n_words
int64 3
1.95k
| n_ast_errors
int64 0
2
| complexity
int64 1
151
| nloc
int64 2
546
| path
stringlengths 8
125
| id
int64 280
339k
| commit_message
stringlengths 3
18.1k
| repo
stringlengths 3
28
| ast_levels
int64 4
28
| language
stringclasses 1
value | vocab_size
int64 3
677
| file_name
stringlengths 5
67
| code
stringlengths 101
24k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
2.76k
| token_counts
int64 7
3.77k
| url
stringlengths 31
61
| n_whitespaces
int64 4
13.9k
| random_cut
stringlengths 21
13.9k
| n_identifiers
int64 1
157
| n_ast_nodes
int64 10
3.6k
| fun_name
stringlengths 3
72
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 | 0 | 3 | 5 | .venv/lib/python3.8/site-packages/pip/_internal/pyproject.py | 60,962 | upd; format | transferlearning | 11 | Python | 19 | pyproject.py | def _is_list_of_str(obj):
# type: (Any) -> bool
return (
isinstance(obj, list) and
all(isinstance(item, str) for item in obj)
)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 28 | https://github.com/jindongwang/transferlearning.git | 41 | def _is_list_of_str(obj):
# type: (Any) -> bool
return (
isinstance(obj, list) and
all(isinstance(item, str) for item in obj)
)
| 7 | 43 | _is_list_of_str |
|
9 | 0 | 1 | 2 | demo/blocks_flashcards/run.py | 180,788 | Refactoring Layout: Adding column widths, forms, and more. (#2097)
* changes
* changes
* fix
* change
* change
* changes
* changes
* changes
* changes
* change
* remove test config outputs
* fix wflow
* attempt root user
* attempt root user
* attempt root user
* attempt root user
* changes
* changes
* changes
* changes
* changes
* change
* changes
* change
* Update gradio/layouts.py
Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
* changes
Co-authored-by: Abubakar Abid <abubakar@huggingface.co> | gradio | 9 | Python | 9 | run.py | def flip_card(card):
return card[1], gr.Column.update(visible=True)
flip_btn.click(flip_card, [selected_card], [back, answer_col])
| 99833d506ef88f9452e516ef78db98edae8798f6 | 21 | https://github.com/gradio-app/gradio.git | 18 | def flip_card(card):
return card[1], gr.Column.update(visible=True)
flip_btn.click(fl | 11 | 55 | flip_card |
|
23 | 0 | 1 | 15 | flair/models/relation_extractor_model.py | 214,492 | Fix relation extractor | flair | 12 | Python | 22 | relation_extractor_model.py | def _get_state_dict(self):
model_state = {
**super()._get_state_dict(),
"embeddings": self.embeddings,
"label_dictionary": self.label_dictionary,
"label_type": self.label_type,
"entity_label_type": self.entity_label_type,
"weight_dict": self.weight_dict,
"pooling_operation": self.pooling_operation,
"entity_pair_filters": self.entity_pair_filters,
}
return model_state
| 78a4f3aae54d8134a89ea868662eec933bd2dea6 | 80 | https://github.com/flairNLP/flair.git | 131 | def _get_state_dict(self):
model_state = {
**super()._get_state_dict(),
"embeddings": self.embeddings,
"label_dictionary": self.label_dictionary,
"label_type": self.label_type,
"entity_label_type": self.entity_label_type,
"weight_dict": self.weight_dict,
"pooling_operation": self.pooling_operation,
"entity_pair_filters": self.entity_pair_filters, | 11 | 104 | _get_state_dict |
|
26 | 0 | 2 | 6 | code/default/launcher/tests/ingegrate_testing.py | 219,219 | try auto testing. | XX-Net | 11 | Python | 25 | ingegrate_testing.py | def kill_python(self):
xlog.info("start kill python")
if sys.platform == "win32":
# This will kill this script as well.
os.system("taskkill /im /F python.exe")
else:
os.system("pkill -9 -f 'start.py'")
| 39c9303aacc44c84767e40856be0c952ede47281 | 32 | https://github.com/XX-net/XX-Net.git | 79 | def kill_python(self):
xlog.info("start kill python")
| 8 | 63 | kill_python |
|
16 | 0 | 1 | 7 | tests/cache/tests.py | 202,074 | Refs #33476 -- Reformatted code with Black. | django | 10 | Python | 14 | tests.py | def test_incr_version(self):
"Dummy cache versions can't be incremented"
cache.set("answer", 42)
with self.assertRaises(ValueError):
cache.incr_version("answer")
with self.assertRaises(ValueError):
cache.incr_version("does_not_exist")
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 42 | https://github.com/django/django.git | 65 | def test_incr_version(self):
"Dummy cache versions can't be incremented"
| 7 | 81 | test_incr_version |
|
11 | 0 | 1 | 5 | tests/contenttypes_tests/test_fields.py | 202,312 | Refs #33476 -- Reformatted code with Black. | django | 10 | Python | 11 | test_fields.py | def test_get_content_type_no_arguments(self):
with self.assertRaisesMessage(
Exception, "Impossible arguments to GFK.get_content_type!"
):
Answer.question.get_content_type()
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 22 | https://github.com/django/django.git | 46 | def test_get_content_type_no_arguments(self):
with self.assertRaisesMessage(
Exception, "Imposs | 7 | 40 | test_get_content_type_no_arguments |
|
13 | 0 | 2 | 6 | kivy/core/window/__init__.py | 194,429 | Feature: EventManagerBase (#7658)
* Added EventManagerBase class and event_managers attribute to WindowBase class.
* Added on_motion event to Widget class.
* Updated post_dispatch_input in EventLoopBase to skip non-touch events.
* Using type ids in MouseMotionEventProvider.
* Added on_motion method to Widget subclasses.
* Updated Widget.on_motion method to dispatch to filtered widgets if 'pos' is not in me.profile.
* Changed motion_filter property in Widget to store key to list values.
* Updated Widget.on_motion to not dispatch event to children if widget is disabled.
* Widget: Using flags to control dispatching in on_motion method.
* Widget: Don't dispatch on_motion to children if only self is registered.
* Widget: Removed collision on disabled check from on_motion method.
* Widget: Added docstrings for motion_filter and related methods.
* EventManager: Moved motion event flags to eventmanager/__init__.py module.
* ScreenManager: Overrode the on_motion method.
* WindowBase: Using attributes event_managers and event_managers_dict.
* WindowBase: Added doc for register_event_manager and unregister_event_manager methods.
* Widget: Improved default dispatch to stop after the last registered widgets.
* EventManagerBase: Added initial docs class and module.
* Widget: Added experimental warnings to motion_filter property and to on_motion and (un)register_for_motion_event methods.
* WindowBase: Added docs for event_managers and event_managers_dict attributes.
* MotionEvent: Added type_id and flags to push_attrs list.
* EventManagerBase: Added versionadded tag on all flags.
* EventManagerBase: Use dispatch modes instead of flags. | kivy | 11 | Python | 13 | __init__.py | def unregister_event_manager(self, manager):
self.event_managers.remove(manager)
for type_id in manager.type_ids:
self.event_managers_dict[type_id].remove(manager)
manager.stop()
manager.window = None
| 1830123ba3edf7290b7c6cb1c6f406ccf1d0e5d4 | 44 | https://github.com/kivy/kivy.git | 59 | def unregister_event_manager(self, manager):
self.event_managers.remove(manager)
for type_id in manager.type_ids:
self.event_managers_dict[type_id].remove(manager)
manager.st | 10 | 72 | unregister_event_manager |
|
6 | 1 | 1 | 2 | tests/components/flunearyou/conftest.py | 310,412 | Clean up Flu Near You tests (#64575)
* Clean up Flu Near You tests
* Docstring
* More fixtures
* Revert "More fixtures"
This reverts commit 30f079b6266ef6cb14417ca895da1ae937c87abe. | core | 10 | Python | 6 | conftest.py | def data_cdc_fixture():
return json.loads(load_fixture("cdc_data.json", "flunearyou"))
@pytest.fixture(name="setup_flunearyou") | b2811cff515a87685673aea2319037c415b067a7 | @pytest.fixture(name="setup_flunearyou") | 17 | https://github.com/home-assistant/core.git | 11 | def data_cdc_fixture():
return jso | 7 | 51 | data_cdc_fixture |
8 | 0 | 1 | 4 | homeassistant/components/hdmi_cec/media_player.py | 306,934 | Use new media player enums [e-h] (#78049) | core | 7 | Python | 8 | media_player.py | def media_pause(self) -> None:
self.send_keypress(KEY_PAUSE)
self._state = MediaPlayerState.PAUSED
| 56c4e0391dd4696ee52b20cf2660da8c9cac480b | 21 | https://github.com/home-assistant/core.git | 29 | def media_pause(self) -> None:
self.send_keyp | 7 | 37 | media_pause |
|
23 | 0 | 1 | 8 | python/ray/air/tests/test_data_batch_conversion.py | 125,475 | [Datasets] Automatically cast tensor columns when building Pandas blocks. (#26684)
This PR tries to automatically cast tensor columns to our TensorArray extension type when building Pandas blocks, logging a warning and falling back to the opaque object-typed column if the cast fails. This should allow users to remain mostly tensor extension agnostic.
TensorArray now eagerly validates the underlying tensor data, raising an error if e.g. the underlying ndarrays have heterogeneous shapes; previously, TensorArray wouldn't validate this on construction and would instead let failures happen downstream. This means that our internal TensorArray use needs to follow a try-except pattern, falling back to a plain NumPy object column. | ray | 11 | Python | 20 | test_data_batch_conversion.py | def test_numpy_object_pandas():
input_data = np.array([[1, 2, 3], [1]], dtype=object)
expected_output = pd.DataFrame({TENSOR_COLUMN_NAME: input_data})
actual_output = convert_batch_type_to_pandas(input_data)
assert expected_output.equals(actual_output)
np.testing.assert_array_equal(
convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY), input_data
)
| 0c139914bbb3e3557f13738b5f3f9fe8d2d428b4 | 72 | https://github.com/ray-project/ray.git | 47 | def test_numpy_object_pandas():
input_data = np.array([[1, 2, 3], [1]], dtype=object)
expected_output = pd.DataFrame({TENSOR_COLUMN_NAME: input_data})
actual_output = convert_batch_type_to_pandas(input_data)
assert expected_output.equals(actual_output)
np.testing.assert_array_equal( | 19 | 109 | test_numpy_object_pandas |
|
10 | 0 | 1 | 3 | synapse/storage/engines/sqlite.py | 248,306 | Tidy up and type-hint the database engine modules (#12734)
Co-authored-by: Sean Quah <8349537+squahtx@users.noreply.github.com> | synapse | 7 | Python | 10 | sqlite.py | def supports_returning(self) -> bool:
return sqlite3.sqlite_version_info >= (3, 35, 0)
| 1fe202a1a3343fad77da270ffe0923a46f1944dd | 20 | https://github.com/matrix-org/synapse.git | 24 | def supports_returning(self) -> bool:
return sqlite3.sqlite_version_info >= (3, 35, 0)
| 5 | 32 | supports_returning |
|
216 | 0 | 3 | 29 | sympy/core/tests/test_power.py | 198,238 | fix(core): fix evaluation of sqrt((-1+I)**2) | sympy | 16 | Python | 119 | test_power.py | def test_issue_7638():
f = pi/log(sqrt(2))
assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
# if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
# sign will be +/-1; for the previous "small arg" case, it didn't matter
# that this could not be proved
assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**Rational(1, 3)
assert (((1 + I)**(I*(1 + 7*f)))**Rational(1, 3)).exp == Rational(1, 3)
r = symbols('r', real=True)
assert sqrt(r**2) == abs(r)
assert cbrt(r**3) != r
assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**Rational(5, 4)
p = symbols('p', positive=True)
assert cbrt(p**2) == p**Rational(2, 3)
assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
assert sqrt(1/(1 + I)) == sqrt(1 - I)/sqrt(2) # or 1/sqrt(1 + I)
e = 1/(1 - sqrt(2))
assert sqrt(e) == I/sqrt(-1 + sqrt(2))
assert e**Rational(-1, 2) == -I*sqrt(-1 + sqrt(2))
assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp in [S.Half,
Rational(3, 2) + I/2]
assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3)
assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3)
for q in 1+I, 1-I:
assert sqrt(q**2) == q
for q in -1+I, -1-I:
assert sqrt(q**2) == -q
assert sqrt((p + r*I)**2) != p + r*I
e = (1 + I/5)
assert sqrt(e**5) == e**(5*S.Half)
assert sqrt(e**6) == e**3
assert sqrt((1 + I*r)**6) != (1 + I*r)**3
| 1ceeaf7635d2a633fe1a4295bed4fbebebcb8402 | 552 | https://github.com/sympy/sympy.git | 375 | def test_issue_7638():
f = pi/log(sqrt(2))
assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
# if 1/ | 23 | 826 | test_issue_7638 |
|
59 | 0 | 1 | 13 | tests/components/stream/test_worker.py | 290,548 | Refactor camera stream settings (#81663) | core | 12 | Python | 49 | test_worker.py | async def test_get_image(hass, h264_video, filename):
await async_setup_component(hass, "stream", {"stream": {}})
# Since libjpeg-turbo is not installed on the CI runner, we use a mock
with patch(
"homeassistant.components.camera.img_util.TurboJPEGSingleton"
) as mock_turbo_jpeg_singleton:
mock_turbo_jpeg_singleton.instance.return_value = mock_turbo_jpeg()
stream = create_stream(hass, h264_video, {}, dynamic_stream_settings())
with patch.object(hass.config, "is_allowed_path", return_value=True):
make_recording = hass.async_create_task(stream.async_record(filename))
await make_recording
assert stream._keyframe_converter._image is None
assert await stream.async_get_image() == EMPTY_8_6_JPEG
await stream.stop()
| ee910bd0e41391e00ccd521fe7d605e494d33046 | 110 | https://github.com/home-assistant/core.git | 121 | async def test_get_image(hass, h264_video, filename):
await async_setup_component(hass, "stream", {"stream": {}}) | 23 | 189 | test_get_image |
|
195 | 0 | 5 | 21 | src/diffusers/pipelines/pipeline_ddim.py | 334,842 | finish refactor | diffusers | 17 | Python | 123 | pipeline_ddim.py | def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
# eta corresponds to η in paper and should be between [0, 1]
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
num_trained_timesteps = self.noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
self.unet.to(torch_device)
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
generator=generator,
)
image = image.to(torch_device)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_image_direction -> "direction pointingc to x_t"
# - pred_prev_image -> "x_t-1"
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# 1. predict noise residual
with torch.no_grad():
residual = self.unet(image, inference_step_times[t])
# 2. predict previous mean of image x_t-1
pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
# 3. optionally sample variance
variance = 0
if eta > 0:
noise = torch.randn(image.shape, generator=generator).to(image.device)
variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
return image
| 12b10cbe0986409e2b87e891248d299b071d0383 | 225 | https://github.com/huggingface/diffusers.git | 511 | def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
# eta corresponds to η in paper and should be between [0, 1]
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
num_trained_timesteps = self.noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
self.unet.to(torch_device)
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
generator=generator,
)
image = image.to(torch_device)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_image_ | 35 | 355 | __call__ |
|
83 | 0 | 1 | 30 | rllib/evaluation/tests/test_rollout_worker.py | 137,298 | [RLlib] `AlgorithmConfig.overrides()` to replace `multiagent->policies->config` and `evaluation_config` dicts. (#30879) | ray | 24 | Python | 71 | test_rollout_worker.py | def test_action_normalization(self):
from ray.rllib.examples.env.random_env import RandomEnv
action_space = gym.spaces.Box(0.0001, 0.0002, (5,))
# Normalize: True (unsquash between Policy's action_space.low/high).
ev = RolloutWorker(
env_creator=lambda _: RandomEnv(
config=dict(
action_space=action_space,
max_episode_len=10,
p_done=0.0,
check_action_bounds=True,
)
),
config=AlgorithmConfig()
.multi_agent(
policies={
"default_policy": PolicySpec(
policy_class=RandomPolicy,
config={"ignore_action_bounds": True},
)
}
)
.rollouts(num_rollout_workers=0, batch_mode="complete_episodes")
.environment(
action_space=action_space, normalize_actions=True, clip_actions=False
),
)
sample = convert_ma_batch_to_sample_batch(ev.sample())
# Check, whether the action bounds have been breached (expected).
# We still arrived here b/c we unsquashed according to the Env's action
# space.
self.assertGreater(np.max(sample["actions"]), action_space.high[0])
self.assertLess(np.min(sample["actions"]), action_space.low[0])
ev.stop()
| 794cfd9725b4dc113aa50e60428367b15e921514 | 189 | https://github.com/ray-project/ray.git | 489 | def test_action_normalization(self):
from ray.rllib.examples.env.random_env import RandomEnv
action_space = gym.spaces.Box(0.0001, 0.0002, (5,))
# Normalize: True (unsquash between Policy's action_space.low/high).
ev = RolloutWorker(
env_creator=lambda _: RandomEnv(
config=dict(
action_space=action_space,
max_episode_len=10,
p_done=0.0,
check_action_bounds=True,
)
),
config=AlgorithmConfig()
.multi_agent(
policies={
"default_policy": PolicySpec(
policy_class=RandomPolicy,
config={"ignore_action_bounds": True},
)
}
)
.rollouts(num_rollout_workers=0, batch_mode="complete_episodes")
.environment(
action_space=action_space, normalize_actions=True, clip_actions=False
),
)
sample = convert_ma_batch_to_sample_batch(ev.sample())
# Check, whether the action | 43 | 284 | test_action_normalization |
|
33 | 0 | 1 | 25 | tests/providers/google/cloud/operators/test_vertex_ai.py | 44,312 | Create CustomJob and Datasets operators for Vertex AI service (#20077) | airflow | 12 | Python | 23 | test_vertex_ai.py | def test_execute(self, mock_hook, to_dict_mock):
op = CreateDatasetOperator(
task_id=TASK_ID,
gcp_conn_id=GCP_CONN_ID,
delegate_to=DELEGATE_TO,
impersonation_chain=IMPERSONATION_CHAIN,
region=GCP_LOCATION,
project_id=GCP_PROJECT,
dataset=TEST_DATASET,
retry=RETRY,
timeout=TIMEOUT,
metadata=METADATA,
)
op.execute(context={'ti': mock.MagicMock()})
mock_hook.assert_called_once_with(
gcp_conn_id=GCP_CONN_ID, delegate_to=DELEGATE_TO, impersonation_chain=IMPERSONATION_CHAIN
)
mock_hook.return_value.create_dataset.assert_called_once_with(
region=GCP_LOCATION,
project_id=GCP_PROJECT,
dataset=TEST_DATASET,
retry=RETRY,
timeout=TIMEOUT,
metadata=METADATA,
)
| 640c0b67631c5f2c8ee866b0726fa7a8a452cd3c | 119 | https://github.com/apache/airflow.git | 268 | def test_execute(self, mock_hook, to_dict_mock):
op = CreateDatasetOperator(
task_id=TASK_ID,
gcp_conn_id=GCP_CONN_ID,
delegate_to=DELEGATE_TO,
impersonation_chain=IMPERSONATION_CHAIN,
region=GCP_LOCATION,
project_id=GCP_PROJECT,
dataset=TEST_DATASET,
| 33 | 168 | test_execute |
|
82 | 0 | 1 | 38 | tests/sentry/api/endpoints/test_organization_metric_data.py | 91,679 | feat(metrics): make indexer more configurable (#35604)
This makes the sentry_metrics indexer more configurable in the following ways, to enable indexing on the ingest-performance-metrics topic:
- configurable input Kafka topic
- configurable output Kafka topic
- configurable model from which to pull index results
- tags for internal metrics to distinguish between the two modes operationally | sentry | 16 | Python | 53 | test_organization_metric_data.py | def test_abnormal_user_sessions(self):
user_ts = time.time()
self._send_buckets(
[
{
"org_id": self.organization.id,
"project_id": self.project.id,
"metric_id": self.session_user_metric,
"timestamp": user_ts,
"tags": {
self.session_status_tag: _indexer_record(self.organization.id, "abnormal")
},
"type": "s",
"value": [1, 2, 4],
"retention_days": 90,
},
{
"org_id": self.organization.id,
"project_id": self.project.id,
"metric_id": self.session_user_metric,
"timestamp": user_ts,
"tags": {},
"type": "s",
"value": [1, 2, 4, 7, 9],
"retention_days": 90,
},
],
entity="metrics_sets",
)
response = self.get_success_response(
self.organization.slug,
field=["session.abnormal_user"],
statsPeriod="6m",
interval="1m",
)
group = response.data["groups"][0]
assert group["totals"] == {"session.abnormal_user": 3}
assert group["series"] == {"session.abnormal_user": [0, 0, 0, 0, 0, 3]}
| 7f60db924ea37f34e0cfe6856777239e2a2ffe13 | 218 | https://github.com/getsentry/sentry.git | 620 | def test_abnormal_user_sessions(self):
user_ts = time.time()
self._send_buckets(
[
{
"org_id": self.organization.id,
"project_id": self.project.id,
"metric_id": self.session_user_metric,
"timestamp": user_ts,
"tags": {
self.session_status_tag: _indexer_record(self.organization.id, "abnormal")
},
"type": "s",
"value": [1, | 20 | 354 | test_abnormal_user_sessions |
|
19 | 0 | 1 | 11 | rllib/offline/estimators/tests/test_ope.py | 126,525 | [RLlib] Add OPE Learning Tests (#27154) | ray | 9 | Python | 18 | test_ope.py | def test_dm_mixed_policy_random_data(self):
print("Test DirectMethod on mixed policy on random dataset")
check_estimate(
estimator_cls=DirectMethod,
gamma=self.gamma,
q_model_config=self.q_model_config,
policy=self.mixed_policy,
batch=self.random_batch,
mean_ret=self.mixed_reward,
std_ret=self.mixed_std,
)
| 5b6a58ed2850d52b8e279d9553a910b7b1de1b42 | 52 | https://github.com/ray-project/ray.git | 116 | def test_dm_mixed_policy_random_data(self):
print("Test DirectMethod on mixed policy on random dataset")
check_estimate(
estimator_cls=DirectMethod,
gamma=self.gamma,
q_model_config=self.q_model_config,
policy=self.mixed_policy,
batch=self.random_batch,
| 16 | 77 | test_dm_mixed_policy_random_data |
|
29 | 0 | 1 | 6 | python/ray/tests/spark/test_utils.py | 137,649 | Ray on spark implementation (#28771)
REP: ray-project/enhancements#14 | ray | 12 | Python | 19 | test_utils.py | def test_get_spark_task_assigned_physical_gpus():
with patch.dict(os.environ, {}, clear=True):
assert get_spark_task_assigned_physical_gpus([2, 5]) == [2, 5]
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "2,3,6"}, clear=True):
assert get_spark_task_assigned_physical_gpus([0, 1]) == [2, 3]
assert get_spark_task_assigned_physical_gpus([0, 2]) == [2, 6]
| e76ccee69aaa7583be1a9d81cf7b2aa72cf25647 | 86 | https://github.com/ray-project/ray.git | 55 | def test_get_spark_task_assigned_physical_gpus():
with patch.dict(os.environ, {}, clear=True):
assert get_spark_tas | 7 | 133 | test_get_spark_task_assigned_physical_gpus |
|
78 | 0 | 5 | 27 | keras/callbacks_test.py | 269,982 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 16 | Python | 61 | callbacks_test.py | def fitModelAndAssertKerasModelWritten(self, model):
x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1))
tb_cbk = keras.callbacks.TensorBoard(
self.logdir, write_graph=True, profile_batch=0
)
model.fit(
x,
y,
batch_size=2,
epochs=3,
validation_data=(x, y),
callbacks=[tb_cbk],
)
summary_file = list_summaries(self.logdir)
self.assertEqual(
summary_file.tensors,
{
_ObservedSummary(logdir=self.train_dir, tag="keras"),
},
)
if not model.run_eagerly:
# There should be one train graph
self.assertLen(summary_file.graph_defs, 1)
for graph_def in summary_file.graph_defs:
graph_def_str = str(graph_def)
# All the model layers should appear in the graphs
for layer in model.layers:
if "input" not in layer.name:
self.assertIn(layer.name, graph_def_str)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 174 | https://github.com/keras-team/keras.git | 385 | def fitModelAndAssertKerasModelWritten(self, model):
x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1))
tb_cbk = keras.callbacks.TensorBoard(
self.logdir, write_graph=True, profile_batch=0
)
model.fit(
x,
y,
batch_size=2,
epochs=3,
validation_data=(x, y),
callbacks=[tb_cbk],
)
summary_file = list_summaries(self.logdir)
self.assertEqual(
summary_file.tensors,
{
_ObservedSummary(logdir=self.train_dir, tag="keras"),
},
)
if not model.run_eagerly:
# Th | 35 | 259 | fitModelAndAssertKerasModelWritten |
|
21 | 0 | 1 | 12 | torchvision/prototype/datasets/_builtin/oxford_iiit_pet.py | 192,654 | Refactor and simplify prototype datasets (#5778)
* refactor prototype datasets to inherit from IterDataPipe (#5448)
* refactor prototype datasets to inherit from IterDataPipe
* depend on new architecture
* fix missing file detection
* remove unrelated file
* reinstante decorator for mock registering
* options -> config
* remove passing of info to mock data functions
* refactor categories file generation
* fix imagenet
* fix prototype datasets data loading tests (#5711)
* reenable serialization test
* cleanup
* fix dill test
* trigger CI
* patch DILL_AVAILABLE for pickle serialization
* revert CI changes
* remove dill test and traversable test
* add data loader test
* parametrize over only_datapipe
* draw one sample rather than exhaust data loader
* cleanup
* trigger CI
* migrate VOC prototype dataset (#5743)
* migrate VOC prototype dataset
* cleanup
* revert unrelated mock data changes
* remove categories annotations
* move properties to constructor
* readd homepage
* migrate CIFAR prototype datasets (#5751)
* migrate country211 prototype dataset (#5753)
* migrate CLEVR prototype datsaet (#5752)
* migrate coco prototype (#5473)
* migrate coco prototype
* revert unrelated change
* add kwargs to super constructor call
* remove unneeded changes
* fix docstring position
* make kwargs explicit
* add dependencies to docstring
* fix missing dependency message
* Migrate PCAM prototype dataset (#5745)
* Port PCAM
* skip_integrity_check
* Update torchvision/prototype/datasets/_builtin/pcam.py
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* Address comments
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* Migrate DTD prototype dataset (#5757)
* Migrate DTD prototype dataset
* Docstring
* Apply suggestions from code review
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* Migrate GTSRB prototype dataset (#5746)
* Migrate GTSRB prototype dataset
* ufmt
* Address comments
* Apparently mypy doesn't know that __len__ returns ints. How cute.
* why is the CI not triggered??
* Update torchvision/prototype/datasets/_builtin/gtsrb.py
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* migrate CelebA prototype dataset (#5750)
* migrate CelebA prototype dataset
* inline split_id
* Migrate Food101 prototype dataset (#5758)
* Migrate Food101 dataset
* Added length
* Update torchvision/prototype/datasets/_builtin/food101.py
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* Migrate Fer2013 prototype dataset (#5759)
* Migrate Fer2013 prototype dataset
* Update torchvision/prototype/datasets/_builtin/fer2013.py
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* Migrate EuroSAT prototype dataset (#5760)
* Migrate Semeion prototype dataset (#5761)
* migrate caltech prototype datasets (#5749)
* migrate caltech prototype datasets
* resolve third party dependencies
* Migrate Oxford Pets prototype dataset (#5764)
* Migrate Oxford Pets prototype dataset
* Update torchvision/prototype/datasets/_builtin/oxford_iiit_pet.py
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* migrate mnist prototype datasets (#5480)
* migrate MNIST prototype datasets
* Update torchvision/prototype/datasets/_builtin/mnist.py
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com>
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com>
* Migrate Stanford Cars prototype dataset (#5767)
* Migrate Stanford Cars prototype dataset
* Address comments
* fix category file generation (#5770)
* fix category file generation
* revert unrelated change
* revert unrelated change
* migrate cub200 prototype dataset (#5765)
* migrate cub200 prototype dataset
* address comments
* fix category-file-generation
* Migrate USPS prototype dataset (#5771)
* migrate SBD prototype dataset (#5772)
* migrate SBD prototype dataset
* reuse categories
* Migrate SVHN prototype dataset (#5769)
* add test to enforce __len__ is working on prototype datasets (#5742)
* reactivate special dataset tests
* add missing annotation
* Cleanup prototype dataset implementation (#5774)
* Remove Dataset2 class
* Move read_categories_file out of DatasetInfo
* Remove FrozenBunch and FrozenMapping
* Remove test_prototype_datasets_api.py and move missing dep test somewhere else
* ufmt
* Let read_categories_file accept names instead of paths
* Mypy
* flake8
* fix category file reading
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
* update prototype dataset README (#5777)
* update prototype dataset README
* fix header level
* Apply suggestions from code review
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com>
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com>
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com> | vision | 10 | Python | 17 | oxford_iiit_pet.py | def _resources(self) -> List[OnlineResource]:
images = HttpResource(
"https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz",
sha256="67195c5e1c01f1ab5f9b6a5d22b8c27a580d896ece458917e61d459337fa318d",
preprocess="decompress",
)
anns = HttpResource(
"https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz",
sha256="52425fb6de5c424942b7626b428656fcbd798db970a937df61750c0f1d358e91",
preprocess="decompress",
)
return [images, anns]
| 1ac6e8b91b980b052324f77828a5ef4a6715dd66 | 46 | https://github.com/pytorch/vision.git | 121 | def _resources(self) -> List[OnlineResource]:
images = HttpResource(
"https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz",
sha256="67 | 9 | 78 | _resources |
|
19 | 0 | 2 | 7 | erpnext/patches/v12_0/set_cwip_and_delete_asset_settings.py | 66,660 | style: format code with black | erpnext | 11 | Python | 18 | set_cwip_and_delete_asset_settings.py | def execute():
if frappe.db.exists("DocType", "Asset Settings"):
frappe.reload_doctype("Asset Category")
cwip_value = frappe.db.get_single_value("Asset Settings", "disable_cwip_accounting")
frappe.db.sql(, cint(cwip_value))
frappe.db.sql()
frappe.delete_doc_if_exists("DocType", "Asset Settings")
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 64 | https://github.com/frappe/erpnext.git | 12 | def execute():
if frappe.db.exists("DocType", "Asset Settings"):
frappe.reload_doctype("Asset Category")
cwip_value = frappe.db.get_single_value("Asset Settings", "disable_cwip_accounting")
frappe.db.sql(, cint(cwip_value))
frappe.db.sql()
fr | 10 | 121 | execute |
|
17 | 0 | 1 | 9 | TTS/tts/utils/text/symbols.py | 261,954 | Implement BaseCharacters, IPAPhonemes, Graphemes | TTS | 8 | Python | 17 | symbols.py | def parse_symbols():
return {
"pad": _pad,
"eos": _eos,
"bos": _bos,
"characters": _characters,
"punctuations": _punctuations,
"phonemes": _phonemes,
}
| 2fb1f705031d4a9602e5853232d28b53cde89a5f | 31 | https://github.com/coqui-ai/TTS.git | 64 | def parse_symbols():
return {
"pad": _pad,
"eos": _eos,
"bos": _bos,
"characters": _char | 7 | 55 | parse_symbols |
|
34 | 0 | 1 | 17 | IPython/core/tests/test_magic.py | 208,580 | Format code | ipython | 13 | Python | 28 | test_magic.py | def test_file_double_quote():
ip = get_ipython()
with TemporaryDirectory() as td:
fname = os.path.join(td, '"file1"')
ip.run_cell_magic(
"writefile",
fname,
"\n".join(
[
"line1",
"line2",
]
),
)
s = Path(fname).read_text(encoding="utf-8")
assert "line1\n" in s
assert "line2" in s
| 1a9d9554bcee466394990535e190d55008904df8 | 71 | https://github.com/ipython/ipython.git | 197 | def test_file_double_quote():
ip = get_ipython()
with TemporaryDirectory() as td:
fname = os.path.join(td, '"file1"')
ip.run_cell_magic(
"writefile",
fname,
"\n".join(
[
"line1",
"line2",
]
),
)
s = Path(fname).read_text(encoding="utf-8")
assert "line1\n" in s
assert "line2" in s
| 14 | 134 | test_file_double_quote |
|
179 | 0 | 2 | 35 | pandas/tests/scalar/timestamp/test_timestamp.py | 171,193 | API: make Timestamp/Timedelta _as_unit public as_unit (#48819)
* API: make Timestamp/Timedelta _as_unit public as_unit
* update test
* update test
* update tests
* fix pyi typo
* fixup
* fixup | pandas | 13 | Python | 67 | test_timestamp.py | def test_sub_timedeltalike_mismatched_reso(self, ts_tz):
# case with non-lossy rounding
ts = ts_tz
# choose a unit for `other` that doesn't match ts_tz's;
# this construction ensures we get cases with other._creso < ts._creso
# and cases with other._creso > ts._creso
unit = {
NpyDatetimeUnit.NPY_FR_us.value: "ms",
NpyDatetimeUnit.NPY_FR_ms.value: "s",
NpyDatetimeUnit.NPY_FR_s.value: "us",
}[ts._creso]
other = Timedelta(0).as_unit(unit)
assert other._creso != ts._creso
result = ts + other
assert isinstance(result, Timestamp)
assert result == ts
assert result._creso == max(ts._creso, other._creso)
result = other + ts
assert isinstance(result, Timestamp)
assert result == ts
assert result._creso == max(ts._creso, other._creso)
if ts._creso < other._creso:
# Case where rounding is lossy
other2 = other + Timedelta._from_value_and_reso(1, other._creso)
exp = ts.as_unit(other.unit) + other2
res = ts + other2
assert res == exp
assert res._creso == max(ts._creso, other._creso)
res = other2 + ts
assert res == exp
assert res._creso == max(ts._creso, other._creso)
else:
ts2 = ts + Timedelta._from_value_and_reso(1, ts._creso)
exp = ts2 + other.as_unit(ts2.unit)
res = ts2 + other
assert res == exp
assert res._creso == max(ts._creso, other._creso)
res = other + ts2
assert res == exp
assert res._creso == max(ts._creso, other._creso)
| f3c46cd0899d5e11e0602798d9390c90e51e9ba7 | 283 | https://github.com/pandas-dev/pandas.git | 533 | def test_sub_timedeltalike_mismatched_reso(self, ts_tz):
# case with non-lossy rounding
ts = ts_tz
# choose a unit for `other` that doesn't match ts_tz's;
# this construction ensures we get cases with other._creso < ts._creso
# and cases with other._creso > ts._creso
unit = {
NpyDatetimeUnit.NPY_FR_us.value: "ms",
NpyDatetimeUnit.NPY_FR_ms.value: "s",
NpyDatetimeUnit.NPY_FR_s.value: "us",
}[ts._creso]
other = Timedelta(0).as_unit(unit)
assert other._creso != ts._creso
result = ts + other
assert isinstance(result, Timestamp)
assert result == ts
assert result._creso == max(ts._creso, other._creso)
result = other + ts
assert isinstance(result, Timestamp)
assert result == ts
assert result._creso == max(ts._creso, other._creso)
if ts._creso < other._creso:
# Case where rounding is lossy
other2 = other + Timedelta._from_value_and_reso(1, other._creso)
exp = ts.as_unit(other.unit) + other2
res = ts + other2
assert res == exp
assert res._creso == max(ts._creso, other._creso)
res = other2 + ts
assert res == exp
assert res._creso == max(ts._creso, other._creso)
else:
ts2 = ts + Timedelta._from_value_and_reso(1, ts._creso)
exp = ts2 + other.as_unit(ts2.unit)
res = ts2 + other
assert res == exp
assert res._creso == max(ts._creso, other._creso)
res = ot | 23 | 438 | test_sub_timedeltalike_mismatched_reso |
|
41 | 1 | 4 | 14 | gradio/routes.py | 179,572 | added backend support, see demo xray_blocks | gradio | 15 | Python | 37 | routes.py | def file(path):
if (
app.launchable.encrypt
and isinstance(app.launchable.examples, str)
and path.startswith(app.launchable.examples)
):
with open(safe_join(app.cwd, path), "rb") as encrypted_file:
encrypted_data = encrypted_file.read()
file_data = encryptor.decrypt(app.launchable.encryption_key, encrypted_data)
return FileResponse(
io.BytesIO(file_data), attachment_filename=os.path.basename(path)
)
else:
return FileResponse(safe_join(app.cwd, path))
@app.get("/api", response_class=HTMLResponse) # Needed for Spaces
@app.get("/api/", response_class=HTMLResponse) | 188757c1abd64a69a27ee926e30a890fcd87bc7b | @app.get("/api", response_class=HTMLResponse) # Needed for Spaces
@app.get("/api/", response_class=HTMLResponse) | 109 | https://github.com/gradio-app/gradio.git | 126 | def file(path):
if (
app.launchable.encrypt
and isinstance(app.launchable.examples, str)
and path | 28 | 211 | file |
33 | 0 | 4 | 6 | ludwig/models/predictor.py | 7,066 | Adds mechanism for calibrating probabilities for category and binary features (#1949)
* Started adding files for calibration implementation.
* Adds option to return logits and labels in predictor.
* Pre-commit fixes
* First pass temperature scaling working.
* Fixes calibration for categorical feature.
* Separate calibrated logits from logits.
* Adds option to revert temperature scaling.
* Refactoring, move binary prediction logic into calibration class.
* Reverted accidental commit to simple_model_training.py
* Adds checks and comments.
* Fixes matrix scaling, convert pandas series to numpy arrays.
* Fixes number of classes for categorical features.
* Adds structured calibration result, unit tests.
* Make create_calibration_module not abstract, default implementation returns None.
* Relax precision requirement for calibration test.
* Save weights after calibration, so calibration results are included in save file.
* Implemented dirichlet scaling with l2 off-diagonal regularization.
* Adds masked_select off_diagonal method.
* Change back to matrix scaling.
* Updates test expectations to reflect learning rate settings.
* Tuned default regularization weight.
* Comments.
* Set random seed, testing to see if that makes a difference.
* Remove checks for exact NLL, ECE values post calibration.
* Restored LOGITS to EXCLUDE_PRED_SET, added another option to return logits in batch_predict.
* Factor calibration method out of Trainer into Calibrator
* Removed horovod argument from calibrator.
* Return batch_size if eval_batch_size not specified.
* Fix calibration_module docstring.
* Updates comment, adds fallback method of calibrating on training set if no validation set available.
* Adds calibration registry, replaces if statements for instantiating calibration.
* Raise ValueError if unsupported calibration method specified.
* Remove calibrate method from Trainer
* f string
* Use backend to create predictor for calibration.
* Moves saving out of calibrator
* Fix comment.
* Adds ray test of calibration.
* Implements collect_logits in ray predictor.
* First pass implementation of collect_labels.
* Implements collect_logits and collect_labels in ray backend.
* Merge predictions and labels in ray backend
* Reverts collect_labels, get labels from dataset in calibrate.
* Allow overriding EXCLUDE_PRED_SET when getting preds.
* Changes 'calibration' config option to binary.
* Test both binary and category output features in ray test.
* Comments/
* Adds type hints.
Co-authored-by: Daniel Treiman <daniel@predibase.com> | ludwig | 14 | Python | 29 | predictor.py | def _accumulate_preds(self, preds, predictions, exclude_pred_set=EXCLUDE_PRED_SET):
# accumulate predictions from batch for each output feature
for of_name, of_preds in preds.items():
for pred_name, pred_values in of_preds.items():
if pred_name not in exclude_pred_set:
key = f"{of_name}_{pred_name}"
predictions[key].append(pred_values)
| e65f74e87e8e29922f4e9f9d839978ffb2c5b029 | 54 | https://github.com/ludwig-ai/ludwig.git | 110 | def _accumulate_preds(self, preds, predictions, exclude_pred_set=EXCLUDE_PRED_SET):
# accumulate predictions from batch for each output feature
for of_name, of_preds in preds.items():
for pred_name, pred_v | 13 | 91 | _accumulate_preds |
|
104 | 0 | 4 | 85 | erpnext/accounts/doctype/cheque_print_template/cheque_print_template.py | 64,842 | style: format code with black | erpnext | 13 | Python | 88 | cheque_print_template.py | def create_or_update_cheque_print_format(template_name):
if not frappe.db.exists("Print Format", template_name):
cheque_print = frappe.new_doc("Print Format")
cheque_print.update(
{
"doc_type": "Payment Entry",
"standard": "No",
"custom_format": 1,
"print_format_type": "Jinja",
"name": template_name,
}
)
else:
cheque_print = frappe.get_doc("Print Format", template_name)
doc = frappe.get_doc("Cheque Print Template", template_name)
cheque_print.html = % {
"starting_position_from_top_edge": doc.starting_position_from_top_edge
if doc.cheque_size == "A4"
else 0.0,
"cheque_width": doc.cheque_width,
"cheque_height": doc.cheque_height,
"acc_pay_dist_from_top_edge": doc.acc_pay_dist_from_top_edge,
"acc_pay_dist_from_left_edge": doc.acc_pay_dist_from_left_edge,
"message_to_show": doc.message_to_show if doc.message_to_show else _("Account Pay Only"),
"date_dist_from_top_edge": doc.date_dist_from_top_edge,
"date_dist_from_left_edge": doc.date_dist_from_left_edge,
"acc_no_dist_from_top_edge": doc.acc_no_dist_from_top_edge,
"acc_no_dist_from_left_edge": doc.acc_no_dist_from_left_edge,
"payer_name_from_top_edge": doc.payer_name_from_top_edge,
"payer_name_from_left_edge": doc.payer_name_from_left_edge,
"amt_in_words_from_top_edge": doc.amt_in_words_from_top_edge,
"amt_in_words_from_left_edge": doc.amt_in_words_from_left_edge,
"amt_in_word_width": doc.amt_in_word_width,
"amt_in_words_line_spacing": doc.amt_in_words_line_spacing,
"amt_in_figures_from_top_edge": doc.amt_in_figures_from_top_edge,
"amt_in_figures_from_left_edge": doc.amt_in_figures_from_left_edge,
"signatory_from_top_edge": doc.signatory_from_top_edge,
"signatory_from_left_edge": doc.signatory_from_left_edge,
}
cheque_print.save(ignore_permissions=True)
frappe.db.set_value("Cheque Print Template", template_name, "has_print_format", 1)
return cheque_print
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 246 | https://github.com/frappe/erpnext.git | 63 | def create_or_update_cheque_print_format(template_name):
if not frappe.db.exists("Print Format", template_name):
cheque_print = frappe.new_doc("Print Format")
cheque_print.update(
{
"doc_type": "Payment Entry",
"standard": "No",
"custom_format": 1,
"print_format_type": "Jinja",
"name": template_name,
}
)
else:
cheque_print = frappe.get_doc("Print Format", template_name)
doc = frappe.get_doc("Cheque Print Template", template_name)
cheque_print.html = % {
"starting_position_from_top_edge": doc.starting_position_from_top_edge
if doc.cheque_size == "A4"
else 0.0,
"cheque_width": doc.cheque_width,
"cheque_height": doc.cheque_height,
"acc_pay_dist_from_top_edge": doc.acc_pay_dist_from_top_edge,
"acc_pay_dist_from_left_edge": doc.acc_pay_dist_from_left_edge,
"message_to_show": doc.message_to_show if doc.message_to_show else _("Account Pay Only"),
"date_dist_from_top_edge": doc.date_dist_from_top_edge,
"date_dist_from_left_edge": doc.date_dist_from_left_edge,
"acc_no_dist_from_top_edge": doc.acc_no_dist_from_top_edge,
"acc_no_dist_from_left_edge": doc.acc_no_dist_from_left_edge,
"payer_name_from_top_edge": doc.payer_name_from_top_edge,
"payer_name_from_left_edge": doc.payer_name_from_left_edge,
"amt_in_words_from_top_edge": doc.amt_in_words_from_top_edge,
| 36 | 419 | create_or_update_cheque_print_format |
|
40 | 0 | 3 | 9 | sympy/physics/quantum/shor.py | 197,337 | Remove abbreviations in documentation | sympy | 13 | Python | 27 | shor.py | def shor(N):
a = random.randrange(N - 2) + 2
if igcd(N, a) != 1:
return igcd(N, a)
r = period_find(a, N)
if r % 2 == 1:
shor(N)
answer = (igcd(a**(r/2) - 1, N), igcd(a**(r/2) + 1, N))
return answer
| 65be461082dda54c8748922f9c29a19af1279fe1 | 89 | https://github.com/sympy/sympy.git | 75 | def shor(N):
a = random.randrange(N - 2) + 2
if igc | 9 | 138 | shor |
|
28 | 0 | 3 | 9 | keras/utils/data_utils.py | 276,738 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 12 | Python | 26 | data_utils.py | def _hash_file(fpath, algorithm="sha256", chunk_size=65535):
if isinstance(algorithm, str):
hasher = _resolve_hasher(algorithm)
else:
hasher = algorithm
with open(fpath, "rb") as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b""):
hasher.update(chunk)
return hasher.hexdigest()
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 73 | https://github.com/keras-team/keras.git | 75 | def _hash_file(fpath, algorithm="sha256", chunk_size=65535):
if isinstance(algorithm, str):
hasher = _resolve_hasher(algorithm)
else:
hasher = algorithm
with open(fpath, "rb") as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b""):
hasher.u | 15 | 123 | _hash_file |
|
20 | 0 | 2 | 28 | tests/jobs/test_backfill_job.py | 46,930 | Fixed backfill interference with scheduler (#22701)
Co-authored-by: Dmirty Suvorov <dmitry.suvorov@scribd.com> | airflow | 10 | Python | 15 | test_backfill_job.py | def test_backfill_max_limit_check(self, dag_maker):
dag_id = 'test_backfill_max_limit_check'
run_id = 'test_dag_run'
start_date = DEFAULT_DATE - datetime.timedelta(hours=1)
end_date = DEFAULT_DATE
dag_run_created_cond = threading.Condition()
| 9769a65c20f6028d640061efacbc5bfeb5ebaf3d | 176 | https://github.com/apache/airflow.git | 54 | def test_backfill_max_limit_check(self, dag_maker):
dag_id = 'test_backfill_max_limit_check'
run_id = 'test_dag_run'
start_date = DEFAULT_DATE - datetime.timedelta(hours=1)
end_date = DEFAULT_DATE
dag_run_created_cond = threading.Condition()
| 14 | 61 | test_backfill_max_limit_check |
|
16 | 0 | 2 | 5 | airflow/www/utils.py | 45,438 | Make Grid and and Graph view work with task mapping (#21740)
* Expand mapped tasks in the Scheduler
Technically this is done inside
DagRun.task_instance_scheduling_decisions, but the only place that is
currently called is the Scheduler
The way we are getting `upstream_ti` to pass to expand_mapped_task is
all sorts of wrong and will need fixing, I think the interface for that
method is wrong and the mapped task should be responsible for finding
the right upstream TI itself.
* make UI and tree work with mapped tasks
* add graph tooltip and map count
* simplify node label redraw logic
* add utils.js and map_index to /taskInstances
* use TaskInstanceState instead of strings
* move map_index on /taskinstance to separate PR
* check to use Task or Tasks
* remove `no_status` and use TaskInstanceState
Co-authored-by: Ash Berlin-Taylor <ash@apache.org> | airflow | 9 | Python | 15 | utils.py | def get_instance_with_map(task_instance, session):
if task_instance.map_index == -1:
return alchemy_to_dict(task_instance)
mapped_instances = get_mapped_instances(task_instance, session)
return get_mapped_summary(task_instance, mapped_instances)
| bb26f96665567325a7fbb810249820e7dac0322a | 35 | https://github.com/apache/airflow.git | 31 | def get_instance_with_map(task_instance, session):
if task_instance.map_index == -1:
return alchemy_to_dict | 8 | 54 | get_instance_with_map |
|
9 | 0 | 1 | 3 | saleor/graphql/discount/mutations/voucher_create.py | 27,823 | Reorganise discount mutations (#10037)
* reorganise discount mutations
* remove commented imports
* fixes after review
* drop NodeIatalogueInfo | saleor | 9 | Python | 9 | voucher_create.py | def success_response(cls, instance):
instance = ChannelContext(node=instance, channel_slug=None)
return super().success_response(instance)
| 2a5e6795271fcec84228f86267f3127c9925a888 | 28 | https://github.com/saleor/saleor.git | 22 | def success_response(cls, instance):
instance = ChannelContext(node=insta | 7 | 44 | success_response |
|
26 | 0 | 2 | 6 | test/test_prototype_datasets_utils.py | 192,861 | simplify OnlineResource.load (#5990)
* simplify OnlineResource.load
* [PoC] merge mock data preparation and loading
* Revert "cache mock data based on config"
This reverts commit 5ed6eedef74865e0baa746a375d5ec1f0ab1bde7.
* Revert "[PoC] merge mock data preparation and loading"
This reverts commit d62747962f9ed6a7b0b80849e7c971efabb5d3da.
* remove preprocess returning a new path in favor of querying twice
* address test comments
* clarify comment
* mypy
* use builtin decompress utility | vision | 12 | Python | 22 | test_prototype_datasets_utils.py | def test_load_folder(self, tmp_path):
folder, files = self._make_folder(tmp_path)
resource = self.DummyResource(file_name=folder.name)
dp = resource.load(tmp_path)
assert isinstance(dp, FileOpener)
assert {path: buffer.read().decode() for path, buffer in dp} == files
| b430ba684fb0d689427eaa44ba0b2c363e64f285 | 66 | https://github.com/pytorch/vision.git | 60 | def test_load_folder(self, tmp_path):
folder, files = self._make_folder(tmp_path)
resource = self.DummyResource(file_name=folder.name)
| 18 | 103 | test_load_folder |
|
49 | 0 | 7 | 11 | erpnext/accounts/report/gross_and_net_profit_report/gross_and_net_profit_report.py | 65,261 | style: format code with black | erpnext | 13 | Python | 35 | gross_and_net_profit_report.py | def adjust_account(data, period_list, consolidated=False):
leaf_nodes = [item for item in data if item["is_group"] == 0]
totals = {}
for node in leaf_nodes:
set_total(node, node["total"], data, totals)
for d in data:
for period in period_list:
key = period if consolidated else period.key
d[key] = totals[d["account"]]
d["total"] = totals[d["account"]]
return data
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 94 | https://github.com/frappe/erpnext.git | 38 | def adjust_account(data, period_list, consolidated=False):
leaf_nodes = [item for item in data | 12 | 144 | adjust_account |
|
122 | 0 | 1 | 58 | tests/sentry/search/events/test_builder.py | 92,947 | fix(snuba): Add appropriate `UseCaseKey` for indexer [TET-146] (#36308)
* fix(snuba): Add appropriate `UseCaseKey` for indexer
Update indexer invocation call to have the appropriate
`UseCaseKey` depending on use case.
In `src/sentry/sentry_metrics/indexer/base.py::StringIndexer`
when using `resolve` and `reverse_resolve` callers should not
rely on the default use_case_id.
Important changes:
- Add required parameter `use_case_id: UseCaseKey` to `get_series` from `src/sentry/snuba/metrics/datasource.py#L612`;
- Add required parameter to `get_metrics` in `src/sentry/snuba/metrics/datasource.py`
- Add required parameter to `get_tags` in `src/sentry/snuba/metrics/datasource.py`
- Add required parameter to `get_tag_values` in `src/sentry/snuba/metrics/datasource.py` | sentry | 12 | Python | 80 | test_builder.py | def test_aggregate_query_with_multiple_entities_without_orderby(self):
self.store_metric(
200,
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
1,
metric="user",
tags={"transaction": "bar_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
1,
metric="user",
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
2,
metric="user",
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
# This will query both sets & distribution cause of selected columns
query = MetricsQueryBuilder(
self.params,
# Filter by count_unique since the default primary is distributions without an orderby
"count_unique(user):>1",
dataset=Dataset.PerformanceMetrics,
selected_columns=[
"transaction",
"project",
"p95(transaction.duration)",
"count_unique(user)",
],
allow_metric_aggregates=True,
use_aggregate_conditions=True,
)
result = query.run_query("test_query")
assert len(result["data"]) == 1
assert result["data"][0] == {
"transaction": indexer.resolve(
self.organization.id,
"baz_transaction",
UseCaseKey.PERFORMANCE,
),
"project": self.project.slug,
"p95_transaction_duration": 200,
"count_unique_user": 2,
}
self.assertCountEqual(
result["meta"],
[
{"name": "transaction", "type": "UInt64"},
{"name": "project", "type": "String"},
{"name": "p95_transaction_duration", "type": "Float64"},
{"name": "count_unique_user", "type": "UInt64"},
],
)
| cd803d173c72b64d06c0687170bf9a945d0b503c | 293 | https://github.com/getsentry/sentry.git | 746 | def test_aggregate_query_with_multiple_entities_without_orderby(self):
self.store_metric(
200,
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
1,
metric="user",
tags={"transaction": "bar_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
1,
metric="user",
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
self.store_metric(
2,
metric="user",
tags={"transaction": "baz_transaction"},
timestamp=self.start + datetime.timedelta(minutes=5),
)
# This will query both sets & distribution cause of selected columns
query = MetricsQueryBuilder(
self.params,
# Filter by count_unique since the default primary is distributions without an orderby
"count_unique(user):>1",
dataset=Dataset.PerformanceMetrics,
selected_columns=[
"transaction",
"project",
"p95(transaction.duration)",
"count_unique(user)",
],
allow_metric_aggregates=True,
use_aggregate_conditions=True,
)
res | 31 | 496 | test_aggregate_query_with_multiple_entities_without_orderby |
|
96 | 0 | 3 | 30 | tests/sentry/sentry_metrics/test_postgres_indexer.py | 91,721 | feat(metrics): make indexer more configurable (#35604)
This makes the sentry_metrics indexer more configurable in the following ways, to enable indexing on the ingest-performance-metrics topic:
- configurable input Kafka topic
- configurable output Kafka topic
- configurable model from which to pull index results
- tags for internal metrics to distinguish between the two modes operationally | sentry | 13 | Python | 57 | test_postgres_indexer.py | def test_already_created_plus_written_results(self) -> None:
org_id = 1234
v0 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.0")
v1 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.1")
v2 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.2")
expected_mapping = {"v1.2.0": v0.id, "v1.2.1": v1.id, "v1.2.2": v2.id}
results = self.indexer.bulk_record(
use_case_id=self.use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2"}}
)
assert len(results[org_id]) == len(expected_mapping) == 3
for string, id in results[org_id].items():
assert expected_mapping[string] == id
results = self.indexer.bulk_record(
use_case_id=self.use_case_id,
org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2", "v1.2.3"}},
)
v3 = StringIndexer.objects.get(organization_id=org_id, string="v1.2.3")
expected_mapping["v1.2.3"] = v3.id
assert len(results[org_id]) == len(expected_mapping) == 4
for string, id in results[org_id].items():
assert expected_mapping[string] == id
fetch_meta = results.get_fetch_metadata()
assert_fetch_type_for_tag_string_set(
fetch_meta, FetchType.CACHE_HIT, {"v1.2.0", "v1.2.1", "v1.2.2"}
)
assert_fetch_type_for_tag_string_set(fetch_meta, FetchType.FIRST_SEEN, {"v1.2.3"})
| 7f60db924ea37f34e0cfe6856777239e2a2ffe13 | 270 | https://github.com/getsentry/sentry.git | 302 | def test_already_created_plus_written_results(self) -> None:
org_id = 1234
v0 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.0")
v1 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.1")
v2 = StringIndexer.objects.create(organization_id=org_id, string="v1.2.2")
expected_mapping = {"v1.2.0": v0.id, "v1.2.1": v1.id, "v1.2.2": v2.id}
results = self.indexer.bulk_record(
use_case_id=self.use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2"}}
)
assert len(results[org_id]) == len(expected_mapping) == 3
for string, id in results[org_id].items():
assert expected_mapping[str | 28 | 436 | test_already_created_plus_written_results |
|
30 | 0 | 1 | 7 | pandas/tests/arrays/categorical/test_indexing.py | 168,180 | DEPR: inplace keyword for Categorical.set_ordered, setting .categories directly (#47834)
* DEPR: inplcae keyword for Categorical.set_ordered, setting .categories directly
* update docs
* typo fixup
* suppress warning
Co-authored-by: Jeff Reback <jeff@reback.net> | pandas | 11 | Python | 26 | test_indexing.py | def test_categories_assignments(self):
cat = Categorical(["a", "b", "c", "a"])
exp = np.array([1, 2, 3, 1], dtype=np.int64)
with tm.assert_produces_warning(FutureWarning, match="Use rename_categories"):
cat.categories = [1, 2, 3]
tm.assert_numpy_array_equal(cat.__array__(), exp)
tm.assert_index_equal(cat.categories, Index([1, 2, 3]))
| 46c615d43bd197fb4defdf6231929b58c0e50288 | 95 | https://github.com/pandas-dev/pandas.git | 75 | def test_categories_assignments(self):
cat = Categorical(["a", "b", "c", "a"])
exp = np.array([1, 2, 3, 1], dtype=np.int64)
with tm.assert_produces_warning(FutureW | 18 | 149 | test_categories_assignments |
|
46 | 1 | 1 | 16 | tests/components/alexa/test_smart_home.py | 298,363 | Correct time stamp format in Alexa responses (#70267) | core | 10 | Python | 37 | test_smart_home.py | async def test_input_boolean(hass):
device = ("input_boolean.test", "off", {"friendly_name": "Test input boolean"})
appliance = await discovery_test(device, hass)
assert appliance["endpointId"] == "input_boolean#test"
assert appliance["displayCategories"][0] == "OTHER"
assert appliance["friendlyName"] == "Test input boolean"
assert_endpoint_capabilities(
appliance, "Alexa.PowerController", "Alexa.EndpointHealth", "Alexa"
)
await assert_power_controller_works(
"input_boolean#test",
"input_boolean.turn_on",
"input_boolean.turn_off",
hass,
"2022-04-19T07:53:05Z",
)
@freeze_time("2022-04-19 07:53:05") | e45d4d53dd98ac23f138eed57d39bd46be8048fd | @freeze_time("2022-04-19 07:53:05") | 76 | https://github.com/home-assistant/core.git | 117 | async def test_input_boolean(hass):
device = ("input_boolean.test", "off", {"friendly_name": "Test input boolean"}) | 8 | 156 | test_input_boolean |
82 | 0 | 1 | 12 | tests/test_models/test_task_modules/test_prior_generators/test_anchor_generator.py | 245,306 | Refactor package | mmdetection | 11 | Python | 41 | test_anchor_generator.py | def test_strides():
from mmdet.models.task_modules.prior_generators import AnchorGenerator
# Square strides
self = AnchorGenerator([10], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 5., 5., 15.], [5., 5., 15., 15.]])
assert torch.equal(anchors[0], expected_anchors)
# Different strides in x and y direction
self = AnchorGenerator([(10, 20)], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 15., 5., 25.], [5., 15., 15., 25.]])
assert torch.equal(anchors[0], expected_anchors)
| fa77be290460e84ce7da975831cb7e687a419177 | 258 | https://github.com/open-mmlab/mmdetection.git | 186 | def test_strides():
from mmdet.models.task_modules.prior_generators import AnchorGenerator
# Square strides
self = AnchorGenerator([10], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 5., 5., 15.], [5., 5., 15., 15.]])
assert torch.equal(anchors[0], expected_anc | 14 | 306 | test_strides |
|
19 | 1 | 2 | 4 | tests/integration/external_deployment/test_external_deployment.py | 13,223 | feat: distributed replicas across different hosts (#5217) | jina | 10 | Python | 18 | test_external_deployment.py | def foo(self, docs, *args, **kwargs):
for doc in docs:
doc.tags['name'] = self.runtime_args.name
doc.tags['uuid'] = self._id
@pytest.mark.parametrize('num_shards', [1, 2], indirect=True) | 82960f105149c478e4fc88e8b4fef8bbe2454429 | @pytest.mark.parametrize('num_shards', [1, 2], indirect=True) | 40 | https://github.com/jina-ai/jina.git | 46 | def foo(self, docs, *args, **kwargs):
for doc in docs:
doc.tags['name'] = self.runtime_ar | 14 | 92 | foo |
20 | 0 | 1 | 5 | tests/test_text.py | 161,708 | Fix numerous typos in tests | rich | 10 | Python | 17 | test_text.py | def test_wrap_overflow_long():
text = Text("bigword" * 10)
lines = text.wrap(Console(), 4, overflow="ellipsis")
assert len(lines) == 1
assert lines[0] == Text("big…")
| 7975c563e19f04be4c39fd7f36bc3939e5ed9d84 | 45 | https://github.com/Textualize/rich.git | 31 | def test_wrap_overflow_long():
text | 8 | 77 | test_wrap_overflow_long |
|
104 | 0 | 1 | 17 | parsing/dml_csr/networks/modules/ddgcn.py | 9,084 | Create ddgcn.py | insightface | 11 | Python | 51 | ddgcn.py | def forward(self, x):
# b, c, h, w = x.size()
node_k = self.node_k(x)
node_v = self.node_v(x)
node_q = self.node_q(x)
b,c,h,w = node_k.size()
node_k = node_k.view(b, c, -1).permute(0, 2, 1)
node_q = node_q.view(b, c, -1)
node_v = node_v.view(b, c, -1).permute(0, 2, 1)
# A = k * q
# AV = k * q * v
# AVW = k *(q *v) * w
AV = torch.bmm(node_q,node_v)
AV = self.softmax(AV)
AV = torch.bmm(node_k, AV)
AV = AV.transpose(1, 2).contiguous()
AVW = self.conv_wg(AV)
AVW = self.bn_wg(AVW)
AVW = AVW.view(b, c, h, -1)
# out = F.relu_(self.out(AVW) + x)
out = self.gamma * self.out(AVW) + x
return out
| 4992c3d75bdbc3bfde8b49fa2b0f6694bfad9987 | 190 | https://github.com/deepinsight/insightface.git | 250 | def forward(self, x):
# b, c, h, w = x.size()
node_k = self.node_k(x)
node_v = self.node_v(x)
node_q = self.node_q(x)
b,c,h,w = node_k.size()
node_k = node_k.view(b, c, -1).permute(0, 2, 1)
node_q = node_q.view(b, c, -1)
node_v = node_v.view(b, c, -1).permute(0, 2, 1)
# A = k * q
# AV = k * q * v
# AVW = k *(q *v) * w
AV = torch.bmm(node_q,node_v)
AV = self.softmax(AV)
AV = torch.bmm(node_k, AV)
AV = AV.transpose(1, 2).contiguous()
AVW = self.conv_wg(AV)
AVW = self.bn_wg(AVW)
| 24 | 292 | forward |
|
85 | 1 | 3 | 31 | erpnext/controllers/queries.py | 69,412 | test: added test case to validate seachfields for customer, supplier | erpnext | 16 | Python | 69 | queries.py | def customer_query(doctype, txt, searchfield, start, page_len, filters, as_dict=False):
doctype = "Customer"
conditions = []
cust_master_name = frappe.defaults.get_user_default("cust_master_name")
fields = ["name"]
if cust_master_name != "Customer Name":
fields = ["customer_name"]
fields = get_fields(doctype, fields)
searchfields = frappe.get_meta(doctype).get_search_fields()
searchfields = " or ".join(field + " like %(txt)s" for field in searchfields)
return frappe.db.sql(
.format(
**{
"fields": ", ".join(fields),
"scond": searchfields,
"mcond": get_match_cond(doctype),
"fcond": get_filters_cond(doctype, filters, conditions).replace("%", "%%"),
}
),
{"txt": "%%%s%%" % txt, "_txt": txt.replace("%", ""), "start": start, "page_len": page_len},
as_dict=as_dict,
)
# searches for supplier
@frappe.whitelist()
@frappe.validate_and_sanitize_search_inputs | 5f84993bae5df78e257cc2bfc41c123a1122a0b6 | @frappe.whitelist()
@frappe.validate_and_sanitize_search_inputs | 171 | https://github.com/frappe/erpnext.git | 60 | def customer_query(doctype, txt, searchfield, start, page_len, filters, as_dict=False):
doctype = "Customer"
conditions = []
cust_maste | 28 | 311 | customer_query |
12 | 0 | 1 | 4 | erpnext/maintenance/doctype/maintenance_visit/test_maintenance_visit.py | 66,367 | style: format code with black | erpnext | 11 | Python | 11 | test_maintenance_visit.py | def make_sales_person(name):
sales_person = frappe.get_doc({"doctype": "Sales Person", "sales_person_name": name})
sales_person.insert(ignore_if_duplicate=True)
return sales_person
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 31 | https://github.com/frappe/erpnext.git | 8 | def make_sales_person(name):
sales_person = frappe.get_doc({"doctype": "Sales Person", "sales_person_name": name})
sales_person.insert(ignore_if_d | 7 | 55 | make_sales_person |
|
7 | 0 | 1 | 3 | python3.10.4/Lib/importlib/_bootstrap_external.py | 218,121 | add python 3.10.4 for windows | XX-Net | 6 | Python | 6 | _bootstrap_external.py | def _set_bootstrap_module(_bootstrap_module):
global _bootstrap
_bootstrap = _bootstrap_module
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | https://github.com/XX-net/XX-Net.git | 12 | def _set_bootstrap_module(_bootstrap_module):
global _bootstrap
| 3 | 17 | _set_bootstrap_module |
|
251 | 0 | 13 | 47 | erpnext/patches/v13_0/create_website_items.py | 64,262 | fix: (Linter) Write queries using QB/ORM and other minor lines for semgrep to skip | erpnext | 15 | Python | 158 | create_website_items.py | def execute():
frappe.reload_doc("e_commerce", "doctype", "website_item")
frappe.reload_doc("e_commerce", "doctype", "website_item_tabbed_section")
frappe.reload_doc("e_commerce", "doctype", "website_offer")
frappe.reload_doc("e_commerce", "doctype", "recommended_items")
frappe.reload_doc("e_commerce", "doctype", "e_commerce_settings")
frappe.reload_doc("stock", "doctype", "item")
item_fields = ["item_code", "item_name", "item_group", "stock_uom", "brand", "image",
"has_variants", "variant_of", "description", "weightage"]
web_fields_to_map = ["route", "slideshow", "website_image_alt",
"website_warehouse", "web_long_description", "website_content", "thumbnail"]
# get all valid columns (fields) from Item master DB schema
item_table_fields = frappe.db.sql("desc `tabItem`", as_dict=1) # nosemgrep
item_table_fields = [d.get('Field') for d in item_table_fields]
# prepare fields to query from Item, check if the web field exists in Item master
web_query_fields = []
for web_field in web_fields_to_map:
if web_field in item_table_fields:
web_query_fields.append(web_field)
item_fields.append(web_field)
# check if the filter fields exist in Item master
or_filters = {}
for field in ["show_in_website", "show_variant_in_website"]:
if field in item_table_fields:
or_filters[field] = 1
if not web_query_fields or not or_filters:
# web fields to map are not present in Item master schema
# most likely a fresh installation that doesnt need this patch
return
items = frappe.db.get_all(
"Item",
fields=item_fields,
or_filters=or_filters
)
total_count = len(items)
for count, item in enumerate(items, start=1):
if frappe.db.exists("Website Item", {"item_code": item.item_code}):
continue
# make new website item from item (publish item)
website_item = make_website_item(item, save=False)
website_item.ranking = item.get("weightage")
for field in web_fields_to_map:
website_item.update({field: item.get(field)})
website_item.save()
# move Website Item Group & Website Specification table to Website Item
for doctype in ("Website Item Group", "Item Website Specification"):
frappe.db.set_value(
doctype,
{"parenttype": "Item", "parent": item.item_code}, # filters
{"parenttype": "Website Item", "parent": website_item.name} # value dict
)
if count % 20 == 0: # commit after every 20 items
frappe.db.commit()
frappe.utils.update_progress_bar('Creating Website Items', count, total_count)
| 4b62d2d7fe08ab9b36b533419ecb38d0aa5a3ab1 | 359 | https://github.com/frappe/erpnext.git | 197 | def execute():
frappe.reload_doc("e_commerce", "doctype", "website_item")
frappe.reload_doc("e_commerce", "doctype", "website_item_tabbed_section")
frappe.reload_doc("e_commerce", "doctype", "website_offer")
frappe.reload_doc("e_commerce", "doctype", "recommended_items")
frappe.reload_doc("e_commerce", "doctype", "e_commerce_settings")
frappe.reload_doc("stock", "doctype", "item")
item_fields = ["item_code", "item_name", "item_group", "stock_uom", "brand", "image",
"has_variants", "variant_of", "description", "weightage"]
web_fields_to_map = ["route", "slideshow", "website_image_alt",
"website_warehouse", "web_long_description", "website_content", "thumbnail"]
# get all valid columns (fields) from Item master DB schema
item_table_fields = frappe.db.sql("desc `tabItem`", as_dict=1) # nosemgrep
item_table_fields = [d.get('Field') for d in item_table_fields]
# prepare fields to query from Item, check if the web field exists in Item master
web_query_fields = []
for web_field in web_fields_to_map:
if web_field in item_table_fields:
web_query_fields.append(web_field)
item_fields.append(web_field)
# check if the filter fields exist in Item master
or_filters = {}
for field in ["show_in_website", "show_variant_in_website"]:
if field in item_table_fields:
| 38 | 640 | execute |
|
97 | 0 | 6 | 25 | ludwig/features/text_feature.py | 7,606 | Encoder refactor V2 (#2370)
* Added base files and some initial code
* More files created, fleshing out binary feature and corresponding encoders
* Added more schema infra
* Registered all feature encoders
* Separated feature utils infra
* Added all preprocessing classes
* Filled out rest of schema configs
* Fixed preproc dataclass
* Fixed small errors blocking import
* Tests should be passing
* Deleted unnecesssary files and removed commented out code
* fixed flake8
* Fixed most tests
* fixed pattern validation
* Fixed missing val strategies and solved custom encoder update issue
* Removed preprocessing from features due to schema SSOT
* fix flake 8
* Started encoder schema work
* Parallel CNN Encoder
* StackedCNN Encoder
* Added image encoders
* Finished sequence encoders
* Partway through text encoders
* Added text encoders
* Bag Encoders
* Binary and Date Encoders
* category, date, h3, and set encoders
* Wired up encoder schemas
* Switched input feature encoder schema definitions
* Fixed handful of issues
* Fix schema issues
* Refactored a bunch of test configs
* Small changes
* Removed default param from register_encoder
* Schema working now, working on refactoring
* Finished decoder schemas
* Removed default param from register_decoder
* Added some default params to output features and more decoder work
* Refactored all input feature encoder/decoder referencing
* Refactored pretty much all the tests
* Added back constants
* Solved gbm issue
* Fixed save_load test
* various fixes
* Fixed import issue
* Flake 8 and various fixes
* Solved more failed tests
* Refactored missed tests
* Removed commented lines
* Added init file for decoders schema
* Fixed failing tests
* Fixed hyperopt shared params test
* Added backwards compatability logic and test
* Flake 8
* removed comment
* Added base files and some initial code
* More files created, fleshing out binary feature and corresponding encoders
* Added more schema infra
* Registered all feature encoders
* Separated feature utils infra
* Added all preprocessing classes
* Filled out rest of schema configs
* Fixed preproc dataclass
* Fixed small errors blocking import
* Tests should be passing
* Deleted unnecesssary files and removed commented out code
* fixed flake8
* Fixed most tests
* fixed pattern validation
* Fixed missing val strategies and solved custom encoder update issue
* Removed preprocessing from features due to schema SSOT
* fix flake 8
* Started encoder schema work
* Parallel CNN Encoder
* StackedCNN Encoder
* Added image encoders
* Finished sequence encoders
* Partway through text encoders
* Added text encoders
* Bag Encoders
* Binary and Date Encoders
* category, date, h3, and set encoders
* Wired up encoder schemas
* Switched input feature encoder schema definitions
* Fixed handful of issues
* Fix schema issues
* Refactored a bunch of test configs
* Small changes
* Removed default param from register_encoder
* Schema working now, working on refactoring
* Finished decoder schemas
* Removed default param from register_decoder
* Added some default params to output features and more decoder work
* Refactored all input feature encoder/decoder referencing
* Refactored pretty much all the tests
* Added back constants
* Solved gbm issue
* Fixed save_load test
* various fixes
* Fixed import issue
* Flake 8 and various fixes
* Solved more failed tests
* Refactored missed tests
* Removed commented lines
* Added init file for decoders schema
* Fixed failing tests
* Fixed hyperopt shared params test
* Added backwards compatability logic and test
* Flake 8
* removed comment
* Skipping CTRL Encoder test since it's blasting memory
* Fixed audio_feature test
* Addressed failing tests
* Fixed backwards compatability
* Fixed more failing tests
* Flake 8
* Fixed more tests
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Refactored default logic for all features
* Fixed H3 weighted_sum encoder wrong type
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix import issue
* Mark slow HF tests
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed defaults tests
* Pin Ray nightly version
* fix link
* pin torch to 07/26
* cleanup
* upgrade ray pinned version to enable parquet partition filtering
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* downgrade Ray to ensure TensorDtypes are not inferred during Ray Dataset <=> Dask conversions
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Removed custom encoder decoder helper method
* unpin torch
* Flake 8
* Daniel feedback
* Small fixes
* Fixed default weights init
* Added test with encoder dependencies for global defaults
* Fixed Arnav's test
* Addressed Arnav's feedback
* Address nit
* Addressed feedback
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Address nit
* Fix test
* Initial feedback refactor
* More refactoring
* Added vocab field to all text_encoder configs
* More refactoring
* Fixed more tests
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix audio feature test, also s/logging/logger.
* param names should start with lowercase s/N/n
* Re-added schema utils used in encoder refactor.
* Removes unused overwrite_defaults()
* Oops, name is passed to feature as a kwarg not a member of the feature config. Why? Probably should change that.
* Change lowercase default back to True. Fixes test_strings_utils
* Set feature validation error with output size 1.
* MLP mixer encoder needs num_channels.
* Use schema.dump instead of .__dict__ to convert marshmallow dataclass to dict
* (x,) in python is a tuple with a single element x. Watch out for this when defining schemas.
* Construct features by using build_single_input/output to share code for deserializing feature configs. Also changes ECD to BaseModel, IMO its confusing to import ECD to use a class method from BaseModel.
* Fix test_trainer_utils, adds convenience method BaseFeature.load_from_dictionary
* Use feature load_from_dictionary instead of BaseModel in feature tests.
* Populate encoder and decoder types in shared test fixtures, fixes error expectations in test_validate_config_combiner.py
* Fixes test_validate_config_misc.py by ensuring only one option of OneOf allows None, because OneOf fails validation if more than one condition match.
* Updates test_defaults.py
* Adds type, column, proc_column to feature schemas. Revert feature tests by passing in config dict again.
* decorate feature base classes with @dataclass, fixes failure building input features in trainer.
* Implement _serialize for PreprocessingDataclassField.
* use type(feature) to get schema class.
* Fix test_trainer_utils.py
* audio_feature requires embedding_size, but passthrough encoder does not have this property. Technically, passthrough encoder is not supported for audio features.
* Wow, apparently the order of elements in the oneOf affects which error message we get from jsonschema.
* Get default encoders from feature schema.
* Get encoder defaults from schema in config_utils.py
* Make number feature allow decoders without clip property
* s/list/List
* Adds reduce_output to h3 encoder.
* Moves decoder params into nested decoder.
* Update processing parameters with computed_fill_value.
* Removes test code.
* Adds input_size to decoder base because some features assume decoders have an input_size
* dense encoder not supported for bag features, changed to embed.
* Adds input_size param to dense encoder schema, since its a required parameter of dense encoder.
* Fixes vector feature input_size in encoder metadata.
* Fixes test reducers, set sequence reduce mode in output feature base.
* Don't nest encoder parameters in decoder
* Fixes test_torchscript, get num_classes from encoder config.
* Audio feature padding is float, not int.
* Adds temp check for threshold to fix GBM tests.
* Adds missing value strategy drop_row for vector feature in test.
* Drop row should work even if computed_fill_value is an empty string
* Removes duplicated TOP_K constant.
* Consolidated set_default_values
* Removes commented-out defaults.
* Remove load_config from OutputFeature, it isn't doing anything here.
* Removes comment.
* Fix type annotations for input/output feature constructors.
* Fixes output feature dependencies being ignored.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Adds test for construction of output features with dependencies.
* Encoder/Decoder config now lives on encoder/decoder object
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixes decoder params to match their respective classes. Moves fc_stack params and threshold back to output feature.
* Make clip property of number output feature again.
* Adds threshold property to set feature schema, use this property instead of storing it in the decoder.
* input_size in output_feature instead of decoder.
* Made vector_size property of vector_feature.
* Fixed gbm tests
* Fixed flake 8
* Re-adds num_classes as member of category output feature.
* Makes vocab_size match vocab used in preprocessing.
* num_classes in CategoryOutputFeature.
* Moves num_classes from decoder to category output feature.
* Fixes test_model_training_options. Copies fc_layer keys into decoder if they are present on output features.
* Adds field descriptors for fc_layers params in BaseOutputFeatureConfig.
Co-authored-by: connor-mccorm <connor@predibase.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: connor-mccorm <97468934+connor-mccorm@users.noreply.github.com>
Co-authored-by: Geoffrey Angus <geoffrey@predibase.com>
Co-authored-by: Arnav Garg <arnav@predibase.com>
Co-authored-by: Daniel Treiman <daniel@predibase.com> | ludwig | 17 | Python | 73 | text_feature.py | def update_config_with_metadata(output_feature, feature_metadata, *args, **kwargs):
output_feature[DECODER]["vocab_size"] = feature_metadata["vocab_size"]
output_feature[DECODER]["max_sequence_length"] = feature_metadata["max_sequence_length"]
if isinstance(output_feature[LOSS]["class_weights"], (list, tuple)):
# [0, 0] for UNK and PAD
output_feature[LOSS]["class_weights"] = [0, 0] + output_feature[LOSS]["class_weights"]
if len(output_feature[LOSS]["class_weights"]) != output_feature[DECODER]["vocab_size"]:
raise ValueError(
"The length of class_weights ({}) is not compatible with "
"the number of classes ({})".format(
len(output_feature[LOSS]["class_weights"]), output_feature[DECODER]["vocab_size"]
)
)
if output_feature[LOSS]["class_similarities_temperature"] > 0:
if "class_similarities" in output_feature:
distances = output_feature["class_similarities"]
temperature = output_feature[LOSS]["class_similarities_temperature"]
for i in range(len(distances)):
distances[i, :] = softmax(distances[i, :], temperature=temperature)
output_feature[LOSS]["class_similarities"] = distances
else:
raise ValueError(
"class_similarities_temperature > 0,"
"but no class similarities are provided "
"for feature {}".format(output_feature[COLUMN])
)
| 03b4ab273abd7e22a56bb550b56f3d667200abf9 | 212 | https://github.com/ludwig-ai/ludwig.git | 455 | def update_config_with_metadata(output_feature, feature_metadata, *args, **kwargs):
output_feature[DECODER]["vocab_size"] = feature_metadata["vocab_size"]
output_feature[DECODER]["max_sequence_length"] = feature_metadata["max_sequence_length"]
if isinstance(output_feature[LOSS]["class_weights"], (list, tuple)):
# [0, 0] for UNK and PAD
output_feature[LOSS]["class_weights"] = [0, 0] + output_feature[LOSS]["class_weights"]
if len(output_feature[LOSS]["class_weights"]) != output_feature[DECODER]["vocab_size"]:
raise ValueError(
"The length of class_weights ({}) is not compatible with "
"the number of classes ({})".format(
len(output_feature[LOSS]["class_weights"]), output_feature[DECODER]["vocab_size"]
)
)
if output_feature[LOSS]["class_similarities_temperature"] > 0:
if "class_similarities" in output_feature:
distances = output_feature["class_similarities"]
temperature = output_feature[LOSS]["class_similarities_temperature"]
| 19 | 352 | update_config_with_metadata |
|
56 | 1 | 1 | 10 | tests/integration/test_lock.py | 19,434 | missed these tests becasue they run only on earlier python versions. | pipenv | 12 | Python | 41 | test_lock.py | def test_outdated_setuptools_with_pep517_legacy_build_meta_is_updated(PipenvInstance):
with PipenvInstance(chdir=True) as p:
c = p.pipenv('run pip install "setuptools<=40.2"')
assert c.returncode == 0
c = p.pipenv("run python -c 'import setuptools; print(setuptools.__version__)'")
assert c.returncode == 0
assert c.stdout.splitlines()[1] == "40.2.0"
c = p.pipenv("install legacy-backend-package")
assert c.returncode == 0
assert "vistir" in p.lockfile["default"]
@pytest.mark.lock
@pytest.mark.install
@pytest.mark.skip_windows
@pytest.mark.skipif(sys.version_info >= (3, 9), reason="old setuptools doesn't work")
@pytest.mark.needs_internet | 5a151615aa47901f7c44e5b543fe2e2b0f6e9d24 | @pytest.mark.lock
@pytest.mark.install
@pytest.mark.skip_windows
@pytest.mark.skipif(sys.version_info >= (3, 9), reason="old setuptools doesn't work")
@pytest.mark.needs_internet | 80 | https://github.com/pypa/pipenv.git | 113 | def test_outdated_setuptools_with_pep517_legacy_build_meta_is_updated(PipenvInstance):
with PipenvInstance(chdir=True) as p:
c = p.pipenv('run pip install "setuptools<=40.2"')
assert c.returncode == 0
c = p.pipenv("run python -c 'import setuptools; print(setuptools.__version__)'")
assert c.returncode == 0
assert c.stdout.splitlines()[1] == "40.2.0"
| 20 | 212 | test_outdated_setuptools_with_pep517_legacy_build_meta_is_updated |
85 | 0 | 5 | 25 | mitmproxy/connection.py | 252,213 | add multi proxy mode
This commit makes it possible for mitmproxy to spawn multiple
TCP/UDP proxy servers at the same time, see
https://github.com/mitmproxy/mitmproxy/discussions/5288 | mitmproxy | 12 | Python | 60 | connection.py | def set_state(self, state):
self.peername = tuple(state["address"]) if state["address"] else None
self.alpn = state["alpn"]
self.cipher = state["cipher_name"]
self.id = state["id"]
self.sni = state["sni"]
self.timestamp_end = state["timestamp_end"]
self.timestamp_start = state["timestamp_start"]
self.timestamp_tls_setup = state["timestamp_tls_setup"]
self.tls_version = state["tls_version"]
# only used in sans-io
self.state = ConnectionState(state["state"])
self.sockname = tuple(state["sockname"]) if state["sockname"] else None
self.error = state["error"]
self.tls = state["tls"]
self.certificate_list = [
certs.Cert.from_state(x) for x in state["certificate_list"]
]
self.mitmcert = (
certs.Cert.from_state(state["mitmcert"])
if state["mitmcert"] is not None
else None
)
self.alpn_offers = state["alpn_offers"]
self.cipher_list = state["cipher_list"]
self.proxy_mode = mode_specs.ProxyMode.from_state(state["proxy_mode"])
| 83e543c3e66654b952f1979c0adaa62df91b2832 | 213 | https://github.com/mitmproxy/mitmproxy.git | 275 | def set_state(self, state):
self.peername = tuple(state["address"]) if state["address"] else None
self.alpn = state["alpn"]
self.cipher = state["cipher_name"]
self.id = state["id"]
self.sni = state["sni"]
self.timestamp_end = state["timestamp_end"]
self.timestamp_start = state["timestamp_start"]
self.timestamp_tls_setup = state["timestamp_tls_setup"]
self.tls_version = state["tls_version"]
# only used in sans-io
self.state = ConnectionState(state["state"])
self.soc | 28 | 360 | set_state |
|
89 | 1 | 3 | 24 | dask/dataframe/io/tests/test_parquet.py | 156,356 | Change `to_parquet` default to `write_metadata_file=None` (#8988)
* Refactor to_parquet
A bit of refactoring before changing the default of
`write_metadata_file` to `None` in `to_parquet`.
- Simplify implementation
- Don't include file metadata in `write_partition` calls if it's not
needed
- Everything needed to support implementing `write_metadata_file=None`
as default *except* changing the value (to ensure tests pass).
* Fixup failing parquet tests
Most of the failures are due to divisions not being known by default
anymore, since they're only known by default if a `_metadata` file is
present.
* Respond to feedback | dask | 16 | Python | 68 | test_parquet.py | def test_local(tmpdir, write_engine, read_engine, has_metadata):
tmp = str(tmpdir)
data = pd.DataFrame(
{
"i32": np.arange(1000, dtype=np.int32),
"i64": np.arange(1000, dtype=np.int64),
"f": np.arange(1000, dtype=np.float64),
"bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype(
"O"
),
}
)
df = dd.from_pandas(data, chunksize=500)
kwargs = {"write_metadata_file": True} if has_metadata else {}
df.to_parquet(tmp, write_index=False, engine=write_engine, **kwargs)
files = os.listdir(tmp)
assert ("_common_metadata" in files) == has_metadata
assert ("_metadata" in files) == has_metadata
assert "part.0.parquet" in files
df2 = dd.read_parquet(tmp, index=False, engine=read_engine)
assert len(df2.divisions) > 1
out = df2.compute(scheduler="sync").reset_index()
for column in df.columns:
assert (data[column] == out[column]).all()
@pytest.mark.parametrize("index", [False, True])
@write_read_engines_xfail | 00572071d15e7e8cfc20d8342b00aabadf0d2102 | @pytest.mark.parametrize("index", [False, True])
@write_read_engines_xfail | 228 | https://github.com/dask/dask.git | 219 | def test_local(tmpdir, write_engine, read_engine, has_metadata):
tmp = str(tmpdir)
data = pd.DataFrame(
{
"i32": np.arange(1000, dtype=np.int32),
"i64": np.arange(1000, dtype=np.int64),
"f": np.arange(1000, dtype=np.float64),
"bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype(
"O"
),
}
)
df = dd.from_pandas(data, chunksize=500)
kwargs = {"write_metadata_file": True} if has_metada | 47 | 389 | test_local |
28 | 0 | 1 | 2 | jax/_src/lax/lax.py | 119,827 | Revert previous change
PiperOrigin-RevId: 435397906 | jax | 9 | Python | 25 | lax.py | def _top_k_translation_rule(ctx, avals_in, avals_out, x, *, k):
return xla.xla_destructure(ctx.builder, xops.TopK(x, k))
top_k_p = Primitive('top_k')
top_k_p.multiple_results = True
top_k_p.def_impl(partial(xla.apply_primitive, top_k_p))
top_k_p.def_abstract_eval(_top_k_abstract_eval)
xla.register_translation(top_k_p, _top_k_translation_rule)
ad.primitive_jvps[top_k_p] = _top_k_jvp
batching.primitive_batchers[top_k_p] = _top_k_batch_rule
| c3a4a6e63da11246611247feac7ff4c00750ae21 | 33 | https://github.com/google/jax.git | 21 | def _top_k_translation_rule(ctx, avals_in, avals_out, x, *, k):
return xla.xla_destructure(ctx.builder, xops.TopK(x, k))
top_k_p = Primitive('top_k')
top_k_p.multiple_results = True
top_k_p.def_impl(partial(xla.apply_primi | 26 | 132 | _top_k_translation_rule |
|
32 | 0 | 3 | 9 | pandas/tests/io/json/test_pandas.py | 170,125 | DEP: Enforce numpy keyword deprecation in read_json (#49083) | pandas | 11 | Python | 25 | test_pandas.py | def test_series_roundtrip_simple(self, orient, string_series):
data = string_series.to_json(orient=orient)
result = read_json(data, typ="series", orient=orient)
expected = string_series
if orient in ("values", "records"):
expected = expected.reset_index(drop=True)
if orient != "split":
expected.name = None
tm.assert_series_equal(result, expected)
| 2410fca2c62898fb29659d5b93273a65515d695b | 73 | https://github.com/pandas-dev/pandas.git | 95 | def test_series_roundtrip_simple(self, orient, string_series):
data = string_series.to_json(orient=orient)
result = read_json(data, typ="series", orient=orient)
expected = string_series
if orient in ("values", "records"):
| 15 | 119 | test_series_roundtrip_simple |
|
23 | 1 | 1 | 14 | tests/openbb_terminal/stocks/options/test_yfinance_view.py | 283,635 | Updating some names (#1575)
* quick econ fix
* black
* keys and feature flags
* terminal name :eyes:
* some more replacements
* some more replacements
* edit pyproject
* gst -> openbb
* add example portfolios back to git
* Update api from gst
* sorry. skipping some tests
* another round of names
* another round of test edits
* Missed some .gst refs and update timezone
* water mark stuff
* Fixing Names in terminal.spec and name of GTFF_DEFAULTS to OBBFF_DEFAULTS
* fix more GST to OpenBB Terminal
* Logging : merge conflicts with main
* Revert wrong files
Co-authored-by: Andrew <andrew.kenreich@gmail.com>
Co-authored-by: DidierRLopes <dro.lopes@campus.fct.unl.pt>
Co-authored-by: Chavithra PARANA <chavithra@gmail.com> | OpenBBTerminal | 9 | Python | 20 | test_yfinance_view.py | def test_show_parity(mocker):
# MOCK CHARTS
mocker.patch(
target="openbb_terminal.stocks.options.yfinance_view.theme.visualize_output"
)
# MOCK EXPORT_DATA
mocker.patch(target="openbb_terminal.stocks.options.yfinance_view.export_data")
yfinance_view.show_parity(
ticker="PM",
exp="2022-01-07",
put=True,
ask=True,
mini=0.0,
maxi=100.0,
export="csv",
)
@pytest.mark.default_cassette("test_risk_neutral_vals")
@pytest.mark.vcr | b71abcfbf4d7e8ac1855522aff0378e13c8b5362 | @pytest.mark.default_cassette("test_risk_neutral_vals")
@pytest.mark.vcr | 58 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 97 | def test_show_parity(mocker):
# MOCK CHARTS
mocker.patch(
target="openbb_terminal.stocks.options.yfinance_view.theme.visualize_output"
)
# MOCK EXPORT_DATA
mocker.patch(target="openbb_terminal.stocks.options.yfinance_view.export_data")
yfinance_view.show_ | 17 | 117 | test_show_parity |
79 | 0 | 2 | 19 | src/transformers/models/layoutlmv3/configuration_layoutlmv3.py | 33,411 | Add image height and width to ONNX dynamic axes (#18915) | transformers | 15 | Python | 44 | configuration_layoutlmv3.py | def inputs(self) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
else:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels"}),
]
)
| 6519150c315bdcd415bbd115cec11e839f3eb866 | 162 | https://github.com/huggingface/transformers.git | 355 | def inputs(self) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: " | 7 | 275 | inputs |
|
13 | 0 | 1 | 49 | erpnext/accounts/report/asset_depreciations_and_balances/asset_depreciations_and_balances.py | 65,150 | style: format code with black | erpnext | 10 | Python | 13 | asset_depreciations_and_balances.py | def get_assets(filters):
return frappe.db.sql(
,
{"to_date": filters.to_date, "from_date": filters.from_date, "company": filters.company},
as_dict=1,
)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 39 | https://github.com/frappe/erpnext.git | 7 | def get_assets(filters):
return frappe.db.sql(
,
{"to_date": filters.to_date, "from_date": filters.from_date, "company": filters.company},
as_dict= | 9 | 64 | get_assets |
|
26 | 0 | 5 | 7 | src/datasets/table.py | 106,162 | Sharded save_to_disk + multiprocessing (#5268)
* add num_shards, num_proc, storage_options to save_to_disk
* minor
* add tests
* remove old s3fs integreation tests
* style
* style
* Update DatasetDict.save_to_disk
* test dataset dict
* update dataset dict load_from_disk
* minor
* update test
* update docs
* backport to_reader to pyarrow < 8
* typo
* support both max_shard_size and num_shards
* style
* docstrings
* test _estimate_nbytes
* add test for num_shards
* style
* mario's comment
* add config.PBAR_REFRESH_TIME_INTERVAL
* fix docstrings
* use kwargs_iterable in iflatmap_unordered
* fix tests | datasets | 16 | Python | 22 | table.py | def __iter__(self):
for batch in self.table._batches:
if self.max_chunksize is None or len(batch) <= self.max_chunksize:
yield batch
else:
for offset in range(0, len(batch), self.max_chunksize):
yield batch.slice(offset, self.max_chunksize)
| 232a43943e87dfedcc328a9a3d3b4d89ea5c6627 | 62 | https://github.com/huggingface/datasets.git | 103 | def __iter__(self):
for batch in self.table._batches:
if self.max_chunksize is None or len(batch) <= self.max_chunksize:
yield batch
else:
for offset in range(0, | 10 | 96 | __iter__ |
|
28 | 1 | 1 | 9 | saleor/graphql/checkout/tests/test_checkout_promo_codes.py | 27,658 | Unify checkout mutations/resolvers to use id field. (#9862)
* Unify checkout mutations/resolvers to use id field.
* Update changelog
* Remove uneeded " " in mutation's field description | saleor | 10 | Python | 24 | test_checkout_promo_codes.py | def test_checkout_add_voucher_code_by_token(api_client, checkout_with_item, voucher):
variables = {
"id": to_global_id_or_none(checkout_with_item),
"promoCode": voucher.code,
}
data = _mutate_checkout_add_promo_code(api_client, variables)
assert not data["errors"]
assert data["checkout"]["token"] == str(checkout_with_item.token)
assert data["checkout"]["voucherCode"] == voucher.code
@mock.patch("saleor.plugins.webhook.tasks.send_webhook_request_sync") | 3673e7e11f22e5a695c708b7a594c11857a93898 | @mock.patch("saleor.plugins.webhook.tasks.send_webhook_request_sync") | 67 | https://github.com/saleor/saleor.git | 58 | def test_checkout_add_voucher_code_by_token(api_client, checkout_with_item, voucher):
variables = {
"id": to_global_id_or_none(checkout_with_item),
"promoCode": voucher.code,
}
data = _mutate_checkout_add_promo_code(api_client, variables)
assert not data["errors"]
assert data["checkout"]["token"] == | 13 | 126 | test_checkout_add_voucher_code_by_token |
6 | 0 | 1 | 2 | tests/models/nllb/test_tokenization_nllb.py | 32,211 | NLLB tokenizer (#18126)
* NLLB tokenizer
* Apply suggestions from code review - Thanks Stefan!
Co-authored-by: Stefan Schweter <stefan@schweter.it>
* Final touches
* Style :)
* Update docs/source/en/model_doc/nllb.mdx
Co-authored-by: Stefan Schweter <stefan@schweter.it>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* PR reviews
* Auto models
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> | transformers | 11 | Python | 6 | test_tokenization_nllb.py | def test_mask_token(self):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [256203, 3])
| c1c79b06550b587b2a975016ef9d18b53258025b | 28 | https://github.com/huggingface/transformers.git | 12 | def test_mask_token(self):
self.assertListEqual(self.tokeni | 5 | 46 | test_mask_token |
|
6 | 1 | 1 | 2 | keras/backend.py | 269,532 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 7 | Python | 6 | backend.py | def shape(x):
return tf.shape(x)
@keras_export("keras.backend.int_shape")
@doc_controls.do_not_generate_docs | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.backend.int_shape")
@doc_controls.do_not_generate_docs | 13 | https://github.com/keras-team/keras.git | 10 | def shape(x):
return tf.shape(x)
@keras_export("keras.backend.int_shape" | 6 | 41 | shape |
16 | 0 | 1 | 3 | tests/components/shelly/test_utils.py | 291,322 | Fix Shelly gen2 channel name (#82655)
* Fix Shelly gen2 channel name
* Review comment | core | 9 | Python | 13 | test_utils.py | async def test_get_rpc_channel_name(mock_rpc_device):
assert get_rpc_channel_name(mock_rpc_device, "input:0") == "test switch_0"
assert get_rpc_channel_name(mock_rpc_device, "input:3") == "Test name switch_3"
| 815dfe9134db71b9e182fa7ac974393aaf6910d5 | 24 | https://github.com/home-assistant/core.git | 25 | async def test_get_rpc_channel_name(mock_rpc_device):
assert get_rpc_channel_name(mock_rpc_device, "input:0") == "test switch_0"
assert get_rpc_channel_name(mock_rp | 3 | 48 | test_get_rpc_channel_name |
|
81 | 0 | 1 | 24 | wagtail/snippets/tests/test_snippets.py | 78,404 | Add tests for snippets with DraftStateMixin enabled | wagtail | 14 | Python | 55 | test_snippets.py | def test_publish(self):
timestamp = now()
with freeze_time(timestamp):
response = self.post(
post_data={
"text": "Draft-enabled Foo, Published",
"action-publish": "action-publish",
}
)
snippet = DraftStateModel.objects.get(text="Draft-enabled Foo, Published")
self.assertRedirects(
response, reverse("wagtailsnippets_tests_draftstatemodel:list")
)
# The instance should be created
self.assertEqual(snippet.text, "Draft-enabled Foo, Published")
# The instance should be live
self.assertTrue(snippet.live)
self.assertFalse(snippet.has_unpublished_changes)
self.assertEqual(snippet.first_published_at, timestamp)
self.assertEqual(snippet.last_published_at, timestamp)
# A revision should be created and set as both latest_revision and live_revision
self.assertIsNotNone(snippet.live_revision)
self.assertEqual(snippet.live_revision, snippet.latest_revision)
# The revision content should contain the new data
self.assertEqual(
snippet.live_revision.content["text"],
"Draft-enabled Foo, Published",
)
| ab5a3390e363907369b572dce2b6defaea1a2370 | 140 | https://github.com/wagtail/wagtail.git | 329 | def test_publish(self):
timestamp = now()
| 26 | 241 | test_publish |
|
7 | 0 | 1 | 3 | python3.10.4/Lib/asyncio/trsock.py | 220,896 | add python 3.10.4 for windows | XX-Net | 8 | Python | 7 | trsock.py | def __enter__(self):
self._na('context manager protocol')
return self._sock.__enter__()
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 19 | https://github.com/XX-net/XX-Net.git | 20 | def __enter__(self):
self._na('context manager protocol')
| 4 | 34 | __enter__ |
|
124 | 0 | 3 | 41 | keras/metrics/metrics.py | 274,753 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 17 | Python | 74 | metrics.py | def interpolate_pr_auc(self):
dtp = (
self.true_positives[: self.num_thresholds - 1]
- self.true_positives[1:]
)
p = tf.math.add(self.true_positives, self.false_positives)
dp = p[: self.num_thresholds - 1] - p[1:]
prec_slope = tf.math.divide_no_nan(
dtp, tf.maximum(dp, 0), name="prec_slope"
)
intercept = self.true_positives[1:] - tf.multiply(prec_slope, p[1:])
safe_p_ratio = tf.where(
tf.logical_and(p[: self.num_thresholds - 1] > 0, p[1:] > 0),
tf.math.divide_no_nan(
p[: self.num_thresholds - 1],
tf.maximum(p[1:], 0),
name="recall_relative_ratio",
),
tf.ones_like(p[1:]),
)
pr_auc_increment = tf.math.divide_no_nan(
prec_slope * (dtp + intercept * tf.math.log(safe_p_ratio)),
tf.maximum(self.true_positives[1:] + self.false_negatives[1:], 0),
name="pr_auc_increment",
)
if self.multi_label:
by_label_auc = tf.reduce_sum(
pr_auc_increment, name=self.name + "_by_label", axis=0
)
if self.label_weights is None:
# Evenly weighted average of the label AUCs.
return tf.reduce_mean(by_label_auc, name=self.name)
else:
# Weighted average of the label AUCs.
return tf.math.divide_no_nan(
tf.reduce_sum(
tf.multiply(by_label_auc, self.label_weights)
),
tf.reduce_sum(self.label_weights),
name=self.name,
)
else:
return tf.reduce_sum(pr_auc_increment, name="interpolate_pr_auc")
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 337 | https://github.com/keras-team/keras.git | 621 | def interpolate_pr_auc(self):
dtp = (
self.true_positives[: self.num_thresholds - 1]
- self.true_positives[1:]
)
p = tf.math.add(self.true_positives, self.false_positives)
dp = p[: self.num_thresholds - 1] - p[1:]
prec_slope = tf.math.divide_no_nan(
dtp, tf.maximum(dp, 0), name="prec_slope"
)
intercept = self.true_positives[1:] - tf.multiply(prec_slope, p[1:])
safe_p_ratio = tf.where(
tf.logical_and(p[: self.num_thresholds - 1] > 0, p[1:] > 0),
tf.math.divide_no_nan(
p[: self.num_thresholds - 1],
tf.maximum(p[1:], 0),
name="recall_relative_ratio",
),
tf.ones_like(p[1:]),
)
pr_auc_increment = tf.math.divide_no_nan(
prec_slope * (dtp + intercept * tf.math.log(safe_p_ratio)),
tf.maximum(self.true_positives[1:] + self.false_negatives[1:], 0),
name="pr_auc_increment",
)
if self.multi_label:
by_label_auc = tf.reduce_sum(
pr_auc_increment, name=self.name + "_by_label", axis=0
)
if self.label_weights is None:
# Evenly weighted average of the label AUCs.
return tf.reduce_mean(b | 30 | 515 | interpolate_pr_auc |
|
25 | 0 | 3 | 6 | erpnext/loan_management/doctype/loan_balance_adjustment/loan_balance_adjustment.py | 69,030 | feat: add adjustment amount to loan
- fix: bugs in loan balance adjustment | erpnext | 11 | Python | 17 | loan_balance_adjustment.py | def get_values_on_cancel(self, loan_details):
if self.adjustment_type == "Credit Adjustment":
adjustment_amount = loan_details.adjustment_amount - self.amount
elif self.adjustment_type == "Debit Adjustment":
adjustment_amount = loan_details.adjustment_amount + self.amount
return adjustment_amount
| 5c0a25012c602ed0d47136468e3b0bee11ddf5dd | 41 | https://github.com/frappe/erpnext.git | 67 | def get_values_on_cancel(self, loan_details):
if self.adjustment_ | 6 | 68 | get_values_on_cancel |
|
20 | 0 | 3 | 8 | ludwig/data/dataset_synthesizer.py | 7,812 | Adds registry to organize backward compatibility updates around versions and config sections (#2335)
* First pass implementation of VersionTransformation
* Remove test main.
* Refactors backward_compatibility.py to use version registration system
* Changed sort order to process outer first.
* Moves test_deprecated_field_aliases from test_defaults.py to test_backward_compatibility.py
* s/prefix/prefixes in test_version_transformation.py
* Removes comment, print statements.
* Adds docstrings.
* typo fix.
* Removes unused import.
* Small cleanup to backward_compatibility.py, removed redundant keys.
* Assume version 0.4 if no version present in the config.
* Updates dataset synthesis to work with nested encoder/decoders.
* Fixes test_server.py
* nesting image feature params in test_ray
* _get_feature_encoder_or_decoder in generate_category.
* oops, forgot random.choice.
Co-authored-by: Daniel Treiman <daniel@predibase.com> | ludwig | 10 | Python | 14 | dataset_synthesizer.py | def _get_feature_encoder_or_decoder(feature):
if DECODER in feature:
return feature[DECODER]
elif ENCODER in feature:
return feature[ENCODER]
else:
feature[ENCODER] = {}
return feature[ENCODER]
| 60197fe851aadfa51d18c16dd42b49f728ed7eaa | 40 | https://github.com/ludwig-ai/ludwig.git | 60 | def _get_feature_encoder_or_decoder(feature):
if DECODER in feature:
return feature[DECODER]
elif ENCODER in feature:
return feature[ENCODER]
else:
| 4 | 65 | _get_feature_encoder_or_decoder |
|
58 | 0 | 1 | 16 | onnx/backend/test/case/node/gatherelements.py | 254,766 | Use Python type annotations rather than comments (#3962)
* These have been supported since Python 3.5.
ONNX doesn't support Python < 3.6, so we can use the annotations.
Diffs generated by https://pypi.org/project/com2ann/.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Remove MYPY conditional logic in gen_proto.py
It breaks the type annotations and shouldn't be needed.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Get rid of MYPY bool from more scripts
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* move Descriptors class above where its referenced in type annotation
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fixes
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* remove extra blank line
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotations
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotation in gen_docs
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix Operators.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix TestCoverage.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix protoc-gen-mypy.py
Signed-off-by: Gary Miguel <garymiguel@microsoft.com> | onnx | 12 | Python | 46 | gatherelements.py | def export_gather_elements_1() -> None:
axis = 0
node = onnx.helper.make_node(
'GatherElements',
inputs=['data', 'indices'],
outputs=['y'],
axis=axis,
)
data = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=np.float32)
indices = np.array([[1, 2, 0],
[2, 0, 0]], dtype=np.int32)
y = gather_elements(data, indices, axis)
# print(y) produces
# [[4, 8, 3],
# [7, 2, 3]]
expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y],
name='test_gather_elements_1')
| 83fa57c74edfd13ddac9548b8a12f9e3e2ed05bd | 145 | https://github.com/onnx/onnx.git | 261 | def export_gather_elements_1() -> None:
axis = 0
node = onnx.helper.make_node(
'GatherElements',
inputs=['data', 'indices'],
outputs=['y'],
axis=axis,
)
data = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=np.float32)
indices = np.array([[1, 2, 0],
[2, 0, 0]], dtype=np.int32)
y = gather_elements(data, indices, axis)
# print(y) produces
# [[4, 8, 3],
# [7, 2, 3]]
expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y],
name='test | 21 | 213 | export_gather_elements_1 |
|
12 | 0 | 2 | 6 | src/transformers/models/videomae/modeling_videomae.py | 32,768 | Add VideoMAE (#17821)
* First draft
* Add VideoMAEForVideoClassification
* Improve conversion script
* Add VideoMAEForPreTraining
* Add VideoMAEFeatureExtractor
* Improve VideoMAEFeatureExtractor
* Improve docs
* Add first draft of model tests
* Improve VideoMAEForPreTraining
* Fix base_model_prefix
* Make model take pixel_values of shape (B, T, C, H, W)
* Add loss computation of VideoMAEForPreTraining
* Improve tests
* Improve model testsé
* Make all tests pass
* Add VideoMAE to main README
* Add tests for VideoMAEFeatureExtractor
* Add integration test
* Improve conversion script
* Rename patch embedding class
* Remove VideoMAELayer from init
* Update design of patch embeddings
* Improve comments
* Improve conversion script
* Improve conversion script
* Add conversion of pretrained model
* Add loss verification of pretrained model
* Add loss verification of unnormalized targets
* Add integration test for pretraining model
* Apply suggestions from code review
* Fix bug to make feature extractor resize only shorter edge
* Address more comments
* Improve normalization of videos
* Add doc examples
* Move constants to dedicated script
* Remove scripts
* Transfer checkpoints, fix docs
* Update script
* Update image mean and std
* Fix doc tests
* Set return_tensors to NumPy by default
* Revert the previous change
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> | transformers | 6 | Python | 12 | modeling_videomae.py | def get_sinusoid_encoding_table(n_position, d_hid):
# TODO: make it with torch instead of numpy | f9a0008d2d3082a665f711b24f5314e4a8205fab | 86 | https://github.com/huggingface/transformers.git | 18 | def get_sinusoid_encoding_table(n_position, d_hid):
# TODO: make it with torch instead of numpy | 3 | 16 | get_sinusoid_encoding_table |
|
16 | 0 | 3 | 3 | test/lib/ansible_test/_internal/commands/sanity/pylint.py | 267,930 | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | ansible | 11 | Python | 16 | pylint.py | def supported_python_versions(self) -> t.Optional[t.Tuple[str, ...]]:
return tuple(version for version in CONTROLLER_PYTHON_VERSIONS if str_to_version(version) < (3, 11))
| 3eb0485dd92c88cc92152d3656d94492db44b183 | 40 | https://github.com/ansible/ansible.git | 30 | def supported_python_versions(self) -> t.Optional[t.Tuple[str, ...]]:
return tuple( | 10 | 61 | supported_python_versions |
|
113 | 0 | 4 | 29 | seaborn/_marks/basic.py | 41,030 | Update Line and Bar marks with some of the new patterns | seaborn | 14 | Python | 86 | basic.py | def _plot_split(self, keys, data, ax, kws):
# TODO Not backcompat with allowed (but nonfunctional) univariate plots
# (That should be solved upstream by defaulting to "" for unset x/y?)
# (Be mindful of xmin/xmax, etc!)
kws = kws.copy()
markers = self._resolve(data, "marker")
fill = self._resolve(data, "fill")
fill & np.array([m.is_filled() for m in markers])
edgecolors = self._resolve_color(data)
facecolors = self._resolve_color(data, "fill")
facecolors[~fill, 3] = 0
linewidths = self._resolve(data, "linewidth")
pointsize = self._resolve(data, "pointsize")
paths = []
path_cache = {}
for m in markers:
if m not in path_cache:
path_cache[m] = m.get_path().transformed(m.get_transform())
paths.append(path_cache[m])
sizes = pointsize ** 2
offsets = data[["x", "y"]].to_numpy()
points = mpl.collections.PathCollection(
paths=paths,
sizes=sizes,
offsets=offsets,
facecolors=facecolors,
edgecolors=edgecolors,
linewidths=linewidths,
transOffset=ax.transData,
transform=mpl.transforms.IdentityTransform(),
)
ax.add_collection(points)
| fa680c4226e618710014fd18a756c4f98daef956 | 226 | https://github.com/mwaskom/seaborn.git | 377 | def _plot_split(self, keys, data, ax, kws):
# TODO Not backcompat with allowed (but nonfunctional) univariate plots
# (That should be solved upstream by defaulting to "" for unset x/y?)
# (Be mindful of xmin/xmax, etc!)
kws = kws.copy()
markers = self._resolve(data, "marker")
fill = self._resolve(data, "fill")
fill & np.array([m.is_filled() for m in markers])
edgecolors = self._resolve_color(data)
facecolors = self._resolve_color(data, "fill")
facecolors[~fill, 3] = 0
linewidths = self._resolve(data, "linewidth")
pointsize = self._resolve(data, "pointsize")
paths = []
path_cache = {}
for m in markers:
if m not in path_cache:
path_cache[m] = m.get_path().transformed(m.get_transform())
paths.append(path_cache[m])
sizes = pointsize ** 2
offsets = data[["x", "y"]].to_numpy()
points = mpl.collections.PathCollection(
paths=paths,
sizes=sizes,
offsets=offsets,
facecolors=facecolors,
edgecolors=edgecolors,
linewidths=linewidths,
transOffset=ax.transData,
transform=mpl.transforms.Ident | 38 | 357 | _plot_split |
|
20 | 0 | 1 | 4 | seaborn/tests/_core/test_scales.py | 40,907 | Thoroughly update scaling logic and internal API | seaborn | 12 | Python | 19 | test_scales.py | def test_convert_categories(self, scale):
x = pd.Series(pd.Categorical(["a", "b", "c"], ["b", "a", "c"]))
s = CategoricalScale(scale, None, format).setup(x)
assert_series_equal(s.convert(x), pd.Series([1., 0., 2.]))
| 6f3077f12b7837106ba0a79740fbfd547628291b | 74 | https://github.com/mwaskom/seaborn.git | 40 | def test_convert_categories(self, scale):
x = pd.Series(pd.Categorical(["a", "b", "c"], ["b", "a", "c"]))
s = CategoricalScale(scale, None, format).setup(x)
assert_series_equal(s.convert(x), pd.Series([1., 0., 2.]))
| 13 | 114 | test_convert_categories |
|
29 | 0 | 1 | 13 | test/mitmproxy/proxy/layers/test_websocket.py | 251,944 | make it black! | mitmproxy | 12 | Python | 20 | test_websocket.py | def test_drop_message(ws_testdata):
tctx, playbook, flow = ws_testdata
assert (
playbook
<< websocket.WebsocketStartHook(flow)
>> reply()
>> DataReceived(tctx.server, b"\x81\x03foo")
<< websocket.WebsocketMessageHook(flow)
)
flow.websocket.messages[-1].drop()
playbook >> reply()
playbook << None
assert playbook
| b3587b52b25077f68116b9852b041d33e7fc6601 | 73 | https://github.com/mitmproxy/mitmproxy.git | 84 | def test_drop_message(ws_testdata):
tctx, playbook, flow = ws_testdata
assert (
playbook
<< websocket.WebsocketStartHook(flow)
>> reply()
>> DataReceived(tctx.server, b"\x81\x03foo")
<< websocket.WebsocketMessageHook(flow)
)
flow.websocket.messages[-1].drop()
playbook >> reply()
playbook << None
assert playbook
| 13 | 109 | test_drop_message |
|
10 | 0 | 2 | 10 | cms/tests/test_page_admin.py | 82,413 | ci: Added codespell (#7355)
Co-authored-by: Christian Clauss <cclauss@me.com>
* ci: codespell config taken from #7292 | django-cms | 9 | Python | 8 | test_page_admin.py | def _parse_page_tree(self, response, parser_class):
content = response.content
content = content.decode(response.charset)
| c1290c9ff89cb00caa5469129fd527e9d82cd820 | 66 | https://github.com/django-cms/django-cms.git | 23 | def _parse_page_tree(self, response, parser_class):
content = response.content
content | 7 | 37 | _parse_page_tree |
|
49 | 0 | 6 | 13 | erpnext/accounts/doctype/pricing_rule/utils.py | 64,045 | chore: undo unnecessary changes | erpnext | 20 | Python | 40 | utils.py | def sorted_by_priority(pricing_rules, args, doc=None):
# If more than one pricing rules, then sort by priority
pricing_rules_list = []
pricing_rule_dict = {}
for pricing_rule in pricing_rules:
pricing_rule = filter_pricing_rules(args, pricing_rule, doc)
if pricing_rule:
if not pricing_rule.get('priority'):
pricing_rule['priority'] = 1
if pricing_rule.get('apply_multiple_pricing_rules'):
pricing_rule_dict.setdefault(cint(pricing_rule.get("priority")), []).append(pricing_rule)
for key in sorted(pricing_rule_dict):
pricing_rules_list.extend(pricing_rule_dict.get(key))
return pricing_rules_list
| 3da2cac772b0557e15ddf4ee9673381b0d98bca1 | 103 | https://github.com/frappe/erpnext.git | 35 | def sorted_by_priority(pricing_rules, args, doc=None):
# If more than one pricing rules, then sort by | 15 | 170 | sorted_by_priority |
|
15 | 0 | 1 | 9 | tests/test_css_parse.py | 181,989 | Separate parsing of scalar, number, duration | textual | 9 | Python | 13 | test_css_parse.py | def test_parse_text_foreground():
css =
stylesheet = Stylesheet()
stylesheet.parse(css)
styles = stylesheet.rules[0].styles
assert styles.text_color == Color.parse("green")
| fd47ef491b7700a4414d85bf573f1e719cfae555 | 39 | https://github.com/Textualize/textual.git | 30 | def test_parse_text_foreground():
css =
stylesheet = Stylesheet()
stylesheet.parse(css)
styles = stylesheet.rules[0].styles
assert styles.text_color == Color.parse("green")
| 9 | 68 | test_parse_text_foreground |
|
48 | 0 | 3 | 11 | seaborn/tests/_core/test_data.py | 40,466 | Add tests for many Plot behaviors | seaborn | 14 | Python | 38 | test_data.py | def test_concat_all_operations(self, long_df):
v1 = {"x": "x", "y": "y", "hue": "a"}
v2 = {"y": "s", "size": "s", "hue": None}
p1 = PlotData(long_df, v1)
p2 = p1.concat(None, v2)
for var, key in v2.items():
if key is None:
assert var not in p2
else:
assert p2.names[var] == key
assert_vector_equal(p2.frame[var], long_df[key])
| 399f9b6aeef04623e03613c584bcb0c615d3cb01 | 101 | https://github.com/mwaskom/seaborn.git | 149 | def test_concat_all_operations(self, long_df):
v1 = {"x": "x", "y": "y", "hue": "a"}
v2 = {"y": "s", "size": "s", "hue": None}
p1 = PlotData(long_df, v1)
p2 = | 15 | 171 | test_concat_all_operations |
|
51 | 1 | 1 | 4 | tests/utilities/test_importtools.py | 58,233 | Add tests for `import_object` | prefect | 11 | Python | 39 | test_importtools.py | def test_import_object_from_script_with_relative_imports(script_path):
# Remove shared_libs if it exists from a prior test or the module can be cached
sys.modules.pop("shared_libs", None)
foobar = import_object(f"{script_path}:foobar")
assert foobar() == "foobar"
@pytest.mark.parametrize(
"script_path",
[
TEST_PROJECTS_DIR / "nested-project" / "explicit_relative.py",
TEST_PROJECTS_DIR / "tree-project" / "imports" / "explicit_relative.py",
TEST_PROJECTS_DIR / "tree-project" / "imports" / "implicit_relative.py",
],
) | 1cf2a8463d93bed3e445ebebf089ac4872fbd34c | @pytest.mark.parametrize(
"script_path",
[
TEST_PROJECTS_DIR / "nested-project" / "explicit_relative.py",
TEST_PROJECTS_DIR / "tree-project" / "imports" / "explicit_relative.py",
TEST_PROJECTS_DIR / "tree-project" / "imports" / "implicit_relative.py",
],
) | 28 | https://github.com/PrefectHQ/prefect.git | 90 | def test_import_object_from_script_with_relative_imports(script_path):
# Remove shared_libs if it exists from a prior test or the module can be cached
sys.modules.pop("shared_libs", None)
foobar = import_object(f"{script_path}:foobar")
assert foobar() == "foobar"
@pytest.mark.parametrize(
"script_path",
[
TEST_PROJECTS_DIR / "nested- | 11 | 123 | test_import_object_from_script_with_relative_imports |
14 | 0 | 1 | 2 | onnx/test/automatic_upgrade_test.py | 255,270 | Use Python type annotations rather than comments (#3962)
* These have been supported since Python 3.5.
ONNX doesn't support Python < 3.6, so we can use the annotations.
Diffs generated by https://pypi.org/project/com2ann/.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Remove MYPY conditional logic in gen_proto.py
It breaks the type annotations and shouldn't be needed.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Get rid of MYPY bool from more scripts
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* move Descriptors class above where its referenced in type annotation
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fixes
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* remove extra blank line
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotations
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotation in gen_docs
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix Operators.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix TestCoverage.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix protoc-gen-mypy.py
Signed-off-by: Gary Miguel <garymiguel@microsoft.com> | onnx | 11 | Python | 13 | automatic_upgrade_test.py | def test_Div(self) -> None:
self._test_op_upgrade('Div', 1, [[3, 4, 5], [3, 1, 5]], attrs={'consumed_inputs': [0]})
| 83fa57c74edfd13ddac9548b8a12f9e3e2ed05bd | 43 | https://github.com/onnx/onnx.git | 20 | def test_Div(self) -> None:
self._test_op_upgrade('Div', 1, [[3, 4, 5], [3, 1, 5]], attrs={'consumed_inputs': [0]})
| 4 | 63 | test_Div |
|
16 | 0 | 1 | 9 | tests/components/laundrify/conftest.py | 301,146 | Add laundrify integration (#65090)
* First version of laundrify integration
* Code cleanup
* Code cleanup after review #2
* Move coordinator to its own file
* Save devices as dict and implement available prop as fn
* Validate token on init, abort if already configured
* Some more cleanup after review
* Add strict type hints
* Minor changes after code review
* Remove OptionsFlow (use default poll interval instead)
* Fix CODEOWNERS to pass hassfest job
* Fix formatting to pass prettier job
* Fix mypy typing error
* Update internal device property after fetching data
* Call parental update handler and remove obsolete code
* Add coordinator tests and fix some config flow tests
* Refactor tests
* Refactor fixtures
* Device unavailable if polling fails | core | 16 | Python | 15 | conftest.py | def laundrify_api_fixture(laundrify_exchange_code, laundrify_validate_token):
with patch(
"laundrify_aio.LaundrifyAPI.get_account_id",
return_value=VALID_ACCOUNT_ID,
), patch(
"laundrify_aio.LaundrifyAPI.get_machines",
return_value=json.loads(load_fixture("laundrify/machines.json")),
) as get_machines_mock:
yield get_machines_mock
| abf9aab18f9a6953b49c4f8aee1ca7e560911e36 | 41 | https://github.com/home-assistant/core.git | 63 | def laundrify_api_fixture(laundrify_exchange_code, laundrify_validate_token):
with patch(
"laundrify_aio.LaundrifyAPI.get_account_id",
return_value=VALID_ACCOUNT_ID,
), patch(
"laundrify_aio.LaundrifyAPI.get_machine | 10 | 74 | laundrify_api_fixture |
|
105 | 0 | 9 | 38 | mindsdb/api/mysql/mysql_proxy/classes/sql_query.py | 114,034 | test fixes | mindsdb | 21 | Python | 75 | sql_query.py | def _process_query(self, sql):
# self.query = parse_sql(sql, dialect='mindsdb')
integrations_names = self.datahub.get_datasources_names()
integrations_names.append('information_schema')
integrations_names.append('files')
integrations_names.append('views')
all_tables = get_all_tables(self.query)
predictor_metadata = {}
predictors = db.session.query(db.Predictor).filter_by(company_id=self.session.company_id)
for model_name in set(all_tables):
for p in predictors:
if p.name == model_name:
if isinstance(p.data, dict) and 'error' not in p.data:
ts_settings = p.learn_args.get('timeseries_settings', {})
if ts_settings.get('is_timeseries') is True:
window = ts_settings.get('window')
order_by = ts_settings.get('order_by')[0]
group_by = ts_settings.get('group_by')
if isinstance(group_by, list) is False and group_by is not None:
group_by = [group_by]
predictor_metadata[model_name] = {
'timeseries': True,
'window': window,
'horizon': ts_settings.get('horizon'),
'order_by_column': order_by,
'group_by_columns': group_by
}
else:
predictor_metadata[model_name] = {
'timeseries': False
}
self.model_types.update(p.data.get('dtypes', {}))
self.planner = query_planner.QueryPlanner(
self.query,
integrations=integrations_names,
predictor_namespace=self.mindsdb_database_name,
predictor_metadata=predictor_metadata,
default_namespace=self.database
)
| dc7949207fbf3c63b2ba30b68a84b2ee7f2b5e80 | 269 | https://github.com/mindsdb/mindsdb.git | 806 | def _process_query(self, sql):
# self.query = parse_sql(sql, dialect='mindsdb')
integrations_names = self.datahub.get_datasources_names()
integrations_names.append('information_schema')
integrations_names.append('files')
integrations_names.append('views')
all_tables = get_all_tables(self.query)
predictor_metadata = {}
predictors = db.session.query(db.Predictor).filter_by(company_id=self.session.company_id)
for model_name in set(all_tables):
for p in predictors:
if p.name == model_name:
if isinstance(p.data, dict) and 'error' not in p.data:
ts_settings = p.learn_args.get('timeseries_settings', {})
if ts_settings.get('is_timeseries') is True:
window = ts_settings.get('window')
order_by = ts_settings.get('order_by')[0]
group_by = ts_settings.get('group_by')
if isinstance(group_by, list) is False and group_by is not None:
group_by = [group_by]
predictor_metadata[model_name] = {
'timeseries': True,
'window': window,
'horizon': ts_settings.get('horizon'),
'order_by_column': order_by,
'group_by_columns': group_by
}
else:
predictor_metadata[model_name] = {
'timeseries': False
| 41 | 446 | _process_query |
|
8 | 0 | 1 | 3 | homeassistant/components/zwave_js/addon.py | 289,758 | Refactor zwave_js add-on manager (#80883)
* Make addon slug an instance attribute
* Extract addon name and addon config
* Update docstrings | core | 9 | Python | 8 | addon.py | async def async_restart_addon(self) -> None:
await async_restart_addon(self._hass, self.addon_slug)
| 838691f22f27852a05313809cdf9c51094ad3798 | 19 | https://github.com/home-assistant/core.git | 22 | async def async_restart_addon(self) -> None: | 4 | 34 | async_restart_addon |
|
131 | 0 | 2 | 12 | src/diffusers/schedulers/scheduling_ddpm.py | 335,088 | rename image to sample in schedulers | diffusers | 12 | Python | 68 | scheduling_ddpm.py | def step(self, residual, sample, t):
# 1. compute alphas, betas
alpha_prod_t = self.get_alpha_prod(t)
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
# 3. Clip "predicted x_0"
if self.clip_predicted_sample:
pred_original_sample = self.clip(pred_original_sample, -1, 1)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.get_beta(t)) / beta_prod_t
current_sample_coeff = self.get_alpha(t) ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
return pred_prev_sample
| dcb23b2d7299708442aee5b4dbf23ee6df363f2c | 129 | https://github.com/huggingface/diffusers.git | 267 | def step(self, residual, sample, t):
# 1. compute alphas, betas
alpha_prod_t = self.get_alpha_prod(t)
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
# 3. Clip "predicted x_0"
if self.clip_predicted_sample:
pred_original_sample = self.clip(pred_original_sample, -1, 1)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
| 18 | 194 | step |
|
61 | 0 | 1 | 38 | tests/sentry/event_manager/test_event_manager.py | 94,331 | test(event_manager): Fix incorrect invocations of manager.save (#36615) | sentry | 22 | Python | 44 | test_event_manager.py | def test_culprit_after_stacktrace_processing(self):
from sentry.grouping.enhancer import Enhancements
enhancement = Enhancements.from_config_string(
,
)
manager = EventManager(
make_event(
platform="native",
exception={
"values": [
{
"type": "Hello",
"stacktrace": {
"frames": [
{
"function": "not_in_app_function",
},
{
"function": "in_app_function",
},
]
},
}
]
},
)
)
manager.normalize()
manager.get_data()["grouping_config"] = {
"enhancements": enhancement.dumps(),
"id": "legacy:2019-03-12",
}
event1 = manager.save(self.project.id)
assert event1.transaction is None
assert event1.culprit == "in_app_function"
| 39cfdcb446e74732c67ce07d7dd8d8d5ace471b1 | 124 | https://github.com/getsentry/sentry.git | 682 | def test_culprit_after_stacktrace_processing(self):
from sentry.grouping.enhancer import Enhancements
enhancement = Enhancements.from_config_string(
| 22 | 218 | test_culprit_after_stacktrace_processing |
|
113 | 0 | 2 | 23 | tests/sentry/utils/performance_issues/test_consecutive_db_detector.py | 89,897 | (refactor) consecutive db detector tests to assert on detector (#42444)
Part of PERF-1847
Refactor consecutive db tests to assert on detector output vs tags
Move tests to its own file | sentry | 12 | Python | 51 | test_consecutive_db_detector.py | def test_does_not_detect_consecutive_db_spans_with_parameterized_query(self):
span_duration = 750
spans = [
create_span(
"db",
span_duration,
"SELECT m.* FROM authors a INNER JOIN books b ON a.book_id = b.id AND b.another_id = 'another_id_123' ORDER BY b.created_at DESC LIMIT 3",
),
create_span(
"db",
span_duration,
"SELECT m.* FROM authors a INNER JOIN books b ON a.book_id = b.id AND b.another_id = 'another_id_456' ORDER BY b.created_at DESC LIMIT 3",
),
create_span(
"db",
span_duration,
"SELECT m.* FROM authors a INNER JOIN books b ON a.book_id = b.id AND b.another_id = 'another_id_789' ORDER BY b.created_at DESC LIMIT 3",
),
]
spans = [modify_span_start(span, span_duration * spans.index(span)) for span in spans]
event = create_event(spans, "a" * 16)
problems = self.find_consecutive_db_problems(event)
assert problems == []
| 9fbdf75bdb6a55803da351f2ef881d86d7fdc9a0 | 86 | https://github.com/getsentry/sentry.git | 362 | def test_does_not_detect_consecutive_db_spans_with_parameterized_query(self):
span_duration = 750
spans = [
create_span(
"db",
span_duration,
"SELECT m.* FROM authors a INNER JOIN books b ON a.book_id = b.id AND b.another_id = 'another_id_123' ORDER BY b.created_at DESC LIMIT 3",
),
create_span(
"db",
span_duration,
"SELECT m.* FROM authors a INNER JOIN books b ON a. | 12 | 138 | test_does_not_detect_consecutive_db_spans_with_parameterized_query |
|
85 | 0 | 9 | 31 | homeassistant/components/command_line/sensor.py | 313,244 | Improve code quality command_line (#65333) | core | 17 | Python | 59 | sensor.py | def update(self) -> None:
self.data.update()
value = self.data.value
if self._json_attributes:
self._attr_extra_state_attributes = {}
if value:
try:
json_dict = json.loads(value)
if isinstance(json_dict, Mapping):
self._attr_extra_state_attributes = {
k: json_dict[k]
for k in self._json_attributes
if k in json_dict
}
else:
_LOGGER.warning("JSON result was not a dictionary")
except ValueError:
_LOGGER.warning("Unable to parse output as JSON: %s", value)
else:
_LOGGER.warning("Empty reply found when expecting JSON data")
if value is None:
value = STATE_UNKNOWN
elif self._value_template is not None:
self._attr_native_value = (
self._value_template.render_with_possible_json_value(
value, STATE_UNKNOWN
)
)
else:
self._attr_native_value = value
| 3771c154fa0ea8e0b49d41ece55a7a18c444ee6a | 142 | https://github.com/home-assistant/core.git | 531 | def update(self) -> None:
self.data.update()
value = self.data.value
if self._json_attributes:
self._attr_extra_state_attributes = {}
if value:
try:
json_dict = json.loads(value)
if isinstance(json_dict, Mapping):
self._attr_extra_state_attributes = {
k: json_dict[k]
for k in self._json_attributes
if k in json_dict
}
else:
_LOGGER.warning("JSON result was not a dictionary")
except ValueError:
_LOGGER.warning("Unable to parse ou | 19 | 235 | update |
|
191 | 0 | 15 | 73 | nuitka/plugins/standard/DllFiles.py | 178,782 | Standalone: Added support for including DLL of 'vosk' package. | Nuitka | 17 | Python | 126 | DllFiles.py | def getExtraDlls(self, module):
full_name = module.getFullName()
# Checking for config, but also allowing fall through for cases that have to
# have some code still here.
config = self.config.get(full_name)
if config:
for dll_entry_point in self._handleDllConfigs(
config=config, full_name=full_name
):
yield dll_entry_point
# TODO: This is legacy code, ideally moved to yaml config over time.
if full_name == "uuid" and isLinux():
uuid_dll_path = self.locateDLL("uuid")
if uuid_dll_path is not None:
yield self.makeDllEntryPoint(
uuid_dll_path, os.path.basename(uuid_dll_path), None
)
elif full_name == "iptc" and isLinux():
import iptc.util # pylint: disable=I0021,import-error
xtwrapper_dll = iptc.util.find_library("xtwrapper")[0]
xtwrapper_dll_path = xtwrapper_dll._name # pylint: disable=protected-access
yield self.makeDllEntryPoint(
xtwrapper_dll_path, os.path.basename(xtwrapper_dll_path), None
)
elif full_name == "coincurve._libsecp256k1" and isWin32Windows():
yield self.makeDllEntryPoint(
os.path.join(module.getCompileTimeDirectory(), "libsecp256k1.dll"),
os.path.join(full_name.getPackageName(), "libsecp256k1.dll"),
full_name.getPackageName(),
)
# TODO: This should be its own plugin.
elif (
full_name
in (
"pythoncom",
"win32api",
"win32clipboard",
"win32console",
"win32cred",
"win32crypt",
"win32event",
"win32evtlog",
"win32file",
"win32gui",
"win32help",
"win32inet",
"win32job",
"win32lz",
"win32net",
"win32pdh",
"win32pipe",
"win32print",
"win32process",
"win32profile",
"win32ras",
"win32security",
"win32service",
"win32trace",
"win32transaction",
"win32ts",
"win32wnet",
)
and isWin32Windows()
):
pywin_dir = getPyWin32Dir()
if pywin_dir is not None:
for dll_name in "pythoncom", "pywintypes":
pythoncom_filename = "%s%d%d.dll" % (
dll_name,
sys.version_info[0],
sys.version_info[1],
)
pythoncom_dll_path = os.path.join(pywin_dir, pythoncom_filename)
if os.path.exists(pythoncom_dll_path):
yield self.makeDllEntryPoint(
pythoncom_dll_path, pythoncom_filename, None
)
| 87f7d22b39a19d15d762c1da63b918c2bf04c6ec | 325 | https://github.com/Nuitka/Nuitka.git | 1,240 | def getExtraDlls(self, module):
full_name = module.getFullName()
# Checking for config, but also allowing fall through for cases that have to
# have some code still here.
config = self.config.get(full_name)
if config:
for dll_entry_point in self._handleDllConfigs(
config=config, full_name=full_name
):
yield dll_entry_point
# TODO: This is legacy code, ideally moved to yaml config over time.
| 34 | 552 | getExtraDlls |
|
60 | 0 | 5 | 18 | django/core/serializers/xml_serializer.py | 204,760 | Refs #33476 -- Reformatted code with Black. | django | 15 | Python | 50 | xml_serializer.py | def handle_fk_field(self, obj, field):
self._start_relational_field(field)
related_att = getattr(obj, field.get_attname())
if related_att is not None:
if self.use_natural_foreign_keys and hasattr(
field.remote_field.model, "natural_key"
):
related = getattr(obj, field.name)
# If related object has a natural key, use it
related = related.natural_key()
# Iterable natural keys are rolled out as subelements
for key_value in related:
self.xml.startElement("natural", {})
self.xml.characters(str(key_value))
self.xml.endElement("natural")
else:
self.xml.characters(str(related_att))
else:
self.xml.addQuickElement("None")
self.xml.endElement("field")
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 133 | https://github.com/django/django.git | 308 | def handle_fk_field(self, obj, field):
self._start_relational_field(field)
related_att = getattr(obj, field.get_attname())
if related_att is not None:
if self.use_natural_foreign_keys and hasattr(
field.remote_field.model, "natural_key"
):
| 22 | 225 | handle_fk_field |
|
24 | 0 | 4 | 9 | qutebrowser/browser/webengine/webenginetab.py | 321,879 | mypy: defer to machinery for conditional: QWebEngineScripts | qutebrowser | 13 | Python | 20 | webenginetab.py | def _remove_js(self, name):
scripts = self._widget.page().scripts()
if machinery.IS_QT6:
for script in scripts.find(f'_qute_{name}'):
scripts.remove(script)
else:
# Qt 5
script = scripts.findScript(f'_qute_{name}')
if not script.isNull():
scripts.remove(script)
| 046244b54ddb1e95b63da78789137b7efe7b489e | 68 | https://github.com/qutebrowser/qutebrowser.git | 126 | def _remove_js(self, name):
scripts = self._widget.page().scripts()
if machinery.IS_QT6:
for script in scripts.find(f'_qute_{name}'):
scripts.remove(script)
else:
| 13 | 124 | _remove_js |
|
29 | 0 | 5 | 8 | misc/tools/postprocess-vf.py | 162,912 | UPM 2048 and opsz axis (#462)
- UPM is adjusted to 2048
- Additional opsz VF axis (multi master) added which will eventually replace the separate Display family
- New tooling that uses fontmake instead of Inter's own fontbuild toolchain. (The old toolchain is still supported, i.e. `make -f Makefile_v1.make ...`) | inter | 11 | Python | 23 | postprocess-vf.py | def clear_subfamily_name(font):
nameTable = font["name"]
rmrecs = []
for rec in nameTable.names:
if rec.nameID == SUBFAMILY_NAME or rec.nameID == TYPO_SUBFAMILY_NAME:
rmrecs.append(rec)
for rec in rmrecs:
nameTable.removeNames(rec.nameID, rec.platformID, rec.platEncID, rec.langID)
| 07960766590650e516a75ce6ceba91b68a5fa551 | 66 | https://github.com/rsms/inter.git | 43 | def clear_subfamily_name(font):
nameTable = font["name"]
rmrecs = []
for rec in nameTable.names:
if rec.nameID == SUBFAMILY_NAME or rec.nameID == | 14 | 102 | clear_subfamily_name |
|
36 | 0 | 1 | 8 | test/document_stores/test_opensearch.py | 258,421 | feat: make `score_script` first class citizen via `knn_engine` param (#3284)
* OpenSearchDocumentStore: make score_script accessible via knn_engine
* blacken
* fix tests
* fix format
* fix naming of 'score_script' consistently
* fix tests
* fix test
* fix ef_search tests
* always validate index
* improve clone_embedding_field
* fix pylint
* reformat
* remove port
* update tests
* set no_implicit_optional = false
* fix myp
* fix test
* refactorings
* reformat
* fix and refactor tests
* better tests
* create search_field mappings
* remove no_implicit_optional = false
* skip validation for custom mapping
* format
* Apply suggestions from docs code review
Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>
* Apply tougher suggestions from code review
* fix messages
* fix typos
* update tests
* Update haystack/document_stores/opensearch.py
Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>
* fix tests
* fix ef_search validation
* add test for ef_search nmslib
* fix assert_not_called
Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com> | haystack | 13 | Python | 33 | test_opensearch.py | def test__validate_and_adjust_document_index_wrong_mapping_raises(self, mocked_document_store, existing_index):
existing_index["mappings"]["properties"]["age"] = {"type": "integer"}
mocked_document_store.search_fields = ["age"]
with pytest.raises(
DocumentStoreError,
match=f"The index '{self.index_name}' needs the 'text' type for the search_field 'age' to run full text search, but got type 'integer'.",
):
mocked_document_store._validate_and_adjust_document_index(self.index_name)
| 6c067b2b4f62f11850415a30d75b719aa286adc1 | 55 | https://github.com/deepset-ai/haystack.git | 104 | def test__validate_and_adjust_document_index_wrong_mapping_raises(self, mocked_document_store, existing_index):
existing_index["mappings"]["properties"]["a | 11 | 106 | test__validate_and_adjust_document_index_wrong_mapping_raises |
|
25 | 0 | 3 | 7 | src/sentry/models/activity.py | 90,845 | ref(models): `ActivityType` (#34978)
## Objective:
We want to separate enum logic from Model logic. This breaks a lot of circular dependencies. | sentry | 14 | Python | 24 | activity.py | def save(self, *args, **kwargs):
created = bool(not self.id)
super().save(*args, **kwargs)
if not created:
return
# HACK: support Group.num_comments
if self.type == ActivityType.NOTE.value:
self.group.update(num_comments=F("num_comments") + 1)
| b9f5a910dc841b85f58d46266ec049ae5a7fd305 | 63 | https://github.com/getsentry/sentry.git | 81 | def save(self, *args, **kwargs):
created = bool(not self.id)
super().save(*args, **kwargs)
if not created:
return
# HACK: support Group.num_comments
if self.type == ActivityType.NOTE.value:
self.group.u | 16 | 105 | save |
|
99 | 0 | 11 | 32 | homeassistant/components/vera/sensor.py | 297,714 | Use UnitOfTemperature in integrations (t-z) (#84309) | core | 13 | Python | 46 | sensor.py | def update(self) -> None:
super().update()
if self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR:
self.current_value = self.vera_device.temperature
vera_temp_units = self.vera_device.vera_controller.temperature_units
if vera_temp_units == "F":
self._temperature_units = UnitOfTemperature.FAHRENHEIT
else:
self._temperature_units = UnitOfTemperature.CELSIUS
elif self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR:
self.current_value = self.vera_device.light
elif self.vera_device.category == veraApi.CATEGORY_UV_SENSOR:
self.current_value = self.vera_device.light
elif self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR:
self.current_value = self.vera_device.humidity
elif self.vera_device.category == veraApi.CATEGORY_SCENE_CONTROLLER:
controller = cast(veraApi.VeraSceneController, self.vera_device)
value = controller.get_last_scene_id(True)
time = controller.get_last_scene_time(True)
if time == self.last_changed_time:
self.current_value = None
else:
self.current_value = value
self.last_changed_time = time
elif self.vera_device.category == veraApi.CATEGORY_POWER_METER:
self.current_value = self.vera_device.power
elif self.vera_device.is_trippable:
tripped = self.vera_device.is_tripped
self.current_value = "Tripped" if tripped else "Not Tripped"
else:
self.current_value = "Unknown"
| 79d3d4ceaed75cae908064f012c2839d336f4aba | 238 | https://github.com/home-assistant/core.git | 416 | def update(self) -> None:
super().update()
if self.vera_device.category == veraApi.CATEGORY_TEMPERATURE_SENSOR:
self.current_value = self.vera_device.temperature
vera_temp_units = self.vera_device.vera_controller.temperature_units
if vera_temp_units == "F":
self._temperature_units = UnitOfTemperature.FAHRENHEIT
else:
self._temperature_units = UnitOfTemperature.CELSIUS
elif self.vera_device.category == veraApi.CATEGORY_LIGHT_SENSOR:
self.current_value = self.vera_device.light
elif self.vera_device.category == veraApi.CATEGORY_UV_SENSOR:
self.current_value = self.vera_device.light
elif self.vera_device.category == veraApi.CATEGORY_HUMIDITY_SENSOR:
self.current_value = self.vera_device.humidity
elif self.vera_device.category == veraApi.CATEGORY_SCENE_CONTROLLER:
controller = cast(veraApi.VeraSceneController, self.vera_device)
value = controller.get_last_scene_id(True)
time = controller.get_last_scene_time(True)
if time == self.last_changed_time:
self.current_value = None
else:
self.current_value = value
self.last_changed_time = time
elif self.vera_device.category == veraApi.CATEGORY_POWER_METER:
self.current_value = self.vera_device.power
elif self.vera_device.is_trippable:
tripped = self.vera_device.is_tripped
self.current_value = "Tripped" if | 35 | 387 | update |
|
94 | 0 | 1 | 34 | erpnext/manufacturing/report/bom_operations_time/bom_operations_time.py | 66,458 | style: format code with black | erpnext | 11 | Python | 52 | bom_operations_time.py | def get_columns(filters):
return [
{"label": _("BOM ID"), "options": "BOM", "fieldname": "name", "fieldtype": "Link", "width": 220},
{
"label": _("Item Code"),
"options": "Item",
"fieldname": "item",
"fieldtype": "Link",
"width": 150,
},
{"label": _("Item Name"), "fieldname": "item_name", "fieldtype": "Data", "width": 110},
{"label": _("UOM"), "options": "UOM", "fieldname": "uom", "fieldtype": "Link", "width": 100},
{
"label": _("Operation"),
"options": "Operation",
"fieldname": "operation",
"fieldtype": "Link",
"width": 140,
},
{
"label": _("Workstation"),
"options": "Workstation",
"fieldname": "workstation",
"fieldtype": "Link",
"width": 110,
},
{"label": _("Time (In Mins)"), "fieldname": "time_in_mins", "fieldtype": "Float", "width": 120},
{
"label": _("Sub-assembly BOM Count"),
"fieldname": "used_as_subassembly_items",
"fieldtype": "Int",
"width": 200,
},
]
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 200 | https://github.com/frappe/erpnext.git | 60 | def get_columns(filters):
return [
{"label": _("BOM ID"), "options": "BOM", "fieldname": "name", "fieldtype": "Link", "width": 220},
{
"label": _("Item Code"),
"options": "Item",
"fieldname": "item",
"fieldtype": "Link",
"width": 150,
},
{"label": _("Item Name"), "fieldname": "item_name", "fieldtype": "Data", "width": 110},
{"la | 3 | 399 | get_columns |
|
54 | 0 | 7 | 15 | homeassistant/components/mqtt/cover.py | 291,107 | Enforce CoverEntityFeature (#82457)
* Enforce CoverEntityFeature
* Adjust pylint | core | 11 | Python | 24 | cover.py | def supported_features(self) -> CoverEntityFeature:
supported_features = CoverEntityFeature(0)
if self._config.get(CONF_COMMAND_TOPIC) is not None:
if self._config.get(CONF_PAYLOAD_OPEN) is not None:
supported_features |= CoverEntityFeature.OPEN
if self._config.get(CONF_PAYLOAD_CLOSE) is not None:
supported_features |= CoverEntityFeature.CLOSE
if self._config.get(CONF_PAYLOAD_STOP) is not None:
supported_features |= CoverEntityFeature.STOP
if self._config.get(CONF_SET_POSITION_TOPIC) is not None:
supported_features |= CoverEntityFeature.SET_POSITION
if self._config.get(CONF_TILT_COMMAND_TOPIC) is not None:
supported_features |= TILT_FEATURES
return supported_features
| 34607d4410a78fc6e41337e2b51600d1fdf39580 | 117 | https://github.com/home-assistant/core.git | 196 | def supported_features(self) -> CoverEntityFeature:
supported_features = CoverEntityFeature(0)
if self._config.get(CONF_COMMAND_TOPIC) is not None:
if self._config.get(CONF_PAYLOAD_OPEN) is not None:
supported_features |= CoverEntityFeature.OPEN
if self._config.get(CONF_PAYLOAD_CLOSE) is not None:
supported_features |= CoverEntityFeature.CLOSE
if self._config.get(CONF_PAYLOAD_STOP) is not None:
supported_features |= CoverEntityFeature.STOP
if self._config.get(CON | 16 | 186 | supported_features |
|
107 | 0 | 1 | 21 | test/mitmproxy/test_http.py | 250,541 | fix a crash when refreshing headers with a negative unix timestamp, fix #5054 (#5078) | mitmproxy | 11 | Python | 76 | test_http.py | def test_refresh(self):
r = tresp()
n = time.time()
r.headers["date"] = email.utils.formatdate(n, usegmt=True)
pre = r.headers["date"]
r.refresh(946681202)
assert pre == r.headers["date"]
r.refresh(946681262)
d = email.utils.parsedate_tz(r.headers["date"])
d = email.utils.mktime_tz(d)
# Weird that this is not exact...
assert abs(60 - (d - n)) <= 1
cookie = "MOO=BAR; Expires=Tue, 08-Mar-2011 00:20:38 GMT; Path=foo.com; Secure"
r.headers["set-cookie"] = cookie
r.refresh()
# Cookie refreshing is tested in test_cookies, we just make sure that it's triggered here.
assert cookie != r.headers["set-cookie"]
with mock.patch('mitmproxy.net.http.cookies.refresh_set_cookie_header') as m:
m.side_effect = ValueError
r.refresh(n)
# Test negative unixtime, which raises on at least Windows.
r.headers["date"] = pre = "Mon, 01 Jan 1601 00:00:00 GMT"
r.refresh(946681202)
assert r.headers["date"] == pre
| 53f60c88b1d7e4d817194f186d9730b32953d1a7 | 174 | https://github.com/mitmproxy/mitmproxy.git | 275 | def test_refresh(self):
r = tresp()
| 23 | 301 | test_refresh |
|
55 | 0 | 6 | 18 | utils/angle.py | 19,322 | Enhance dubins path docs (#664)
* Engance dubins path docs
* Update dubins_path.rst
* fix doc artifact link in CI
* wip
* wip
* wip
* Update dubins_path.rst
* wip
* wip
* wip
* wip
* wip | PythonRobotics | 14 | Python | 30 | angle.py | def angle_mod(x, zero_2_2pi=False, degree=False):
if isinstance(x, float):
is_float = True
else:
is_float = False
x = np.asarray(x).flatten()
if degree:
x = np.deg2rad(x)
if zero_2_2pi:
mod_angle = x % (2 * np.pi)
else:
mod_angle = (x + np.pi) % (2 * np.pi) - np.pi
if degree:
mod_angle = np.rad2deg(mod_angle)
if is_float:
return mod_angle.item()
else:
return mod_angle
| 32b545fe7c35b57f280cd9d570f62839886f2e4b | 114 | https://github.com/AtsushiSakai/PythonRobotics.git | 141 | def angle_mod(x, zero_2_2pi=False, degree=False):
if isinstance(x, float):
is_float = True
else:
is_float = False
x = np.asarray(x).flatten()
if degree:
x = np.deg2rad(x)
if zero_2_2pi:
mod_angle = x % (2 * np.pi)
else:
mod_angle = (x + np.pi) % (2 * np.pi) - np.pi
if degree:
mod_angle = np.rad2deg(mod_angle)
if is_float:
return mod_angle.item()
else | 15 | 185 | angle_mod |
|
7 | 0 | 1 | 2 | tests/custom_object_test.py | 122,862 | (NFC) Prepare for migration from producing MHLO to producing StableHLO
This CL renames occurrences of "mhlo" in: 1) names, 2) tests, 3) prose in order
to prepare for the upcoming migration.
Unchanged occurrences:
1) Public API that contains "mhlo", e.g. XlaLowering.mhlo and the "mhlo"
argument value in Lowering.as_text and Lowering.compiler_ir.
2) Documentation (changelog, JEPs, IR examples, etc).
3) One rare situation where prose says "StableHLO" and "MHLO" in one sentence,
so both are necessary to disambiguate.
PiperOrigin-RevId: 495771153 | jax | 7 | Python | 7 | custom_object_test.py | def _sp_data_hlo_lowering(ctx, data_and_indices):
return [data_and_indices[0]]
mlir.register_lowering(sp_data_p, _sp_data_hlo_lowering)
| b8ae8e3fa10f9abe998459fac1513915acee776d | 14 | https://github.com/google/jax.git | 6 | def _sp_data_hlo_lowering(ctx, data_and_indices):
return [data_and_indices[0]]
mlir.register_lowering(sp_data_p, _sp_data_hlo_lowering)
| 6 | 33 | _sp_data_hlo_lowering |
|
9 | 0 | 2 | 3 | airflow/models/mappedoperator.py | 45,973 | Rename task-mapping trigger to 'expand' (#22106) | airflow | 11 | Python | 9 | mappedoperator.py | def __del__(self):
if not self._expand_called:
warnings.warn(f"{self!r} was never mapped!")
| b1fdcdfe6778574c53bdf6bcbd59090c59605287 | 18 | https://github.com/apache/airflow.git | 26 | def __del__(self):
if not self._expand_called:
warnings.warn(f"{self!r} wa | 5 | 36 | __del__ |
|
94 | 0 | 1 | 39 | sklearn/linear_model/tests/test_ransac.py | 260,892 | MAINT Clean deprecation for 1.2: Ransac losses (#24408) | scikit-learn | 12 | Python | 54 | test_ransac.py | def test_ransac_min_n_samples():
estimator = LinearRegression()
ransac_estimator1 = RANSACRegressor(
estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator2 = RANSACRegressor(
estimator,
min_samples=2.0 / X.shape[0],
residual_threshold=5,
random_state=0,
)
ransac_estimator5 = RANSACRegressor(
estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator6 = RANSACRegressor(estimator, residual_threshold=5, random_state=0)
ransac_estimator7 = RANSACRegressor(
estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0
)
# GH #19390
ransac_estimator8 = RANSACRegressor(
Ridge(), min_samples=None, residual_threshold=5, random_state=0
)
ransac_estimator1.fit(X, y)
ransac_estimator2.fit(X, y)
ransac_estimator5.fit(X, y)
ransac_estimator6.fit(X, y)
assert_array_almost_equal(
ransac_estimator1.predict(X), ransac_estimator2.predict(X)
)
assert_array_almost_equal(
ransac_estimator1.predict(X), ransac_estimator5.predict(X)
)
assert_array_almost_equal(
ransac_estimator1.predict(X), ransac_estimator6.predict(X)
)
with pytest.raises(ValueError):
ransac_estimator7.fit(X, y)
err_msg = "`min_samples` needs to be explicitly set"
with pytest.raises(ValueError, match=err_msg):
ransac_estimator8.fit(X, y)
| f8991210f022270d640a302820ed4b9ec58b42c1 | 251 | https://github.com/scikit-learn/scikit-learn.git | 262 | def test_ransac_min_n_samples():
estimator = LinearRegression()
ransac_estimator1 = RANSACRegressor(
estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator2 = RANSACRegressor(
estimator,
min_samples=2.0 / X.shape[0],
residual_threshold=5,
random_state=0,
)
ransac_estimator5 = RANSACRegressor(
estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator6 = RANSACRegressor(estimator, residual_threshold=5, random_state=0)
ransac_estimator7 = RANSACRegressor(
estimator, min_samples=X.shape[0] + | 25 | 377 | test_ransac_min_n_samples |
|
32 | 0 | 2 | 8 | test/test_prototype_transforms.py | 193,029 | [proto] Ported all transforms to the new API (#6305)
* [proto] Added few transforms tests, part 1 (#6262)
* Added supported/unsupported data checks in the tests for cutmix/mixup
* Added RandomRotation, RandomAffine transforms tests
* Added tests for RandomZoomOut, Pad
* Update test_prototype_transforms.py
* Added RandomCrop transform and tests (#6271)
* [proto] Added GaussianBlur transform and tests (#6273)
* Added GaussianBlur transform and tests
* Fixing code format
* Copied correctness test
* [proto] Added random color transforms and tests (#6275)
* Added random color transforms and tests
* Disable smoke test for RandomSolarize, RandomAdjustSharpness
* Added RandomPerspective and tests (#6284)
- replaced real image creation by mocks for other tests
* Added more functional tests (#6285)
* [proto] Added elastic transform and tests (#6295)
* WIP [proto] Added functional elastic transform with tests
* Added more functional tests
* WIP on elastic op
* Added elastic transform and tests
* Added tests
* Added tests for ElasticTransform
* Try to format code as in https://github.com/pytorch/vision/pull/5106
* Fixed bug in affine get_params test
* Implemented RandomErase on PIL input as fallback to tensors (#6309)
Added tests
* Added image_size computation for BoundingBox.rotate if expand (#6319)
* Added image_size computation for BoundingBox.rotate if expand
* Added tests
* Added erase_image_pil and eager/jit erase_image_tensor test (#6320)
* Updates according to the review
Co-authored-by: Vasilis Vryniotis <datumbox@users.noreply.github.com> | vision | 12 | Python | 21 | test_prototype_transforms.py | def test__get_params(self, sigma):
transform = transforms.GaussianBlur(3, sigma=sigma)
params = transform._get_params(None)
if isinstance(sigma, float):
assert params["sigma"][0] == params["sigma"][1] == 10
else:
assert sigma[0] <= params["sigma"][0] <= sigma[1]
assert sigma[0] <= params["sigma"][1] <= sigma[1]
| 77c8c91cad88a1e48da856ecb7957f4691244e21 | 91 | https://github.com/pytorch/vision.git | 92 | def test__get_params(self, sigma):
transform | 10 | 138 | test__get_params |