init__(self) component.Component.__init__(self, "Scripts") self.__scripts = { "normal": { "scripts": {}, "order": [] }, "debug": { "scripts": {}, "order": [] }, "dev": { "scripts": {}, "order": [] } } def add_script(self, path, filepath, type=None): """ Adds a script or scripts to the script resource. :param path: The path of the script (this supports globbing) :type path: string :param filepath: The physical location of the script :type filepath: string :keyword type: The type of script to add (normal, debug, dev) :param type: string """ if type not in ("dev", "debug", "normal"): type = "normal" self.__scripts[type]["scripts"][path] = filepath self.__scripts[type]["order"].append(path) def add_script_folder(self, path, filepath, type=None, recurse=True): """ Adds a folder of scripts to the script resource. :param path: The path of the folder :type path: string :param filepath: The physical location of the script :type filepath: string :keyword type: The type of script to add (normal, debug, dev) :param type: string :keyword recurse: Whether or not to recurse into other folders :param recurse: bool """ if type not in ("dev", "debug", "normal"): type = "normal" self.__scripts[type]["scripts"][path] = (filepath, recurse) self.__scripts[type]["order"].append(path) def remove_script(self, path, type=None): """ Removes a script or folder of scripts from the script resource. :param path: The path of the folder :type path: string :keyword type: The type of script to add (normal, debug, dev) :param type: string """ if type not in ("dev", "debug", "normal"): type = "normal" del self.__scripts[type]["scripts"][path] self.__scripts[type]["order"].remove(path) def get_scripts(self, type=None): """ Returns a list of the scripts that can be used for producing script tags. :keyword type: The type of scripts to get (normal, debug, dev) :param type: string """ scripts = [] if type not in ("dev", "debug", "normal"): type = 'normal' _scripts = self.__scripts[type]["scripts"] _order = self.__scripts[type]["order"] for path in _order: filepath = _scripts[path] # this is a folder if isinstance(filepath, tuple): filepath, recurse = filepath if recurse: for dirpath, dirnames, filenames in os.walk(filepath, False): files = fnmatch.filter(filenames, "*.js") files.sort() order_file = os.path.join(dirpath, '.order') if os.path.isfile(order_file): for line in open(order_file, 'rb'): line = line.strip() if not line or line[0] == '#': continue try: pos, filename = line.split() files.pop(files.index(filename)) if pos == '+': files.insert(0, filename) else: files.append(filename) except: pass dirpath = dirpath[len(filepath)+1:] if dirpath: scripts.extend(['js/' + path + '/' + dirpath + '/' + f for f in files]) else: scripts.extend(['js/' + path + '/' + f for f in files]) else: files = fnmatch.filter(os.listdir('.'), "*.js") else: scripts.append("js/" + path) return scripts def getChild(self, path, request): if hasattr(request, "lookup_path"): request.lookup_path += '/' + path else: request.lookup_path = path return self def render(self, request): log.debug("Requested path: '%s'", request.lookup_path) for type in ("dev", "debug", "normal"): scripts = self.__scripts[type]["scripts"] for pattern in scripts: if not request.lookup_path.startswith(pattern): continue filepath = scripts[pattern] if isinstance(filepath, tuple): filepath = filepath[0] path = filepath + request.lookup_path[len(pattern):] if not os.path.isfile(path): continue log.debug("Serving path: '%s'", path) mime_type = mimetypes.guess_type(path) request.setHeader("content-type", mime_type[0]) return compress(open(path, "rb").read(), request) request.setResponseCode(http.NOT_FOUND) return "<h1>404 - Not Found</h1>" class TopLevel(resource.Resource): addSlash = True __stylesheets = [ "css/ext-all-notheme.css", "css/ext-extensions.css", "css/deluge.css" ] def __init__(self): resource.Resource.__init__(self) self.putChild("css", LookupResource("Css", rpath("css"))) self.putChild("gettext.js", GetText()) self.putChild("flag", Flag()) self.putChild("icons", LookupResource("Icons", rpath("icons"))) self.putChild("images", LookupResource("Images", rpath("images"))) js = ScriptResource() # configure the dev scripts js.add_script("ext-base-debug.js", rpath("js", "ext-base-debug.js"), "dev") js.add_script("ext-all-debug.js", rpath("js", "ext-all-debug.js"), "dev") js.add_script_folder("ext-extensions", rpath("js", "ext-extensions"), "dev") js.add_script_folder("deluge-all", rpath("js", "deluge-all"), "dev") # configure the debug scripts js.add_script("ext-base-debug.js", rpath("js", "ext-base-debug.js"), "debug") js.add_script("ext-all-debug.js", rpath("js", "ext-all-debug.js"), "debug") js.add_script("ext-extensions-debug.js", rpath("js", "ext-extensions-debug.js"), "debug") js.add_script("deluge-all-debug.js", rpath("js", "deluge-all-debug.js"), "debug") # configure the normal scripts js.add_script("ext-base.js", rpath("js", "ext-base.js")) js.add_script("ext-all.js", rpath("js", "ext-all.js")) js.add_script("ext-extensions.js", rpath("js", "ext-extensions.js")) js.add_script("deluge-all.js", rpath("js", "deluge-all.js")) self.putChild("js", js) self.putChild("json", JSON()) self.putChild("upload", Upload()) self.putChild("render", Render()) self.putChild("themes", static.File(rpath("themes"))) self.putChild("tracker", Tracker()) theme = component.get("DelugeWeb").config["theme"] if not os.path.isfile(rpath("themes", "css", "xtheme-%s.css" % theme)): theme = CONFIG_DEFAULTS.get("theme") self.__stylesheets.insert(1, "themes/css/xtheme-%s.css" % theme) @property def stylesheets(self): return self.__stylesheets def add_script(self, script): """ Adds a script to the server so it is included in the <head> element of the index page. :param script: The path to the script :type script: string """ self.__scripts.append(script) self.__debug_scripts.append(script) def remove_script(self, script): """ Removes a script from the server. :param script: The path to the script :type script: string """ self.__scripts.remove(script) self.__debug_scripts.remove(script) def getChild(self, path, request): if path == "": return self else: return resource.Resource.getChild(self, path, request) def getChildWithDefault(self, path, request): # Calculate the request base header = request.getHeader('x-deluge-base') base = header if header else component.get("DelugeWeb").base # validate the base parameter if not base: base = '/' if base[0] != '/': base = '/' + base if base[-1] != '/': base += '/' request.base = base.encode('idna') return resource.Resource.getChildWithDefault(self, path, request) def render(self, request): debug = False if 'debug' in request.args: debug_arg = request.args.get('debug')[-1] if debug_arg in ('true', 'yes', '1'): debug = True else: debug = False dev = 'dev' in common.get_version() if 'dev' in request.args: dev_arg = request.args.get('dev')[-1] if dev_arg in ('true', 'yes' '1'): dev = True else: dev = False if dev: mode = 'dev' elif debug: mode = 'debug' else: mode = None scripts = component.get("Scripts").get_scripts(mode) scripts.insert(0, "gettext.js") template = Template(filename=rpath("index.html")) request.setHeader("content-type", "text/html; charset=utf-8") web_config = component.get("Web").get_config() web_config["base"] = request.base config = dict([(key, web_config[key]) for key in UI_CONFIG_KEYS]) js_config = common.json.dumps(config) return template.render(scripts=scripts, stylesheets=self.stylesheets, debug=debug, base=request.base, js_config=js_config) class ServerContextFactory: def getContext(self): """Creates an SSL context.""" ctx = SSL.Context(SSL.SSLv3_METHOD) deluge_web = component.get("DelugeWeb") log.debug("Enabling SSL using:") log.debug("Pkey: %s", deluge_web.pkey) log.debug("Cert: %s", deluge_web.cert) ctx.use_privatekey_file(configmanager.get_config_dir(deluge_web.pkey)) ctx.use_certificate_chain_file(configmanager.get_config_dir(deluge_web.cert)) return ctx class DelugeWeb(component.Component): def __init__(self): super(DelugeWeb, self).__init__("DelugeWeb") self.config = configmanager.ConfigManager("web.conf", CONFIG_DEFAULTS) # Check to see if a configuration from the web interface prior to 1.2 # exists and convert it over. if os.path.exists(configmanager.get_config_dir("webui06.conf")): old_config = configmanager.ConfigManager("webui06.conf") if old_config.config: # we have an old config file here to handle so we should move # all the values across to the new config file, and then remove # it. for key in OLD_CONFIG_KEYS: if key in old_config: self.config[key] = old_config[key] # We need to base64 encode the passwords since json can't handle # them otherwise. from base64 import encodestring self.config["old_pwd_md5"] = encodestring(old_config["pwd_md5"]) self.config["old_pwd_salt"] = encodestring(old_config["pwd_salt"]) # Save our config and if it saved successfully then rename the # old configuration file. if self.config.save(): config_dir = os.path.dirname(old_config.config_file) backup_path = os.path.join(config_dir, 'web.conf.old') os.rename(old_config.config_file, backup_path) del old_config self.socket = None self.top_level = TopLevel() self.site = server.Site(self.top_level) self.port = self.config["port"] self.https = self.config["https"] self.pkey = self.config["pkey"] self.cert = self.config["cert"] self.base = self.config["base"] self.web_api = WebApi() self.auth = Auth() # Initalize the plugins self.plugins = PluginManager() def install_signal_handlers(self): # Since twisted assigns itself all the signals may as well make # use of it. reactor.addSystemEventTrigger("after", "shutdown", self.shutdown) # Twisted doesn't handle windows specific signals so we still # need to attach to those to handle the close correctly. if common.windows_check(): from win32api import SetConsoleCtrlHandler from win32con import CTRL_CLOSE_EVENT, CTRL_SHUTDOWN_EVENT def win_handler(ctrl_type): log.debug("ctrl type: %s", ctrl_type) if ctrl_type == CTRL_CLOSE_EVENT or \ ctrl_type == CTRL_SHUTDOWN_EVENT: self.shutdown() return 1 SetConsoleCtrlHandler(win_handler) def start(self, start_reactor=True): log.info("%s %s.", _("Starting server in PID"), os.getpid()) if self.https: self.start_ssl() else: self.start_normal() component.get("JSON").enable() if start_reactor: reactor.run() def start_normal(self): self.socket = reactor.listenTCP(self.port, self.site) log.info("serving on %s:%s view at http://127.0.0.1:%s", "0.0.0.0", self.port, self.port) def start_ssl(self): check_ssl_keys() self.socket = reactor.listenSSL(self.port, self.site, ServerContextFactory()) log.info("serving on %s:%s view at https://127.0.0.1:%s", "0.0.0.0", self.port, self.port) def stop(self): log.info("Shutting down webserver") component.get("JSON").disable() self.plugins.disable_plugins() log.debug("Saving configuration file") self.config.save() if self.socket: d = self.socket.stopListening() self.socket = None else: d = defer.Deferred() d.callback(False) return d def shutdown(self, *args): self.stop() try: reactor.stop() except error.ReactorNotRunning: log.debug("Reactor not running") if __name__ == "__builtin__": deluge_web = DelugeWeb() application = service.Application("DelugeWeb") sc = service.IServiceCollection(application) i = internet.TCPServer(deluge_web.port, deluge_web.site) i.setServiceParent(sc) elif __name__ == "__main__": deluge_web = DelugeWeb() deluge_web.start()
inaz2/deluge-hack
deluge/ui/web/server.py
Python
gpl-3.0
24,897
"""Support for PlayStation 4 consoles.""" import logging import asyncio import pyps4_2ndscreen.ps4 as pyps4 from pyps4_2ndscreen.errors import NotReady from homeassistant.core import callback from homeassistant.components.media_player import ENTITY_IMAGE_URL, MediaPlayerDevice from homeassistant.components.media_player.const import ( ATTR_MEDIA_CONTENT_TYPE, ATTR_MEDIA_TITLE, MEDIA_TYPE_GAME, MEDIA_TYPE_APP, SUPPORT_SELECT_SOURCE, SUPPORT_PAUSE, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, ) from homeassistant.components.ps4 import format_unique_id, load_games, save_games from homeassistant.const import ( ATTR_LOCKED, CONF_HOST, CONF_NAME, CONF_REGION, CONF_TOKEN, STATE_IDLE, STATE_STANDBY, STATE_PLAYING, ) from homeassistant.helpers import device_registry, entity_registry from .const import ( ATTR_MEDIA_IMAGE_URL, DEFAULT_ALIAS, DOMAIN as PS4_DOMAIN, PS4_DATA, REGIONS as deprecated_regions, ) _LOGGER = logging.getLogger(__name__) SUPPORT_PS4 = ( SUPPORT_TURN_OFF | SUPPORT_TURN_ON | SUPPORT_PAUSE | SUPPORT_STOP | SUPPORT_SELECT_SOURCE ) ICON = "mdi:playstation" MEDIA_IMAGE_DEFAULT = None DEFAULT_RETRIES = 2 async def async_setup_entry(hass, config_entry, async_add_entities): """Set up PS4 from a config entry.""" config = config_entry creds = config.data[CONF_TOKEN] device_list = [] for device in config.data["devices"]: host = device[CONF_HOST] region = device[CONF_REGION] name = device[CONF_NAME] ps4 = pyps4.Ps4Async(host, creds, device_name=DEFAULT_ALIAS) device_list.append(PS4Device(config, name, host, region, ps4, creds)) async_add_entities(device_list, update_before_add=True) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Not Implemented.""" pass class PS4Device(MediaPlayerDevice): """Representation of a PS4.""" def __init__(self, config, name, host, region, ps4, creds): """Initialize the ps4 device.""" self._entry_id = config.entry_id self._ps4 = ps4 self._host = host self._name = name self._region = region self._creds = creds self._state = None self._media_content_id = None self._media_title = None self._media_image = None self._media_type = None self._source = None self._games = {} self._source_list = [] self._retry = 0 self._disconnected = False self._info = None self._unique_id = None @callback def status_callback(self): """Handle status callback. Parse status.""" self._parse_status() @callback def schedule_update(self): """Schedules update with HA.""" self.async_schedule_update_ha_state() @callback def subscribe_to_protocol(self): """Notify protocol to callback with update changes.""" self.hass.data[PS4_DATA].protocol.add_callback(self._ps4, self.status_callback) @callback def unsubscribe_to_protocol(self): """Notify protocol to remove callback.""" self.hass.data[PS4_DATA].protocol.remove_callback( self._ps4, self.status_callback ) def check_region(self): """Display logger msg if region is deprecated.""" # Non-Breaking although data returned may be inaccurate. if self._region in deprecated_regions: _LOGGER.info( """Region: %s has been deprecated. Please remove PS4 integration and Re-configure again to utilize current regions""", self._region, ) async def async_added_to_hass(self): """Subscribe PS4 events.""" self.hass.data[PS4_DATA].devices.append(self) self.check_region() async def async_update(self): """Retrieve the latest data.""" if self._ps4.ddp_protocol is not None: # Request Status with asyncio transport. self._ps4.get_status() # Don't attempt to connect if entity is connected or if, # PS4 is in standby or disconnected from LAN or powered off. if ( not self._ps4.connected and not self._ps4.is_standby and self._ps4.is_available ): try: await self._ps4.async_connect() except NotReady: pass # Try to ensure correct status is set on startup for device info. if self._ps4.ddp_protocol is None: # Use socket.socket. await self.hass.async_add_executor_job(self._ps4.get_status) if self._info is None: # Add entity to registry. await self.async_get_device_info(self._ps4.status) self._ps4.ddp_protocol = self.hass.data[PS4_DATA].protocol self.subscribe_to_protocol() self._parse_status() def _parse_status(self): """Parse status.""" status = self._ps4.status if status is not None: self._games = load_games(self.hass) if self._games: self.get_source_list() self._retry = 0 self._disconnected = False if status.get("status") == "Ok": title_id = status.get("running-app-titleid") name = status.get("running-app-name") if title_id and name is not None: self._state = STATE_PLAYING if self._media_content_id != title_id: self._media_content_id = title_id if self._use_saved(): _LOGGER.debug("Using saved data for media: %s", title_id) self.schedule_update() return self._media_title = name self._source = self._media_title self._media_type = None # Get data from PS Store. asyncio.ensure_future(self.async_get_title_data(title_id, name)) else: if self._state != STATE_IDLE: self.idle() else: if self._state != STATE_STANDBY: self.state_standby() elif self._retry > DEFAULT_RETRIES: self.state_unknown() else: self._retry += 1 def _use_saved(self) -> bool: """Return True, Set media attrs if data is locked.""" if self._media_content_id in self._games: store = self._games[self._media_content_id] # If locked get attributes from file. locked = store.get(ATTR_LOCKED) if locked: self._media_title = store.get(ATTR_MEDIA_TITLE) self._source = self._media_title self._media_image = store.get(ATTR_MEDIA_IMAGE_URL) self._media_type = store.get(ATTR_MEDIA_CONTENT_TYPE) return True return False def idle(self): """Set states for state idle.""" self.reset_title() self._state = STATE_IDLE self.schedule_update() def state_standby(self): """Set states for state standby.""" self.reset_title() self._state = STATE_STANDBY self.schedule_update() def state_unknown(self): """Set states for state unknown.""" self.reset_title() self._state = None if self._disconnected is False: _LOGGER.warning("PS4 could not be reached") self._disconnected = True self._retry = 0 def reset_title(self): """Update if there is no title.""" self._media_title = None self._media_content_id = None self._media_type = None self._source = None async def async_get_title_data(self, title_id, name): """Get PS Store Data.""" from pyps4_2ndscreen.errors import PSDataIncomplete app_name = None art = None media_type = None try: title = await self._ps4.async_get_ps_store_data( name, title_id, self._region ) except PSDataIncomplete: title = None except asyncio.TimeoutError: title = None _LOGGER.error("PS Store Search Timed out") else: if title is not None: app_name = title.name art = title.cover_art # Assume media type is game if not app. if title.game_type != "App": media_type = MEDIA_TYPE_GAME else: media_type = MEDIA_TYPE_APP else: _LOGGER.error( "Could not find data in region: %s for PS ID: %s", self._region, title_id, ) finally: self._media_title = app_name or name self._source = self._media_title self._media_image = art or None self._media_type = media_type self.update_list() self.schedule_update() def update_list(self): """Update Game List, Correct data if different.""" if self._media_content_id in self._games: store = self._games[self._media_content_id] if ( store.get(ATTR_MEDIA_TITLE) != self._media_title or store.get(ATTR_MEDIA_IMAGE_URL) != self._media_image ): self._games.pop(self._media_content_id) if self._media_content_id not in self._games: self.add_games( self._media_content_id, self._media_title, self._media_image, self._media_type, ) self._games = load_games(self.hass) self.get_source_list() def get_source_list(self): """Parse data entry and update source list.""" games = [] for data in self._games.values(): games.append(data[ATTR_MEDIA_TITLE]) self._source_list = sorted(games) def add_games(self, title_id, app_name, image, g_type, is_locked=False): """Add games to list.""" games = self._games if title_id is not None and title_id not in games: game = { title_id: { ATTR_MEDIA_TITLE: app_name, ATTR_MEDIA_IMAGE_URL: image, ATTR_MEDIA_CONTENT_TYPE: g_type, ATTR_LOCKED: is_locked, } } games.update(game) save_games(self.hass, games) async def async_get_device_info(self, status): """Set device info for registry.""" # If cannot get status on startup, assume info from registry. if status is None: _LOGGER.info("Assuming status from registry") e_registry = await entity_registry.async_get_registry(self.hass) d_registry = await device_registry.async_get_registry(self.hass) for entity_id, entry in e_registry.entities.items(): if entry.config_entry_id == self._entry_id: self._unique_id = entry.unique_id self.entity_id = entity_id break for device in d_registry.devices.values(): if self._entry_id in device.config_entries: self._info = { "name": device.name, "model": device.model, "identifiers": device.identifiers, "manufacturer": device.manufacturer, "sw_version": device.sw_version, } break else: _sw_version = status["system-version"] _sw_version = _sw_version[1:4] sw_version = "{}.{}".format(_sw_version[0], _sw_version[1:]) self._info = { "name": status["host-name"], "model": "PlayStation 4", "identifiers": {(PS4_DOMAIN, status["host-id"])}, "manufacturer": "Sony Interactive Entertainment Inc.", "sw_version": sw_version, } self._unique_id = format_unique_id(self._creds, status["host-id"]) async def async_will_remove_from_hass(self): """Remove Entity from Hass.""" # Close TCP Transport. if self._ps4.connected: await self._ps4.close() self.unsubscribe_to_protocol() self.hass.data[PS4_DATA].devices.remove(self) @property def device_info(self): """Return information about the device.""" return self._info @property def unique_id(self): """Return Unique ID for entity.""" return self._unique_id @property def entity_picture(self): """Return picture.""" if self._state == STATE_PLAYING and self._media_content_id is not None: image_hash = self.media_image_hash if image_hash is not None: return ENTITY_IMAGE_URL.format( self.entity_id, self.access_token, image_hash ) return MEDIA_IMAGE_DEFAULT @property def name(self): """Return the name of the device.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def icon(self): """Icon.""" return ICON @property def media_content_id(self): """Content ID of current playing media.""" return self._media_content_id @property def media_content_type(self): """Content type of current playing media.""" return self._media_type @property def media_image_url(self): """Image url of current playing media.""" if self._media_content_id is None: return MEDIA_IMAGE_DEFAULT return self._media_image @property def media_title(self): """Title of current playing media.""" return self._media_title @property def supported_features(self): """Media player features that are supported.""" return SUPPORT_PS4 @property def source(self): """Return the current input source.""" return self._source @property def source_list(self): """List of available input sources.""" return self._source_list async def async_turn_off(self): """Turn off media player.""" await self._ps4.standby() async def async_turn_on(self): """Turn on the media player.""" self._ps4.wakeup() async def async_media_pause(self): """Send keypress ps to return to menu.""" await self.async_send_remote_control("ps") async def async_media_stop(self): """Send keypress ps to return to menu.""" await self.async_send_remote_control("ps") async def async_select_source(self, source): """Select input source.""" for title_id, data in self._games.items(): game = data[ATTR_MEDIA_TITLE] if ( source.lower().encode(encoding="utf-8") == game.lower().encode(encoding="utf-8") or source == title_id ): _LOGGER.debug( "Starting PS4 game %s (%s) using source %s", game, title_id, source ) await self._ps4.start_title(title_id, self._media_content_id) return _LOGGER.warning("Could not start title. '%s' is not in source list", source) return async def async_send_command(self, command): """Send Button Command.""" await self.async_send_remote_control(command) async def async_send_remote_control(self, command): """Send RC command.""" await self._ps4.remote_control(command)
joopert/home-assistant
homeassistant/components/ps4/media_player.py
Python
apache-2.0
16,283
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2011, 2012, 2013, 2014, 2015 CERN. # # Invenio is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """Database models for collections.""" # General imports. import re from operator import itemgetter from flask import g, url_for from intbitset import intbitset from invenio.base.globals import cfg from invenio.base.i18n import _, gettext_set_language from invenio.ext.sqlalchemy import db from invenio.ext.sqlalchemy.utils import attribute_multi_dict_collection from invenio.modules.formatter.registry import output_formats from invenio.modules.search.models import Field, Fieldvalue from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.ext.orderinglist import ordering_list from sqlalchemy.orm.collections import attribute_mapped_collection from werkzeug.utils import cached_property # Create your models here. external_collection_mapper = attribute_multi_dict_collection( creator=lambda k, v: CollectionExternalcollection(type=k, externalcollection=v), key_attr=lambda obj: obj.type, val_attr=lambda obj: obj.externalcollection) class Collection(db.Model): """Represent a Collection record.""" def __repr__(self): """Return class representation.""" return 'Collection <id: {0.id}, name: {0.name}, dbquery: {0.query}, ' \ 'nbrecs: {0.nbrecs}>'.format(self) def __unicode__(self): suffix = ' ({0})'.format(_('default')) if self.id == 1 else '' return u"{0.id}. {0.name}{1}".format(self, suffix) def __str__(self): return unicode(self).encode('utf-8') __tablename__ = 'collection' id = db.Column(db.MediumInteger(9, unsigned=True), primary_key=True) name = db.Column(db.String(255), unique=True, index=True, nullable=False) dbquery = db.Column(db.Text(20), nullable=True, index=True) @property def nbrecs(self): """Number of records in the collection.""" from .cache import get_collection_nbrecs return get_collection_nbrecs(self.name) @property def reclist(self): """Return hit set with record identifiers.""" from .cache import get_collection_reclist return get_collection_reclist(self.name) @property def is_hosted(self): """Return True if collection is hosted elsewhere.""" return self.dbquery.startswith('hostedcollection:') if self.dbquery \ else False _names = db.relationship(lambda: Collectionname, backref='collection', collection_class=attribute_mapped_collection( 'ln_type'), cascade="all, delete, delete-orphan") names = association_proxy( '_names', 'value', creator=lambda k, v: Collectionname(ln_type=k, value=v) ) _boxes = db.relationship(lambda: Collectionboxname, backref='collection', collection_class=attribute_mapped_collection( 'ln_type'), cascade="all, delete, delete-orphan") boxes = association_proxy( '_boxes', 'value', creator=lambda k, v: Collectionboxname(ln_type=k, value=v) ) _formatoptions = association_proxy('formats', 'format') # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def formatoptions(self): """Return list of format options.""" if len(self._formatoptions): return [dict(f) for f in self._formatoptions] else: return [{'code': u'hb', 'name': _("HTML %(format)s", format=_("brief")), 'content_type': u'text/html'}] formatoptions = property(formatoptions) _examples_example = association_proxy('_examples', 'example') @property # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def examples(self): """Return list of example queries.""" return list(self._examples_example) @property def name_ln(self): from invenio.legacy.search_engine import get_coll_i18nname return get_coll_i18nname(self.name, getattr(g, 'ln', cfg['CFG_SITE_LANG'])) # Another possible implementation with cache memoize # @cache.memoize # try: # return db.object_session(self).query(Collectionname).\ # with_parent(self).filter(db.and_(Collectionname.ln==g.ln, # Collectionname.type=='ln')).first().value # except Exception: # return self.name @property # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def portalboxes_ln(self): return db.object_session(self).query(CollectionPortalbox).\ with_parent(self).\ options(db.joinedload_all(CollectionPortalbox.portalbox)).\ filter(CollectionPortalbox.ln == g.ln).\ order_by(db.desc(CollectionPortalbox.score)).all() @property def most_specific_dad(self): results = sorted( db.object_session(self).query(Collection).join( Collection.sons ).filter(CollectionCollection.id_son == self.id).all(), key=lambda c: c.nbrecs) return results[0] if len(results) else None @property # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def is_restricted(self): """Return ``True`` if the collection is restricted.""" from invenio.legacy.search_engine import collection_restricted_p return collection_restricted_p(self.name) @property def type(self): """Return relation type.""" p = re.compile("\d+:.*") if self.dbquery is not None and \ p.match(self.dbquery.lower()): return 'r' else: return 'v' _collection_children = db.relationship( lambda: CollectionCollection, collection_class=ordering_list('score'), primaryjoin=lambda: Collection.id == CollectionCollection.id_dad, foreign_keys=lambda: CollectionCollection.id_dad, order_by=lambda: db.asc(CollectionCollection.score) ) _collection_children_r = db.relationship( lambda: CollectionCollection, collection_class=ordering_list('score'), primaryjoin=lambda: db.and_( Collection.id == CollectionCollection.id_dad, CollectionCollection.type == 'r'), foreign_keys=lambda: CollectionCollection.id_dad, order_by=lambda: db.asc(CollectionCollection.score) ) _collection_children_v = db.relationship( lambda: CollectionCollection, collection_class=ordering_list('score'), primaryjoin=lambda: db.and_( Collection.id == CollectionCollection.id_dad, CollectionCollection.type == 'v'), foreign_keys=lambda: CollectionCollection.id_dad, order_by=lambda: db.asc(CollectionCollection.score) ) collection_parents = db.relationship( lambda: CollectionCollection, collection_class=ordering_list('score'), primaryjoin=lambda: Collection.id == CollectionCollection.id_son, foreign_keys=lambda: CollectionCollection.id_son, order_by=lambda: db.asc(CollectionCollection.score) ) collection_children = association_proxy('_collection_children', 'son') collection_children_r = association_proxy( '_collection_children_r', 'son', creator=lambda son: CollectionCollection(id_son=son.id, type='r') ) collection_children_v = association_proxy( '_collection_children_v', 'son', creator=lambda son: CollectionCollection(id_son=son.id, type='v') ) _externalcollections = db.relationship( lambda: CollectionExternalcollection, cascade="all, delete, delete-orphan" ) def _externalcollections_type(type_): return association_proxy( '_externalcollections_' + str(type_), 'externalcollection', creator=lambda ext: CollectionExternalcollection( externalcollection=ext, type=type_)) externalcollections_0 = _externalcollections_type(0) externalcollections_1 = _externalcollections_type(1) externalcollections_2 = _externalcollections_type(2) externalcollections = db.relationship( lambda: CollectionExternalcollection, collection_class=external_collection_mapper, cascade="all, delete, delete-orphan" ) # Search options def _make_field_fieldvalue(type_): return db.relationship( lambda: CollectionFieldFieldvalue, primaryjoin=lambda: db.and_( Collection.id == CollectionFieldFieldvalue.id_collection, CollectionFieldFieldvalue.type == type_), order_by=lambda: CollectionFieldFieldvalue.score) _search_within = _make_field_fieldvalue('sew') _search_options = _make_field_fieldvalue('seo') @property # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def search_within(self): """ Collect search within options. """ default = [('', _('any field'))] found = [(o.field.code, o.field.name_ln) for o in self._search_within] if not found: found = [(f.name.replace(' ', ''), f.name_ln) for f in Field.query.filter(Field.name.in_( cfg['CFG_WEBSEARCH_SEARCH_WITHIN'])).all()] return default + sorted(found, key=itemgetter(1)) @property # @cache.memoize(make_name=lambda fname: fname + '::' + g.ln) def search_options(self): """Return search options.""" return self._search_options @cached_property def ancestors(self): """Get list of parent collection ids.""" output = set([self]) for c in self.dads: output |= c.dad.ancestors return output @cached_property def ancestors_ids(self): """Get list of parent collection ids.""" output = intbitset([self.id]) for c in self.dads: ancestors = c.dad.ancestors_ids if self.id in ancestors: raise output |= ancestors return output @cached_property def descendants_ids(self): """Get list of child collection ids.""" output = intbitset([self.id]) for c in self.sons: descendants = c.son.descendants_ids if self.id in descendants: raise output |= descendants return output # Gets the list of localized names as an array collection_names = db.relationship( lambda: Collectionname, primaryjoin=lambda: Collection.id == Collectionname.id_collection, foreign_keys=lambda: Collectionname.id_collection ) def translation(self, lang): """Get the translation according to the language code.""" try: return db.object_session(self).query(Collectionname).\ with_parent(self).filter(db.and_( Collectionname.ln == lang, Collectionname.type == 'ln' )).first().value except Exception: return "" @property def sort_methods(self): """Get sort methods for collection. If not sort methods are defined for a collection the root collections sort methods are retuned. If not methods are defined for the root collection, all possible sort methods are returned. Note: Noth sorting methods and ranking methods are now defined via the sorter. """ from invenio.modules.sorter.models import BsrMETHOD, \ Collection_bsrMETHOD for coll_id in (self.id, 1): methods = Collection_bsrMETHOD.query.filter_by( id_collection=coll_id ).order_by( Collection_bsrMETHOD.score ).options( db.joinedload(Collection_bsrMETHOD.bsrMETHOD) ).all() if len(methods) > 0: return map(lambda obj: obj.bsrMETHOD, methods) return BsrMETHOD.query.order_by(BsrMETHOD.name).all() def get_collectionbox_name(self, ln=None, box_type="r"): """Return collection-specific labelling subtrees. - 'Focus on': regular collection - 'Narrow by': virtual collection - 'Latest addition': boxes If translation for given language does not exist, use label for CFG_SITE_LANG. If no custom label is defined for CFG_SITE_LANG, return default label for the box. :param ln: the language of the label :param box_type: can be 'r' (=Narrow by), 'v' (=Focus on), 'l' (=Latest additions) """ if ln is None: ln = g.ln collectionboxnamequery = db.object_session(self).query( Collectionboxname).with_parent(self) try: collectionboxname = collectionboxnamequery.filter(db.and_( Collectionboxname.ln == ln, Collectionboxname.type == box_type, )).one() except Exception: try: collectionboxname = collectionboxnamequery.filter(db.and_( Collectionboxname.ln == ln, Collectionboxname.type == box_type, )).one() except Exception: collectionboxname = None if collectionboxname is None: # load the right message language _ = gettext_set_language(ln) return _(Collectionboxname.TYPES.get(box_type, '')) else: return collectionboxname.value portal_boxes_ln = db.relationship( lambda: CollectionPortalbox, collection_class=ordering_list('score'), primaryjoin=lambda: Collection.id == CollectionPortalbox.id_collection, foreign_keys=lambda: CollectionPortalbox.id_collection, order_by=lambda: db.asc(CollectionPortalbox.score)) def breadcrumbs(self, builder=None, ln=None): """Return breadcrumbs for collection.""" ln = cfg.get('CFG_SITE_LANG') if ln is None else ln breadcrumbs = [] # Get breadcrumbs for most specific dad if it exists. if self.most_specific_dad is not None: breadcrumbs = self.most_specific_dad.breadcrumbs(builder=builder, ln=ln) if builder is not None: crumb = builder(self) else: crumb = dict( text=self.name_ln, url=url_for('collections.collection', name=self.name)) breadcrumbs.append(crumb) return breadcrumbs class Collectionname(db.Model): """Represent a Collectionname record.""" __tablename__ = 'collectionname' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), nullable=False, primary_key=True) ln = db.Column(db.Char(5), nullable=False, primary_key=True, server_default='') type = db.Column(db.Char(3), nullable=False, primary_key=True, server_default='sn') value = db.Column(db.String(255), nullable=False) @db.hybrid_property def ln_type(self): return (self.ln, self.type) @ln_type.setter def set_ln_type(self, value): (self.ln, self.type) = value class Collectionboxname(db.Model): """Represent a Collectionboxname record.""" __tablename__ = 'collectionboxname' TYPES = { 'v': 'Focus on:', 'r': 'Narrow by collection:', 'l': 'Latest additions:', } id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), nullable=False, primary_key=True) ln = db.Column(db.Char(5), nullable=False, primary_key=True, server_default='') type = db.Column(db.Char(3), nullable=False, primary_key=True, server_default='r') value = db.Column(db.String(255), nullable=False) @db.hybrid_property def ln_type(self): return (self.ln, self.type) @ln_type.setter def set_ln_type(self, value): (self.ln, self.type) = value class Collectiondetailedrecordpagetabs(db.Model): """Represent a Collectiondetailedrecordpagetabs record.""" __tablename__ = 'collectiondetailedrecordpagetabs' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), nullable=False, primary_key=True) tabs = db.Column(db.String(255), nullable=False, server_default='') collection = db.relationship(Collection, backref='collectiondetailedrecordpagetabs') class CollectionCollection(db.Model): """Represent a CollectionCollection record.""" __tablename__ = 'collection_collection' id_dad = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True) id_son = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True) type = db.Column(db.Char(1), nullable=False, server_default='r') score = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') son = db.relationship(Collection, primaryjoin=id_son == Collection.id, backref='dads', # FIX # collection_class=db.attribute_mapped_collection('score'), order_by=db.asc(score)) dad = db.relationship(Collection, primaryjoin=id_dad == Collection.id, backref='sons', order_by=db.asc(score)) class Example(db.Model): """Represent a Example record.""" __tablename__ = 'example' id = db.Column(db.MediumInteger(9, unsigned=True), primary_key=True, autoincrement=True) type = db.Column(db.Text, nullable=False) body = db.Column(db.Text, nullable=False) class CollectionExample(db.Model): """Represent a CollectionExample record.""" __tablename__ = 'collection_example' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True) id_example = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Example.id), primary_key=True) score = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') collection = db.relationship(Collection, backref='_examples', order_by=score) example = db.relationship(Example, backref='collections', order_by=score) class Portalbox(db.Model): """Represent a Portalbox record.""" __tablename__ = 'portalbox' id = db.Column(db.MediumInteger(9, unsigned=True), autoincrement=True, primary_key=True) title = db.Column(db.Text, nullable=False) body = db.Column(db.Text, nullable=False) def get_pbx_pos(): """Returns a list of all the positions for a portalbox""" position = {} position["rt"] = "Right Top" position["lt"] = "Left Top" position["te"] = "Title Epilog" position["tp"] = "Title Prolog" position["ne"] = "Narrow by coll epilog" position["np"] = "Narrow by coll prolog" return position class CollectionPortalbox(db.Model): """Represent a CollectionPortalbox record.""" __tablename__ = 'collection_portalbox' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True) id_portalbox = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Portalbox.id), primary_key=True) ln = db.Column(db.Char(5), primary_key=True, server_default='', nullable=False) position = db.Column(db.Char(3), nullable=False, server_default='top') score = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') collection = db.relationship(Collection, backref='portalboxes', order_by=score) portalbox = db.relationship(Portalbox, backref='collections', order_by=score) class Externalcollection(db.Model): """Represent a Externalcollection record.""" __tablename__ = 'externalcollection' id = db.Column(db.MediumInteger(9, unsigned=True), primary_key=True) name = db.Column(db.String(255), unique=True, nullable=False, server_default='') @property def engine(self): from invenio.legacy.websearch_external_collections.searcher import ( external_collections_dictionary ) if self.name in external_collections_dictionary: return external_collections_dictionary[self.name] class CollectionExternalcollection(db.Model): """Represent a CollectionExternalcollection record.""" __tablename__ = 'collection_externalcollection' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True, server_default='0') id_externalcollection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Externalcollection.id), primary_key=True, server_default='0') type = db.Column(db.TinyInteger(4, unsigned=True), server_default='0', nullable=False) def _collection_type(type_): return db.relationship( Collection, primaryjoin=lambda: db.and_( CollectionExternalcollection.id_collection == Collection.id, CollectionExternalcollection.type == type_), backref='_externalcollections_{0}'.format(str(type_)) ) collection_0 = _collection_type(0) collection_1 = _collection_type(1) collection_2 = _collection_type(2) externalcollection = db.relationship(Externalcollection) class CollectionFormat(db.Model): """Represent a CollectionFormat record.""" __tablename__ = 'collection_format' id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), primary_key=True) format_code = db.Column('format', db.String(10), primary_key=True) score = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') collection = db.relationship( Collection, backref=db.backref( 'formats', order_by=db.desc(score) ), order_by=db.desc(score)) @property def format(self): """Return output format definition.""" return output_formats[self.format_code] class CollectionFieldFieldvalue(db.Model): """Represent a CollectionFieldFieldvalue record.""" __tablename__ = 'collection_field_fieldvalue' id = db.Column(db.MediumInteger(9, unsigned=True), autoincrement=True, primary_key=True, nullable=False) id_collection = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Collection.id), nullable=False) id_field = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Field.id), nullable=False) _id_fieldvalue = db.Column(db.MediumInteger(9, unsigned=True), db.ForeignKey(Fieldvalue.id), nullable=True, default=None, name="id_fieldvalue") type = db.Column(db.Char(3), nullable=False, server_default='src') score = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') score_fieldvalue = db.Column(db.TinyInteger(4, unsigned=True), nullable=False, server_default='0') collection = db.relationship(Collection, backref='field_fieldvalues', order_by=score) field = db.relationship(Field, backref='collection_fieldvalues', lazy='joined') fieldvalue = db.relationship(Fieldvalue, backref='collection_fields', lazy='joined') @db.hybrid_property def id_fieldvalue(self): """Get id_fieldvalue.""" return self._id_fieldvalue @id_fieldvalue.setter def id_fieldvalue(self, value): """Set id_fieldvalue.""" self._id_fieldvalue = value or None class FacetCollection(db.Model): """Facet configuration for collection.""" __tablename__ = 'facet_collection' id = db.Column(db.Integer, primary_key=True) id_collection = db.Column(db.Integer, db.ForeignKey(Collection.id)) order = db.Column(db.Integer) facet_name = db.Column(db.String(80)) collection = db.relationship(Collection, backref='facets') def __repr__(self): """Return class representation.""" return ('FacetCollection <id: {0.id}, id_collection: ' '{0.id_collection}, order: {0.order}, ' 'facet_name: {0.facet_name}>'.format(self)) @classmethod def is_place_taken(cls, id_collection, order): """Check if there is already a facet on the given position. .. note:: This works well as a pre-check, however saving can still fail if somebody else creates the same record in other session (phantom reads). """ return bool(cls.query.filter( cls.id_collection == id_collection, cls.order == order).count()) @classmethod def is_duplicated(cls, id_collection, facet_name): """Check if the given facet is already assigned to this collection. .. note:: This works well as a pre-check, however saving can still fail if somebody else creates the same record in other session (phantom reads). """ return bool(cls.query.filter( cls.id_collection == id_collection, cls.facet_name == facet_name).count()) __all__ = ( 'Collection', 'Collectionname', 'Collectiondetailedrecordpagetabs', 'CollectionCollection', 'Example', 'CollectionExample', 'Portalbox', 'CollectionPortalbox', 'Externalcollection', 'CollectionExternalcollection', 'CollectionFormat', 'CollectionFieldFieldvalue', 'FacetCollection', )
chokribr/invenio
invenio/modules/collections/models.py
Python
gpl-2.0
28,007
class Linearizer (): def __init__ (self, header='', separator='', footer='', graph=None): self.graph = graph self.separator = separator self.header = header self.footer = footer def linearize (self): nodes = self.get_root_nodes() nodes = self.expand_node_list(nodes) words = (self.process_node(n) for n in nodes) nonempty = [(w, n) for w, n in zip(words, nodes) if w is not None] try: words, nodes = (list(l) for l in zip(*nonempty)) except ValueError: return '' self.apply_boundaries(words, nodes) return self.concat(words) def get_root_nodes (self): return [min(self._g.nodes())] def expand_node_list (self, nodes): change = True while change is True: change = False next_nodes = [] for n in nodes: try: expanded = n.get('expanded') except AttributeError: n = self.graph.node[n].copy() expanded = False if expanded: next_nodes.append(n) else: next_nodes += self.expand_node(n) change = True nodes = next_nodes return nodes def expand_node (self, n): n['expanded'] = True return [n] def process_node (self, n): return n['concept'] def apply_boundaries (self, words, nodes): for i in range(len(nodes)): if i == 0: left = None else: left = nodes[i-1] if i == len(nodes)-1: right = None else: right = nodes[i+1] words[i] = self.boundary(left, nodes[i], words[i], right) def boundary (self, left, n, word, right): return word def concat (self, nodes): return self.header+self.separator.join(nodes)+self.footer
agarsev/grafeno
grafeno/linearizers/base.py
Python
agpl-3.0
2,009
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Fast-Fourier Transform ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import ops as _ops from tensorflow.python.ops import manip_ops from tensorflow.python.framework import tensor_util as _tensor_util from tensorflow.python.ops import array_ops as _array_ops from tensorflow.python.ops import gen_spectral_ops from tensorflow.python.ops import math_ops as _math_ops from tensorflow.python.util.tf_export import tf_export def _infer_fft_length_for_rfft(input_tensor, fft_rank): """Infers the `fft_length` argument for a `rank` RFFT from `input_tensor`.""" # A TensorShape for the inner fft_rank dimensions. fft_shape = input_tensor.get_shape()[-fft_rank:] # If any dim is unknown, fall back to tensor-based math. if not fft_shape.is_fully_defined(): return _array_ops.shape(input_tensor)[-fft_rank:] # Otherwise, return a constant. return _ops.convert_to_tensor(fft_shape.as_list(), _dtypes.int32) def _infer_fft_length_for_irfft(input_tensor, fft_rank): """Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`.""" # A TensorShape for the inner fft_rank dimensions. fft_shape = input_tensor.get_shape()[-fft_rank:] # If any dim is unknown, fall back to tensor-based math. if not fft_shape.is_fully_defined(): fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:]) fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1)) return _array_ops.stack(fft_length) # Otherwise, return a constant. fft_length = fft_shape.as_list() if fft_length: fft_length[-1] = max(0, 2 * (fft_length[-1] - 1)) return _ops.convert_to_tensor(fft_length, _dtypes.int32) def _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=False): """Pads `input_tensor` to `fft_length` on its inner-most `fft_rank` dims.""" fft_shape = _tensor_util.constant_value_as_shape(fft_length) # Edge case: skip padding empty tensors. if (input_tensor.shape.ndims is not None and any(dim.value == 0 for dim in input_tensor.shape.dims)): return input_tensor # If we know the shapes ahead of time, we can either skip or pre-compute the # appropriate paddings. Otherwise, fall back to computing paddings in # TensorFlow. if fft_shape.is_fully_defined() and input_tensor.shape.ndims is not None: # Slice the last FFT-rank dimensions from input_tensor's shape. input_fft_shape = input_tensor.shape[-fft_shape.ndims:] if input_fft_shape.is_fully_defined(): # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1. if is_reverse: fft_shape = fft_shape[:-1].concatenate( fft_shape.dims[-1].value // 2 + 1) paddings = [[0, max(fft_dim.value - input_dim.value, 0)] for fft_dim, input_dim in zip( fft_shape.dims, input_fft_shape.dims)] if any(pad > 0 for _, pad in paddings): outer_paddings = [[0, 0]] * max((input_tensor.shape.ndims - fft_shape.ndims), 0) return _array_ops.pad(input_tensor, outer_paddings + paddings) return input_tensor # If we can't determine the paddings ahead of time, then we have to pad. If # the paddings end up as zero, tf.pad has a special-case that does no work. input_rank = _array_ops.rank(input_tensor) input_fft_shape = _array_ops.shape(input_tensor)[-fft_rank:] outer_dims = _math_ops.maximum(0, input_rank - fft_rank) outer_paddings = _array_ops.zeros([outer_dims], fft_length.dtype) # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1. if is_reverse: fft_length = _array_ops.concat([fft_length[:-1], fft_length[-1:] // 2 + 1], 0) fft_paddings = _math_ops.maximum(0, fft_length - input_fft_shape) paddings = _array_ops.concat([outer_paddings, fft_paddings], 0) paddings = _array_ops.stack([_array_ops.zeros_like(paddings), paddings], axis=1) return _array_ops.pad(input_tensor, paddings) def _rfft_wrapper(fft_fn, fft_rank, default_name): """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument.""" def _rfft(input_tensor, fft_length=None, name=None): """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument.""" with _ops.name_scope(name, default_name, [input_tensor, fft_length]) as name: input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.float32) input_tensor.shape.with_rank_at_least(fft_rank) if fft_length is None: fft_length = _infer_fft_length_for_rfft(input_tensor, fft_rank) else: fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length) return fft_fn(input_tensor, fft_length, name) _rfft.__doc__ = fft_fn.__doc__ return _rfft def _irfft_wrapper(ifft_fn, fft_rank, default_name): """Wrapper around gen_spectral_ops.irfft* that infers fft_length argument.""" def _irfft(input_tensor, fft_length=None, name=None): """Wrapper irfft* that infers fft_length argument.""" with _ops.name_scope(name, default_name, [input_tensor, fft_length]) as name: input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.complex64) input_tensor.shape.with_rank_at_least(fft_rank) if fft_length is None: fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank) else: fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=True) return ifft_fn(input_tensor, fft_length, name) _irfft.__doc__ = ifft_fn.__doc__ return _irfft # FFT/IFFT 1/2/3D are exported via # third_party/tensorflow/core/api_def/python_api/ fft = gen_spectral_ops.fft ifft = gen_spectral_ops.ifft fft2d = gen_spectral_ops.fft2d ifft2d = gen_spectral_ops.ifft2d fft3d = gen_spectral_ops.fft3d ifft3d = gen_spectral_ops.ifft3d rfft = _rfft_wrapper(gen_spectral_ops.rfft, 1, "rfft") tf_export("signal.rfft", v1=["signal.rfft", "spectral.rfft"])(rfft) irfft = _irfft_wrapper(gen_spectral_ops.irfft, 1, "irfft") tf_export("signal.irfft", v1=["signal.irfft", "spectral.irfft"])(irfft) rfft2d = _rfft_wrapper(gen_spectral_ops.rfft2d, 2, "rfft2d") tf_export("signal.rfft2d", v1=["signal.rfft2d", "spectral.rfft2d"])(rfft2d) irfft2d = _irfft_wrapper(gen_spectral_ops.irfft2d, 2, "irfft2d") tf_export("signal.irfft2d", v1=["signal.irfft2d", "spectral.irfft2d"])(irfft2d) rfft3d = _rfft_wrapper(gen_spectral_ops.rfft3d, 3, "rfft3d") tf_export("signal.rfft3d", v1=["signal.rfft3d", "spectral.rfft3d"])(rfft3d) irfft3d = _irfft_wrapper(gen_spectral_ops.irfft3d, 3, "irfft3d") tf_export("signal.irfft3d", v1=["signal.irfft3d", "spectral.irfft3d"])(irfft3d) def _fft_size_for_grad(grad, rank): return _math_ops.reduce_prod(_array_ops.shape(grad)[-rank:]) @_ops.RegisterGradient("FFT") def _fft_grad(_, grad): size = _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype) return ifft(grad) * size @_ops.RegisterGradient("IFFT") def _ifft_grad(_, grad): rsize = _math_ops.cast( 1. / _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype.real_dtype), grad.dtype) return fft(grad) * rsize @_ops.RegisterGradient("FFT2D") def _fft2d_grad(_, grad): size = _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype) return ifft2d(grad) * size @_ops.RegisterGradient("IFFT2D") def _ifft2d_grad(_, grad): rsize = _math_ops.cast( 1. / _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype.real_dtype), grad.dtype) return fft2d(grad) * rsize @_ops.RegisterGradient("FFT3D") def _fft3d_grad(_, grad): size = _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype) return ifft3d(grad) * size @_ops.RegisterGradient("IFFT3D") def _ifft3d_grad(_, grad): rsize = _math_ops.cast( 1. / _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype.real_dtype), grad.dtype) return fft3d(grad) * rsize def _rfft_grad_helper(rank, irfft_fn): """Returns a gradient function for an RFFT of the provided rank.""" # Can't happen because we don't register a gradient for RFFT3D. assert rank in (1, 2), "Gradient for RFFT3D is not implemented." def _grad(op, grad): """A gradient function for RFFT with the provided `rank` and `irfft_fn`.""" fft_length = op.inputs[1] input_shape = _array_ops.shape(op.inputs[0]) is_even = _math_ops.cast(1 - (fft_length[-1] % 2), _dtypes.complex64) def _tile_for_broadcasting(matrix, t): expanded = _array_ops.reshape( matrix, _array_ops.concat([ _array_ops.ones([_array_ops.rank(t) - 2], _dtypes.int32), _array_ops.shape(matrix) ], 0)) return _array_ops.tile( expanded, _array_ops.concat([_array_ops.shape(t)[:-2], [1, 1]], 0)) def _mask_matrix(length): """Computes t_n = exp(sqrt(-1) * pi * n^2 / line_len).""" # TODO(rjryan): Speed up computation of twiddle factors using the # following recurrence relation and cache them across invocations of RFFT. # # t_n = exp(sqrt(-1) * pi * n^2 / line_len) # for n = 0, 1,..., line_len-1. # For n > 2, use t_n = t_{n-1}^2 / t_{n-2} * t_1^2 a = _array_ops.tile( _array_ops.expand_dims(_math_ops.range(length), 0), (length, 1)) b = _array_ops.transpose(a, [1, 0]) return _math_ops.exp( -2j * np.pi * _math_ops.cast(a * b, _dtypes.complex64) / _math_ops.cast(length, _dtypes.complex64)) def _ymask(length): """A sequence of [1+0j, -1+0j, 1+0j, -1+0j, ...] with length `length`.""" return _math_ops.cast(1 - 2 * (_math_ops.range(length) % 2), _dtypes.complex64) y0 = grad[..., 0:1] if rank == 1: ym = grad[..., -1:] extra_terms = y0 + is_even * ym * _ymask(input_shape[-1]) elif rank == 2: # Create a mask matrix for y0 and ym. base_mask = _mask_matrix(input_shape[-2]) # Tile base_mask to match y0 in shape so that we can batch-matmul the # inner 2 dimensions. tiled_mask = _tile_for_broadcasting(base_mask, y0) y0_term = _math_ops.matmul(tiled_mask, _math_ops.conj(y0)) extra_terms = y0_term ym = grad[..., -1:] ym_term = _math_ops.matmul(tiled_mask, _math_ops.conj(ym)) inner_dim = input_shape[-1] ym_term = _array_ops.tile( ym_term, _array_ops.concat([ _array_ops.ones([_array_ops.rank(grad) - 1], _dtypes.int32), [inner_dim] ], 0)) * _ymask(inner_dim) extra_terms += is_even * ym_term # The gradient of RFFT is the IRFFT of the incoming gradient times a scaling # factor, plus some additional terms to make up for the components dropped # due to Hermitian symmetry. input_size = _math_ops.cast( _fft_size_for_grad(op.inputs[0], rank), _dtypes.float32) the_irfft = irfft_fn(grad, fft_length) return 0.5 * (the_irfft * input_size + _math_ops.real(extra_terms)), None return _grad def _irfft_grad_helper(rank, rfft_fn): """Returns a gradient function for an IRFFT of the provided rank.""" # Can't happen because we don't register a gradient for IRFFT3D. assert rank in (1, 2), "Gradient for IRFFT3D is not implemented." def _grad(op, grad): """A gradient function for IRFFT with the provided `rank` and `rfft_fn`.""" # Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs # and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the # graph we special-case the situation where the FFT length and last # dimension of the input are known at graph construction time. fft_length = op.inputs[1] is_odd = _math_ops.mod(fft_length[-1], 2) input_last_dimension = _array_ops.shape(op.inputs[0])[-1] mask = _array_ops.concat( [[1.0], 2.0 * _array_ops.ones([input_last_dimension - 2 + is_odd]), _array_ops.ones([1 - is_odd])], 0) rsize = _math_ops.reciprocal(_math_ops.cast( _fft_size_for_grad(grad, rank), _dtypes.float32)) # The gradient of IRFFT is the RFFT of the incoming gradient times a scaling # factor and a mask. The mask scales the gradient for the Hermitian # symmetric components of the RFFT by a factor of two, since these # components are de-duplicated in the RFFT. the_rfft = rfft_fn(grad, fft_length) return the_rfft * _math_ops.cast(rsize * mask, _dtypes.complex64), None return _grad @tf_export("signal.fftshift") def fftshift(x, axes=None, name=None): """Shift the zero-frequency component to the center of the spectrum. This function swaps half-spaces for all axes listed (defaults to all). Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. @compatibility(numpy) Equivalent to numpy.fft.fftshift. https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftshift.html @end_compatibility For example: ```python x = tf.signal.fftshift([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.]) x.numpy() # array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) ``` Args: x: `Tensor`, input tensor. axes: `int` or shape `tuple`, optional Axes over which to shift. Default is None, which shifts all axes. name: An optional name for the operation. Returns: A `Tensor`, The shifted tensor. """ with _ops.name_scope(name, "fftshift") as name: x = _ops.convert_to_tensor(x) if axes is None: axes = tuple(range(x.shape.ndims)) shift = [int(dim // 2) for dim in x.shape] elif isinstance(axes, int): shift = int(x.shape[axes] // 2) else: shift = [int((x.shape[ax]) // 2) for ax in axes] return manip_ops.roll(x, shift, axes, name) @tf_export("signal.ifftshift") def ifftshift(x, axes=None, name=None): """The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length x. @compatibility(numpy) Equivalent to numpy.fft.ifftshift. https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftshift.html @end_compatibility For example: ```python x = tf.signal.ifftshift([[ 0., 1., 2.],[ 3., 4., -4.],[-3., -2., -1.]]) x.numpy() # array([[ 4., -4., 3.],[-2., -1., -3.],[ 1., 2., 0.]]) ``` Args: x: `Tensor`, input tensor. axes: `int` or shape `tuple` Axes over which to calculate. Defaults to None, which shifts all axes. name: An optional name for the operation. Returns: A `Tensor`, The shifted tensor. """ with _ops.name_scope(name, "ifftshift") as name: x = _ops.convert_to_tensor(x) if axes is None: axes = tuple(range(x.shape.ndims)) shift = [-int(dim // 2) for dim in x.shape] elif isinstance(axes, int): shift = -int(x.shape[axes] // 2) else: shift = [-int(x.shape[ax] // 2) for ax in axes] return manip_ops.roll(x, shift, axes, name) _ops.RegisterGradient("RFFT")(_rfft_grad_helper(1, irfft)) _ops.RegisterGradient("IRFFT")(_irfft_grad_helper(1, rfft)) _ops.RegisterGradient("RFFT2D")(_rfft_grad_helper(2, irfft2d)) _ops.RegisterGradient("IRFFT2D")(_irfft_grad_helper(2, rfft2d))
ghchinoy/tensorflow
tensorflow/python/ops/signal/fft_ops.py
Python
apache-2.0
16,184
# -*- coding: utf-8 -*- """ Manual Steps ~~~~~~~~~~~~ Requirements: * **koji** package * package with a koji profile (if needed) Inputs: * **profile** - koji instance in which the change will be made * **owner** - package owner * **tag** - release (a.k.a. main) koji tag name for a release * **package** - name of package to be created in a release Steps: #. ``koji --profile=<profile> add-pkg --owner=<owner> <tag> <package> [package] ...`` """ from __future__ import print_function from __future__ import unicode_literals import sys import argparse from .common import Environment, Release, UsageError, Error, CommandBase class KojiCreatePackageInRelease(CommandBase): """ Create packages in a release. :param env: Environment object to be used to execute the commands. :type env: Environment :param release: Release object. :type release: Release :param packages: name of package to be created in a release :type packages: list of str :param owner: package owner :type owner: str """ def __init__(self, env, release, packages, owner, scl=None): """Adding packages for create and owner as an aditional member.""" super(KojiCreatePackageInRelease, self).__init__(env, release) self.packages = self._handle_scl(release, scl, sorted(packages)) self.owner = owner def details(self, commit=False): """Print details of command execution. :param commit: Flag to indicate if the command will be actually executed. Line indicating "test mode" is printed, if this is False. :type commit: boolean; default False """ details = "Creating packages in a release\n" details += " * env name: %s\n" % self.env.name details += " * env config: %s\n" % self.env.config_path details += " * release source %s\n" % self.release.config_path details += " * koji profile: %s\n" % self.env["koji_profile"] details += " * release_id: %s\n" % self.release_id details += " * owner: %s\n" % self.owner details += " * tag: %s\n" % self.release["koji"]["tag_release"] details += " * packages:\n" for i in self.packages: details += " %s\n" % i if not commit: details += "*** TEST MODE ***" return details def get_cmd(self, commit=False): """Construct the koji command. :param commit: Flag to indicate if the command will be actually executed. "echo" is prepended to the command, if this is False. :type commit: boolean; default False :returns: Koji command. :rtype: list of strings """ cmd = [] cmd.append("koji") cmd.append("--profile=%s" % self.env["koji_profile"]) cmd.append("add-pkg") cmd.append("--owner=%s" % self.owner) cmd.append(self.release["koji"]["tag_release"]) cmd.extend(self.packages) if not commit: cmd = ["echo"] + cmd return cmd @staticmethod def _handle_scl(release, scl, packages): """Check SCL and update package names accordingly. :param release: Release object. :type release: Release :param scl: Software Collection in which packages belong :type scl: str :param packages: name of package to be created in a release :type packages: list of str """ scl_required = 'scls' in release def scl_correct(): return (scl is not None and ( scl in release['scls'] or scl.lower() == 'none')) if scl_required and scl is None: message = "Option --scl required! Valid values as found in '%s' are:\n%s" raise UsageError(message % (release.config_path, '\n'.join(release['scls'] + ['none']))) if scl_required and not scl_correct(): message = "Incorrect SCL selection. Valid values as found in '%s' are:\n%s" raise UsageError(message % (release.config_path, '\n'.join(release['scls'] + ['none']))) if not scl_required and scl is not None: message = "'%s' has no SCL data, --scl option should not be used." raise UsageError(message % (release.config_path)) if scl_required and scl.lower() != 'none': packages = ["%s-%s" % (scl, package) for package in packages] return packages def get_parser(): """Construct argument parser. :returns: ArgumentParser object with arguments set up. """ parser = argparse.ArgumentParser( description="Create packages in a koji tag that maps to given release.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "release_id", metavar="RELEASE_ID", help="PDC release ID, for example 'fedora-24', 'fedora-24-updates'.", ) parser.add_argument( "owner", metavar="OWNER", help="Package owner.", ) parser.add_argument( "packages", metavar="PACKAGE", nargs="+", help="Koji package, for example 'bash', 'kernel'.", ) parser.add_argument( "--commit", action="store_true", help="Program performs a dry-run by default. Enable this option to apply the changes.", ) parser.add_argument( "--scl", metavar="SCL", default=argparse.SUPPRESS, help="""Software Collection for which packages are created. Required when release has SCL data. 'none' can be used when none of the SCLs specifed should be used.""" ) parser.add_argument( "--env", default="default", help="Select environment in which the program will make changes.", ) parser.add_argument( "-d", "--debug", action="store_true", help="Print traceback for exceptions. By default only exception messages are displayed.", ) return parser def main(): """Main function.""" try: parser = get_parser() args = parser.parse_args() # hackish way to suppress 'default' text in help text, # but keep scl in the namespace if not hasattr(args, 'scl'): args.scl = None env = Environment(args.env) release = Release(args.release_id) clone = KojiCreatePackageInRelease( env, release, args.packages, args.owner, args.scl) clone.run(commit=args.commit) except Error: if not args.debug: sys.tracebacklimit = 0 raise if __name__ == "__main__": main()
release-engineering/releng-sop
releng_sop/koji_create_package_in_release.py
Python
mit
6,911
""" This module defines various utilities for dealing with the network. """ from asyncio import iscoroutinefunction, iscoroutine def combine_action_handlers(*handlers): """ This function combines the given action handlers into a single function which will call all of them. """ # make sure each of the given handlers is callable for handler in handlers: # if the handler is not a function if not (iscoroutinefunction(handler) or iscoroutine(handler)): # yell loudly raise ValueError("Provided handler is not a coroutine: %s" % handler) # the combined action handler async def combined_handler(*args, **kwds): # goes over every given handler for handler in handlers: # call the handler await handler(*args, **kwds) # return the combined action handler return combined_handler
aaivazis/nautilus
nautilus/network/events/util.py
Python
mit
910
import os import redis redis_url = os.getenv("REDIS_URL", "redis://127.0.0.1:6379") redis_conn = redis.from_url(redis_url)
tmpapageorgiou/spitter
spitter/connection.py
Python
mit
125
# -*- coding:utf-8 -*- from flask import Flask from flask_bootstrap import Bootstrap from admin import create_admin from models import db, Post, User from views import blog from flaskext.markdown import Markdown from flask_login import LoginManager def creatApp(): app = Flask(__name__) Bootstrap(app) app.config.from_object('config') registerDatabase(app) registerBlueprints(app) create_admin(app) registerMarkdown(app) registerTagsFilter(app) registerLogin(app) return app def registerDatabase(app): db.init_app(app) def registerBlueprints(app): app.register_blueprint(blog) def registerMarkdown(app): Markdown(app) def registerTagsFilter(app): @app.template_filter('mSeries') def getSeries(tag): return [] @app.template_filter('mArchive') def getArchive(tag): return [] @app.template_filter('mTagCloud') def getTags(tag): tags = reduce(lambda x,y:x+y,[tmp.tags for tmp in Post.objects.only('tags').all()]) return sorted({tmp:tags.count(tmp) for tmp in set(tags)}.iteritems(), key=lambda x : x[1],reverse = True) def registerLogin(app): loginManager = LoginManager() loginManager.init_app(app) loginManager.login_view = "admin.login" loginManager.login_message = u'请先登录' @loginManager.user_loader def loadUser(user_id): return User.objects(id=user_id).first() if __name__ == '__main__': app.run(debug = True)
DoubleHYH/my_Blog
app/__init__.py
Python
mit
1,366
"""Store functional test data parameters here. (This makes it easier to ensure your private data does not leak out in your source code.) Rename this file as params.py so the tests can locate it.""" valid_mdn = '' #For tests requiring a valid MDN optin_mdn = '' #For account tests requiring an MDN invalid_mdn = '1234' #For tests with an invalid MDN coord_inside = (lat_float, lon_float) coord_outside = (lat_float, lon_float)
ericem/sprintkit
tests/functional/sample_params.py
Python
mit
427
# -*- coding: utf-8 -*- """ Started on mon, apr 23rd, 2018 @author: carlos.arana """ # Librerias utilizadas import pandas as pd import sys module_path = r'D:\PCCS\01_Dmine\Scripts' if module_path not in sys.path: sys.path.append(module_path) from VarInt.VarInt import VarInt from classes.Meta import Meta from Compilador.Compilador import compilar """ Las librerias locales utilizadas renglones arriba se encuentran disponibles en las siguientes direcciones: SCRIPT: | DISPONIBLE EN: ------ | ------------------------------------------------------------------------------------ VarInt | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/VarInt Meta | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/Classes Compilador | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/Compilador """ # Documentacion del Parametro --------------------------------------------------------------------------------------- # Descripciones del Parametro M = Meta M.ClaveParametro = 'P0406' M.NombreParametro = 'Viviendas urbanas en PCU U1 y U2' M.DescParam = 'Numero de viviendas dentro de Perimetros de Contención Urbana tipo U1 o U2, por ciudad' M.UnidadesParam = 'Numero de viviendas' M.TituloParametro = 'VPCU' # Para nombrar la columna del parametro M.PeriodoParam = '2018' M.TipoInt = 1 # Handlings M.ParDtype = 'float' M.TipoVar = 'C' # (Tipos de Variable: [C]ontinua, [D]iscreta [O]rdinal, [B]inaria o [N]ominal) M.array = [] M.TipoAgr = 'sum' # Descripciones del proceso de Minería M.nomarchivodataset = 'Rep_Viv_Vig' M.extarchivodataset = 'xlsx' M.ContenidoHojaDatos = 'Viviendas (Tipo, Segmento, ubicacion en PCU)' M.ClaveDataset = r'SNIIV' M.ActDatos = '2017' M.Agregacion = 'Se sumó el total de viviendas en PCU U1 o U2 para los municipios que integran cada ciudad del SUN' # Descripciones generadas desde la clave del parámetro M.getmetafromds = 1 Meta.fillmeta(M) # Construccion del Parámetro ----------------------------------------------------------------------------------------- # Cargar dataset inicial dataset = pd.read_excel(M.DirFuente + '\\' + M.ArchivoDataset, sheetname='DATOS', dtype={'CVE_MUN': 'str'}) dataset.set_index('CVE_MUN', inplace=True) dataset = dataset.rename_axis('CVE_MUN') dataset.head(2) # Generar dataset para parámetro y Variable de Integridad dataset = dataset[(dataset['Ubicación PCU 2015'] == 'U1') | (dataset['Ubicación PCU 2015'] == 'U2')] dsvar = 'Viviendas' par_dataset = dataset[dsvar] par_dataset = par_dataset.to_frame(name = M.ClaveParametro) par_dataset, variables_dataset = VarInt(par_dataset, dataset, tipo=M.TipoInt) # Compilacion compilar(M, dataset, par_dataset, variables_dataset)
Caranarq/01_Dmine
04_Edificaciones/P0406/P0406.py
Python
gpl-3.0
2,794
# Audio backend used by pyo # http://ajaxsoundstudio.com/pyodoc/api/classes/server.html BACKEND = 'portaudio' # multiplatform #BACKEND = 'jack' # Linux and Mac, if you know what you are doing #BACKEND = 'coreaudio' # Mac only, untested # OSC adresses OSC_EYE = ('localhost', 1420) OSC_EAR = ('localhost', 1422) # Size of the rendering window RENDER_SIZE = (800, 800)
ff-/pineal
config.py
Python
agpl-3.0
380
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class FarmFieldConfig(AppConfig): name = 'farm_field'
jknaresh/farmer
farm_field/apps.py
Python
mit
159
__version__ = '0.5.0.dev0+git'
bjodah/pycompilation
pycompilation/_release.py
Python
bsd-2-clause
31
"""Support for Dyson Pure Cool Link devices.""" import logging import voluptuous as vol from homeassistant.const import ( CONF_DEVICES, CONF_PASSWORD, CONF_TIMEOUT, CONF_USERNAME) from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['libpurecoollink==0.4.2'] _LOGGER = logging.getLogger(__name__) CONF_LANGUAGE = 'language' CONF_RETRY = 'retry' DEFAULT_TIMEOUT = 5 DEFAULT_RETRY = 10 DYSON_DEVICES = 'dyson_devices' DOMAIN = 'dyson' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_LANGUAGE): cv.string, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, vol.Optional(CONF_RETRY, default=DEFAULT_RETRY): cv.positive_int, vol.Optional(CONF_DEVICES, default=[]): vol.All(cv.ensure_list, [dict]), }) }, extra=vol.ALLOW_EXTRA) def setup(hass, config): """Set up the Dyson parent component.""" _LOGGER.info("Creating new Dyson component") if DYSON_DEVICES not in hass.data: hass.data[DYSON_DEVICES] = [] from libpurecoollink.dyson import DysonAccount dyson_account = DysonAccount(config[DOMAIN].get(CONF_USERNAME), config[DOMAIN].get(CONF_PASSWORD), config[DOMAIN].get(CONF_LANGUAGE)) logged = dyson_account.login() timeout = config[DOMAIN].get(CONF_TIMEOUT) retry = config[DOMAIN].get(CONF_RETRY) if not logged: _LOGGER.error("Not connected to Dyson account. Unable to add devices") return False _LOGGER.info("Connected to Dyson account") dyson_devices = dyson_account.devices() if CONF_DEVICES in config[DOMAIN] and config[DOMAIN].get(CONF_DEVICES): configured_devices = config[DOMAIN].get(CONF_DEVICES) for device in configured_devices: dyson_device = next((d for d in dyson_devices if d.serial == device["device_id"]), None) if dyson_device: try: connected = dyson_device.connect(device["device_ip"]) if connected: _LOGGER.info("Connected to device %s", dyson_device) hass.data[DYSON_DEVICES].append(dyson_device) else: _LOGGER.warning("Unable to connect to device %s", dyson_device) except OSError as ose: _LOGGER.error("Unable to connect to device %s: %s", str(dyson_device.network_device), str(ose)) else: _LOGGER.warning( "Unable to find device %s in Dyson account", device["device_id"]) else: # Not yet reliable for device in dyson_devices: _LOGGER.info("Trying to connect to device %s with timeout=%i " "and retry=%i", device, timeout, retry) connected = device.auto_connect(timeout, retry) if connected: _LOGGER.info("Connected to device %s", device) hass.data[DYSON_DEVICES].append(device) else: _LOGGER.warning("Unable to connect to device %s", device) # Start fan/sensors components if hass.data[DYSON_DEVICES]: _LOGGER.debug("Starting sensor/fan components") discovery.load_platform(hass, "sensor", DOMAIN, {}, config) discovery.load_platform(hass, "fan", DOMAIN, {}, config) discovery.load_platform(hass, "vacuum", DOMAIN, {}, config) discovery.load_platform(hass, "climate", DOMAIN, {}, config) return True
HydrelioxGitHub/home-assistant
homeassistant/components/dyson/__init__.py
Python
apache-2.0
3,817
# This file is a part of MediaDrop (http://www.mediadrop.net), # Copyright 2009-2015 MediaDrop contributors # For the exact contribution history, see the git revision log. # The source code contained in this file is licensed under the GPLv3 or # (at your option) any later version. # See LICENSE.txt in the main project directory, for more information. """ Settings Model A very rudimentary settings implementation which is intended to store our non-mission-critical options which can be edited via the admin UI. .. todo: Rather than fetch one option at a time, load all settings into an object with attribute-style access. """ from sqlalchemy import Table, ForeignKey, Column from sqlalchemy.exc import IntegrityError, ProgrammingError from sqlalchemy.types import Unicode, UnicodeText, Integer, Boolean, Float from sqlalchemy.orm import mapper, relation, backref, synonym, interfaces, validates from urlparse import urlparse from mediadrop.model.meta import DBSession, metadata from mediadrop.plugin import events settings = Table('settings', metadata, Column('id', Integer, autoincrement=True, primary_key=True), Column('key', Unicode(255), nullable=False, unique=True), Column('value', UnicodeText), mysql_engine='InnoDB', mysql_charset='utf8', ) multisettings = Table('settings_multi', metadata, Column('id', Integer, autoincrement=True, primary_key=True), Column('key', Unicode(255), nullable=False), Column('value', UnicodeText, nullable=False), mysql_engine='InnoDB', mysql_charset='utf8', ) class Setting(object): """ A Single Setting """ query = DBSession.query_property() def __init__(self, key=None, value=None): self.key = key or None self.value = value or None def __repr__(self): return '<Setting: %s = %r>' % (self.key, self.value) def __unicode__(self): return self.value class MultiSetting(object): """ A MultiSetting """ query = DBSession.query_property() def __init__(self, key=None, value=None): self.key = key or None self.value = value or None def __repr__(self): return '<MultiSetting: %s = %r>' % (self.key, self.value) def __unicode__(self): return self.value mapper(Setting, settings, extension=events.MapperObserver(events.Setting)) mapper(MultiSetting, multisettings, extension=events.MapperObserver(events.MultiSetting)) def insert_settings(defaults): """Insert the given setting if they don't exist yet. XXX: Does not include any support for MultiSetting. This approach won't work for that. We'll need to use a migration script. :type defaults: list :param defaults: Key and value pairs :rtype: list :returns: Any settings that have just been created. """ inserted = [] try: settings_query = DBSession.query(Setting.key)\ .filter(Setting.key.in_([key for key, value in defaults])) existing_settings = set(x[0] for x in settings_query) except ProgrammingError: # If we are running paster setup-app on a fresh database with a # plugin which tries to use this function every time the # Environment.loaded event fires, the settings table will not # exist and this exception will be thrown, but its safe to ignore. # The settings will be created the next time the event fires, # which will likely be the first time the app server starts up. return inserted for key, value in defaults: if key in existing_settings: continue transaction = DBSession.begin_nested() try: s = Setting(key, value) DBSession.add(s) transaction.commit() inserted.append(s) except IntegrityError: transaction.rollback() if inserted: DBSession.commit() return inserted def fetch_and_create_multi_setting(key, value): multisettings = MultiSetting.query\ .filter(MultiSetting.key==key)\ .all() for ms in multisettings: if ms.value == value: return ms ms = MultiSetting(key, value) DBSession.add(ms) return ms
jobsafran/mediadrop
mediadrop/model/settings.py
Python
gpl-3.0
4,208
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This API defines FeatureColumn abstraction. FeatureColumns provide a high level abstraction for ingesting and representing features. FeatureColumns are also the primary way of encoding features for canned ${tf.estimator.Estimator}s. When using FeatureColumns with `Estimators`, the type of feature column you should choose depends on (1) the feature type and (2) the model type. 1. Feature type: * Continuous features can be represented by `numeric_column`. * Categorical features can be represented by any `categorical_column_with_*` column: - `categorical_column_with_vocabulary_list` - `categorical_column_with_vocabulary_file` - `categorical_column_with_hash_bucket` - `categorical_column_with_identity` - `weighted_categorical_column` 2. Model type: * Deep neural network models (`DNNClassifier`, `DNNRegressor`). Continuous features can be directly fed into deep neural network models. age_column = numeric_column("age") To feed sparse features into DNN models, wrap the column with `embedding_column` or `indicator_column`. `indicator_column` is recommended for features with only a few possible values. For features with many possible values, to reduce the size of your model, `embedding_column` is recommended. embedded_dept_column = embedding_column( categorical_column_with_vocabulary_list( "department", ["math", "philosphy", ...]), dimension=10) * Wide (aka linear) models (`LinearClassifier`, `LinearRegressor`). Sparse features can be fed directly into linear models. They behave like an indicator column but with an efficient implementation. dept_column = categorical_column_with_vocabulary_list("department", ["math", "philosophy", "english"]) It is recommended that continuous features be bucketized before being fed into linear models. bucketized_age_column = bucketized_column( source_column=age_column, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) Sparse features can be crossed (also known as conjuncted or combined) in order to form non-linearities, and then fed into linear models. cross_dept_age_column = crossed_column( columns=["department", bucketized_age_column], hash_bucket_size=1000) Example of building canned `Estimator`s using FeatureColumns: ```python # Define features and transformations deep_feature_columns = [age_column, embedded_dept_column] wide_feature_columns = [dept_column, bucketized_age_column, cross_dept_age_column] # Build deep model estimator = DNNClassifier( feature_columns=deep_feature_columns, hidden_units=[500, 250, 50]) estimator.train(...) # Or build a wide model estimator = LinearClassifier( feature_columns=wide_feature_columns) estimator.train(...) # Or build a wide and deep model! estimator = DNNLinearCombinedClassifier( linear_feature_columns=wide_feature_columns, dnn_feature_columns=deep_feature_columns, dnn_hidden_units=[500, 250, 50]) estimator.train(...) ``` FeatureColumns can also be transformed into a generic input layer for custom models using `input_layer`. Example of building model using FeatureColumns, this can be used in a `model_fn` which is given to the {tf.estimator.Estimator}: ```python # Building model via layers deep_feature_columns = [age_column, embedded_dept_column] columns_to_tensor = parse_feature_columns_from_examples( serialized=my_data, feature_columns=deep_feature_columns) first_layer = input_layer( features=columns_to_tensor, feature_columns=deep_feature_columns) second_layer = fully_connected(first_layer, ...) ``` NOTE: Functions prefixed with "_" indicate experimental or private parts of the API subject to change, and should not be relied upon! """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import math import numpy as np import six from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import template from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_utils from tensorflow.python.util import nest def _internal_input_layer(features, feature_columns, weight_collections=None, trainable=True, cols_to_vars=None, scope=None): """See input_layer. `scope` is a name or variable scope to use.""" feature_columns = _clean_feature_columns(feature_columns) for column in feature_columns: if not isinstance(column, _DenseColumn): raise ValueError( 'Items of feature_columns must be a _DenseColumn. ' 'You can wrap a categorical column with an ' 'embedding_column or indicator_column. Given: {}'.format(column)) weight_collections = list(weight_collections or []) if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) if ops.GraphKeys.MODEL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) # a non-None `scope` can allow for variable reuse, when, e.g., this function # is wrapped by a `make_template`. with variable_scope.variable_scope( scope, default_name='input_layer', values=features.values()): builder = _LazyBuilder(features) output_tensors = [] ordered_columns = [] for column in sorted(feature_columns, key=lambda x: x.name): ordered_columns.append(column) with variable_scope.variable_scope( None, default_name=column._var_scope_name): # pylint: disable=protected-access tensor = column._get_dense_tensor( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access batch_size = array_ops.shape(tensor)[0] output_tensors.append( array_ops.reshape(tensor, shape=(batch_size, num_elements))) if cols_to_vars is not None: # Retrieve any variables created (some _DenseColumn's don't create # variables, in which case an empty list is returned). cols_to_vars[column] = ops.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope=variable_scope.get_variable_scope().name) _verify_static_batch_size_equality(output_tensors, ordered_columns) return array_ops.concat(output_tensors, 1) def input_layer(features, feature_columns, weight_collections=None, trainable=True, cols_to_vars=None): """Returns a dense `Tensor` as input layer based on given `feature_columns`. Generally a single example in training data is described with FeatureColumns. At the first layer of the model, this column oriented data should be converted to a single `Tensor`. Example: ```python price = numeric_column('price') keywords_embedded = embedding_column( categorical_column_with_hash_bucket("keywords", 10K), dimensions=16) columns = [price, keywords_embedded, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) for units in [128, 64, 32]: dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu) prediction = tf.layers.dense(dense_tensor, 1) ``` Args: features: A mapping from key to tensors. `_FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values can be a `SparseTensor` or a `Tensor` depends on corresponding `_FeatureColumn`. feature_columns: An iterable containing the FeatureColumns to use as inputs to your model. All items should be instances of classes derived from `_DenseColumn` such as `numeric_column`, `embedding_column`, `bucketized_column`, `indicator_column`. If you have categorical features, you can wrap them with an `embedding_column` or `indicator_column`. weight_collections: A list of collection names to which the Variable will be added. Note that variables will also be added to collections `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). cols_to_vars: If not `None`, must be a dictionary that will be filled with a mapping from `_FeatureColumn` to list of `Variable`s. For example, after the call, we might have cols_to_vars = {_EmbeddingColumn( categorical_column=_HashedCategoricalColumn( key='sparse_feature', hash_bucket_size=5, dtype=tf.string), dimension=10): [<tf.Variable 'some_variable:0' shape=(5, 10), <tf.Variable 'some_variable:1' shape=(5, 10)]} If a column creates no variables, its value will be an empty list. Returns: A `Tensor` which represents input layer of a model. Its shape is (batch_size, first_layer_dimension) and its dtype is `float32`. first_layer_dimension is determined based on given `feature_columns`. Raises: ValueError: if an item in `feature_columns` is not a `_DenseColumn`. """ return _internal_input_layer(features, feature_columns, weight_collections, trainable, cols_to_vars) # TODO(akshayka): InputLayer should be a subclass of Layer, and it # should implement the logic in input_layer using Layer's build-and-call # paradigm; input_layer should create an instance of InputLayer and # return the result of inovking its apply method, just as functional layers do. class InputLayer(object): """An object-oriented version of `input_layer` that reuses variables.""" def __init__(self, feature_columns, weight_collections=None, trainable=True, cols_to_vars=None): """See `input_layer`.""" self._feature_columns = feature_columns self._weight_collections = weight_collections self._trainable = trainable self._cols_to_vars = cols_to_vars self._input_layer_template = template.make_template( 'feature_column_input_layer', _internal_input_layer, create_scope_now_=True) self._scope = self._input_layer_template.variable_scope def __call__(self, features): return self._input_layer_template( features=features, feature_columns=self._feature_columns, weight_collections=self._weight_collections, trainable=self._trainable, cols_to_vars=None, scope=self._scope) @property def non_trainable_variables(self): return self._input_layer_template.non_trainable_variables @property def non_trainable_weights(self): return self._input_layer_template.non_trainable_weights @property def trainable_variables(self): return self._input_layer_template.trainable_variables @property def trainable_weights(self): return self._input_layer_template.trainable_weights @property def variables(self): return self._input_layer_template.variables @property def weights(self): return self._input_layer_template.weights def linear_model(features, feature_columns, units=1, sparse_combiner='sum', weight_collections=None, trainable=True, cols_to_vars=None): """Returns a linear prediction `Tensor` based on given `feature_columns`. This function generates a weighted sum based on output dimension `units`. Weighted sum refers to logits in classification problems. It refers to the prediction itself for linear regression problems. Note on supported columns: `linear_model` treats categorical columns as `indicator_column`s while `input_layer` explicitly requires wrapping each of them with an `embedding_column` or an `indicator_column`. Example: ```python price = numeric_column('price') price_buckets = bucketized_column(price, boundaries=[0., 10., 100., 1000.]) keywords = categorical_column_with_hash_bucket("keywords", 10K) keywords_price = crossed_column('keywords', price_buckets, ...) columns = [price_buckets, keywords, keywords_price ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) prediction = linear_model(features, columns) ``` Args: features: A mapping from key to tensors. `_FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values are `Tensor` or `SparseTensor` depending on corresponding `_FeatureColumn`. feature_columns: An iterable containing the FeatureColumns to use as inputs to your model. All items should be instances of classes derived from `_FeatureColumn`s. units: An integer, dimensionality of the output space. Default value is 1. sparse_combiner: A string specifying how to reduce if a sparse column is multivalent. Currently "mean", "sqrtn" and "sum" are supported, with "sum" the default. "sqrtn" often achieves good accuracy, in particular with bag-of-words columns. It combines each sparse columns independently. * "sum": do not normalize features in the column * "mean": do l1 normalization on features in the column * "sqrtn": do l2 normalization on features in the column weight_collections: A list of collection names to which the Variable will be added. Note that, variables will also be added to collections `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). cols_to_vars: If not `None`, must be a dictionary that will be filled with a mapping from `_FeatureColumn` to associated list of `Variable`s. For example, after the call, we might have cols_to_vars = { _NumericColumn( key='numeric_feature1', shape=(1,): [<tf.Variable 'linear_model/price2/weights:0' shape=(1, 1)>], 'bias': [<tf.Variable 'linear_model/bias_weights:0' shape=(1,)>], _NumericColumn( key='numeric_feature2', shape=(2,)): [<tf.Variable 'linear_model/price1/weights:0' shape=(2, 1)>]} If a column creates no variables, its value will be an empty list. Note that cols_to_vars will also contain a string key 'bias' that maps to a list of Variables. Returns: A `Tensor` which represents predictions/logits of a linear model. Its shape is (batch_size, units) and its dtype is `float32`. Raises: ValueError: if an item in `feature_columns` is neither a `_DenseColumn` nor `_CategoricalColumn`. """ feature_columns = _clean_feature_columns(feature_columns) for column in feature_columns: if not isinstance(column, (_DenseColumn, _CategoricalColumn)): raise ValueError('Items of feature_columns must be either a _DenseColumn ' 'or _CategoricalColumn. Given: {}'.format(column)) weight_collections = list(weight_collections or []) if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) if ops.GraphKeys.MODEL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) with variable_scope.variable_scope( None, default_name='linear_model', values=features.values()): weighted_sums = [] ordered_columns = [] builder = _LazyBuilder(features) for column in sorted(feature_columns, key=lambda x: x.name): with variable_scope.variable_scope( None, default_name=column._var_scope_name): # pylint: disable=protected-access ordered_columns.append(column) weighted_sum = _create_weighted_sum( column=column, builder=builder, units=units, sparse_combiner=sparse_combiner, weight_collections=weight_collections, trainable=trainable) weighted_sums.append(weighted_sum) if cols_to_vars is not None: # Retrieve the variables created. cols_to_vars[column] = ops.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope=variable_scope.get_variable_scope().name) _verify_static_batch_size_equality(weighted_sums, ordered_columns) predictions_no_bias = math_ops.add_n( weighted_sums, name='weighted_sum_no_bias') bias = variable_scope.get_variable( 'bias_weights', shape=[units], initializer=init_ops.zeros_initializer(), trainable=trainable, collections=weight_collections) predictions = nn_ops.bias_add( predictions_no_bias, bias, name='weighted_sum') if cols_to_vars is not None: # Add the bias to cols_to_vars as well, converting the Variable or # PartitionedVariable to a list of Variable's. if isinstance(bias, variables.Variable): cols_to_vars['bias'] = [bias] else: # Must be a PartitionedVariable. cols_to_vars['bias'] = list(bias) return predictions def _transform_features(features, feature_columns): """Returns transformed features based on features columns passed in. Please note that most probably you would not need to use this function. Please check `input_layer` and `linear_model` to see whether they will satisfy your use case or not. Example: ```python # Define features and transformations crosses_a_x_b = crossed_column( columns=["sparse_feature_a", "sparse_feature_b"], hash_bucket_size=10000) price_buckets = bucketized_column( source_column=numeric_column("price"), boundaries=[...]) columns = [crosses_a_x_b, price_buckets] features = tf.parse_example(..., features=make_parse_example_spec(columns)) transformed = transform_features(features=features, feature_columns=columns) assertCountEqual(columns, transformed.keys()) ``` Args: features: A mapping from key to tensors. `_FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values can be a `SparseTensor` or a `Tensor` depends on corresponding `_FeatureColumn`. feature_columns: An iterable containing all the `_FeatureColumn`s. Returns: A `dict` mapping `_FeatureColumn` to `Tensor` and `SparseTensor` values. """ feature_columns = _clean_feature_columns(feature_columns) outputs = {} with ops.name_scope( None, default_name='transform_features', values=features.values()): builder = _LazyBuilder(features) for column in sorted(feature_columns, key=lambda x: x.name): with ops.name_scope(None, default_name=column.name): outputs[column] = builder.get(column) return outputs def make_parse_example_spec(feature_columns): """Creates parsing spec dictionary from input feature_columns. The returned dictionary can be used as arg 'features' in `tf.parse_example`. Typical usage example: ```python # Define features and transformations feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns)) ``` For the above example, make_parse_example_spec would return the dict: ```python { "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) } ``` Args: feature_columns: An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`. Returns: A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value. Raises: ValueError: If any of the given `feature_columns` is not a `_FeatureColumn` instance. """ result = {} for column in feature_columns: if not isinstance(column, _FeatureColumn): raise ValueError( 'All feature_columns must be _FeatureColumn instances. ' 'Given: {}'.format(column)) config = column._parse_example_spec # pylint: disable=protected-access for key, value in six.iteritems(config): if key in result and value != result[key]: raise ValueError( 'feature_columns contain different parse_spec for key ' '{}. Given {} and {}'.format(key, value, result[key])) result.update(config) return result def embedding_column( categorical_column, dimension, combiner='mean', initializer=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True): """`_DenseColumn` that converts from sparse, categorical input. Use this when your inputs are sparse, but you want to convert them to a dense representation (e.g., to feed to a DNN). Inputs must be a `_CategoricalColumn` created by any of the `categorical_column_*` function. Here is an example of using `embedding_column` with `DNNClassifier`: ```python video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [embedding_column(video_id, 9),...] estimator = tf.estimator.DNNClassifier(feature_columns=columns, ...) label_column = ... def input_fn(): features = tf.parse_example( ..., features=make_parse_example_spec(columns + [label_column])) labels = features.pop(label_column.name) return features, labels estimator.train(input_fn=input_fn, steps=100) ``` Here is an example using `embedding_column` with model_fn: ```python def model_fn(features, ...): video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [embedding_column(video_id, 9),...] dense_tensor = input_layer(features, columns) # Form DNN layers, calculate loss, and return EstimatorSpec. ... ``` Args: categorical_column: A `_CategoricalColumn` created by a `categorical_column_with_*` function. This column produces the sparse IDs that are inputs to the embedding lookup. dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see `tf.embedding_lookup_sparse`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. ckpt_to_load_from: String representing checkpoint name/pattern from which to restore column weights. Required if `tensor_name_in_ckpt` is not `None`. tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`. max_norm: If not `None`, embedding values are l2-normalized to this value. trainable: Whether or not the embedding is trainable. Default is True. Returns: `_DenseColumn` that converts from sparse input. Raises: ValueError: if `dimension` not > 0. ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt` is specified. ValueError: if `initializer` is specified and is not callable. RuntimeError: If eager execution is enabled. """ if (dimension is None) or (dimension < 1): raise ValueError('Invalid dimension {}.'.format(dimension)) if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None): raise ValueError('Must specify both `ckpt_to_load_from` and ' '`tensor_name_in_ckpt` or none of them.') if (initializer is not None) and (not callable(initializer)): raise ValueError('initializer must be callable if specified. ' 'Embedding of column_name: {}'.format( categorical_column.name)) if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1 / math.sqrt(dimension)) return _EmbeddingColumn( categorical_column=categorical_column, dimension=dimension, combiner=combiner, initializer=initializer, ckpt_to_load_from=ckpt_to_load_from, tensor_name_in_ckpt=tensor_name_in_ckpt, max_norm=max_norm, trainable=trainable) def _shared_embedding_columns( categorical_columns, dimension, combiner='mean', initializer=None, shared_embedding_collection_name=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True): """List of `_DenseColumn`s that convert from sparse, categorical input. This is similar to `embedding_column`, except that that it produces a list of embedding columns that share the same embedding weights. Use this when your inputs are sparse and of the same type (e.g. watched and impression video IDs that share the same vocabulary), and you want to convert them to a dense representation (e.g., to feed to a DNN). Inputs must be a list of `_CategoricalColumn` created by any of the `categorical_column_*` function. They must all be of the same type and have the same arguments except `key`. E.g. they can be categorical_column_with_vocabulary_file with the same vocabulary_file. Some or all columns could also be weighted_categorical_column. Here is an example embedding of two features for a DNNClassifier model: ```python watched_video_id = categorical_column_with_vocabulary_file( 'watched_video_id', video_vocabulary_file, video_vocabulary_size) impression_video_id = categorical_column_with_vocabulary_file( 'impression_video_id', video_vocabulary_file, video_vocabulary_size) columns = shared_embedding_columns( [watched_video_id, impression_video_id], dimension=10) estimator = tf.estimator.DNNClassifier(feature_columns=columns, ...) label_column = ... def input_fn(): features = tf.parse_example( ..., features=make_parse_example_spec(columns + [label_column])) labels = features.pop(label_column.name) return features, labels estimator.train(input_fn=input_fn, steps=100) ``` Here is an example using `shared_embedding_columns` with model_fn: ```python def model_fn(features, ...): watched_video_id = categorical_column_with_vocabulary_file( 'watched_video_id', video_vocabulary_file, video_vocabulary_size) impression_video_id = categorical_column_with_vocabulary_file( 'impression_video_id', video_vocabulary_file, video_vocabulary_size) columns = shared_embedding_columns( [watched_video_id, impression_video_id], dimension=10) dense_tensor = input_layer(features, columns) # Form DNN layers, calculate loss, and return EstimatorSpec. ... ``` Args: categorical_columns: List of `_CategoricalColumn`s created by a `categorical_column_with_*` function. These columns produce the sparse IDs that are inputs to the embedding lookup. All columns must be of the same type and have the same arguments except `key`. E.g. they can be categorical_column_with_vocabulary_file with the same vocabulary_file. Some or all columns could also be weighted_categorical_column. dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see `tf.embedding_lookup_sparse`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. shared_embedding_collection_name: Optional name of the collection where shared embedding weights are added. If not given, a reasonable name will be chosen based on the names of `categorical_columns`. This is also used in `variable_scope` when creating shared embedding weights. ckpt_to_load_from: String representing checkpoint name/pattern from which to restore column weights. Required if `tensor_name_in_ckpt` is not `None`. tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`. max_norm: If not `None`, embedding values are l2-normalized to this value. trainable: Whether or not the embedding is trainable. Default is True. Returns: A list of `_DenseColumn`s that converts from sparse input. The order of results follows the ordering of `categorical_columns`. Raises: ValueError: if `dimension` not > 0. ValueError: if any of the given `categorical_columns` is of different type or has different arguments than the others. ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt` is specified. ValueError: if `initializer` is specified and is not callable. """ if (dimension is None) or (dimension < 1): raise ValueError('Invalid dimension {}.'.format(dimension)) if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None): raise ValueError('Must specify both `ckpt_to_load_from` and ' '`tensor_name_in_ckpt` or none of them.') if (initializer is not None) and (not callable(initializer)): raise ValueError('initializer must be callable if specified.') if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1. / math.sqrt(dimension)) # Sort the columns so the default collection name is deterministic even if the # user passes columns from an unsorted collection, such as dict.values(). sorted_columns = sorted(categorical_columns, key=lambda x: x.name) c0 = sorted_columns[0] if not isinstance(c0, _CategoricalColumn): raise ValueError( 'All categorical_columns must be subclasses of _CategoricalColumn. ' 'Given: {}, of type: {}'.format(c0, type(c0))) if isinstance(c0, _WeightedCategoricalColumn): c0 = c0.categorical_column for c in sorted_columns[1:]: if isinstance(c, _WeightedCategoricalColumn): c = c.categorical_column if not isinstance(c, type(c0)): raise ValueError( 'To use shared_embedding_column, all categorical_columns must have ' 'the same type, or be weighted_categorical_column of the same type. ' 'Given column: {} of type: {} does not match given column: {} of ' 'type: {}'.format(c0, type(c0), c, type(c))) if not shared_embedding_collection_name: shared_embedding_collection_name = '_'.join(c.name for c in sorted_columns) shared_embedding_collection_name += '_shared_embedding' result = [] for column in categorical_columns: result.append(_SharedEmbeddingColumn( categorical_column=column, dimension=dimension, combiner=combiner, initializer=initializer, shared_embedding_collection_name=shared_embedding_collection_name, ckpt_to_load_from=ckpt_to_load_from, tensor_name_in_ckpt=tensor_name_in_ckpt, max_norm=max_norm, trainable=trainable)) return result def numeric_column(key, shape=(1,), default_value=None, dtype=dtypes.float32, normalizer_fn=None): """Represents real valued or numerical features. Example: ```python price = numeric_column('price') columns = [price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) # or bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. shape: An iterable of integers specifies the shape of the `Tensor`. An integer can be given which means a single dimension `Tensor` with given width. The `Tensor` representing the column will have the shape of [batch_size] + `shape`. default_value: A single value compatible with `dtype` or an iterable of values compatible with `dtype` which the column takes on during `tf.Example` parsing if data is missing. A default value of `None` will cause `tf.parse_example` to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the `default_value` should be equal to the given `shape`. dtype: defines the type of values. Default value is `tf.float32`. Must be a non-quantized, real integer or floating point type. normalizer_fn: If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. Returns: A `_NumericColumn`. Raises: TypeError: if any dimension in shape is not an int ValueError: if any dimension in shape is not a positive integer TypeError: if `default_value` is an iterable but not compatible with `shape` TypeError: if `default_value` is not compatible with `dtype`. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = _check_shape(shape, key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) default_value = _check_default_value(shape, default_value, dtype, key) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError( 'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn)) return _NumericColumn( key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn) def bucketized_column(source_column, boundaries): """Represents discretized dense input. Buckets include the left boundary, and exclude the right boundary. Namely, `boundaries=[0., 1., 2.]` generates buckets `(-inf, 0.)`, `[0., 1.)`, `[1., 2.)`, and `[2., +inf)`. For example, if the inputs are ```python boundaries = [0, 10, 100] input tensor = [[-5, 10000] [150, 10] [5, 100]] ``` then the output will be ```python output = [[0, 3] [3, 2] [1, 3]] ``` Example: ```python price = numeric_column('price') bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` `bucketized_column` can also be crossed with another categorical column using `crossed_column`: ```python price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) # 'keywords' is a string feature. price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K) columns = [price_x_keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Args: source_column: A one-dimensional dense column which is generated with `numeric_column`. boundaries: A sorted list or tuple of floats specifying the boundaries. Returns: A `_BucketizedColumn`. Raises: ValueError: If `source_column` is not a numeric column, or if it is not one-dimensional. ValueError: If `boundaries` is not a sorted list or tuple. """ if not isinstance(source_column, _NumericColumn): raise ValueError( 'source_column must be a column generated with numeric_column(). ' 'Given: {}'.format(source_column)) if len(source_column.shape) > 1: raise ValueError( 'source_column must be one-dimensional column. ' 'Given: {}'.format(source_column)) if (not boundaries or not (isinstance(boundaries, list) or isinstance(boundaries, tuple))): raise ValueError('boundaries must be a sorted list.') for i in range(len(boundaries) - 1): if boundaries[i] >= boundaries[i + 1]: raise ValueError('boundaries must be a sorted list.') return _BucketizedColumn(source_column, tuple(boundaries)) def _assert_string_or_int(dtype, prefix): if (dtype != dtypes.string) and (not dtype.is_integer): raise ValueError( '{} dtype must be string or integer. dtype: {}.'.format(prefix, dtype)) def categorical_column_with_hash_bucket(key, hash_bucket_size, dtype=dtypes.string): """Represents sparse feature where ids are set by hashing. Use this when your sparse features are in string or integer format, and you want to distribute your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string) % bucket_size For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string. Note that these values are independent of the `default_value` argument. Example: ```python keywords = categorical_column_with_hash_bucket("keywords", 10K) columns = [keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or keywords_embedded = embedding_column(keywords, 16) columns = [keywords_embedded, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. hash_bucket_size: An int > 1. The number of buckets. dtype: The type of features. Only string and integer types are supported. Returns: A `_HashedCategoricalColumn`. Raises: ValueError: `hash_bucket_size` is not greater than 1. ValueError: `dtype` is neither string nor integer. """ if hash_bucket_size is None: raise ValueError('hash_bucket_size must be set. ' 'key: {}'.format(key)) if hash_bucket_size < 1: raise ValueError('hash_bucket_size must be at least 1. ' 'hash_bucket_size: {}, key: {}'.format( hash_bucket_size, key)) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) return _HashedCategoricalColumn(key, hash_bucket_size, dtype) def categorical_column_with_vocabulary_file(key, vocabulary_file, vocabulary_size=None, num_oov_buckets=0, default_value=None, dtype=dtypes.string): """A `_CategoricalColumn` with a vocabulary file. Use this when your inputs are in string or integer format, and you have a vocabulary file that maps each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of `num_oov_buckets` and `default_value` to specify how to include out-of-vocabulary values. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string. Note that these values are independent of the `default_value` argument. Example with `num_oov_buckets`: File '/us/states.txt' contains 50 lines, each with a 2-character U.S. state abbreviation. All inputs with values in that file are assigned an ID 0-49, corresponding to its line number. All other values are hashed and assigned an ID 50-54. ```python states = categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=50, num_oov_buckets=5) columns = [states, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Example with `default_value`: File '/us/states.txt' contains 51 lines - the first line is 'XX', and the other 50 each have a 2-character U.S. state abbreviation. Both a literal 'XX' in input, and other values missing from the file, will be assigned ID 0. All others are assigned the corresponding line number 1-50. ```python states = categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=51, default_value=0) columns = [states, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` And to make an embedding with either: ```python columns = [embedding_column(states, 3),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. vocabulary_file: The vocabulary file name. vocabulary_size: Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. dtype: The type of features. Only string and integer types are supported. Returns: A `_CategoricalColumn` with a vocabulary file. Raises: ValueError: `vocabulary_file` is missing or cannot be opened. ValueError: `vocabulary_size` is missing or < 1. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: `dtype` is neither string nor integer. """ if not vocabulary_file: raise ValueError('Missing vocabulary_file in {}.'.format(key)) if vocabulary_size is None: if not gfile.Exists(vocabulary_file): raise ValueError('vocabulary_file in {} does not exist.'.format(key)) with gfile.GFile(vocabulary_file) as f: vocabulary_size = sum(1 for _ in f) logging.info( 'vocabulary_size = %d in %s is inferred from the number of elements ' 'in the vocabulary_file %s.', vocabulary_size, key, vocabulary_file) # `vocabulary_size` isn't required for lookup, but it is for `_num_buckets`. if vocabulary_size < 1: raise ValueError('Invalid vocabulary_size in {}.'.format(key)) if num_oov_buckets: if default_value is not None: raise ValueError( 'Can\'t specify both num_oov_buckets and default_value in {}.'.format( key)) if num_oov_buckets < 0: raise ValueError('Invalid num_oov_buckets {} in {}.'.format( num_oov_buckets, key)) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) return _VocabularyFileCategoricalColumn( key=key, vocabulary_file=vocabulary_file, vocabulary_size=vocabulary_size, num_oov_buckets=0 if num_oov_buckets is None else num_oov_buckets, default_value=-1 if default_value is None else default_value, dtype=dtype) def categorical_column_with_vocabulary_list( key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0): """A `_CategoricalColumn` with in-memory vocabulary. Use this when your inputs are in string or integer format, and you have an in-memory vocabulary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of `num_oov_buckets` and `default_value` to specify how to include out-of-vocabulary values. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string. Note that these values are independent of the `default_value` argument. Example with `num_oov_buckets`: In the following example, each input in `vocabulary_list` is assigned an ID 0-3 corresponding to its index (e.g., input 'B' produces output 2). All other inputs are hashed and assigned an ID 4-5. ```python colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('R', 'G', 'B', 'Y'), num_oov_buckets=2) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` Example with `default_value`: In the following example, each input in `vocabulary_list` is assigned an ID 0-4 corresponding to its index (e.g., input 'B' produces output 3). All other inputs are assigned `default_value` 0. ```python colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` And to make an embedding with either: ```python columns = [embedding_column(colors, 3),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. vocabulary_list: An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`. dtype: The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. Returns: A `_CategoricalColumn` with in-memory vocabulary. Raises: ValueError: if `vocabulary_list` is empty, or contains duplicate keys. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: if `dtype` is not integer or string. """ if (vocabulary_list is None) or (len(vocabulary_list) < 1): raise ValueError( 'vocabulary_list {} must be non-empty, column_name: {}'.format( vocabulary_list, key)) if len(set(vocabulary_list)) != len(vocabulary_list): raise ValueError( 'Duplicate keys in vocabulary_list {}, column_name: {}'.format( vocabulary_list, key)) vocabulary_dtype = dtypes.as_dtype(np.array(vocabulary_list).dtype) if num_oov_buckets: if default_value != -1: raise ValueError( 'Can\'t specify both num_oov_buckets and default_value in {}.'.format( key)) if num_oov_buckets < 0: raise ValueError('Invalid num_oov_buckets {} in {}.'.format( num_oov_buckets, key)) _assert_string_or_int( vocabulary_dtype, prefix='column_name: {} vocabulary'.format(key)) if dtype is None: dtype = vocabulary_dtype elif dtype.is_integer != vocabulary_dtype.is_integer: raise ValueError( 'dtype {} and vocabulary dtype {} do not match, column_name: {}'.format( dtype, vocabulary_dtype, key)) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) return _VocabularyListCategoricalColumn( key=key, vocabulary_list=tuple(vocabulary_list), dtype=dtype, default_value=default_value, num_oov_buckets=num_oov_buckets) def categorical_column_with_identity(key, num_buckets, default_value=None): """A `_CategoricalColumn` that returns identity values. Use this when your inputs are integers in the range `[0, num_buckets)`, and you want to use the input value itself as the categorical ID. Values outside this range will result in `default_value` if specified, otherwise it will fail. Typically, this is used for contiguous ranges of integer indexes, but it doesn't have to be. This might be inefficient, however, if many of IDs are unused. Consider `categorical_column_with_hash_bucket` in that case. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string. Note that these values are independent of the `default_value` argument. In the following examples, each input in the range `[0, 1000000)` is assigned the same value. All other inputs are assigned `default_value` 0. Note that a literal 0 in inputs will result in the same default ID. Linear model: ```python video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [video_id, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` Embedding for a DNN model: ```python columns = [embedding_column(video_id, 9),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. num_buckets: Range of inputs and outputs is `[0, num_buckets)`. default_value: If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace inputs in that range. Returns: A `_CategoricalColumn` that returns identity values. Raises: ValueError: if `num_buckets` is less than one. ValueError: if `default_value` is not in range `[0, num_buckets)`. """ if num_buckets < 1: raise ValueError( 'num_buckets {} < 1, column_name {}'.format(num_buckets, key)) if (default_value is not None) and ( (default_value < 0) or (default_value >= num_buckets)): raise ValueError( 'default_value {} not in range [0, {}), column_name {}'.format( default_value, num_buckets, key)) return _IdentityCategoricalColumn( key=key, num_buckets=num_buckets, default_value=default_value) def indicator_column(categorical_column): """Represents multi-hot representation of given categorical column. Used to wrap any `categorical_column_*` (e.g., to feed to DNN). Use `embedding_column` if the inputs are sparse. ```python name = indicator_column(categorical_column_with_vocabulary_list( 'name', ['bob', 'george', 'wanda']) columns = [name, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"] dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"] dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"] ``` Args: categorical_column: A `_CategoricalColumn` which is created by `categorical_column_with_*` or `crossed_column` functions. Returns: An `_IndicatorColumn`. """ return _IndicatorColumn(categorical_column) def weighted_categorical_column( categorical_column, weight_feature_key, dtype=dtypes.float32): """Applies weight values to a `_CategoricalColumn`. Use this when each of your sparse inputs has both an ID and a value. For example, if you're representing text documents as a collection of word frequencies, you can provide 2 parallel sparse input features ('terms' and 'frequencies' below). Example: Input `tf.Example` objects: ```proto [ features { feature { key: "terms" value {bytes_list {value: "very" value: "model"}} } feature { key: "frequencies" value {float_list {value: 0.3 value: 0.1}} } }, features { feature { key: "terms" value {bytes_list {value: "when" value: "course" value: "human"}} } feature { key: "frequencies" value {float_list {value: 0.4 value: 0.1 value: 0.2}} } } ] ``` ```python categorical_column = categorical_column_with_hash_bucket( column_name='terms', hash_bucket_size=1000) weighted_column = weighted_categorical_column( categorical_column=categorical_column, weight_feature_key='frequencies') columns = [weighted_column, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` This assumes the input dictionary contains a `SparseTensor` for key 'terms', and a `SparseTensor` for key 'frequencies'. These 2 tensors must have the same indices and dense shape. Args: categorical_column: A `_CategoricalColumn` created by `categorical_column_with_*` functions. weight_feature_key: String key for weight values. dtype: Type of weights, such as `tf.float32`. Only float and integer weights are supported. Returns: A `_CategoricalColumn` composed of two sparse features: one represents id, the other represents weight (value) of the id feature in that example. Raises: ValueError: if `dtype` is not convertible to float. """ if (dtype is None) or not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype {} is not convertible to float.'.format(dtype)) return _WeightedCategoricalColumn( categorical_column=categorical_column, weight_feature_key=weight_feature_key, dtype=dtype) def crossed_column(keys, hash_bucket_size, hash_key=None): """Returns a column for performing crosses of categorical features. Crossed features will be hashed according to `hash_bucket_size`. Conceptually, the transformation can be thought of as: Hash(cartesian product of features) % `hash_bucket_size` For example, if the input features are: * SparseTensor referred by first key: ```python shape = [2, 2] { [0, 0]: "a" [1, 0]: "b" [1, 1]: "c" } ``` * SparseTensor referred by second key: ```python shape = [2, 1] { [0, 0]: "d" [1, 0]: "e" } ``` then crossed feature will look like: ```python shape = [2, 2] { [0, 0]: Hash64("d", Hash64("a")) % hash_bucket_size [1, 0]: Hash64("e", Hash64("b")) % hash_bucket_size [1, 1]: Hash64("e", Hash64("c")) % hash_bucket_size } ``` Here is an example to create a linear model with crosses of string features: ```python keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` You could also use vocabulary lookup before crossing: ```python keywords = categorical_column_with_vocabulary_file( 'keywords', '/path/to/vocabulary/file', vocabulary_size=1K) keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` If an input feature is of numeric type, you can use `categorical_column_with_identity`, or `bucketized_column`, as in the example: ```python # vertical_id is an integer categorical feature. vertical_id = categorical_column_with_identity('vertical_id', 10K) price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) columns = [vertical_id_x_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` To use crossed column in DNN model, you need to add it in an embedding column as in this example: ```python vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) vertical_id_x_price_embedded = embedding_column(vertical_id_x_price, 10) dense_tensor = input_layer(features, [vertical_id_x_price_embedded, ...]) ``` Args: keys: An iterable identifying the features to be crossed. Each element can be either: * string: Will use the corresponding feature which must be of string type. * `_CategoricalColumn`: Will use the transformed tensor produced by this column. Does not support hashed categorical column. hash_bucket_size: An int > 1. The number of buckets. hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints on SparseCrossOp (optional). Returns: A `_CrossedColumn`. Raises: ValueError: If `len(keys) < 2`. ValueError: If any of the keys is neither a string nor `_CategoricalColumn`. ValueError: If any of the keys is `_HashedCategoricalColumn`. ValueError: If `hash_bucket_size < 1`. """ if not hash_bucket_size or hash_bucket_size < 1: raise ValueError('hash_bucket_size must be > 1. ' 'hash_bucket_size: {}'.format(hash_bucket_size)) if not keys or len(keys) < 2: raise ValueError( 'keys must be a list with length > 1. Given: {}'.format(keys)) for key in keys: if (not isinstance(key, six.string_types) and not isinstance(key, _CategoricalColumn)): raise ValueError( 'Unsupported key type. All keys must be either string, or ' 'categorical column except _HashedCategoricalColumn. ' 'Given: {}'.format(key)) if isinstance(key, _HashedCategoricalColumn): raise ValueError( 'categorical_column_with_hash_bucket is not supported for crossing. ' 'Hashing before crossing will increase probability of collision. ' 'Instead, use the feature name as a string. Given: {}'.format(key)) return _CrossedColumn( keys=tuple(keys), hash_bucket_size=hash_bucket_size, hash_key=hash_key) class _FeatureColumn(object): """Represents a feature column abstraction. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. To distinguish the concept of a feature family and a specific binary feature within a family, we refer to a feature family like "country" as a feature column. Following is an example feature in a `tf.Example` format: {key: "country", value: [ "US" ]} In this example the value of feature is "US" and "country" refers to the column of the feature. This class is an abstract class. User should not create instances of this. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def name(self): """Returns string. Used for naming and for name_scope.""" pass @property def _var_scope_name(self): """Returns string. Used for variable_scope. Defaults to self.name.""" return self.name @abc.abstractmethod def _transform_feature(self, inputs): """Returns intermediate representation (usually a `Tensor`). Uses `inputs` to create an intermediate representation (usually a `Tensor`) that other feature columns can use. Example usage of `inputs`: Let's say a Feature column depends on raw feature ('raw') and another `_FeatureColumn` (input_fc). To access corresponding `Tensor`s, inputs will be used as follows: ```python raw_tensor = inputs.get('raw') fc_tensor = inputs.get(input_fc) ``` Args: inputs: A `_LazyBuilder` object to access inputs. Returns: Transformed feature `Tensor`. """ pass @abc.abstractproperty def _parse_example_spec(self): """Returns a `tf.Example` parsing spec as dict. It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other supported objects. Please check documentation of ${tf.parse_example} for all supported spec objects. Let's say a Feature column depends on raw feature ('raw') and another `_FeatureColumn` (input_fc). One possible implementation of _parse_example_spec is as follows: ```python spec = {'raw': tf.FixedLenFeature(...)} spec.update(input_fc._parse_example_spec) return spec ``` """ pass class _DenseColumn(_FeatureColumn): """Represents a column which can be represented as `Tensor`. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. Some examples of this type are: numeric_column, embedding_column, indicator_column. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def _variable_shape(self): """`TensorShape` of `_get_dense_tensor`, without batch dimension.""" pass @abc.abstractmethod def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns a `Tensor`. The output of this function will be used by model-builder-functions. For example the pseudo code of `input_layer` will be like: ```python def input_layer(features, feature_columns, ...): outputs = [fc._get_dense_tensor(...) for fc in feature_columns] return tf.concat(outputs) ``` Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: List of graph collections to which Variables (if any will be created) are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see ${tf.Variable}). Returns: `Tensor` of shape [batch_size] + `_variable_shape`. """ pass def _create_weighted_sum( column, builder, units, sparse_combiner, weight_collections, trainable): """Creates a weighted sum for a dense or sparse column for linear_model.""" if isinstance(column, _CategoricalColumn): return _create_categorical_column_weighted_sum( column=column, builder=builder, units=units, sparse_combiner=sparse_combiner, weight_collections=weight_collections, trainable=trainable) else: return _create_dense_column_weighted_sum( column=column, builder=builder, units=units, weight_collections=weight_collections, trainable=trainable) def _create_dense_column_weighted_sum( column, builder, units, weight_collections, trainable): """Create a weighted sum of a dense column for linear_model.""" tensor = column._get_dense_tensor( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access batch_size = array_ops.shape(tensor)[0] tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements)) weight = variable_scope.get_variable( name='weights', shape=[num_elements, units], initializer=init_ops.zeros_initializer(), trainable=trainable, collections=weight_collections) return math_ops.matmul(tensor, weight, name='weighted_sum') class _CategoricalColumn(_FeatureColumn): """Represents a categorical feature. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. A categorical feature typically handled with a ${tf.SparseTensor} of IDs. """ __metaclass__ = abc.ABCMeta IdWeightPair = collections.namedtuple( # pylint: disable=invalid-name 'IdWeightPair', ['id_tensor', 'weight_tensor']) @abc.abstractproperty def _num_buckets(self): """Returns number of buckets in this sparse feature.""" pass @abc.abstractmethod def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): """Returns an IdWeightPair. `IdWeightPair` is a pair of `SparseTensor`s which represents ids and weights. `IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets` `SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a `SparseTensor` of `float` or `None` to indicate all weights should be taken to be 1. If specified, `weight_tensor` must have exactly the same shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing output of a `VarLenFeature` which is a ragged matrix. Args: inputs: A `LazyBuilder` as a cache to get input tensors required to create `IdWeightPair`. weight_collections: List of graph collections to which variables (if any will be created) are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see ${tf.get_variable}). """ pass def _create_categorical_column_weighted_sum( column, builder, units, sparse_combiner, weight_collections, trainable): """Create a weighted sum of a categorical column for linear_model.""" sparse_tensors = column._get_sparse_tensors( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [ array_ops.shape(sparse_tensors.id_tensor)[0], -1 ]) weight_tensor = sparse_tensors.weight_tensor if weight_tensor is not None: weight_tensor = sparse_ops.sparse_reshape( weight_tensor, [array_ops.shape(weight_tensor)[0], -1]) weight = variable_scope.get_variable( name='weights', shape=(column._num_buckets, units), # pylint: disable=protected-access initializer=init_ops.zeros_initializer(), trainable=trainable, collections=weight_collections) return _safe_embedding_lookup_sparse( weight, id_tensor, sparse_weights=weight_tensor, combiner=sparse_combiner, name='weighted_sum') class _LazyBuilder(object): """Handles caching of transformations while building the model. `_FeatureColumn` specifies how to digest an input column to the network. Some feature columns require data transformations. This class caches those transformations. Some features may be used in more than one place. For example, one can use a bucketized feature by itself and a cross with it. In that case we should create only one bucketization op instead of creating ops for each feature column separately. To handle re-use of transformed columns, `_LazyBuilder` caches all previously transformed columns. Example: We're trying to use the following `_FeatureColumn`s: ```python bucketized_age = fc.bucketized_column(fc.numeric_column("age"), ...) keywords = fc.categorical_column_with_hash_buckets("keywords", ...) age_X_keywords = fc.crossed_column([bucketized_age, "keywords"]) ... = linear_model(features, [bucketized_age, keywords, age_X_keywords] ``` If we transform each column independently, then we'll get duplication of bucketization (one for cross, one for bucketization itself). The `_LazyBuilder` eliminates this duplication. """ def __init__(self, features): """Creates a `_LazyBuilder`. Args: features: A mapping from feature column to objects that are `Tensor` or `SparseTensor`, or can be converted to same via `sparse_tensor.convert_to_tensor_or_sparse_tensor`. A `string` key signifies a base feature (not-transformed). A `_FeatureColumn` key means that this `Tensor` is the output of an existing `_FeatureColumn` which can be reused. """ self._features = features.copy() self._feature_tensors = {} def get(self, key): """Returns a `Tensor` for the given key. A `str` key is used to access a base feature (not-transformed). When a `_FeatureColumn` is passed, the transformed feature is returned if it already exists, otherwise the given `_FeatureColumn` is asked to provide its transformed output, which is then cached. Args: key: a `str` or a `_FeatureColumn`. Returns: The transformed `Tensor` corresponding to the `key`. Raises: ValueError: if key is not found or a transformed `Tensor` cannot be computed. """ if key in self._feature_tensors: # FeatureColumn is already transformed or converted. return self._feature_tensors[key] if key in self._features: feature_tensor = self._get_raw_feature_as_tensor(key) self._feature_tensors[key] = feature_tensor return feature_tensor if not isinstance(key, (str, _FeatureColumn)): raise TypeError('"key" must be either a "str" or "_FeatureColumn". ' 'Provided: {}'.format(key)) if not isinstance(key, _FeatureColumn): raise ValueError('Feature {} is not in features dictionary.'.format(key)) column = key logging.debug('Transforming feature_column %s.', column) transformed = column._transform_feature(self) # pylint: disable=protected-access if transformed is None: raise ValueError('Column {} is not supported.'.format(column.name)) self._feature_tensors[column] = transformed return transformed def _get_raw_feature_as_tensor(self, key): """Gets the raw_feature (keyed by `key`) as `tensor`. The raw feature is converted to (sparse) tensor and maybe expand dim. For both `Tensor` and `SparseTensor`, the rank will be expanded (to 2) if the rank is 1. This supports dynamic rank also. For rank 0 raw feature, will error out as it is not supported. Args: key: A `str` key to access the raw feature. Returns: A `Tensor` or `SparseTensor`. Raises: ValueError: if the raw feature has rank 0. """ raw_feature = self._features[key] feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( raw_feature) def expand_dims(input_tensor): # Input_tensor must have rank 1. if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): return sparse_ops.sparse_reshape( input_tensor, [array_ops.shape(input_tensor)[0], -1]) else: return array_ops.expand_dims(input_tensor, -1) rank = feature_tensor.get_shape().ndims if rank is not None: if rank == 0: raise ValueError( 'Feature (key: {}) cannot have rank 0. Give: {}'.format( key, feature_tensor)) return feature_tensor if rank != 1 else expand_dims(feature_tensor) # Handle dynamic rank. with ops.control_dependencies([ check_ops.assert_positive( array_ops.rank(feature_tensor), message='Feature (key: {}) cannot have rank 0. Given: {}'.format( key, feature_tensor))]): return control_flow_ops.cond( math_ops.equal(1, array_ops.rank(feature_tensor)), lambda: expand_dims(feature_tensor), lambda: feature_tensor) # TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py def _shape_offsets(shape): """Returns moving offset for each dimension given shape.""" offsets = [] for dim in reversed(shape): if offsets: offsets.append(dim * offsets[-1]) else: offsets.append(dim) offsets.reverse() return offsets # TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py def _to_sparse_input(input_tensor, ignore_value=None): """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells. If `input_tensor` is already a `SparseTensor`, just return it. Args: input_tensor: A string or integer `Tensor`. ignore_value: Entries in `dense_tensor` equal to this value will be absent from the resulting `SparseTensor`. If `None`, default value of `dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`). Returns: A `SparseTensor` with the same shape as `input_tensor`. Raises: ValueError: when `input_tensor`'s rank is `None`. """ input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( input_tensor) if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): return input_tensor with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)): if ignore_value is None: if input_tensor.dtype == dtypes.string: # Exception due to TF strings are converted to numpy objects by default. ignore_value = '' elif input_tensor.dtype.is_integer: ignore_value = -1 # -1 has a special meaning of missing feature else: # NOTE: `as_numpy_dtype` is a property, so with the parentheses this is # constructing a new numpy object of the given type, which yields the # default value for that type. ignore_value = input_tensor.dtype.as_numpy_dtype() ignore_value = math_ops.cast( ignore_value, input_tensor.dtype, name='ignore_value') indices = array_ops.where( math_ops.not_equal(input_tensor, ignore_value), name='indices') return sparse_tensor_lib.SparseTensor( indices=indices, values=array_ops.gather_nd(input_tensor, indices, name='values'), dense_shape=array_ops.shape( input_tensor, out_type=dtypes.int64, name='dense_shape')) def _clean_feature_columns(feature_columns): """Verifies and normalizes `feature_columns` input.""" if isinstance(feature_columns, _FeatureColumn): feature_columns = [feature_columns] if isinstance(feature_columns, collections.Iterator): feature_columns = list(feature_columns) if isinstance(feature_columns, dict): raise ValueError('Expected feature_columns to be iterable, found dict.') for column in feature_columns: if not isinstance(column, _FeatureColumn): raise ValueError('Items of feature_columns must be a _FeatureColumn. ' 'Given (type {}): {}.'.format(type(column), column)) if not feature_columns: raise ValueError('feature_columns must not be empty.') name_to_column = dict() for column in feature_columns: if column.name in name_to_column: raise ValueError('Duplicate feature column name found for columns: {} ' 'and {}. This usually means that these columns refer to ' 'same base feature. Either one must be discarded or a ' 'duplicated but renamed item must be inserted in ' 'features dict.'.format(column, name_to_column[column.name])) name_to_column[column.name] = column return feature_columns class _NumericColumn(_DenseColumn, collections.namedtuple('_NumericColumn', [ 'key', 'shape', 'default_value', 'dtype', 'normalizer_fn' ])): """see `numeric_column`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return { self.key: parsing_ops.FixedLenFeature(self.shape, self.dtype, self.default_value) } def _transform_feature(self, inputs): input_tensor = inputs.get(self.key) if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): raise ValueError( 'The corresponding Tensor of numerical column must be a Tensor. ' 'SparseTensor is not supported. key: {}'.format(self.key)) if self.normalizer_fn is not None: input_tensor = self.normalizer_fn(input_tensor) return math_ops.to_float(input_tensor) @property def _variable_shape(self): return tensor_shape.TensorShape(self.shape) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns dense `Tensor` representing numeric feature. Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: Unused `weight_collections` since no variables are created in this function. trainable: Unused `trainable` bool since no variables are created in this function. Returns: Dense `Tensor` created within `_transform_feature`. """ # Do nothing with weight_collections and trainable since no variables are # created in this function. del weight_collections del trainable # Feature has been already transformed. Return the intermediate # representation created by _transform_feature. return inputs.get(self) class _BucketizedColumn(_DenseColumn, _CategoricalColumn, collections.namedtuple('_BucketizedColumn', [ 'source_column', 'boundaries'])): """See `bucketized_column`.""" @property def name(self): return '{}_bucketized'.format(self.source_column.name) @property def _parse_example_spec(self): return self.source_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): source_tensor = inputs.get(self.source_column) return math_ops._bucketize( # pylint: disable=protected-access source_tensor, boundaries=self.boundaries) @property def _variable_shape(self): return tensor_shape.TensorShape( tuple(self.source_column.shape) + (len(self.boundaries) + 1,)) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): del weight_collections del trainable input_tensor = inputs.get(self) return array_ops.one_hot( indices=math_ops.to_int64(input_tensor), depth=len(self.boundaries) + 1, on_value=1., off_value=0.) @property def _num_buckets(self): # By construction, source_column is always one-dimensional. return (len(self.boundaries) + 1) * self.source_column.shape[0] def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): input_tensor = inputs.get(self) batch_size = array_ops.shape(input_tensor)[0] # By construction, source_column is always one-dimensional. source_dimension = self.source_column.shape[0] i1 = array_ops.reshape( array_ops.tile( array_ops.expand_dims(math_ops.range(0, batch_size), 1), [1, source_dimension]), (-1,)) i2 = array_ops.tile(math_ops.range(0, source_dimension), [batch_size]) # Flatten the bucket indices and unique them across dimensions # E.g. 2nd dimension indices will range from k to 2*k-1 with k buckets bucket_indices = ( array_ops.reshape(input_tensor, (-1,)) + (len(self.boundaries) + 1) * i2) indices = math_ops.to_int64(array_ops.transpose(array_ops.stack((i1, i2)))) dense_shape = math_ops.to_int64(array_ops.stack( [batch_size, source_dimension])) sparse_tensor = sparse_tensor_lib.SparseTensor( indices=indices, values=bucket_indices, dense_shape=dense_shape) return _CategoricalColumn.IdWeightPair(sparse_tensor, None) class _EmbeddingColumn( _DenseColumn, collections.namedtuple('_EmbeddingColumn', ( 'categorical_column', 'dimension', 'combiner', 'initializer', 'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable' ))): """See `embedding_column`.""" @property def name(self): if not hasattr(self, '_name'): self._name = '{}_embedding'.format(self.categorical_column.name) return self._name @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): return inputs.get(self.categorical_column) @property def _variable_shape(self): if not hasattr(self, '_shape'): self._shape = tensor_shape.vector(self.dimension) return self._shape def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): # Get sparse IDs and weights. sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access inputs, weight_collections=weight_collections, trainable=trainable) sparse_ids = sparse_tensors.id_tensor sparse_weights = sparse_tensors.weight_tensor embedding_shape = (self.categorical_column._num_buckets, self.dimension) # pylint: disable=protected-access embedding_weights = variable_scope.get_variable( name='embedding_weights', shape=embedding_shape, dtype=dtypes.float32, initializer=self.initializer, trainable=self.trainable and trainable, collections=weight_collections) if self.ckpt_to_load_from is not None: to_restore = embedding_weights if isinstance(to_restore, variables.PartitionedVariable): to_restore = to_restore._get_variable_list() # pylint: disable=protected-access checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, { self.tensor_name_in_ckpt: to_restore }) # Return embedding lookup result. return _safe_embedding_lookup_sparse( embedding_weights=embedding_weights, sparse_ids=sparse_ids, sparse_weights=sparse_weights, combiner=self.combiner, name='%s_weights' % self.name, max_norm=self.max_norm) class _SharedEmbeddingColumn( _DenseColumn, collections.namedtuple('_SharedEmbeddingColumn', ( 'categorical_column', 'dimension', 'combiner', 'initializer', 'shared_embedding_collection_name', 'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable' ))): """See `embedding_column`.""" @property def name(self): if not hasattr(self, '_name'): self._name = '{}_shared_embedding'.format(self.categorical_column.name) return self._name @property def _var_scope_name(self): return self.shared_embedding_collection_name @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): return inputs.get(self.categorical_column) @property def _variable_shape(self): if not hasattr(self, '_shape'): self._shape = tensor_shape.vector(self.dimension) return self._shape def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): # This method is called from a variable_scope with name _var_scope_name, # which is shared among all shared embeddings. Open a name_scope here, so # that the ops for different columns have distinct names. with ops.name_scope(None, default_name=self.name): # Get sparse IDs and weights. sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access inputs, weight_collections=weight_collections, trainable=trainable) sparse_ids = sparse_tensors.id_tensor sparse_weights = sparse_tensors.weight_tensor embedding_shape = (self.categorical_column._num_buckets, self.dimension) # pylint: disable=protected-access shared_embedding_collection = ops.get_collection( self.shared_embedding_collection_name) if shared_embedding_collection: if len(shared_embedding_collection) > 1: raise ValueError( 'Collection {} can only contain one variable. ' 'Suggested fix A: Choose a unique name for this collection. ' 'Suggested fix B: Do not add any variables to this collection. ' 'The feature_column library already adds a variable under the ' 'hood.'.format(shared_embedding_collection)) embedding_weights = shared_embedding_collection[0] if embedding_weights.get_shape() != embedding_shape: raise ValueError( 'Shared embedding collection {} contains variable {} of ' 'unexpected shape {}. Expected shape is {}. ' 'Suggested fix A: Choose a unique name for this collection. ' 'Suggested fix B: Do not add any variables to this collection. ' 'The feature_column library already adds a variable under the ' 'hood.'.format( self.shared_embedding_collection_name, embedding_weights.name, embedding_weights.get_shape(), embedding_shape)) else: embedding_weights = variable_scope.get_variable( name='embedding_weights', shape=embedding_shape, dtype=dtypes.float32, initializer=self.initializer, trainable=self.trainable and trainable, collections=weight_collections) ops.add_to_collection( self.shared_embedding_collection_name, embedding_weights) if self.ckpt_to_load_from is not None: to_restore = embedding_weights if isinstance(to_restore, variables.PartitionedVariable): to_restore = to_restore._get_variable_list() # pylint: disable=protected-access checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, { self.tensor_name_in_ckpt: to_restore }) # Return embedding lookup result. return _safe_embedding_lookup_sparse( embedding_weights=embedding_weights, sparse_ids=sparse_ids, sparse_weights=sparse_weights, combiner=self.combiner, name='%s_weights' % self.name, max_norm=self.max_norm) def _create_tuple(shape, value): """Returns a tuple with given shape and filled with value.""" if shape: return tuple([_create_tuple(shape[1:], value) for _ in range(shape[0])]) return value def _as_tuple(value): if not nest.is_sequence(value): return value return tuple([_as_tuple(v) for v in value]) def _check_shape(shape, key): """Returns shape if it's valid, raises error otherwise.""" assert shape is not None if not nest.is_sequence(shape): shape = [shape] shape = tuple(shape) for dimension in shape: if not isinstance(dimension, int): raise TypeError('shape dimensions must be integer. ' 'shape: {}, key: {}'.format(shape, key)) if dimension < 1: raise ValueError('shape dimensions must be greater than 0. ' 'shape: {}, key: {}'.format(shape, key)) return shape def _is_shape_and_default_value_compatible(default_value, shape): """Verifies compatibility of shape and default_value.""" # Invalid condition: # * if default_value is not a scalar and shape is empty # * or if default_value is an iterable and shape is not empty if nest.is_sequence(default_value) != bool(shape): return False if not shape: return True if len(default_value) != shape[0]: return False for i in range(shape[0]): if not _is_shape_and_default_value_compatible(default_value[i], shape[1:]): return False return True def _check_default_value(shape, default_value, dtype, key): """Returns default value as tuple if it's valid, otherwise raises errors. This function verifies that `default_value` is compatible with both `shape` and `dtype`. If it is not compatible, it raises an error. If it is compatible, it casts default_value to a tuple and returns it. `key` is used only for error message. Args: shape: An iterable of integers specifies the shape of the `Tensor`. default_value: If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the `default_value` should be equal to the given `shape`. dtype: defines the type of values. Default value is `tf.float32`. Must be a non-quantized, real integer or floating point type. key: Column name, used only for error messages. Returns: A tuple which will be used as default value. Raises: TypeError: if `default_value` is an iterable but not compatible with `shape` TypeError: if `default_value` is not compatible with `dtype`. ValueError: if `dtype` is not convertible to `tf.float32`. """ if default_value is None: return None if isinstance(default_value, int): return _create_tuple(shape, default_value) if isinstance(default_value, float) and dtype.is_floating: return _create_tuple(shape, default_value) if callable(getattr(default_value, 'tolist', None)): # Handles numpy arrays default_value = default_value.tolist() if nest.is_sequence(default_value): if not _is_shape_and_default_value_compatible(default_value, shape): raise ValueError( 'The shape of default_value must be equal to given shape. ' 'default_value: {}, shape: {}, key: {}'.format( default_value, shape, key)) # Check if the values in the list are all integers or are convertible to # floats. is_list_all_int = all( isinstance(v, int) for v in nest.flatten(default_value)) is_list_has_float = any( isinstance(v, float) for v in nest.flatten(default_value)) if is_list_all_int: return _as_tuple(default_value) if is_list_has_float and dtype.is_floating: return _as_tuple(default_value) raise TypeError('default_value must be compatible with dtype. ' 'default_value: {}, dtype: {}, key: {}'.format( default_value, dtype, key)) class _HashedCategoricalColumn( _CategoricalColumn, collections.namedtuple('_HashedCategoricalColumn', ['key', 'hash_bucket_size', 'dtype'])): """see `categorical_column_with_hash_bucket`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input(inputs.get(self.key)) if not isinstance(input_tensor, sparse_tensor_lib.SparseTensor): raise ValueError('SparseColumn input must be a SparseTensor.') _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) if self.dtype == dtypes.string: sparse_values = input_tensor.values else: sparse_values = string_ops.as_string(input_tensor.values) sparse_id_values = string_ops.string_to_hash_bucket_fast( sparse_values, self.hash_bucket_size, name='lookup') return sparse_tensor_lib.SparseTensor( input_tensor.indices, sparse_id_values, input_tensor.dense_shape) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.hash_bucket_size def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _VocabularyFileCategoricalColumn( _CategoricalColumn, collections.namedtuple('_VocabularyFileCategoricalColumn', ( 'key', 'vocabulary_file', 'vocabulary_size', 'num_oov_buckets', 'dtype', 'default_value' ))): """See `categorical_column_with_vocabulary_file`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input(inputs.get(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) key_dtype = self.dtype if input_tensor.dtype.is_integer: # `index_table_from_file` requires 64-bit integer keys. key_dtype = dtypes.int64 input_tensor = math_ops.to_int64(input_tensor) return lookup_ops.index_table_from_file( vocabulary_file=self.vocabulary_file, num_oov_buckets=self.num_oov_buckets, vocab_size=self.vocabulary_size, default_value=self.default_value, key_dtype=key_dtype, name='{}_lookup'.format(self.key)).lookup(input_tensor) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.vocabulary_size + self.num_oov_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _VocabularyListCategoricalColumn( _CategoricalColumn, collections.namedtuple('_VocabularyListCategoricalColumn', ( 'key', 'vocabulary_list', 'dtype', 'default_value', 'num_oov_buckets' ))): """See `categorical_column_with_vocabulary_list`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input(inputs.get(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) key_dtype = self.dtype if input_tensor.dtype.is_integer: # `index_table_from_tensor` requires 64-bit integer keys. key_dtype = dtypes.int64 input_tensor = math_ops.to_int64(input_tensor) return lookup_ops.index_table_from_tensor( vocabulary_list=tuple(self.vocabulary_list), default_value=self.default_value, num_oov_buckets=self.num_oov_buckets, dtype=key_dtype, name='{}_lookup'.format(self.key)).lookup(input_tensor) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return len(self.vocabulary_list) + self.num_oov_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _IdentityCategoricalColumn( _CategoricalColumn, collections.namedtuple('_IdentityCategoricalColumn', ( 'key', 'num_buckets', 'default_value' ))): """See `categorical_column_with_identity`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(dtypes.int64)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input(inputs.get(self.key)) if not input_tensor.dtype.is_integer: raise ValueError( 'Invalid input, not integer. key: {} dtype: {}'.format( self.key, input_tensor.dtype)) values = math_ops.to_int64(input_tensor.values, name='values') num_buckets = math_ops.to_int64(self.num_buckets, name='num_buckets') zero = math_ops.to_int64(0, name='zero') if self.default_value is None: # Fail if values are out-of-range. assert_less = check_ops.assert_less( values, num_buckets, data=(values, num_buckets), name='assert_less_than_num_buckets') assert_greater = check_ops.assert_greater_equal( values, zero, data=(values,), name='assert_greater_or_equal_0') with ops.control_dependencies((assert_less, assert_greater)): values = array_ops.identity(values) else: # Assign default for out-of-range values. values = array_ops.where( math_ops.logical_or( values < zero, values >= num_buckets, name='out_of_range'), array_ops.fill( dims=array_ops.shape(values), value=math_ops.to_int64(self.default_value), name='default_values'), values) return sparse_tensor_lib.SparseTensor( indices=input_tensor.indices, values=values, dense_shape=input_tensor.dense_shape) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.num_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _WeightedCategoricalColumn( _CategoricalColumn, collections.namedtuple('_WeightedCategoricalColumn', ( 'categorical_column', 'weight_feature_key', 'dtype' ))): """See `weighted_categorical_column`.""" @property def name(self): return '{}_weighted_by_{}'.format( self.categorical_column.name, self.weight_feature_key) @property def _parse_example_spec(self): config = self.categorical_column._parse_example_spec # pylint: disable=protected-access if self.weight_feature_key in config: raise ValueError('Parse config {} already exists for {}.'.format( config[self.weight_feature_key], self.weight_feature_key)) config[self.weight_feature_key] = parsing_ops.VarLenFeature(self.dtype) return config @property def _num_buckets(self): return self.categorical_column._num_buckets # pylint: disable=protected-access def _transform_feature(self, inputs): weight_tensor = inputs.get(self.weight_feature_key) if weight_tensor is None: raise ValueError('Missing weights {}.'.format(self.weight_feature_key)) weight_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( weight_tensor) if self.dtype != weight_tensor.dtype.base_dtype: raise ValueError('Bad dtype, expected {}, but got {}.'.format( self.dtype, weight_tensor.dtype)) if not isinstance(weight_tensor, sparse_tensor_lib.SparseTensor): # The weight tensor can be a regular Tensor. In this case, sparsify it. weight_tensor = _to_sparse_input(weight_tensor, ignore_value=0.0) if not weight_tensor.dtype.is_floating: weight_tensor = math_ops.to_float(weight_tensor) return (inputs.get(self.categorical_column), weight_tensor) def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): del weight_collections del trainable tensors = inputs.get(self) return _CategoricalColumn.IdWeightPair(tensors[0], tensors[1]) class _CrossedColumn( _CategoricalColumn, collections.namedtuple('_CrossedColumn', ['keys', 'hash_bucket_size', 'hash_key'])): """See `crossed_column`.""" @property def name(self): feature_names = [] for key in _collect_leaf_level_keys(self): if isinstance(key, _FeatureColumn): feature_names.append(key.name) else: # key must be a string feature_names.append(key) return '_X_'.join(sorted(feature_names)) @property def _parse_example_spec(self): config = {} for key in self.keys: if isinstance(key, _FeatureColumn): config.update(key._parse_example_spec) # pylint: disable=protected-access else: # key must be a string config.update({key: parsing_ops.VarLenFeature(dtypes.string)}) return config def _transform_feature(self, inputs): feature_tensors = [] for key in _collect_leaf_level_keys(self): if isinstance(key, six.string_types): feature_tensors.append(inputs.get(key)) elif isinstance(key, _CategoricalColumn): ids_and_weights = key._get_sparse_tensors(inputs) # pylint: disable=protected-access if ids_and_weights.weight_tensor is not None: raise ValueError( 'crossed_column does not support weight_tensor, but the given ' 'column populates weight_tensor. ' 'Given column: {}'.format(key.name)) feature_tensors.append(ids_and_weights.id_tensor) else: raise ValueError('Unsupported column type. Given: {}'.format(key)) return sparse_ops._sparse_cross_hashed( # pylint: disable=protected-access inputs=feature_tensors, num_buckets=self.hash_bucket_size, hash_key=self.hash_key) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.hash_bucket_size def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) def _collect_leaf_level_keys(cross): """Collects base keys by expanding all nested crosses. Args: cross: A `_CrossedColumn`. Returns: A list of strings or `_CategoricalColumn` instances. """ leaf_level_keys = [] for k in cross.keys: if isinstance(k, _CrossedColumn): leaf_level_keys.extend(_collect_leaf_level_keys(k)) else: leaf_level_keys.append(k) return leaf_level_keys # TODO(zakaria): Move this to embedding_ops and make it public. def _safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner='mean', default_id=None, name=None, partition_strategy='div', max_norm=None): """Lookup embedding results, accounting for invalid IDs and empty features. The partitioned embedding in `embedding_weights` must all be the same shape except for the first dimension. The first dimension is allowed to vary as the vocabulary size is not necessarily a multiple of `P`. `embedding_weights` may be a `PartitionedVariable` as returned by using `tf.get_variable()` with a partitioner. Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs with non-positive weight. For an entry with no features, the embedding vector for `default_id` is returned, or the 0-vector if `default_id` is not supplied. The ids and weights may be multi-dimensional. Embeddings are always aggregated along the last dimension. Args: embedding_weights: A list of `P` float `Tensor`s or values representing partitioned embedding `Tensor`s. Alternatively, a `PartitionedVariable` created by partitioning along dimension 0. The total unpartitioned shape should be `[e_0, e_1, ..., e_m]`, where `e_0` represents the vocab size and `e_1, ..., e_m` are the embedding dimensions. sparse_ids: `SparseTensor` of shape `[d_0, d_1, ..., d_n]` containing the ids. `d_0` is typically batch size. sparse_weights: `SparseTensor` of same shape as `sparse_ids`, containing float weights corresponding to `sparse_ids`, or `None` if all weights are be assumed to be 1.0. combiner: A string specifying how to combine embedding results for each entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default. default_id: The id to use for an entry with no features. name: A name for this operation (optional). partition_strategy: A string specifying the partitioning strategy. Currently `"div"` and `"mod"` are supported. Default is `"div"`. max_norm: If not `None`, all embeddings are l2-normalized to max_norm before combining. Returns: Dense `Tensor` of shape `[d_0, d_1, ..., d_{n-1}, e_1, ..., e_m]`. Raises: ValueError: if `embedding_weights` is empty. """ if embedding_weights is None: raise ValueError('Missing embedding_weights %s.' % embedding_weights) if isinstance(embedding_weights, variables.PartitionedVariable): embedding_weights = list(embedding_weights) # get underlying Variables. if not isinstance(embedding_weights, list): embedding_weights = [embedding_weights] if len(embedding_weights) < 1: raise ValueError('Missing embedding_weights %s.' % embedding_weights) dtype = sparse_weights.dtype if sparse_weights is not None else None embedding_weights = [ ops.convert_to_tensor(w, dtype=dtype) for w in embedding_weights ] with ops.name_scope(name, 'embedding_lookup', embedding_weights + [sparse_ids, sparse_weights]) as scope: # Reshape higher-rank sparse ids and weights to linear segment ids. original_shape = sparse_ids.dense_shape original_rank_dim = sparse_ids.dense_shape.get_shape()[0] original_rank = ( array_ops.size(original_shape) if original_rank_dim.value is None else original_rank_dim.value) sparse_ids = sparse_ops.sparse_reshape(sparse_ids, [ math_ops.reduce_prod( array_ops.slice(original_shape, [0], [original_rank - 1])), array_ops.gather(original_shape, original_rank - 1)]) if sparse_weights is not None: sparse_weights = sparse_tensor_lib.SparseTensor( sparse_ids.indices, sparse_weights.values, sparse_ids.dense_shape) # Prune invalid ids and weights. sparse_ids, sparse_weights = _prune_invalid_ids(sparse_ids, sparse_weights) # Fill in dummy values for empty features, if necessary. sparse_ids, is_row_empty = sparse_ops.sparse_fill_empty_rows(sparse_ids, default_id or 0) if sparse_weights is not None: sparse_weights, _ = sparse_ops.sparse_fill_empty_rows(sparse_weights, 1.0) result = embedding_ops.embedding_lookup_sparse( embedding_weights, sparse_ids, sparse_weights, combiner=combiner, partition_strategy=partition_strategy, name=None if default_id is None else scope, max_norm=max_norm) if default_id is None: # Broadcast is_row_empty to the same shape as embedding_lookup_result, # for use in Select. is_row_empty = array_ops.tile( array_ops.reshape(is_row_empty, [-1, 1]), array_ops.stack([1, array_ops.shape(result)[1]])) result = array_ops.where(is_row_empty, array_ops.zeros_like(result), result, name=scope) # Reshape back from linear ids back into higher-dimensional dense result. final_result = array_ops.reshape( result, array_ops.concat([ array_ops.slice( math_ops.cast(original_shape, dtypes.int32), [0], [original_rank - 1]), array_ops.slice(array_ops.shape(result), [1], [-1]) ], 0)) final_result.set_shape(tensor_shape.unknown_shape( (original_rank_dim - 1).value).concatenate(result.get_shape()[1:])) return final_result def _prune_invalid_ids(sparse_ids, sparse_weights): """Prune invalid IDs (< 0) from the input ids and weights.""" is_id_valid = math_ops.greater_equal(sparse_ids.values, 0) if sparse_weights is not None: is_id_valid = math_ops.logical_and( is_id_valid, math_ops.greater(sparse_weights.values, 0)) sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid) if sparse_weights is not None: sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid) return sparse_ids, sparse_weights class _IndicatorColumn(_DenseColumn, collections.namedtuple('_IndicatorColumn', ['categorical_column'])): """Represents a one-hot column for use in deep networks. Args: categorical_column: A `_CategoricalColumn` which is created by `categorical_column_with_*` function. """ @property def name(self): return '{}_indicator'.format(self.categorical_column.name) def _transform_feature(self, inputs): """Returns dense `Tensor` representing feature. Args: inputs: A `_LazyBuilder` object to access inputs. Returns: Transformed feature `Tensor`. Raises: ValueError: if input rank is not known at graph building time. """ id_weight_pair = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access id_tensor = id_weight_pair.id_tensor weight_tensor = id_weight_pair.weight_tensor # If the underlying column is weighted, return the input as a dense tensor. if weight_tensor is not None: weighted_column = sparse_ops.sparse_merge( sp_ids=id_tensor, sp_values=weight_tensor, vocab_size=int(self._variable_shape[-1])) # Remove (?, -1) index weighted_column = sparse_ops.sparse_slice(weighted_column, [0, 0], weighted_column.dense_shape) return sparse_ops.sparse_tensor_to_dense(weighted_column) dense_id_tensor = sparse_ops.sparse_tensor_to_dense( id_tensor, default_value=-1) # One hot must be float for tf.concat reasons since all other inputs to # input_layer are float32. one_hot_id_tensor = array_ops.one_hot( dense_id_tensor, depth=self._variable_shape[-1], on_value=1.0, off_value=0.0) # Reduce to get a multi-hot per example. return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2]) @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access @property def _variable_shape(self): """Returns a `TensorShape` representing the shape of the dense `Tensor`.""" return tensor_shape.TensorShape([1, self.categorical_column._num_buckets]) # pylint: disable=protected-access def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns dense `Tensor` representing feature. Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: Unused `weight_collections` since no variables are created in this function. trainable: Unused `trainable` bool since no variables are created in this function. Returns: Dense `Tensor` created within `_transform_feature`. """ # Do nothing with weight_collections and trainable since no variables are # created in this function. del weight_collections del trainable # Feature has been already transformed. Return the intermediate # representation created by _transform_feature. return inputs.get(self) def _verify_static_batch_size_equality(tensors, columns): # bath_size is a tf.Dimension object. expected_batch_size = None for i in range(0, len(tensors)): if tensors[i].shape[0].value is not None: if expected_batch_size is None: bath_size_column_index = i expected_batch_size = tensors[i].shape[0] elif not expected_batch_size.is_compatible_with(tensors[i].shape[0]): raise ValueError( 'Batch size (first dimension) of each feature must be same. ' 'Batch size of columns ({}, {}): ({}, {})'.format( columns[bath_size_column_index].name, columns[i].name, expected_batch_size, tensors[i].shape[0]))
jwlawson/tensorflow
tensorflow/python/feature_column/feature_column.py
Python
apache-2.0
116,403
#! /usr/bin/env python # # Load a FITS cube , extract the spectrum at a (or reference) pixel # and operate and plot some and then more.... # # # 22-jun-2017 PJT summer project - cloned off cubespectrum.py # july-2017 Thomas/Peter various improvements # # @todo # - have optional RESTFRQ or RESTFREQ as 3rd argument [done] # - output the spectrum in a table, much like testCubeSpectrum.tab [done] # - resample the gauss finer (not 5 points but may be 10x more?) import os, sys, math import numpy as np import numpy.ma as ma import matplotlib.pyplot as plt from astropy.io import fits from astropy.units import Quantity c = 299792.458 # [km/s] there should be a way to get 'c' from astropy.units ? na = len(sys.argv) if na == 7: # Must be in Km/s fitsfile = sys.argv[1] pos = [int(sys.argv[2]),int(sys.argv[3])] restfreq = float(sys.argv[4])* 1e9 vmin = float(sys.argv[5]) vmax = float(sys.argv[6]) use_vel = True elif na == 5: # Must be in GHz fitsfile = sys.argv[1] pos = [int(sys.argv[2]),int(sys.argv[3])] vmin = vmax = None restfreq = float(sys.argv[4])* 1e9 use_vel = True elif na == 4: # Pixel position fitsfile = sys.argv[1] pos = [int(sys.argv[2]),int(sys.argv[3])] restfreq = None vmin = vmax = None use_vel = False elif na == 2: # Fits file fitsfile = sys.argv[1] pos = None restfreq = None vmin = vmax = None use_vel = False else: sys.exit(1) # open the fits file hdu = fits.open(fitsfile) print(len(hdu)) # get a reference to the header and data. Data should be 3dim numpy array now h = hdu[0].header d = hdu[0].data.squeeze() print(d.shape) # grab the restfreq, there are at least two ways how this is done if restfreq == None: if 'RESTFRQ' in h: restfreq=h['RESTFRQ'] elif 'RESTFREQ' in h: restfreq=h['RESTFREQ'] else: restfreq= h['CRVAL3'] print("RESTFREQ",restfreq) if pos == None: # the FITS reference pixel is always a good backup xpos = int(h['CRPIX1']) ypos = int(h['CRPIX2']) print("No position given, using reference pixel %g %g" % (xpos,ypos)) else: xpos = pos[0] ypos = pos[1] flux = d[:,ypos,xpos] nchan = d.shape[0] channeln = np.arange(nchan) zero = np.zeros(nchan) cdelt3 = h['CDELT3'] crval3 = h['CRVAL3'] crpix3 = h['CRPIX3'] # to convert the channel to frequency channelf = (channeln-crpix3+1)*cdelt3 + crval3 # to convert the Frequency to velocity #channelv = (1.0-channelf/restfreq) * c #print (channelf) #print (channelv) # what we plot #channel = channelv #channel = channelf #channel = channeln if use_vel: # to convert the Frequency to velocity channelv = (1.0-channelf/restfreq) * c channel = channelv print (channelv.min()) print (channelv.max()) else: channel = channelf print (channelf.min()) print (channelf.max()) ipeak = flux.argmax() xpeak = channel[ipeak] ypeak = flux[ipeak] # moments around the peak if na == 7: m = 5 x = channel[ipeak-m:ipeak+m] y = flux[ipeak-m:ipeak+m] xmean = (x*y).sum() / y.sum() xdisp = (x*x*y).sum() / y.sum() - xmean*xmean if xdisp > 0: xdisp = math.sqrt(xdisp) fwhm = 2.355 * xdisp print("MEAN/DISP/FWHM:",xmean,xdisp,fwhm) ymodel = ypeak * np.exp(-0.5*(x-xmean)**2/(xdisp*xdisp)) if use_vel == True: plt.figure() if vmin != None: channelv = ma.masked_outside(channelv,vmin,vmax) plt.xlim([vmin,vmax]) plt.plot(channelv,flux,'o-',markersize=2,label='data') plt.plot(channelv,zero) # plt.plot(x,ymodel,label='gauss') plt.xlabel("Velocity (km/s)") plt.ylabel("Flux") plt.title(fitsfile +" @ %g %g" % (xpos,ypos)+ " %g" % (restfreq/1e9)+ 'Ghz') plt.legend() plt.show() else: plt.figure() plt.plot(channelf/1e9,flux,'o-',markersize=2,label='data') plt.plot(channelf/1e9,zero) plt.xlabel("Frequency (GHz)") plt.ylabel("Flux") plt.title(fitsfile + " @ %g %g" % (xpos,ypos)) plt.legend() plt.show() #to create a table of the frequency and flux xtab = channelf /1e9 #to set the freqency to GHz ytab = flux np.savetxt('Frequency_Flux.tab',np.c_[xtab,ytab], delimiter=' ',header=("Frequency"" " "Flux"),comments='#',fmt='%.8f')
astroumd/n253lines
cubespectrum2.py
Python
mit
4,302
#!/usr/bin/env python3 import json import os import unittest import requests AGNOS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) MANIFEST = os.path.join(AGNOS_DIR, "agnos.json") class TestAgnosUpdater(unittest.TestCase): def test_manifest(self): with open(MANIFEST) as f: m = json.load(f) for img in m: r = requests.head(img['url']) r.raise_for_status() self.assertEqual(r.headers['Content-Type'], "application/x-xz") if not img['sparse']: assert img['hash'] == img['hash_raw'] if __name__ == "__main__": unittest.main()
commaai/openpilot
selfdrive/hardware/tici/test_agnos_updater.py
Python
mit
595
""" This is used to make star field backgrounds. """ import sys, random, pygame, glob, fnmatch from pygame.locals import * # star colors # spectral type R G B SPECTRA = { 'O': (225,225,255), \ 'B': (225,255,255), \ 'A': (255,255,255), \ 'F': (255,255,225), \ 'G': (255,255,200), \ 'K': (255,225,200), \ 'M': (255,200,200)} STARS = { 'g' : {} , 'd' : {} } def replace_color(color1, color2, img): """ replace color1 with color2 in img """ img = img.copy() pixObj = pygame.PixelArray(img) img_size = img.get_size() for x in range(img_size[0]): for y in range(img_size[1]): if pixObj[x][y] == img.map_rgb(color1): pixObj[x][y] = color2 del pixObj return img def load_stars(): """Load stars and create colored star images in the global STARS dict""" img = pygame.image.load('./images/dGrey.png') for type in SPECTRA: new_img = replace_color((150,150,150), SPECTRA[type], img) STARS['d'][type] = new_img img = pygame.image.load('./images/gGrey.png') for type in SPECTRA: new_img = replace_color((150,150,150), SPECTRA[type], img) STARS['g'][type] = new_img def main(): sizes = STARS.keys() colors = SPECTRA.keys() side = 6400 load_stars() bg = pygame.Surface((side,side),SRCALPHA) for i in range(10000): size = random.choice(sizes) color = random.choice(colors) x = random.randint(0,side) y = random.randint(0,side) star = STARS[size][color] bg.blit(star, [x,y]) pygame.image.save(bg, './images/test2.png') if __name__ == '__main__': main()
bobgeis/LookOutSpacePirates
starMaker.py
Python
bsd-3-clause
1,541
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest import pyauto_functional # Must be imported before pyauto import pyauto import pyauto_errors class PyAutoTest(pyauto.PyUITest): """Test functionality of the PyAuto framework.""" _EXTRA_CHROME_FLAGS = [ '--scooby-doo=123', '--donald-duck=cool', '--super-mario', '--marvin-the-martian', ] def ExtraChromeFlags(self): """Ensures Chrome is launched with some custom flags. Overrides the default list of extra flags passed to Chrome. See ExtraChromeFlags() in pyauto.py. """ return pyauto.PyUITest.ExtraChromeFlags(self) + self._EXTRA_CHROME_FLAGS def testSetCustomChromeFlags(self): """Ensures that Chrome can be launched with custom flags.""" self.NavigateToURL('about://version') for flag in self._EXTRA_CHROME_FLAGS: self.assertEqual(self.FindInPage(flag)['match_count'], 1, msg='Missing expected Chrome flag "%s"' % flag) def testCallOnInvalidWindow(self): """Verify that exception is raised when a browser is missing/invalid.""" self.assertEqual(1, self.GetBrowserWindowCount()) self.assertRaises( pyauto_errors.JSONInterfaceError, lambda: self.FindInPage('some text', windex=1)) # invalid window def testJSONInterfaceTimeout(self): """Verify that an exception is raised when the JSON interface times out.""" self.ClearEventQueue() self.AddDomEventObserver('foo') self.assertRaises( pyauto_errors.JSONInterfaceError, lambda: self.GetNextEvent(timeout=2000)) # event queue is empty if __name__ == '__main__': pyauto_functional.Main()
keishi/chromium
chrome/test/functional/test_pyauto.py
Python
bsd-3-clause
1,808