n_words
int64 3
1.95k
| n_ast_errors
int64 0
2
| complexity
int64 1
151
| nloc
int64 2
546
| path
stringlengths 8
125
| id
int64 280
339k
| commit_message
stringlengths 3
18.1k
| repo
stringlengths 3
28
| ast_levels
int64 4
28
| language
stringclasses 1
value | vocab_size
int64 3
677
| file_name
stringlengths 5
67
| code
stringlengths 101
24k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
2.76k
| token_counts
int64 7
3.77k
| url
stringlengths 31
61
| n_whitespaces
int64 4
13.9k
| random_cut
stringlengths 21
13.9k
| n_identifiers
int64 1
157
| n_ast_nodes
int64 10
3.6k
| fun_name
stringlengths 3
72
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
57 | 0 | 2 | 19 | tests/sentry/rules/history/test_preview.py | 89,412 | feat(alert-preview): last triggered (#42098)
Attaches `last_triggered` to group info. `preview` now returns a mapping
of group_ids to triggers, updated tests to reflect that. | sentry | 16 | Python | 39 | test_preview.py | def test_frequency_condition_alone(self):
prev_hour = timezone.now() - timedelta(hours=1)
group = None
for i in range(5):
group = self.store_event(
project_id=self.project.id, data={"timestamp": iso_format(prev_hour)}
).group
conditions = [
{
"id": "sentry.rules.conditions.event_frequency.EventFrequencyCondition",
"value": 4,
"interval": "5m",
}
]
result = preview(self.project, conditions, [], *MATCH_ARGS)
assert group.id in result
conditions[0]["value"] = 5
result = preview(self.project, conditions, [], *MATCH_ARGS)
assert group.id not in result
| 583a7ec15744b2ca8a9c56df484516111dbf783d | 129 | https://github.com/getsentry/sentry.git | 230 | def test_frequency_condition_alone(self):
prev_hour = timezone.now() - timedelta(hours=1)
group = None
for i in range(5):
group = self.store_event(
project_id=self.project.id, data={"timestamp": iso_format(prev_hour)}
).group
conditions = [
{
| 20 | 207 | test_frequency_condition_alone |
|
15 | 1 | 1 | 4 | modin/pandas/test/test_series.py | 153,032 | TEST-#3655: Check that Modin is defaulting to Pandas. (#3656)
Co-authored-by: Dmitry Chigarev <62142979+dchigarev@users.noreply.github.com>
Co-authored-by: Devin Petersohn <devin-petersohn@users.noreply.github.com>
Signed-off-by: mvashishtha <mahesh@ponder.io> | modin | 9 | Python | 15 | test_series.py | def test_expanding(data):
modin_series, _ = create_test_series(data) # noqa: F841
with warns_that_defaulting_to_pandas():
modin_series.expanding()
@pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) | be2716f393fddd2f669f26616f80e051fc7ceee6 | @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) | 23 | https://github.com/modin-project/modin.git | 27 | def test_expanding(data):
modin_series, _ = create_ | 13 | 67 | test_expanding |
18 | 0 | 1 | 4 | pandas/tests/frame/test_query_eval.py | 164,047 | TST: Remove unused fixtures (#45692)
* TST: Remove unused fixtures
* Undo a removed fixture
* Add back other fixtures
* Undo a file
* Try undoing this?
* Revert "Try undoing this?"
This reverts commit 0e56cb04f5e8cb1f7b2ac4c5e6191485bb2fe1ab. | pandas | 11 | Python | 16 | test_query_eval.py | def setup_method(self):
self.df = DataFrame({"A": [1, 2, 3]})
self.expected1 = self.df[self.df.A > 0]
self.expected2 = self.df.A + 1
| f46df091df3afea25a273f491d1f6b2c7d20b32c | 50 | https://github.com/pandas-dev/pandas.git | 38 | def setup_method(self):
self.df = DataFrame({"A": [1, 2, 3]})
self.expected1 = self.df[self.df.A > 0]
self.expected2 = self.df.A + 1 | 7 | 78 | setup_method |
|
103 | 0 | 5 | 33 | t/integration/test_canvas.py | 208,362 | Fixed bug when chaining a chord with a group (#7919)
* Reproduced Bug from Issue #5958
* Fixed Issue #5958
* Added unit test: test_chord__or__group_of_single_task()
* Added unit test: test_chord_upgrade_on_chaining()
* Added unit test: test_chain_of_chord__or__group_of_single_task()
* Added unit test: test_chain_of_chord_upgrade_on_chaining() | celery | 16 | Python | 80 | test_canvas.py | def test_chaining_upgraded_chords_mixed_canvas(self, manager, subtests):
try:
manager.app.backend.ensure_chords_allowed()
except NotImplementedError as e:
raise pytest.skip(e.args[0])
if not manager.app.conf.result_backend.startswith('redis'):
raise pytest.skip('Requires redis result backend.')
redis_connection = get_redis_connection()
redis_key = 'echo_chamber'
c = chain(
chord(group([redis_echo.si('1', redis_key=redis_key),
redis_echo.si('2', redis_key=redis_key),
redis_echo.si('3', redis_key=redis_key)]),
group([redis_echo.si('4', redis_key=redis_key),
redis_echo.si('5', redis_key=redis_key),
redis_echo.si('6', redis_key=redis_key)])),
redis_echo.si('7', redis_key=redis_key),
group(
redis_echo.si('8', redis_key=redis_key),
),
redis_echo.si('9', redis_key=redis_key),
redis_echo.si('Done', redis_key='Done'),
)
with subtests.test(msg='Run the chain and wait for completion'):
redis_connection.delete(redis_key, 'Done')
c.delay().get(timeout=TIMEOUT)
await_redis_list_message_length(1, redis_key='Done', timeout=10)
with subtests.test(msg='All tasks are executed once'):
actual = [sig.decode('utf-8') for sig in redis_connection.lrange(redis_key, 0, -1)]
expected = [str(i) for i in range(1, 10)]
with subtests.test(msg='All tasks are executed once'):
assert sorted(actual) == sorted(expected)
# Cleanup
redis_connection.delete(redis_key, 'Done')
| 87613c780ccd92c8b2694becfb50511a6052e8f1 | 321 | https://github.com/celery/celery.git | 495 | def test_chaining_upgraded_chords_mixed_canvas(self, manager, subtests):
try:
manager.app.backend.ensure_chords_allowed()
except NotImplementedError as e:
raise pytest.skip(e.args[0])
if not manager.app.conf.result_backend.startswith('redis'):
raise pytest.skip('Requires redis result backend.')
redis_connection = get_redis_connection()
redis_key = 'echo_chamber'
c = chain(
chord(group([redis_echo.si('1', redis_key=redis_key),
redis_echo.si('2', redis_key=redis_key),
redis_echo.si('3', redis_key=redis_key)]),
group([redis_echo.si('4', redis_key=redis_key),
redis_echo.si('5', redis_key=redis_key),
redis_echo.si('6', redis_key=redis_key)])),
redis_echo.si('7', redis_key=redis_key),
group(
redis_echo.si('8', redis_key=redis_key),
),
redis_echo.si('9', redis_key=redis_key),
redis_echo.si('Done', redis_key='Done'),
)
with subtests.test(msg='Run the chain and wait for completion'):
redis_connection.delete(redis_key, 'Done')
c.delay().get(timeout=TIMEOUT)
await_redis_list_message_length(1, redis_key='Done', timeout=10)
with subtests.test(msg='All tasks are executed once'):
actual = [sig.decode('utf-8') for sig | 41 | 532 | test_chaining_upgraded_chords_mixed_canvas |
|
54 | 0 | 2 | 9 | jax/experimental/jax2tf/impl_no_xla.py | 121,216 | [jax2tf] Fix conv1d padding; it's already normalized before the _pad_spatial_dims call. Enable non-XLA tests of conv1d.
PiperOrigin-RevId: 461556553 | jax | 11 | Python | 40 | impl_no_xla.py | def _pad_spatial_dims(x, x_shape, padding):
# Add empty padding for batch and feature dimensions.
no_pad = ((0, 0),)
padding = tuple(padding)
padding = no_pad + padding + no_pad
x = tf.pad(x, padding)
assert len(x.shape) == len(padding)
x_shape = tuple(p0 + xs + p1 for xs, (p0, p1) in zip(x_shape, padding))
jax2tf._assert_matching_abstract_shape(x, x_shape)
return x, x_shape
| ae4aee762a6ab18b17d61b68d8ee32d2c4e3b957 | 92 | https://github.com/google/jax.git | 64 | def _pad_spatial_dims(x, x_shape, padding):
# Add empty padding for batch and feature dimensions.
no_pad = ((0, 0),)
padding = tuple(padding)
padding = no_pad + padding + no_pad
x = tf.pad(x, padding)
assert len(x.shape) == len(p | 16 | 141 | _pad_spatial_dims |
|
16 | 0 | 3 | 5 | .venv/lib/python3.8/site-packages/pip/_vendor/urllib3/_collections.py | 63,913 | upd; format | transferlearning | 12 | Python | 13 | _collections.py | def iteritems(self):
for key in self:
vals = self._container[key.lower()]
for val in vals[1:]:
yield vals[0], val
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 39 | https://github.com/jindongwang/transferlearning.git | 67 | def iteritems(self):
fo | 7 | 63 | iteritems |
|
11 | 0 | 2 | 5 | tests/components/sleepiq/conftest.py | 292,026 | Refactor sleepiq as async with config flow (#64850)
Co-authored-by: J. Nick Koston <nick@koston.org> | core | 13 | Python | 11 | conftest.py | def mock_sleepers():
return [
Sleeper(sleeper)
for sleeper in json.loads(load_fixture("sleeper.json", "sleepiq"))["sleepers"]
]
| 0bd0b4766e8221584a74bffc7c2f0430c23169df | 29 | https://github.com/home-assistant/core.git | 34 | def mock_sleepers():
return [
Sleeper(sleeper)
for sleeper in json.loads(load_fixture("sleeper.json", "sleepiq"))["sleepers | 6 | 53 | mock_sleepers |
|
82 | 0 | 6 | 21 | homeassistant/components/plugwise/coordinator.py | 297,951 | String formatting and max line length - Part 4 (#84445)
Co-authored-by: jjlawren <jjlawren@users.noreply.github.com> | core | 12 | Python | 59 | coordinator.py | async def _async_update_data(self) -> PlugwiseData:
try:
if not self._connected:
await self._connect()
data = await self.api.async_update()
except InvalidAuthentication as err:
raise ConfigEntryError("Invalid username or Smile ID") from err
except (InvalidXMLError, ResponseError) as err:
raise UpdateFailed(
"Invalid XML data, or error indication received for the Plugwise"
" Adam/Smile/Stretch"
) from err
except UnsupportedDeviceError as err:
raise ConfigEntryError("Device with unsupported firmware") from err
except ConnectionFailedError as err:
raise UpdateFailed("Failed to connect to the Plugwise Smile") from err
return PlugwiseData(
gateway=cast(GatewayData, data[0]),
devices=cast(dict[str, DeviceData], data[1]),
)
| 94755a5773f8197153ab9bffe83b9711f3a76d9d | 118 | https://github.com/home-assistant/core.git | 282 | async def _async_update_data(self) -> PlugwiseData:
try:
if not self._connected:
await self._connect()
data = await self.api.async_update()
except InvalidAuthentication as err:
raise ConfigEntryError("Invalid username or Smile ID") from err
except (InvalidXMLError, ResponseError) as err:
raise UpdateFailed(
"Invalid XML data, or error indication received for the Plugwise"
" Adam/Smile/Stretch"
) from err | 23 | 197 | _async_update_data |
|
97 | 0 | 7 | 13 | jax/_src/lax/lax.py | 121,136 | [dynamic-shapes] revive basic bounded int machinery, add tests | jax | 14 | Python | 77 | lax.py | def _iota_abstract_eval(*, dtype, shape, dimension):
_check_shapelike("iota", "shape", shape)
if not any(dtypes.issubdtype(dtype, t) for t in _num):
msg = 'iota does not accept dtype {}. Accepted dtypes are subtypes of {}.'
typename = str(np.dtype(dtype).name)
accepted_typenames = (t.__name__ for t in _num)
raise TypeError(msg.format(typename, ', '.join(accepted_typenames)))
if not 0 <= dimension < len(shape):
raise ValueError("iota dimension must be between 0 and len(shape), got "
f"dimension={dimension} for shape {shape}")
if not any(isinstance(d, core.BInt) for d in shape):
return ShapedArray(shape, dtype)
# TODO(mattjj): unify DShapedArray with ShapedArray, and remove this code
return core.DShapedArray(shape, dtype, False)
iota_p = Primitive('iota')
iota_p.def_impl(partial(xla.apply_primitive, iota_p))
iota_p.def_abstract_eval(_iota_abstract_eval)
| 98e71fe31de8f6ea26be76488d41fb471fef56eb | 135 | https://github.com/google/jax.git | 137 | def _iota_abstract_eval(*, dtype, shape, dimension):
_check_shapelike("iota", "shape", shape)
if not any(dtypes.issubdtype(dtype, t) for t in _num):
msg = 'iota does not accept dtyp | 35 | 264 | _iota_abstract_eval |
|
14 | 0 | 2 | 4 | thumbor/filters/redeye.py | 190,898 | Feature/optional opencv (#1400)
* Removed opencv dependency
Now OpenCV is optional and detectors are smart to
skip if cv2 could not be imported.
Also refactored face detector a bit to make it more
maintainable.
Now thumbor can be installed with
pip install thumbor
pip install thumbor[all]
pip install thumbor[opencv]
pip install thumbor[tests] | thumbor | 11 | Python | 14 | redeye.py | def cascade(self) -> None:
if not hasattr(self, "_cascade"):
setattr(self, "_cascade", cv2.CascadeClassifier(CASCADE_FILE_PATH))
return getattr(self, "_cascade")
| d34fd16034e307b545c3e3adfa4d9d472a582cc6 | 36 | https://github.com/thumbor/thumbor.git | 38 | def cascade(self) -> None:
if not hasattr(self, "_cascade"):
setattr(self, "_cascade", cv2.CascadeClassifier(CASCADE_FILE_PATH))
return getattr(self, "_cas | 8 | 61 | cascade |
|
25 | 0 | 3 | 8 | django/db/models/query.py | 205,744 | Refs #33476 -- Reformatted code with Black. | django | 13 | Python | 21 | query.py | def __deepcopy__(self, memo):
obj = self.__class__()
for k, v in self.__dict__.items():
if k == "_result_cache":
obj.__dict__[k] = None
else:
obj.__dict__[k] = copy.deepcopy(v, memo)
return obj
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 60 | https://github.com/django/django.git | 105 | def __deepcopy__(self, memo):
obj = self.__class__()
for k, v in self. | 11 | 98 | __deepcopy__ |
|
14 | 0 | 1 | 10 | python/ray/data/_internal/lazy_block_list.py | 125,417 | Make execution plan/blocklist aware of the memory ownership and who runs the plan (#26650)
Having the indicator about who's running the stage and who created a blocklist will enable the eager memory releasing.
This is an alternative with better abstraction to https://github.com/ray-project/ray/pull/26196.
Note: this doesn't work for Dataset.split() yet, will do in a followup PR. | ray | 11 | Python | 14 | lazy_block_list.py | def copy(self) -> "LazyBlockList":
return LazyBlockList(
self._tasks.copy(),
block_partition_refs=self._block_partition_refs.copy(),
block_partition_meta_refs=self._block_partition_meta_refs.copy(),
cached_metadata=self._cached_metadata,
ray_remote_args=self._remote_args.copy(),
owned_by_consumer=self._owned_by_consumer,
stats_uuid=self._stats_uuid,
)
| 8553df49bba654a9edd6befce198be90d6524fca | 67 | https://github.com/ray-project/ray.git | 104 | def copy(self) -> "LazyBlockList":
return LazyBlockList(
self._tasks.copy(),
block_partition_refs=self._block_partition_refs.copy(),
block_partition_meta_refs=self._block_partition_meta_refs.copy(),
| 16 | 102 | copy |
|
43 | 0 | 4 | 19 | mindsdb/integrations/handlers/couchbase_handler/couchbase_handler.py | 115,589 | Initial commit for the couchbase handler | mindsdb | 12 | Python | 31 | couchbase_handler.py | def get_tables(self) -> Response:
cluster = self.connect()
bucket = cluster.bucket(self.bucket_name)
collections = []
for _scope in bucket.collections().get_all_scopes():
for __collections in _scope.collections:
collections.append(__collections.name)
collections_ar = [
[i] for i in collections
]
df = pd.DataFrame(collections_ar, columns=['TABLE_NAME'])
response = Response(
RESPONSE_TYPE.TABLE,
df
)
return response
| 41f58415fbd45c9ce0fb47962949e40e488424c6 | 94 | https://github.com/mindsdb/mindsdb.git | 212 | def get_tables(self) -> Response:
cluster = self.connect()
bucket = cluster.bucket(self.bucket_name)
collections = []
for _scope in bucket.collections().get_all_scopes():
for __collections in _scope.collections:
collections.append(__collections.name)
collections_ar = [
[i] for i in collections
]
df = pd.DataFrame(collections_ar, col | 22 | 152 | get_tables |
|
63 | 0 | 2 | 20 | datasets/quickdraw/quickdraw.py | 105,091 | Add QuickDraw dataset (#3592)
* Add QuickDraw dataset
* Style
* Add infos file, dummy data, improve script
* Add info and dummy data
* Test readme
* Finish readme
* Delete generate_dummy.py
* Remove whitespace | datasets | 13 | Python | 49 | quickdraw.py | def process_struct(fileobj):
(key_id,) = struct.unpack("Q", fileobj.read(8))
(country_code,) = struct.unpack("2s", fileobj.read(2))
(recognized,) = struct.unpack("b", fileobj.read(1))
(timestamp,) = struct.unpack("I", fileobj.read(4))
(n_strokes,) = struct.unpack("H", fileobj.read(2))
drawing = []
for _ in range(n_strokes):
(n_points,) = struct.unpack("H", fileobj.read(2))
fmt = str(n_points) + "B"
x = struct.unpack(fmt, fileobj.read(n_points))
y = struct.unpack(fmt, fileobj.read(n_points))
drawing.append({"x": list(x), "y": list(y)})
return {
"key_id": str(key_id),
"recognized": recognized,
"timestamp": datetime.fromtimestamp(timestamp),
"countrycode": country_code.decode("utf-8"),
"drawing": drawing,
}
| 1c1eaf96d5ef4623e36c9124d49e88ab476dd655 | 220 | https://github.com/huggingface/datasets.git | 163 | def process_struct(fileobj):
(key_id,) = struct.unpack("Q", fileobj.read(8))
(country_code,) = struct.unpack("2s", fileobj.read(2))
(recognized,) = struct.unpack("b", fileobj.read(1))
(timestamp,) = struct.unpack("I", fileobj.read(4))
(n_strokes,) = struct.unpack("H", fileobj.read(2))
drawing = []
for _ in range(n_str | 23 | 365 | process_struct |
|
17 | 0 | 3 | 6 | py/visdom/__init__.py | 106,840 | apply black py to all python files | visdom | 10 | Python | 15 | __init__.py | def check_connection(self, timeout_seconds=0):
while not self._has_connection() and timeout_seconds > 0:
time.sleep(0.1)
timeout_seconds -= 0.1
print("waiting")
return self._has_connection()
| 5b8b7f267cfaf76a2a39a727ef31a62b3909a093 | 45 | https://github.com/fossasia/visdom.git | 71 | def check_connection(self, timeout_seconds=0): | 7 | 72 | check_connection |
|
10 | 2 | 1 | 28 | python/ray/tests/test_namespace.py | 131,615 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 8 | Python | 9 | test_namespace.py | def test_namespace_client():
cluster = Cluster()
cluster.add_node(num_cpus=4, ray_client_server_port=8080)
cluster.wait_for_nodes(1)
template = | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | template = """
import ray
ray.util.connect("{address}", namespace="{namespace}")@ray.remote | 104 | https://github.com/ray-project/ray.git | 22 | def test_namespace_client():
cluster = Cluster()
cluster.add_node(num_cpus=4, ray_client_server_port=8080)
cluster.wait_for_nodes(1)
template = | 10 | 57 | test_namespace_client |
9 | 0 | 1 | 6 | tests/backends/base/test_operations.py | 201,689 | Refs #33476 -- Reformatted code with Black. | django | 10 | Python | 9 | test_operations.py | def test_adapt_unknown_value_decimal(self):
value = decimal.Decimal("3.14")
self.assertEqual(
self.ops.adapt_unknown_value(value),
self.ops.adapt_decimalfield_value(value),
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 36 | https://github.com/django/django.git | 51 | def test_adapt_unknown_value_decimal(self):
value = decimal.Decimal("3.14")
self.assertEqual(
| 9 | 59 | test_adapt_unknown_value_decimal |
|
35 | 1 | 1 | 6 | tests/pylint/test_enforce_type_hints.py | 311,059 | Adjust pylint plugin to enforce device_tracker type hints (#64903)
* Adjust pylint plugin to enforce device_tracker type hints
* Use a constant for the type hint matchers
* Add tests
* Add x_of_y match
* Adjust bluetooth_tracker
* Adjust mysensors
* Adjust tile
Co-authored-by: epenet <epenet@users.noreply.github.com> | core | 11 | Python | 28 | test_enforce_type_hints.py | def test_regex_x_of_y_comma_z(string, expected_x, expected_y, expected_z):
assert (match := _TYPE_HINT_MATCHERS["x_of_y_comma_z"].match(string))
assert match.group(0) == string
assert match.group(1) == expected_x
assert match.group(2) == expected_y
assert match.group(3) == expected_z
@pytest.mark.parametrize(
("string", "expected_a", "expected_b"),
[("DiscoveryInfoType | None", "DiscoveryInfoType", "None")],
) | 367521e369839e6504989603b1282c2ba31dad49 | @pytest.mark.parametrize(
("string", "expected_a", "expected_b"),
[("DiscoveryInfoType | None", "DiscoveryInfoType", "None")],
) | 62 | https://github.com/home-assistant/core.git | 57 | def test_regex_x_of_y_comma_z(string, expected_x, expected_y, expected_z):
| 11 | 145 | test_regex_x_of_y_comma_z |
68 | 0 | 7 | 17 | keras/engine/base_layer_v1.py | 278,599 | fix the rest | keras | 12 | Python | 54 | base_layer_v1.py | def add_update(self, updates):
call_context = base_layer_utils.call_context()
if (
tf.distribute.has_strategy()
and tf.distribute.in_cross_replica_context()
# When saving the model, the distribution strategy context should be
# ignored, following the default path for adding updates.
and not call_context.saving
):
# Updates don't need to be run in a cross-replica context.
return
updates = generic_utils.to_list(updates)
if call_context.in_call:
relevant_inputs = call_context.inputs
else:
inbound_nodes = getattr(self, "_inbound_nodes", [])
relevant_inputs = [node.input_tensors for node in inbound_nodes]
| 5cf72f4934f3104ac2378c8b9b3638afea38ba1e | 104 | https://github.com/keras-team/keras.git | 227 | def add_update(self, updates):
call_context = base_layer_utils.call_context()
if (
tf.distribute.has_strategy()
and tf.distribute.in_cross_replica_context()
| 19 | 138 | add_update |
|
60 | 0 | 5 | 18 | ppdet/modeling/transformers/detr_transformer.py | 211,590 | [dev] fix export model bug in DETR (#7120) | PaddleDetection | 14 | Python | 26 | detr_transformer.py | def forward(self, src, src_mask=None, pos_embed=None):
residual = src
if self.normalize_before:
src = self.norm1(src)
q = k = self.with_pos_embed(src, pos_embed)
src = self.self_attn(q, k, value=src, attn_mask=src_mask)
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return src
| fa67fb9f88ff7b03ca24a4f80e0fde2ef6d80384 | 160 | https://github.com/PaddlePaddle/PaddleDetection.git | 187 | def forward(self, src, src_mask=None, pos_embed=None):
residual = src
if self.normalize_before:
src = self.norm1(src)
q = k = self.with_pos_embed(src, pos_embed)
src = self.self_attn(q, k, value=src, attn_mask=src_mask)
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
| 21 | 234 | forward |
|
88 | 0 | 7 | 26 | django/db/models/base.py | 205,412 | Refs #33476 -- Reformatted code with Black. | django | 18 | Python | 53 | base.py | def _check_m2m_through_same_relationship(cls):
errors = []
seen_intermediary_signatures = []
fields = cls._meta.local_many_to_many
# Skip when the target model wasn't found.
fields = (f for f in fields if isinstance(f.remote_field.model, ModelBase))
# Skip when the relationship model wasn't found.
fields = (f for f in fields if isinstance(f.remote_field.through, ModelBase))
for f in fields:
signature = (
f.remote_field.model,
cls,
f.remote_field.through,
f.remote_field.through_fields,
)
if signature in seen_intermediary_signatures:
errors.append(
checks.Error(
"The model has two identical many-to-many relations "
"through the intermediate model '%s'."
% f.remote_field.through._meta.label,
obj=cls,
id="models.E003",
)
)
else:
seen_intermediary_signatures.append(signature)
return errors
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 136 | https://github.com/django/django.git | 460 | def _check_m2m_through_same_relationship(cls):
errors = []
seen_intermediary_signatures = []
fields = cls._meta.local_many_to_many
# Skip when the target model wasn't found.
fields = (f for f in fields if isinstance(f.remote_field.model, ModelBase))
# Skip when the relationship model wasn't found.
fields = (f for f in fields if isinstance(f.remote_field.through, ModelBase))
for f in fields:
signature = (
f.remote_field.model,
cls,
f.remote_field.through,
f.remote_field.through_fields,
)
if signature in seen_intermediary_signatures:
| 21 | 215 | _check_m2m_through_same_relationship |
|
91 | 0 | 1 | 15 | sympy/physics/mechanics/tests/test_rigidbody.py | 199,472 | Add optional frame argument to parallel axis method | sympy | 14 | Python | 60 | test_rigidbody.py | def test_parallel_axis():
N = ReferenceFrame('N')
m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
Io = inertia(N, Ix, Iy, Iz)
o = Point('o')
p = o.locatenew('p', a * N.x + b * N.y)
R = RigidBody('R', o, N, m, (Io, o))
Ip = R.parallel_axis(p)
Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
Iz + m * (a**2 + b**2), ixy=-m * a * b)
assert Ip == Ip_expected
A = ReferenceFrame('A')
A.orient_axis(N, N.z, 1)
assert (R.parallel_axis(p, A).to_matrix(A) -
Ip_expected.to_matrix(A)).simplify() == zeros(3, 3)
| 801e149d69d5f88919a735f8b55b6024f97c6950 | 191 | https://github.com/sympy/sympy.git | 162 | def test_parallel_axis():
N = Refe | 30 | 293 | test_parallel_axis |
|
8 | 0 | 1 | 3 | ivy_tests/test_core/test_general.py | 213,825 | renamed dev_str arg to dev for all methods. | ivy | 7 | Python | 8 | test_general.py | def test_set_framework(fw_str, dev, call):
ivy.set_framework(fw_str)
ivy.unset_framework()
# use_framework | d743336b1f3654cd0315f380f43eed4116997c1d | 20 | https://github.com/unifyai/ivy.git | 12 | def test_set_framework(fw_str, dev, call):
ivy.set_framework(fw_str)
ivy.unset_framework()
# use_framework | 7 | 33 | test_set_framework |
|
22 | 0 | 1 | 3 | keras/layers/rnn/gru_test.py | 273,929 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 9 | Python | 21 | gru_test.py | def test_recurrent_dropout_with_implementation_restriction(self):
layer = keras.layers.GRU(2, recurrent_dropout=0.1, implementation=2)
# The implementation is force to 1 due to the limit of recurrent_dropout.
self.assertEqual(layer.implementation, 1)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 35 | https://github.com/keras-team/keras.git | 42 | def test_recurrent_dropout_with_implementation_restriction(self):
laye | 9 | 51 | test_recurrent_dropout_with_implementation_restriction |
|
81 | 0 | 2 | 21 | ppocr/losses/rec_vl_loss.py | 24,351 | add vl | PaddleOCR | 13 | Python | 54 | rec_vl_loss.py | def forward(self, predicts, batch):
text_pre = predicts[0]
target = batch[1].astype('int64')
label_flatten, length = self.flatten_label(target)
text_pre = self._flatten(text_pre, length)
if self.mode == 'LF_1':
loss = self.loss_func(text_pre, label_flatten)
else:
text_rem = predicts[1]
text_mas = predicts[2]
target_res = batch[2].astype('int64')
target_sub = batch[3].astype('int64')
label_flatten_res, length_res = self.flatten_label(target_res)
label_flatten_sub, length_sub = self.flatten_label(target_sub)
text_rem = self._flatten(text_rem, length_res)
text_mas = self._flatten(text_mas, length_sub)
loss_ori = self.loss_func(text_pre, label_flatten)
loss_res = self.loss_func(text_rem, label_flatten_res)
loss_mas = self.loss_func(text_mas, label_flatten_sub)
loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas
return {'loss': loss}
| a3a095150e8e1f56dd03d88ac71db6ad6262611a | 190 | https://github.com/PaddlePaddle/PaddleOCR.git | 272 | def forward(self, predicts, batch):
text_pre = predicts[0]
target = batch[1].astype('int64')
label_flatten, length = self.flatten_label(target)
text_pre = self._flatten(text_pre, length)
if self.mode == 'LF_1':
loss = self.loss_func(text_pre, label_flatten)
else:
text_rem = predicts[1]
text_mas = predicts[2]
| 27 | 301 | forward |
|
26 | 0 | 1 | 6 | seaborn/tests/_core/test_moves.py | 41,173 | Add move concept, with Dodge and Jitter, and ordered GroupBy | seaborn | 10 | Python | 21 | test_moves.py | def test_height(self, df, groupby):
df["height"] = df["width"]
height = .4
res = Jitter(height=height)(df, groupby, "y")
self.check_same(res, df, "y", "grp2", "width")
self.check_pos(res, df, "x", height * df["height"])
| 430cb8fe332a752b79fb74bd618038ac51e82df8 | 68 | https://github.com/mwaskom/seaborn.git | 60 | def test_height(self, df, groupby):
df["height"] = df["width"]
height = .4
res = Jitter(height=height)(df, groupby, "y")
self.check_same(res, df, "y", "grp2", "width")
self.check_pos(res, df, "x", height * | 9 | 110 | test_height |
|
30 | 0 | 4 | 8 | jax/interpreters/batching.py | 122,451 | add a basic prototype of piles, behind jax_dynamic_shapes
Co-authored-by: Adam Paszke <apaszke@google.com>
Co-authored-by: Dougal Maclaurin <dougalm@google.com> | jax | 14 | Python | 25 | batching.py | def _pile_flatten(pile):
lengths = []
new_shape = [lengths.append(d.lengths) or d.replace(lengths=len(lengths))
if type(d) is IndexedAxisSize else d
for d in pile.aval.elt_ty.shape]
elt_ty = pile.aval.elt_ty.update(shape=tuple(new_shape))
aval = pile.aval.replace(elt_ty=elt_ty)
return (lengths, pile.data), aval
| f2f2faa4fa166f40a4a93bc966379cf1ebb720d1 | 91 | https://github.com/google/jax.git | 62 | def _pile_flatten(pile):
lengths = []
new_shape = [lengths.append(d.lengths) or d.replace(lengths=len(lengths))
if type(d) | 16 | 141 | _pile_flatten |
|
22 | 0 | 3 | 8 | awx/main/tasks/receptor.py | 82,163 | Fix fallout from turning off work signing in docker-compose | awx | 12 | Python | 19 | receptor.py | def get_receptor_ctl(config_data=None):
if config_data is None:
config_data = read_receptor_config()
receptor_sockfile = get_receptor_sockfile(config_data)
try:
return ReceptorControl(receptor_sockfile, config=__RECEPTOR_CONF, tlsclient=get_tls_client(config_data, True))
except RuntimeError:
return ReceptorControl(receptor_sockfile)
| 84f2b91105c959c4d89a63063cca441f3d67fc0f | 51 | https://github.com/ansible/awx.git | 54 | def get_receptor_ctl(config_data=None):
if config_data is None:
config_data = read_receptor_config()
receptor_sockfile = get_receptor_sockfile(config_data)
try:
return ReceptorControl(receptor_sockfile, config=__RECEPTOR_CONF, tlsclient=get_tls_client(config_data, True))
except RuntimeError:
r | 11 | 81 | get_receptor_ctl |
|
83 | 0 | 1 | 29 | tests/snuba/api/endpoints/test_organization_events_mep.py | 93,164 | chore(discover): Cleanup events tests (#36797)
- Delete the deprecated eventsv2 tests
- Move MEP tests to its own file | sentry | 13 | Python | 30 | test_organization_events_mep.py | def test_failed_dry_run_does_not_error(self, mock_builder):
with self.feature("organizations:performance-dry-run-mep"):
mock_builder.side_effect = InvalidSearchQuery("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id],
}
response = self.do_request(query)
assert response.status_code == 200, response.content
assert len(mock_builder.mock_calls) == 1
assert mock_builder.call_args.kwargs["dry_run"]
mock_builder.side_effect = IncompatibleMetricsQuery("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id],
}
response = self.do_request(query)
assert response.status_code == 200, response.content
assert len(mock_builder.mock_calls) == 2
assert mock_builder.call_args.kwargs["dry_run"]
mock_builder.side_effect = InvalidConditionError("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id],
}
response = self.do_request(query)
assert response.status_code == 200, response.content
assert len(mock_builder.mock_calls) == 3
assert mock_builder.call_args.kwargs["dry_run"]
| d3b8c9dd7bef6bccb5e70d2ccf3cda8463444a34 | 207 | https://github.com/getsentry/sentry.git | 410 | def test_failed_dry_run_does_not_error(self, mock_builder):
with self.feature("organizations:performance-dry-run-mep"):
mock_builder.side_effect = InvalidSearchQuery("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id],
}
response = self.do_request(query)
assert response.status_code == 200, response.content
assert len(mock_builder.mock_calls) == 1
assert mock_builder.call_args.kwargs["dry_run"]
mock_builder.side_effect = IncompatibleMetricsQuery("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id],
}
response = self.do_request(query)
assert response.status_code == 200, response.content
assert len(mock_builder.mock_calls) == 2
assert mock_builder.call_args.kwargs["dry_run"]
mock_builder.side_effect = InvalidConditionError("Something bad")
query = {
"field": ["count()"],
"project": [self.project.id] | 19 | 346 | test_failed_dry_run_does_not_error |
|
91 | 0 | 14 | 29 | pipenv/utils/resolver.py | 19,824 | Improve documentation around index restrictions (#5029)
* Improve documentation around index restrictions
* Update docs/advanced.rst
* Refine index documentation updates. Factor out and re-use method before closing down other PR.
* Fully remove the --extra-index-url argument
Co-authored-by: Yusuke Nishioka <yusuke.nishioka.0713@gmail.com> | pipenv | 17 | Python | 60 | resolver.py | def collect_hashes(self, ireq):
link = ireq.link # Handle VCS and file links first
if link and (link.is_vcs or (link.is_file and link.is_existing_dir())):
return set()
if not is_pinned_requirement(ireq):
return set()
sources = self.sources # Enforce index restrictions
if ireq.name in self.index_lookup:
sources = list(
filter(lambda s: s.get("name") == self.index_lookup[ireq.name], sources)
)
if any(is_pypi_url(source["url"]) for source in sources):
hashes = self._get_hashes_from_pypi(ireq)
if hashes:
return hashes
applicable_candidates = self.ignore_compatibility_finder.find_best_candidate(
ireq.name, ireq.specifier
).iter_applicable()
applicable_candidates = list(applicable_candidates)
if applicable_candidates:
return {
self._get_hash_from_link(candidate.link)
for candidate in applicable_candidates
}
if link:
return {self._get_hash_from_link(link)}
if ireq.original_link:
return {self._get_hash_from_link(ireq.original_link)}
return set()
| 99cf729dd52100efba406b9c6af585425de0788c | 195 | https://github.com/pypa/pipenv.git | 364 | def collect_hashes(self, ireq):
link = ireq.link # Handle VCS and file links first
if link and (link.is_vcs or (link.is_file and link.is_existing_dir())):
return set()
if not is_pinned_requirement(ireq):
return set()
sources = self.sources # Enforc | 29 | 313 | collect_hashes |
|
109 | 0 | 1 | 29 | tests/integration_tests/test_api.py | 5,908 | Rename fc_size to output_size (#1641)
* Rename fc_size to output_size
* Responding to comments | ludwig | 13 | Python | 68 | test_api.py | def test_api_callbacks(csv_filename):
mock_callback = mock.Mock()
epochs = 2
batch_size = 8
num_examples = 32
with tempfile.TemporaryDirectory() as output_dir:
input_features = [sequence_feature(reduce_output="sum")]
output_features = [category_feature(vocab_size=5, reduce_input="sum")]
config = {
"input_features": input_features,
"output_features": output_features,
"combiner": {"type": "concat", "output_size": 14},
"training": {"epochs": epochs, "batch_size": batch_size},
}
model = LudwigModel(config, callbacks=[mock_callback])
data_csv = generate_data(
input_features, output_features, os.path.join(output_dir, csv_filename), num_examples=num_examples
)
val_csv = shutil.copyfile(data_csv, os.path.join(output_dir, "validation.csv"))
test_csv = shutil.copyfile(data_csv, os.path.join(output_dir, "test.csv"))
model.train(training_set=data_csv, validation_set=val_csv, test_set=test_csv)
assert mock_callback.on_epoch_start.call_count == epochs
assert mock_callback.on_epoch_end.call_count == epochs
assert mock_callback.on_validation_start.call_count == epochs
assert mock_callback.on_validation_end.call_count == epochs
assert mock_callback.on_test_start.call_count == epochs
assert mock_callback.on_test_end.call_count == epochs
assert mock_callback.on_batch_start.call_count == epochs * (num_examples / batch_size)
assert mock_callback.on_batch_end.call_count == epochs * (num_examples / batch_size)
| 69604268c2ddc06a4ee0b3dce0e05a8fb73b5d16 | 255 | https://github.com/ludwig-ai/ludwig.git | 272 | def test_api_callbacks(csv_filename):
mock_callback = mock.Mock()
epochs = 2
batch_size = 8
num_examples = 32
with tempfile.TemporaryDirectory() as output_dir:
input_features = [sequence_feature(reduce_output="sum")]
output_features = [category_feature(vocab_size=5, reduce_input="sum")]
config = {
"input_features": input_features,
"output_features": output_features,
"combiner": {"type": "concat", "output_size": 14},
"training": {"epochs": epochs, "batch_size": batch_size},
}
model = LudwigModel(config, callbacks=[mock_callback])
data_csv = generate_data(
input_features, output_features, os.path.join(output_dir, csv_filename), num_examples=num_examples
)
val_csv = shutil.copyfile(data_csv, os.path.join(output_dir, "validation.csv"))
test_csv = shutil.copyfile(data_csv, os.path.join(output_dir, "test.csv"))
model. | 44 | 409 | test_api_callbacks |
|
70 | 0 | 4 | 15 | TTS/tts/datasets/formatters.py | 262,547 | Implement bucketed weighted sampling for VITS (#1871) | TTS | 15 | Python | 56 | formatters.py | def mls(root_path, meta_files=None, ignored_speakers=None):
items = []
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta:
for line in meta:
file, text = line.split("\t")
text = text[:-1]
speaker, book, *_ = file.split("_")
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav")
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker in ignored_speakers:
continue
items.append(
{"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker, "root_path": root_path}
)
return items
# ======================================== VOX CELEB =========================================== | bfc63829ac869f479bf9e8bf0fb75a2fb6d04959 | 146 | https://github.com/coqui-ai/TTS.git | 225 | def mls(root_path, meta_files=None, ignored_speakers=None):
items = []
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta:
for line in meta:
file, text = line.split("\t")
text = text[:-1]
speaker, book, *_ = file.split("_")
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav")
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker in ignored_speakers:
continue
items.append(
{"text": text, "audio_ | 23 | 246 | mls |
|
28 | 0 | 1 | 10 | pandas/tests/io/xml/test_xml_dtypes.py | 163,734 | ENH: Add dtypes/converters arguments for pandas.read_xml (#45411) | pandas | 15 | Python | 27 | test_xml_dtypes.py | def test_dtype_float(parser):
df_result = read_xml(xml_types, dtype={"degrees": "float"}, parser=parser)
df_expected = DataFrame(
{
"shape": ["square", "circle", "triangle"],
"degrees": Series([360, 360, 180]).astype("float"),
"sides": [4.0, float("nan"), 3.0],
}
)
tm.assert_frame_equal(df_result, df_expected)
| d2d7ffb56f0f12c412c36c0c867ab3bb240d04ca | 83 | https://github.com/pandas-dev/pandas.git | 86 | def test_dtype_float(parser):
df_resul | 13 | 133 | test_dtype_float |
|
6 | 0 | 5 | 19 | python/ray/tests/test_object_manager.py | 131,627 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 7 | Python | 6 | test_object_manager.py | def test_actor_broadcast(ray_start_cluster_with_resource):
cluster, num_nodes = ray_start_cluster_with_resource
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 147 | https://github.com/ray-project/ray.git | 8 | def test_actor_broadcast(ray_start_cluster_with_resource):
cluster, num_nodes = ray_start_cluster_with_resource
| 4 | 17 | test_actor_broadcast |
|
432 | 0 | 34 | 57 | keras/utils/dataset_utils.py | 269,240 | adds mnist dataset test case | keras | 14 | Python | 146 | dataset_utils.py | def _rescale_dataset_split_sizes(left_size,right_size,total_length):
left_size_type = type(left_size)
right_size_type = type(right_size)
# check both left_size and right_size are integers or floats
if ((left_size is not None and left_size_type not in [int,float]) and
(right_size is not None and right_size_type not in [int,float])):
raise TypeError('Invalid `left_size` and `right_size` Types. Expected: '
'integer or float or None, Received: type(left_size)='
f'{left_size_type} and type(right_size)={right_size_type}')
# check left_size is a integer or float
if left_size is not None and left_size_type not in [int,float]:
raise TypeError('Invalid `left_size` Type.Expected: int or float or None, '
f'Received: type(left_size)={left_size_type}. ')
# check right_size is a integer or float
if right_size is not None and right_size_type not in [int,float]:
raise TypeError(f'Invalid `right_size` Type.Expected: int or float or None,'
f'Received: type(right_size)={right_size_type}. ')
# check left_size and right_size are non-zero
if left_size == 0 and right_size == 0:
raise ValueError('Both `left_size` and `right_size` are zero. '
'Atleast one of the split sizes must be non-zero.')
# check left_size is non-negative and less than 1 and less than total_length
if (left_size_type == int and (left_size <= 0 or left_size>= total_length)
or left_size_type == float and (left_size <= 0 or left_size>= 1) ):
raise ValueError('`left_size` should be either a positive integer '
f'and smaller than {total_length} or a float '
'within the range `[0, 1]`. Received: left_size='
f'{left_size}')
# check right_size is non-negative and less than 1 and less than total_length
if (right_size_type == int and (right_size <= 0 or right_size>= total_length)
or right_size_type == float and (right_size <= 0 or right_size>= 1)):
raise ValueError('`right_size` should be either a positive integer '
f'and smaller than {total_length} or a float '
'within the range `[0, 1]`. Received: right_size='
f'{right_size}')
# check sum of left_size and right_size is less than or equal to total_length
if right_size_type == left_size_type == float and right_size + left_size > 1:
raise ValueError('The sum of `left_size` and `right_size` is greater '
'than 1. It must be less than or equal to 1.')
if left_size_type == float:
left_size = round(left_size*total_length)
elif left_size_type == int:
left_size = float(left_size)
if right_size_type == float:
right_size = round(right_size*total_length)
elif right_size_type == int:
right_size = float(right_size)
if left_size is None:
left_size = total_length - right_size
elif right_size is None:
right_size = total_length - left_size
if left_size + right_size > total_length:
raise ValueError('The sum of `left_size` and `right_size` should '
'be smaller than the {total_length}. '
f'Received: left_size + right_size = {left_size+right_size}'
f'and total_length = {total_length}')
for split,side in [(left_size,'left'),(right_size,'right')]:
if split == 0:
raise ValueError(f'With `dataset` of length={total_length}, `left_size`='
'{left_size} and `right_size`={right_size}.'
f'Resulting {side} side dataset split will be empty. '
'Adjust any of the aforementioned parameters')
left_size,right_size = int(left_size) ,int(right_size)
return left_size,right_size
| 3337f8716967b9b5c9c575e73c66cef0a17e891f | 362 | https://github.com/keras-team/keras.git | 882 | def _rescale_dataset_split_sizes(left_size,right_size,total_length):
left_size_type = type(left_size)
right_size_type = type(right_size)
# check both left_size and right_size are integers or floats
if ((left_size is not None and left_size_type not in [int,float]) and
(right_size is not None and right_size_type not in [int,float])):
raise TypeError('Invalid `left_size` and `right_size` Types. Expected: '
'integer or float or None, Received: type(left_size)='
f'{left_size_type} and type(right_size)={right_size_type}')
# check left_size is a integer or float
if left_size is not None and left_size_type not in [int,float]:
raise TypeError('Invalid `left_size` Type.Expected: int or float or None, | 14 | 651 | _rescale_dataset_split_sizes |
|
8 | 1 | 1 | 2 | keras/backend.py | 269,616 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 9 | Python | 8 | backend.py | def flatten(x):
return tf.reshape(x, [-1])
@keras_export("keras.backend.batch_flatten")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.backend.batch_flatten")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | 18 | https://github.com/keras-team/keras.git | 11 | def flatten(x):
return tf.reshape(x, [-1])
@keras_export("keras.backend.batch_flatten")
@tf.__internal__.dispatch.add_ | 10 | 60 | flatten |
14 | 0 | 1 | 3 | saleor/graphql/discount/schema.py | 26,959 | Stricter signatures for resolvers and mutations (#9649) | saleor | 8 | Python | 14 | schema.py | def resolve_voucher(_root, _info, *, id, channel=None):
_, id = from_global_id_or_error(id, Voucher)
return resolve_voucher(id, channel)
| 513fc80bc698c177b87774b3aff3da7b9aedbe06 | 32 | https://github.com/saleor/saleor.git | 27 | def resolve_voucher(_root, _info, *, id, channel=None):
_, id = from_global_id_or_error(id, Voucher)
| 8 | 46 | resolve_voucher |
|
18 | 0 | 1 | 5 | wagtail/api/v2/tests/test_pages.py | 72,798 | Reformat with black | wagtail | 11 | Python | 16 | test_pages.py | def test_descendant_of_filter(self):
response = self.get_response(descendant_of=6)
content = json.loads(response.content.decode("UTF-8"))
page_id_list = self.get_page_id_list(content)
self.assertEqual(page_id_list, [10, 15, 17, 21, 22, 23])
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 58 | https://github.com/wagtail/wagtail.git | 45 | def test_descendant_of_filter(self):
response = self.get_response(descendant_of=6)
content = json.loads(response.content.decode("UTF-8"))
page_id_list = self.get_page_id_list(content)
self.assertEqual(page_id_list, [10, 15, 17, 21, 22, | 12 | 89 | test_descendant_of_filter |
|
150 | 0 | 7 | 15 | jax/_src/third_party/numpy/linalg.py | 122,411 | Call _check_arraylike for jnp.linalg & jnp.fft functions | jax | 17 | Python | 92 | linalg.py | def _multi_dot_matrix_chain_order(arrays, return_costs=False):
n = len(arrays)
# p stores the dimensions of the matrices
# Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
# m is a matrix of costs of the subproblems
# m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
m = np.zeros((n, n), dtype=np.double)
# s is the actual ordering
# s[i, j] is the value of k at which we split the product A_i..A_j
s = np.empty((n, n), dtype=np.intp)
for l in range(1, n):
for i in range(n - l):
j = i + l
m[i, j] = jnp.inf
for k in range(i, j):
q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
if q < m[i, j]:
m[i, j] = q
s[i, j] = k # Note that Cormen uses 1-based index
return (s, m) if return_costs else s
| 2416d154355f19e77b5c1ddf1de1f8552e4a98ad | 196 | https://github.com/google/jax.git | 214 | def _multi_dot_matrix_chain_order(arrays, return_costs=False):
n = len(arrays)
# p stores the dimensions of the matrices
| 24 | 290 | _multi_dot_matrix_chain_order |
|
24 | 0 | 1 | 7 | Lib/test/test_posix.py | 175,833 | bpo-46426: Improve tests for the dir_fd argument (GH-30668)
Ensure that directory file descriptors refer to directories different
from the current directory, and that src_dir_fd and dst_dir_fd refer
to different directories.
Add context manager open_dir_fd() in test.support.os_helper. | cpython | 11 | Python | 22 | test_posix.py | def test_chmod_dir_fd(self):
with self.prepare_file() as (dir_fd, name, fullname):
posix.chmod(fullname, stat.S_IRUSR)
posix.chmod(name, stat.S_IRUSR | stat.S_IWUSR, dir_fd=dir_fd)
s = posix.stat(fullname)
self.assertEqual(s.st_mode & stat.S_IRWXU,
stat.S_IRUSR | stat.S_IWUSR)
| 54610bb448a9cf5be77d53b66169fca4c11be6cb | 76 | https://github.com/python/cpython.git | 102 | def test_chmod_dir_fd(self):
with self.prepare_file() as (dir_fd, name, fullname):
posix.chmod(fullname, stat.S_I | 15 | 118 | test_chmod_dir_fd |
|
9 | 0 | 1 | 2 | wagtail/admin/views/pages/revisions.py | 77,926 | Extract generic RevisionsCompareView from page revisions_compare view | wagtail | 9 | Python | 8 | revisions.py | def dispatch(self, request, *args, **kwargs):
return super().dispatch(request, *args, **kwargs)
| 2664a4c1fc7df471225d3e71355802401217889a | 28 | https://github.com/wagtail/wagtail.git | 15 | def dispatch(self, request, *args, **kwargs):
return super().dispatch(request, *args, **kwargs)
| 6 | 42 | dispatch |
|
39 | 0 | 1 | 10 | tests/components/homekit/test_util.py | 308,607 | Add hardware revision support to homekit (#63336) | core | 9 | Python | 24 | test_util.py | async def test_format_version():
assert format_version("soho+3.6.8+soho-release-rt120+10") == "3.6.8"
assert format_version("undefined-undefined-1.6.8") == "1.6.8"
assert format_version("56.0-76060") == "56.0.76060"
assert format_version(3.6) == "3.6"
assert format_version("AK001-ZJ100") == "001.100"
assert format_version("HF-LPB100-") == "100"
assert format_version("AK001-ZJ2149") == "001.2149"
assert format_version("0.1") == "0.1"
assert format_version("unknown") is None
| 5c8271552a3023808e272125f71ba79f3a1e97d8 | 70 | https://github.com/home-assistant/core.git | 69 | async def test_format_version():
assert format_version("soho+3.6.8+soho-release-rt120+10") == "3.6.8"
assert format_version("undefined-undefined-1.6.8") == "1.6.8"
assert format_version("56.0-76060") == "56.0.76060"
assert format_version(3.6) == "3.6"
assert format_version("AK001-ZJ100") == "001.100"
assert format_version("HF-LPB100-") == "100"
assert | 2 | 144 | test_format_version |
|
55 | 0 | 4 | 22 | tools/alignments/jobs.py | 101,659 | Bugfix: Alignments tool - don't error on from-faces job | faceswap | 13 | Python | 45 | jobs.py | def _set_skip_list(self) -> Optional[List[int]]:
skip_num = self._arguments.extract_every_n
if skip_num == 1:
logger.debug("Not skipping any frames")
return None
skip_list = []
for idx, item in enumerate(self._frames.file_list_sorted):
if idx % skip_num != 0:
logger.trace("Adding image '%s' to skip list due to " # type:ignore
"extract_every_n = %s", item["frame_fullname"], skip_num)
skip_list.append(idx)
logger.debug("Adding skip list: %s", skip_list)
return skip_list
| 892d8626ed4e7f834ac5607af59f14f5476d5997 | 89 | https://github.com/deepfakes/faceswap.git | 196 | def _set_skip_list(self) -> Optional[List[int]]:
skip_num = self._arguments.extract_every_n
if skip_num == 1:
logger.debug("Not skipping any frames")
return None
skip_list = []
for idx, item in enumerate(s | 18 | 151 | _set_skip_list |
|
32 | 0 | 3 | 16 | saleor/graphql/order/mutations/draft_order_create.py | 29,400 | Simple (flat rate) taxes API (#9784)
* Add empty tax module
* Add tax models (#9839)
* Add tax API queries (#9856)
* Add MANAGE_TAXES permission
* Add tax configuration queries
* Create tax configuration when channel is created
* Drop sorters for now
* Add TaxConfigurationPerCountry type
* Update migration
* Add metadata to TaxConfiguration type
* Add tests for tax configuration queries
* Add TaxClass types
* Improve tests
* Add queries for tax configuration per country
* Fix query in tests
* Update query cost map
* Add tax API mutations (#9934)
* Add taxConfigurationUpdate mutation
* Update schema
* Add tax class CRUD mutations
* Add mutations to update/delete tax class rates per country
* Review fixes
* Add taxClass field to ProductType type (#9999)
* Add taxClass field to ProductType type
* Add taxClass field to Product type
* Add taxClass field to shipping method type
* Add displayGrossPrices to ProductPricingInfo (#10008)
* Add displayGrossPrices to ProductPricingInfo
* Add displayGrossPrices to Checkout
* Add displayGrossPrices to Order
* Add tests
* Add ADDED_IN_35 label to new fields' descriptions
* Use new display_gross_prices flag (#10121)
* Use new display_gross_prices flag
* Update tests
* Add tests
* Review fixes
* Drop Vatlayer (#10335)
* Add migration from Vatlayer to simple taxes
* Review fixes
* Review fixes
* Drop usages of global include_taxes_in_prices flag (#10406)
* Drop `include_taxes_in_prices` function from site settings
* Adjust tests
* Review fixes
* Drop the `charge_taxes_on_shipping` flag from site settings. (#10466)
* Include migrating Avatax tax codes in tax class migration
* Drop `charge_taxes_on_shipping` function
* Add tax_class to ShippingMethodData
* Review fixes
* Always calculate shipping tax with Avalara
* Add default country rate (#10497)
* Allow setting default tax rate for a country (without providing a tax class)
* Add validation to allow settings only one default rate at once
* Code review fixes
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* Adjust resolver to use new tax configuration (#10533)
* CR fixes
* Add database router to fix false positives on relation mismatch. (#10524)
* Add database router to fix false positives on relation mismatch.
* The db router should have only 'allow_relation' implemented.
* The 'db_for_write' part should stay.
* Subscription for sync tax webooks (#10433)
* Add proposed changes to schema
* Add base implementation for sync tax subscription
* Add test for empty order
* Add clean up and missing part for tests
* Use subscription for tax webhooks. Add more tests
* Improve descriptions for tax objects
* Adjust resolver to use new tax configuration (#10533)
* Add taxCalculationStrategy field (#10532)
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* CR fixes
* Add datamigration to populate taxCalculationStrategy
* Migrate Product.charge_taxes to new tax configuration (#10585)
* Migrate Product.charge_taxes field to new tax configuration
* Rename function
* Fix tests
* Change assign_tax_code_to_object_meta function to support tax classes
* Update tax class fixtures
* Improve dataloader
* CR fixes
* CR fixes
* Add deprecation notice to dataloader
* Allow removing country rates in the `taxCountryConfigurationUpdate` mutation. (#10647)
* Allow deleting rates in taxCountryConfigurationUpdate mutation
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Remove TaxClass.is_default field (#10660)
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Drop is_default field from TaxClass model
* Drop extra Avalara config (#10673)
* Drop extra Avatax config options
* Adjust tests
* Use flat rates in tax calculations (#10747)
* WIP Use new tax configuration in tax calculations
* Use new tax calculations for checkout
* Adjust tests
* Add flat rates calculations for checkout and order
* Calculate flat rates in product pricing objects
* Adjust tests
* Add tests for order calculations
* Add tests for product queries tax calculations
* Add tests for order calculations
* Use base calculations to get default checkout shipping price
* Add tests for using tax_class from product_type
* Add tests for get_order_country
* Adjust tests
* Code review fixes
* Drop update_taxes_for_order_lines (#11000)
* Fix calls to Avalara not validating order (#11012)
* Add validation to disallow creating negative rates (#11010)
* Add missing recalculation of order.undiscounted_total (#11039)
* Optimize getting tax class country rates (#11040)
* Tax API adjustments for dashboard (#11042)
* Ignore null rates in taxCountryConfigurationUpdate mutation
* Allow to pass null rates in taxClassUpdate mutation
* Improve tests
* Update saleor/graphql/tax/mutations/tax_class_update.py
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Update schema
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Cleanup before release (#11049)
* Update ADDED_IN labels
* Fix skippeded test
* Regenerate migrations
* Deprecate CountryDisplay.vat field
* Add changelog
* Update order.undiscounted_total calculation to not include taxes (#11068)
* Fix assigning rates to tax classes (#11105)
* Allow all staff users and apps to query tax-related data (#11113)
* Bump dependencies for origin/SALEOR-6391-simple-taxes (#11127)
Bumps:
- cryptography to 38.0.3
- pillow to 9.3.0
* Fix using tax code from product and product type's tax class (#11111)
* Fix using tax code from product and product type's tax class
* Extract function
* Replace synchronous load_site with promise (#11165)
* Denormalize tax class for order lines and orders (#11172)
* WIP Denormalize tax class for order lines and orders
* Add denormalized fields in GraphQL types
* Add tests for denormalized API fields
* Return 0 rate in API when rate is null
* Add preview/version notes in new field descriptions
* Update changelog
Co-authored-by: Dominik Kozaczko <dominik@kozaczko.info>
Co-authored-by: Maciej Korycinski <maciej@mirumee.com>
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
Co-authored-by: Mika <6186720+NyanKiyoshi@users.noreply.github.com>
Co-authored-by: Krzysztof Kwaśniak <mr.brzys@gmail.com> | saleor | 12 | Python | 28 | draft_order_create.py | def _save_lines(info, instance, lines_data, app, manager):
if lines_data:
lines = []
for line_data in lines_data:
new_line = create_order_line(
instance,
line_data,
manager,
)
lines.append(new_line)
# New event
events.order_added_products_event(
order=instance,
user=info.context.user,
app=app,
order_lines=lines,
)
| 67df28935c555fdd673f17e8c9183e24dde7c51f | 67 | https://github.com/saleor/saleor.git | 255 | def _save_lines(info, instance, lines_data, app, manager):
if lines_data:
lines = []
for line_data in lines_data:
new_line = create_order_line(
instance,
line_data,
manager,
)
lines.append(new_line)
# New event
events.order_added_products_event(
order=instance,
user=info.context.user,
app=app,
order_lines=lines,
| 17 | 97 | _save_lines |
|
69 | 0 | 1 | 20 | wagtail/documents/tests/test_admin_views.py | 74,800 | Reformat with black | wagtail | 12 | Python | 58 | test_admin_views.py | def test_reupload_different_file_size_and_file_hash(self):
# Build a fake file, and create it through the admin view
# since self.document doesn't have a file_size set.
fake_file = SimpleUploadedFile("some_file.txt", b"this is the content")
post_data = {
"title": "My doc",
"file": fake_file,
}
self.client.post(reverse("wagtaildocs:add"), post_data)
document = models.Document.objects.get(title="My doc")
old_file_size, old_file_hash = document.file_size, document.file_hash
new_file = SimpleUploadedFile(document.filename, b"less content")
self.client.post(
reverse("wagtaildocs:edit", args=(document.pk,)),
{
"title": document.title,
"file": new_file,
},
)
document.refresh_from_db()
self.assertNotEqual(document.file_size, old_file_size)
self.assertNotEqual(document.file_hash, old_file_hash)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 135 | https://github.com/wagtail/wagtail.git | 259 | def test_reupload_different_file_size_and_file_hash(self):
# Build a fake file, and create it through the admin view
# since self.document doesn't have a file_size set.
fake_file = SimpleUploaded | 24 | 227 | test_reupload_different_file_size_and_file_hash |
|
45 | 0 | 1 | 15 | python/ray/util/rpdb.py | 142,705 | [api] Annotate as public / move ray-core APIs to _private and add enforcement rule (#25695)
Enable checking of the ray core module, excluding serve, workflows, and tune, in ./ci/lint/check_api_annotations.py. This required moving many files to ray._private and associated fixes. | ray | 15 | Python | 35 | rpdb.py | def do_remote(self, arg):
# Tell the next task to drop into the debugger.
ray._private.worker.global_worker.debugger_breakpoint = self._breakpoint_uuid
# Tell the debug loop to connect to the next task.
data = json.dumps(
{
"job_id": ray.get_runtime_context().job_id.hex(),
}
)
_internal_kv_put(
"RAY_PDB_CONTINUE_{}".format(self._breakpoint_uuid),
data,
namespace=ray_constants.KV_NAMESPACE_PDB,
)
self.__restore()
self.handle.connection.close()
return Pdb.do_continue(self, arg)
| 43aa2299e6623c8f8c7c4a1b80133459d0aa68b0 | 87 | https://github.com/ray-project/ray.git | 192 | def do_remote(self, arg):
# Tell the next task to drop into the debugger.
ray._private.worker.global_worker.debugger_breakpoint = self._breakpoint_uuid
# Tell the debug loop to connect to the next task.
data = json.dumps(
{
"job_id": ray.get_runtime_context().job_id.hex(),
}
)
_internal_kv_put(
"RAY_PDB_CONTINUE_{}".format(self._breakpoint_uuid),
data,
namespace=ray_constants.KV_NAMESPACE_PDB,
)
self.__restore()
self.handle.connection.close()
return Pdb.do_continue(self, arg)
| 26 | 144 | do_remote |
|
19 | 0 | 1 | 7 | mkdocs/tests/config/base_tests.py | 225,158 | Rework ConfigOption schemas as class-based
This is NOT a breaking change, the old style keeps working.
Now developers can make a subclass of Config, declare the schema of the config as fields of the class, and instances of this class will hold the processed config.
This better represents the relationship between what a config definition and a config instance is, now you think of configs definitions as classes and parsed configs as instances.
We also can write these fields as descriptors and enable safe attribute-based access. Static analysis will be able to see when a missing fields is accessed. And in followup changes I plan to add type annotations which will make even type checking fully sound. | mkdocs | 12 | Python | 17 | base_tests.py | def test_missing_required(self):
conf = defaults.MkDocsConfig()
errors, warnings = conf.validate()
self.assertEqual(
errors, [('site_name', ValidationError('Required configuration not provided.'))]
)
self.assertEqual(warnings, [])
| 73e8fef5068d47ab7bdc4c49bc4abcc74434b57e | 47 | https://github.com/mkdocs/mkdocs.git | 64 | def test_missing_required(self):
conf = defa | 10 | 79 | test_missing_required |
|
6 | 0 | 1 | 3 | tests/openbb_terminal/cryptocurrency/test_cryptocurrency_helpers.py | 284,453 | Refactored Crypto Tests (#1743)
* Refactored tests
* Removed unused command
* Added tests
* Tests : remove cassettes files + add fixture
* Black
* Tests : skip tests
Co-authored-by: didierlopes.eth <dro.lopes@campus.fct.unl.pt>
Co-authored-by: minhhoang1023 <40023817+minhhoang1023@users.noreply.github.com>
Co-authored-by: Chavithra PARANA <chavithra@gmail.com> | OpenBBTerminal | 9 | Python | 6 | test_cryptocurrency_helpers.py | def test_read_data_file(recorder):
file = read_data_file("coinbase_gecko_map.json")
recorder.capture(file)
| 9068ad01249c1e1adaca3ef9a704d70da7e3a17b | 17 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 11 | def test_read_data_file(recorder):
file = read_data_file("coinbase_gecko_map.json")
recorder.captur | 5 | 31 | test_read_data_file |
|
32 | 1 | 1 | 11 | tests/components/anthemav/conftest.py | 318,057 | Refactor and improve anthemav (#75852) | core | 8 | Python | 22 | conftest.py | def mock_anthemav() -> AsyncMock:
avr = AsyncMock()
avr.protocol.macaddress = "000000000001"
avr.protocol.model = "MRX 520"
avr.reconnect = AsyncMock()
avr.close = MagicMock()
avr.protocol.input_list = []
avr.protocol.audio_listening_mode_list = []
avr.protocol.power = False
return avr
@pytest.fixture | bbd7041a73572547be49ead53b183aa1e55a6d75 | @pytest.fixture | 65 | https://github.com/home-assistant/core.git | 61 | def mock_anthemav() -> AsyncMock:
avr = AsyncMock()
avr.protocol.macaddress = "000000000001"
avr.protocol.model = "MRX 520"
avr.reconnect = AsyncMock()
avr.close = MagicMock()
avr.protocol.input_list = []
avr.protocol.audio_listening_mode_list = []
avr.protocol.power = False
return avr
@pytest.fixture | 14 | 121 | mock_anthemav |
94 | 0 | 8 | 17 | dask/bag/tests/test_random.py | 156,163 | Bag: add implementation for reservoir sampling (#7068) (#7636)
- Implement the [L algorithm](https://en.wikipedia.org/wiki/Reservoir_sampling#An_optimal_algorithm) for reservoir sampling without replacement.
- Use the **k** reservoir of size 1 strategy for sampling with replacement (see [reference](http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf)) of **k** items | dask | 11 | Python | 56 | test_random.py | def test_reservoir_sample_with_replacement_map_partitions_correctness():
N, k = 20, 10
seq = list(range(N))
distribution = [0 for _ in range(N)]
expected_distribution = [0 for _ in range(N)]
reps = 2000
for _ in range(reps):
picks, _ = random._sample_with_replacement_map_partitions(seq, k)
for pick in picks:
distribution[pick] += 1
for pick in rnd.choices(seq, k=k):
expected_distribution[pick] += 1
# convert to probabilities
distribution = [c / (reps * k) for c in distribution]
expected_distribution = [c / (reps * k) for c in expected_distribution]
# use bhattacharyya distance to asses the similarity of distributions
assert math.isclose(
0.0, bhattacharyya(distribution, expected_distribution), abs_tol=1e-2
)
| 4e5dfe7463028a39a90e026c7fb9220969093ab3 | 150 | https://github.com/dask/dask.git | 179 | def test_reservoir_sample_with_replacement_map_partitions_correctness():
N, k = 20, 10
seq = list(range(N))
distribution = [0 for _ in range(N)]
expected_distribution = [0 for _ in range(N)]
reps = 2000
for _ in range(reps):
picks, _ = random._sample_with_replacement_map_partitions(seq, k)
for pick in picks:
distribution[pick] += 1
for pick in rnd.choices(seq, k=k):
expected_distribution[ | 21 | 221 | test_reservoir_sample_with_replacement_map_partitions_correctness |
|
13 | 0 | 1 | 6 | pandas/io/formats/latex.py | 169,035 | TYP: Autotyping (#48191)
* annotate-magics
* annotate-imprecise-magics
* none-return
* scalar-return
* pyi files
* ignore vendored file
* manual changes
* ignore pyright in pickle_compat (these errors would be legit if the current __new__ methods were called but I think these pickle tests call older __new__ methods which allowed providing multiple positional arguments)
* run autotyping in pre-commit
* remove final and expand safe (and add annotate-imprecise-magics) | pandas | 13 | Python | 13 | latex.py | def _empty_info_line(self) -> str:
return (
f"Empty {type(self.frame).__name__}\n"
f"Columns: {self.frame.columns}\n"
f"Index: {self.frame.index}"
)
| 54347fe684e0f7844bf407b1fb958a5269646825 | 16 | https://github.com/pandas-dev/pandas.git | 59 | def _empty_info_line(self) -> str:
return (
f"Empty {type(self.frame).__name__}\n"
f"Columns: {self.frame.columns}\n"
f"Index: {self.frame.index | 8 | 64 | _empty_info_line |
|
22 | 0 | 1 | 9 | sympy/physics/units/tests/test_quantities.py | 197,626 | feat(physics.units): add `is_prefixed` property to `Quantity` | sympy | 7 | Python | 12 | test_quantities.py | def test_prefixed_property():
assert not meter.is_prefixed
assert not joule.is_prefixed
assert not day.is_prefixed
assert not second.is_prefixed
assert centimeter.is_prefixed
assert kilometer.is_prefixed
assert kilogram.is_prefixed
assert pebibyte.is_prefixed
| 40a89803dbe877edc8ab6672819715f959273e60 | 40 | https://github.com/sympy/sympy.git | 45 | def test_prefixed_property():
assert not meter.is_prefixed
assert not joule.is_prefixed
assert not day.is_prefixed
assert not second.is_prefixed
assert centimeter.is_prefixed
assert kilometer.is_prefixed
| 10 | 64 | test_prefixed_property |
|
29 | 0 | 1 | 8 | python3.10.4/Lib/ctypes/test/test_python_api.py | 222,147 | add python 3.10.4 for windows | XX-Net | 10 | Python | 23 | test_python_api.py | def test_PyObj_FromPtr(self):
s = "abc def ghi jkl"
ref = grc(s)
# id(python-object) is the address
pyobj = PyObj_FromPtr(id(s))
self.assertIs(s, pyobj)
self.assertEqual(grc(s), ref + 1)
del pyobj
self.assertEqual(grc(s), ref)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 57 | https://github.com/XX-net/XX-Net.git | 84 | def test_PyObj_FromPtr(self):
s = "abc def ghi jkl"
ref = grc(s)
# id(python-object) is the address
pyobj = PyObj_FromPtr(id(s))
self.assertIs(s, pyobj)
self.assertEqual(grc(s), ref + 1)
del pyobj
self.assertEqual(grc(s), ref)
| 10 | 94 | test_PyObj_FromPtr |
|
63 | 0 | 3 | 20 | keras/integration_test/preprocessing_applied_in_model_test.py | 278,142 | resolve line-too-long in integration_test | keras | 12 | Python | 57 | preprocessing_applied_in_model_test.py | def testDistributedModelFit(self, strategy):
if not tf.__internal__.tf2.enabled() and isinstance(
strategy, tf.distribute.experimental.ParameterServerStrategy
):
self.skipTest(
"Parameter Server strategy with dataset creator need to be run "
"when eager execution is enabled."
)
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(
self.get_temp_dir()
)
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
outputs = training_model(preprocessing_model(inputs))
merged_model = tf.keras.Model(inputs, outputs)
merged_model.compile(optimizer="sgd", loss="binary_crossentropy")
| 4f1d333ded256b0315cf02eee067d6fa902b748d | 135 | https://github.com/keras-team/keras.git | 249 | def testDistributedModelFit(self, strategy):
if not tf.__internal__.tf2.enabled() and isinstance(
strategy, tf.distribute.experimental.ParameterServerStrategy
):
self.skipTest(
"Parameter Server strategy with dataset creator need to be run "
"when eager execution is enabled."
)
| 27 | 176 | testDistributedModelFit |
|
33 | 0 | 1 | 14 | saleor/order/tests/test_order_utils.py | 29,518 | Simple (flat rate) taxes API (#9784)
* Add empty tax module
* Add tax models (#9839)
* Add tax API queries (#9856)
* Add MANAGE_TAXES permission
* Add tax configuration queries
* Create tax configuration when channel is created
* Drop sorters for now
* Add TaxConfigurationPerCountry type
* Update migration
* Add metadata to TaxConfiguration type
* Add tests for tax configuration queries
* Add TaxClass types
* Improve tests
* Add queries for tax configuration per country
* Fix query in tests
* Update query cost map
* Add tax API mutations (#9934)
* Add taxConfigurationUpdate mutation
* Update schema
* Add tax class CRUD mutations
* Add mutations to update/delete tax class rates per country
* Review fixes
* Add taxClass field to ProductType type (#9999)
* Add taxClass field to ProductType type
* Add taxClass field to Product type
* Add taxClass field to shipping method type
* Add displayGrossPrices to ProductPricingInfo (#10008)
* Add displayGrossPrices to ProductPricingInfo
* Add displayGrossPrices to Checkout
* Add displayGrossPrices to Order
* Add tests
* Add ADDED_IN_35 label to new fields' descriptions
* Use new display_gross_prices flag (#10121)
* Use new display_gross_prices flag
* Update tests
* Add tests
* Review fixes
* Drop Vatlayer (#10335)
* Add migration from Vatlayer to simple taxes
* Review fixes
* Review fixes
* Drop usages of global include_taxes_in_prices flag (#10406)
* Drop `include_taxes_in_prices` function from site settings
* Adjust tests
* Review fixes
* Drop the `charge_taxes_on_shipping` flag from site settings. (#10466)
* Include migrating Avatax tax codes in tax class migration
* Drop `charge_taxes_on_shipping` function
* Add tax_class to ShippingMethodData
* Review fixes
* Always calculate shipping tax with Avalara
* Add default country rate (#10497)
* Allow setting default tax rate for a country (without providing a tax class)
* Add validation to allow settings only one default rate at once
* Code review fixes
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* Adjust resolver to use new tax configuration (#10533)
* CR fixes
* Add database router to fix false positives on relation mismatch. (#10524)
* Add database router to fix false positives on relation mismatch.
* The db router should have only 'allow_relation' implemented.
* The 'db_for_write' part should stay.
* Subscription for sync tax webooks (#10433)
* Add proposed changes to schema
* Add base implementation for sync tax subscription
* Add test for empty order
* Add clean up and missing part for tests
* Use subscription for tax webhooks. Add more tests
* Improve descriptions for tax objects
* Adjust resolver to use new tax configuration (#10533)
* Add taxCalculationStrategy field (#10532)
* Add taxCalculationStrategy field
* Add tests
* CR fixes
* CR fixes
* Add datamigration to populate taxCalculationStrategy
* Migrate Product.charge_taxes to new tax configuration (#10585)
* Migrate Product.charge_taxes field to new tax configuration
* Rename function
* Fix tests
* Change assign_tax_code_to_object_meta function to support tax classes
* Update tax class fixtures
* Improve dataloader
* CR fixes
* CR fixes
* Add deprecation notice to dataloader
* Allow removing country rates in the `taxCountryConfigurationUpdate` mutation. (#10647)
* Allow deleting rates in taxCountryConfigurationUpdate mutation
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Remove TaxClass.is_default field (#10660)
* Change tax rates ordering to keep default rates first (with null tax classes)
* Update existing migration
* Drop is_default field from TaxClass model
* Drop extra Avalara config (#10673)
* Drop extra Avatax config options
* Adjust tests
* Use flat rates in tax calculations (#10747)
* WIP Use new tax configuration in tax calculations
* Use new tax calculations for checkout
* Adjust tests
* Add flat rates calculations for checkout and order
* Calculate flat rates in product pricing objects
* Adjust tests
* Add tests for order calculations
* Add tests for product queries tax calculations
* Add tests for order calculations
* Use base calculations to get default checkout shipping price
* Add tests for using tax_class from product_type
* Add tests for get_order_country
* Adjust tests
* Code review fixes
* Drop update_taxes_for_order_lines (#11000)
* Fix calls to Avalara not validating order (#11012)
* Add validation to disallow creating negative rates (#11010)
* Add missing recalculation of order.undiscounted_total (#11039)
* Optimize getting tax class country rates (#11040)
* Tax API adjustments for dashboard (#11042)
* Ignore null rates in taxCountryConfigurationUpdate mutation
* Allow to pass null rates in taxClassUpdate mutation
* Improve tests
* Update saleor/graphql/tax/mutations/tax_class_update.py
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Update schema
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
* Cleanup before release (#11049)
* Update ADDED_IN labels
* Fix skippeded test
* Regenerate migrations
* Deprecate CountryDisplay.vat field
* Add changelog
* Update order.undiscounted_total calculation to not include taxes (#11068)
* Fix assigning rates to tax classes (#11105)
* Allow all staff users and apps to query tax-related data (#11113)
* Bump dependencies for origin/SALEOR-6391-simple-taxes (#11127)
Bumps:
- cryptography to 38.0.3
- pillow to 9.3.0
* Fix using tax code from product and product type's tax class (#11111)
* Fix using tax code from product and product type's tax class
* Extract function
* Replace synchronous load_site with promise (#11165)
* Denormalize tax class for order lines and orders (#11172)
* WIP Denormalize tax class for order lines and orders
* Add denormalized fields in GraphQL types
* Add tests for denormalized API fields
* Return 0 rate in API when rate is null
* Add preview/version notes in new field descriptions
* Update changelog
Co-authored-by: Dominik Kozaczko <dominik@kozaczko.info>
Co-authored-by: Maciej Korycinski <maciej@mirumee.com>
Co-authored-by: Krzysztof Waliczek <krzysztof.waliczek@saleor.io>
Co-authored-by: Mika <6186720+NyanKiyoshi@users.noreply.github.com>
Co-authored-by: Krzysztof Kwaśniak <mr.brzys@gmail.com> | saleor | 10 | Python | 24 | test_order_utils.py | def test_update_order_display_gross_prices_use_country_specific_tax_settings(order):
# given
country_code = "PT"
tax_config = order.channel.tax_configuration
tax_config.display_gross_prices = False
tax_config.save()
tax_config.country_exceptions.create(
country=country_code, display_gross_prices=True
)
order.display_gross_prices = False
order.save(update_fields=["display_gross_prices"])
order.shipping_address.country = country_code
order.shipping_address.save()
# when
update_order_display_gross_prices(order)
# then
assert order.display_gross_prices
| 67df28935c555fdd673f17e8c9183e24dde7c51f | 76 | https://github.com/saleor/saleor.git | 84 | def test_update_order_display_gross_prices_use_country_specific_tax_settings(order):
# given
country_code = "PT"
tax_config = order.channel.tax_configuration
tax_config.display_gross_prices = False
tax_config.save()
tax_config.country_exceptions.create(
country=country_code, display_gross_prices=True
)
order.display_gross_prices = False
order.save(update_fields=["display_gross_prices"])
order.shipping_address.country = c | 14 | 130 | test_update_order_display_gross_prices_use_country_specific_tax_settings |
|
9 | 0 | 1 | 5 | modin/pandas/test/test_io.py | 154,353 | FEAT-#4766: Support fsspec URLs in `read_csv` and `read_csv_glob` (#4898)
Signed-off-by: Karthik Velayutham <vkarthik@ponder.io> | modin | 9 | Python | 9 | test_io.py | def test_read_csv_google_cloud_storage(self):
eval_io(
fn_name="read_csv",
# read_csv kwargs
filepath_or_buffer="gs://modin-testing/testing/multiple_csv/test_data0.csv",
)
| c5107e5be29089720528c6c0ec4f96bc2a6a1eb3 | 16 | https://github.com/modin-project/modin.git | 55 | def test_read_csv_google_cloud_storage(self):
eval_io(
fn_name="read_csv",
# read_csv kwargs
filepath_or_buffer="gs://modin-testing/testing/multiple_csv/tes | 5 | 30 | test_read_csv_google_cloud_storage |
|
87 | 1 | 1 | 17 | dask/array/tests/test_creation.py | 155,850 | increased performance of k-diagonal extraction in da.diag() and da.diagonal() (#8689)
* added support for extracting k-diagonals from a 2d-array
* included heterogeneous chunks in test_diag()
* fixed linting errors in test_diag()
* improved efficiency of diagonal extractor a bit
* stole @TAdeJong's simple padding solution for diag(v, k) when v is 1d
* reduced complexity of `diagonal()` from O(N**2) to O(N)
diag() now calls diagonal()
* fixed linting errors in diagonal()
* reorganized tests and ensured coverage of diag() & diagonal()
as per @jcrist's advice
* catered for cupy type input arrays to diagonal() | dask | 11 | Python | 38 | test_creation.py | def test_diag_2d_array_creation(k):
# when input 1d-array is a numpy array:
v = np.arange(11)
assert_eq(da.diag(v, k), np.diag(v, k))
# when input 1d-array is a dask array:
v = da.arange(11, chunks=3)
darr = da.diag(v, k)
nparr = np.diag(v, k)
assert_eq(darr, nparr)
assert sorted(da.diag(v, k).dask) == sorted(da.diag(v, k).dask)
v = v + v + 3
darr = da.diag(v, k)
nparr = np.diag(v, k)
assert_eq(darr, nparr)
v = da.arange(11, chunks=11)
darr = da.diag(v, k)
nparr = np.diag(v, k)
assert_eq(darr, nparr)
assert sorted(da.diag(v, k).dask) == sorted(da.diag(v, k).dask)
@pytest.mark.parametrize("k", [0, 3, -3, 8]) | e3b3259419c21d0d412b9d5f12531ebe5ad6967a | @pytest.mark.parametrize("k", [0, 3, -3, 8]) | 198 | https://github.com/dask/dask.git | 139 | def test_diag_2d_array_creation(k):
# when input 1d-array is a numpy array:
v = np.arange(11)
assert_eq(da.diag(v, k), np.diag(v, k))
# when input 1d-array is a dask array:
v = da.arange(11, chunks=3)
darr = da.diag(v, k)
nparr = np.diag(v, k)
assert_eq(darr, nparr)
assert sorted(da.diag(v, k).dask) == sorted(da.diag(v, k).dask)
v = v + v + 3
darr = da.diag(v, k)
nparr = np.diag(v, k)
assert_eq(darr, nparr)
v = da.arange(11, chunks=11)
darr = da.diag(v, k)
nparr | 16 | 331 | test_diag_2d_array_creation |
16 | 0 | 1 | 10 | datasets/imagenet_sketch/imagenet_sketch.py | 104,925 | Add ImageNet-Sketch dataset (#4301)
* :sparkles: Add ImageNet-Sketch dataset
* :memo: add data splits to dataset card
* Update datasets/imagenet_sketch/README.md
* :sparkles: labels->label and use HF hosted download link
* Apply suggestions from code review
Co-authored-by: Mario Šaško <mariosasko777@gmail.com>
* :memo: update imagenet_sketch README.md
* Use dataset repo data url
Co-authored-by: Mario Šaško <mariosasko777@gmail.com> | datasets | 14 | Python | 16 | imagenet_sketch.py | def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files]),
},
),
]
| 78941675d6f39c269f9d445121718c6c27c511dc | 48 | https://github.com/huggingface/datasets.git | 122 | def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files]),
},
),
]
| 13 | 74 | _split_generators |
|
23 | 0 | 1 | 5 | torchvision/datasets/utils.py | 192,538 | support confirming no virus scan on GDrive download (#5645)
* support confirming no virus scan on GDrive download
* put gen_bar_updater back
* Update torchvision/datasets/utils.py
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com>
Co-authored-by: Nicolas Hug <contact@nicolas-hug.com> | vision | 9 | Python | 23 | utils.py | def gen_bar_updater() -> Callable[[int, int, int], None]:
warnings.warn("The function `gen_bar_update` is deprecated since 0.13 and will be removed in 0.15.")
pbar = tqdm(total=None)
| 96f2c0d47f00371dd066c84f69c34fde07e876c3 | 35 | https://github.com/pytorch/vision.git | 28 | def gen_bar_updater() -> Callable[[int, int, int], None]:
warnings.warn("The function `gen_bar_update` | 8 | 49 | gen_bar_updater |
|
17 | 0 | 1 | 9 | wagtail/admin/tests/api/test_pages.py | 71,307 | Reformat with black | wagtail | 12 | Python | 16 | test_pages.py | def test_revert_to_page_revision(self):
self.assertEqual(self.events_page.title, "Evenements")
response = self.get_response(
self.events_page.id, {"revision_id": self.first_revision.id}
)
self.assertEqual(response.status_code, 200)
self.events_page.get_latest_revision().publish()
self.events_page.refresh_from_db()
self.assertEqual(self.events_page.title, "Events")
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 79 | https://github.com/wagtail/wagtail.git | 76 | def test_revert_to_page_revision(self):
self.assertEqual(self.events_page.title, "Evenements")
response = self.get_response(
self.events_page.id, {"revision_id": self.first_revision.id}
)
self.assertEqual(response.status_code, 200)
self.events_page.get_latest_ | 13 | 130 | test_revert_to_page_revision |
|
95 | 0 | 4 | 43 | freqtrade/optimize/backtesting.py | 148,554 | Merge index and mark rates as part of dataload | freqtrade | 16 | Python | 63 | backtesting.py | def load_bt_data_detail(self) -> None:
if self.timeframe_detail:
self.detail_data = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.timeframe_detail,
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
)
else:
self.detail_data = {}
if self.trading_mode == TradingMode.FUTURES:
# Load additional futures data.
funding_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.FUNDING_RATE
)
# For simplicity, assign to CandleType.Mark (might contian index candles!)
mark_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.from_string(self.exchange._ft_has["mark_ohlcv_price"])
)
# Combine data to avoid combining the data per trade.
for pair in self.pairlists.whitelist:
self.futures_data[pair] = funding_rates_dict[pair].merge(
mark_rates_dict[pair], on='date', how="inner", suffixes=["_fund", "_mark"])
else:
self.futures_data = {}
| f26cd191466b792123f3d0b1a18b3b117a23a638 | 299 | https://github.com/freqtrade/freqtrade.git | 656 | def load_bt_data_detail(self) -> None:
if self.timeframe_detail:
self.detail_data = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.timeframe_detail,
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
)
else:
self.detail_data = {}
if self.trading_mode == TradingMode.FUTURES:
# Load additional futures data.
funding_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.FUNDING_RATE
)
# For simplicity, assign to CandleType.Mark (might contian index candles!)
mark_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.from_string(se | 35 | 467 | load_bt_data_detail |
|
29 | 0 | 1 | 8 | homeassistant/components/bond/light.py | 297,803 | String formatting and max line length - Part 1 (#84390)
Co-authored-by: Erik Montnemery <erik@montnemery.com> | core | 11 | Python | 28 | light.py | async def async_stop(self) -> None:
_LOGGER.warning(
"The bond.stop service is deprecated and has been replaced with a button;"
" Call the button.press service instead"
)
self._async_has_action_or_raise(Action.STOP)
await self._hub.bond.action(self._device.device_id, Action(Action.STOP))
| b0cee0bc46cbd7efe0e6421da18d91595c7a25ad | 45 | https://github.com/home-assistant/core.git | 86 | async def async_stop(self) -> None:
_LOGGER.warning(
"The bond.stop service is deprecated and has been replaced with a button;"
" Call the button.press service instead"
)
self._async_has_a | 12 | 80 | async_stop |
|
30 | 0 | 2 | 5 | homeassistant/components/zwave_js/sensor.py | 301,321 | Clean zwave_js platform typing (#72439)
* Fix binary sensor
* Fix climate
* Fix cover
* Fix fan
* Fix light
* Fix lock
* Fix number
* Fix select
* Fix sensor
* Add back type ignore until library bump | core | 11 | Python | 28 | sensor.py | def extra_state_attributes(self) -> dict[str, str] | None:
if (value := self.info.primary_value.value) is None:
return None
# add the value's int value as property for multi-value (list) items
return {ATTR_VALUE: value}
| 6cac1dadeba6cb81285960db1ab6ec6239547cd9 | 38 | https://github.com/home-assistant/core.git | 69 | def extra_state_attributes(self) -> dict[str, str] | None:
if (value := se | 8 | 61 | extra_state_attributes |
|
15 | 0 | 2 | 5 | homeassistant/components/smartthings/cover.py | 314,506 | Adjust smartthings cover type hints (#73948) | core | 8 | Python | 14 | cover.py | def current_cover_position(self) -> int | None:
if not self._attr_supported_features & CoverEntityFeature.SET_POSITION:
return None
return self._device.status.level
| 3743d42ade80528325d36357ca6f9629d4970eaa | 30 | https://github.com/home-assistant/core.git | 47 | def current_cover_position(self) -> int | None:
| 9 | 50 | current_cover_position |
|
57 | 1 | 2 | 8 | ivy_tests/test_nn/test_functional/test_activations.py | 213,207 | created backends sub-folder for all backend implementations. | ivy | 11 | Python | 42 | test_activations.py | def test_softmax(x, dtype_str, tensor_fn, dev_str, call):
# smoke test
x = tensor_fn(x, dtype_str, dev_str)
ret = ivy.softmax(x)
# type test
assert ivy.is_array(ret)
# cardinality test
assert ret.shape == x.shape
# value test
assert np.allclose(call(ivy.softmax, x), ivy.backends.numpy.softmax(ivy.to_numpy(x)))
# compilation test
if not ivy.wrapped_mode():
helpers.assert_compilable(ivy.softmax)
# softplus
@pytest.mark.parametrize(
"x", [[[-1., 1., 2.]]])
@pytest.mark.parametrize(
"dtype_str", ['float32'])
@pytest.mark.parametrize(
"tensor_fn", [ivy.array, helpers.var_fn]) | b50046a631badcf15ee25b6355a2d2052f6f5bf9 | @pytest.mark.parametrize(
"x", [[[-1., 1., 2.]]])
@pytest.mark.parametrize(
"dtype_str", ['float32'])
@pytest.mark.parametrize(
"tensor_fn", [ivy.array, helpers.var_fn]) | 92 | https://github.com/unifyai/ivy.git | 101 | def test_softmax(x, dtype_str, tensor_fn, dev_str, call):
# smoke test
x = tensor_fn(x, dtype_str, dev_str)
ret = ivy.softmax(x)
# type test
assert ivy.is_array(ret)
# cardinality test
assert ret.shape == x.shape
# value test
assert np.allclose(call(ivy.softmax, x), ivy.backends.numpy.softmax(ivy.to_numpy(x)))
# compilation test
if not ivy.wrapped_mode():
helpers.assert_compilable(ivy.soft | 24 | 231 | test_softmax |
75 | 0 | 3 | 6 | jax/_src/lax/convolution.py | 120,722 | Fix batching rule for convolution for batch dimensions of size 0. | jax | 11 | Python | 57 | convolution.py | def _reshape_axis_into(src, dst, x):
# NB: `dst` is the number of the dimension that we should reshape into
# *after* `src` is removed from `x`'s list of dimensions. For example, if
# `src` is an added batch dimension, `dst` might name a target dimension in
# the unbatched list of dimensions.
perm = [i for i in range(x.ndim) if i != src]
perm.insert(dst, src)
new_shape = list(np.delete(x.shape, src))
new_shape[dst] *= x.shape[src]
return lax.reshape(x, new_shape, perm)
| ece9b999fb5f85eee6570e5f987ad6704c130503 | 73 | https://github.com/google/jax.git | 83 | def _reshape_axis_into(src, dst, x):
# NB: `dst` is the number of the dimension that we should reshape into
# *after* `src` is removed from `x`'s list of dimensions. For example, if
# `src` is an added batch dimension, `dst` might name a target dimension in
# the | 16 | 110 | _reshape_axis_into |
|
12 | 0 | 3 | 4 | bootloader/waflib/TaskGen.py | 263,221 | Bootloader: Building: Unpack waf's lib archive.
Doing so makes it easier to modify. This is a temporary measure until the next
waf version is released (although I'm tempted to keep it since it's much more
IDE completion friendly). | pyinstaller | 13 | Python | 12 | TaskGen.py | def force_permissions(self):
if getattr(self.generator, 'chmod', None):
for x in self.outputs:
os.chmod(x.abspath(), self.generator.chmod)
| 64ccb7aea824fbec57f7ed1bbe483ec486183c13 | 40 | https://github.com/pyinstaller/pyinstaller.git | 44 | def force_permissions(self):
if getattr(self.generator, 'chm | 9 | 63 | force_permissions |
|
10 | 0 | 1 | 3 | tests/components/generic/test_diagnostics.py | 317,791 | Fix diagnostics export for generic camera (#75665)
Fix url redaction and add tests
Co-authored-by: Dave T <davet2001@users.noreply.github.com> | core | 8 | Python | 9 | test_diagnostics.py | def test_redact_url(url_in, url_out_expected):
url_out = redact_url(url_in)
assert url_out == url_out_expected
| 7075032bf743f8702d942410c0c41214c90c212b | 18 | https://github.com/home-assistant/core.git | 19 | def test_redact_url(url_in, url_out_expected):
url_out = redact_url( | 5 | 31 | test_redact_url |
|
36 | 0 | 2 | 8 | numpy/lib/tests/test_io.py | 159,774 | Port over tests from npreadtext test suite
- Add test for parsing scientific notation.
- Add multiple-char comment test.
- Port over tests for structured dtypes.
- Add tests for exceptions on skiprows/max_rows.
- port over ndmin tests.
- Make structured data reusable, add unpack tests.
- Port over delimiter tests.
- Port over maxrows test w/ various dtypes.
- Port over test of exception msg on parse failure.
- Port over test for converters w/neg indices.
- Port over usecols tests
- Port over unicode tests.
- Port over more converter tests.
- Port over test for large rows.
- Port over test for string-len discovery.
- Port over float conversion accuracy test.
- Port over bool test.
- Add test for implicit float->int conversion.
- Port over complex parsing tests.
- Port over tests for reading from generator.
- Port over object cleanup test.
- Port over bytes incompat test.
- Port over converters tests.
Co-authored-by: Warren Weckesser <warren.weckesser@gmail.com>
Co-authored-by: Sebastian Berg <sebastian@sipsolutions.net> | numpy | 12 | Python | 33 | test_io.py | def test_loadtxt_converters_negative_indices():
txt = TextIO('1.5,2.5\n3.0,XXX\n5.5,6.0')
conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]])
res = np.loadtxt(
txt, dtype=np.float64, delimiter=",", converters=conv, encoding=None
)
assert_equal(res, expected)
| 66a61b03658f3c9f312505dcf7eab07e4cf91ac6 | 102 | https://github.com/numpy/numpy.git | 60 | def test_loadtxt_converters_negative_indices():
txt = TextIO('1.5,2.5\n3.0,XXX\n5.5,6.0')
conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
expected = np.array([[1.5, 2 | 18 | 143 | test_loadtxt_converters_negative_indices |
|
228 | 0 | 3 | 56 | python/ray/tests/test_autoscaler_yaml.py | 139,341 | [Autoscaler][Local Node Provider] Log a warning if max_workers < len(worker_ips) (#24635)
Logs a warning when a user sets max_workers for local node provider less than the number of available ips.
Also removes defaults of 0 for min_workers and max_workers from example configs to help prevent users inadvertantly setting max_workers=0 again. | ray | 12 | Python | 138 | test_autoscaler_yaml.py | def testValidateLocal(self):
local_config_path = os.path.join(
RAY_PATH, "autoscaler/local/example-minimal-manual.yaml"
)
base_config = yaml.safe_load(open(local_config_path).read())
base_config["provider"]["head_ip"] = "xxx.yyy"
base_config["provider"]["worker_ips"] = ["aaa.bbb", "ccc.ddd", "eee.fff"]
base_config["auth"]["ssh_user"] = "user"
base_config["auth"]["ssh_private_key"] = "~/.ssh/id_rsa"
test_prepare_config = copy.deepcopy(base_config)
prepared_config = prepare_config(test_prepare_config)
try:
validate_config(prepared_config)
except Exception:
self.fail("Failed to validate local/example-minimal-manual.yaml")
expected_prepared = yaml.safe_load(EXPECTED_LOCAL_CONFIG_STR)
assert prepared_config == expected_prepared
no_worker_config = copy.deepcopy(base_config)
del no_worker_config["provider"]["worker_ips"]
with pytest.raises(ClickException):
prepare_config(no_worker_config)
no_head_config = copy.deepcopy(base_config)
del no_head_config["provider"]["head_ip"]
with pytest.raises(ClickException):
prepare_config(no_head_config)
for field in "head_node", "worker_nodes", "available_node_types":
faulty_config = copy.deepcopy(base_config)
faulty_config[field] = "This field shouldn't be in here."
with pytest.raises(ClickException):
prepare_config(faulty_config)
too_many_workers_config = copy.deepcopy(base_config)
# More workers requested than the three available ips.
too_many_workers_config["max_workers"] = 10
too_many_workers_config["min_workers"] = 10
prepared_config = prepare_config(too_many_workers_config)
# Check that worker config numbers were clipped to 3.
assert prepared_config == expected_prepared
not_enough_workers_config = copy.deepcopy(base_config)
# Max workers is less than than the three available ips.
# The user is probably has probably made an error. Make sure we log a warning.
not_enough_workers_config["max_workers"] = 0
not_enough_workers_config["min_workers"] = 0
with mock.patch(
"ray.autoscaler._private.local.config.cli_logger.warning"
) as warning:
prepared_config = prepare_config(not_enough_workers_config)
warning.assert_called_with(
"The value of `max_workers` supplied (0) is less"
" than the number of available worker ips (3)."
" At most 0 Ray worker nodes will connect to the cluster."
)
expected_prepared = yaml.safe_load(EXPECTED_LOCAL_CONFIG_STR)
# We logged a warning.
# However, prepare_config does not repair the strange config setting:
expected_prepared["max_workers"] = 0
expected_prepared["available_node_types"]["local.cluster.node"][
"max_workers"
] = 0
expected_prepared["available_node_types"]["local.cluster.node"][
"min_workers"
] = 0
assert prepared_config == expected_prepared
| 29eebdfef2acb7d278042f38247a7d82473c3fd6 | 323 | https://github.com/ray-project/ray.git | 750 | def testValidateLocal(self):
local_config_path = os.path.join(
RAY_PATH, "autoscaler/local/example-minimal-manual.yaml"
)
base_config = yaml.safe_load(open(local_config_path).read())
base_config["provider"]["head_ip"] = "xxx.yyy"
base_config["provider"]["worker_ips"] = ["aaa.bbb", "ccc.ddd", "eee.fff"]
base_config[" | 35 | 597 | testValidateLocal |
|
15 | 0 | 1 | 5 | wagtail/contrib/sitemaps/tests.py | 73,564 | Reformat with black | wagtail | 10 | Python | 13 | tests.py | def get_request_and_django_site(self, url):
request = RequestFactory().get(url)
request.META["HTTP_HOST"] = self.site.hostname
request.META["SERVER_PORT"] = self.site.port
return request, get_current_site(request)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 48 | https://github.com/wagtail/wagtail.git | 42 | def get_request_and_django_site(self, url):
request = RequestFactory().get(url)
request.META["HTTP_HOST"] = self.site.hostname
request.META["SERVER_PORT"] = self.site.port
return request, get_current_site(request)
| 11 | 79 | get_request_and_django_site |
|
37 | 0 | 4 | 6 | jax/_src/ad_checkpoint.py | 122,094 | Fix lax imports | jax | 10 | Python | 32 | ad_checkpoint.py | def dot_with_no_batch_dims(prim, *_, **params) -> bool:
# This is a useful heuristic for transformers.
if prim is lax_internal.dot_general_p:
(_, _), (lhs_b, rhs_b) = params['dimension_numbers']
if not lhs_b and not rhs_b:
return True
return False
name_p = core.Primitive('name')
| 1d895b2c85e17b9f563cd41d9a340528179d29aa | 47 | https://github.com/google/jax.git | 49 | def dot_with_no_batch_dims(prim, *_, **params) -> bool:
# This is a useful heuristic for transformers.
if prim is lax_inter | 12 | 89 | dot_with_no_batch_dims |
|
26 | 0 | 2 | 7 | python/ray/data/impl/block_list.py | 139,015 | [Datasets] Provide more efficient + intuitive block clearing semantics for different execution modes (#24127)
**TL;DR:** Don't clear for eager, clear all but non-lazy input blocks if lazy, clear everything if pipelining.
This PR provides more efficient and intuitive block clearing semantics for eager mode, lazy mode, and pipelining, while still supporting multiple operations applied to the same base dataset, i.e. fan-out. For example, two different map operations are applied to the same base `ds` in this example:
```python
ds = ray.data.range(10).map(lambda x: x+1)
ds1 = ds.map(lambda x: 2*x)
ds2 = ds.map(lambda x: 3*x)
```
If naively clear the blocks when executing the map to produce `ds1`, the map producing `ds2` will fail.
### Desired Semantics
- **Eager mode** - don’t clear input blocks, thereby supporting fan-out from cached data at any point in the stage chain without triggering unexpected recomputation.
- **Lazy mode** - if lazy datasource, clear the input blocks for every stage, relying on recomputing via stage lineage if fan-out occurs; if non-lazy datasource, do not clear source blocks for execution plan when executing first stage, but do clear input blocks for every subsequent stage.
- **Pipelines** - Same as lazy mode, although the only fan-out that can occur is from the pipeline source blocks when repeating a dataset/pipeline, so unintended intermediate recomputation will never happen. | ray | 11 | Python | 26 | block_list.py | def _check_if_cleared(self) -> None:
if self.is_cleared():
raise ValueError(
"This Dataset's blocks have been moved, which means that you "
"can no longer use this Dataset."
)
| f72555262afbbfc1aabb87c9e40839aaaee3ba0b | 21 | https://github.com/ray-project/ray.git | 92 | def _check_if_cleared(self) -> None:
if self.is_cleared():
raise ValueError(
| 4 | 42 | _check_if_cleared |
|
78 | 1 | 1 | 23 | dask/dataframe/tests/test_groupby.py | 156,539 | Implement {Series,DataFrame}GroupBy `fillna` methods (#8869)
Co-authored-by: Ian Rose <ian.r.rose@gmail.com> | dask | 13 | Python | 54 | test_groupby.py | def test_bfill():
df = pd.DataFrame(
{
"A": [1, 1, 2, 2],
"B": [3, 4, 3, 4],
"C": [np.nan, 3, np.nan, np.nan],
"D": [np.nan, 4, np.nan, 5],
"E": [np.nan, 6, np.nan, 7],
}
)
ddf = dd.from_pandas(df, npartitions=2)
assert_eq(
df.groupby("A").bfill(),
ddf.groupby("A").bfill(),
)
assert_eq(
df.groupby("A").B.bfill(),
ddf.groupby("A").B.bfill(),
)
assert_eq(
df.groupby(["A", "B"]).bfill(),
ddf.groupby(["A", "B"]).bfill(),
)
@pytest.mark.parametrize(
"grouper",
[
lambda df: ["a"],
lambda df: ["a", "b"],
lambda df: df["a"],
lambda df: [df["a"], df["b"]],
lambda df: [df["a"] > 2, df["b"] > 1],
],
) | 5fbda77cfc5bc1b8f1453a2dbb034b048fc10726 | @pytest.mark.parametrize(
"grouper",
[
lambda df: ["a"],
lambda df: ["a", "b"],
lambda df: df["a"],
lambda df: [df["a"], df["b"]],
lambda df: [df["a"] > 2, df["b"] > 1],
],
) | 186 | https://github.com/dask/dask.git | 257 | def test_bfill():
df = pd.DataFrame(
{
"A": [1, 1, 2, 2],
"B": [3, 4, 3, 4],
"C": [np.nan, 3, np.nan, np.nan],
"D": [np.nan, 4, np.nan, 5],
"E": [np.nan, 6, np.nan, 7],
}
)
ddf = dd.from_pandas(df, npartit | 17 | 411 | test_bfill |
42 | 0 | 1 | 20 | example/components/plot_line.py | 106,625 | test: split demo.py into seperate files and functions | visdom | 14 | Python | 41 | plot_line.py | def plot_line_stackedarea(viz, env):
Y = np.linspace(0, 4, 200)
return viz.line(
Y=np.column_stack((np.sqrt(Y), np.sqrt(Y) + 2)),
X=np.column_stack((Y, Y)),
opts=dict(
fillarea=True,
showlegend=False,
width=800,
height=800,
xlabel='Time',
ylabel='Volume',
ytype='log',
title='Stacked area plot',
marginleft=30,
marginright=30,
marginbottom=80,
margintop=30,
),
)
# Assure that the stacked area plot isn't giant | b4115c0337b1bacc876bef1ece97e8fa8b3e2834 | 117 | https://github.com/fossasia/visdom.git | 209 | def plot_line_stackedarea(viz, env):
Y = np.linspace(0, 4, 200)
| 24 | 171 | plot_line_stackedarea |
|
11 | 0 | 1 | 2 | .venv/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/provider.py | 61,123 | upd; format | transferlearning | 6 | Python | 11 | provider.py | def identify(self, requirement_or_candidate):
# type: (Union[Requirement, Candidate]) -> str
return requirement_or_candidate.name
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 11 | https://github.com/jindongwang/transferlearning.git | 24 | def identify(self, requirement_or_candidate):
# type: (Union[Requirement, Candidate]) -> str
return requirement_or_candidate.na | 4 | 18 | identify |
|
25 | 0 | 3 | 5 | code/deep/BJMMD/caffe/scripts/cpp_lint.py | 60,419 | Balanced joint maximum mean discrepancy for deep transfer learning | transferlearning | 12 | Python | 23 | cpp_lint.py | def CleanseComments(line):
commentpos = line.find('//')
if commentpos != -1 and not IsCppString(line[:commentpos]):
line = line[:commentpos].rstrip()
# get rid of /* ... */
return _RE_PATTERN_CLEANSE_LINE_C_COMMENTS.sub('', line)
| cc4d0564756ca067516f71718a3d135996525909 | 50 | https://github.com/jindongwang/transferlearning.git | 33 | def CleanseComments(line):
comment | 8 | 88 | CleanseComments |
|
22 | 0 | 1 | 4 | .venv/lib/python3.8/site-packages/pip/_internal/metadata/pkg_resources.py | 60,801 | upd; format | transferlearning | 11 | Python | 22 | pkg_resources.py | def from_wheel(cls, path, name):
# type: (str, str) -> Distribution
with zipfile.ZipFile(path, allowZip64=True) as zf:
dist = pkg_resources_distribution_for_wheel(zf, name, path)
return cls(dist)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 38 | https://github.com/jindongwang/transferlearning.git | 53 | def from_wheel(cls, path, name):
# type: (str, str) -> Distribution
with zipfile.ZipFile(path, allowZip64=True) as zf:
d | 10 | 60 | from_wheel |
|
17 | 0 | 3 | 6 | airflow/utils/sqlalchemy.py | 43,497 | Have consistent types between the ORM and the migration files (#24044)
We currently don't compare column types between ORM and the migration files. Some columns in the migration files have different types from the same columns in the ORM.
Here, I made effort to match the types in migration files with the
types in ORM, using the migration files as the source of truth in most cases.
I couldn't convert the MySQL VARCHAR collation in db(utf8_bin) to use the one in ORM(utf8mb3_bin). It seems it's not possible to convert a collation of an already existing column in MySQL. | airflow | 11 | Python | 13 | sqlalchemy.py | def load_dialect_impl(self, dialect):
if dialect.name == 'mssql':
return mssql.DATETIME2(precision=6)
elif dialect.name == 'mysql':
return mysql.TIMESTAMP(fsp=6)
return super().load_dialect_impl(dialect)
| 25537acfa28eebc82a90274840e0e6fb5c91e271 | 48 | https://github.com/apache/airflow.git | 59 | def load_dialect_impl(self, dialect):
if dialect.name == 'mssq | 11 | 80 | load_dialect_impl |
|
67 | 0 | 1 | 23 | tests/sentry/api/endpoints/test_organization_release_details.py | 90,873 | ref(models): `ActivityType` (#34978)
## Objective:
We want to separate enum logic from Model logic. This breaks a lot of circular dependencies. | sentry | 16 | Python | 53 | test_organization_release_details.py | def test_activity_generation_long_release(self):
user = self.create_user(is_staff=False, is_superuser=False)
org = self.organization
org.flags.allow_joinleave = False
org.save()
team = self.create_team(organization=org)
project = self.create_project(teams=[team], organization=org)
release = Release.objects.create(organization_id=org.id, version="x" * 65)
release.add_project(project)
self.create_member(teams=[team], user=user, organization=org)
self.login_as(user=user)
url = reverse(
"sentry-api-0-organization-release-details",
kwargs={"organization_slug": org.slug, "version": release.version},
)
response = self.client.put(url, data={"dateReleased": datetime.utcnow().isoformat() + "Z"})
assert response.status_code == 200, (response.status_code, response.content)
release = Release.objects.get(id=release.id)
assert release.date_released
activity = Activity.objects.filter(
type=ActivityType.RELEASE.value, project=project, ident=release.version[:64]
)
assert activity.exists()
| b9f5a910dc841b85f58d46266ec049ae5a7fd305 | 235 | https://github.com/getsentry/sentry.git | 232 | def test_activity_generation_long_release(self):
user = self.create_user(is_staff=False, is_superuser=False)
org = self.organization
org.flags.allow_joinleave = False
org.save()
team = self.create_team(organization=org)
project = self.create_project(teams=[team], organization=org)
release = Release.objects.create(organization_id=org.id, version="x" * 65)
release.add_project(project)
self.create_member(teams=[team], user=user, organization=org)
self.login_as(user=user)
url = reverse(
"sentry-api-0-organization-release-details",
kwargs={"organization_slug": org.slug, "version": release.version},
)
response = self.client.put(url, data={"dateRel | 50 | 370 | test_activity_generation_long_release |
|
15 | 0 | 1 | 3 | fastai/data_block.py | 190,250 | Upgrading to support latest Pytorch version | DeOldify | 8 | Python | 14 | data_block.py | def split_by_list(self, train, valid):
"Split the data between `train` and `valid`."
return self._split(self.path, train, valid)
| 4fc3616712edb19179b17dd270ad6cf63abf99c2 | 23 | https://github.com/jantic/DeOldify.git | 28 | def split_by_list(self, train, valid):
"Split the data between `train` and `val | 6 | 35 | split_by_list |
|
19 | 0 | 4 | 40 | tests/integration/gateway_clients/test_clients_gateways.py | 12,744 | fix: fix endpoint discovery tries (#5014) | jina | 8 | Python | 15 | test_clients_gateways.py | def test_grpc_gateway_runtime_lazy_request_access(linear_graph_dict, monkeypatch):
call_counts = multiprocessing.Queue()
monkeypatch.setattr(
networking.GrpcConnectionPool,
'send_requests_once',
DummyNoDocAccessMockConnectionPool.send_requests_once,
)
monkeypatch.setattr(
networking.GrpcConnectionPool,
'send_discover_endpoint',
DummyMockConnectionPool.send_discover_endpoint,
)
port = random_port()
| 6f5b3f2a9b13c2eae78b746531132cbfcdc8c2da | 183 | https://github.com/jina-ai/jina.git | 78 | def test_grpc_gateway_runtime_lazy_request_access(linear_graph_dict, monkeypatch):
call_counts = multiprocessing.Queue()
monkeypatch.setattr(
networking.GrpcConnectionPool,
'send_requests_once',
DummyNoDocAccessMockConnectionPool.send_requests_once,
)
monkeypatch.setattr(
networking.GrpcConnectionPool,
'send | 15 | 78 | test_grpc_gateway_runtime_lazy_request_access |
|
197 | 0 | 4 | 29 | ludwig/utils/defaults.py | 6,983 | Comprehensive configs for trainer and combiner. (#2118) | ludwig | 11 | Python | 78 | defaults.py | def _perform_sanity_checks(config):
assert "input_features" in config, "config does not define any input features"
assert "output_features" in config, "config does not define any output features"
assert isinstance(config["input_features"], list), (
"Ludwig expects input features in a list. Check your model " "config format"
)
assert isinstance(config["output_features"], list), (
"Ludwig expects output features in a list. Check your model " "config format"
)
assert len(config["input_features"]) > 0, "config needs to have at least one input feature"
assert len(config["output_features"]) > 0, "config needs to have at least one output feature"
if TRAINER in config:
assert isinstance(config[TRAINER], dict), (
"There is an issue while reading the training section of the "
"config. The parameters are expected to be"
"read as a dictionary. Please check your config format."
)
if "preprocessing" in config:
assert isinstance(config["preprocessing"], dict), (
"There is an issue while reading the preprocessing section of the "
"config. The parameters are expected to be read"
"as a dictionary. Please check your config format."
)
if COMBINER in config:
assert isinstance(config[COMBINER], dict), (
"There is an issue while reading the combiner section of the "
"config. The parameters are expected to be read"
"as a dictionary. Please check your config format."
)
| ae25cc4c5a229bbc44339249e1f94bf256f18317 | 134 | https://github.com/ludwig-ai/ludwig.git | 384 | def _perform_sanity_checks(config):
assert "input_features" in config, "config does not define any input features"
assert "output_features" in config, "config does not define any output features"
assert isinstance(config["input_features"], list), (
"Ludwig expects input features in a list. Check your model " "config format"
)
assert isinstance(config["output_features"], list), (
"Ludwig expects output features in a list. Check your model " "config format"
)
assert len(config["input_fe | 8 | 241 | _perform_sanity_checks |
|
9 | 0 | 1 | 3 | test/units/plugins/callback/test_callback.py | 266,388 | Avoid deprecated TestCase functions in unit tests. (#76678)
* Avoid deprecated TestCase functions in unit tests.
* Add assertRaisesRegex for Python 2.7.
* Fix indentation. | ansible | 12 | Python | 9 | test_callback.py | def test_host_label(self):
result = TaskResult(host=Host('host1'), task=mock_task, return_data={})
self.assertEqual(CallbackBase.host_label(result), 'host1')
| 97104f1221b64ef36cf42cb90c5a0eff263a2adb | 38 | https://github.com/ansible/ansible.git | 22 | def test_host_label(self):
| 12 | 63 | test_host_label |
|
105 | 0 | 2 | 31 | dask/dataframe/io/tests/test_parquet.py | 156,242 | Remove pyarrow-legacy engine from parquet API (#8835)
* remove pyarrow-legacy
* Small fixup
* Small fixup for pyarrow < 5
Co-authored-by: Jim Crist-Harif <jcristharif@gmail.com> | dask | 14 | Python | 84 | test_parquet.py | def test_writing_parquet_with_kwargs(tmpdir, engine):
fn = str(tmpdir)
path1 = os.path.join(fn, "normal")
path2 = os.path.join(fn, "partitioned")
df = pd.DataFrame(
{
"a": np.random.choice(["A", "B", "C"], size=100),
"b": np.random.random(size=100),
"c": np.random.randint(1, 5, size=100),
}
)
df.index.name = "index"
ddf = dd.from_pandas(df, npartitions=3)
engine_kwargs = {
"pyarrow": {
"compression": "snappy",
"coerce_timestamps": None,
"use_dictionary": True,
},
"fastparquet": {"compression": "snappy", "times": "int64", "fixed_text": None},
}
ddf.to_parquet(path1, engine=engine, **engine_kwargs[engine])
out = dd.read_parquet(path1, engine=engine)
assert_eq(out, ddf, check_index=(engine != "fastparquet"))
# Avoid race condition in pyarrow 0.8.0 on writing partitioned datasets
with dask.config.set(scheduler="sync"):
ddf.to_parquet(
path2, engine=engine, partition_on=["a"], **engine_kwargs[engine]
)
out = dd.read_parquet(path2, engine=engine).compute()
for val in df.a.unique():
assert set(df.b[df.a == val]) == set(out.b[out.a == val])
| 0b36d7fcaf54ee9a78fff4b07f124cb0c8741cdf | 284 | https://github.com/dask/dask.git | 285 | def test_writing_parquet_with_kwargs(tmpdir, engine):
fn = str(tmpdir)
path1 = os.path.join(fn, "normal")
path2 = os.path.join(fn, "partitioned")
df = pd.DataFrame(
{
"a": np.random.choice(["A", "B", "C"], size=100),
"b": np.random.random(size=100),
"c": np.random.randint(1, 5, size=100),
}
)
df.index.name = "index"
ddf = dd.from_pandas(df, npartitions=3)
engine_kwargs = {
"pyarrow": {
"compression": "snappy",
"coerce_timestamps": None,
"use_dictionary": True,
},
"fastparquet": {"compression": "snappy", "times": "int64", "fixed_text": None},
}
ddf.to_parquet(path1, engine=engine, **engine_kwargs[engine | 40 | 465 | test_writing_parquet_with_kwargs |
|
8 | 1 | 1 | 4 | saleor/plugins/webhook/tests/subscription_webhooks/fixtures.py | 28,271 | GraphQL subscription support for synchronous webhook events (#9763)
* WIP add sync webhooks subscription payload handling
* add tests, fix minor things
* update schema
* remove unneeded code
* add fix for circular field resolve
* fix-filter-shipping-methods-payload
* added_in added to desription
* add missing types
* revert refactor, precommit issues
* fixes after review
* cosmetix fixes post-review
* subscription types description fixes
* remove unneeded description from PaymentBase
* add validation for creating webhook with two top level fields, add tests for shippingListMethodsForCheckout
* add docstring, refactor prevent_sync_event_circular_wuery wrapper
* fix docstring of revent_sync_event_circular_query
* fix linters | saleor | 8 | Python | 8 | fixtures.py | def subscription_order_fulfilled_webhook(subscription_webhook):
return subscription_webhook(
queries.ORDER_FULFILLED, WebhookEventAsyncType.ORDER_FULFILLED
)
@pytest.fixture | 8201efcde2d7aacccf3512c544cceea6780a0598 | @pytest.fixture | 16 | https://github.com/saleor/saleor.git | 19 | def subscription_order_fulfilled_webhook(subscription_webhook):
return subscription_webhook(
queries.ORDER_FULFILLED, WebhookEventAsyncType.ORDER_FULFILLED
)
@pytest.fixture | 7 | 32 | subscription_order_fulfilled_webhook |
83 | 0 | 1 | 13 | packages/syft/src/syft/core/tensor/autodp/phi_tensor.py | 1,804 | add data subject and data subject shape serialization to GammaTensor | PySyft | 11 | Python | 63 | phi_tensor.py | def _object2bytes(self) -> bytes:
schema = get_capnp_schema(schema_file="phi_tensor.capnp")
pt_struct: CapnpModule = schema.PT # type: ignore
pt_msg = pt_struct.new_message()
# this is how we dispatch correct deserialization of bytes
pt_msg.magicHeader = serde_magic_header(type(self))
# We always have FPT as the child of an PT in the tensor chain.
chunk_bytes(serialize(self.child, to_bytes=True), "child", pt_msg) # type: ignore
pt_msg.minVals = serialize(self.min_vals, to_bytes=True)
pt_msg.maxVals = serialize(self.max_vals, to_bytes=True)
pt_msg.dataSubjects = serialize(
dslarraytonumpyutf8(self.data_subjects), to_bytes=True
)
pt_msg.dataSubjectsShape = serialize(self.data_subjects.shape, to_bytes=True)
# to pack or not to pack?
# to_bytes = pt_msg.to_bytes()
return pt_msg.to_bytes_packed()
| a81b66ea18721dc36c77aefac733dd224f48cc87 | 124 | https://github.com/OpenMined/PySyft.git | 200 | def _object2bytes(self) -> bytes:
schema = get_capnp_schema(schema_file="phi_tensor.capnp")
pt_struct: CapnpModule = schema.PT # type: ignore
pt_msg = pt_struct.new_message()
# this is how we dispatch correct deserialization of bytes
pt_msg.magicHeader = serde_magic_header(type(self))
# We always have FPT as the child of an PT in the tensor chain.
chunk_bytes(serialize(self.child, to_bytes=True), "child", pt_msg) # type: ignore
pt_msg.minVals = serialize(self.min_vals, to_bytes=True)
pt_msg.maxVals = serialize(self.max_vals, to_bytes=True)
pt_msg.dataSubjects = serialize(
dslarraytonumpyutf8(self.da | 28 | 202 | _object2bytes |
|
29 | 0 | 5 | 12 | homeassistant/components/tplink/light.py | 298,501 | Use ColorMode enum in tplink (#70542) | core | 10 | Python | 21 | light.py | def supported_color_modes(self) -> set[ColorMode | str] | None:
modes: set[ColorMode | str] = set()
if self.device.is_variable_color_temp:
modes.add(ColorMode.COLOR_TEMP)
if self.device.is_color:
modes.add(ColorMode.HS)
if self.device.is_dimmable:
modes.add(ColorMode.BRIGHTNESS)
if not modes:
modes.add(ColorMode.ONOFF)
return modes
| 121d2008c2e98c94775f0379ccd4eedc15476d7d | 86 | https://github.com/home-assistant/core.git | 122 | def supported_color_modes(self) -> set[ColorMode | str] | None:
modes: set[ColorMode | str] = set()
if self.device.is_variable_color_temp:
modes.add(ColorMode.COLOR_TEMP)
if self.device.is_color:
m | 15 | 140 | supported_color_modes |
|
52 | 0 | 1 | 6 | tests/test_patching.py | 105,154 | Support DataLoader with num_workers > 0 in streaming mode (#4375)
* make TorchIterableDataset work in parallel
- make it picklable
- paralellize over the shards when num_workers is passed
* start writing some tests
* fix streaming extension and fsspec issues in subprocesses
* fix some tests
* fix more tests
* fix import
* fix and add tests
* fix patch (handle successive patches and builtins)
* revert unnecessary change to enriched_web_blg
* style
* use open locally to fix win permission errors
* keep file opened in read_csv
* fix compression for read_csv
* consistency of read_csv: don't infer compression for file-like objects
* stringify Path objects
* comments + raise error if sharding is ambiguous
* minor
* Update src/datasets/iterable_dataset.py
Co-authored-by: Mario Šaško <mariosasko777@gmail.com>
Co-authored-by: Mario Šaško <mariosasko777@gmail.com> | datasets | 10 | Python | 39 | test_patching.py | def test_patch_submodule_missing_builtin():
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
mock = "__test_patch_submodule_missing_builtin_mock__"
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching, "len", None) is None
with patch_submodule(_test_patching, "len", mock):
assert _test_patching.len is mock
assert _test_patching.len is len
| ab7d3045ac9154e9c1c2602d0869130defdc6dc7 | 40 | https://github.com/huggingface/datasets.git | 79 | def test_patch_submodule_missing_builtin():
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
mock = "__test | 6 | 71 | test_patch_submodule_missing_builtin |
|
33 | 1 | 1 | 8 | tests/openbb_terminal/stocks/fundamental_analysis/test_market_watch_view.py | 283,567 | Updating some names (#1575)
* quick econ fix
* black
* keys and feature flags
* terminal name :eyes:
* some more replacements
* some more replacements
* edit pyproject
* gst -> openbb
* add example portfolios back to git
* Update api from gst
* sorry. skipping some tests
* another round of names
* another round of test edits
* Missed some .gst refs and update timezone
* water mark stuff
* Fixing Names in terminal.spec and name of GTFF_DEFAULTS to OBBFF_DEFAULTS
* fix more GST to OpenBB Terminal
* Logging : merge conflicts with main
* Revert wrong files
Co-authored-by: Andrew <andrew.kenreich@gmail.com>
Co-authored-by: DidierRLopes <dro.lopes@campus.fct.unl.pt>
Co-authored-by: Chavithra PARANA <chavithra@gmail.com> | OpenBBTerminal | 11 | Python | 28 | test_market_watch_view.py | def test_call_func_no_parser(func, mocker):
mocker.patch(
"openbb_terminal.stocks.fundamental_analysis.market_watch_view.parse_known_args_and_warn",
return_value=None,
)
func_result = getattr(market_watch_view, func)(other_args=list(), ticker="TSLA")
assert func_result is None
getattr(market_watch_view, "parse_known_args_and_warn").assert_called_once()
@pytest.mark.vcr
@pytest.mark.record_stdout
@pytest.mark.parametrize(
"func",
[
"income",
"balance",
"cash",
],
)
@pytest.mark.parametrize(
"use_color",
[True, False],
) | b71abcfbf4d7e8ac1855522aff0378e13c8b5362 | @pytest.mark.vcr
@pytest.mark.record_stdout
@pytest.mark.parametrize(
"func",
[
"income",
"balance",
"cash",
],
)
@pytest.mark.parametrize(
"use_color",
[True, False],
) | 51 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 91 | def test_call_func_no_parser(func, mocker):
mocker.patch(
"openbb_terminal.stocks.fundamental_analysis.market_watch_view.parse_known_args_and_warn",
return_value=None,
)
func_result = getattr(market_watch_view, func)(other_args=list(), ticker="TSLA")
assert func_result is None
getattr(market_watch_view, "parse_known_args_and_warn").assert_called_once()
@pytest.mark.vcr
@pytest.mark.record_stdout
@pytest.mark.parametrize(
| 17 | 160 | test_call_func_no_parser |
24 | 0 | 2 | 10 | wagtail/admin/tests/api/test_pages.py | 71,347 | Reformat with black | wagtail | 15 | Python | 22 | test_pages.py | def test_all_nested_fields(self):
response = self.get_response(
type="demosite.BlogEntryPage", fields="feed_image(*)"
)
content = json.loads(response.content.decode("UTF-8"))
for page in content["items"]:
self.assertEqual(
set(page["feed_image"].keys()),
{"id", "meta", "title", "width", "height", "thumbnail"},
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 73 | https://github.com/wagtail/wagtail.git | 114 | def test_all_nested_fields(self):
response = self.get_response(
type="demosite.BlogEntryPage", fields="feed_image(*)"
)
content = json.loads(response.content.decode("UTF-8"))
for page in content["items"]:
self.assertEqual(
set(page["feed_image"].keys()),
| 14 | 129 | test_all_nested_fields |
|
71 | 1 | 1 | 23 | tests/snuba/sessions/test_sessions_v2.py | 95,790 | fix(sessions): Order results by timestamp and log error if snuba limit exceeded (#31214)
As described in https://getsentry.atlassian.net/browse/ISSUE-1372, gaps
occur in sessions_v2 time series when the number of releases is large.
This seems to be caused by the fact that snuba applies a default limit
of 1000. The sessions API queries these series without an orderBy
constraint, so a random subset of entries default to zero.
This PR logs an error if this limit is actually reached. Furthermore, we
add an order by clause to the snuba query, such that at least the most
recent part of the time series is complete. | sentry | 14 | Python | 56 | test_sessions_v2.py | def test_massage_simple_timeseries():
query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)")
result_totals = [{"sessions": 4}]
# snuba returns the datetimes as strings for now
result_timeseries = [
{"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
{"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
]
expected_result = {
"start": "2020-12-17T12:00:00Z",
"end": "2020-12-18T11:15:00Z",
"query": "",
"intervals": [
"2020-12-17T12:00:00Z",
"2020-12-17T18:00:00Z",
"2020-12-18T00:00:00Z",
"2020-12-18T06:00:00Z",
],
"groups": [
{"by": {}, "series": {"sum(session)": [2, 0, 0, 2]}, "totals": {"sum(session)": 4}}
],
}
actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
assert actual_result == expected_result
@freeze_time("2020-12-18T11:14:17.105Z") | 7fbf708470ba13992a5d53b088be2388a8ed93df | @freeze_time("2020-12-18T11:14:17.105Z") | 125 | https://github.com/getsentry/sentry.git | 218 | def test_massage_simple_timeseries():
query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)")
result_totals = [{"sessions": 4}]
# snuba returns the datetimes as strings for now
result_timeseries = [
{"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
{"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
]
expected_result = {
"start": "2020-12-17T12:00:00Z",
"end": "2020-12-18T11:15:00Z",
"query": "",
"intervals": [
"2020-12-17T12:00:00Z",
"2020-12-1 | 10 | 240 | test_massage_simple_timeseries |
235 | 0 | 1 | 41 | sklearn/metrics/tests/test_pairwise_distances_reduction.py | 260,984 | FEA Fused sparse-dense support for `PairwiseDistancesReduction` (#23585)
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
Co-authored-by: Christian Lorentzen <lorentzen.ch@gmail.com>
Co-authored-by: Jérémie du Boisberranger <jeremiedbb@users.noreply.github.com>
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
Co-authored-by: Meekail Zain <Micky774@users.noreply.github.com> | scikit-learn | 11 | Python | 114 | test_pairwise_distances_reduction.py | def test_pairwise_distances_reduction_is_usable_for():
rng = np.random.RandomState(0)
X = rng.rand(100, 10)
Y = rng.rand(100, 10)
X_csr = csr_matrix(X)
Y_csr = csr_matrix(Y)
metric = "manhattan"
# Must be usable for all possible pair of {dense, sparse} datasets
assert BaseDistanceReductionDispatcher.is_usable_for(X, Y, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X_csr, Y_csr, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X_csr, Y, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X, Y_csr, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float64), Y.astype(np.float64), metric
)
assert BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float32), Y.astype(np.float32), metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.int64), Y.astype(np.int64), metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(X, Y, metric="pyfunc")
assert not BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float32), Y, metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(
X, Y.astype(np.int32), metric
)
# F-ordered arrays are not supported
assert not BaseDistanceReductionDispatcher.is_usable_for(
np.asfortranarray(X), Y, metric
)
# We prefer not to use those implementations for fused sparse-dense when
# metric="(sq)euclidean" because it's not yet the most efficient one on
# all configurations of datasets.
# See: https://github.com/scikit-learn/scikit-learn/pull/23585#issuecomment-1247996669 # noqa
# TODO: implement specialisation for (sq)euclidean on fused sparse-dense
# using sparse-dense routines for matrix-vector multiplications.
assert not BaseDistanceReductionDispatcher.is_usable_for(
X_csr, Y, metric="euclidean"
)
assert not BaseDistanceReductionDispatcher.is_usable_for(
X_csr, Y_csr, metric="sqeuclidean"
)
# CSR matrices without non-zeros elements aren't currently supported
# TODO: support CSR matrices without non-zeros elements
X_csr_0_nnz = csr_matrix(X * 0)
assert not BaseDistanceReductionDispatcher.is_usable_for(X_csr_0_nnz, Y, metric)
# CSR matrices with int64 indices and indptr (e.g. large nnz, or large n_features)
# aren't supported as of now.
# See: https://github.com/scikit-learn/scikit-learn/issues/23653
# TODO: support CSR matrices with int64 indices and indptr
X_csr_int64 = csr_matrix(X)
X_csr_int64.indices = X_csr_int64.indices.astype(np.int64)
assert not BaseDistanceReductionDispatcher.is_usable_for(X_csr_int64, Y, metric)
| 60cc5b596f38d0d236dab34e02c05d98b5a72bad | 318 | https://github.com/scikit-learn/scikit-learn.git | 429 | def test_pairwise_distances_reduction_is_usable_for():
rng = np.random.RandomState(0)
X = rng.rand(100, 10)
Y = rng.rand(100, 10)
X_csr = csr_matrix(X)
Y_csr = csr_matrix(Y)
metric = "manhattan"
# Must be usable for all possible pair of {dense, sparse} datasets
assert BaseDistanceReductionDispatcher.is_usable_for(X, Y, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X_csr, Y_csr, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X_csr, Y, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(X, Y_csr, metric)
assert BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float64), Y.astype(np.float64), metric
)
assert BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float32), Y.astype(np.float32), metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.int64), Y.astype(np.int64), metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(X, Y, metric="pyfunc")
assert not BaseDistanceReductionDispatcher.is_usable_for(
X.astype(np.float32), Y, metric
)
assert not BaseDistanceReductionDispatcher.is_usable_for(
X, Y.astype(np.int32), metric
)
# F-ordered arrays are not supported
assert not BaseDistanceReductionDispatcher.is_usable_for(
np.asfortranarray(X), Y, metric
)
# We prefer not to use those implementations for fused sparse-dense when
# metric="(sq)euclidean" because it's not yet the most efficient o | 23 | 494 | test_pairwise_distances_reduction_is_usable_for |
|
17 | 0 | 2 | 7 | airflow/providers/arangodb/hooks/arangodb.py | 46,738 | Adding ArangoDB Provider (#22548)
* Adding ArangoDB Provider | airflow | 11 | Python | 16 | arangodb.py | def create_database(self, name):
if not self.db_conn.has_database(name):
self.db_conn.create_database(name)
return True
else:
self.log.info('Database already exists: %s', name)
return False
| c758c76ac336c054fd17d4b878378aa893b7a979 | 42 | https://github.com/apache/airflow.git | 74 | def create_database(self, name):
if not self.db_conn.has_database(name):
self.db_conn.create_database(name)
| 7 | 69 | create_database |
|
34 | 0 | 3 | 15 | erpnext/manufacturing/doctype/bom_update_tool/bom_update_tool.py | 64,563 | refactor: Add exception handling in background job within BOM Update Tool | erpnext | 14 | Python | 27 | bom_update_tool.py | def replace_bom(args):
try:
frappe.db.auto_commit_on_many_writes = 1
args = frappe._dict(args)
doc = frappe.get_doc("BOM Update Tool")
doc.current_bom = args.current_bom
doc.new_bom = args.new_bom
doc.replace_bom()
except Exception:
frappe.log_error(
msg=frappe.get_traceback(),
title=_("BOM Update Tool Error")
)
finally:
frappe.db.auto_commit_on_many_writes = 0
| f57725f8fa016b9826e8fdf2f14dbf1a3d9991f7 | 80 | https://github.com/frappe/erpnext.git | 19 | def replace_bom(args):
try:
frappe.db.auto_commit_on_many_writes = 1
args = frappe._dict(args)
doc = frappe.get_doc("BOM Update Tool")
doc.current_bom | 16 | 135 | replace_bom |
|
47 | 0 | 3 | 11 | mmdet/models/dense_heads/ddod_head.py | 244,274 | [Feature] Support DDOD: Disentangle Your Dense Object Detector(ACM MM2021 oral) (#7279)
* add ddod feature
* add ddod feature
* modify new
* [Feature] modify ddod code0225
* [Feature] modify ddod code0226
* [Feature] modify ddod code0228
* [Feature] modify ddod code0228#7279
* [Feature] modify ddod code0301
* [Feature] modify ddod code0301 test draft
* [Feature] modify ddod code0301 test
* [Feature] modify ddod code0301 extra
* [Feature] modify ddod code0301 delete src/mmtrack
* [Feature] modify ddod code0302
* [Feature] modify ddod code0302(2)
* [Feature] modify ddod code0303
* [Feature] modify ddod code0303(2)
* [Feature] modify ddod code0303(3)
* [Feature] modify ddod code0305
* [Feature] modify ddod code0305(2) delete diou
* [Feature] modify ddod code0305(3)
* modify ddod code0306
* [Feature] modify ddod code0307
* [Feature] modify ddod code0311
* [Feature] modify ddod code0311(2)
* [Feature] modify ddod code0313
* update
* [Feature] modify ddod code0319
* fix
* fix lint
* [Feature] modify ddod code0321
* update readme
* [0502] compute common vars at once for get_target
* [0504] update ddod conflicts
* [0518] seperate reg and cls loss and get_target compute
* [0518] merge ATSSCostAssigner to ATSSAssigner
* [0518] refine ATSSAssigner
* [0518] refine ATSSAssigner 2
* [0518] refine ATSSAssigner 2
* [0518] refine ATSSAssigner 3
* [0519] fix bugs
* update
* fix lr
* update weight
Co-authored-by: hha <1286304229@qq.com> | mmdetection | 12 | Python | 33 | ddod_head.py | def forward_single(self, x, scale):
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.atss_cls(cls_feat)
# we just follow atss, not apply exp in bbox_pred
bbox_pred = scale(self.atss_reg(reg_feat)).float()
iou_pred = self.atss_iou(reg_feat)
return cls_score, bbox_pred, iou_pred
| 151a803ed0119560f59dbe7b73824dbdcae08fc6 | 79 | https://github.com/open-mmlab/mmdetection.git | 139 | def forward_single(self, x, scale):
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.atss_cls(cls_feat)
# we just follow atss, not apply exp in bbox_pred
bbox_pred = scale(self.atss_reg(reg_feat)).float()
iou_pred = self.atss_iou(reg_f | 17 | 130 | forward_single |
|
7 | 0 | 1 | 3 | erpnext/patches/v14_0/update_batch_valuation_flag.py | 64,440 | refactor: use qb for patching flag | erpnext | 12 | Python | 7 | update_batch_valuation_flag.py | def execute():
batch = frappe.qb.DocType("Batch")
frappe.qb.update(batch).set(batch.use_batchwise_valuation, 0).run()
| 312db429e4605d6d0ce47d1034662fdf0ec053b7 | 36 | https://github.com/frappe/erpnext.git | 4 | def execute():
batch = frappe.qb.D | 9 | 63 | execute |
|
104 | 0 | 3 | 14 | PyInstaller/utils/hooks/tcl_tk.py | 264,062 | hookutils: tcl/tk: port to PyInstaller.isolated framework | pyinstaller | 10 | Python | 76 | tcl_tk.py | def _get_tcl_tk_info():
try:
import tkinter
from _tkinter import TCL_VERSION, TK_VERSION
except ImportError:
# tkinter unavailable
return None, None, None, False
tcl = tkinter.Tcl()
# Query the location of Tcl library/data directory.
tcl_dir = tcl.eval("info library")
# Check if Tcl/Tk is built with multi-threaded support (built with --enable-threads), as indicated by the presence
# of optional `threaded` member in `tcl_platform` array.
try:
tcl.getvar("tcl_platform(threaded)") # Ignore the actual value.
tcl_threaded = True
except tkinter.TclError:
tcl_threaded = False
return tcl_dir, TCL_VERSION, TK_VERSION, tcl_threaded
# Populate the variables. If `tkinter` is unavailable, the values are set to `None` or `False`.
(
tcl_dir,
tcl_version,
tk_version,
tcl_threaded,
) = _get_tcl_tk_info()
| 2b2559af1c7790596e7b2040f48e56baef608f9d | 68 | https://github.com/pyinstaller/pyinstaller.git | 196 | def _get_tcl_tk_info():
try:
import tkinter
from _tkinter import TCL_VERSION, TK_VERSION
except ImportError:
# tkinter unavailable
return None, None, None, False
tcl = tkinter.Tcl()
# Query the location of Tcl library/data directory.
t | 15 | 141 | _get_tcl_tk_info |
|
6 | 0 | 1 | 2 | tests/sentry/utils/locking/backends/test_redis.py | 92,287 | ref(locks): Make the post_process locks backend configurable (#36328) | sentry | 11 | Python | 6 | test_redis.py | def test_cluster_as_str(self):
assert RedisLockBackend(cluster="default").cluster == self.cluster
| 5cf12753665512f60b32a99dd8fd9aa27d0a4a3a | 18 | https://github.com/getsentry/sentry.git | 12 | def test_cluster_as_str(self):
assert RedisLockBackend(cluster="defau | 4 | 31 | test_cluster_as_str |
|
33 | 0 | 1 | 22 | datasets/crd3/crd3.py | 104,781 | Fix yield for crd3 (#4240)
* yielding example per chunk id
* changing data type for turns
* removing unused variable
* Update crd3.py
Co-authored-by: Shanya Sharma - s0s0cr3 <Shanya.Sharma@walmartlabs.com> | datasets | 20 | Python | 27 | crd3.py | def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"chunk": datasets.Value("string"),
"chunk_id": datasets.Value("int32"),
"turn_start": datasets.Value("int32"),
"turn_end": datasets.Value("int32"),
"alignment_score": datasets.Value("float32"),
"turns": [
{
"names": datasets.features.Sequence(datasets.Value("string")),
"utterances": datasets.features.Sequence(datasets.Value("string")),
"number": datasets.Value("int32"),
}
],
}
),
homepage="https://github.com/RevanthRameshkumar/CRD3",
citation=_CITATION,
)
| 23efe55f5547c640f9efdcb2bc678fb7b76e663e | 126 | https://github.com/huggingface/datasets.git | 391 | def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"chunk": datasets.Value("string"),
"chunk_id": datasets.Value("int32"),
"turn_start": datasets.Value("int32"),
"turn_end": datasets.Value("int32"),
"alignment_score": datasets.Value("float32"),
"turns": [
{
"names": datasets.features.Sequence(datas | 13 | 221 | _info |