text
stringlengths
1
2.05k
pe(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trai
t= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() @staticmethod def concat_i32(): def concat_1D(): x1 = np.arange(0,3).astype(np.int32) x2 = np.arange(3,6).astype(np.int32) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int32).reshape(2,2) x2 = np.arange(4,8).astype(np.int32).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y
= Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name =
"concat_i32_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.I32, x3.shape, x3.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.I32, x3.shape, x3.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2()
concat_1D() concat_2D() concat_3D() @staticmethod def concat_i8(): def concat_1D(): x1 = np.arange(0,3).astype(np.int8) x2 = np.arange(3,6).astype(np.int8) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int8).reshape(2,2) x2 = np.arange(4,8).astype(np.int8).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(
): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![i
nput_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() @staticmethod def concat_fp8x23(): def concat_1D(): x1 = np.arange(0,3).astype(np.int64) x2 = np.arange(3,6).astype(np.int64) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int64).reshape(2,2)
x2 = np.arange(4,8).astype(np.int64).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape,to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_
fp8x23_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.FP8x23, x3.shape,to_fp( x3.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR)
def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp( x3.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() staticmethod def concat_fp16x16(): def concat_1D(): x1 = np.arange(0,3).astype(np.int64) x2 = np.arange(3,6).astype(np.int64) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D():
x1 = np.arange(0,4).astype(np.int64).reshape(2,2) x2 = np.arange(4,8).astype(np.int64).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.s
hape ,to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp( x3.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(a
rray![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp( x3.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape,to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Concat_from_sequence(RunAll): @staticmethod def concat_from_sequence_u32(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32) tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32) tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32)
tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_i32(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = n
p.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_i8(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name
= "concat_from_sequence_i8_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i8_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i8_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_fp8x23(): def new_axis
_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64)
tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_fp16x16(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(valu
es.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
import numpy as np def r_index_check(r_index, shape_out): for i in range(len(r_index)): if r_index[i] >= shape_out[i]: return False return True def stride(arr): stride = np.zeros(len(arr)) acc = 1 for i in range(len(arr)): stride[i] = acc acc *= arr[-(i + 1)] return np.flip(stride) def conv( X, W, B=None, auto_pad=None, dilations=None, group=None, kernel_shape=None, pads=None, strides=None, ): if dilations is None: dilations = [1 for s in X.shape[2:]] if kernel_shape is None: kernel_shape = W.shape[2:] if pads is None: pads = [0 for s in X.shape[2:]] * 2 if strides is None: strides = [1 for s in X.shape[2:]] if X.shape[1] != W.shape[1] * group or W.shape[0] % group != 0: raise ValueError( f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={group}, " f"W should be {(W.shape[0], X.shape[1] ) if group > 1: res = [] td = 0 mg = W.shape[0] dw = W.shape[1] for b in range(X.shape[0]): for g in range(group): gx = X[b : b + 1, g * dw : (g + 1) * dw] gw = W[g * mg : (g + 1) * mg] try: cv = conv( gx, gw, None, auto_pad, dilations, 1, kernel_shape, pads, strides, ) except (ValueError, RuntimeError) as e: raise ValueError( f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={g}/{group}, " f"gx.shape={gx.shape}, gw.shape={gw.shape}, auto_pad={auto_pad}, " f"dilations={dilations}, kernel_shape={
kernel_shape}, pads={pads}, " f"strides={strides}." ) from e if b == 0: td += cv.shape[1] res.append((b, cv)) new_shape = [X.shape[0], *list(res[0][1].shape[1:])] new_shape[1] = td final = np.zeros(tuple(new_shape), dtype=res[0][1].dtype) p = 0 for b, cv in res: final[b : b + 1, p : p + cv.shape[1]] = cv p += cv.shape[1] if p >= final.shape[1]: p = 0 if B is not None: new_shape = [1 for s in final.shape] new_shape[1] = B.shape[0] b = B.reshape(tuple(new_shape)) final += b return final if dilations[0] != 1 or min(dilations) != max(dilations): nd = len(dilations) new_kernel_shape = [] new_shape = list(W.shape[:-nd]) for i, d in enumerate(dilations): di = len(W.shape) - nd + i new_shape.append(W.shape[di] + (W.shape[di] - 1) * (d - 1)) new_kernel_shape.append(kernel_shape[i] + (kernel_shape[i] - 1) * (d - 1)) new_w = np.zeros(tuple(new_shape), dtype=W.dtype) indices = [slice(0, new_w.shape[0]), slice(0, new_w.shape[1])] for i, d in enumerate(dilations): di = len(W.shape) - nd + i indices.append(slice(0, new_w.shape[di], d)) new_w[tuple(indices)] = W W = new_w kernel_shape = new_kernel_shape if auto_pad in {"SAME_LOWER", "SAME_UPPER", "VALID"}: head = [] tail = [] for i in range(len(X.shape) - 2): d = X.shape[i] target_size = (d + strides[i] - 1) pad_needed = (target_size - 1) * strides[i] + kernel_shape[i] - d if auto_pad == "SAME_LOWER": pad_head = (pad_needed + 1) else: pad_head = pad_needed pad_tail = pad_needed - pad_head head.append(pad_head) tail.append
(pad_tail) pads = head + tail if len(X.shape) == 3: sN, sC, sH = X.shape (kh,) = kernel_shape (sth,) = strides h_out = int(((sH - kh + pads[0] + pads[1]) / sth) + 1) h0 = pads[0] oh = -1 * (kh % 2) bh = -h0 eh = h_out * sth res = np.zeros((X.shape[0], W.shape[0], h_out)) if B is not None: res[:, :, :] += B.reshape((1, -1, 1)) for n in range(0, sN): for nw in range(W.shape[0]): for c in range(0, sC): w = W[nw : nw + 1, c : c + 1] for io in range(bh, eh, sth): hr = (io - bh) if hr >= h_out: continue i = io + kh % 2 ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH) img = X[n : n + 1, c : c + 1, ih1:ih2] if img.shape != w.shape: jh1, jh2 = max(-oh - i, 0), min(kh, kh + sH - (i + oh + kh)) w_ = w[:1, :1, jh1:jh2] if img.shape != w_.shape: raise RuntimeError( f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, " f"i={i}, kh={kh}, sH={sH}, sth={sth}." ) s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[ 0, 0 ] else: s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[ 0, 0 ] res[n, nw, hr] += s return res if len(X.shape) == 4: sN, sC, sH, sW = X.shape kh, kw = kernel_shape sth, stw = strides h_out = int(((sH - kh + pads[0] + p
ads[2]) / sth) + 1) w_out = int(((sW - kw + pads[1] + pads[3]) / stw) + 1) h0, w0 = pads[0], pads[1] oh, ow = -1 * (kh % 2), -1 * (kw % 2) bh, bw = -h0, -w0 eh, ew = h_out * sth, w_out * stw res = np.zeros((X.shape[0], W.shape[0], h_out, w_out)) if B is not None: res[:, :, :, :] = B.reshape((1, -1, 1, 1)) for n in range(0, sN): for nw in range(W.shape[0]): for c in range(0, sC): w = W[nw : nw + 1, c : c + 1] for io in range(bh, eh, sth): hr = (io - bh) if hr >= h_out: continue i = io + kh % 2 ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH) for jo in range(bw, ew, stw): wr = (jo - bw) if wr >= w_out: continue j = jo + kw % 2 iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW) img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2] if img.shape != w.shape: jh1, jh2 = max(-oh - i, 0), min( kh, kh + sH - (i + oh + kh) ) jw1, jw2 = max(-ow - j, 0), min( kw, kw + sW - (j + ow + kw) ) w_ = w[:1, :1, jh1:jh2, jw1:jw2] if img.shape != w_.shape: raise RuntimeError( f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, " f"i={i}, j={j}, kh={kh}, kw={kw}, sH={sH}, sW={sW}, sth={sth}, stw={stw}." )
s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[ 0, 0 ] else: s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[ 0, 0 ] res[n, nw, hr, wr] += s return res if len(X.shape) == 5: sN, sC, sH, sW, sZ = X.shape kh, kw, kz = kernel_shape sth, stw, stz = strides h_out = int(((sH - kh + pads[0] + pads[3]) / sth) + 1) w_out = int(((sW - kw + pads[1] + pads[4]) / stw) + 1) z_out = int(((sZ - kz + pads[2] + pads[5]) / stz) + 1) h0, w0, z0 = pads[0], pads[1], pads[2] oh, ow, oz = -1 * (kh % 2), -1 * (kw % 2), -1 * (kz % 2) bh, bw, bz = -h0, -w0, -z0 eh, ew, ez = h_out * sth, w_out * stw, z_out * stz res = np.zeros((X.shape[0], W.shape[0], h_out, w_out, z_out)) if B is not None: res[:, :, :, :, :] = B.reshape((1, -1, 1, 1, 1)) for n in range(0, sN): for nw in range(W.shape[0]): for c in range(0, sC): w = W[nw : nw + 1, c : c + 1] for io in range(bh, eh, sth): hr = (io - bh) if hr >= h_out: continue i = io + kh % 2 ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH) for jo in range(bw, ew, stw): wr = (jo - bw) if wr >= w_out: continue j = jo + kw % 2 iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW) for zo in range(bz, ez, stz): zr = (zo - bz) if zr >= z_out:
continue z = zo + kz % 2 iz1, iz2 = max(0, z + oz), min(z + oz + kz, sZ) img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2, iz1:iz2] if img.shape != w.shape: jh1, jh2 = max(-oh - i, 0), min( kh, kh + sH - (i + oh + kh) ) jw1, jw2 = max(-ow - j, 0), min( kw, kw + sW - (j + ow + kw) ) jz1, jz2 = max(-oz - z, 0), min( kz, kz + sZ - (z + oz + kz) ) w_ = w[:1, :1, jh1:jh2, jw1:jw2, jz1:jz2] if img.shape != w_.shape: raise RuntimeError( f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, oz={oz}, " f"i={i}, j={j}, z={z}, kh={kh}, kw={kw}, kz={kz}, " f"sH={sH}, sW={sW}, sZ={sZ}, sth={sth}, stw={stw}, stz={stz}." ) s = np.dot( img.reshape((1, -1)), w_.reshape((-1, 1)) )[ 0, 0 ] else: s = np.dot( img.reshape((1, -1)), w.reshape((-1, 1)) )[ 0, 0
] res[n, nw, hr, wr, zr] += s return res else: nd = len(X.shape[2:]) sN, sC = X.shape[:2] x_stride = stride(X.shape) w_stride = stride(W.shape) x_flatten = X.reshape(int(x_stride[0] * X.shape[0])) shape_out = [int(((X.shape[2+i] - kernel_shape[i] + pads[i] + pads[i + nd]) / strides[i]) + 1) for i in range(nd)] o_index = [-1 * (kernel_shape[i] % 2) for i in range(nd)] b_index = [-pads[i] for i in range(nd)] e_index = [shape_out[i] * strides[i] for i in range(nd)] range_len = [e_index[i] - b_index[i] / strides[i] for i in range(nd)] range_stride = stride(range_len) res_shape = [X.shape[0], W.shape[0]] + shape_out res = np.zeros(res_shape) res_strides = stride(res_shape) if B is not None: res[:, :, :, :, :] = B.reshape((1, -1, 1, 1, 1)) for n in range(0, sN): for nw in range(W.shape[0]): for c in range(0, sC): w = W[nw : nw + 1, c : c + 1] for i in range(int(range_len[0] * range_stride[0])): flatten_index = i io_index = np.zeros(nd) r_index = np.zeros(nd) for nx in range(nd): n_index, rem = divmod(flatten_index, range_stride[nx]) flatten_index = rem io_index[nx] = n_index * strides[nx] + b_index[nx] r_index[nx] = n_index if r_index_check(r_index, shape_out): indices = [io_index[nx] + (kernel_shape[nx] % 2) for nx in range(nd)] i1_index = [max(0, indices[nx] + o_index[nx]) for nx in range(nd)] i2_index = [min(X.shape[2 + nx], indices[nx] + o_index[nx] + kernel_shape[n
x]) for nx in range(nd)] idiff_index = [int(i2_index[nx] - i1_index[nx]) for nx in range(nd - 1)] i_stride = stride(idiff_index) img = [] for ii in range(int(i_stride[0] * idiff_index[0])): flatten_index = ii start = n * x_stride[0] + c * x_stride[1] for nx in range(nd - 1): ii_index, rem = divmod(flatten_index, i_stride[nx]) flatten_index = rem start += (i1_index[nx] + ii_index) * x_stride[2 + nx] start += i1_index[nd-1] end = start + (i2_index[nd-1] - i1_index[nd-1]) img.append(x_flatten[int(start):int(end)]) img_shape = [1, 1] + idiff_index w = w.reshape(np.prod(kernel_shape)) if len(img) != len(w): j1_index = [max(0, -indices[nx] - o_index[nx]) for nx in range(nd)] j2_index = [min(X.shape[2 + nx] - indices[nx] - o_index[nx], kernel_shape[nx]) for nx in range(nd)] jdiff_index = [j2_index[nx] - j1_index[nx] for nx in range(nd - 1)] w_ = [] j_stride = stride(jdiff_index) for jj in range(int(j_stride[0] * jdiff_index[0])): flatten_index = jj start = 0 for nx in range(nd): jj_index, rem = divmod(flatten_index, range_stride[nx]) flatten_index = rem start += (j1_index[nx] + jj_i
ndex) * kernel_shape[nx] w_.append(w[int(start + j1_index[-1]):int(start + j1_index[-1] + j2_index[nd-1] - j1_index[nd-1])]) img = np.array(img) s = np.dot( np.array(img).reshape((1, -1)), np.array(w_).reshape((-1, 1)) )[ 0, 0 ] else: img = np.array(img) s = np.dot( np.array(img).reshape((1, -1)), np.array(w_).reshape((-1, 1)) )[ 0, 0 ] res_index = [] for nx in range(nd): res_index.append(int(r_index[nx])) index = tuple([n, nw]) + tuple(res_index) res[index] += s return res
class Conv(RunAll): @staticmethod def export_conv_1D_no_padding() -> None: x = np.array( [ [ [ 0.0, 1.0, 2.0, 3.0, 4.0 ] ] ] ).astype(np.float32) w = np.array( [ [ [ 1.0, 1.0, 1.0 ] ] ] ).astype(np.float32) y = conv(x, w, group = 1) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_1D_no_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_1D_with_padding() -> None: x = np.array( [ [ [ 0.0, 1.0, 2.0, 3.0, 4.0 ] ] ] ).astype(np.float32) w = np.array( [ [ [ 1.0, 1.0, 1.0 ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, pads=[1, 1]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
name = "conv_1D_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![1, 1].span())," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_2D_no_padding() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[0, 0, 0, 0],) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig,
name, Trait.NN) @staticmethod def export_con_2D_with_padding() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 1, 1, 1],) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![1, 1, 1, 1].span())," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_3D_no_padding() -> None: x = np.array( [ [ [ [ [ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[ 10, 11, 12, 13, 14],[ 15, 16, 17, 18, 19],[ 20, 21, 22, 23, 24] ], [ [ 25
, 26, 27, 28, 29],[ 30, 31, 32, 33, 34],[ 35, 36, 37, 38, 39],[ 40, 41, 42, 43, 44],[ 45, 46, 47, 48, 49] ], [ [ 50, 51, 52, 53, 54],[ 55, 56, 57, 58, 59],[ 60, 61, 62, 63, 64],[ 65, 66, 67, 68, 69],[ 70, 71, 72, 73, 74] ], [ [ 75, 76, 77, 78, 79],[ 80, 81, 82, 83, 84],[ 85, 86, 87, 88, 89],[ 90, 91, 92, 93, 94],[ 95, 96, 97, 98, 99] ], [ [100, 101, 102, 103, 104],[105, 106, 107, 108, 109],[110, 111, 112, 113, 114],[115, 116, 117, 118, 119],[120, 121, 122, 123, 124] ] ] ] ] ).astype(np.float32) w = np.array( [ [ [ [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ], [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ], [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ] ] ] ] ).astype(np.float32) y = conv(x, w, group = 1) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_3D_no_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None,"
func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_3D_with_padding() -> None: x = np.array( [ [ [ [ [ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[ 10, 11, 12, 13, 14],[ 15, 16, 17, 18, 19],[ 20, 21, 22, 23, 24] ], [ [ 25, 26, 27, 28, 29],[ 30, 31, 32, 33, 34],[ 35, 36, 37, 38, 39],[ 40, 41, 42, 43, 44],[ 45, 46, 47, 48, 49] ], [ [ 50, 51, 52, 53, 54],[ 55, 56, 57, 58, 59],[ 60, 61, 62, 63, 64],[ 65, 66, 67, 68, 69],[ 70, 71, 72, 73, 74] ], [ [ 75, 76, 77, 78, 79],[ 80, 81, 82, 83, 84],[ 85, 86, 87, 88, 89],[ 90, 91, 92, 93, 94],[ 95, 96, 97, 98, 99] ], [ [100, 101, 102, 103, 104],[105, 106, 107, 108, 109],[110, 111, 112, 113, 114],[115, 116, 117, 118, 119],[120, 121, 122, 123, 124] ] ] ] ] ).astype(np.float32) w = np.array( [ [ [ [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ], [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ], [ [1., 1., 1.],[1., 1., 1.],[1., 1., 1.] ] ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, pads=[1, 1, 1, 1, 1, 1]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x1
6)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_3D_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![1, 1, 1, 1, 1, 1].span())," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_4D_no_padding() -> None: x = np.array( [ [ [ [ [ [ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8] ], [ [ 9, 10, 11],[12, 13, 14],[15, 16, 17] ], [ [18, 19, 20],[21, 22, 23],[24, 25, 26] ] ], [ [ [27, 28, 29],[30, 31, 32],[33, 34, 35] ], [ [36, 37, 38],[39, 40, 41],[42, 43, 44] ], [ [45, 46, 47],[48, 49, 50],[51, 52, 53] ] ], [ [ [54, 55, 56],[57, 58, 59],[60, 61, 62] ], [ [63, 64, 65],[66, 67, 68],[69, 70, 71] ], [
[72, 73, 74],[75, 76, 77],[78, 79, 80] ] ] ] ] ] ).astype(np.float32) w = np.array( [ [ [ [ [ [1., 1.],[1., 1.] ], [ [1., 1.],[1., 1.] ] ], [ [ [1., 1.],[1., 1.] ], [ [1., 1.],[1., 1.] ] ] ] ] ] ).astype(np.float32) y = conv(x, w, group = 1) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_4D_no_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_4D_with_padding() -> None: x = np.array( [ [ [ [ [ [ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8] ], [ [ 9, 10, 11]
,[12, 13, 14],[15, 16, 17] ], [ [18, 19, 20],[21, 22, 23],[24, 25, 26] ] ], [ [ [27, 28, 29],[30, 31, 32],[33, 34, 35] ], [ [36, 37, 38],[39, 40, 41],[42, 43, 44] ], [ [45, 46, 47],[48, 49, 50],[51, 52, 53] ] ], [ [ [54, 55, 56],[57, 58, 59],[60, 61, 62] ], [ [63, 64, 65],[66, 67, 68],[69, 70, 71] ], [ [72, 73, 74],[75, 76, 77],[78, 79, 80] ] ] ] ] ] ).astype(np.float32) w = np.array( [ [ [ [ [ [1., 1.],[1., 1.] ], [ [1., 1.],[1., 1.] ] ], [ [ [1., 1.],[1., 1.] ], [ [1., 1.],[1., 1.] ] ] ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, pads=[1, 1, 1, 1, 1, 1, 1, 1]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x1
6)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_4D_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![1, 1, 1, 1, 1, 1, 1, 1].span())," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_with_autopad_same() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, kernel_shape=[3, 3],auto_pad="SAME_LOWER",strides = [2, 2]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_autopad_same" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "O
ption::Some(AUTO_PAD::SAME_LOWER)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![3, 3].span())," func_sig += "Option::None," func_sig += "Option::Some(array![2, 2].span()))" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_with_strides_asymmetric_padding() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 0, 1, 0],strides = [2, 2]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_strides_asymmetric_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![3, 3].span())," func_sig += "Option::Some(array![1, 0, 1, 0].span())," func_sig += "Option::Som
e(array![2, 2].span()))" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_with_strides_with_padding() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 1, 1, 1],strides = [2, 2]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_strides_with_padding" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![3, 3].span())," func_sig += "Option::Some(array![1, 1, 1, 1].span())," func_sig += "Option::Some(array![2, 2].span()))" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_conv_with_2_groups() -> None: x = np.array( [ [
[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [ [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]] ] ] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv(x, w, group = 2) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_2D_with_2_groups" func_sig = "NNTrait::conv(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(2)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def conv_transpose( X, W, B=None, auto_pad=None, dilations=None, group=None, kernel_shape=None, output_padding=None, output_shape=None, pads=None, strides=None, ): if dilations is None: dilations = [1 for s in X.shape[2:]] if kernel_shape is None: kernel_shape = W.shape[2:] if output_padding is None: output_padding = [0 for s in X.shape[2:]] * 2 if strides is None: strides = [1 for s in X.shape[2:]] if pads is None and auto_pad not in {"SAME_UPPER", "SAME_LOWER"}: pads = [0 for i in range(2 * len(strides))] if pads is None: if output_shape is None: output_shape = [ X.shape[i + 2] * strides[i] for i in range(len(strides)) ] total_padding = [ strides[i] * (X.shape[i + 2] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - output_shape[i] for i in range(len(output_shape)) ] pads_1 = [] pads_2 = [] for i in range(len(output_shape)): if auto_pad == "SAME_UPPER": pads_1.append(total_padding[i] pads_2.append(total_padding[i] - (total_padding[i] else: pads_1.append(total_padding[i] - (total_padding[i] pads_2.append(total_padding[i] pads = pads_1 + pads_2 n_dims = len(pads) else: n_dims = len(X.shape) - 2 new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)]) if output_shape is None: output_shape = [ strides[i] * (X.shape[i + 2] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - new_pads[i, :].sum() for i in range(n_dims) ] kernel_shape = W.shape[2:] kernel_size = np.prod(kernel_shape) num_output_channels
= W.shape[1] * group kernel_dim = num_output_channels C = X.shape[1] m = kernel_dim n = np.prod(X.shape[2:]) k = C w_reshaped = W.reshape((group, k, m)) final = None if group == 1: for image_id in range(X.shape[0]): w_t = w_reshaped[0].T gemm = np.matmul(w_t, X[image_id].reshape((k, n))) gemmc = gemm.reshape((num_output_channels, -1, gemm.shape[-1])) for c in range(num_output_channels): res = col2im_naive_implementation( gemmc[c], output_shape, kernel_shape, dilations, pads, strides ) if final is None: final = np.empty( X.shape[:1] + (num_output_channels,) + res.shape, dtype=X.dtype, ) if B is not None: res += B[c] final[image_id, c, ...] = res[...] else: final = np.zeros((X.shape[0], num_output_channels ) + tuple(output_shape)) output_array = [] for group_id in range(group): group_X = X[:, group_id * C group_W = W[group_id * num_output_channels group_output = conv_transpose( group_X, group_W, B=B, auto_pad=auto_pad, dilations=dilations, group=1, kernel_shape=kernel_shape, output_padding=output_padding, output_shape=output_shape, pads=pads, strides=strides, ) group_output = np.array(group_output[0]) output_array.append(group_output) for image_id in range(X.shape[0]): for group_id in range(group): group_output = output_array[group_id] final[image_id, group_id:(group_id+1), ...] = group_output[image_id, ...] return (final.astype(X.dtype),) def _get_in
dices(i, shape): res = np.empty((len(shape),), dtype=np.int64) k = len(shape) - 1 while k > 0: m = i % shape[k] res[k] = m i -= m i /= shape[k] k -= 1 res[0] = i return res def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides): n_input_plane = X.shape[0] kernel_size = np.prod(kernel_shape) if n_input_plane % kernel_size != 0: raise ValueError( f"Expected size of input's dimension 1 to be divisible by the " f"product of kernel_size={kernel_size}, " f"but got input.size(1)={n_input_plane} " f"and kernel_shape={kernel_shape}, X.shape={X.shape}, output_shape={output_shape}." ) input_length = X.shape[1] n_dims = len(output_shape) n_blocks = [] for i in range(n_dims): n_block = ( output_shape[i] + pads[i, :].sum() - dilations[i] * (kernel_shape[i] - 1) - 1 ) n_blocks.append(n_block) block_size = np.prod(n_blocks) if input_length != block_size: raise ValueError( f"Given n_input_plane={n_input_plane}, X.shape={X.shape}, " f"output_shape={output_shape}, kernel_shape={kernel_shape}, " f"dilations={dilations}, pads={pads}, strides={strides}, " f"expected size of input's dimension 2 to match the calculated number of " f"sliding blocks {n_blocks} = {block_size}, " f"but got input.size(2)={input_length}.", ) def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides): n_dims = len(pads) new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)]) _col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides) data_col = data data_im = np.zeros(image_shape, dtype=data.dtype) dim_col = [] for i in range(n_dims): col = ( image_shape[i] + new_pads[
i, :].sum() - (dilations[i] * (kernel_shape[i] - 1) + 1) ) dim_col.append(col) kernel_size = np.prod(kernel_shape) col_size = np.prod(dim_col) for c_col in range(kernel_size): offset = _get_indices(c_col, kernel_shape) for col in range(col_size): ind_col = _get_indices(col, dim_col) ind_im = [] for i in range(n_dims): ind = ( ind_col[i] * strides[i] - new_pads[i, 0] + offset[i] * dilations[i] ) ind_im.append(ind) if not _is_out(ind_im, data_im.shape): data_im[tuple(ind_im)] += data_col[c_col, col] return data_im def _is_out(ind, shape): for i, s in zip(ind, shape): if i < 0: return True if i >= s: return True return False
class Conv_transpose(RunAll): @staticmethod def export_conv_transpose() -> None: x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=1)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_1d() -> None: x = np.array([[[0.0, 1.0, 2.0]]]).astype(np.float32) w = np.array([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]).astype( np.float32 ) y = conv_transpose(x, w, group=1)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_1d" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::No
ne," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_3d() -> None: x = np.array( [ [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], ], [ [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], [35.0, 36.0, 37.0, 38.0, 39.0], ], [ [40.0, 41.0, 42.0, 43.0, 44.0], [45.0, 46.0, 47.0, 48.0, 49.0], [50.0, 51.0, 52.0, 53.0, 54.0], [55.0, 56.0, 57.0, 58.0, 59.0], ], ] ] ] ).astype(np.float32) w = np.array( [ [ [ [ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=1)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_3d" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_attributes() -> None: x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=1)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_attributes" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," fu
nc_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_pads() -> None: x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=1,strides=[3, 2],output_shape=[10, 8], kernel_shape=[3, 3], output_padding=[1, 1],)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_pads" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![3, 3].span())," func_sig += "Option::Some(array![1, 1].span())," func_sig += "Option::Some(array![10, 8].span())," func_sig += "Option::None," func_sig += "Option::Some(array![3, 2].span()))" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_dilations() -> None: x = np.array( [[[[3.0, 8.0, 1.0], [9.0, 5.0, 7.0], [3.0, 2.0, 6.0]]]] ).astype(np.float32) w = np.array([[[[7.0, 2.0], [1.0, 9.0]]]]).astype(np.float32) y = conv_transpose(x, w, group=1, dilations=[2, 2])[0] x = Tensor(Dtype.FP16
x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_dilations" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![2, 2].span())," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None,)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_autopad_same() -> None: x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=1, auto_pad="SAME_UPPER", strides=[2, 2])[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_autopad_same" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::Some(AUTO_PAD::SAME_UPPER)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None,"
func_sig += "Option::Some(array![2, 2].span()))" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_group_2() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [ [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]] ] ] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=2)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_group_2" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(2)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None,)" make_test( [x, w], y, func_sig, name, Trait.NN) @staticmethod def export_convtranspose_group_2_image_3() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [ [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0] ] ],
[ [ [18.0, 19.0, 20.0], [21.0, 22.0, 23.0], [24.0, 25.0, 26.0] ], [ [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0] ] ], [ [ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0] ], [ [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0] ] ] ] ).astype(np.float32) w = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) y = conv_transpose(x, w, group=2)[0] x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "conv_transpose_group_2_image_3" func_sig = "NNTrait::conv_transpose(" func_sig += "@input_0," func_sig += "@input_1," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(2)," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None,)" make_test( [x, w], y, func_sig, name, Trait.NN)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Cos(RunAll): @staticmethod def cos_fp8x23(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.cos(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cos_fp8x23" make_test([x], y, "input_0.cos()", name) @staticmethod def cos_fp16x16(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.cos(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cos_fp16x16" make_test([x], y, "input_0.cos()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Cosh(RunAll): @staticmethod def cosh_fp8x23(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = np.cosh(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cosh_fp8x23" make_test([x], y, "input_0.cosh()", name) @staticmethod def cosh_fp16x16(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = np.cosh(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cosh_fp16x16" make_test([x], y, "input_0.cosh()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Cumsum(RunAll): @staticmethod def cumsum_u32(): def cumsum_1D(): def default(): x = np.array([1, 2, 3, 4, 5]).astype(np.uint32) y = np.array([1, 3, 6, 10, 15]).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_1d_default" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.uint32) y = np.array([0, 1, 3, 6, 10]).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_1d_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name) def reverse(): x = np.array([1, 2, 3, 4, 5]).astype(np.uint32) y = np.array([15, 14, 12, 9, 5]).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_1d_reverse" make_test( [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name) def reverse_exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.uint32) y = np.array([14, 12, 9, 5, 0]).astype(np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_1d_reverse_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name) default() exclusive() reverse() reverse_exclusive() cumsum_1D() def cumsum_2D(
): def axis_0(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.uint32).reshape((2, 3)) y = np.array([1, 2, 3, 5, 7, 9]).astype( np.uint32).reshape((2, 3)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_2d_axis_0" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def axis_1(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.uint32).reshape((2, 3)) y = np.array([1, 3, 6, 4, 9, 15]).astype( np.uint32).reshape((2, 3)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "cumsum_u32_2d_axis_1" make_test( [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name) axis_0() axis_1() cumsum_2D() @staticmethod def cumsum_i32(): def cumsum_1D(): def default(): x = np.array([1, 2, 3, 4, 5]).astype(np.int32) y = np.array([1, 3, 6, 10, 15]).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_1d_default" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int32) y = np.array([0, 1, 3, 6, 10]).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_1d_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::So
me(false))", name) def reverse(): x = np.array([1, 2, 3, 4, 5]).astype(np.int32) y = np.array([15, 14, 12, 9, 5]).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_1d_reverse" make_test( [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name) def reverse_exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int32) y = np.array([14, 12, 9, 5, 0]).astype(np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_1d_reverse_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name) default() exclusive() reverse() reverse_exclusive() cumsum_1D() def cumsum_2D(): def axis_0(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int32).reshape((2, 3)) y = np.array([1, 2, 3, 5, 7, 9]).astype( np.int32).reshape((2, 3)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_2d_axis_0" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def axis_1(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int32).reshape((2, 3)) y = np.array([1, 3, 6, 4, 9, 15]).astype( np.int32).reshape((2, 3)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "cumsum_i32_2d_axis_1" make_test(
[x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name) axis_0() axis_1() cumsum_2D() @staticmethod def cumsum_i8(): def cumsum_1D(): def default(): x = np.array([1, 2, 3, 4, 5]).astype(np.int8) y = np.array([1, 3, 6, 10, 15]).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_1d_default" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int8) y = np.array([0, 1, 3, 6, 10]).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_1d_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name) def reverse(): x = np.array([1, 2, 3, 4, 5]).astype(np.int8) y = np.array([15, 14, 12, 9, 5]).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_1d_reverse" make_test( [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name) def reverse_exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int8) y = np.array([14, 12, 9, 5, 0]).astype(np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_1d_reverse_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name) default() exclusive()
reverse() reverse_exclusive() cumsum_1D() def cumsum_2D(): def axis_0(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int8).reshape((2, 3)) y = np.array([1, 2, 3, 5, 7, 9]).astype( np.int8).reshape((2, 3)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_2d_axis_0" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def axis_1(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int8).reshape((2, 3)) y = np.array([1, 3, 6, 4, 9, 15]).astype( np.int8).reshape((2, 3)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "cumsum_i8_2d_axis_1" make_test( [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name) axis_0() axis_1() cumsum_2D() @staticmethod def cumsum_fp8x23(): def cumsum_1D(): def default(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([1, 3, 6, 10, 15]).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x23_1d_default" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([0, 1, 3, 6, 10]).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl
.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x23_1d_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name) def reverse(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([15, 14, 12, 9, 5]).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x23_1d_reverse" make_test( [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name) def reverse_exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([14, 12, 9, 5, 0]).astype(np.int64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x23_1d_reverse_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name) default() exclusive() reverse() reverse_exclusive() cumsum_1D() def cumsum_2D(): def axis_0(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int64).reshape((2, 3)) y = np.array([1, 2, 3, 5, 7, 9]).astype( np.int64).reshape((2, 3)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x2
3_2d_axis_0" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def axis_1(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int64).reshape((2, 3)) y = np.array([1, 3, 6, 4, 9, 15]).astype( np.int64).reshape((2, 3)) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "cumsum_fp8x23_2d_axis_1" make_test( [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name) axis_0() axis_1() cumsum_2D() @staticmethod def cumsum_fp16x16(): def cumsum_1D(): def default(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([1, 3, 6, 10, 15]).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_1d_default" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([0, 1, 3, 6, 10]).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_1d_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name) def reverse(): x = np.array([
1, 2, 3, 4, 5]).astype(np.int64) y = np.array([15, 14, 12, 9, 5]).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_1d_reverse" make_test( [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name) def reverse_exclusive(): x = np.array([1, 2, 3, 4, 5]).astype(np.int64) y = np.array([14, 12, 9, 5, 0]).astype(np.int64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_1d_reverse_exclusive" make_test( [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name) default() exclusive() reverse() reverse_exclusive() cumsum_1D() def cumsum_2D(): def axis_0(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int64).reshape((2, 3)) y = np.array([1, 2, 3, 5, 7, 9]).astype( np.int64).reshape((2, 3)) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_2d_axis_0" make_test( [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name) def axis_1(): x = np.array([1, 2, 3, 4, 5, 6]).astype( np.int64).reshape((2, 3)) y = np.array([1, 3, 6, 4, 9, 15]).astype(
np.int64).reshape((2, 3)) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "cumsum_fp16x16_2d_axis_1" make_test( [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name) axis_0() axis_1() cumsum_2D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def depth_to_space(data: np.ndarray, blocksize: int = 2, mode = "DCR") -> np.ndarray: if len(data.shape) != 4: raise RuntimeError(f"Unexpected shape {data.shape!r}.") b, c, h, w = data.shape if mode == "DCR": tmpshape = ( b, blocksize, blocksize, c h, w, ) reshaped = data.reshape(tmpshape) transposed = np.transpose(reshaped, [0, 3, 4, 1, 5, 2]) else: tmpshape = ( b, c blocksize, blocksize, h, w, ) reshaped = data.reshape(tmpshape) transposed = np.transpose(reshaped, [0, 1, 4, 2, 5, 3]) finalshape = ( b, c h * blocksize, w * blocksize, ) y = np.reshape(transposed, finalshape) return y
class Depth_to_space(RunAll): @staticmethod def fp8x23(): x = np.random.uniform(-3, 3, (1, 4, 2, 2)).astype(np.float64) y = depth_to_space(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "depth_to_space_fp8x23" make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')", name, Trait.NN) @staticmethod def fp16x16(): x = np.random.uniform(-3, 3, (1, 4, 2, 2)).astype(np.float16) y = depth_to_space(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "depth_to_space_fp16x16" make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')", name, Trait.NN) @staticmethod def fpi8(): x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.int8) y = depth_to_space(x) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "depth_to_space_i8" make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')", name, Trait.NN) @staticmethod def fpi32(): x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.int32) y = depth_to_space(x) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "depth_to_space_i32" make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'CRD')", name, Trait.NN) @staticmethod def fpu32(): x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.uint32) y = depth_to_space(x) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatt
en()) name = "depth_to_space_u32" make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'CRD')", name, Trait.NN)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Div(RunAll): @staticmethod def div_u32(): def default(): x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(1, 3, (3, 3, 3)).astype(np.uint32) z = x / y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "div_u32" make_test([x, y], z, "input_0 / input_1", name) def broadcast(): x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(1, 3, (1, 3, 1)).astype(np.uint32) z = x / y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "div_u32_broadcast" make_test([x, y], z, "input_0 / input_1", name) default() broadcast() @staticmethod def div_i32(): def default(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32) z = x / y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "div_i32" make_test([x, y], z, "input_0 / input_1", name) def broadcast(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(1, 3, (1, 3, 1)).astype(np.int32) z = x / y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "div_i32_broadcast" make_test([x, y], z, "input_0 / input_1", name) default() broadcast() @staticmethod def div_i8(): def default(): x = np.random.
randint(1, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(1, 3, (3, 3, 3)).astype(np.int8) z = x / y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "div_i8" make_test([x, y], z, "input_0 / input_1", name) def broadcast(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(1, 3, (1, 3, 1)).astype(np.int8) z = x / y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "div_i8_broadcast" make_test([x, y], z, "input_0 / input_1", name) default() broadcast() @staticmethod def div_fp8x23(): def default(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) z = x / y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "div_fp8x23" make_test([x, y], z, "input_0 / input_1", name) def broadcast(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(1, 3, (1, 3, 1)).astype(np.float64) z = x / y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "div_fp8x23_broadcast" make_
test([x, y], z, "input_0 / input_1", name) default() broadcast() @staticmethod def div_fp16x16(): def default(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) z = x / y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "div_fp16x16" make_test([x, y], z, "input_0 / input_1", name) def broadcast(): x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(1, 3, (1, 3, 1)).astype(np.float64) z = x / y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "div_fp16x16_broadcast" make_test([x, y], z, "input_0 / input_1", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Equal(RunAll): @staticmethod def equal_u32(): def default(): x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32) z = np.equal(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_u32" make_test([x, y], z, "input_0.equal(@input_1)", name) def broadcast(): x = np.random.randint(0, 6, (2, 2)).astype(np.uint32) y = np.random.randint(0, 6, (1, 2)).astype(np.uint32) z = np.equal(x, y) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_u32_broadcast" make_test([x, y], z, "input_0.equal(@input_1)", name) default() broadcast() @staticmethod def equal_i32(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) z = np.equal(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_i32" make_test([x, y], z, "input_0.equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int32) y = np.random.randint(-3, 3, (1, 2)).astype(np.int32) z = np.equal(x, y) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_i32_broadcast" make_test([x, y], z, "input_0.equal(@input_1)", name) default() broadcast() @staticmethod
def equal_i8(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) z = np.equal(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_i8" make_test([x, y], z, "input_0.equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.int8) y = np.random.randint(-3, 3, (1, 2)).astype(np.int8) z = np.equal(x, y) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_i8_broadcast" make_test([x, y], z, "input_0.equal(@input_1)", name) default() broadcast() @staticmethod def equal_fp8x23(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.equal(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_fp8x23" make_test([x, y], z, "input_0.equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.equal(x, y) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "e
qual_fp8x23_broadcast" make_test([x, y], z, "input_0.equal(@input_1)", name) default() broadcast() @staticmethod def equal_fp16x16(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = np.equal(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_fp16x16" make_test([x, y], z, "input_0.equal(@input_1)", name) def broadcast(): x = np.random.randint(-3, 3, (2, 2)).astype(np.float64) y = np.random.randint(-3, 3, (1, 2)).astype(np.float64) z = np.equal(x, y) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "equal_fp16x16_broadcast" make_test([x, y], z, "input_0.equal(@input_1)", name) default() broadcast()
import numpy as np from math import erf from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Erf(RunAll): @staticmethod def erf_fp8x23(): x = np.asarray([0.12, -1.66, 3.4, 4.8, 2.7]).astype(np.float64).reshape(1,5) y = np.asarray([erf(value) for value in x[0]]).astype(np.float64).reshape(1,5) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "erf_fp8x23" make_test([x], y, "input_0.erf()", name) @staticmethod def erf_fp16x16(): x = np.asarray([0.12, -1.66, 3.4, 4.8, 2.7]).astype(np.float64).reshape(1,5) y = np.asarray([erf(value) for value in x[0]]).astype(np.float64).reshape(1,5) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "erf_fp16x16" make_test([x], y, "input_0.erf()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Exp(RunAll): @staticmethod def exp_fp8x23(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = np.exp(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "exp_fp8x23" make_test([x], y, "input_0.exp()", name) @staticmethod def exp_fp16x16(): x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64) y = np.exp(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "exp_fp16x16" make_test([x], y, "input_0.exp()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Gather(RunAll): @staticmethod def gather_fp16x16(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.uint32) y = x1.take(x2, axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "gather_fp16x16_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.int64) y = x1.take(x2, axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "gather_fp16x16_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.int64) y = x1.take(x2, axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "gather_fp16x16_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(2))",
name= name) def negative_indices(): x1 = np.arange(10).astype(np.float32) x2 = np.array([0, -9, -10]).astype(np.int64) y = np.take(x1, x2, axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "gather_negative_indices" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(0))", name= name) def negative_axis(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.uint32) y = x1.take(x2, axis=-1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "gather_negative_axis" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(-1))", name= name) default() axis1() axis2() negative_indices() negative_axis()
import numpy as np from nodegen.node
import RunAll from ..helpers