output
stringlengths
52
181k
instruction
stringlengths
296
182k
#include<bits/stdc++.h> using namespace std; #define LL long long const LL mod=1e9+7,p=2,N=2e6; LL T,n,k; LL poww[32],pre[N],num[N],vis[N]; char s[N]; LL hashp(LL l,LL r) { return (pre[r]-pre[l-1]*poww[r-l+1]%mod+mod)%mod; } void init() { poww[0]=1; for(int i=1; i<=27; i++) poww[i]=poww[i-1]<<1; } int main() { init(); cin>>T; for(LL ca=1; ca<=T; ca++) { cin>>n>>k>>(s+1); for(LL i=1,ar; i<=n; i++) { ar=s[i]-'0'; ar^=1; pre[i]=(pre[i-1]*p+ar)%mod; num[i]=num[i-1]+ar; } LL limit=poww[min((LL)21,k)]-1; for(LL i=1; i+k-1<=n; i++) { LL x=hashp(max(i,i+k-20),i+k-1); if(k > 20 && num[i + k - 20] - num[i - 1] > 0) continue;// 超过了 1e6 ,20位以上 有 1 if(x > n) continue; //超过 n 没必要记录 vis[x]=ca; } LL x=-1; for(LL i=0; i<=limit&&x==-1; i++) { if(vis[i]!=ca) x=i; } if(x==-1) cout<<"NO"<<endl; else { cout<<"YES"<<endl; string ans=""; for(LL i=0; i<k; i++) ans+="0"; for(LL i=k; i>0&&x; --i) { if(x&1) ans[i-1]='1'; x>>=1; } cout<<ans<<endl; } } }
### Prompt Develop a solution in Cpp to the problem described below: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include<bits/stdc++.h> using namespace std; #define LL long long const LL mod=1e9+7,p=2,N=2e6; LL T,n,k; LL poww[32],pre[N],num[N],vis[N]; char s[N]; LL hashp(LL l,LL r) { return (pre[r]-pre[l-1]*poww[r-l+1]%mod+mod)%mod; } void init() { poww[0]=1; for(int i=1; i<=27; i++) poww[i]=poww[i-1]<<1; } int main() { init(); cin>>T; for(LL ca=1; ca<=T; ca++) { cin>>n>>k>>(s+1); for(LL i=1,ar; i<=n; i++) { ar=s[i]-'0'; ar^=1; pre[i]=(pre[i-1]*p+ar)%mod; num[i]=num[i-1]+ar; } LL limit=poww[min((LL)21,k)]-1; for(LL i=1; i+k-1<=n; i++) { LL x=hashp(max(i,i+k-20),i+k-1); if(k > 20 && num[i + k - 20] - num[i - 1] > 0) continue;// 超过了 1e6 ,20位以上 有 1 if(x > n) continue; //超过 n 没必要记录 vis[x]=ca; } LL x=-1; for(LL i=0; i<=limit&&x==-1; i++) { if(vis[i]!=ca) x=i; } if(x==-1) cout<<"NO"<<endl; else { cout<<"YES"<<endl; string ans=""; for(LL i=0; i<k; i++) ans+="0"; for(LL i=k; i>0&&x; --i) { if(x&1) ans[i-1]='1'; x>>=1; } cout<<ans<<endl; } } } ```
#include <bits/stdc++.h> using namespace std; typedef pair < int, int > pii; #define pb push_back #define khan ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); const int N = 2e6 + 5, mod = 1e9 + 7, INF = 1e9 + 7; const double eps = 100000; typedef long long ll; const ll BIG = 1e18; const int p1 = 29, p2 = 31; int n, k, mp1[N]; unsigned long long mp2[N]; string a; int sub1(int a, int b){ int res = a - b ; if(res < 0) res += mod; return res; } int mult1(int a, int b){ return (a * 1ll * b) % mod; } struct hsh{ vector < int > v1; vector < unsigned long long > v2; void push_back(int val){ v1.pb(((v1.back() * 1ll * p1) % mod + val) % mod); v2.pb(v2.back() * p2 + val); } void pop_back(){ v1.pop_back(); v2.pop_back(); } pair < int, unsigned long long > get(int l, int r){ //[1; 2] //[1; 3] //4 - 1 * 4 = 0 int ans1 = sub1(v1[r + 1], mult1(v1[l], mp1[r - l + 1])); unsigned long long ans2 = v2[r + 1] - v2[l] * mp2[r - l + 1]; return {ans1, ans2}; } void generate(string s){ v1.push_back(0); v2.push_back(0); for(int i = 0; i < s.size(); i++){ push_back(s[i] - '0'); } } }; void solve(){ cin >> n >> k >> a; for(int i = 0; i < n; i++){ a[i] = ((a[i] - '0') ^ 1) + '0'; } hsh ahash, shash; string ans = ""; for(int i = 1; i <= k; i++){ ans += '0'; } ahash.generate(a); shash.generate(ans); set < pair < int, unsigned long long > > hashes; for(int i = 0; i + k - 1 < n; i++){ hashes.insert(ahash.get(i, i + k - 1)); } // cout << a << endl; // for(auto e : ahash.v1){ // cout << e << " "; // } // cout << endl; // for(auto e : hashes){ // cout << e.first << ' ' << e.second << endl; // } // cout << endl; while(true){ if(!hashes.count(shash.get(0, k - 1))){ cout << "YES\n"; cout << ans << endl; return; } while(!ans.empty() and ans.back() == '1'){ shash.pop_back(); ans.pop_back(); } if(ans.empty()){ cout << "NO\n"; return; } ans.pop_back(); shash.pop_back(); ans += '1'; shash.push_back(1); while(ans.size() < k){ ans += '0'; shash.push_back(0); } } } void init(){ n = 1e6; mp1[0] = mp2[0] = 1; for(int i = 1; i <= n; i++){ mp1[i] = mult1(mp1[i - 1], p1); mp2[i] = mp2[i - 1] * p2; // ip1[i] = inv(mp1[i], p1); // ip2[i] = inv(mp2[i], p2); } } int main(){ khan init(); int q; cin >> q; while(q--){ solve(); } }
### Prompt In CPP, your task is to solve the following problem: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include <bits/stdc++.h> using namespace std; typedef pair < int, int > pii; #define pb push_back #define khan ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); const int N = 2e6 + 5, mod = 1e9 + 7, INF = 1e9 + 7; const double eps = 100000; typedef long long ll; const ll BIG = 1e18; const int p1 = 29, p2 = 31; int n, k, mp1[N]; unsigned long long mp2[N]; string a; int sub1(int a, int b){ int res = a - b ; if(res < 0) res += mod; return res; } int mult1(int a, int b){ return (a * 1ll * b) % mod; } struct hsh{ vector < int > v1; vector < unsigned long long > v2; void push_back(int val){ v1.pb(((v1.back() * 1ll * p1) % mod + val) % mod); v2.pb(v2.back() * p2 + val); } void pop_back(){ v1.pop_back(); v2.pop_back(); } pair < int, unsigned long long > get(int l, int r){ //[1; 2] //[1; 3] //4 - 1 * 4 = 0 int ans1 = sub1(v1[r + 1], mult1(v1[l], mp1[r - l + 1])); unsigned long long ans2 = v2[r + 1] - v2[l] * mp2[r - l + 1]; return {ans1, ans2}; } void generate(string s){ v1.push_back(0); v2.push_back(0); for(int i = 0; i < s.size(); i++){ push_back(s[i] - '0'); } } }; void solve(){ cin >> n >> k >> a; for(int i = 0; i < n; i++){ a[i] = ((a[i] - '0') ^ 1) + '0'; } hsh ahash, shash; string ans = ""; for(int i = 1; i <= k; i++){ ans += '0'; } ahash.generate(a); shash.generate(ans); set < pair < int, unsigned long long > > hashes; for(int i = 0; i + k - 1 < n; i++){ hashes.insert(ahash.get(i, i + k - 1)); } // cout << a << endl; // for(auto e : ahash.v1){ // cout << e << " "; // } // cout << endl; // for(auto e : hashes){ // cout << e.first << ' ' << e.second << endl; // } // cout << endl; while(true){ if(!hashes.count(shash.get(0, k - 1))){ cout << "YES\n"; cout << ans << endl; return; } while(!ans.empty() and ans.back() == '1'){ shash.pop_back(); ans.pop_back(); } if(ans.empty()){ cout << "NO\n"; return; } ans.pop_back(); shash.pop_back(); ans += '1'; shash.push_back(1); while(ans.size() < k){ ans += '0'; shash.push_back(0); } } } void init(){ n = 1e6; mp1[0] = mp2[0] = 1; for(int i = 1; i <= n; i++){ mp1[i] = mult1(mp1[i - 1], p1); mp2[i] = mp2[i - 1] * p2; // ip1[i] = inv(mp1[i], p1); // ip2[i] = inv(mp2[i], p2); } } int main(){ khan init(); int q; cin >> q; while(q--){ solve(); } } ```
#include<bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while(t--) { int n , k; cin >> n >> k; string x; cin >> x; int pr[n+1]; memset(pr ,0 , sizeof(pr)); for(int i = 0 ; i < n ; i++) { if(x[i] == '1') pr[i+1] = pr[i]+1; else pr[i+1] = pr[i]; } int kk = min((int)log2(n-k+1)+1 , k); //cout << kk << "\n"; set<int>s; for(int i = 0; i < (1 << kk) ; i++) { s.insert(i); } for(int i = k ; i <= n ; i++) { int l = i-k; int r = i-kk; int cnt = pr[r] - pr[l]; if(cnt == (k-kk)) { int mask = 0; for(int j = i-kk+1 ; j <= i ; j++) { if(x[j-1] == '0') { mask ^= (1 << (i-j)); } } // cout << i << " " << mask << "\n"; s.erase(mask); } } if(s.size() == 0) { cout << "NO" << "\n"; continue; } cout << "YES" << "\n"; string ans; int rem = *s.begin(); for(int i = 0 ; i < k-kk ; i++) ans.push_back('0'); string temp ; for(int i = 0 ; i < kk ; i++) { int d = rem%2; rem /= 2; temp.push_back(d+48); } reverse(temp.begin() , temp.end()); for(int i = 0 ; i < kk ; i++) ans.push_back(temp[i]); cout << ans << "\n"; } }
### Prompt Construct a CPP code solution to the problem outlined: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include<bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while(t--) { int n , k; cin >> n >> k; string x; cin >> x; int pr[n+1]; memset(pr ,0 , sizeof(pr)); for(int i = 0 ; i < n ; i++) { if(x[i] == '1') pr[i+1] = pr[i]+1; else pr[i+1] = pr[i]; } int kk = min((int)log2(n-k+1)+1 , k); //cout << kk << "\n"; set<int>s; for(int i = 0; i < (1 << kk) ; i++) { s.insert(i); } for(int i = k ; i <= n ; i++) { int l = i-k; int r = i-kk; int cnt = pr[r] - pr[l]; if(cnt == (k-kk)) { int mask = 0; for(int j = i-kk+1 ; j <= i ; j++) { if(x[j-1] == '0') { mask ^= (1 << (i-j)); } } // cout << i << " " << mask << "\n"; s.erase(mask); } } if(s.size() == 0) { cout << "NO" << "\n"; continue; } cout << "YES" << "\n"; string ans; int rem = *s.begin(); for(int i = 0 ; i < k-kk ; i++) ans.push_back('0'); string temp ; for(int i = 0 ; i < kk ; i++) { int d = rem%2; rem /= 2; temp.push_back(d+48); } reverse(temp.begin() , temp.end()); for(int i = 0 ; i < kk ; i++) ans.push_back(temp[i]); cout << ans << "\n"; } } ```
#include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(a),i##end=(b);i<=i##end;++i) #define per(i,a,b) for(int i=(a),i##end=(b);i>=i##end;--i) mt19937 Rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); template<typename T>void chkmax(T&x,T y){if(x<y)x=y;} template<typename T>void chkmin(T&x,T y){if(x>y)x=y;} inline int read(){ #define nc getchar() int x=0;char c=nc;bool f=0; while(c<48)f|=c=='-',c=nc; while(c>47)x=x*10+(c^48),c=nc; return f?-x:x; #undef nc } typedef double db; typedef long long ll; typedef vector<int> vi; typedef pair<int,int> pii; const int maxn=1e6+10; const int P1 = 1e9 + 7, P2 = 1e9 + 9; int base, pow1[maxn], pow2[maxn]; struct Hash { int v1, v2; Hash() {} Hash(int x, int y) : v1(x), v2(y) {} ll gvz(){return 1ll*v1*P2+v2;} void print() { printf("#(%d %d)\n", v1, v2); } void get(Hash &o, char ch) { v1 = (1ll * o.v1 * base + ch) % P1; v2 = (1ll * o.v2 * base + ch) % P2; } bool operator == (const Hash &o) const { return v1 == o.v1 && v2 == o.v2; } bool operator != (const Hash &o) const { return v1 != o.v1 || v2 != o.v2; } }H[maxn],F[maxn]; Hash getsum(Hash *A, int l, int r) { return Hash((A[r].v1 + 1ll * (P1 - A[l - 1].v1) * pow1[r - l + 1]) % P1, (A[r].v2 + 1ll * (P2 - A[l - 1].v2) * pow2[r - l + 1]) % P2); } void init() { base = Rnd(); if (base < 0) base = -base; base %= 19260817, base += 257; pow1[0] = pow2[0] = 1; rep(i, 1, maxn - 1) { pow1[i] = 1ll * base * pow1[i - 1] % P1; pow2[i] = 1ll * base * pow2[i - 1] % P2; } rep(i,1,maxn-1){ F[i].get(F[i>>1],i&1); } } int n,k,A[maxn]; char str[maxn]; void solve(){ scanf("%d%d%s",&n,&k,str+1); rep(i,1,n)A[i]=(str[i]-'0')^1,H[i].get(H[i-1],A[i]); set<ll>vis; rep(i,1,n-k+1)vis.insert(getsum(H,i,i+k-1).gvz()); rep(i,0,min(n-k+2,k<=25?(1<<k)-1:n)){ if(!vis.count(F[i].gvz())){ puts("YES"); static int ans[maxn]; memset(ans,0,(k+1)<<2); int x=i,ps=k; while(x)ans[ps--]=x&1,x>>=1; rep(i,1,k)printf("%d",ans[i]); puts(""); return; } } puts("NO"); } signed main(){ init(); int T=read(); while(T--)solve(); // solve(); return 0; }
### Prompt Please create a solution in CPP to the following problem: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(a),i##end=(b);i<=i##end;++i) #define per(i,a,b) for(int i=(a),i##end=(b);i>=i##end;--i) mt19937 Rnd(chrono::high_resolution_clock::now().time_since_epoch().count()); template<typename T>void chkmax(T&x,T y){if(x<y)x=y;} template<typename T>void chkmin(T&x,T y){if(x>y)x=y;} inline int read(){ #define nc getchar() int x=0;char c=nc;bool f=0; while(c<48)f|=c=='-',c=nc; while(c>47)x=x*10+(c^48),c=nc; return f?-x:x; #undef nc } typedef double db; typedef long long ll; typedef vector<int> vi; typedef pair<int,int> pii; const int maxn=1e6+10; const int P1 = 1e9 + 7, P2 = 1e9 + 9; int base, pow1[maxn], pow2[maxn]; struct Hash { int v1, v2; Hash() {} Hash(int x, int y) : v1(x), v2(y) {} ll gvz(){return 1ll*v1*P2+v2;} void print() { printf("#(%d %d)\n", v1, v2); } void get(Hash &o, char ch) { v1 = (1ll * o.v1 * base + ch) % P1; v2 = (1ll * o.v2 * base + ch) % P2; } bool operator == (const Hash &o) const { return v1 == o.v1 && v2 == o.v2; } bool operator != (const Hash &o) const { return v1 != o.v1 || v2 != o.v2; } }H[maxn],F[maxn]; Hash getsum(Hash *A, int l, int r) { return Hash((A[r].v1 + 1ll * (P1 - A[l - 1].v1) * pow1[r - l + 1]) % P1, (A[r].v2 + 1ll * (P2 - A[l - 1].v2) * pow2[r - l + 1]) % P2); } void init() { base = Rnd(); if (base < 0) base = -base; base %= 19260817, base += 257; pow1[0] = pow2[0] = 1; rep(i, 1, maxn - 1) { pow1[i] = 1ll * base * pow1[i - 1] % P1; pow2[i] = 1ll * base * pow2[i - 1] % P2; } rep(i,1,maxn-1){ F[i].get(F[i>>1],i&1); } } int n,k,A[maxn]; char str[maxn]; void solve(){ scanf("%d%d%s",&n,&k,str+1); rep(i,1,n)A[i]=(str[i]-'0')^1,H[i].get(H[i-1],A[i]); set<ll>vis; rep(i,1,n-k+1)vis.insert(getsum(H,i,i+k-1).gvz()); rep(i,0,min(n-k+2,k<=25?(1<<k)-1:n)){ if(!vis.count(F[i].gvz())){ puts("YES"); static int ans[maxn]; memset(ans,0,(k+1)<<2); int x=i,ps=k; while(x)ans[ps--]=x&1,x>>=1; rep(i,1,k)printf("%d",ans[i]); puts(""); return; } } puts("NO"); } signed main(){ init(); int T=read(); while(T--)solve(); // solve(); return 0; } ```
#include <bits/stdc++.h> using namespace std; #define FOR(a,b) for (int a=0; a<b; a++) #define FUR(a,b) for (int a=1; a<=b; a++) #define ROF(a,b) for (int a=b; a-->0; ) #define RUF(a,b) for (int a=b; a>0; a--) #define FORR(a,b,c) for (int a=b; a<c; a++) #define all(v) begin(v),end(v) #define rall(v) rbegin(v),rend(v) #define xx first #define yy second #define ass assign #define pb push_back #define pob pop_back #define pf push_front #define pof pop_front #define lb lower_bound #define ub upper_bound #define ll long long #define V vector #define pii pair<int,int> template<class T> ostream& operator<<(ostream& os, const vector<T>& v) { for (const T& x: v) os << x << ' '; return os; } template<class T> istream& operator>>(istream& is, vector<T>& v) { for (T& x: v) is >> x; return is; } void DBG() { cerr << "]" << endl; } template<class H, class... T> void DBG(H h, T... t) { cerr << h; if (sizeof...(t)) cerr << ", "; DBG(t...); } #ifdef LOCAL // compile with -DLOCAL #define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__) #else #define dbg(...) 0 #endif template<class T> bool miin(T& a, const T& b) { return a > b ? a=b,1 : 0; } template<class T> bool maax(T& a, const T& b) { return a < b ? a=b,1 : 0; } const int MOD = 1e9+7; // 998244353; const ll INF = 1e18; const char nl = '\n'; const double PI = acos(-1); const int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1}; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int main() { ios::sync_with_stdio(0), cin.tie(0); int q; cin >> q; FOR(test,q) { int n,k; cin >> n >> k; string s; cin >> s; V<int> c0(n+1); FOR(i,n) c0[i+1] = c0[i] + (s[i]=='0'); int poss = n-k+1; int pre0 = k - ceil(log2(poss + 1)); pre0 = max(pre0, 0); int post = k-pre0; cerr << poss << ' ' << pre0 << ' ' << post << '+'; unordered_set<string> seen; FOR(i,poss) { if (c0[i] < c0[i+pre0]) continue; // already ok string x = s.substr(i+pre0, post); seen.insert(x); } int ans; string kek(post,'0'); int MAX = 1 << post; for (ans=0; ans<MAX; ans++) { FOR(i,post) kek[post-i-1] = ( ans & (1<<i) ? '0' : '1' ); if (!seen.count(kek)) { for (char&c: kek) c = ( c=='0' ? '1' : '0' ); break; } } if (ans == MAX) cout << "NO\n"; else cout << "YES\n" << string(pre0,'0') << kek << nl; } }
### Prompt Create a solution in Cpp for the following problem: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include <bits/stdc++.h> using namespace std; #define FOR(a,b) for (int a=0; a<b; a++) #define FUR(a,b) for (int a=1; a<=b; a++) #define ROF(a,b) for (int a=b; a-->0; ) #define RUF(a,b) for (int a=b; a>0; a--) #define FORR(a,b,c) for (int a=b; a<c; a++) #define all(v) begin(v),end(v) #define rall(v) rbegin(v),rend(v) #define xx first #define yy second #define ass assign #define pb push_back #define pob pop_back #define pf push_front #define pof pop_front #define lb lower_bound #define ub upper_bound #define ll long long #define V vector #define pii pair<int,int> template<class T> ostream& operator<<(ostream& os, const vector<T>& v) { for (const T& x: v) os << x << ' '; return os; } template<class T> istream& operator>>(istream& is, vector<T>& v) { for (T& x: v) is >> x; return is; } void DBG() { cerr << "]" << endl; } template<class H, class... T> void DBG(H h, T... t) { cerr << h; if (sizeof...(t)) cerr << ", "; DBG(t...); } #ifdef LOCAL // compile with -DLOCAL #define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__) #else #define dbg(...) 0 #endif template<class T> bool miin(T& a, const T& b) { return a > b ? a=b,1 : 0; } template<class T> bool maax(T& a, const T& b) { return a < b ? a=b,1 : 0; } const int MOD = 1e9+7; // 998244353; const ll INF = 1e18; const char nl = '\n'; const double PI = acos(-1); const int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1}; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int main() { ios::sync_with_stdio(0), cin.tie(0); int q; cin >> q; FOR(test,q) { int n,k; cin >> n >> k; string s; cin >> s; V<int> c0(n+1); FOR(i,n) c0[i+1] = c0[i] + (s[i]=='0'); int poss = n-k+1; int pre0 = k - ceil(log2(poss + 1)); pre0 = max(pre0, 0); int post = k-pre0; cerr << poss << ' ' << pre0 << ' ' << post << '+'; unordered_set<string> seen; FOR(i,poss) { if (c0[i] < c0[i+pre0]) continue; // already ok string x = s.substr(i+pre0, post); seen.insert(x); } int ans; string kek(post,'0'); int MAX = 1 << post; for (ans=0; ans<MAX; ans++) { FOR(i,post) kek[post-i-1] = ( ans & (1<<i) ? '0' : '1' ); if (!seen.count(kek)) { for (char&c: kek) c = ( c=='0' ? '1' : '0' ); break; } } if (ans == MAX) cout << "NO\n"; else cout << "YES\n" << string(pre0,'0') << kek << nl; } } ```
#include <bits/stdc++.h> typedef long long ll; using namespace std; char str[1001000]; pair<bool, int> check[(1<<23)]; int suf[1001000]; int dp[1001000]; int main(){ int t; scanf("%d", &t); while(t--){ int n, k; scanf("%d %d", &n, &k); scanf("%s", str); suf[0]=str[0]-'0'; dp[0]=suf[0]; if (k==1) check[dp[0]]=make_pair(1, t); for (int i=1;i<n;i++){ if (str[i]=='1') suf[i]=suf[i-1]+1; else suf[i]=0; int tmp; if (k>22)tmp=dp[i-1]&(~(1<<21)); else tmp=dp[i-1]&(~(1<<(k-1))); tmp <<=1; tmp+=(str[i]-'0'); dp[i]=tmp; //printf("dp %d: %d\n", i, tmp); if (i<k-1) continue; if (k>21 && i-22>=0){ if (suf[i-22]>=k-22){ check[dp[i]].first=1; check[dp[i]].second=t; } } else{ check[dp[i]].first=1; check[dp[i]].second=t; } } int xx=min(22, k); int anss; bool test=1; for (int i=(1<<xx)-1;i>=0;i--){ if (!check[i].first || check[i].second!=t){ test=0; anss=i; break; } } if (test) printf("NO\n"); else{ printf("YES\n"); int yy=max(0, k-22); for (int i=0;i<yy;i++) printf("0"); for (int i=xx-1;i>=0;i--){ if (anss & (1<<i)) printf("0"); else printf("1"); } printf("\n"); } } return 0; }
### Prompt Please provide a cpp coded solution to the problem described below: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include <bits/stdc++.h> typedef long long ll; using namespace std; char str[1001000]; pair<bool, int> check[(1<<23)]; int suf[1001000]; int dp[1001000]; int main(){ int t; scanf("%d", &t); while(t--){ int n, k; scanf("%d %d", &n, &k); scanf("%s", str); suf[0]=str[0]-'0'; dp[0]=suf[0]; if (k==1) check[dp[0]]=make_pair(1, t); for (int i=1;i<n;i++){ if (str[i]=='1') suf[i]=suf[i-1]+1; else suf[i]=0; int tmp; if (k>22)tmp=dp[i-1]&(~(1<<21)); else tmp=dp[i-1]&(~(1<<(k-1))); tmp <<=1; tmp+=(str[i]-'0'); dp[i]=tmp; //printf("dp %d: %d\n", i, tmp); if (i<k-1) continue; if (k>21 && i-22>=0){ if (suf[i-22]>=k-22){ check[dp[i]].first=1; check[dp[i]].second=t; } } else{ check[dp[i]].first=1; check[dp[i]].second=t; } } int xx=min(22, k); int anss; bool test=1; for (int i=(1<<xx)-1;i>=0;i--){ if (!check[i].first || check[i].second!=t){ test=0; anss=i; break; } } if (test) printf("NO\n"); else{ printf("YES\n"); int yy=max(0, k-22); for (int i=0;i<yy;i++) printf("0"); for (int i=xx-1;i>=0;i--){ if (anss & (1<<i)) printf("0"); else printf("1"); } printf("\n"); } } return 0; } ```
#include <bits/stdc++.h> using namespace std; using ll = long long; const int N = 2e6 + 10; char s[N]; int a[N]; char t[N]; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int T; cin >> T; while (T--) { int n, k; cin >> n >> k; cin >> s; for (int i = 0; i < n; ++i) { a[i] = (i == 0 ? 0 : a[i - 1]) + (s[i] == '0'); } set<int> da; for (int i = 0; i <= n - k; ++i) { int val = 0; if (k > 20 && a[i + k - 21] - (i == 0 ? 0 : a[i - 1]) > 0) continue; for (int j = max(i, i + k - 20), bs = 1; j < i + k; ++j) { val = val * 2 + (s[j] == '0'); } da.emplace(val); } for (int i = 0; ; ++i) { if (k <= 20 && (1 << k) <= i) { cout << "NO" << endl; break; } if (da.find(i) != da.end()) continue; int l = 0; for (int j = i; j; j /= 2) { t[l++] = j % 2 + '0'; } for (; l < k && l < 20; ) { t[l++] = '0'; } reverse(t, t + l); cout << "YES" << endl; for (int j = 0; j < k - l; ++j) cout << '0'; for (int j = 0; j < l; ++j) cout << t[j]; cout << endl; break; } } }
### Prompt Your challenge is to write a Cpp solution to the following problem: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp #include <bits/stdc++.h> using namespace std; using ll = long long; const int N = 2e6 + 10; char s[N]; int a[N]; char t[N]; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int T; cin >> T; while (T--) { int n, k; cin >> n >> k; cin >> s; for (int i = 0; i < n; ++i) { a[i] = (i == 0 ? 0 : a[i - 1]) + (s[i] == '0'); } set<int> da; for (int i = 0; i <= n - k; ++i) { int val = 0; if (k > 20 && a[i + k - 21] - (i == 0 ? 0 : a[i - 1]) > 0) continue; for (int j = max(i, i + k - 20), bs = 1; j < i + k; ++j) { val = val * 2 + (s[j] == '0'); } da.emplace(val); } for (int i = 0; ; ++i) { if (k <= 20 && (1 << k) <= i) { cout << "NO" << endl; break; } if (da.find(i) != da.end()) continue; int l = 0; for (int j = i; j; j /= 2) { t[l++] = j % 2 + '0'; } for (; l < k && l < 20; ) { t[l++] = '0'; } reverse(t, t + l); cout << "YES" << endl; for (int j = 0; j < k - l; ++j) cout << '0'; for (int j = 0; j < l; ++j) cout << t[j]; cout << endl; break; } } } ```
/* _|_| _| _| _| _| _| _| _|_| _|_|_|_| _| _| _| _| _| _|_| _| _| _|_| _| _| _| _| _| _| _| _| _|_| _| _|_|_|_| _|_| _| _| */ #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<vector> #include<queue> #include<set> #include<unordered_map> //#define ls (rt<<1) //#define rs (rt<<1|1) #define vi vector<int> #define pb push_back #define mk make_pair #define pii pair<int,int> #define rep(i,a,b) for(int i=(a),i##end=(b);i<=i##end;i++) #define fi first #define se second typedef long long ll; using namespace std; const int maxn=1e6+100; char s[maxn],trans[maxn]; int n,k; struct Hash{ int pow[maxn],mod,base,pre[maxn]; unordered_map<int,bool>ck; int tar[maxn]; int ksm(int num,int t){ int res=1; for(;t;t>>=1,num=1ll*num*num%mod){ if(t&1)res=1ll*num*res%mod; } return res; } void build(){ pow[0]=1; rep(i,1,maxn-1)pow[i]=1ll*pow[i-1]*base%mod; } void init(){ ck.clear(); rep(i,1,n)pre[i]=1ll*pow[i]*s[i]%mod; rep(i,1,n)pre[i]=(pre[i]+pre[i-1])%mod; rep(i,1,k)tar[i]=1ll*pow[i]*trans[i]%mod; rep(i,1,k)tar[i]=(tar[i]+tar[i-1])%mod; } int seg(int l,int r){ int res=1ll*(pre[r]-pre[l-1])*ksm(pow[l-1],mod-2)%mod; res=(res%mod+mod)%mod; return res; } void recalc(int st){ rep(i,st,k){ tar[i]=1ll*pow[i]*trans[i]%mod; tar[i]=(tar[i]+tar[i-1])%mod; } } }h[2]; void solve(){ scanf("%d%d",&n,&k);rep(i,1,k)trans[i]='1'; scanf("%s",s+1);h[0].init();h[1].init(); for(int l=1,r=k;r<=n;l++,r++){ h[0].ck[h[0].seg(l,r)]=1; h[1].ck[h[1].seg(l,r)]=1; } if(!h[0].ck[h[0].tar[k]]||!h[1].ck[h[1].tar[k]]){ printf("YES\n"); rep(i,1,k)printf("%d",(trans[i]-'0')^1);printf("\n");return; } ll lim=0; if(k>23)lim=(1<<23); else lim=(1<<k)-2; for(ll i=lim;i>=0;i--){ int flag=-1; for(int j=k;j>=1;j--){ if(trans[j]=='1'){trans[j]='0';flag=j;break;} else {trans[j]='1';} } h[0].recalc(flag);h[1].recalc(flag); if(!h[0].ck[h[0].tar[k]]||!h[1].ck[h[1].tar[k]]){ printf("YES\n"); rep(i,1,k)printf("%d",(trans[i]-'0')^1);printf("\n");return; } } printf("NO\n"); } int main(){ h[0].mod=998244353;h[0].base=233;h[0].build(); h[1].mod=1e9+7;h[1].base=2333;h[1].build(); int t;scanf("%d",&t); while(t--)solve(); }
### Prompt Please formulate a CPP solution to the following problem: Let's call two strings a and b (both of length k) a bit similar if they have the same character in some position, i. e. there exists at least one i ∈ [1, k] such that a_i = b_i. You are given a binary string s of length n (a string of n characters 0 and/or 1) and an integer k. Let's denote the string s[i..j] as the substring of s starting from the i-th character and ending with the j-th character (that is, s[i..j] = s_i s_{i + 1} s_{i + 2} ... s_{j - 1} s_j). Let's call a binary string t of length k beautiful if it is a bit similar to all substrings of s having length exactly k; that is, it is a bit similar to s[1..k], s[2..k+1], ..., s[n-k+1..n]. Your goal is to find the lexicographically smallest string t that is beautiful, or report that no such string exists. String x is lexicographically less than string y if either x is a prefix of y (and x ≠ y), or there exists such i (1 ≤ i ≤ min(|x|, |y|)), that x_i < y_i, and for any j (1 ≤ j < i) x_j = y_j. Input The first line contains one integer q (1 ≤ q ≤ 10000) — the number of test cases. Each test case consists of two lines. The first line of each test case contains two integers n and k (1 ≤ k ≤ n ≤ 10^6). The second line contains the string s, consisting of n characters (each character is either 0 or 1). It is guaranteed that the sum of n over all test cases does not exceed 10^6. Output For each test case, print the answer as follows: * if it is impossible to construct a beautiful string, print one line containing the string NO (note: exactly in upper case, you can't print No, for example); * otherwise, print two lines. The first line should contain the string YES (exactly in upper case as well); the second line — the lexicographically smallest beautiful string, consisting of k characters 0 and/or 1. Example Input 7 4 2 0110 4 2 1001 9 3 010001110 9 3 101110001 10 3 0101110001 10 10 1111111111 11 10 11111111110 Output YES 11 YES 00 YES 010 YES 101 NO YES 0000000001 YES 0000000010 ### Response ```cpp /* _|_| _| _| _| _| _| _| _|_| _|_|_|_| _| _| _| _| _| _|_| _| _| _|_| _| _| _| _| _| _| _| _| _|_| _| _|_|_|_| _|_| _| _| */ #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<vector> #include<queue> #include<set> #include<unordered_map> //#define ls (rt<<1) //#define rs (rt<<1|1) #define vi vector<int> #define pb push_back #define mk make_pair #define pii pair<int,int> #define rep(i,a,b) for(int i=(a),i##end=(b);i<=i##end;i++) #define fi first #define se second typedef long long ll; using namespace std; const int maxn=1e6+100; char s[maxn],trans[maxn]; int n,k; struct Hash{ int pow[maxn],mod,base,pre[maxn]; unordered_map<int,bool>ck; int tar[maxn]; int ksm(int num,int t){ int res=1; for(;t;t>>=1,num=1ll*num*num%mod){ if(t&1)res=1ll*num*res%mod; } return res; } void build(){ pow[0]=1; rep(i,1,maxn-1)pow[i]=1ll*pow[i-1]*base%mod; } void init(){ ck.clear(); rep(i,1,n)pre[i]=1ll*pow[i]*s[i]%mod; rep(i,1,n)pre[i]=(pre[i]+pre[i-1])%mod; rep(i,1,k)tar[i]=1ll*pow[i]*trans[i]%mod; rep(i,1,k)tar[i]=(tar[i]+tar[i-1])%mod; } int seg(int l,int r){ int res=1ll*(pre[r]-pre[l-1])*ksm(pow[l-1],mod-2)%mod; res=(res%mod+mod)%mod; return res; } void recalc(int st){ rep(i,st,k){ tar[i]=1ll*pow[i]*trans[i]%mod; tar[i]=(tar[i]+tar[i-1])%mod; } } }h[2]; void solve(){ scanf("%d%d",&n,&k);rep(i,1,k)trans[i]='1'; scanf("%s",s+1);h[0].init();h[1].init(); for(int l=1,r=k;r<=n;l++,r++){ h[0].ck[h[0].seg(l,r)]=1; h[1].ck[h[1].seg(l,r)]=1; } if(!h[0].ck[h[0].tar[k]]||!h[1].ck[h[1].tar[k]]){ printf("YES\n"); rep(i,1,k)printf("%d",(trans[i]-'0')^1);printf("\n");return; } ll lim=0; if(k>23)lim=(1<<23); else lim=(1<<k)-2; for(ll i=lim;i>=0;i--){ int flag=-1; for(int j=k;j>=1;j--){ if(trans[j]=='1'){trans[j]='0';flag=j;break;} else {trans[j]='1';} } h[0].recalc(flag);h[1].recalc(flag); if(!h[0].ck[h[0].tar[k]]||!h[1].ck[h[1].tar[k]]){ printf("YES\n"); rep(i,1,k)printf("%d",(trans[i]-'0')^1);printf("\n");return; } } printf("NO\n"); } int main(){ h[0].mod=998244353;h[0].base=233;h[0].build(); h[1].mod=1e9+7;h[1].base=2333;h[1].build(); int t;scanf("%d",&t); while(t--)solve(); } ```