n_words
int64 3
1.95k
| n_ast_errors
int64 0
2
| complexity
int64 1
151
| nloc
int64 2
546
| path
stringlengths 8
125
| id
int64 280
339k
| commit_message
stringlengths 3
18.1k
| repo
stringlengths 3
28
| ast_levels
int64 4
28
| language
stringclasses 1
value | vocab_size
int64 3
677
| file_name
stringlengths 5
67
| code
stringlengths 101
24k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
2.76k
| token_counts
int64 7
3.77k
| url
stringlengths 31
61
| n_whitespaces
int64 4
13.9k
| random_cut
stringlengths 21
13.9k
| n_identifiers
int64 1
157
| n_ast_nodes
int64 10
3.6k
| fun_name
stringlengths 3
72
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
78 | 0 | 2 | 12 | tests/unit/test_pyimodulegraph.py | 262,872 | Fix typos (#6782) [skip ci] | pyinstaller | 11 | Python | 47 | test_pyimodulegraph.py | def test_graph_collects_script_dependencies(fresh_pyi_modgraph, tmpdir):
mg = fresh_pyi_modgraph
# self-test 1: uuid is not included in the graph by default
src1 = gen_sourcefile(tmpdir, , test_id="1")
node = mg.add_script(str(src1))
assert node is not None
assert not mg.find_node("uuid") # self-test
# Add script importing uuid
src2 = gen_sourcefile(tmpdir, , test_id="2")
mg.add_script(str(src2))
assert mg.find_node("uuid") # self-test
# The actual test: uuid is (indirectly) linked to the first script
names = [n.identifier for n in mg.iter_graph(start=node)]
assert str(src2) in names
assert "uuid" in names
| 1a7d704ffbabb433007e3ba04750c2f13ade48e5 | 103 | https://github.com/pyinstaller/pyinstaller.git | 121 | def test_graph_collects_script_dependencies(fresh_pyi_modgraph, tmpdir):
mg = fresh_pyi_modgraph
# self-test 1: uuid is not included in the graph by default
src1 = gen_sourcefile(tmpdir, , test_id="1")
node = mg.add_script(str(src1))
assert node is not None
assert not mg.find_node("uu | 17 | 177 | test_graph_collects_script_dependencies |
|
55 | 0 | 1 | 8 | pandas/tests/io/test_sql.py | 162,995 | ENH: to_sql returns rowcount (#45137) | pandas | 12 | Python | 42 | test_sql.py | def test_nan_string(self):
# NaNs in string column
df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]})
assert df.to_sql("test_nan", self.conn, index=False) == 3
# NaNs are coming back as None
df.loc[2, "B"] = None
# with read_table
result = sql.read_sql_table("test_nan", self.conn)
tm.assert_frame_equal(result, df)
# with read_sql
result = sql.read_sql_query("SELECT * FROM test_nan", self.conn)
tm.assert_frame_equal(result, df)
| 3dfed3fcd552dcbf4daf7f78c82a87638f896512 | 100 | https://github.com/pandas-dev/pandas.git | 131 | def test_nan_string(self):
# NaNs in string c | 16 | 165 | test_nan_string |
|
27 | 0 | 5 | 8 | src/prefect/blocks/core.py | 56,574 | Adds capability filtering to block schema filter route | prefect | 11 | Python | 22 | core.py | def get_block_capabilities(cls):
base_block_capabilities = [
getattr(base, "_block_schema_capabilities", []) or []
for base in cls.__bases__
]
return list(
{c for capabilities in base_block_capabilities for c in capabilities}
)
| 1e29ed45c704bb4b652e15134e95bcbdb77e73a5 | 42 | https://github.com/PrefectHQ/prefect.git | 87 | def get_block_capabilities(cls):
base_block_capabilities = [
| 9 | 64 | get_block_capabilities |
|
47 | 0 | 1 | 14 | pandas/tests/arithmetic/test_period.py | 172,325 | API: dont do type inference on arithmetic results (#49714)
* API: dont do type inference on arithmetic results
* mypy fixup
* use concat_compat
* dont infer in TimedeltaArray
* update addsub
* avoid messing with box_expected | pandas | 14 | Python | 31 | test_period.py | def test_parr_add_sub_object_array(self):
pi = period_range("2000-12-31", periods=3, freq="D")
parr = pi.array
other = np.array([Timedelta(days=1), pd.offsets.Day(2), 3])
with tm.assert_produces_warning(PerformanceWarning):
result = parr + other
expected = PeriodIndex(
["2001-01-01", "2001-01-03", "2001-01-05"], freq="D"
)._data.astype(object)
tm.assert_equal(result, expected)
with tm.assert_produces_warning(PerformanceWarning):
result = parr - other
expected = PeriodIndex(["2000-12-30"] * 3, freq="D")._data.astype(object)
tm.assert_equal(result, expected)
| 35a7f807ac9f02128333c1b5df0f03c897d13445 | 136 | https://github.com/pandas-dev/pandas.git | 149 | def test_parr_add_sub_object_array(self):
pi = period_range("2000-12-31", periods=3, freq="D")
parr = pi.array
other = np.array([Timedelta(days=1), pd.offsets.Day(2), 3])
with tm.assert_produces_warning(PerformanceWarning):
result = parr + other
expected = PeriodIndex(
["2001-01-01", "2001-01-03", "2001-01-05"], freq="D"
)._data.astype(object)
tm.assert_equal(result, expected)
with tm.a | 25 | 227 | test_parr_add_sub_object_array |
|
6 | 0 | 1 | 4 | homeassistant/components/openuv/__init__.py | 307,870 | Allow multiple instances of OpenUV via the `homeassistant.update_entity` service (#76878)
* Allow for multiple instances of the OpenUV integration
* Docstring
* Remove Repairs
* Fix tests
* Slightly faster OpenUV object lookup
* Entity update service
* Remove service descriptions
* hassfest
* Simplify strings
* Don't add UI instructions to Repairs item
* Add a throttle to entity update
* Update homeassistant/components/openuv/__init__.py
Co-authored-by: Paulus Schoutsen <paulus@home-assistant.io>
* Switch from Throttle to Debouncer(s)
* Keep dispatcher for services
* Reduce change surface area
* Duplicate method
* Add issue registry through helper
* Update deprecation version
* Use config entry selector
* Remove device/service info
* Remove commented out method
* Correct entity IDs and better verbiage
* Fix tests
* Handle missing config entry ID in service calls
* Remove unhelpful comment
* Remove unused constants
Co-authored-by: Paulus Schoutsen <paulus@home-assistant.io>
Co-authored-by: J. Nick Koston <nick@koston.org> | core | 7 | Python | 6 | __init__.py | def async_update_state(self) -> None:
self.update_from_latest_data()
self.async_write_ha_state()
| ca5a9c945649f7de9cf58a09f41a33f5ba89b037 | 18 | https://github.com/home-assistant/core.git | 27 | def async_update_state(self) -> None:
self.update_from_latest_data()
self.async_write_ha_state()
| 4 | 34 | async_update_state |
|
46 | 0 | 1 | 13 | test/mitmproxy/addons/test_next_layer.py | 253,148 | [quic] full-stack test | mitmproxy | 10 | Python | 27 | test_next_layer.py | def test_next_layer_reverse_udp_mode(self):
nl = NextLayer()
ctx = MagicMock()
ctx.client.alpn = None
ctx.server.address = ("example.com", 443)
ctx.client.transport_protocol = "udp"
ctx.client.proxy_mode.scheme = "udp"
ctx.layers = [layers.modes.ReverseProxy(ctx)]
assert isinstance(nl._next_layer(ctx, b"", b""), layers.UDPLayer)
ctx.layers = [layers.modes.ReverseProxy(ctx)]
assert isinstance(nl._next_layer(ctx, dtls_client_hello_with_extensions, b""), layers.ClientTLSLayer)
assert len(ctx.layers) == 2
assert isinstance(nl._next_layer(ctx, b"", b""), layers.UDPLayer)
| 6cf2a1202aaa24156b471e6f0a4c1fd58ad57602 | 145 | https://github.com/mitmproxy/mitmproxy.git | 129 | def test_next_layer_reverse_udp_mode(self):
nl = NextLayer()
ctx = MagicMock()
ctx.client.alpn = None
ctx.server.address = ("example.com", 443)
ctx.cli | 22 | 228 | test_next_layer_reverse_udp_mode |
|
14 | 0 | 3 | 7 | homeassistant/components/alert/__init__.py | 288,947 | Remove ToggleEntity inheritance from Alert (#80185) | core | 9 | Python | 11 | __init__.py | def state(self) -> str:
if self._firing:
if self._ack:
return STATE_OFF
return STATE_ON
return STATE_IDLE
| fc32071562de406c32e75410cd87920f82153856 | 24 | https://github.com/home-assistant/core.git | 72 | def state(self) -> str:
if self._firing:
if s | 8 | 41 | state |
|
67 | 0 | 1 | 40 | src/streamlink/plugins/youtube.py | 187,578 | plugins: call schema.validate(value)
instead of validate.validate(schema, value) in various plugins, so that
a proper PluginError gets raised on failure instead of a ValidationError | streamlink | 19 | Python | 45 | youtube.py | def _schema_videodetails(cls, data):
schema = validate.Schema(
{
"videoDetails": {
"videoId": str,
"author": str,
"title": str,
validate.optional("isLive"): validate.transform(bool),
validate.optional("isLiveContent"): validate.transform(bool),
validate.optional("isLiveDvrEnabled"): validate.transform(bool),
validate.optional("isLowLatencyLiveStream"): validate.transform(bool),
validate.optional("isPrivate"): validate.transform(bool),
},
"microformat": validate.all(
validate.any(
validate.all(
{"playerMicroformatRenderer": dict},
validate.get("playerMicroformatRenderer")
),
validate.all(
{"microformatDataRenderer": dict},
validate.get("microformatDataRenderer")
)
),
{
"category": str
}
)
},
validate.union_get(
("videoDetails", "videoId"),
("videoDetails", "author"),
("microformat", "category"),
("videoDetails", "title"),
("videoDetails", "isLive")
)
)
videoDetails = schema.validate(data)
log.trace(f"videoDetails = {videoDetails!r}")
return videoDetails
| 4088bcdf6685ddca7f1400767266d0665a727455 | 208 | https://github.com/streamlink/streamlink.git | 731 | def _schema_videodetails(cls, data):
schema = validate.Schema(
{
"videoDetails": {
"videoId": str,
"author": str,
"title": str,
validate.optional("isLive"): validate.transform(bool),
validate.optional("isLiveContent"): validate.transform(bool),
validate.optional("isLi | 18 | 357 | _schema_videodetails |
|
111 | 0 | 5 | 25 | rllib/contrib/alpha_zero/core/mcts.py | 133,883 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 19 | Python | 73 | mcts.py | def compute_action(self, node):
for _ in range(self.num_sims):
leaf = node.select()
if leaf.done:
value = leaf.reward
else:
child_priors, value = self.model.compute_priors_and_value(leaf.obs)
if self.add_dirichlet_noise:
child_priors = (1 - self.dir_epsilon) * child_priors
child_priors += self.dir_epsilon * np.random.dirichlet(
[self.dir_noise] * child_priors.size
)
leaf.expand(child_priors)
leaf.backup(value)
# Tree policy target (TPT)
tree_policy = node.child_number_visits / node.number_visits
tree_policy = tree_policy / np.max(
tree_policy
) # to avoid overflows when computing softmax
tree_policy = np.power(tree_policy, self.temperature)
tree_policy = tree_policy / np.sum(tree_policy)
if self.exploit:
# if exploit then choose action that has the maximum
# tree policy probability
action = np.argmax(tree_policy)
else:
# otherwise sample an action according to tree policy probabilities
action = np.random.choice(np.arange(node.action_space_size), p=tree_policy)
return tree_policy, action, node.children[action]
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 188 | https://github.com/ray-project/ray.git | 431 | def compute_action(self, node):
for _ in range(self.num_sims):
leaf = node.select()
if leaf.done:
value = leaf.reward
else:
child_priors, value = self.model.compute_priors_and_value(leaf.obs)
if self.add_dirichlet_noise:
child_priors = (1 - self.dir_epsilon) * child_priors
child_priors += self.dir_epsilon * np.random.dirichlet(
[self.dir_noise] * child_priors.size
)
leaf.expand(child_priors)
leaf.backup(value)
# Tree policy target (TPT)
| 39 | 300 | compute_action |
|
44 | 0 | 1 | 17 | tests/models/test_baseoperator.py | 44,750 | Straighten up MappedOperator hierarchy and typing (#21505) | airflow | 16 | Python | 38 | test_baseoperator.py | def test_expand_mapped_task_instance_skipped_on_zero(dag_maker, session):
with dag_maker(session=session):
task1 = BaseOperator(task_id="op1")
xcomarg = XComArg(task1, "test_key")
mapped = MockOperator.partial(task_id='task_2').map(arg2=xcomarg)
dr = dag_maker.create_dagrun()
session.add(
TaskMap(dag_id=dr.dag_id, task_id=task1.task_id, run_id=dr.run_id, map_index=-1, length=0, keys=None)
)
mapped.expand_mapped_task(upstream_ti=dr.get_task_instance(task1.task_id), session=session)
indices = (
session.query(TaskInstance.map_index, TaskInstance.state)
.filter_by(task_id=mapped.task_id, dag_id=mapped.dag_id, run_id=dr.run_id)
.order_by(TaskInstance.map_index)
.all()
)
assert indices == [(-1, TaskInstanceState.SKIPPED)]
| 0cd3b11f3a5c406fbbd4433d8e44d326086db634 | 173 | https://github.com/apache/airflow.git | 123 | def test_expand_mapped_task_instance_skipped_on_zero(dag_maker, session):
with dag_maker(session=session):
task1 = BaseOperator(task_id="op1")
xcomarg = XComArg(task1, "test_key")
mapped = MockOperator.partial(task_id='task_2').map(arg2=xcomarg)
dr = dag_maker.create_dagrun()
session.add(
TaskMap(dag_id=dr.dag_id, task_id=task1.task_id, run_id=dr.run_id, map_index=-1, length=0, keys=None)
)
mapped.expand_mapped_task(upstream_ti=dr.get_task_instance(task1.task_id), session=session)
indices = (
session.query(TaskInstance.map_index, T | 34 | 270 | test_expand_mapped_task_instance_skipped_on_zero |
|
208 | 1 | 11 | 53 | tests/freqai/test_freqai_interface.py | 151,853 | Add 3ac test | freqtrade | 16 | Python | 128 | test_freqai_interface.py | def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca, dbscan, float32):
if is_arm() and model == 'CatboostRegressor':
pytest.skip("CatBoost is not supported on ARM")
if is_mac() and 'Reinforcement' in model:
pytest.skip("Reinforcement learning module not available on intel based Mac OS")
model_save_ext = 'joblib'
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"strategy": "freqai_test_strat"})
freqai_conf['freqai']['feature_parameters'].update({"principal_component_analysis": pca})
freqai_conf['freqai']['feature_parameters'].update({"use_DBSCAN_to_remove_outliers": dbscan})
freqai_conf.update({"reduce_df_footprint": float32})
if 'ReinforcementLearner' in model:
model_save_ext = 'zip'
freqai_conf = make_rl_config(freqai_conf)
# test the RL guardrails
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
if 'test_3ac' in model or 'test_4ac' in model:
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
if 'ReinforcementLearner' in model:
model_save_ext = 'zip'
freqai_conf = make_rl_config(freqai_conf)
# test the RL guardrails
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
if 'test_3ac' in model or 'test_4ac' in model:
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai.dk.set_paths('ADA/BTC', 10000)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180125-20180130")
new_timerange = TimeRange.parse_timerange("20180127-20180130")
freqai.dk.set_paths('ADA/BTC', None)
freqai.train_timer("start", "ADA/BTC")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
freqai.train_timer("stop", "ADA/BTC")
freqai.dd.save_metric_tracker_to_disk()
freqai.dd.save_drawer_to_disk()
assert Path(freqai.dk.full_path / "metric_tracker.json").is_file()
assert Path(freqai.dk.full_path / "pair_dictionary.json").is_file()
assert Path(freqai.dk.data_path /
f"{freqai.dk.model_filename}_model.{model_save_ext}").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
shutil.rmtree(Path(freqai.dk.full_path))
@pytest.mark.parametrize('model, strat', [
('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"),
('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
]) | a8c9aa01fb3c11330618f26efa822bfe9394124e | @pytest.mark.parametrize('model, strat', [
('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"),
('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
]) | 531 | https://github.com/freqtrade/freqtrade.git | 458 | def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca, dbscan, float32):
if is | 52 | 1,049 | test_extract_data_and_train_model_Standard |
14 | 0 | 4 | 11 | keras/engine/base_layer_v1.py | 270,931 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 10 | Python | 12 | base_layer_v1.py | def _maybe_cast_inputs(self, inputs):
compute_dtype = self._compute_dtype
if (
self._autocast
and compute_dtype
and tf.as_dtype(compute_dtype).is_floating
):
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 48 | https://github.com/keras-team/keras.git | 75 | def _maybe_cast_inputs(self, inputs):
compute_dtype = self._compute_dtype
if (
self._autocast
and compute_dtype
and tf.as_dtype(compute_dtype).is_floating
):
| 9 | 51 | _maybe_cast_inputs |
|
27 | 0 | 2 | 9 | certbot-apache/certbot_apache/_internal/override_centos.py | 186,660 | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <ferrand.ad@gmail.com> | certbot | 12 | Python | 27 | override_centos.py | def _try_restart_fedora(self) -> None:
try:
util.run_script(['systemctl', 'restart', 'httpd'])
except errors.SubprocessError as err:
raise errors.MisconfigurationError(str(err))
# Finish with actual config check to see if systemctl restart helped
super().config_test()
| 7d9e9a49005de7961e84d2a7c608db57dbab3046 | 46 | https://github.com/certbot/certbot.git | 84 | def _try_restart_fedora(self) -> None:
try:
util.run_script(['systemctl', 'restart', 'httpd'])
except errors.SubprocessError as err:
raise errors.MisconfigurationError(str(err))
# Finish with actual config check to see if systemctl restart helped
| 11 | 85 | _try_restart_fedora |
|
38 | 1 | 3 | 10 | saleor/graphql/discount/tests/test_bulk_delete.py | 28,593 | fix bulk delete mutation for sales (#10553) | saleor | 13 | Python | 32 | test_bulk_delete.py | def test_delete_sales(staff_api_client, sale_list, permission_manage_discounts):
variables = {
"ids": [graphene.Node.to_global_id("Sale", sale.id) for sale in sale_list]
}
response = staff_api_client.post_graphql(
SALE_BULK_DELETE_MUTATION, variables, permissions=[permission_manage_discounts]
)
content = get_graphql_content(response)
assert content["data"]["saleBulkDelete"]["count"] == 3
assert not Sale.objects.filter(id__in=[sale.id for sale in sale_list]).exists()
@mock.patch("saleor.plugins.webhook.plugin.get_webhooks_for_event")
@mock.patch("saleor.plugins.webhook.plugin.trigger_webhooks_async") | 34511f97738853af9e7332b89787202ecaa5eb4a | @mock.patch("saleor.plugins.webhook.plugin.get_webhooks_for_event")
@mock.patch("saleor.plugins.webhook.plugin.trigger_webhooks_async") | 92 | https://github.com/saleor/saleor.git | 70 | def test_delete_sales(staff_api_client, sale_list, permission_manage_discounts):
variables = {
"ids": [graphene.Nod | 23 | 173 | test_delete_sales |
24 | 0 | 1 | 20 | tests/providers/google/cloud/hooks/vertex_ai/test_endpoint_service.py | 47,196 | Fix new MyPy errors in main (#22884)
Those MyPe errors are side effect of some new dependencies. | airflow | 14 | Python | 22 | test_endpoint_service.py | def test_delete_endpoint(self, mock_client) -> None:
self.hook.delete_endpoint(
project_id=TEST_PROJECT_ID,
region=TEST_REGION,
endpoint=TEST_ENDPOINT_NAME,
)
mock_client.assert_called_once_with(TEST_REGION)
mock_client.return_value.delete_endpoint.assert_called_once_with(
request=dict(
name=mock_client.return_value.endpoint_path.return_value,
),
metadata=(),
retry=DEFAULT,
timeout=None,
)
mock_client.return_value.endpoint_path.assert_called_once_with(
TEST_PROJECT_ID,
TEST_REGION,
TEST_ENDPOINT_NAME,
)
| 6933022e94acf139b2dea9a589bb8b25c62a5d20 | 87 | https://github.com/apache/airflow.git | 208 | def test_delete_endpoint(self, mock_client) -> None:
self.hook.delete_endpoint(
project_id=TEST_PROJECT_ID,
region=TEST_REGION,
endpoint=TEST_ENDPOINT_NAME,
)
mock_client.assert_called_once_with(TEST_REGION)
mock_client.return_value.delete_endpoint.assert_called_once_with(
request=dict(
name=mock_client.return_value.endpoint_path.return_value,
),
metadata=(),
| 21 | 127 | test_delete_endpoint |
|
69 | 0 | 5 | 13 | src/datasets/arrow_dataset.py | 106,161 | Sharded save_to_disk + multiprocessing (#5268)
* add num_shards, num_proc, storage_options to save_to_disk
* minor
* add tests
* remove old s3fs integreation tests
* style
* style
* Update DatasetDict.save_to_disk
* test dataset dict
* update dataset dict load_from_disk
* minor
* update test
* update docs
* backport to_reader to pyarrow < 8
* typo
* support both max_shard_size and num_shards
* style
* docstrings
* test _estimate_nbytes
* add test for num_shards
* style
* mario's comment
* add config.PBAR_REFRESH_TIME_INTERVAL
* fix docstrings
* use kwargs_iterable in iflatmap_unordered
* fix tests | datasets | 11 | Python | 53 | arrow_dataset.py | def _estimate_nbytes(self) -> int:
dataset_nbytes = self.data.nbytes
# Find decodable columns, because if there are any, we need to
# adjust the dataset size computation (needed for sharding) to account for possible external files
decodable_columns = [k for k, v in self.features.items() if require_decoding(v, ignore_decode_attribute=True)]
if decodable_columns:
# Approximate the space needed to store the bytes from the external files by analyzing the first 1000 examples
extra_nbytes = 0
| 232a43943e87dfedcc328a9a3d3b4d89ea5c6627 | 113 | https://github.com/huggingface/datasets.git | 125 | def _estimate_nbytes(self) -> int:
dataset_nbytes = self.data.nbytes
# Find decodable columns, because if there are any, we need to
# adjust the dataset size computation (needed for sharding) to account for possible external files
decodable_columns = [k for k, v in self.features.items() if require_decoding(v, ignore_decode_attribute=True)]
if decodable_columns:
# Approximate the space needed to store the bytes from the exte | 14 | 75 | _estimate_nbytes |
|
15 | 0 | 2 | 6 | mmdet/engine/hooks/set_epoch_info_hook.py | 245,538 | [Fix] replace mmcv's function and modules imported with mmengine's (#8594)
* use mmengine's load_state_dict and load_checkpoint
* from mmengine import dump
* from mmengine import FileClient dump list_from_file
* remove redundant registry
* update
* update
* update
* replace _load_checkpoint with CheckpointLoad.load_checkpoint
* changes according to mmcv #2216
* changes due to mmengine #447
* changes due mmengine #447 and mmcv #2217
* changes due mmengine #447 and mmcv #2217
* update
* update
* update | mmdetection | 9 | Python | 12 | set_epoch_info_hook.py | def before_train_epoch(self, runner):
epoch = runner.epoch
model = runner.model
if is_model_wrapper(model):
model = model.module
model.set_epoch(epoch)
| d0695e68654ca242be54e655491aef8c959ac345 | 34 | https://github.com/open-mmlab/mmdetection.git | 53 | def before_train_epoch(self, runner):
epoch = runner.epoch
model = runner.model
if is_mo | 8 | 55 | before_train_epoch |
|
40 | 0 | 4 | 12 | src/datasets/table.py | 104,416 | Update docs to new frontend/UI (#3690)
* WIP: update docs to new UI
* make style
* Rm unused
* inject_arrow_table_documentation __annotations__
* hasattr(arrow_table_method, "__annotations__")
* Update task_template.rst
* Codeblock PT-TF-SPLIT
* Convert loading scripts
* Convert docs to mdx
* Fix mdx
* Add <Tip>
* Convert mdx tables
* Fix codeblock
* Rm unneded hashlinks
* Update index.mdx
* Redo dev change
* Rm circle ci `build_doc` & `deploy_doc`
* Rm unneeded files
* Update docs reamde
* Standardize to `Example::`
* mdx logging levels doc
* Table properties inject_arrow_table_documentation
* ``` to ```py mdx
* Add Tips mdx
* important,None -> <Tip warning={true}>
* More misc
* Center imgs
* Update instllation page
* `setup.py` docs section
* Rm imgs since they are in hf.co
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update index mdx
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* just `Dataset` obj
* Addedversion just italics
* Update ReadInstruction doc example syntax
* Change docstring for `prepare_for_task`
* Chore
* Remove `code` syntax from headings
* Rm `code` syntax from headings
* Hashlink backward compatability
* S3FileSystem doc
* S3FileSystem doc updates
* index.mdx updates
* Add darkmode gifs
* Index logo img css classes
* Index mdx dataset logo img size
* Docs for DownloadMode class
* Doc DownloadMode table
* format docstrings
* style
* Add doc builder scripts (#3790)
* add doc builder scripts
* fix docker image
* Docs new UI actions no self hosted (#3793)
* No self hosted
* replace doc injection by actual docstrings
* Docstring formatted
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
* Rm notebooks from docs actions since they dont exi
* Update tsting branch
* More docstring
* Chore
* bump up node version
* bump up node
* ``` -> ```py for audio_process.mdx
* Update .github/workflows/build_documentation.yml
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Uodate dev doc build
* remove run on PR
* fix action
* Fix gh doc workflow
* forgot this change when merging master
* Update build doc
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr> | datasets | 16 | Python | 29 | table.py | def remove_column(self, i, *args, **kwargs):
table = self.table.remove_column(i, *args, **kwargs)
name = self.table.column_names[i]
blocks = []
for tables in self.blocks:
blocks.append(
[
t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t
for t in tables
]
)
return ConcatenationTable(table, blocks)
| e35be138148333078284b942ccc9ed7b1d826f97 | 96 | https://github.com/huggingface/datasets.git | 172 | def remove_column(self, i, *args, **kwargs):
table = self.table.remove_column(i, *args, **kwargs)
name = self.table.column_names[i]
blocks = []
for tables in self.blocks:
blocks.append(
[
t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t
| 14 | 145 | remove_column |
|
41 | 0 | 5 | 17 | .venv/lib/python3.8/site-packages/pip/_vendor/tenacity/__init__.py | 63,772 | upd; format | transferlearning | 16 | Python | 36 | __init__.py | def __call__(self, fn, *args, **kwargs):
self.begin(fn)
retry_state = RetryCallState(retry_object=self, fn=fn, args=args, kwargs=kwargs)
while True:
do = self.iter(retry_state=retry_state)
if isinstance(do, DoAttempt):
try:
result = fn(*args, **kwargs)
except BaseException: # noqa: B902
retry_state.set_exception(sys.exc_info())
else:
retry_state.set_result(result)
elif isinstance(do, DoSleep):
retry_state.prepare_for_next_attempt()
self.sleep(do)
else:
return do
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 116 | https://github.com/jindongwang/transferlearning.git | 253 | def __call__(self, fn, *args, **kwargs):
self.begin(fn)
retry_state = RetryCallState(retry_object=self, fn=fn, args=args, kwargs=kwargs)
while True:
do = self.iter(retry_state=retry_state)
if isinstance(do, DoAttempt):
| 22 | 185 | __call__ |
|
45 | 0 | 5 | 13 | wagtail/search/backends/database/postgres/postgres.py | 75,502 | Reformat with black | wagtail | 11 | Python | 40 | postgres.py | def add_items(self, model, objs):
search_fields = model.get_search_fields()
if not search_fields:
return
indexers = [ObjectIndexer(obj, self.backend) for obj in objs]
# TODO: Delete unindexed objects while dealing with proxy models.
if indexers:
content_type_pk = get_content_type_pk(model)
update_method = (
self.add_items_upsert
if self._enable_upsert
else self.add_items_update_then_create
)
update_method(content_type_pk, indexers)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 67 | https://github.com/wagtail/wagtail.git | 179 | def add_items(self, model, objs):
search_fields = model.get_search_fields()
if not search_fields:
return
indexers = [ObjectIndexer(obj, self.backend) for obj in objs]
# TODO: Delete unindexed objects while dealing with prox | 16 | 104 | add_items |
|
20 | 0 | 2 | 5 | .venv/lib/python3.8/site-packages/pip/_internal/models/link.py | 60,829 | upd; format | transferlearning | 9 | Python | 18 | link.py | def egg_fragment(self):
# type: () -> Optional[str]
match = self._egg_fragment_re.search(self._url)
if not match:
return None
return match.group(1)
_subdirectory_fragment_re = re.compile(r'[#&]subdirectory=([^&]*)')
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 30 | https://github.com/jindongwang/transferlearning.git | 61 | def egg_fragment(self):
# type: () -> Optional[str]
match = self._egg_fragment_re.search(self._url | 10 | 65 | egg_fragment |
|
72 | 0 | 1 | 27 | tests/rest/client/test_relations.py | 247,047 | Add type hints to `tests/rest/client` (#12084) | synapse | 13 | Python | 46 | test_relations.py | def test_aggregation_redactions(self) -> None:
channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "a")
self.assertEqual(200, channel.code, channel.json_body)
to_redact_event_id = channel.json_body["event_id"]
channel = self._send_relation(
RelationTypes.ANNOTATION, "m.reaction", "a", access_token=self.user2_token
)
self.assertEqual(200, channel.code, channel.json_body)
# Now lets redact one of the 'a' reactions
channel = self.make_request(
"POST",
"/_matrix/client/r0/rooms/%s/redact/%s" % (self.room, to_redact_event_id),
access_token=self.user_token,
content={},
)
self.assertEqual(200, channel.code, channel.json_body)
channel = self.make_request(
"GET",
"/_matrix/client/unstable/rooms/%s/aggregations/%s"
% (self.room, self.parent_id),
access_token=self.user_token,
)
self.assertEqual(200, channel.code, channel.json_body)
self.assertEqual(
channel.json_body,
{"chunk": [{"type": "m.reaction", "key": "a", "count": 1}]},
)
| 1901cb1d4a8b7d9af64493fbd336e9aa2561c20c | 192 | https://github.com/matrix-org/synapse.git | 305 | def test_aggregation_redactions(self) -> None:
channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "a")
self.assertEqual(200, channel.code, channel.json_body)
to_redact_event_id = channel.json_body["event_id"]
channel = self._send_relation(
RelationTypes.ANNOTATION, "m.reaction", "a", access_token=self.user2_token
)
self.assertEqual(200, channel.code, channel.json_body)
# Now lets redact one of the 'a' reactions
channel = self.make_request(
"POST",
"/_matrix/client/r0/rooms/%s/redact/%s" % (self.room, to_redact_event_id),
access_token=self.user_token,
content={},
)
self.assertEqual(200, channel.code, channel.json_body)
channel = self.make_request(
"GET",
"/_matrix/client/unstable/rooms/%s/aggregations/%s"
% (self.room, self.parent_id),
access_token=self.user_token,
)
self.assertEqual(200, channel | 17 | 308 | test_aggregation_redactions |
|
124 | 0 | 6 | 24 | python/ray/data/tests/test_split.py | 125,629 | [Data][Split] stable version of split with hints (#26778)
Why are these changes needed?
Introduce a stable version of split with hints with a stable equalizing algorithm:
use the greedy algorithm to generate the initial unbalanced splits.
for each splits, first shave them so the number for rows are below the target_size
based on how many rows needed for each split, do a one time split_at_index to the left over blocks.
merge the shaved splits with the leftover splits.
The guarantee of this algorithm is we at most need to split O(split) number of blocks. | ray | 13 | Python | 75 | test_split.py | def _test_equal_split_balanced(block_sizes, num_splits):
blocks = []
metadata = []
total_rows = 0
for block_size in block_sizes:
block = list(range(total_rows, total_rows + block_size))
blocks.append(ray.put(block))
metadata.append(BlockAccessor.for_block(block).get_metadata(None, None))
total_rows += block_size
block_list = BlockList(blocks, metadata, owned_by_consumer=True)
ds = Dataset(
ExecutionPlan(block_list, DatasetStats.TODO(), run_by_consumer=True),
0,
False,
)
splits = ds.split(num_splits, equal=True)
split_counts = [split.count() for split in splits]
assert len(split_counts) == num_splits
expected_block_size = total_rows // num_splits
# Check that all splits are the expected size.
assert all([count == expected_block_size for count in split_counts])
expected_total_rows = sum(split_counts)
# Check that the expected number of rows were dropped.
assert total_rows - expected_total_rows == total_rows % num_splits
# Check that all rows are unique (content check).
split_rows = [row for split in splits for row in split.take(total_rows)]
assert len(set(split_rows)) == len(split_rows)
| aaab4abad5f8549cfdadbebf7819c8f046bcdffb | 198 | https://github.com/ray-project/ray.git | 229 | def _test_equal_split_balanced(block_sizes, num_splits):
blocks = []
metadata = []
total_rows = 0
for block_size in block_sizes:
block = list(range(total_rows, total_rows + block_size))
blocks.append(ray.put(block))
metadata.append(BlockAcces | 39 | 307 | _test_equal_split_balanced |
|
22 | 0 | 2 | 10 | openbb_terminal/featflags_controller.py | 285,655 | New path for .env (#2508)
* add log path
* add test to check if log file is in correct dir
* env path
* black
* mypy fix
* linting
* add make_paths and change references
* terminal change
* change constants to paths
* change names
* black
* mypy
* mypy
* pylint else
* add make paths
* remove custom user dir name
Co-authored-by: Chavithra <chavithra@gmail.com> | OpenBBTerminal | 10 | Python | 21 | featflags_controller.py | def call_tbhint(self, _):
if obbff.TOOLBAR_HINT:
console.print("Will take effect when running terminal next.")
obbff.TOOLBAR_HINT = not obbff.TOOLBAR_HINT
set_key(
obbff.USER_ENV_FILE,
"OPENBB_TOOLBAR_HINT",
str(obbff.TOOLBAR_HINT),
)
console.print("")
| 3d0190e35bae4092f52025377d8604b3a6a17bfa | 49 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 108 | def call_tbhint(self, _):
if obbff.TOOLBAR_HINT:
console.print("Will take effect when running terminal next.")
obbff.TOOLBAR_HINT = not obbff.TOOLBAR_HINT
set_key(
obbff.USER_ENV_FILE,
"OPENBB_TOOLBAR_HINT",
str(obbff.TOOLB | 10 | 85 | call_tbhint |
|
21 | 0 | 5 | 23 | rllib/agents/maml/maml_tf_policy.py | 133,758 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 4 | Python | 18 | maml_tf_policy.py | def feed_forward(self, obs, policy_vars, policy_config):
# Hacky for now, reconstruct FC network with adapted weights
# @mluo: TODO for any network | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 144 | https://github.com/ray-project/ray.git | 34 | def feed_forward(self, obs, policy_vars, policy_config):
# Hacky for now, reconstruct FC network with adapted weights
# @mluo: TODO for any netwo | 5 | 17 | feed_forward |
|
64 | 0 | 1 | 34 | tests/state/test_v2.py | 248,545 | Type annotations for `test_v2` (#12985) | synapse | 14 | Python | 44 | test_v2.py | def test_ban_vs_pl(self) -> None:
events = [
FakeEvent(
id="PA",
sender=ALICE,
type=EventTypes.PowerLevels,
state_key="",
content={"users": {ALICE: 100, BOB: 50}},
),
FakeEvent(
id="MA",
sender=ALICE,
type=EventTypes.Member,
state_key=ALICE,
content={"membership": Membership.JOIN},
),
FakeEvent(
id="MB",
sender=ALICE,
type=EventTypes.Member,
state_key=BOB,
content={"membership": Membership.BAN},
),
FakeEvent(
id="PB",
sender=BOB,
type=EventTypes.PowerLevels,
state_key="",
content={"users": {ALICE: 100, BOB: 50}},
),
]
edges = [["END", "MB", "MA", "PA", "START"], ["END", "PB", "PA"]]
expected_state_ids = ["PA", "MA", "MB"]
self.do_check(events, edges, expected_state_ids)
| 97053c94060ea31d3b9d41a129221ad4b2a76865 | 193 | https://github.com/matrix-org/synapse.git | 486 | def test_ban_vs_pl(self) -> None:
events = [
FakeEvent(
id="PA",
sender=ALICE,
type=EventTypes.PowerLevels,
state_key | 20 | 303 | test_ban_vs_pl |
|
141 | 0 | 4 | 23 | dask/tests/test_layers.py | 156,908 | Fix caching-related MaterializedLayer.cull performance regression (#9413)
* allow MaterializedLayer to cache culled_deps
* format
* make test more thorough
* fix import mistake
* add link to issue in comment
* improve test | dask | 11 | Python | 93 | test_layers.py | def test_dataframe_cull_key_dependencies_materialized():
# Test that caching of MaterializedLayer
# dependencies during culling doesn't break
# the result of ``get_all_dependencies``
datasets = pytest.importorskip("dask.datasets")
dd = pytest.importorskip("dask.dataframe")
ddf = datasets.timeseries(end="2000-01-15")
# Build a custom layer to ensure
# MaterializedLayer is used
name = "custom_graph_test"
name_0 = "custom_graph_test_0"
dsk = {}
for i in range(ddf.npartitions):
dsk[(name_0, i)] = (lambda x: x, (ddf._name, i))
dsk[(name, i)] = (lambda x: x, (name_0, i))
dsk = HighLevelGraph.from_collections(name, dsk, dependencies=[ddf])
result = dd.core.new_dd_object(dsk, name, ddf._meta, ddf.divisions)
graph = result.dask
# HLG cull
culled_keys = [k for k in result.__dask_keys__() if k != (name, 0)]
culled_graph = graph.cull(culled_keys)
# Check that culled_deps are cached
# See: https://github.com/dask/dask/issues/9389
cached_deps = culled_graph.key_dependencies.copy()
deps = culled_graph.get_all_dependencies()
assert cached_deps == deps
# Manual cull
deps0 = graph.get_all_dependencies()
deps0.pop((name, 0))
deps0.pop((name_0, 0))
deps0.pop((ddf._name, 0))
# Check that get_all_dependencies results match
assert deps0 == deps
| 81f771e05f57cab2838534c319a9b81f6e5a00cd | 227 | https://github.com/dask/dask.git | 244 | def test_dataframe_cull_key_dependencies_materialized():
# Test that caching of MaterializedLayer
# dependencies during culling doesn't break
# the result of ``get_all_dependencies``
datasets = pytest.importorskip("dask.datasets")
dd = pytest.importorskip("dask.dataframe")
ddf = datas | 38 | 365 | test_dataframe_cull_key_dependencies_materialized |
|
10 | 0 | 1 | 3 | keras/layers/tensorflow_op_layer_test.py | 274,189 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 10 | Python | 9 | tensorflow_op_layer_test.py | def build(self, input_shape):
self.bias = self.add_weight(name="bias", dtype="float32")
self.layer = keras.layers.Dense(10)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 35 | https://github.com/keras-team/keras.git | 23 | def build(self, input_shape):
self.bias = self.add_weight(name="bia | 11 | 58 | build |
|
34 | 0 | 3 | 7 | django/template/context.py | 206,214 | Refs #33476 -- Reformatted code with Black. | django | 12 | Python | 31 | context.py | def update(self, other_dict):
"Push other_dict to the stack of dictionaries in the Context"
if not hasattr(other_dict, "__getitem__"):
raise TypeError("other_dict must be a mapping (dictionary-like) object.")
if isinstance(other_dict, BaseContext):
other_dict = other_dict.dicts[1:].pop()
return ContextDict(self, other_dict)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 50 | https://github.com/django/django.git | 83 | def update(self, other_dict):
"Push other_dict to the stack of dictionaries in the Context"
if not hasattr(other_dict, "__getitem__"):
raise TypeError("other_dict must be a mapping (dictionary-like) object.")
if isinstance(other_dict, BaseContext):
| 10 | 84 | update |
|
104 | 0 | 6 | 29 | ppg2mel/preprocess.py | 161,217 | Upgrade to new web service (#529)
* Init new GUI
* Remove unused codes
* Reset layout
* Add samples
* Make framework to support multiple pages
* Add vc mode
* Add preprocessing mode
* Add training mode
* Remove text input in vc mode
* Add entry for GUI and revise readme
* Move requirement together
* Add error raise when no model folder found
* Add readme | MockingBird | 14 | Python | 79 | preprocess.py | def preprocess_dataset(datasets_root, dataset, out_dir, n_processes, ppg_encoder_model_fpath, speaker_encoder_model):
# Glob wav files
wav_file_list = sorted(Path(f"{datasets_root}/{dataset}").glob("**/*.wav"))
print(f"Globbed {len(wav_file_list)} wav files.")
out_dir.joinpath("bnf").mkdir(exist_ok=True, parents=True)
out_dir.joinpath("f0").mkdir(exist_ok=True, parents=True)
out_dir.joinpath("embed").mkdir(exist_ok=True, parents=True)
ppg_model_local = load_model(ppg_encoder_model_fpath, "cpu")
encoder_model_local = Encoder.load_model(speaker_encoder_model, "cpu")
if n_processes is None:
n_processes = cpu_count()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
func = partial(preprocess_one, out_dir=out_dir, ppg_model_local=ppg_model_local, encoder_model_local=encoder_model_local, device=device)
job = Pool(n_processes).imap(func, wav_file_list)
list(tqdm(job, "Preprocessing", len(wav_file_list), unit="wav"))
# finish processing and mark
t_fid_file = out_dir.joinpath("train_fidlist.txt").open("w", encoding="utf-8")
d_fid_file = out_dir.joinpath("dev_fidlist.txt").open("w", encoding="utf-8")
e_fid_file = out_dir.joinpath("eval_fidlist.txt").open("w", encoding="utf-8")
for file in sorted(out_dir.joinpath("f0").glob("*.npy")):
id = os.path.basename(file).split(".f0.npy")[0]
if id.endswith("01"):
d_fid_file.write(id + "\n")
elif id.endswith("09"):
e_fid_file.write(id + "\n")
else:
t_fid_file.write(id + "\n")
t_fid_file.close()
d_fid_file.close()
e_fid_file.close()
return len(wav_file_list)
| c5d03fb3cbf5105aa45dc131474260cf140b748b | 334 | https://github.com/babysor/MockingBird.git | 241 | def preprocess_dataset(datasets_root, dataset, out_dir, n_processes, ppg_encoder_model_fpath, speaker_encoder_model):
# Glob wav files
wav_file_list = sorted(Path(f"{datasets_root}/{dataset}").glob("** | 49 | 593 | preprocess_dataset |
|
62 | 0 | 5 | 17 | youtube_dl/extractor/neteasemusic.py | 106,530 | [netease] Impove error handling (#31303)
* add warnings for users outside of China
* skip empty song urls
Co-authored-by: dirkf <fieldhouse@gmx.net> | youtube-dl | 14 | Python | 49 | neteasemusic.py | def _call_player_api(self, song_id, bitrate):
url = 'https://interface3.music.163.com/eapi/song/enhance/player/url'
data, headers = self.make_player_api_request_data_and_headers(song_id, bitrate)
try:
msg = 'empty result'
result = self._download_json(
url, song_id, data=data.encode('ascii'), headers=headers)
if result:
return result
except ExtractorError as e:
if type(e.cause) in (ValueError, TypeError):
# JSON load failure
raise
except Exception as e:
msg = error_to_compat_str(e)
self.report_warning('%s API call (%s) failed: %s' % (
song_id, bitrate, msg))
return {}
| d25cf62086443d86a633b8176b5c7e79f4cc569e | 105 | https://github.com/ytdl-org/youtube-dl.git | 244 | def _call_player_api(self, song_id, bitrate):
url = 'https://interface3.music.163.com/eapi/son | 21 | 171 | _call_player_api |
|
21 | 1 | 3 | 7 | jax/_src/sharding.py | 122,518 | Make `MeshPspecSharding` an alias for `NamedSharding` (it was the other way around before this CL).
PiperOrigin-RevId: 488473538 | jax | 9 | Python | 17 | sharding.py | def _enable_cpp_named_sharding():
if xc._version >= 107:
return xc.NamedSharding
elif xc._version >= 95:
return xc.MeshPspecSharding # type: ignore
else:
return None
@pxla.use_cpp_class(_enable_cpp_named_sharding()) | c42bad85ef427b2555464901f2edf2a19ad1564a | @pxla.use_cpp_class(_enable_cpp_named_sharding()) | 30 | https://github.com/google/jax.git | 32 | def _enable_cpp_named_sharding():
if xc._version >= 107:
return xc.NamedSharding
elif xc._version >= 95:
return xc.MeshPspecSharding # type: ignore
else:
return None
@pxla.use_cpp_class(_enable_cpp_named_sharding()) | 7 | 66 | _enable_cpp_named_sharding |
21 | 0 | 1 | 10 | src/urh/dev/PCAPNG.py | 320,601 | Adding Save As pcapng for ProtocolAnalyzer (#970) | urh | 8 | Python | 19 | PCAPNG.py | def _build_pcapng_idb(link_type) -> bytes:
BLOCKTYPE = 0x00000001
BLOCKLENGTH = 20
SNAP_LEN = 0
return struct.pack(">IIHHII",
BLOCKTYPE,
BLOCKLENGTH,
link_type, 0,
SNAP_LEN,
BLOCKLENGTH)
| b7fd265179f1f646b51430d02ce3495920b7d2dd | 35 | https://github.com/jopohl/urh.git | 147 | def _build_pcapng_idb(link_type) -> bytes:
BLOCKTYPE = 0x00 | 8 | 52 | _build_pcapng_idb |
|
9 | 0 | 1 | 5 | tests/acceptance/test_account_settings.py | 86,451 | test: Use new settings routes in account settings test (#39587) | sentry | 10 | Python | 9 | test_account_settings.py | def test_account_subscriptions_settings(self):
with self.feature("organizations:onboarding"):
self.browser.get("/settings/account/subscriptions/")
self.browser.wait_until_not('[data-test-id="loading-indicator"]')
self.browser.snapshot("account subscriptions settings")
| 9399434e0a45da2c82209b38f1f214688e1ae4f3 | 37 | https://github.com/getsentry/sentry.git | 48 | def test_account_subscriptions_settings(self):
with self.feature("organizations:onboarding"):
self.browser.get("/settings/account/s | 7 | 71 | test_account_subscriptions_settings |
|
61 | 0 | 6 | 20 | mindsdb/integrations/handlers/hana_handler/hana_handler.py | 116,735 | minor: use dummy table for sap hana conn check | mindsdb | 13 | Python | 42 | hana_handler.py | def check_connection(self) -> StatusResponse:
response = StatusResponse(False)
need_to_close = self.is_connected is False
try:
connection = self.connect()
with connection.cursor() as cur:
cur.execute('SELECT 1 FROM SYS.DUMMY')
response.success = True
except dbapi.Error as e:
log.error(f'Error connecting to SAP HANA {self.address}, {e}!')
response.error_message = e
if response.success is True and need_to_close:
self.disconnect()
if response.success is False and self.is_connected is True:
self.is_connected = False
return response
| 2970711efb4c713b604eb3bac840ef9d21f18273 | 103 | https://github.com/mindsdb/mindsdb.git | 209 | def check_connection(self) -> StatusResponse:
response = StatusResponse(False)
need_to_close = self.is_connected is False
try:
connection = self.connect | 20 | 188 | check_connection |
|
62 | 0 | 4 | 32 | tests/snuba/api/endpoints/test_organization_events_spans_performance.py | 95,889 | fix(suspect-spans): Use non aggregate variant of span examples query (#31295)
The original span examples query uses an array join with an group by on the
event id. This creates too many groupings, 1 per event id, which leads to slow
query performance. This changes the query to do the same without using array
join or any aggregates. | sentry | 13 | Python | 38 | test_organization_events_spans_performance.py | def suspect_span_examples_snuba_results(self, op, event):
results = {
"project.id": self.project.id,
"id": event.event_id,
}
if op == "http.server":
results.update(
{
"count_span_time": 1,
"sum_span_time": 4.0,
"max_span_time": 4.0,
}
)
elif op == "django.middleware":
results.update(
{
"count_span_time": 2,
"sum_span_time": 6.0,
"max_span_time": 3.0,
}
)
elif op == "django.view":
results.update(
{
"count_span_time": 3,
"sum_span_time": 3.0,
"max_span_time": 1.0,
}
)
else:
assert False, f"Unexpected Op: {op}"
return results
| 78fd2058f3db3ddeea4ac1d370656db6ad192a99 | 120 | https://github.com/getsentry/sentry.git | 470 | def suspect_span_examples_snuba_results(self, op, event):
results = {
"project.id": self.project.id,
"id": event.event_id, | 9 | 190 | suspect_span_examples_snuba_results |
|
108 | 0 | 11 | 22 | Add_two_Linked_List.py | 22,294 | refactor: clean code
Signed-off-by: slowy07 <slowy.arfy@gmail.com> | Python | 12 | Python | 40 | Add_two_Linked_List.py | def Add_two_no(self, First, Second):
prev = None
temp = None
carry = 0
while First is not None or Second is not None:
first_data = 0 if First is None else First.data
second_data = 0 if Second is None else Second.data
Sum = carry + first_data + second_data
carry = 1 if Sum >= 10 else 0
Sum = Sum if Sum < 10 else Sum % 10
temp = Node(Sum)
if self.head is None:
self.head = temp
else:
prev.next = temp
prev = temp
if First is not None:
First = First.next
if Second is not None:
Second = Second.next
if carry > 0:
temp.next = Node(carry)
| f0af0c43340763724f139fa68aa1e5a9ffe458b4 | 141 | https://github.com/geekcomputers/Python.git | 334 | def Add_two_no(self, First, Second):
prev = None
temp = None
carry = 0
while First is not None or Second is not None:
first_data = 0 if First is None else First.data
second_data = 0 if Second is None | 14 | 217 | Add_two_no |
|
106 | 0 | 2 | 6 | haystack/modeling/data_handler/samples.py | 256,211 | Apply black formatting (#2115)
* Testing black on ui/
* Applying black on docstores
* Add latest docstring and tutorial changes
* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too
* Remove comments
* Relax constraints on pydoc-markdown
* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade
* Fix a couple of bugs
* Add a type: ignore that was missing somehow
* Give path to black
* Apply Black
* Apply Black
* Relocate a couple of type: ignore
* Update documentation
* Make Linux CI run after applying Black
* Triggering Black
* Apply Black
* Remove dependency, does not work well
* Remove manually double trailing commas
* Update documentation
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | haystack | 13 | Python | 77 | samples.py | def offset_to_token_idx_vecorized(token_offsets, ch_idx):
# case ch_idx is at end of tokens
if ch_idx >= np.max(token_offsets):
# TODO check "+ 1" (it is needed for making end indices compliant with old offset_to_token_idx() function)
# check whether end token is incluse or exclusive
idx = np.argmax(token_offsets) + 1
# looking for the first occurence of token_offsets larger than ch_idx and taking one position to the left.
# This is needed to overcome n special_tokens at start of sequence
# and failsafe matching (the character start might not always coincide with a token offset, e.g. when starting at whitespace)
else:
idx = np.argmax(token_offsets > ch_idx) - 1
return idx
| a59bca366174d9c692fa19750c24d65f47660ef7 | 44 | https://github.com/deepset-ai/haystack.git | 158 | def offset_to_token_idx_vecorized(token_offsets, ch_idx):
# case ch_idx is at end of tokens
if ch_idx >= np.max(token_offsets):
# TODO check "+ 1" (it is needed for making end indices compliant with old offset_to_token_idx() function)
# check whether end token is incluse or exclusive
idx = np.argmax(token_offsets) + 1
# looking for the first occurence of token_offsets larger than ch_idx and taking one position to the left.
# This is needed to overcome n special_tokens at start of sequence
# and failsafe matching (the character start might | 7 | 79 | offset_to_token_idx_vecorized |
|
37 | 1 | 1 | 6 | python/ray/tests/ludwig/test_ludwig.py | 131,138 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 9 | Python | 32 | test_ludwig.py | def run_api_experiment(config, data_parquet):
# Sanity check that we get 4 slots over 1 host
kwargs = get_horovod_kwargs()
assert kwargs.get("num_hosts") == 1
assert kwargs.get("num_slots") == 2
# Train on Parquet
dask_backend = RayBackend()
train_with_backend(dask_backend, config, dataset=data_parquet, evaluate=False)
@spawn | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | @spawn | 49 | https://github.com/ray-project/ray.git | 56 | def run_api_experiment(config, data_parquet):
# Sanity check that we get 4 slots over 1 host
kwargs = get_horovod_kwargs()
assert kwargs.get("num_hosts") == 1
assert kwargs.get("num_slots") == 2
| 12 | 86 | run_api_experiment |
250 | 1 | 23 | 39 | cps/admin.py | 173,518 | Make drive letters available in file picker | calibre-web | 18 | Python | 65 | admin.py | def list_restriction(res_type, user_id):
if res_type == 0: # Tags as template
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(config.list_denied_tags()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(config.list_allowed_tags()) if x != '']
json_dumps = restrict + allow
elif res_type == 1: # CustomC as template
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(config.list_denied_column_values()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(config.list_allowed_column_values()) if x != '']
json_dumps = restrict + allow
elif res_type == 2: # Tags per user
if isinstance(user_id, int):
usr = ub.session.query(ub.User).filter(ub.User.id == user_id).first()
else:
usr = current_user
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(usr.list_denied_tags()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(usr.list_allowed_tags()) if x != '']
json_dumps = restrict + allow
elif res_type == 3: # CustomC per user
if isinstance(user_id, int):
usr = ub.session.query(ub.User).filter(ub.User.id == user_id).first()
else:
usr = current_user
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(usr.list_denied_column_values()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(usr.list_allowed_column_values()) if x != '']
json_dumps = restrict + allow
else:
json_dumps = ""
js = json.dumps(json_dumps)
response = make_response(js)
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
@admi.route("/ajax/fullsync", methods=["POST"])
@login_required | 7eef44f73ccd19762ae3356d6c0ac70228ff3302 | @admi.route("/ajax/fullsync", methods=["POST"])
@login_required | 492 | https://github.com/janeczku/calibre-web.git | 581 | def list_restriction(res_type, user_id):
if res_type == 0: # Tags as template
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(config.list_denied_tags()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(config.list_allowed_tags()) if x != '']
json_dumps = restrict + allow
elif res_type == 1: # CustomC as template
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(config.list_denied_column_values()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(config.list_allowed_column_values()) if x != '']
json_dumps = restrict + allow
elif res_type == 2: # Tags per user
if isinstance(user_id, int):
usr = ub.session.query(ub.User).filter(ub.User.id == user_id).first()
else:
usr = current_user
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(usr.list_denied_tags()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(usr.list_allowed_tags()) if x != '']
json_dumps = restrict + allow
elif res_type == 3: # CustomC per user
if isinstance(user_id, int):
usr = ub.session.query(ub.User).filter(ub.User.id == user_id).first()
else:
usr = current_user
restrict = [{'Element': x, 'type': _('Deny'), 'id': 'd' + str(i)}
for i, x in enumerate(usr.list_denied_column_values()) if x != '']
allow = [{'Element': x, 'type': _('Allow'), 'id': 'a' + str(i)}
for i, x in enumerate(usr.list_allowed_column_values()) if x != '']
json_dumps = restrict + allow
else:
json_dumps = ""
js = json.dumps(json_dumps)
response = make_response(js)
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
@admi.route("/ajax/fullsync", methods=["POST"])
@login_required | 37 | 887 | list_restriction |
27 | 0 | 4 | 8 | python/ray/experimental/tf_utils.py | 130,761 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 14 | Python | 18 | tf_utils.py | def get_flat(self):
# Eager mode.
if not self.sess:
return np.concatenate(
[v.numpy().flatten() for v in self.variables.values()]
)
# Graph mode.
return np.concatenate(
[v.eval(session=self.sess).flatten() for v in self.variables.values()]
)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 71 | https://github.com/ray-project/ray.git | 117 | def get_flat(self):
| 12 | 118 | get_flat |
|
18 | 0 | 1 | 14 | tests/components/android_ip_webcam/conftest.py | 303,635 | Add config flow to `android_ip_webcam` (#76222)
Co-authored-by: Martin Hjelmare <marhje52@gmail.com> | core | 11 | Python | 13 | conftest.py | def aioclient_mock_fixture(aioclient_mock) -> None:
aioclient_mock.get(
"http://1.1.1.1:8080/status.json?show_avail=1",
text=load_fixture("android_ip_webcam/status_data.json"),
status=HTTPStatus.OK,
headers={"Content-Type": CONTENT_TYPE_JSON},
)
aioclient_mock.get(
"http://1.1.1.1:8080/sensors.json",
text=load_fixture("android_ip_webcam/sensor_data.json"),
status=HTTPStatus.OK,
headers={"Content-Type": CONTENT_TYPE_JSON},
)
| f90d007e73b52cd06b2a450b2f9a215b4b0b384d | 64 | https://github.com/home-assistant/core.git | 89 | def aioclient_mock_fixture(aioclient_mock) -> None:
aioclient_mock.get(
"http://1.1.1.1:8080/status.json?show_avail=1",
text=load_fixture("android_ip_webcam/status_data.json"),
status=HTTPStatus.OK,
headers={"Content-Type": CONTENT_TYPE_JSON},
)
aioclient_mock.get(
"http://1.1.1.1:8080/sensors.json",
text=load_fixture("android_ip_webcam/sensor_data.j | 10 | 108 | aioclient_mock_fixture |
|
4 | 0 | 1 | 2 | sympy/physics/mechanics/joint.py | 200,201 | Implement WeldJoint | sympy | 8 | Python | 4 | joint.py | def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
| 0ea6acbf9547be893df8b1df918b712b6ad9ba21 | 17 | https://github.com/sympy/sympy.git | 10 | def _set_angular_velocity(self):
self.child_interframe.set_ | 5 | 27 | _set_angular_velocity |
|
44 | 0 | 1 | 12 | test/test_prototype_transforms.py | 193,371 | Rename features.SegmentationMask to features.Mask (#6579)
* rename features.SegmentationMask -> features.Mask
* rename kernels *_segmentation_mask -> *_mask and cleanup input name
* cleanup
* rename module _segmentation_mask.py -> _mask.py
* fix test | vision | 11 | Python | 35 | test_prototype_transforms.py | def test__extract_image_targets_assertion(self, mocker):
transform = transforms.SimpleCopyPaste()
flat_sample = [
# images, batch size = 2
self.create_fake_image(mocker, features.Image),
# labels, bboxes, masks
mocker.MagicMock(spec=features.Label),
mocker.MagicMock(spec=features.BoundingBox),
mocker.MagicMock(spec=features.Mask),
# labels, bboxes, masks
mocker.MagicMock(spec=features.BoundingBox),
mocker.MagicMock(spec=features.Mask),
]
with pytest.raises(TypeError, match="requires input sample to contain equal sized list of Images"):
transform._extract_image_targets(flat_sample)
| 1ea73f5832f6b7ccf7c74dacb38a63b7ea2dd720 | 102 | https://github.com/pytorch/vision.git | 181 | def test__extract_image_targets_assertion(self, mocker):
transform = transforms.SimpleCopyPaste()
flat_sample = [
# images, batch size = 2
self.create_fake_image(mocker, features.Image),
# labels, bboxes, masks
mocker.MagicMock(spec=features.Label),
mocker.MagicMock(spec=features.BoundingBox),
mocker.MagicMock(spec=features.Mask),
# labels, bboxes, masks
mocker.MagicMock(spec=features.BoundingBox),
mocker.MagicMock(spec=features.Mas | 20 | 160 | test__extract_image_targets_assertion |
|
7 | 0 | 1 | 2 | qutebrowser/browser/webkit/webkittab.py | 321,204 | Run scripts/dev/rewrite_enums.py | qutebrowser | 9 | Python | 7 | webkittab.py | def down(self, count=1):
self._key_press(Qt.Key.Key_Down, count, 'scrollBarMaximum', Qt.Orientation.Vertical)
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 29 | https://github.com/qutebrowser/qutebrowser.git | 13 | def down(self, count=1):
self._key_press(Qt.Key.Key_Down, count, 'scrollBarMaximum', Qt.Orient | 9 | 44 | down |
|
523 | 0 | 35 | 76 | sympy/combinatorics/tensor_can.py | 198,366 | Cleanup loops and ranges | sympy | 17 | Python | 243 | tensor_can.py | def canonicalize(g, dummies, msym, *v):
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if msym not in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for base_i, gens_i, n_i, sym_i in v:
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
free_i = []
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
| 7d773eb18daaef3c54f34d1ac6cbc5b83a5bb16c | 638 | https://github.com/sympy/sympy.git | 1,079 | def canonicalize(g, dummies, msym, *v):
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if msym not in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for base_i, gens_i, n_i, sym_i in v:
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies | 69 | 980 | canonicalize |
|
43 | 0 | 1 | 14 | awx/main/tests/unit/test_tasks.py | 80,402 | Refactored tasks.py to a package
--- Added 3 new sub-package : awx.main.tasks.system , awx.main.tasks.jobs , awx.main.tasks.receptor
--- Modified the functional tests and unit tests accordingly | awx | 15 | Python | 39 | test_tasks.py | def test_custom_environment_injectors_with_reserved_env_var(self, private_data_dir, job):
task = tasks.jobs.RunJob()
task.instance = job
some_cloud = CredentialType(
kind='cloud',
name='SomeCloud',
managed=False,
inputs={'fields': [{'id': 'api_token', 'label': 'API Token', 'type': 'string'}]},
injectors={'env': {'JOB_ID': 'reserved'}},
)
credential = Credential(pk=1, credential_type=some_cloud, inputs={'api_token': 'ABC123'})
job.credentials.add(credential)
env = task.build_env(job, private_data_dir)
assert env['JOB_ID'] == str(job.pk)
| a4a3ba65d736045733cb49430d7076b73aec23bb | 124 | https://github.com/ansible/awx.git | 153 | def test_custom_environment_injectors_with_reserved_env_var(self, private_data_dir, job):
task = tasks.jobs.RunJob()
task.instance = job
some_cloud = CredentialType(
kind='cloud',
name='SomeCloud',
managed=False,
inputs={'fields': [{'id': 'api_token', 'label': 'API Token', 'type': 'string'}]},
injectors={'env': {'JOB_ID': 'reserved'}},
)
credential = Credential(pk=1, credential_type=some_cloud, inputs={'api_token': 'ABC123'})
job.credentials.add(credential)
env = task.b | 25 | 212 | test_custom_environment_injectors_with_reserved_env_var |
|
47 | 0 | 1 | 25 | tests/sentry/api/endpoints/test_organization_auditlogs.py | 94,083 | feat(auditlog): Remove versioning from endpoint (#37301)
* feat(auditlog): Remove versioning from endpoint
* Update tests | sentry | 13 | Python | 29 | test_organization_auditlogs.py | def test_simple(self):
now = timezone.now()
org2 = self.create_organization(owner=self.user)
entry1 = AuditLogEntry.objects.create(
organization=self.organization,
event=audit_log.get_event_id("ORG_EDIT"),
actor=self.user,
datetime=now,
)
entry2 = AuditLogEntry.objects.create(
organization=self.organization,
event=audit_log.get_event_id("ORG_EDIT"),
actor=self.user,
datetime=now + timedelta(seconds=1),
)
AuditLogEntry.objects.create(
organization=org2,
event=audit_log.get_event_id("ORG_EDIT"),
actor=self.user,
datetime=now,
)
response = self.get_success_response(self.organization.slug)
assert len(response.data["rows"]) == 2
assert response.data["rows"][0]["id"] == str(entry2.id)
assert response.data["rows"][1]["id"] == str(entry1.id)
| 2e24063442134bf50a485b69698b154d0090a361 | 193 | https://github.com/getsentry/sentry.git | 262 | def test_simple(self):
now = timezone.now()
org2 = self.create_organization(owner=self.user)
entry1 = AuditLogEntry.objects.create(
organization=self.organization,
event=audit_log.get_event_id("ORG_EDIT"),
actor=self.user,
datetime=now,
)
entry2 = AuditLogEnt | 28 | 303 | test_simple |
|
30 | 0 | 1 | 5 | zerver/webhooks/github/tests.py | 85,106 | webhooks: Pick a more reasonable length for short sha.
7 characters are not enough for large projects, so we change
it to reasonably longer. As an example, The Linux kernel needs
at least 11 characters of sha in its shortened form to identify
a revision. We pick 11 so it should work for most of the projects.
Signed-off-by: Zixuan James Li <p359101898@gmail.com> | zulip | 10 | Python | 28 | tests.py | def test_push_50_commits_filtered_by_branches(self) -> None:
self.url = self.build_webhook_url(branches="master,changes")
commit_info = "* Update README.md ([0d1a26e67d8](https://github.com/baxterthehacker/public-repo/commit/0d1a26e67d8f5eaf1f6ba5c57fc3c7d91ac0fd1c))\n"
expected_message = f"baxterthehacker [pushed](https://github.com/baxterthehacker/public-repo/compare/9049f1265b7d...0d1a26e67d8f) 50 commits to branch changes.\n\n{commit_info * COMMITS_LIMIT}[and 30 more commit(s)]"
self.check_webhook("push__50_commits", TOPIC_BRANCH, expected_message)
| 4e4689949438735622bdf669f05d218c671e7e01 | 36 | https://github.com/zulip/zulip.git | 57 | def test_push_50_commits_filtered_by_branches(self) -> None:
self.url = self.build_webhook_url(branches="master,changes")
commit_info = "* Update README.md ([0d1a26e67d8](https://github.com/baxterthehacker/public-repo/commit/0d1a26e67d8f5eaf1f6ba5c57fc3c7d91ac0fd1c))\n"
expected_message = f"baxterthehacker [pushed](https://github.com/baxterthehacker/public-repo/compare/9049f1265b7d...0d1a26e67d8f) 50 commits to branch changes.\n\n{commit_info * COMMITS_LIMIT | 10 | 73 | test_push_50_commits_filtered_by_branches |
|
8 | 0 | 1 | 2 | modules/image/Image_editing/super_resolution/swinir_l_real_sr_x4/swinir.py | 51,945 | add swinir_l_real_sr_x4 (#2076)
* git add swinir_l_real_sr_x4
* fix typo
* fix typo
Co-authored-by: chenjian <chenjian26@baidu.com> | PaddleHub | 8 | Python | 8 | swinir.py | def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
| 2e373966a7fd3119c205350fb14d0b7bfe74185d | 10 | https://github.com/PaddlePaddle/PaddleHub.git | 14 | def extra_repr(self) -> str:
return | 6 | 38 | extra_repr |
|
133 | 0 | 14 | 37 | pipenv/patched/pip/_vendor/requests/adapters.py | 22,048 | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | pipenv | 15 | Python | 63 | adapters.py | def cert_verify(self, conn, url, verify, cert):
if url.lower().startswith("https") and verify:
cert_loc = None
# Allow self-specified cert location.
if verify is not True:
cert_loc = verify
if not cert_loc:
cert_loc = extract_zipped_paths(DEFAULT_CA_BUNDLE_PATH)
if not cert_loc or not os.path.exists(cert_loc):
raise OSError(
f"Could not find a suitable TLS CA certificate bundle, "
f"invalid path: {cert_loc}"
)
conn.cert_reqs = "CERT_REQUIRED"
if not os.path.isdir(cert_loc):
conn.ca_certs = cert_loc
else:
conn.ca_cert_dir = cert_loc
else:
conn.cert_reqs = "CERT_NONE"
conn.ca_certs = None
conn.ca_cert_dir = None
if cert:
if not isinstance(cert, basestring):
conn.cert_file = cert[0]
conn.key_file = cert[1]
else:
conn.cert_file = cert
conn.key_file = None
if conn.cert_file and not os.path.exists(conn.cert_file):
raise OSError(
f"Could not find the TLS certificate file, "
f"invalid path: {conn.cert_file}"
)
if conn.key_file and not os.path.exists(conn.key_file):
raise OSError(
f"Could not find the TLS key file, invalid path: {conn.key_file}"
)
| cd5a9683be69c86c8f3adcd13385a9bc5db198ec | 205 | https://github.com/pypa/pipenv.git | 631 | def cert_verify(self, conn, url, verify, cert):
if url.lower().startswith("https") and verify:
cert_loc = None
# Allow self-specified cert location.
if verify is not True:
cert_loc = verify
if not cert_loc:
cert_loc = extract_zipped_paths(DEFAULT_CA_BUNDLE_PATH)
if not cert_loc or not os.path.exists(cert_loc):
raise OSError(
f"Could not find a suitable TLS CA certificate bundle, "
f"invalid path: {cert_loc}"
)
conn.cert_reqs = "CERT_REQUIRED"
if not os.path.isdir(cert_loc):
conn.ca_certs = cert_loc
else:
conn.ca_cert_dir = cert_loc
else:
conn.cert_reqs = "CERT_NONE"
conn.ca_certs = None
conn.ca_cert_dir = None
if cert:
if not isinstance(cert, basestring):
conn.cert_file = cert[0]
conn.key_file = cert[1]
else:
conn.cert_file = cert
conn.key_file = None
if conn.cert_file and not os.path.exists(conn.cert_file):
raise OSError(
f"Could not find the TLS certificate file, "
f"invalid path: {conn.cert_file}"
)
if conn.key_file and not os.path.exists(conn.key_file):
raise OSError(
f"Could not find the TLS key file, invalid path: | 23 | 357 | cert_verify |
|
189 | 0 | 11 | 67 | pandas/plotting/_matplotlib/core.py | 171,266 | STYLE: fix pylint reimported warnings (#49645)
* STYLE: fix pylint reimported warnings
* fixup! STYLE: fix pylint reimported warnings | pandas | 17 | Python | 95 | core.py | def _make_plot(self) -> None:
colors = self._get_colors()
ncolors = len(colors)
pos_prior = neg_prior = np.zeros(len(self.data))
K = self.nseries
for i, (label, y) in enumerate(self._iter_data(fillna=0)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self._is_series:
kwds["color"] = colors
elif isinstance(colors, dict):
kwds["color"] = colors[label]
else:
kwds["color"] = colors[i % ncolors]
errors = self._get_errorbars(label=label, index=i)
kwds = dict(kwds, **errors)
label = pprint_thing(label)
label = self._mark_right_label(label, index=i)
if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None):
kwds["ecolor"] = mpl.rcParams["xtick.color"]
start = 0
if self.log and (y >= 1).all():
start = 1
start = start + self._start_base
if self.subplots:
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds,
)
ax.set_title(label)
elif self.stacked:
mask = y > 0
start = np.where(mask, pos_prior, neg_prior) + self._start_base
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds,
)
pos_prior = pos_prior + np.where(mask, y, 0)
neg_prior = neg_prior + np.where(mask, 0, y)
else:
w = self.bar_width / K
rect = self._plot(
ax,
self.ax_pos + (i + 0.5) * w,
y,
w,
start=start,
label=label,
log=self.log,
**kwds,
)
self._append_legend_handles_labels(rect, label)
| 289f32df5a565848adbc0adc8949fa4066542316 | 445 | https://github.com/pandas-dev/pandas.git | 1,151 | def _make_plot(self) -> None:
colors = self._get_colors()
ncolors = len(colors)
pos_prior = neg_prior = np.zeros(len(self.data))
K = self.nseries
for i, (label, y) in enumerate(self._iter_data(fillna=0)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self._is_series:
kwds["color"] = colors
elif isinstance(colors, dict):
kwds["color"] = colors[label]
else:
kwds["color"] = colors[i % ncolors]
errors = self._get_errorbars(label=label, index=i)
kwds = dict(kwds, **errors)
label = pprint_thing(label)
label = self._mark_right_label(label, index=i)
if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None):
kwds["ecolor"] = mpl.rcParams["xtick.color"]
start = 0
if self.log and (y >= 1).all():
start = 1
start = start + self._start_base
if self.subplots:
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds,
)
ax.set_title(label)
elif self.stacked:
mask = y > 0
start = np.where(mask, pos_prior, neg_prior) + self._start_base
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds,
)
pos_prior = pos_prior + np.where(mask, y, 0)
neg_prior = neg_prior + np.where(mask, 0, y)
else:
w = self.bar | 49 | 672 | _make_plot |
|
157 | 0 | 1 | 70 | zerver/tests/test_subs.py | 83,055 | stream colors: Try harder to avoid collisions.
We now use recipient_id % 24 for new stream colors
when users have already used all 24 of our canned
colors.
This fix doesn't address the scenario that somebody
dislikes one of our current canned colors, so if a
user continually changes canned color N to some other
color for new streams, their new streams will continue
to include color N (and the user will still need to
change them).
This fix doesn't address the fact that it can be expensive
during bulk-add situations to query for all the colors
that users have already used up.
See https://chat.zulip.org/#narrow/stream/3-backend/topic/assigning.20stream.20colors
for more discussion. | zulip | 10 | Python | 106 | test_subs.py | def test_pick_colors(self) -> None:
used_colors: Set[str] = set()
color_map: Dict[int, str] = {}
recipient_ids = list(range(30))
user_color_map = pick_colors(used_colors, color_map, recipient_ids)
self.assertEqual(
user_color_map,
{
0: "#76ce90",
1: "#fae589",
2: "#a6c7e5",
3: "#e79ab5",
4: "#bfd56f",
5: "#f4ae55",
6: "#b0a5fd",
7: "#addfe5",
8: "#f5ce6e",
9: "#c2726a",
10: "#94c849",
11: "#bd86e5",
12: "#ee7e4a",
13: "#a6dcbf",
14: "#95a5fd",
15: "#53a063",
16: "#9987e1",
17: "#e4523d",
18: "#c2c2c2",
19: "#4f8de4",
20: "#c6a8ad",
21: "#e7cc4d",
22: "#c8bebf",
23: "#a47462",
# start repeating
24: "#76ce90",
25: "#fae589",
26: "#a6c7e5",
27: "#e79ab5",
28: "#bfd56f",
29: "#f4ae55",
},
)
color_map = {98: "color98", 99: "color99"}
used_colors = set(STREAM_ASSIGNMENT_COLORS) - {"#c6a8ad", "#9987e1"}
recipient_ids = [99, 98, 1, 2, 3, 4]
user_color_map = pick_colors(used_colors, color_map, recipient_ids)
self.assertEqual(
user_color_map,
{98: "color98", 99: "color99", 1: "#9987e1", 2: "#c6a8ad", 3: "#e79ab5", 4: "#bfd56f"},
)
used_colors = set(STREAM_ASSIGNMENT_COLORS)
color_map = {}
recipient_ids = [2, 26, 50, 74]
user_color_map = pick_colors(used_colors, color_map, recipient_ids)
self.assertEqual(
user_color_map,
{2: "#a6c7e5", 26: "#a6c7e5", 50: "#a6c7e5", 74: "#a6c7e5"},
)
| dd1c9c45c778dc5280c2b02c3b9fb327d2507cc1 | 315 | https://github.com/zulip/zulip.git | 832 | def test_pick_colors(self) -> None:
used_colors: Set[str] = set()
color_map: Dict[int, str] = {}
recipient_ids = list(range(30))
user_color_map = pick_colors(used_colors, color_map, recipient_ids)
self.assertEqual(
user_color_map,
{
0: "#76ce90",
1: "#fae589",
2: "#a6c7e5",
3: "#e79ab5",
4: "#bfd56f",
5: "#f4ae55",
6: "#b0a5fd",
7: "#addfe5",
8: "#f5ce6e",
9: "#c2726a",
10: "#94c849",
11: "#bd86e5",
12: "#ee7e4a",
13: "#a6dcbf",
14: "#95a5fd",
15: "#53a063",
16: "#9987e1",
17: "#e4523d",
18: "#c2c2c2",
19: "#4f8de4",
20: "#c6a8ad",
21: "#e7cc4d",
22: "#c8bebf",
23: "#a47462",
# start repeating
24: "#76ce90",
25: "#fae589",
26: "#a6c7e5",
27: "#e79ab5",
28: "#bfd56f",
29: "#f4ae55",
| 16 | 520 | test_pick_colors |
|
37 | 0 | 1 | 10 | keras/engine/base_layer_test.py | 270,852 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 14 | Python | 35 | base_layer_test.py | def test_dynamic_layer_error_running_in_graph_mode(self):
with tf.compat.v1.get_default_graph().as_default():
model = test_utils.get_model_from_layers(
[DynamicLayer(dynamic=True)], input_shape=(3,)
)
self.assertEqual(model.dynamic, True)
# But then you cannot run the model since you're in a graph scope.
with self.assertRaisesRegex(
ValueError, "You must enable eager execution"
):
model.compile(rmsprop.RMSprop(0.001), loss="mse")
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 79 | https://github.com/keras-team/keras.git | 154 | def test_dynamic_layer_error_running_in_graph_mode(self):
with tf.compat.v1.get_default_graph().as_default():
model = test_utils.get_model_fr | 20 | 129 | test_dynamic_layer_error_running_in_graph_mode |
|
41 | 0 | 4 | 11 | django/templatetags/tz.py | 206,340 | Refs #33476 -- Reformatted code with Black. | django | 11 | Python | 33 | tz.py | def timezone_constructor(tzname):
if settings.USE_DEPRECATED_PYTZ:
import pytz
try:
return pytz.timezone(tzname)
except pytz.UnknownTimeZoneError:
raise UnknownTimezoneException
try:
return zoneinfo.ZoneInfo(tzname)
except zoneinfo.ZoneInfoNotFoundError:
raise UnknownTimezoneException
# HACK: datetime instances cannot be assigned new attributes. Define a subclass
# in order to define new attributes in do_timezone(). | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 44 | https://github.com/django/django.git | 104 | def timezone_constructor(tzname):
if settings.USE_DEPRECATED_PYTZ:
import pytz
try:
return pytz.timezone(tzname)
except pytz.UnknownTimeZoneError:
raise UnknownTimezone | 11 | 75 | timezone_constructor |
|
38 | 0 | 1 | 15 | tests/sentry/api/serializers/test_organization.py | 96,286 | feat(apidocs): type organization serializer (#31787) | sentry | 10 | Python | 28 | test_organization.py | def test_trusted_relay_serializer(self):
completion_seen = timezone.now()
serializer = OnboardingTasksSerializer()
task = OrganizationOnboardingTask.objects.create(
organization=self.organization,
task=OnboardingTask.FIRST_PROJECT,
status=OnboardingTaskStatus.PENDING,
user=self.user,
completion_seen=completion_seen,
)
result = serialize(task, self.user, serializer)
assert result["task"] == "create_project"
assert result["status"] == "pending"
assert result["completionSeen"] == completion_seen
assert result["data"] == {}
| 1bd1c98d520fb44c5e69f3159102cd8f07b84911 | 95 | https://github.com/getsentry/sentry.git | 155 | def test_trusted_relay_serializer(self):
completion_seen = timezone.now()
serializer = OnboardingTasksSerializer()
task = OrganizationOnboardingTask.objects.create(
organization=self.organization,
task | 20 | 153 | test_trusted_relay_serializer |
|
14 | 0 | 1 | 8 | tests/functional/eks/test_kubeconfig.py | 189,163 | Deprecate Kubernetes client API version v1alpha1
Kubernetes has deprecated v1alpha1, v1beta1 has been available since Kubernetes
v1.11 (kubernetes/kubernetes#64482), and EKS currently supports Kubernetes
versions v1.16 through v1.21. This is a breaking change for clients running
versions v1.10 and older, which haven't been supported by EKS since September
2019.
"aws eks get-token" now respects the KUBERNETES_EXEC_INFO environment
variable and conservatively falls back to v1alpha1, which is supported
by Kubernetes versions 1.10 through 1.22 (released upstream August 2021, to be
released by EKS in Q4 2021). It also now supports "v1beta1" and "v1".
"aws eks update-kubeconfig" now writes "v1beta1" in the kubeconfig which
will be supported by Kubernetes until 1.29 (aproximately December 2023).
At or around that date, we can change the default version written to
kubeconfigs to "v1"
Signed-off-by: Micah Hausler <mhausler@amazon.com> | aws-cli | 11 | Python | 13 | test_kubeconfig.py | def test_load_noexist(self):
no_exist_path = os.path.join(self._temp_directory,
"this_does_not_exist")
loaded_config = self._loader.load_kubeconfig(no_exist_path)
self.assertEqual(loaded_config.content,
_get_new_kubeconfig_content())
self._validator.validate_config.called_with(
Kubeconfig(no_exist_path, _get_new_kubeconfig_content()))
| 1a6b498657ec5dd29ddf4f6b240c6fc0c5d88f7a | 58 | https://github.com/aws/aws-cli.git | 112 | def test_load_noexist(self):
no_exist_path = os.path.join(self._temp_directory,
"this_does_not_exist")
loaded_config = self._loader.load_kubeconfig(no_exist_ | 17 | 94 | test_load_noexist |
|
11 | 0 | 7 | 58 | tests/sentry/eventstream/kafka/test_consumer.py | 90,358 | ci: compile devservices args (#34891) | sentry | 11 | Python | 8 | test_consumer.py | def test_consumer_start_from_committed_offset(requires_kafka):
consumer_group = f"consumer-{uuid.uuid1().hex}"
synchronize_commit_group = f"consumer-{uuid.uuid1().hex}"
messages_delivered = defaultdict(list)
| 34bb5f4c3909e671b6502eceeb849f9693d9794e | 386 | https://github.com/getsentry/sentry.git | 19 | def test_consumer_start_from_committed_offset(requires_kafka):
consumer_group = f"consumer-{uuid.uuid1().hex}"
synchronize_commit_group = f"consumer-{uuid.uuid1().hex}"
messages_delivered = defaultdict(list)
| 10 | 61 | test_consumer_start_from_committed_offset |
|
10 | 0 | 1 | 2 | django/db/models/expressions.py | 205,486 | Refs #33476 -- Reformatted code with Black. | django | 8 | Python | 10 | expressions.py | def window_frame_start_end(self, connection, start, end):
raise NotImplementedError("Subclasses must implement window_frame_start_end().")
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 16 | https://github.com/django/django.git | 16 | def window_frame_start_end(self, connection, start, end):
raise | 6 | 25 | window_frame_start_end |
|
175 | 0 | 7 | 48 | tools/program.py | 23,359 | add use_xpu config for det_mv3_db.yml | PaddleOCR | 15 | Python | 119 | program.py | def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
profiler_options = FLAGS.profiler_options
config = load_config(FLAGS.config)
config = merge_config(config, FLAGS.opt)
profile_dic = {"profiler_options": FLAGS.profiler_options}
config = merge_config(config, profile_dic)
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu)
# check if set use_xpu=True in paddlepaddle cpu/gpu version
use_xpu = False
if 'use_xpu' in config['Global']:
use_xpu = config['Global']['use_xpu']
check_xpu(use_xpu)
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
]
device = 'cpu'
if use_gpu:
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
if use_xpu:
device = 'xpu'
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
if config['Global']['use_visualdl'] and dist.get_rank() == 0:
from visualdl import LogWriter
save_model_dir = config['Global']['save_model_dir']
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
os.makedirs(vdl_writer_path, exist_ok=True)
vdl_writer = LogWriter(logdir=vdl_writer_path)
else:
vdl_writer = None
print_dict(config, logger)
logger.info('train with paddle {} and device {}'.format(paddle.__version__,
device))
return config, device, logger, vdl_writer
| 49ecf9c3bc9e6154360a84f402d8b669580b6dd3 | 368 | https://github.com/PaddlePaddle/PaddleOCR.git | 472 | def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
profiler_options = FLAGS.profiler_options
config = load_config(FLAGS.config)
config = merge_config(config, FLAGS.opt)
profile_dic = {"profiler_options": FLAGS.profiler_options}
config = merge_config(config, profile_dic)
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu)
# check if set use_xpu=True in paddlepaddle cpu/gpu version
use_xpu = False
if 'use_xpu' in config['Global']:
use_xpu = config['Global']['use_xpu']
check_xpu(use_xpu)
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
]
device = 'cpu'
if use_gpu:
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
if use_xpu:
device = 'xpu'
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
if | 50 | 646 | preprocess |
|
8 | 0 | 1 | 5 | homeassistant/components/iglo/light.py | 318,241 | Improve type hints in light [a-i] (#75936)
* Improve type hints in ads light
* Improve type hints in avea light
* Improve type hints in avion light
* Improve type hints in broadlink light
* More type hints
* One more | core | 11 | Python | 8 | light.py | def max_mireds(self) -> int:
return math.ceil(
color_util.color_temperature_kelvin_to_mired(self._lamp.min_kelvin)
)
| 20fec104e2a11b1a5164d7fe779eb0d894e098cf | 24 | https://github.com/home-assistant/core.git | 40 | def max_mireds(self) -> int:
return math.ceil(
color_util.color_temperature_kelvin_to_mired(self._la | 9 | 41 | max_mireds |
|
67 | 0 | 3 | 11 | nuitka/build/inline_copy/clcache/clcache/caching.py | 178,643 | Scons: The clcache was hashing the same files over and over
* This might now be dead code that we no longer use direct mode | Nuitka | 12 | Python | 53 | caching.py | def getFileHash(filePath, additionalData=None):
key = (filePath, additionalData)
if key in _hash_cache:
return _hash_cache[key]
hasher = HashAlgorithm()
with open(filePath, "rb") as inFile:
hasher.update(inFile.read())
if additionalData is not None:
# Encoding of this additional data does not really matter
# as long as we keep it fixed, otherwise hashes change.
# The string should fit into ASCII, so UTF8 should not change anything
hasher.update(additionalData.encode("UTF-8"))
_hash_cache[key] = hasher.hexdigest()
return _hash_cache[key]
| 24bc8e9a4949b34772d2d2eb8342f3fd74ec3d5c | 83 | https://github.com/Nuitka/Nuitka.git | 129 | def getFileHash(filePath, additionalData=None):
key = (filePath, additionalData)
if key in _hash_cache:
return _hash_cache[key]
hasher = HashAlgorithm()
with open(filePath, "rb") as inFile:
hasher.update(inFile.read())
if additionalData is not None:
# Encod | 13 | 140 | getFileHash |
|
75 | 0 | 3 | 18 | python/ray/tune/tests/test_logger.py | 132,529 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 13 | Python | 47 | test_logger.py | def _validate_json_result(self, config):
# Check result logs
results = []
result_file = os.path.join(self.test_dir, EXPR_RESULT_FILE)
with open(result_file, "rt") as fp:
for row in fp.readlines():
results.append(json.loads(row))
self.assertEqual(len(results), 3)
self.assertSequenceEqual(
[int(row["episode_reward_mean"]) for row in results], [4, 5, 6]
)
# Check json saved config file
config_file = os.path.join(self.test_dir, EXPR_PARAM_FILE)
with open(config_file, "rt") as fp:
loaded_config = json.load(fp)
self.assertEqual(loaded_config, config)
# Check pickled config file
config_file = os.path.join(self.test_dir, EXPR_PARAM_PICKLE_FILE)
with open(config_file, "rb") as fp:
loaded_config = cloudpickle.load(fp)
self.assertEqual(loaded_config, config)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 172 | https://github.com/ray-project/ray.git | 238 | def _validate_json_result(self, config):
# Check result logs
results = []
result_file = os.path.join(self.test_dir, EXPR_RESULT_FILE)
with open(result_file, "rt") as fp:
for row in fp.readlines():
results.append(json.loads(row))
self.assertEqual(len(results), 3)
self.assertSequenceEqual(
[int(row["episode_reward_mean"]) for row in results], [4, 5, 6]
)
# Check json saved config file
config_file = os.path.join(self.test_dir, EXPR_PARAM_FILE)
with open(config_file, "rt") as fp:
loaded_con | 27 | 281 | _validate_json_result |
|
55 | 0 | 1 | 25 | keras/callbacks_test.py | 269,989 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 12 | Python | 47 | callbacks_test.py | def test_TensorBoard_autoTrace_profileBatchRange(self):
model = self._get_seq_model()
x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1))
tb_cbk = keras.callbacks.TensorBoard(
self.logdir,
histogram_freq=1,
profile_batch="1,3",
write_graph=False,
)
model.fit(
x,
y,
batch_size=4,
epochs=2,
validation_data=(x, y),
callbacks=[tb_cbk],
)
summary_file = list_summaries(self.logdir)
self.assertEqual(
summary_file.tensors,
{
# Trace will be logged once at the batch it stops profiling.
_ObservedSummary(logdir=self.train_dir, tag="batch_3"),
},
)
self.assertEqual(1, self._count_trace_file(logdir=self.logdir))
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 147 | https://github.com/keras-team/keras.git | 297 | def test_TensorBoard_autoTrace_profileBatchRange(self):
model = self._get_seq_model()
x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1))
tb_cbk = keras.callbacks.TensorBoard(
self.logdir,
histogram_freq=1,
profile_batch="1,3",
write_graph=False,
)
model.fit(
x,
y,
batch_size=4,
epochs=2,
validation_data=(x, y),
callbacks=[tb_cbk],
)
summary_file = list_summaries(self.logdir)
self.assertEqual(
summary_file.tensors,
{
# Trace will be logged once at the batch it stops profiling.
_ObservedSummary(logdir=self.train_dir, tag="batch_3"),
},
)
self.assertEqual(1, self._count_trace_file(logdir=sel | 28 | 218 | test_TensorBoard_autoTrace_profileBatchRange |
|
49 | 0 | 1 | 18 | tests/components/forked_daapd/test_browse_media.py | 288,007 | Cleanup add browse media forked daapd #79009 (#79157) | core | 14 | Python | 40 | test_browse_media.py | async def test_async_browse_image_missing(hass, hass_client, config_entry, caplog):
with patch(
"homeassistant.components.forked_daapd.media_player.ForkedDaapdAPI",
autospec=True,
) as mock_api:
config_entry.add_to_hass(hass)
await hass.config_entries.async_setup(config_entry.entry_id)
await hass.async_block_till_done()
client = await hass_client()
mock_api.return_value.full_url = lambda x: "http://owntone_instance/" + x
mock_api.return_value.get_track.return_value = {}
media_content_id = create_media_content_id(
"title", media_type=MediaType.TRACK, id_or_path="456"
)
resp = await client.get(
f"/api/media_player_proxy/{TEST_MASTER_ENTITY_NAME}/browse_media/{MediaType.TRACK}/{media_content_id}"
)
assert resp.status == HTTPStatus.INTERNAL_SERVER_ERROR
| b043a6ba887e8f925cfa97f3edf66b6f6d7fe4af | 110 | https://github.com/home-assistant/core.git | 171 | async def test_async_browse_image_missing(hass, hass_client, config_entry, caplog):
with patch(
"homeassistant.components.forked_daapd.media_player.ForkedDaapdAPI",
autospec=True,
) as mock_api:
config_entry.add_to_hass(hass)
await hass.config_entries.async_setup(config_entry.entry_id)
await hass.async_block_till_don | 30 | 202 | test_async_browse_image_missing |
|
129 | 0 | 6 | 29 | pandas/tests/groupby/transform/test_transform.py | 166,461 | DEPR: groupby numeric_only default (#47025) | pandas | 17 | Python | 87 | test_transform.py | def test_transform_axis_1_reducer(request, reduction_func):
# GH#45715
if reduction_func in (
"corrwith",
"idxmax",
"idxmin",
"ngroup",
"nth",
):
marker = pytest.mark.xfail(reason="transform incorrectly fails - GH#45986")
request.node.add_marker(marker)
if reduction_func == "mad":
warn = FutureWarning
msg = "The 'mad' method is deprecated"
elif reduction_func in ("sem", "std"):
warn = FutureWarning
msg = "The default value of numeric_only"
else:
warn = None
msg = ""
df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}, index=["x", "y"])
with tm.assert_produces_warning(warn, match=msg):
result = df.groupby([0, 0, 1], axis=1).transform(reduction_func)
if reduction_func == "size":
# size doesn't behave in the same manner; hardcode expected result
expected = DataFrame(2 * [[2, 2, 1]], index=df.index, columns=df.columns)
else:
warn = FutureWarning if reduction_func == "mad" else None
with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"):
expected = df.T.groupby([0, 0, 1]).transform(reduction_func).T
tm.assert_equal(result, expected)
| 7c054d6a256fd0186befe03acf9e9e86d81668d6 | 237 | https://github.com/pandas-dev/pandas.git | 298 | def test_transform_axis_1_reducer(request, reduction_func):
# GH#45715
if reduction_func in (
"corrwith",
"idxmax",
"idxmin",
"ngroup",
"nth",
):
marker = pytest.mark.xfail(reason="transform incorrectly fails - GH#45986")
request.node.add_marker(marker)
if reduction_func == "mad":
warn = Future | 27 | 394 | test_transform_axis_1_reducer |
|
82 | 0 | 1 | 11 | numpy/lib/tests/test_arraysetops.py | 160,658 | MAINT: bool instead of np.bool_ dtype | numpy | 10 | Python | 51 | test_arraysetops.py | def test_in1d_hit_alternate_algorithm(self):
# Need extreme range to hit standard code
# This hits it without the use of method='dictionary'
a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64)
b = np.array([2, 3, 4, 1e9], dtype=np.int64)
expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool)
assert_array_equal(expected, in1d(a, b))
assert_array_equal(np.invert(expected), in1d(a, b, invert=True))
a = np.array([5, 7, 1, 2], dtype=np.int64)
b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64)
ec = np.array([True, False, True, True])
c = in1d(a, b, assume_unique=True)
assert_array_equal(c, ec)
| d7e2582cd33b22a767286e8a3d95b336dfe51a34 | 195 | https://github.com/numpy/numpy.git | 173 | def test_in1d_hit_alternate_algorithm(self):
# Need extreme range to hit standard code
# This hits it without the use of method='dictionary'
a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64)
b = np.array([2, 3, 4, 1e9], dtype=np.int64)
expected = np.arra | 16 | 271 | test_in1d_hit_alternate_algorithm |
|
10 | 0 | 1 | 24 | python/ray/tests/test_component_failures.py | 131,453 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 6 | Python | 10 | test_component_failures.py | def test_dying_driver_wait(ray_start_regular):
# Start the Ray processes.
address_info = ray_start_regular
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 145 | https://github.com/ray-project/ray.git | 15 | def test_dying_driver_wait(ray_start_regular):
# Start | 3 | 15 | test_dying_driver_wait |
|
34 | 0 | 2 | 16 | saleor/tax/migrations/0002_add_default_tax_configs.py | 29,529 | Simple (flat rate) taxes API (#9784)
* Add empty tax module
* Add tax models (#9839)
* Add tax API queries (#9856)
* Add MANAGE_TAXES permission
* Add tax configuration queries
* Create tax configuration when channel is created
* Drop sorters for now
* Add TaxConfigurationPerCountry type
* Update migration
* Add metadata to TaxConfiguration type
* Add tests for tax configuration queries
* Add TaxClass types
* Improve tests
* Add queries for tax configuration per country
* Fix query in tests
* Update query cost map
* Add tax API mutations (#9934)
* Add taxConfigurationUpdate mutation
* Update schema
* Add tax class CRUD mutations
* Add mutations to update/delete tax class rates per country
* Review fixes
* Add taxClass field to ProductType type (#9999)
* Add taxClass field to ProductType type
* Add taxClass field to Product type
* Add taxClass field to shipping method type
* Add displayGrossPrices to ProductPricingInfo (#10008)
* Add displayGrossPrices to ProductPricingInfo
* Add displayGrossPrices to Checkout
* Add displayGrossPrices to Order
* Add tests
* Add ADDED_IN_35 label to new fields' descriptions
* Use new display_gross_prices flag (#10121)
* Use new display_gross_prices flag
* Update tests
* Add tests
* Review fixes
* Drop Vatlayer (#10335)
* Add migration from Vatlayer to simple taxes
* Review fixes
* Review fixes
* Drop usages of global include_taxes_in_prices flag (#10406)
* Drop `include_taxes_in_prices` function from site settings
* Adjust tests
* Review fixes
* Drop the `charge_taxes_on_shipping` flag from site settings. (#10466)
* Include migrating Avatax tax codes in tax class migration
* Drop `charge_taxes_on_shipping` function
* Add tax_class to ShippingMethodData
* Review fixes
* Always calculate shipping tax with Avalara
* Add default country rate (#10497)
* Allow setting default tax rate for a country (without providing a tax class)
* Add validation to allow settings only one default rate at once
* Code review fixes
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* Adjust resolver to use new tax configuration (#10533)
* CR fixes
* Add database router to fix false positives on relation mismatch. (#10524)
* Add database router to fix false positives on relation mismatch.
* The db router should have only 'allow_relation' implemented.
* The 'db_for_write' part should stay.
* Subscription for sync tax webooks (#10433)
* Add proposed changes to schema
* Add base implementation for sync tax subscription
* Add test for empty order
* Add clean up and missing part for tests
* Use subscription for tax webhooks. Add more tests
* Improve descriptions for tax objects
* Adjust resolver to use new tax configuration (#10533)
* Add taxCalculationStrategy field (#10532)
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* CR fixes
* Add datamigration to populate taxCalculationStrategy
* Migrate Product.charge_taxes to new tax configuration (#10585)
* Migrate Product.charge_taxes field to new tax configuration
* Rename function
* Fix tests
* Change assign_tax_code_to_object_meta function to support tax classes
* Update tax class fixtures
* Improve dataloader
* CR fixes
* CR fixes
* Add deprecation notice to dataloader
* Allow removing country rates in the `taxCountryConfigurationUpdate` mutation. (#10647)
* Allow deleting rates in taxCountryConfigurationUpdate mutation
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Remove TaxClass.is_default field (#10660)
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Drop is_default field from TaxClass model
* Drop extra Avalara config (#10673)
* Drop extra Avatax config options
* Adjust tests
* Use flat rates in tax calculations (#10747)
* WIP Use new tax configuration in tax calculations
* Use new tax calculations for checkout
* Adjust tests
* Add flat rates calculations for checkout and order
* Calculate flat rates in product pricing objects
* Adjust tests
* Add tests for order calculations
* Add tests for product queries tax calculations
* Add tests for order calculations
* Use base calculations to get default checkout shipping price
* Add tests for using tax_class from product_type
* Add tests for get_order_country
* Adjust tests
* Code review fixes
* Drop update_taxes_for_order_lines (#11000)
* Fix calls to Avalara not validating order (#11012)
* Add validation to disallow creating negative rates (#11010)
* Add missing recalculation of order.undiscounted_total (#11039)
* Optimize getting tax class country rates (#11040)
* Tax API adjustments for dashboard (#11042)
* Ignore null rates in taxCountryConfigurationUpdate mutation
* Allow to pass null rates in taxClassUpdate mutation
* Improve tests
* Update saleor/graphql/tax/mutations/tax_class_update.py
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Update schema
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Cleanup before release (#11049)
* Update ADDED_IN labels
* Fix skippeded test
* Regenerate migrations
* Deprecate CountryDisplay.vat field
* Add changelog
* Update order.undiscounted_total calculation to not include taxes (#11068)
* Fix assigning rates to tax classes (#11105)
* Allow all staff users and apps to query tax-related data (#11113)
* Bump dependencies for origin/SALEOR-6391-simple-taxes (#11127)
Bumps:
- cryptography to 38.0.3
- pillow to 9.3.0
* Fix using tax code from product and product type's tax class (#11111)
* Fix using tax code from product and product type's tax class
* Extract function
* Replace synchronous load_site with promise (#11165)
* Denormalize tax class for order lines and orders (#11172)
* WIP Denormalize tax class for order lines and orders
* Add denormalized fields in GraphQL types
* Add tests for denormalized API fields
* Return 0 rate in API when rate is null
* Add preview/version notes in new field descriptions
* Update changelog
Co-authored-by: Dominik Kozaczko <dominik@kozaczko.info>
Co-authored-by: Maciej Korycinski <maciej@mirumee.com>
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
Co-authored-by: Mika <6186720+NyanKiyoshi@users.noreply.github.com>
Co-authored-by: Krzysztof Kwaśniak <mr.brzys@gmail.com> | saleor | 13 | Python | 29 | 0002_add_default_tax_configs.py | def add_tax_configuration_for_channels(apps, schema_editor):
Channel = apps.get_model("channel", "Channel")
TaxConfiguration = apps.get_model("tax", "TaxConfiguration")
SiteSettings = apps.get_model("site", "SiteSettings")
site_settings = SiteSettings.objects.first()
tax_configurations = []
for channel in Channel.objects.all():
tax_configurations.append(
TaxConfiguration(
channel=channel,
charge_taxes=True,
display_gross_prices=site_settings.display_gross_prices,
prices_entered_with_tax=site_settings.include_taxes_in_prices,
)
)
TaxConfiguration.objects.bulk_create(tax_configurations)
| 67df28935c555fdd673f17e8c9183e24dde7c51f | 97 | https://github.com/saleor/saleor.git | 150 | def add_tax_configuration_for_channels(apps, schema_editor):
Channel = apps.get_model("channel", "Channel")
TaxConfiguration = apps.get_model("tax", "TaxConfiguration")
SiteSettings = apps.get_model("site", "SiteSettings")
site_settings = SiteSettings.objects.first()
tax_configurations = []
fo | 19 | 160 | add_tax_configuration_for_channels |
|
11 | 0 | 3 | 5 | django/core/management/base.py | 204,592 | Refs #33476 -- Reformatted code with Black. | django | 10 | Python | 10 | base.py | def handle_default_options(options):
if options.settings:
os.environ["DJANGO_SETTINGS_MODULE"] = options.settings
if options.pythonpath:
sys.path.insert(0, options.pythonpath)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 38 | https://github.com/django/django.git | 34 | def handle_default_options(options):
if options.set | 9 | 64 | handle_default_options |
|
14 | 0 | 3 | 7 | python/ray/data/impl/plan.py | 138,505 | [Datasets] [Out-of-Band Serialization: 2/3] Refactor `ExecutionPlan` to maintain complete lineage and eagerly unlink block references. (#23931)
This PR refactors ExecutionPlan to maintain complete stage lineage, even for eagerly computed datasets, while ensuring that block references are unlinked as early as possible in order to more eagerly release block memory. This PR is the final precursor to adding the actual out-of-band serialization APIs (PR 3/3).
The fully lineage has to be maintained, even for eagerly computed datasets, since the lineage is needed for out-of-band serialization of datasets. | ray | 10 | Python | 12 | plan.py | def is_read_stage(self) -> bool:
return (
self.has_lazy_input()
and not self._stages_before_snapshot
and not self._stages_after_snapshot
)
| 9ee24530abf1b5e3239869b5257dd7b678337b90 | 26 | https://github.com/ray-project/ray.git | 68 | def is_read_stage(self) -> bool:
return (
sel | 6 | 45 | is_read_stage |
|
30 | 0 | 1 | 9 | keras/layers/core/einsum_dense_test.py | 272,547 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 11 | Python | 28 | einsum_dense_test.py | def test_unspecified_output_dim_fails(self):
input_tensor = keras.Input(shape=(32,))
layer = einsum_dense.EinsumDense(equation="ab,bc->cd", output_shape=64)
with self.assertRaisesRegex(
ValueError,
".*Dimension 'd' was specified in the output 'cd' but has "
"no corresponding dim.*",
):
_ = layer(input_tensor)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 50 | https://github.com/keras-team/keras.git | 101 | def test_unspecified_output_dim_fails(self):
input_tensor = keras.Input(shape=(32,))
layer = einsum_dense.EinsumDense(equation="ab,bc->cd", output_shape=64)
with self.assertRaisesRegex(
ValueError,
".*Dimension 'd' was specified in the outp | 14 | 86 | test_unspecified_output_dim_fails |
|
112 | 0 | 15 | 48 | erpnext/stock/utils.py | 67,992 | style: format code with black | erpnext | 21 | Python | 76 | utils.py | def get_incoming_rate(args, raise_error_if_no_rate=True):
from erpnext.stock.stock_ledger import (
get_batch_incoming_rate,
get_previous_sle,
get_valuation_rate,
)
if isinstance(args, str):
args = json.loads(args)
voucher_no = args.get("voucher_no") or args.get("name")
in_rate = None
if (args.get("serial_no") or "").strip():
in_rate = get_avg_purchase_rate(args.get("serial_no"))
elif args.get("batch_no") and frappe.db.get_value(
"Batch", args.get("batch_no"), "use_batchwise_valuation", cache=True
):
in_rate = get_batch_incoming_rate(
item_code=args.get("item_code"),
warehouse=args.get("warehouse"),
batch_no=args.get("batch_no"),
posting_date=args.get("posting_date"),
posting_time=args.get("posting_time"),
)
else:
valuation_method = get_valuation_method(args.get("item_code"))
previous_sle = get_previous_sle(args)
if valuation_method in ("FIFO", "LIFO"):
if previous_sle:
previous_stock_queue = json.loads(previous_sle.get("stock_queue", "[]") or "[]")
in_rate = (
_get_fifo_lifo_rate(previous_stock_queue, args.get("qty") or 0, valuation_method)
if previous_stock_queue
else 0
)
elif valuation_method == "Moving Average":
in_rate = previous_sle.get("valuation_rate") or 0
if in_rate is None:
in_rate = get_valuation_rate(
args.get("item_code"),
args.get("warehouse"),
args.get("voucher_type"),
voucher_no,
args.get("allow_zero_valuation"),
currency=erpnext.get_company_currency(args.get("company")),
company=args.get("company"),
raise_error_if_no_rate=raise_error_if_no_rate,
batch_no=args.get("batch_no"),
)
return flt(in_rate)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 333 | https://github.com/frappe/erpnext.git | 64 | def get_incoming_rate(args, raise_error_if_no_rate=True):
from erpnext.stock.stock_ledger import (
get_batch_incoming_rate,
get_previous_sle,
get_valuation_rate,
)
if isinstance(args, str):
args = json.loads(args)
voucher_no = args.get("voucher_no") or args.get("name")
in_rate = None
if (args.get("serial_no") or "").strip():
in_rate = get_avg_purchase_rate(args.get("serial_no"))
elif args.get("batch_no") and frappe.db.get_value(
"Batch", args.get("batch_no"), "use_batchwise_valuation", cache=True
):
in_rate = get_batch_incoming_rate(
item_code=args.get("item_code"),
warehouse=args.get("warehouse"),
batch_no=args.get("batch_no"),
posting_date=args.get("posting_date"),
posting_time=args.get("posting_time"),
)
else:
valuation_method = get_valuation_method(args.get("item_code"))
previous_sle = get_previous_sle(args)
if valuation_method in ("FIFO", "LIFO"):
if previous_sle:
previous_stock_queue = json.loads(previous_sle.get("stock_queue", "[]") or "[]")
in_rate = (
_get_fifo_lifo_rate(previous_stock_queue, args.get("qty") or 0, valuation_method)
| 36 | 566 | get_incoming_rate |
|
34 | 0 | 2 | 11 | keras/callbacks.py | 269,928 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 11 | Python | 33 | callbacks.py | def _push_writer(self, writer, step):
if self.update_freq == "epoch":
return
should_record = lambda: tf.equal(step % self.update_freq, 0)
# TODO(b/151339474): Fix deadlock when not using .value() here.
summary_context = (
writer.as_default(step.value()),
tf.summary.record_if(should_record),
)
self._prev_summary_state.append(summary_context)
summary_context[0].__enter__()
summary_context[1].__enter__()
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 82 | https://github.com/keras-team/keras.git | 130 | def _push_writer(self, writer, step):
if self.update_freq == "epoch":
return
should_record = lambda: tf.equal(step % self.update_freq, 0)
# TO | 16 | 133 | _push_writer |
|
23 | 1 | 1 | 2 | doc/source/ray-core/doc_code/scheduling.py | 137,072 | [Doc] Revamp ray core scheduling doc (#30675) | ray | 6 | Python | 21 | scheduling.py | def small_object_func():
# Small object is returned inline directly to the caller,
# instead of storing in the distributed memory.
return [1]
@ray.remote | 1216d5d2d39556895b43e4a6dd8dd7825c3acd30 | @ray.remote | 8 | https://github.com/ray-project/ray.git | 30 | def small_object_func():
# Small object is returned inline directly to | 3 | 23 | small_object_func |
25 | 0 | 1 | 8 | tests/acceptance/test_performance_issues.py | 87,487 | test(perf-issues): Add more E2E tests (#40723)
- one test verifies that similar events are grouped
- one test verifies that dissimilar events are not grouped | sentry | 13 | Python | 23 | test_performance_issues.py | def test_with_one_performance_issue(self, mock_now):
mock_now.return_value = datetime.utcnow().replace(tzinfo=pytz.utc) - timedelta(minutes=5)
event_data = self.create_sample_event(mock_now.return_value.timestamp())
with self.feature(FEATURES):
event = self.store_event(data=event_data, project_id=self.project.id)
self.page.visit_issue(self.org.slug, event.groups[0].id)
self.browser.click('[aria-label="Show Details"]')
self.browser.snapshot("performance issue details", desktop_only=True)
| 8d05e775c1f46209ec515d5267dc9c74ab51a106 | 113 | https://github.com/getsentry/sentry.git | 89 | def test_with_one_performance_issue(self, mock_now):
mock_now.return_value = datetime.utcnow().replace(tzinfo=pytz.utc) - timedelta(minutes=5)
event_data = self.create_sample_event(mock_now.return_value.timestamp())
with self.feature(FEATURES):
event = self.store_event(data=event_data, project_id=self.project.id)
self.page.visit_issue(self.org.s | 32 | 182 | test_with_one_performance_issue |
|
197 | 0 | 1 | 15 | test/test_modeling_question_answering.py | 256,459 | Apply black formatting (#2115)
* Testing black on ui/
* Applying black on docstores
* Add latest docstring and tutorial changes
* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too
* Remove comments
* Relax constraints on pydoc-markdown
* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade
* Fix a couple of bugs
* Add a type: ignore that was missing somehow
* Give path to black
* Apply Black
* Apply Black
* Relocate a couple of type: ignore
* Update documentation
* Make Linux CI run after applying Black
* Triggering Black
* Apply Black
* Remove dependency, does not work well
* Remove manually double trailing commas
* Update documentation
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | haystack | 11 | Python | 89 | test_modeling_question_answering.py | def test_inference_different_inputs(bert_base_squad2):
qa_format_1 = [
{
"questions": ["Who counted the game among the best ever made?"],
"text": "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created.",
}
]
q = Question(text="Who counted the game among the best ever made?")
qa_format_2 = QAInput(
questions=[q],
doc_text="Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created.",
)
result1 = bert_base_squad2.inference_from_dicts(dicts=qa_format_1)
result2 = bert_base_squad2.inference_from_objects(objects=[qa_format_2])
assert result1 == result2
| a59bca366174d9c692fa19750c24d65f47660ef7 | 70 | https://github.com/deepset-ai/haystack.git | 270 | def test_inference_different_inputs(bert_base_squad2):
qa_format_1 = [
{
"questions": ["Who counted the game among the best ever made?"],
"text": "Twilight Pri | 16 | 120 | test_inference_different_inputs |
|
10 | 0 | 1 | 3 | netbox/wireless/tests/test_filtersets.py | 266,028 | Closes #10710: Add status field to WirelessLAN | netbox | 13 | Python | 10 | test_filtersets.py | def test_status(self):
params = {'status': [WirelessLANStatusChoices.STATUS_ACTIVE, WirelessLANStatusChoices.STATUS_DISABLED]}
self.assertEqual(self.filterset(params, self.queryset).qs.count(), 2)
| ad40d42dc467940b27021104a8beaee3cce1afaa | 43 | https://github.com/netbox-community/netbox.git | 23 | def test_status(self):
params = {'status': [WirelessLANStatusChoices.STATUS_ACTIVE, WirelessLANStatusChoices.STATUS_DISABLED]}
self.assertEqual(self.filterset(params, self.queryset).q | 11 | 68 | test_status |
|
14 | 0 | 2 | 4 | rest_framework/request.py | 48,634 | Replaced parse_header with parse_header_parameters. (#8556)
Add a backwards compatibility shim for Django versions that have no (or an incompatible)
django.utils.http.parse_header_parameters implementation.
Thanks to Shai Berger for review.
Co-authored-by: Jaap Roes <jroes@leukeleu.nl> | django-rest-framework | 9 | Python | 13 | request.py | def is_form_media_type(media_type):
base_media_type, params = parse_header_parameters(media_type)
return (base_media_type == 'application/x-www-form-urlencoded' or
base_media_type == 'multipart/form-data')
| ad282da97cf7b23c50a8fa7b7c5cad68c1deedc3 | 24 | https://github.com/encode/django-rest-framework.git | 34 | def is_form_media_type(media_type):
base_media_type, params = parse_header_parameters(media_type)
return (base_media_type == 'application/x-www-form-urlencoded' or
base_media_type == 'multipart/form-data')
| 5 | 45 | is_form_media_type |
|
61 | 0 | 4 | 29 | src/diffusers/models/resnet.py | 337,010 | renamed x to meaningful variable in resnet.py (#677)
* renamed single letter variables
* renamed x to meaningful variable in resnet.py
Hello @patil-suraj can you verify it
Thanks
* Reformatted using black
* renamed x to meaningful variable in resnet.py
Hello @patil-suraj can you verify it
Thanks
* reformatted the files
* modified unboundlocalerror in line 374
* removed referenced before error
* renamed single variable x -> hidden_state, p-> pad_value
Co-authored-by: Nikhil A V <nikhilav@Nikhils-MacBook-Pro.local>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com> | diffusers | 12 | Python | 45 | resnet.py | def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
r
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * gain
pad_value = kernel.shape[0] - factor
return upfirdn2d_native(
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
)
| 7265dd8cc82e41624b4a979a22f0d15dba55e956 | 127 | https://github.com/huggingface/diffusers.git | 111 | def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
r
assert isinstance(factor, int) and factor >= 1
if kernel is None:
| 21 | 197 | downsample_2d |
|
17 | 0 | 3 | 6 | modules/image/text_to_image/disco_diffusion_cnclip_vitb16/cn_clip/clip/bert_tokenizer.py | 49,724 | add disco_diffusion_cnclip_vitb16 module | PaddleHub | 11 | Python | 14 | bert_tokenizer.py | def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
| f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | 43 | https://github.com/PaddlePaddle/PaddleHub.git | 63 | def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
| 9 | 67 | tokenize |
|
40 | 0 | 1 | 8 | onnx/test/shape_inference_test.py | 255,603 | Use Python type annotations rather than comments (#3962)
* These have been supported since Python 3.5.
ONNX doesn't support Python < 3.6, so we can use the annotations.
Diffs generated by https://pypi.org/project/com2ann/.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Remove MYPY conditional logic in gen_proto.py
It breaks the type annotations and shouldn't be needed.
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* Get rid of MYPY bool from more scripts
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* move Descriptors class above where its referenced in type annotation
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fixes
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* remove extra blank line
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotations
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix type annotation in gen_docs
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix Operators.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix TestCoverage.md
Signed-off-by: Gary Miguel <garymiguel@microsoft.com>
* fix protoc-gen-mypy.py
Signed-off-by: Gary Miguel <garymiguel@microsoft.com> | onnx | 13 | Python | 34 | shape_inference_test.py | def test_negative_log_likehood_shape_is_NCd1d2_reduction_sum(self) -> None:
N, C, d1, d2 = 3, 4, 5, 6
graph = self._make_graph(
[("input", TensorProto.FLOAT, (N, C, d1, d2)),
("target", TensorProto.INT64, (N, d1, d2))],
[make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='sum')],
[])
self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore
| 83fa57c74edfd13ddac9548b8a12f9e3e2ed05bd | 108 | https://github.com/onnx/onnx.git | 106 | def test_negative_log_likehood_shape_is_NCd1d2_reduction_sum(self) -> None:
N, C, d1, d2 = 3, 4, 5, 6
graph = self._make_graph(
[("input", TensorProto.FLOAT, (N, C | 15 | 162 | test_negative_log_likehood_shape_is_NCd1d2_reduction_sum |
|
16 | 0 | 2 | 4 | tests/models/test_default_evaluator.py | 19,069 | Evaluation Default evaluator (#5092)
* init
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* rename module
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* revert black change
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* change module path
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* refactor
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* lazy load pyspark
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* revert export
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix curcit import
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix conftest.py
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* Revert "fix conftest.py"
This reverts commit 2ea29c62bfffc5461bf77f3da15b5c00f51de19b.
* fix tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* default evaluator
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update import
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update hash algo
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update import
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comment
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix lint
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add more tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix lint
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update shap explainer
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* remove scikitplot dep
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add pr curve
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add shap.summary_plot
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* log explainer
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* improve explainer code
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update shap init
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update explainer creating
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update predict_proba
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* refactor
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add multi-class metrics artifacts
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add log_loss metric
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* lazy load pyspark
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* address ben comments
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* prevent show shap logo, add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* support spark model
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add shap version check
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update docs, loose classifier label limit
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* multiclass classifier merge metrics/plots
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* zfill feature name
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add config max_num_classes_threshold_logging_roc_pr_curve_for_multiclass_classifier
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* refactor
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* improve label handling
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* refactor
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* add tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* black
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* increase plot dpi
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix test fixture
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix pylint
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update doc
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* use matplot rc_context
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix shap import
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* refactor EvaluationDataset
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* limit user specify shap algos
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* clean
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* update evaluation dataset
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* use svg fig
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* revert svg
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* curve dashline, legend display ap/roc, legend move out
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* linewidth 1
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* keyword arguments for evaluate, fix tests
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* mark abc.abstractmethod, kw args for ModelEvaluator methods
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix pylint
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
* fix pylint
Signed-off-by: Weichen Xu <weichen.xu@databricks.com> | mlflow | 10 | Python | 13 | test_default_evaluator.py | def assert_dict_equal(d1, d2, rtol):
for k in d1:
assert k in d2
assert np.isclose(d1[k], d2[k], rtol=rtol)
| 964f5ab75098c55f028f8acfeeae05df35ea68d5 | 37 | https://github.com/mlflow/mlflow.git | 32 | def assert_dict_equal(d1, d2, rtol):
for k in d1:
| 7 | 52 | assert_dict_equal |
|
21 | 0 | 1 | 9 | tests/detectors/test_feature_detector.py | 190,878 | Feature/optional opencv (#1400)
* Removed opencv dependency
Now OpenCV is optional and detectors are smart to
skip if cv2 could not be imported.
Also refactored face detector a bit to make it more
maintainable.
Now thumbor can be installed with
pip install thumbor
pip install thumbor[all]
pip install thumbor[opencv]
pip install thumbor[tests] | thumbor | 13 | Python | 21 | test_feature_detector.py | async def test_should_detect_multiple_points(self):
with open(
abspath("./tests/fixtures/images/no_face.jpg"), "rb"
) as fixture:
self.engine.load(fixture.read(), None)
await FeatureDetector(self.context, 0, None).detect()
detection_result = self.context.request.focal_points
expect(len(detection_result)).to_be_greater_than(1)
expect(detection_result[0].origin).to_equal("alignment")
| d34fd16034e307b545c3e3adfa4d9d472a582cc6 | 82 | https://github.com/thumbor/thumbor.git | 84 | async def test_should_detect_multiple_points(self):
with open(
abspath("./tests/fixtures/images/no_face.jpg"), "rb"
) as fixture:
self.engine.load(fixture.read(), None)
await FeatureDetector(self.context, 0, None).detect()
detection_result = self.context.request.focal_points
expect(len(detection_result)).to_be_greater_than(1)
expect(dete | 19 | 140 | test_should_detect_multiple_points |
|
32 | 0 | 3 | 11 | keras/distribute/keras_correctness_test_base.py | 270,391 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 11 | Python | 27 | keras_correctness_test_base.py | def get_batch_size(global_batch_size, distribution):
batch_size = global_batch_size
# TODO(b/118776054): Use global batch size for Keras/DS support.
use_per_core_batch_size = (
distribution
and not distributed_training_utils.global_batch_size_supported(
distribution
)
)
if use_per_core_batch_size:
batch_size //= distribution.num_replicas_in_sync
return batch_size
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 30 | https://github.com/keras-team/keras.git | 88 | def get_batch_size(global_batch_size, distribution):
batch_size = global_batch_size
# TODO(b/118776054): Use global batch size for Keras/DS support.
use_per_core_batch_size = (
distribution
and not distributed_training_utils.global_batch_size_supported(
distribution
| 8 | 54 | get_batch_size |
|
47 | 0 | 1 | 44 | tests/crypto/test_keyring.py | 250,533 | Add missing type hints to tests. (#14687)
Adds type hints to tests.metrics and tests.crypto. | synapse | 9 | Python | 33 | test_keyring.py | def test_get_multiple_keys_from_perspectives(self) -> None:
fetcher = PerspectivesKeyFetcher(self.hs)
SERVER_NAME = "server2"
testkey1 = signedjson.key.generate_signing_key("ver1")
testverifykey1 = signedjson.key.get_verify_key(testkey1)
testverifykey1_id = "ed25519:ver1"
testkey2 = signedjson.key.generate_signing_key("ver2")
testverifykey2 = signedjson.key.get_verify_key(testkey2)
testverifykey2_id = "ed25519:ver2"
VALID_UNTIL_TS = 200 * 1000
response1 = self.build_perspectives_response(
SERVER_NAME,
testkey1,
VALID_UNTIL_TS,
)
response2 = self.build_perspectives_response(
SERVER_NAME,
testkey2,
VALID_UNTIL_TS,
)
| a4ca770655a6b067468de3d507292ec133fdc5ca | 292 | https://github.com/matrix-org/synapse.git | 211 | def test_get_multiple_keys_from_perspectives(self) -> None:
fetcher = PerspectivesKeyFetcher(self.hs)
SERVER_NAME = "server2"
testkey1 = signedjson.key.generate_signing_key("ver1")
testverifykey1 = signedjson.key.get_verify_key(testkey1)
testverifykey1_id = "ed25519:ver1"
testkey2 = signedjson.key.generate_signing_key("ver2")
testverifykey2 = signedjson.key.get_verify_key(testkey2)
testverifykey2_id = "ed25519:ver2"
VALID_UNTIL_TS = 200 * 1000
response1 = self.build_perspectives_response(
SERVER_NAME,
testkey1,
VALID_UNTIL_TS,
)
response2 = self.build_perspectives_response(
SERVER_NAME,
testkey2,
VALID_UNTIL_TS,
)
| 20 | 162 | test_get_multiple_keys_from_perspectives |
|
4 | 0 | 1 | 2 | wagtail/documents/wagtail_hooks.py | 74,922 | Reformat with black | wagtail | 8 | Python | 4 | wagtail_hooks.py | def construct_admin_api(router):
router.register_endpoint("documents", DocumentsAdminAPIViewSet)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 13 | https://github.com/wagtail/wagtail.git | 6 | def construct_admin_api(router):
router.register_endpoint("documents", | 4 | 23 | construct_admin_api |
|
43 | 0 | 1 | 16 | gensim/test/test_word2vec.py | 9,740 | streamlining most_similar_cosmul and evaluate_word_analogies (#2656)
* streamlining most_similar_cosmul
* Fix PR requested changes and add unit test
* fix merge artifacts
Co-authored-by: n3hrox <n3hrox@gmail.com>
Co-authored-by: Michael Penkov <m@penkov.dev> | gensim | 11 | Python | 38 | test_word2vec.py | def test_evaluate_word_analogies(self):
model = word2vec.Word2Vec(LeeCorpus())
score, sections = model.wv.evaluate_word_analogies(datapath('questions-words.txt'))
score_cosmul, sections_cosmul = model.wv.evaluate_word_analogies(
datapath('questions-words.txt'),
similarity_function='most_similar_cosmul'
)
self.assertEqual(score, score_cosmul)
self.assertEqual(sections, sections_cosmul)
self.assertGreaterEqual(score, 0.0)
self.assertLessEqual(score, 1.0)
self.assertGreater(len(sections), 0)
# Check that dict contains the right keys
first_section = sections[0]
self.assertIn('section', first_section)
self.assertIn('correct', first_section)
self.assertIn('incorrect', first_section)
| ac3bbcdf87b263f79d5e19cce173e6c709a15f9d | 127 | https://github.com/RaRe-Technologies/gensim.git | 170 | def test_evaluate_word_analogies(self):
model = word2vec.Word2Vec(LeeCorpus())
score, sections = model.wv.evaluate_word_analogies(datapath('questions-words.txt'))
score_cosmul, sections_cosmul = model.wv.evaluate_word_analogies(
datapath('questions-words.txt'),
similarity_function='most_similar_cosmul'
)
self.assertEqual(score, score_cosmul)
self.assertEqual(sections, sections_cosmul)
self.assertGreaterEqual(score, 0.0)
self.assertLessEqual(score, 1.0)
self.assertGreater(len(sections), 0)
# Check that dict contains the right keys
first_section = sections[0]
self.assertIn('sec | 21 | 206 | test_evaluate_word_analogies |
|
21 | 0 | 1 | 17 | keras/engine/data_adapter_test.py | 271,155 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 9 | Python | 18 | data_adapter_test.py | def test_shuffle_correctness(self):
num_samples = 100
batch_size = 32
x = np.arange(num_samples)
np.random.seed(99)
adapter = self.adapter_cls(
x, y=None, batch_size=batch_size, shuffle=True, epochs=2
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 125 | https://github.com/keras-team/keras.git | 73 | def test_shuffle_correctness(self):
num_samples = 100
batch_size = 32
x = np.arange(num_samples)
np.random.seed(99)
| 14 | 78 | test_shuffle_correctness |
|
146 | 0 | 9 | 50 | pandas/core/internals/blocks.py | 164,658 | REF: standardize patterns in Block Methods (#45840) | pandas | 19 | Python | 97 | blocks.py | def putmask(self, mask, new) -> list[Block]:
orig_mask = mask
values = cast(np.ndarray, self.values)
mask, noop = validate_putmask(values.T, mask)
assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame))
if new is lib.no_default:
new = self.fill_value
new = self._standardize_fill_value(new)
new = extract_array(new, extract_numpy=True)
if noop:
return [self]
try:
casted = np_can_hold_element(values.dtype, new)
putmask_without_repeat(values.T, mask, casted)
return [self]
except LossySetitemError:
if self.ndim == 1 or self.shape[0] == 1:
# no need to split columns
if not is_list_like(new):
# using just new[indexer] can't save us the need to cast
return self.coerce_to_target_dtype(new).putmask(mask, new)
else:
indexer = mask.nonzero()[0]
nb = self.setitem(indexer, new[indexer])
return [nb]
else:
is_array = isinstance(new, np.ndarray)
res_blocks = []
nbs = self._split()
for i, nb in enumerate(nbs):
n = new
if is_array:
# we have a different value per-column
n = new[:, i : i + 1]
submask = orig_mask[:, i : i + 1]
rbs = nb.putmask(submask, n)
res_blocks.extend(rbs)
return res_blocks
| 21bbee62e371068896735946c3c0c2ab1f349fda | 269 | https://github.com/pandas-dev/pandas.git | 656 | def putmask(self, mask, new) -> list[Block]:
orig_mask = mask
values = cast(np.ndarray, self.values)
mask, noop = validate_putmask(values.T, mask)
assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame))
if new is lib.no_default:
new = self.fill_value
new = self._standardize_fill_value(new)
new = extract_array(new, extract_numpy=True)
if noop:
return [self]
try:
casted = np_can_hold_element(values.dtype, new)
putmask_without_repeat(values.T, mask, casted)
return [self]
except LossySetitemError:
if self.ndim == 1 or self.shape[0] == 1:
# no need to split columns
if not is_list_like(new):
# using just new[indexer] can't save us the need to cast
return self.co | 47 | 418 | putmask |
|
14 | 0 | 2 | 5 | homeassistant/components/overkiz/select.py | 309,472 | Add select entity to Overkiz integration (#62916) | core | 10 | Python | 13 | select.py | def current_option(self) -> str | None:
if state := self.device.states.get(self.entity_description.key):
return str(state.value)
return None
| 5e3bfabfcfb2a65e68e14bd21bddb2c37df85b6c | 37 | https://github.com/home-assistant/core.git | 46 | def current_option(self) -> str | None:
if state := self.device.states | 10 | 61 | current_option |
|
51 | 1 | 2 | 9 | tests/daemon/unit/stores/test_peapodstore.py | 10,969 | refactor: rename pod to deployment (#4230)
* refactor: rename pod to deployment
* style: fix overload and cli autocomplete
* fix: undo daemon mistake
* refactor: leftover cleanup
* fix: more test fixes
* fix: more fixes
* fix: more fixes
* fix: more fixes
* fix: more tests
* fix: fix more tests
* refactor: fix more tests
* refactor: more tests fixes
* refactor: rename pea to pod
* refactor: adjust docs
* refactor: complete pea renaming
* refactor: more fixes
* fix: pea_type in k8s yamls
* fix: adjust pod args name
* refactor: rename peapods parser folder
* fix: da init
Co-authored-by: Jina Dev Bot <dev-bot@jina.ai> | jina | 12 | Python | 38 | test_peapodstore.py | async def test_podpod_store_multi_add(model, store, type, workspace):
s = store()
for j in range(5):
id = DaemonID(f'j{type}')
await s.add(id=id, params=model, workspace_id=workspace, ports={})
assert len(s) == j + 1
assert id in s
await s.clear()
assert not s
@pytest.mark.asyncio
@pytest.mark.parametrize(
'model, store, id',
[
(PodModel(), PodStore, DaemonID(f'jpod')),
# (PodModel(), PodStore, DaemonID(f'jpod')),
],
) | 13edc16d806fb5d77a6849551178ccc75937f25f | @pytest.mark.asyncio
@pytest.mark.parametrize(
'model, store, id',
[
(PodModel(), PodStore, DaemonID(f'jpod')),
# (PodModel(), PodStore, DaemonID(f'jpod')),
],
) | 75 | https://github.com/jina-ai/jina.git | 110 | async def test_podpod_store_multi_add(model, store, type, workspace):
s = store()
for j in range(5):
id = DaemonID(f'j{type}')
await s.add(id=id, params=model, workspace_id=workspace, ports={})
assert len(s) == j + 1
assert id in s
awa | 22 | 173 | test_podpod_store_multi_add |
5 | 1 | 1 | 2 | tests/integration/external_pod/test_external_pod.py | 10,385 | feat: export Flow into set of k8s yamls (#4089) | jina | 8 | Python | 5 | test_external_pod.py | def external_pod_shards_1(external_pod_shards_1_args):
return Pod(external_pod_shards_1_args)
@pytest.fixture(scope='function') | 6e9e7ef32f61cab04c6efc7a9f21659d26b50fdb | @pytest.fixture(scope='function') | 10 | https://github.com/jina-ai/jina.git | 6 | def external_pod_shards_1(external_pod_shards_1_args):
return Pod(external_pod_shards_1_args)
@pyte | 6 | 34 | external_pod_shards_1 |
126 | 0 | 1 | 50 | tests/exchange/test_exchange.py | 149,288 | Update trading_fee naming | freqtrade | 13 | Python | 71 | test_exchange.py | def test_fetch_trading_fees(default_conf, mocker):
api_mock = MagicMock()
tick = {
'1INCH/USDT:USDT': {
'info': {'user_id': '',
'taker_fee': '0.0018',
'maker_fee': '0.0018',
'gt_discount': False,
'gt_taker_fee': '0',
'gt_maker_fee': '0',
'loan_fee': '0.18',
'point_type': '1',
'futures_taker_fee': '0.0005',
'futures_maker_fee': '0'},
'symbol': '1INCH/USDT:USDT',
'maker': 0.0,
'taker': 0.0005},
'ETH/USDT:USDT': {
'info': {'user_id': '',
'taker_fee': '0.0018',
'maker_fee': '0.0018',
'gt_discount': False,
'gt_taker_fee': '0',
'gt_maker_fee': '0',
'loan_fee': '0.18',
'point_type': '1',
'futures_taker_fee': '0.0005',
'futures_maker_fee': '0'},
'symbol': 'ETH/USDT:USDT',
'maker': 0.0,
'taker': 0.0005}
}
exchange_name = 'gateio'
default_conf['dry_run'] = False
default_conf['trading_mode'] = TradingMode.FUTURES
default_conf['margin_mode'] = MarginMode.ISOLATED
api_mock.fetch_trading_fees = MagicMock(return_value=tick)
mocker.patch('freqtrade.exchange.Exchange.exchange_has', return_value=True)
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
assert '1INCH/USDT:USDT' in exchange._trading_fees
assert 'ETH/USDT:USDT' in exchange._trading_fees
assert api_mock.fetch_trading_fees.call_count == 1
api_mock.fetch_trading_fees.reset_mock()
ccxt_exceptionhandlers(mocker, default_conf, api_mock, exchange_name,
"fetch_trading_fees", "fetch_trading_fees")
api_mock.fetch_trading_fees = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.fetch_trading_fees()
mocker.patch('freqtrade.exchange.Exchange.exchange_has', return_value=True)
assert exchange.fetch_trading_fees() == {}
| f5578aba48f174190697ac63908b3d3993c3a10c | 292 | https://github.com/freqtrade/freqtrade.git | 673 | def test_fetch_trading_fees(default_conf, mocker):
api_mock = MagicMock()
tick = {
'1INCH/USDT:USDT': {
'info': {'user_id': '',
'taker_fee': '0.0018',
'maker_fee': '0.0018',
'gt_discount': False,
'gt | 21 | 523 | test_fetch_trading_fees |
|
45 | 0 | 4 | 16 | keras/legacy_tf_layers/base.py | 274,228 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 13 | Python | 38 | base.py | def add_loss(self, losses, inputs=None):
previous_losses_length = len(self._losses)
previous_callable_losses_length = len(self._callable_losses)
super().add_loss(losses, inputs=inputs)
if not tf.executing_eagerly():
# TODO(fchollet): deprecate collection below.
new_losses = self._losses[previous_losses_length:]
new_callable_losses = self._callable_losses[
previous_callable_losses_length:
]
for regularizer in new_callable_losses:
loss_tensor = regularizer()
if loss_tensor is not None:
new_losses.append(loss_tensor)
_add_elements_to_collection(
new_losses, tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 101 | https://github.com/keras-team/keras.git | 228 | def add_loss(self, losses, inputs=None):
previous_losses_length = len(self._losses)
previous_callable_losses_length = len(self._callable_losses)
super().add_loss(losses, inputs=inputs)
if not tf.executing_eagerly():
# TODO(fchollet): deprecate collection below.
new_losses = self._losses[previous_losses_length:]
new_callable_losses = self._callable_losses[
previous_callable_losses_length:
]
for regularizer in new_callable_losses:
loss_tensor = regularizer()
if loss_tensor is not N | 22 | 160 | add_loss |
|
16 | 0 | 2 | 6 | certbot-apache/certbot_apache/_internal/override_gentoo.py | 186,675 | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <ferrand.ad@gmail.com> | certbot | 10 | Python | 14 | override_gentoo.py | def parse_sysconfig_var(self) -> None:
defines = apache_util.parse_define_file(self.apacheconfig_filep,
"APACHE2_OPTS")
for k, v in defines.items():
self.variables[k] = v
| 7d9e9a49005de7961e84d2a7c608db57dbab3046 | 39 | https://github.com/certbot/certbot.git | 95 | def parse_sysconfig_var(self) -> None:
defines = apache_util.parse_define_file(self.apacheconfig_filep,
"APACHE2_OPTS")
| 10 | 65 | parse_sysconfig_var |
|
63 | 0 | 7 | 17 | python3.10.4/Lib/distutils/command/build_clib.py | 222,661 | add python 3.10.4 for windows | XX-Net | 12 | Python | 46 | build_clib.py | def run(self):
if not self.libraries:
return
# Yech -- this is cut 'n pasted from build_ext.py!
from distutils.ccompiler import new_compiler
self.compiler = new_compiler(compiler=self.compiler,
dry_run=self.dry_run,
force=self.force)
customize_compiler(self.compiler)
if self.include_dirs is not None:
self.compiler.set_include_dirs(self.include_dirs)
if self.define is not None:
# 'define' option is a list of (name,value) tuples
for (name,value) in self.define:
self.compiler.define_macro(name, value)
if self.undef is not None:
for macro in self.undef:
self.compiler.undefine_macro(macro)
self.build_libraries(self.libraries)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 126 | https://github.com/XX-net/XX-Net.git | 282 | def run(self):
if not self.libraries:
return
# Yech -- this is cut 'n pasted from build_ext.py!
from distutils.ccompiler import new_compiler
self.compiler = new_compiler(compiler=self.comp | 20 | 195 | run |
|
27 | 0 | 1 | 7 | pandas/tests/io/excel/test_readers.py | 171,269 | STYLE: fix pylint reimported warnings (#49645)
* STYLE: fix pylint reimported warnings
* fixup! STYLE: fix pylint reimported warnings | pandas | 10 | Python | 21 | test_readers.py | def test_read_from_pathlib_path(self, read_ext):
# GH12655
str_path = "test1" + read_ext
expected = pd.read_excel(str_path, sheet_name="Sheet1", index_col=0)
path_obj = Path("test1" + read_ext)
actual = pd.read_excel(path_obj, sheet_name="Sheet1", index_col=0)
tm.assert_frame_equal(expected, actual)
| 289f32df5a565848adbc0adc8949fa4066542316 | 64 | https://github.com/pandas-dev/pandas.git | 68 | def test_read_from_pathlib_path(self, read_ext):
# GH12655
str_path = "test1" + read_ext
expected = pd.read_excel(str_path, sheet_name="Sheet1", index_col=0)
| 14 | 99 | test_read_from_pathlib_path |
|
272 | 0 | 1 | 103 | .venv/lib/python3.8/site-packages/pip/_vendor/idna/uts46data.py | 62,759 | upd; format | transferlearning | 8 | Python | 171 | uts46data.py | def _seg_5():
return [
(0x20D, 'V'),
(0x20E, 'M', 'ȏ'),
(0x20F, 'V'),
(0x210, 'M', 'ȑ'),
(0x211, 'V'),
(0x212, 'M', 'ȓ'),
(0x213, 'V'),
(0x214, 'M', 'ȕ'),
(0x215, 'V'),
(0x216, 'M', 'ȗ'),
(0x217, 'V'),
(0x218, 'M', 'ș'),
(0x219, 'V'),
(0x21A, 'M', 'ț'),
(0x21B, 'V'),
(0x21C, 'M', 'ȝ'),
(0x21D, 'V'),
(0x21E, 'M', 'ȟ'),
(0x21F, 'V'),
(0x220, 'M', 'ƞ'),
(0x221, 'V'),
(0x222, 'M', 'ȣ'),
(0x223, 'V'),
(0x224, 'M', 'ȥ'),
(0x225, 'V'),
(0x226, 'M', 'ȧ'),
(0x227, 'V'),
(0x228, 'M', 'ȩ'),
(0x229, 'V'),
(0x22A, 'M', 'ȫ'),
(0x22B, 'V'),
(0x22C, 'M', 'ȭ'),
(0x22D, 'V'),
(0x22E, 'M', 'ȯ'),
(0x22F, 'V'),
(0x230, 'M', 'ȱ'),
(0x231, 'V'),
(0x232, 'M', 'ȳ'),
(0x233, 'V'),
(0x23A, 'M', 'ⱥ'),
(0x23B, 'M', 'ȼ'),
(0x23C, 'V'),
(0x23D, 'M', 'ƚ'),
(0x23E, 'M', 'ⱦ'),
(0x23F, 'V'),
(0x241, 'M', 'ɂ'),
(0x242, 'V'),
(0x243, 'M', 'ƀ'),
(0x244, 'M', 'ʉ'),
(0x245, 'M', 'ʌ'),
(0x246, 'M', 'ɇ'),
(0x247, 'V'),
(0x248, 'M', 'ɉ'),
(0x249, 'V'),
(0x24A, 'M', 'ɋ'),
(0x24B, 'V'),
(0x24C, 'M', 'ɍ'),
(0x24D, 'V'),
(0x24E, 'M', 'ɏ'),
(0x24F, 'V'),
(0x2B0, 'M', 'h'),
(0x2B1, 'M', 'ɦ'),
(0x2B2, 'M', 'j'),
(0x2B3, 'M', 'r'),
(0x2B4, 'M', 'ɹ'),
(0x2B5, 'M', 'ɻ'),
(0x2B6, 'M', 'ʁ'),
(0x2B7, 'M', 'w'),
(0x2B8, 'M', 'y'),
(0x2B9, 'V'),
(0x2D8, '3', ' ̆'),
(0x2D9, '3', ' ̇'),
(0x2DA, '3', ' ̊'),
(0x2DB, '3', ' ̨'),
(0x2DC, '3', ' ̃'),
(0x2DD, '3', ' ̋'),
(0x2DE, 'V'),
(0x2E0, 'M', 'ɣ'),
(0x2E1, 'M', 'l'),
(0x2E2, 'M', 's'),
(0x2E3, 'M', 'x'),
(0x2E4, 'M', 'ʕ'),
(0x2E5, 'V'),
(0x340, 'M', '̀'),
(0x341, 'M', '́'),
(0x342, 'V'),
(0x343, 'M', '̓'),
(0x344, 'M', '̈́'),
(0x345, 'M', 'ι'),
(0x346, 'V'),
(0x34F, 'I'),
(0x350, 'V'),
(0x370, 'M', 'ͱ'),
(0x371, 'V'),
(0x372, 'M', 'ͳ'),
(0x373, 'V'),
(0x374, 'M', 'ʹ'),
(0x375, 'V'),
(0x376, 'M', 'ͷ'),
(0x377, 'V'),
]
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 729 | https://github.com/jindongwang/transferlearning.git | 577 | def _seg_5():
return [
(0x20D, 'V'),
(0x20E, 'M', 'ȏ'),
(0x20F, 'V'),
(0x210, 'M', 'ȑ'),
(0x211, 'V'),
(0x212, 'M', 'ȓ'),
(0x213, 'V'),
(0x214, 'M', 'ȕ'),
(0x215, 'V'),
(0x216, 'M', 'ȗ'),
(0x217, 'V'),
(0x218, 'M', 'ș'),
(0x219, 'V'),
(0x21A, 'M', 'ț'),
(0x21B, 'V'),
(0x21C, 'M', 'ȝ'),
(0x21D, 'V'),
(0x21E, 'M', 'ȟ'),
(0x21F, 'V'),
(0x220, 'M', 'ƞ'),
(0x221, 'V'),
(0x222, 'M', 'ȣ'),
(0x223, 'V'),
(0x224, 'M', 'ȥ'),
(0x225, 'V'),
(0x226, 'M', 'ȧ'),
(0x227, 'V'),
(0x228, 'M', 'ȩ'),
(0x229, 'V'),
(0x22A, 'M', 'ȫ'),
(0x22B, 'V'),
(0x22C, 'M', 'ȭ'),
(0x22D, 'V'),
(0x22E, 'M', 'ȯ'),
(0x22F, 'V'),
(0x230, 'M', 'ȱ'),
(0x231, 'V'),
(0x232, 'M', 'ȳ'),
(0x233, 'V'),
(0x23A, 'M', 'ⱥ'),
(0x23B, 'M', 'ȼ'),
(0x23C, 'V'),
(0x23D, 'M', 'ƚ'),
(0x23E, 'M', 'ⱦ'),
(0x23F, 'V'),
(0x241, 'M', 'ɂ'),
(0x242, 'V'),
(0x243, 'M', 'ƀ'),
(0x244, 'M', 'ʉ'),
(0x245, 'M', 'ʌ'),
(0x246, 'M', 'ɇ'),
(0x247, 'V'),
(0x248, 'M', 'ɉ'),
(0x249, 'V'),
(0x24A, 'M', 'ɋ'),
(0x24B, 'V'),
(0x24C, 'M', 'ɍ'),
(0x24D, 'V'),
(0x24E, 'M', 'ɏ'),
(0x24F, 'V'),
(0x2B0, 'M', 'h'),
(0x2B1, 'M', 'ɦ'),
(0x2B2, 'M', 'j'),
(0x2B3, 'M', ' | 1 | 1,157 | _seg_5 |
|
54 | 0 | 4 | 21 | keras/layers/rnn/gru_test.py | 280,211 | tf.cond optimization
Reformatting
Disabling a test that fails on fallback path | keras | 13 | Python | 43 | gru_test.py | def _test_runtime_with_model(self, model):
(x_train, y_train), _ = test_utils.get_test_data(
train_samples=self.batch,
test_samples=0,
input_shape=(self.timestep, self.input_shape),
num_classes=self.output_shape,
)
y_train = np_utils.to_categorical(y_train, self.output_shape)
model.compile(optimizer="sgd", loss=["categorical_crossentropy", None])
existing_loss = 0
for _ in range(self.epoch):
history = model.fit(x_train, y_train)
loss_value = history.history["loss"][0]
self.assertNotEqual(existing_loss, loss_value)
existing_loss = loss_value
_, runtime_value = model.predict(x_train)
if not tf.sysconfig.get_build_info()["is_rocm_build"]:
if tf.test.is_gpu_available():
self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU)
else:
self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU)
| 6fed9116cb32d5cd9f10cfa38062cae4a27e4743 | 181 | https://github.com/keras-team/keras.git | 249 | def _test_runtime_with_model(self, model):
(x_train, y_train), _ = test_utils.get_test_data(
train_samples=self.batch,
test_samples=0,
input_shape=(self.timestep, self.input_shape),
num_classes=self.output_shape,
)
y_train = np_utils.to_categorical(y_train, self.output_shape)
model.compile(optimizer="sgd", loss=["categorical_crossentropy", None])
existing_loss = 0
for _ in range(self.epoch):
history = model.fit(x_train, y_train)
loss_value = history.history["loss"][0]
self.assertNotEqual(existing_loss, loss_value)
existing_loss = loss_value
_, runtime_value = model.predict(x_train)
if not | 38 | 279 | _test_runtime_with_model |