id
stringlengths
14
16
text
stringlengths
44
2.73k
source
stringlengths
49
114
d1ab74b19ad5-0
.ipynb .pdf Milvus Milvus# This notebook shows how to use functionality related to the Milvus vector database. To run, you should have a Milvus instance up and running: https://milvus.io/docs/install_standalone-docker.md from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Milvus from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() vector_db = Milvus.from_documents( docs, embeddings, connection_args={"host": "127.0.0.1", "port": "19530"}, ) docs = vector_db.similarity_search(query) docs[0] previous FAISS next MyScale By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/milvus.html
376cdfb06ecc-0
.ipynb .pdf Annoy Contents Create VectorStore from texts Create VectorStore from docs Create VectorStore via existing embeddings Search via embeddings Search via docstore id Save and load Construct from scratch Annoy# This notebook shows how to use functionality related to the Annoy vector database. “Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.” via Annoy Note Annoy is read-only - once the index is built you cannot add any more emebddings! If you want to progressively add to your VectorStore then better choose an alternative! Create VectorStore from texts# from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Annoy embeddings_func = HuggingFaceEmbeddings() texts = ["pizza is great", "I love salad", "my car", "a dog"] # default metric is angular vector_store = Annoy.from_texts(texts, embeddings_func) # allows for custom annoy parameters, defaults are n_trees=100, n_jobs=-1, metric="angular" vector_store_v2 = Annoy.from_texts( texts, embeddings_func, metric="dot", n_trees=100, n_jobs=1 ) vector_store.similarity_search("food", k=3) [Document(page_content='pizza is great', metadata={}), Document(page_content='I love salad', metadata={}), Document(page_content='my car', metadata={})] # the score is a distance metric, so lower is better vector_store.similarity_search_with_score("food", k=3)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-1
vector_store.similarity_search_with_score("food", k=3) [(Document(page_content='pizza is great', metadata={}), 1.0944390296936035), (Document(page_content='I love salad', metadata={}), 1.1273186206817627), (Document(page_content='my car', metadata={}), 1.1580758094787598)] Create VectorStore from docs# from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter loader = TextLoader("../../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) docs[:5] [Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.', metadata={'source': '../../../state_of_the_union.txt'}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-2
Document(page_content='Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n\nIn this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. \n\nLet each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \n\nPlease rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people. \n\nThroughout our history we’ve learned this lesson when dictators do not pay a price for their aggression they cause more chaos. \n\nThey keep moving. \n\nAnd the costs and the threats to America and the world keep rising. \n\nThat’s why the NATO Alliance was created to secure peace and stability in Europe after World War 2. \n\nThe United States is a member along with 29 other nations. \n\nIt matters. American diplomacy matters. American resolve matters.', metadata={'source': '../../../state_of_the_union.txt'}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-3
Document(page_content='Putin’s latest attack on Ukraine was premeditated and unprovoked. \n\nHe rejected repeated efforts at diplomacy. \n\nHe thought the West and NATO wouldn’t respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did. \n\nWe prepared extensively and carefully. \n\nWe spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin. \n\nI spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression. \n\nWe countered Russia’s lies with truth. \n\nAnd now that he has acted the free world is holding him accountable. \n\nAlong with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.', metadata={'source': '../../../state_of_the_union.txt'}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-4
Document(page_content='We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n\nTogether with our allies –we are right now enforcing powerful economic sanctions. \n\nWe are cutting off Russia’s largest banks from the international financial system. \n\nPreventing Russia’s central bank from defending the Russian Ruble making Putin’s $630 Billion “war fund” worthless. \n\nWe are choking off Russia’s access to technology that will sap its economic strength and weaken its military for years to come. \n\nTonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n\nThe U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n\nWe are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.', metadata={'source': '../../../state_of_the_union.txt'}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-5
Document(page_content='And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights – further isolating Russia – and adding an additional squeeze –on their economy. The Ruble has lost 30% of its value. \n\nThe Russian stock market has lost 40% of its value and trading remains suspended. Russia’s economy is reeling and Putin alone is to blame. \n\nTogether with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n\nWe are giving more than $1 Billion in direct assistance to Ukraine. \n\nAnd we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n\nLet me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine. \n\nOur forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies – in the event that Putin decides to keep moving west.', metadata={'source': '../../../state_of_the_union.txt'})] vector_store_from_docs = Annoy.from_documents(docs, embeddings_func) query = "What did the president say about Ketanji Brown Jackson" docs = vector_store_from_docs.similarity_search(query) print(docs[0].page_content[:100]) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Ac Create VectorStore via existing embeddings# embs = embeddings_func.embed_documents(texts) data = list(zip(texts, embs)) vector_store_from_embeddings = Annoy.from_embeddings(data, embeddings_func) vector_store_from_embeddings.similarity_search_with_score("food", k=3) [(Document(page_content='pizza is great', metadata={}), 1.0944390296936035),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-6
(Document(page_content='I love salad', metadata={}), 1.1273186206817627), (Document(page_content='my car', metadata={}), 1.1580758094787598)] Search via embeddings# motorbike_emb = embeddings_func.embed_query("motorbike") vector_store.similarity_search_by_vector(motorbike_emb, k=3) [Document(page_content='my car', metadata={}), Document(page_content='a dog', metadata={}), Document(page_content='pizza is great', metadata={})] vector_store.similarity_search_with_score_by_vector(motorbike_emb, k=3) [(Document(page_content='my car', metadata={}), 1.0870471000671387), (Document(page_content='a dog', metadata={}), 1.2095637321472168), (Document(page_content='pizza is great', metadata={}), 1.3254905939102173)] Search via docstore id# vector_store.index_to_docstore_id {0: '2d1498a8-a37c-4798-acb9-0016504ed798', 1: '2d30aecc-88e0-4469-9d51-0ef7e9858e6d', 2: '927f1120-985b-4691-b577-ad5cb42e011c', 3: '3056ddcf-a62f-48c8-bd98-b9e57a3dfcae'} some_docstore_id = 0 # texts[0] vector_store.docstore._dict[vector_store.index_to_docstore_id[some_docstore_id]] Document(page_content='pizza is great', metadata={}) # same document has distance 0
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-7
Document(page_content='pizza is great', metadata={}) # same document has distance 0 vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3) [(Document(page_content='pizza is great', metadata={}), 0.0), (Document(page_content='I love salad', metadata={}), 1.0734446048736572), (Document(page_content='my car', metadata={}), 1.2895267009735107)] Save and load# vector_store.save_local("my_annoy_index_and_docstore") saving config loaded_vector_store = Annoy.load_local( "my_annoy_index_and_docstore", embeddings=embeddings_func ) # same document has distance 0 loaded_vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3) [(Document(page_content='pizza is great', metadata={}), 0.0), (Document(page_content='I love salad', metadata={}), 1.0734446048736572), (Document(page_content='my car', metadata={}), 1.2895267009735107)] Construct from scratch# import uuid from annoy import AnnoyIndex from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore metadatas = [{"x": "food"}, {"x": "food"}, {"x": "stuff"}, {"x": "animal"}] # embeddings embeddings = embeddings_func.embed_documents(texts) # embedding dim f = len(embeddings[0]) # index metric = "angular" index = AnnoyIndex(f, metric=metric) for i, emb in enumerate(embeddings): index.add_item(i, emb) index.build(10) # docstore documents = []
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
376cdfb06ecc-8
index.build(10) # docstore documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_docstore_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_docstore_id[i]: doc for i, doc in enumerate(documents)} ) db_manually = Annoy( embeddings_func.embed_query, index, metric, docstore, index_to_docstore_id ) db_manually.similarity_search_with_score("eating!", k=3) [(Document(page_content='pizza is great', metadata={'x': 'food'}), 1.1314140558242798), (Document(page_content='I love salad', metadata={'x': 'food'}), 1.1668788194656372), (Document(page_content='my car', metadata={'x': 'stuff'}), 1.226445198059082)] previous AnalyticDB next AtlasDB Contents Create VectorStore from texts Create VectorStore from docs Create VectorStore via existing embeddings Search via embeddings Search via docstore id Save and load Construct from scratch By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/annoy.html
63e46f1d18d7-0
.ipynb .pdf Redis Contents RedisVectorStoreRetriever Redis# This notebook shows how to use functionality related to the Redis vector database. from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.redis import Redis from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() rds = Redis.from_documents(docs, embeddings, redis_url="redis://localhost:6379", index_name='link') rds.index_name 'link' query = "What did the president say about Ketanji Brown Jackson" results = rds.similarity_search(query) print(results[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. print(rds.add_texts(["Ankush went to Princeton"]))
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/redis.html
63e46f1d18d7-1
print(rds.add_texts(["Ankush went to Princeton"])) ['doc:link:d7d02e3faf1b40bbbe29a683ff75b280'] query = "Princeton" results = rds.similarity_search(query) print(results[0].page_content) Ankush went to Princeton # Load from existing index rds = Redis.from_existing_index(embeddings, redis_url="redis://localhost:6379", index_name='link') query = "What did the president say about Ketanji Brown Jackson" results = rds.similarity_search(query) print(results[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. RedisVectorStoreRetriever# Here we go over different options for using the vector store as a retriever. There are three different search methods we can use to do retrieval. By default, it will use semantic similarity. retriever = rds.as_retriever() docs = retriever.get_relevant_documents(query)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/redis.html
63e46f1d18d7-2
docs = retriever.get_relevant_documents(query) We can also use similarity_limit as a search method. This is only return documents if they are similar enough retriever = rds.as_retriever(search_type="similarity_limit") # Here we can see it doesn't return any results because there are no relevant documents retriever.get_relevant_documents("where did ankush go to college?") previous Qdrant next SupabaseVectorStore Contents RedisVectorStoreRetriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/redis.html
cf7792123cf4-0
.ipynb .pdf Weaviate Weaviate# This notebook shows how to use functionality related to the Weaviate vector database. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Weaviate from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() import weaviate import os WEAVIATE_URL = "" client = weaviate.Client( url=WEAVIATE_URL, additional_headers={ 'X-OpenAI-Api-Key': os.environ["OPENAI_API_KEY"] } ) client.schema.delete_all() client.schema.get() schema = { "classes": [ { "class": "Paragraph", "description": "A written paragraph", "vectorizer": "text2vec-openai", "moduleConfig": { "text2vec-openai": { "model": "babbage", "type": "text" } }, "properties": [ { "dataType": ["text"], "description": "The content of the paragraph", "moduleConfig": { "text2vec-openai": { "skip": False, "vectorizePropertyName": False } }, "name": "content", }, ], }, ] } client.schema.create(schema)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/weaviate.html
cf7792123cf4-1
}, ], }, ] } client.schema.create(schema) vectorstore = Weaviate(client, "Paragraph", "content") query = "What did the president say about Ketanji Brown Jackson" docs = vectorstore.similarity_search(query) print(docs[0].page_content) previous SupabaseVectorStore next Zilliz By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/weaviate.html
bfa20afd25bd-0
.ipynb .pdf MyScale Contents Setting up envrionments Get connection info and data schema Filtering Deleting your data MyScale# This notebook shows how to use functionality related to the MyScale vector database. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import MyScale from langchain.document_loaders import TextLoader Setting up envrionments# There are two ways to set up parameters for myscale index. Environment Variables Before you run the app, please set the environment variable with export: export MYSCALE_URL='<your-endpoints-url>' MYSCALE_PORT=<your-endpoints-port> MYSCALE_USERNAME=<your-username> MYSCALE_PASSWORD=<your-password> ... You can easily find your account, password and other info on our SaaS. For details please refer to this document Every attributes under MyScaleSettings can be set with prefix MYSCALE_ and is case insensitive. Create MyScaleSettings object with parameters from langchain.vectorstores import MyScale, MyScaleSettings config = MyScaleSetting(host="<your-backend-url>", port=8443, ...) index = MyScale(embedding_function, config) index.add_documents(...) from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for d in docs: d.metadata = {'some': 'metadata'} docsearch = MyScale.from_documents(docs, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/myscale.html
bfa20afd25bd-1
docs = docsearch.similarity_search(query) Inserting data...: 100%|██████████| 42/42 [00:18<00:00, 2.21it/s] print(docs[0].page_content) As Frances Haugen, who is here with us tonight, has shown, we must hold social media platforms accountable for the national experiment they’re conducting on our children for profit. It’s time to strengthen privacy protections, ban targeted advertising to children, demand tech companies stop collecting personal data on our children. And let’s get all Americans the mental health services they need. More people they can turn to for help, and full parity between physical and mental health care. Third, support our veterans. Veterans are the best of us. I’ve always believed that we have a sacred obligation to equip all those we send to war and care for them and their families when they come home. My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free. Our troops in Iraq and Afghanistan faced many dangers. Get connection info and data schema# print(str(docsearch)) Filtering# You can have direct access to myscale SQL where statement. You can write WHERE clause following standard SQL. NOTE: Please be aware of SQL injection, this interface must not be directly called by end-user. If you custimized your column_map under your setting, you search with filter like this: from langchain.vectorstores import MyScale, MyScaleSettings from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings()
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/myscale.html
bfa20afd25bd-2
docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() for i, d in enumerate(docs): d.metadata = {'doc_id': i} docsearch = MyScale.from_documents(docs, embeddings) Inserting data...: 100%|██████████| 42/42 [00:15<00:00, 2.69it/s] meta = docsearch.metadata_column output = docsearch.similarity_search_with_relevance_scores('What did the president say about Ketanji Brown Jackson?', k=4, where_str=f"{meta}.doc_id<10") for d, dist in output: print(dist, d.metadata, d.page_content[:20] + '...') 0.252379834651947 {'doc_id': 6, 'some': ''} And I’m taking robus... 0.25022566318511963 {'doc_id': 1, 'some': ''} Groups of citizens b... 0.2469480037689209 {'doc_id': 8, 'some': ''} And so many families... 0.2428302764892578 {'doc_id': 0, 'some': 'metadata'} As Frances Haugen, w... Deleting your data# docsearch.drop() previous Milvus next OpenSearch Contents Setting up envrionments Get connection info and data schema Filtering Deleting your data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/myscale.html
42ee0f7f1f92-0
.ipynb .pdf OpenSearch Contents similarity_search using Approximate k-NN Search with Custom Parameters similarity_search using Script Scoring with Custom Parameters similarity_search using Painless Scripting with Custom Parameters Using a preexisting OpenSearch instance OpenSearch# This notebook shows how to use functionality related to the OpenSearch database. To run, you should have the opensearch instance up and running: here similarity_search by default performs the Approximate k-NN Search which uses one of the several algorithms like lucene, nmslib, faiss recommended for large datasets. To perform brute force search we have other search methods known as Script Scoring and Painless Scripting. Check this for more details. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import OpenSearchVectorSearch from langchain.document_loaders import TextLoader from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = OpenSearchVectorSearch.from_documents(docs, embeddings, opensearch_url="http://localhost:9200") query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) print(docs[0].page_content) similarity_search using Approximate k-NN Search with Custom Parameters# docsearch = OpenSearchVectorSearch.from_documents(docs, embeddings, opensearch_url="http://localhost:9200", engine="faiss", space_type="innerproduct", ef_construction=256, m=48)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/opensearch.html
42ee0f7f1f92-1
query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) print(docs[0].page_content) similarity_search using Script Scoring with Custom Parameters# docsearch = OpenSearchVectorSearch.from_documents(docs, embeddings, opensearch_url="http://localhost:9200", is_appx_search=False) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search("What did the president say about Ketanji Brown Jackson", k=1, search_type="script_scoring") print(docs[0].page_content) similarity_search using Painless Scripting with Custom Parameters# docsearch = OpenSearchVectorSearch.from_documents(docs, embeddings, opensearch_url="http://localhost:9200", is_appx_search=False) filter = {"bool": {"filter": {"term": {"text": "smuggling"}}}} query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search("What did the president say about Ketanji Brown Jackson", search_type="painless_scripting", space_type="cosineSimilarity", pre_filter=filter) print(docs[0].page_content) Using a preexisting OpenSearch instance# It’s also possible to use a preexisting OpenSearch instance with documents that already have vectors present. # this is just an example, you would need to change these values to point to another opensearch instance docsearch = OpenSearchVectorSearch(index_name="index-*", embedding_function=embeddings, opensearch_url="http://localhost:9200") # you can specify custom field names to match the fields you're using to store your embedding, document text value, and metadata
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/opensearch.html
42ee0f7f1f92-2
docs = docsearch.similarity_search("Who was asking about getting lunch today?", search_type="script_scoring", space_type="cosinesimil", vector_field="message_embedding", text_field="message", metadata_field="message_metadata") previous MyScale next PGVector Contents similarity_search using Approximate k-NN Search with Custom Parameters similarity_search using Script Scoring with Custom Parameters similarity_search using Painless Scripting with Custom Parameters Using a preexisting OpenSearch instance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/opensearch.html
87c448b8399e-0
.ipynb .pdf PGVector Contents Similarity search with score Similarity Search with Euclidean Distance (Default) PGVector# This notebook shows how to use functionality related to the Postgres vector database (PGVector). ## Loading Environment Variables from typing import List, Tuple from dotenv import load_dotenv load_dotenv() from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.pgvector import PGVector from langchain.document_loaders import TextLoader from langchain.docstore.document import Document loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() ## PGVector needs the connection string to the database. ## We will load it from the environment variables. import os CONNECTION_STRING = PGVector.connection_string_from_db_params( driver=os.environ.get("PGVECTOR_DRIVER", "psycopg2"), host=os.environ.get("PGVECTOR_HOST", "localhost"), port=int(os.environ.get("PGVECTOR_PORT", "5432")), database=os.environ.get("PGVECTOR_DATABASE", "postgres"), user=os.environ.get("PGVECTOR_USER", "postgres"), password=os.environ.get("PGVECTOR_PASSWORD", "postgres"), ) ## Example # postgresql+psycopg2://username:password@localhost:5432/database_name Similarity search with score# Similarity Search with Euclidean Distance (Default)# # The PGVector Module will try to create a table with the name of the collection. So, make sure that the collection name is unique and the user has the # permission to create a table.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/pgvector.html
87c448b8399e-1
# permission to create a table. db = PGVector.from_documents( embedding=embeddings, documents=docs, collection_name="state_of_the_union", connection_string=CONNECTION_STRING, ) query = "What did the president say about Ketanji Brown Jackson" docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) -------------------------------------------------------------------------------- Score: 0.6076628081132506 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6076628081132506 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/pgvector.html
87c448b8399e-2
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6076804780049968 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Score: 0.6076804780049968 Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/pgvector.html
87c448b8399e-3
Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. -------------------------------------------------------------------------------- previous OpenSearch next Pinecone Contents Similarity search with score Similarity Search with Euclidean Distance (Default) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/pgvector.html
2910e6085ad7-0
.ipynb .pdf Deep Lake Contents Retrieval Question/Answering Attribute based filtering in metadata Choosing distance function Maximal Marginal relevance Delete dataset Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or local Creating dataset on AWS S3 Deep Lake API Transfer local dataset to cloud Deep Lake# This notebook showcases basic functionality related to Deep Lake. While Deep Lake can store embeddings, it is capable of storing any type of data. It is a fully fledged serverless data lake with version control, query engine and streaming dataloader to deep learning frameworks. For more information, please see the Deep Lake documentation or api reference !python3 -m pip install openai deeplake tiktoken from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import DeepLake import os import getpass os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:') embeddings = OpenAIEmbeddings() from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() Creates a dataset locally at ./deeplake/, then runs similiarity search db = DeepLake(dataset_path="./my_deeplake/", embedding_function=embeddings, overwrite=True) db.add_documents(docs) # or shorter # db = DeepLake.from_documents(docs, dataset_path="./my_deeplake/", embedding=embeddings, overwrite=True) query = "What did the president say about Ketanji Brown Jackson"
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-1
query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) ./my_deeplake/ loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:04<00:00 Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Later, you can reload the dataset without recomputing embeddings db = DeepLake(dataset_path="./my_deeplake/", embedding_function=embeddings, read_only=True)
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-2
docs = db.similarity_search(query) ./my_deeplake/ loaded successfully. Deep Lake Dataset in ./my_deeplake/ already exists, loading from the storage Dataset(path='./my_deeplake/', read_only=True, tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None Deep Lake, for now, is single writer and multiple reader. Setting read_only=True helps to avoid acquring the writer lock. Retrieval Question/Answering# from langchain.chains import RetrievalQA from langchain.llms import OpenAIChat qa = RetrievalQA.from_chain_type(llm=OpenAIChat(model='gpt-3.5-turbo'), chain_type='stuff', retriever=db.as_retriever()) /media/sdb/davit/Git/experiments/langchain/langchain/llms/openai.py:672: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI` warnings.warn( query = 'What did the president say about Ketanji Brown Jackson' qa.run(query) "The president nominated Ketanji Brown Jackson to serve on the United States Supreme Court, describing her as one of the nation's top legal minds and a consensus builder with a background in private practice and public defense, and noting that she has received broad support from both Democrats and Republicans."
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-3
Attribute based filtering in metadata# import random for d in docs: d.metadata['year'] = random.randint(2012, 2014) db = DeepLake.from_documents(docs, embeddings, dataset_path="./my_deeplake/", overwrite=True) ./my_deeplake/ loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:04<00:00 Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None db.similarity_search('What did the president say about Ketanji Brown Jackson', filter={'year': 2013}) 100%|██████████| 4/4 [00:00<00:00, 1080.24it/s]
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-4
[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-5
Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})] Choosing distance function# Distance function L2 for Euclidean, L1 for Nuclear, Max l-infinity distnace, cos for cosine similarity, dot for dot product db.similarity_search('What did the president say about Ketanji Brown Jackson?', distance_metric='cos')
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-6
[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-7
Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-8
Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-9
Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012})] Maximal Marginal relevance# Using maximal marginal relevance db.max_marginal_relevance_search('What did the president say about Ketanji Brown Jackson?')
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-10
[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-11
Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-12
Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-13
Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})] Delete dataset# db.delete_dataset() and if delete fails you can also force delete DeepLake.force_delete_by_path("./my_deeplake") Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or local# By default deep lake datasets are stored in memory, in case you want to persist locally or to any object storage you can simply provide path to the dataset. You can retrieve token from app.activeloop.ai os.environ['ACTIVELOOP_TOKEN'] = getpass.getpass('Activeloop Token:') # Embed and store the texts username = "<username>" # your username on app.activeloop.ai
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-14
username = "<username>" # your username on app.activeloop.ai dataset_path = f"hub://{username}/langchain_test" # could be also ./local/path (much faster locally), s3://bucket/path/to/dataset, gcs://path/to/dataset, etc. embedding = OpenAIEmbeddings() db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings, overwrite=True) db.add_documents(docs) Your Deep Lake dataset has been successfully created! The dataset is private so make sure you are logged in! This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test hub://davitbun/langchain_test loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:14<00:00 Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None ['d6d6ccb4-e187-11ed-b66d-41c5f7b85421', 'd6d6ccb5-e187-11ed-b66d-41c5f7b85421', 'd6d6ccb6-e187-11ed-b66d-41c5f7b85421',
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-15
'd6d6ccb7-e187-11ed-b66d-41c5f7b85421'] query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. Creating dataset on AWS S3# dataset_path = f"s3://BUCKET/langchain_test" # could be also ./local/path (much faster locally), hub://bucket/path/to/dataset, gcs://path/to/dataset, etc. embedding = OpenAIEmbeddings() db = DeepLake.from_documents(docs, dataset_path=dataset_path, embedding=embeddings, overwrite=True, creds = { 'aws_access_key_id': os.environ['AWS_ACCESS_KEY_ID'], 'aws_secret_access_key': os.environ['AWS_SECRET_ACCESS_KEY'], 'aws_session_token': os.environ['AWS_SESSION_TOKEN'], # Optional }) s3://hub-2.0-datasets-n/langchain_test loaded successfully.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-16
}) s3://hub-2.0-datasets-n/langchain_test loaded successfully. Evaluating ingest: 100%|██████████| 1/1 [00:10<00:00 \ Dataset(path='s3://hub-2.0-datasets-n/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None Deep Lake API# you can access the Deep Lake dataset at db.ds # get structure of the dataset db.ds.summary() Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None text text (4, 1) str None # get embeddings numpy array embeds = db.ds.embedding.numpy() Transfer local dataset to cloud# Copy already created dataset to the cloud. You can also transfer from cloud to local. import deeplake username = "davitbun" # your username on app.activeloop.ai
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-17
username = "davitbun" # your username on app.activeloop.ai source = f"hub://{username}/langchain_test" # could be local, s3, gcs, etc. destination = f"hub://{username}/langchain_test_copy" # could be local, s3, gcs, etc. deeplake.deepcopy(src=source, dest=destination, overwrite=True) Copying dataset: 100%|██████████| 56/56 [00:38<00:00 This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy Your Deep Lake dataset has been successfully created! The dataset is private so make sure you are logged in! Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) db = DeepLake(dataset_path=destination, embedding_function=embeddings) db.add_documents(docs) This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy / hub://davitbun/langchain_test_copy loaded successfully. Deep Lake Dataset in hub://davitbun/langchain_test_copy already exists, loading from the storage Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (4, 1536) float32 None ids text (4, 1) str None metadata json (4, 1) str None
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
2910e6085ad7-18
metadata json (4, 1) str None text text (4, 1) str None Evaluating ingest: 100%|██████████| 1/1 [00:31<00:00 - Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text']) tensor htype shape dtype compression ------- ------- ------- ------- ------- embedding generic (8, 1536) float32 None ids text (8, 1) str None metadata json (8, 1) str None text text (8, 1) str None ['ad42f3fe-e188-11ed-b66d-41c5f7b85421', 'ad42f3ff-e188-11ed-b66d-41c5f7b85421', 'ad42f400-e188-11ed-b66d-41c5f7b85421', 'ad42f401-e188-11ed-b66d-41c5f7b85421'] previous Chroma next ElasticSearch Contents Retrieval Question/Answering Attribute based filtering in metadata Choosing distance function Maximal Marginal relevance Delete dataset Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or local Creating dataset on AWS S3 Deep Lake API Transfer local dataset to cloud By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/deeplake.html
12e2081ef580-0
.ipynb .pdf Weaviate Hybrid Search Weaviate Hybrid Search# This notebook shows how to use Weaviate hybrid search as a LangChain retriever. import weaviate import os WEAVIATE_URL = "..." client = weaviate.Client( url=WEAVIATE_URL, ) from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever from langchain.schema import Document retriever = WeaviateHybridSearchRetriever(client, index_name="LangChain", text_key="text") docs = [Document(page_content="foo")] retriever.add_documents(docs) ['3f79d151-fb84-44cf-85e0-8682bfe145e0'] retriever.get_relevant_documents("foo") [Document(page_content='foo', metadata={})] previous VectorStore Retriever next Memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/weaviate-hybrid.html
4de9b1dd4ec2-0
.ipynb .pdf Metal Contents Ingest Documents Query Metal# This notebook shows how to use Metal’s retriever. First, you will need to sign up for Metal and get an API key. You can do so here # !pip install metal_sdk from metal_sdk.metal import Metal API_KEY = "" CLIENT_ID = "" INDEX_ID = "" metal = Metal(API_KEY, CLIENT_ID, INDEX_ID); Ingest Documents# You only need to do this if you haven’t already set up an index metal.index( {"text": "foo1"}) metal.index( {"text": "foo"}) {'data': {'id': '642739aa7559b026b4430e42', 'text': 'foo', 'createdAt': '2023-03-31T19:51:06.748Z'}} Query# Now that our index is set up, we can set up a retriever and start querying it. from langchain.retrievers import MetalRetriever retriever = MetalRetriever(metal, params={"limit": 2}) retriever.get_relevant_documents("foo1") [Document(page_content='foo1', metadata={'dist': '1.19209289551e-07', 'id': '642739a17559b026b4430e40', 'createdAt': '2023-03-31T19:50:57.853Z'}), Document(page_content='foo1', metadata={'dist': '4.05311584473e-06', 'id': '642738f67559b026b4430e3c', 'createdAt': '2023-03-31T19:48:06.769Z'})] previous ElasticSearch BM25 next Pinecone Hybrid Search Contents
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/metal.html
4de9b1dd4ec2-1
previous ElasticSearch BM25 next Pinecone Hybrid Search Contents Ingest Documents Query By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/metal.html
cfc6c35d5d13-0
.ipynb .pdf Pinecone Hybrid Search Contents Setup Pinecone Get embeddings and sparse encoders Load Retriever Add texts (if necessary) Use Retriever Pinecone Hybrid Search# This notebook goes over how to use a retriever that under the hood uses Pinecone and Hybrid Search. The logic of this retriever is taken from this documentaion from langchain.retrievers import PineconeHybridSearchRetriever Setup Pinecone# You should only have to do this part once. Note: it’s important to make sure that the “context” field that holds the document text in the metadata is not indexed. Currently you need to specify explicitly the fields you do want to index. For more information checkout Pinecone’s docs. import os import pinecone api_key = os.getenv("PINECONE_API_KEY") or "PINECONE_API_KEY" # find environment next to your API key in the Pinecone console env = os.getenv("PINECONE_ENVIRONMENT") or "PINECONE_ENVIRONMENT" index_name = "langchain-pinecone-hybrid-search" pinecone.init(api_key=api_key, enviroment=env) pinecone.whoami() WhoAmIResponse(username='load', user_label='label', projectname='load-test') # create the index pinecone.create_index( name = index_name, dimension = 1536, # dimensionality of dense model metric = "dotproduct", # sparse values supported only for dotproduct pod_type = "s1", metadata_config={"indexed": []} # see explaination above ) Now that its created, we can use it index = pinecone.Index(index_name) Get embeddings and sparse encoders#
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html
cfc6c35d5d13-1
index = pinecone.Index(index_name) Get embeddings and sparse encoders# Embeddings are used for the dense vectors, tokenizer is used for the sparse vector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() To encode the text to sparse values you can either choose SPLADE or BM25. For out of domain tasks we recommend using BM25. For more information about the sparse encoders you can checkout pinecone-text library docs. from pinecone_text.sparse import BM25Encoder # or from pinecone_text.sparse import SpladeEncoder if you wish to work with SPLADE # use default tf-idf values bm25_encoder = BM25Encoder().default() The above code is using default tfids values. It’s highly recommended to fit the tf-idf values to your own corpus. You can do it as follow: corpus = ["foo", "bar", "world", "hello"] # fit tf-idf values on your corpus bm25_encoder.fit(corpus) # store the values to a json file bm25_encoder.dump("bm25_values.json") # load to your BM25Encoder object bm25_encoder = BM25Encoder().load("bm25_values.json") Load Retriever# We can now construct the retriever! retriever = PineconeHybridSearchRetriever(embeddings=embeddings, sparse_encoder=bm25_encoder, index=index) Add texts (if necessary)# We can optionally add texts to the retriever (if they aren’t already in there) retriever.add_texts(["foo", "bar", "world", "hello"]) 100%|██████████| 1/1 [00:02<00:00, 2.27s/it] Use Retriever# We can now use the retriever!
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html
cfc6c35d5d13-2
Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result[0] Document(page_content='foo', metadata={}) previous Metal next SVM Retriever Contents Setup Pinecone Get embeddings and sparse encoders Load Retriever Add texts (if necessary) Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/pinecone_hybrid_search.html
3419869cb85e-0
.ipynb .pdf ElasticSearch BM25 Contents Create New Retriever Add texts (if necessary) Use Retriever ElasticSearch BM25# This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25. For more information on the details of BM25 see this blog post. from langchain.retrievers import ElasticSearchBM25Retriever Create New Retriever# elasticsearch_url="http://localhost:9200" retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, "langchain-index-4") # Alternatively, you can load an existing index # import elasticsearch # elasticsearch_url="http://localhost:9200" # retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), "langchain-index") Add texts (if necessary)# We can optionally add texts to the retriever (if they aren’t already in there) retriever.add_texts(["foo", "bar", "world", "hello", "foo bar"]) ['cbd4cb47-8d9f-4f34-b80e-ea871bc49856', 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365', '8631bfc8-7c12-48ee-ab56-8ad5f373676e', '8be8374c-3253-4d87-928d-d73550a2ecf0', 'd79f457b-2842-4eab-ae10-77aa420b53d7'] Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/elastic_search_bm25.html
3419869cb85e-1
result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={})] previous Databerry next Metal Contents Create New Retriever Add texts (if necessary) Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/elastic_search_bm25.html
a68c7942261c-0
.ipynb .pdf TF-IDF Retriever Contents Create New Retriever with Texts Use Retriever TF-IDF Retriever# This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn. For more information on the details of TF-IDF see this blog post. from langchain.retrievers import TFIDFRetriever # !pip install scikit-learn Create New Retriever with Texts# retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"]) Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={}), Document(page_content='hello', metadata={}), Document(page_content='world', metadata={})] previous SVM Retriever next Time Weighted VectorStore Retriever Contents Create New Retriever with Texts Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/tf_idf_retriever.html
fdc67777964e-0
.ipynb .pdf ChatGPT Plugin Retriever Contents Create Using the ChatGPT Retriever Plugin ChatGPT Plugin Retriever# This notebook shows how to use the ChatGPT Retriever Plugin within LangChain. Create# First, let’s go over how to create the ChatGPT Retriever Plugin. To set up the ChatGPT Retriever Plugin, please follow instructions here. You can also create the ChatGPT Retriever Plugin from LangChain document loaders. The below code walks through how to do that. # STEP 1: Load # Load documents using LangChain's DocumentLoaders # This is from https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='../../document_loaders/examples/example_data/mlb_teams_2012.csv') data = loader.load() # STEP 2: Convert # Convert Document to format expected by https://github.com/openai/chatgpt-retrieval-plugin from typing import List from langchain.docstore.document import Document import json def write_json(path: str, documents: List[Document])-> None: results = [{"text": doc.page_content} for doc in documents] with open(path, "w") as f: json.dump(results, f, indent=2) write_json("foo.json", data) # STEP 3: Use # Ingest this as you would any other json file in https://github.com/openai/chatgpt-retrieval-plugin/tree/main/scripts/process_json Using the ChatGPT Retriever Plugin# Okay, so we’ve created the ChatGPT Retriever Plugin, but how do we actually use it? The below code walks through how to do that.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/chatgpt-plugin-retriever.html
fdc67777964e-1
The below code walks through how to do that. from langchain.retrievers import ChatGPTPluginRetriever retriever = ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo") retriever.get_relevant_documents("alice's phone number") [Document(page_content="This is Alice's phone number: 123-456-7890", lookup_str='', metadata={'id': '456_0', 'metadata': {'source': 'email', 'source_id': '567', 'url': None, 'created_at': '1609592400.0', 'author': 'Alice', 'document_id': '456'}, 'embedding': None, 'score': 0.925571561}, lookup_index=0), Document(page_content='This is a document about something', lookup_str='', metadata={'id': '123_0', 'metadata': {'source': 'file', 'source_id': 'https://example.com/doc1', 'url': 'https://example.com/doc1', 'created_at': '1609502400.0', 'author': 'Alice', 'document_id': '123'}, 'embedding': None, 'score': 0.6987589}, lookup_index=0),
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/chatgpt-plugin-retriever.html
fdc67777964e-2
Document(page_content='Team: Angels "Payroll (millions)": 154.49 "Wins": 89', lookup_str='', metadata={'id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631_0', 'metadata': {'source': None, 'source_id': None, 'url': None, 'created_at': None, 'author': None, 'document_id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631'}, 'embedding': None, 'score': 0.697888613}, lookup_index=0)] previous Retrievers next Contextual Compression Retriever Contents Create Using the ChatGPT Retriever Plugin By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/chatgpt-plugin-retriever.html
ac68ec9ea98d-0
.ipynb .pdf SVM Retriever Contents Create New Retriever with Texts Use Retriever SVM Retriever# This notebook goes over how to use a retriever that under the hood uses an SVM using scikit-learn. Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb from langchain.retrievers import SVMRetriever from langchain.embeddings import OpenAIEmbeddings # !pip install scikit-learn Create New Retriever with Texts# retriever = SVMRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"], OpenAIEmbeddings()) Use Retriever# We can now use the retriever! result = retriever.get_relevant_documents("foo") result [Document(page_content='foo', metadata={}), Document(page_content='foo bar', metadata={}), Document(page_content='hello', metadata={}), Document(page_content='world', metadata={})] previous Pinecone Hybrid Search next TF-IDF Retriever Contents Create New Retriever with Texts Use Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/svm_retriever.html
c68d6e7f8ee9-0
.ipynb .pdf Time Weighted VectorStore Retriever Contents Low Decay Rate High Decay Rate Time Weighted VectorStore Retriever# This retriever uses a combination of semantic similarity and recency. The algorithm for scoring them is: semantic_similarity + (1.0 - decay_rate) ** hours_passed Notably, hours_passed refers to the hours passed since the object in the retriever was last accessed, not since it was created. This means that frequently accessed objects remain “fresh.” import faiss from datetime import datetime, timedelta from langchain.docstore import InMemoryDocstore from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers import TimeWeightedVectorStoreRetriever from langchain.schema import Document from langchain.vectorstores import FAISS Low Decay Rate# A low decay rate (in this, to be extreme, we will set close to 0) means memories will be “remembered” for longer. A decay rate of 0 means memories never be forgotten, making this retriever equivalent to the vector lookup. # Define your embedding model embeddings_model = OpenAIEmbeddings() # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) retriever = TimeWeightedVectorStoreRetriever(vectorstore=vectorstore, decay_rate=.0000000000000000000000001, k=1) yesterday = datetime.now() - timedelta(days=1) retriever.add_documents([Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]) retriever.add_documents([Document(page_content="hello foo")])
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/time_weighted_vectorstore.html
c68d6e7f8ee9-1
retriever.add_documents([Document(page_content="hello foo")]) ['5c9f7c06-c9eb-45f2-aea5-efce5fb9f2bd'] # "Hello World" is returned first because it is most salient, and the decay rate is close to 0., meaning it's still recent enough retriever.get_relevant_documents("hello world") [Document(page_content='hello world', metadata={'last_accessed_at': datetime.datetime(2023, 4, 16, 22, 9, 1, 966261), 'created_at': datetime.datetime(2023, 4, 16, 22, 9, 0, 374683), 'buffer_idx': 0})] High Decay Rate# With a high decay factor (e.g., several 9’s), the recency score quickly goes to 0! If you set this all the way to 1, recency is 0 for all objects, once again making this equivalent to a vector lookup. # Define your embedding model embeddings_model = OpenAIEmbeddings() # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) retriever = TimeWeightedVectorStoreRetriever(vectorstore=vectorstore, decay_rate=.999, k=1) yesterday = datetime.now() - timedelta(days=1) retriever.add_documents([Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]) retriever.add_documents([Document(page_content="hello foo")]) ['40011466-5bbe-4101-bfd1-e22e7f505de2']
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/time_weighted_vectorstore.html
c68d6e7f8ee9-2
# "Hello Foo" is returned first because "hello world" is mostly forgotten retriever.get_relevant_documents("hello world") [Document(page_content='hello foo', metadata={'last_accessed_at': datetime.datetime(2023, 4, 16, 22, 9, 2, 494798), 'created_at': datetime.datetime(2023, 4, 16, 22, 9, 2, 178722), 'buffer_idx': 1})] previous TF-IDF Retriever next VectorStore Retriever Contents Low Decay Rate High Decay Rate By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/time_weighted_vectorstore.html
69c0270812a2-0
.ipynb .pdf Contextual Compression Retriever Contents Contextual Compression Retriever Using a vanilla vector store retriever Adding contextual compression with an LLMChainExtractor More built-in compressors: filters LLMChainFilter EmbeddingsFilter Stringing compressors and document transformers together Contextual Compression Retriever# This notebook introduces the concept of DocumentCompressors and the ContextualCompressionRetriever. The core idea is simple: given a specific query, we should be able to return only the documents relevant to that query, and only the parts of those documents that are relevant. The ContextualCompressionsRetriever is a wrapper for another retriever that iterates over the initial output of the base retriever and filters and compresses those initial documents, so that only the most relevant information is returned. # Helper function for printing docs def pretty_print_docs(docs): print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)])) Using a vanilla vector store retriever# Let’s start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can see that given an example question our retriever returns one or two relevant docs and a few irrelevant docs. And even the relevant docs have a lot of irrelevant information in them. from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.document_loaders import TextLoader from langchain.vectorstores import FAISS documents = TextLoader('../../../state_of_the_union.txt').load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents)
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-1
texts = text_splitter.split_documents(documents) retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever() docs = retriever.get_relevant_documents("What did the president say about Ketanji Brown Jackson") pretty_print_docs(docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-2
We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. ---------------------------------------------------------------------------------------------------- Document 4: Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. That ends on my watch. Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. We’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. Let’s pass the Paycheck Fairness Act and paid leave. Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-3
Let’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges. Adding contextual compression with an LLMChainExtractor# Now let’s wrap our base retriever with a ContextualCompressionRetriever. We’ll add an LLMChainExtractor, which will iterate over the initially returned documents and extract from each only the content that is relevant to the query. from langchain.llms import OpenAI from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor llm = OpenAI(temperature=0) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence." ---------------------------------------------------------------------------------------------------- Document 2: "A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." More built-in compressors: filters# LLMChainFilter#
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-4
More built-in compressors: filters# LLMChainFilter# The LLMChainFilter is slightly simpler but more robust compressor that uses an LLM chain to decide which of the initially retrieved documents to filter out and which ones to return, without manipulating the document contents. from langchain.retrievers.document_compressors import LLMChainFilter _filter = LLMChainFilter.from_llm(llm) compression_retriever = ContextualCompressionRetriever(base_compressor=_filter, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. EmbeddingsFilter# Making an extra LLM call over each retrieved document is expensive and slow. The EmbeddingsFilter provides a cheaper and faster option by embedding the documents and query and only returning those documents which have sufficiently similar embeddings to the query. from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers.document_compressors import EmbeddingsFilter
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-5
from langchain.retrievers.document_compressors import EmbeddingsFilter embeddings = OpenAIEmbeddings() embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-6
We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. Stringing compressors and document transformers together# Using the DocumentCompressorPipeline we can also easily combine multiple compressors in sequence. Along with compressors we can add BaseDocumentTransformers to our pipeline, which don’t perform any contextual compression but simply perform some transformation on a set of documents. For example TextSplitters can be used as document transformers to split documents into smaller pieces, and the EmbeddingsRedundantFilter can be used to filter out redundant documents based on embedding similarity between documents.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-7
Below we create a compressor pipeline by first splitting our docs into smaller chunks, then removing redundant documents, and then filtering based on relevance to the query. from langchain.document_transformers import EmbeddingsRedundantFilter from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain.text_splitter import CharacterTextSplitter splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ") redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings) relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) pipeline_compressor = DocumentCompressorPipeline( transformers=[splitter, redundant_filter, relevant_filter] ) compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=retriever) compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown") pretty_print_docs(compressed_docs) Document 1: One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson ---------------------------------------------------------------------------------------------------- Document 2: As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year ---------------------------------------------------------------------------------------------------- Document 3: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder previous ChatGPT Plugin Retriever next Databerry Contents
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
69c0270812a2-8
previous ChatGPT Plugin Retriever next Databerry Contents Contextual Compression Retriever Using a vanilla vector store retriever Adding contextual compression with an LLMChainExtractor More built-in compressors: filters LLMChainFilter EmbeddingsFilter Stringing compressors and document transformers together By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/contextual-compression.html
6ec9ca2c8b1f-0
.ipynb .pdf VectorStore Retriever VectorStore Retriever# The index - and therefore the retriever - that LangChain has the most support for is a VectorStoreRetriever. As the name suggests, this retriever is backed heavily by a VectorStore. Once you construct a VectorStore, its very easy to construct a retriever. Let’s walk through an example. from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = FAISS.from_documents(texts, embeddings) Exiting: Cleaning up .chroma directory retriever = db.as_retriever() docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson") By default, the vectorstore retriever uses similarity search. If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type. retriever = db.as_retriever(search_type="mmr") docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson") You can also specify search kwargs like k to use when doing retrieval. retriever = db.as_retriever(search_kwargs={"k": 1}) docs = retriever.get_relevant_documents("what did he say abotu ketanji brown jackson") len(docs) 1 previous Time Weighted VectorStore Retriever next Weaviate Hybrid Search By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/vectorstore-retriever.html
6ec9ca2c8b1f-1
next Weaviate Hybrid Search By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/vectorstore-retriever.html
f4a4db54e1e9-0
.ipynb .pdf Databerry Contents Query Databerry# This notebook shows how to use Databerry’s retriever. First, you will need to sign up for Databerry, create a datastore, add some data and get your datastore api endpoint url Query# Now that our index is set up, we can set up a retriever and start querying it. from langchain.retrievers import DataberryRetriever retriever = DataberryRetriever( datastore_url="https://clg1xg2h80000l708dymr0fxc.databerry.ai/query", # api_key="DATABERRY_API_KEY", # optional if datastore is public # top_k=10 # optional ) retriever.get_relevant_documents("What is Daftpage?") [Document(page_content='✨ Made with DaftpageOpen main menuPricingTemplatesLoginSearchHelpGetting StartedFeaturesAffiliate ProgramGetting StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!DaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord', metadata={'source': 'https:/daftpage.com/help/getting-started', 'score': 0.8697265}),
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/databerry.html
f4a4db54e1e9-1
Document(page_content="✨ Made with DaftpageOpen main menuPricingTemplatesLoginSearchHelpGetting StartedFeaturesAffiliate ProgramHelp CenterWelcome to Daftpage’s help center—the one-stop shop for learning everything about building websites with Daftpage.Daftpage is the simplest way to create websites for all purposes in seconds. Without knowing how to code, and for free!Get StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!Start here✨ Create your first site🧱 Add blocks🚀 PublishGuides🔖 Add a custom domainFeatures🔥 Drops🎨 Drawings👻 Ghost mode💀 Skeleton modeCant find the answer you're looking for?mail us at support@daftpage.comJoin the awesome Daftpage community on: 👾 DiscordDaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord", metadata={'source': 'https:/daftpage.com/help', 'score': 0.86570895}),
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/databerry.html
f4a4db54e1e9-2
Document(page_content=" is the simplest way to create websites for all purposes in seconds. Without knowing how to code, and for free!Get StartedDaftpage is a new type of website builder that works like a doc.It makes website building easy, fun and offers tons of powerful features for free. Just type / in your page to get started!Start here✨ Create your first site🧱 Add blocks🚀 PublishGuides🔖 Add a custom domainFeatures🔥 Drops🎨 Drawings👻 Ghost mode💀 Skeleton modeCant find the answer you're looking for?mail us at support@daftpage.comJoin the awesome Daftpage community on: 👾 DiscordDaftpageCopyright © 2022 Daftpage, Inc.All rights reserved.ProductPricingTemplatesHelp & SupportHelp CenterGetting startedBlogCompanyAboutRoadmapTwitterAffiliate Program👾 Discord", metadata={'source': 'https:/daftpage.com/help', 'score': 0.8645384})] previous Contextual Compression Retriever next ElasticSearch BM25 Contents Query By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/databerry.html
0c5b9a48ced3-0
.ipynb .pdf Getting Started Getting Started# The default recommended text splitter is the RecursiveCharacterTextSplitter. This text splitter takes a list of characters. It tries to create chunks based on splitting on the first character, but if any chunks are too large it then moves onto the next character, and so forth. By default the characters it tries to split on are ["\n\n", "\n", " ", ""] In addition to controlling which characters you can split on, you can also control a few other things: length_function: how the length of chunks is calculated. Defaults to just counting number of characters, but it’s pretty common to pass a token counter here. chunk_size: the maximum size of your chunks (as measured by the length function). chunk_overlap: the maximum overlap between chunks. It can be nice to have some overlap to maintain some continuity between chunks (eg do a sliding window). # This is a long document we can split up. with open('../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 100, chunk_overlap = 20, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) print(texts[1]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and' lookup_str='' metadata={} lookup_index=0 page_content='of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.' lookup_str='' metadata={} lookup_index=0 previous Text Splitters next Character Text Splitter By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/text_splitters/getting_started.html
0c5b9a48ced3-1
previous Text Splitters next Character Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/getting_started.html
395c7efdf406-0
.ipynb .pdf NLTK Text Splitter NLTK Text Splitter# Rather than just splitting on “\n\n”, we can use NLTK to split based on tokenizers. How the text is split: by NLTK How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import NLTKTextSplitter text_splitter = NLTKTextSplitter(chunk_size=1000) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. And with an unwavering resolve that freedom will always triumph over tyranny. Six days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. He met the Ukrainian people. From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. Groups of citizens blocking tanks with their bodies. previous Markdown Text Splitter next Python Code Text Splitter By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/nltk.html
395c7efdf406-1
previous Markdown Text Splitter next Python Code Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/nltk.html
fbcfb59b0fc7-0
.ipynb .pdf Markdown Text Splitter Markdown Text Splitter# MarkdownTextSplitter splits text along Markdown headings, code blocks, or horizontal rules. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Markdown-specific separators. See the source code to see the Markdown syntax expected by default. How the text is split: by list of markdown specific characters How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import MarkdownTextSplitter markdown_text = """ # 🦜️🔗 LangChain ⚡ Building applications with LLMs through composability ⚡ ## Quick Install ```bash # Hopefully this code block isn't split pip install langchain ``` As an open source project in a rapidly developing field, we are extremely open to contributions. """ markdown_splitter = MarkdownTextSplitter(chunk_size=100, chunk_overlap=0) docs = markdown_splitter.create_documents([markdown_text]) docs [Document(page_content='# 🦜️🔗 LangChain\n\n⚡ Building applications with LLMs through composability ⚡', lookup_str='', metadata={}, lookup_index=0), Document(page_content="Quick Install\n\n```bash\n# Hopefully this code block isn't split\npip install langchain", lookup_str='', metadata={}, lookup_index=0), Document(page_content='As an open source project in a rapidly developing field, we are extremely open to contributions.', lookup_str='', metadata={}, lookup_index=0)] previous Latex Text Splitter next NLTK Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/markdown.html
33d617a24633-0
.ipynb .pdf RecursiveCharacterTextSplitter RecursiveCharacterTextSplitter# This text splitter is the recommended one for generic text. It is parameterized by a list of characters. It tries to split on them in order until the chunks are small enough. The default list is ["\n\n", "\n", " ", ""]. This has the effect of trying to keep all paragraphs (and then sentences, and then words) together as long as possible, as those would generically seem to be the strongest semantically related pieces of text. How the text is split: by list of characters How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 100, chunk_overlap = 20, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) print(texts[1]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and' lookup_str='' metadata={} lookup_index=0 page_content='of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.' lookup_str='' metadata={} lookup_index=0 previous Python Code Text Splitter next Spacy Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/recursive_text_splitter.html
bf8af6c5f44d-0
.ipynb .pdf TiktokenText Splitter TiktokenText Splitter# How the text is split: by tiktoken tokens How the chunk size is measured: by tiktoken tokens # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import TokenTextSplitter text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our previous tiktoken (OpenAI) Length Function next Vectorstores By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/tiktoken_splitter.html
23cfef31e6f1-0
.ipynb .pdf Spacy Text Splitter Spacy Text Splitter# Another alternative to NLTK is to use Spacy. How the text is split: by Spacy How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import SpacyTextSplitter text_splitter = SpacyTextSplitter(chunk_size=1000) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. And with an unwavering resolve that freedom will always triumph over tyranny. Six days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. He met the Ukrainian people. From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. previous RecursiveCharacterTextSplitter next tiktoken (OpenAI) Length Function By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/spacy.html
23cfef31e6f1-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/spacy.html
2139abeae8d6-0
.ipynb .pdf Python Code Text Splitter Python Code Text Splitter# PythonCodeTextSplitter splits text along python class and method definitions. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Python-specific separators. See the source code to see the Python syntax expected by default. How the text is split: by list of python specific characters How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import PythonCodeTextSplitter python_text = """ class Foo: def bar(): def foo(): def testing_func(): def bar(): """ python_splitter = PythonCodeTextSplitter(chunk_size=30, chunk_overlap=0) docs = python_splitter.create_documents([python_text]) docs [Document(page_content='Foo:\n\n def bar():', lookup_str='', metadata={}, lookup_index=0), Document(page_content='foo():\n\ndef testing_func():', lookup_str='', metadata={}, lookup_index=0), Document(page_content='bar():', lookup_str='', metadata={}, lookup_index=0)] previous NLTK Text Splitter next RecursiveCharacterTextSplitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/python.html
c82ab7c3e5f6-0
.ipynb .pdf Character Text Splitter Character Text Splitter# This is a more simple method. This splits based on characters (by default “\n\n”) and measure chunk length by number of characters. How the text is split: by single character How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter( separator = "\n\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0])
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
c82ab7c3e5f6-1
texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.' lookup_str='' metadata={} lookup_index=0 Here’s an example of passing metadata along with the documents, notice that it is split along with the documents. metadatas = [{"document": 1}, {"document": 2}] documents = text_splitter.create_documents([state_of_the_union, state_of_the_union], metadatas=metadatas) print(documents[0])
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
c82ab7c3e5f6-2
print(documents[0]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.' lookup_str='' metadata={'document': 1} lookup_index=0 previous Getting Started next Hugging Face Length Function By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
566636a32480-0
.ipynb .pdf Hugging Face Length Function Hugging Face Length Function# Most LLMs are constrained by the number of tokens that you can pass in, which is not the same as the number of characters. In order to get a more accurate estimate, we can use Hugging Face tokenizers to count the text length. How the text is split: by character passed in How the chunk size is measured: by Hugging Face tokenizer from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. previous Character Text Splitter next Latex Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/huggingface_length_function.html
63914e4e54f5-0
.ipynb .pdf tiktoken (OpenAI) Length Function tiktoken (OpenAI) Length Function# You can also use tiktoken, a open source tokenizer package from OpenAI to estimate tokens used. Will probably be more accurate for their models. How the text is split: by character passed in How the chunk size is measured: by tiktoken tokenizer # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=100, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. previous Spacy Text Splitter next TiktokenText Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/tiktoken.html
3440e9cd3eb5-0
.ipynb .pdf Latex Text Splitter Latex Text Splitter# LatexTextSplitter splits text along Latex headings, headlines, enumerations and more. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Latex-specific separators. See the source code to see the Latex syntax expected by default. How the text is split: by list of latex specific tags How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import LatexTextSplitter latex_text = """ \documentclass{article} \begin{document} \maketitle \section{Introduction} Large language models (LLMs) are a type of machine learning model that can be trained on vast amounts of text data to generate human-like language. In recent years, LLMs have made significant advances in a variety of natural language processing tasks, including language translation, text generation, and sentiment analysis. \subsection{History of LLMs} The earliest LLMs were developed in the 1980s and 1990s, but they were limited by the amount of data that could be processed and the computational power available at the time. In the past decade, however, advances in hardware and software have made it possible to train LLMs on massive datasets, leading to significant improvements in performance. \subsection{Applications of LLMs} LLMs have many applications in industry, including chatbots, content creation, and virtual assistants. They can also be used in academia for research in linguistics, psychology, and computational linguistics. \end{document} """ latex_splitter = LatexTextSplitter(chunk_size=400, chunk_overlap=0) docs = latex_splitter.create_documents([latex_text]) docs
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/latex.html
3440e9cd3eb5-1
docs = latex_splitter.create_documents([latex_text]) docs [Document(page_content='\\documentclass{article}\n\n\x08egin{document}\n\n\\maketitle', lookup_str='', metadata={}, lookup_index=0), Document(page_content='Introduction}\nLarge language models (LLMs) are a type of machine learning model that can be trained on vast amounts of text data to generate human-like language. In recent years, LLMs have made significant advances in a variety of natural language processing tasks, including language translation, text generation, and sentiment analysis.', lookup_str='', metadata={}, lookup_index=0), Document(page_content='History of LLMs}\nThe earliest LLMs were developed in the 1980s and 1990s, but they were limited by the amount of data that could be processed and the computational power available at the time. In the past decade, however, advances in hardware and software have made it possible to train LLMs on massive datasets, leading to significant improvements in performance.', lookup_str='', metadata={}, lookup_index=0), Document(page_content='Applications of LLMs}\nLLMs have many applications in industry, including chatbots, content creation, and virtual assistants. They can also be used in academia for research in linguistics, psychology, and computational linguistics.\n\n\\end{document}', lookup_str='', metadata={}, lookup_index=0)] previous Hugging Face Length Function next Markdown Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/latex.html
48c01de466fb-0
.rst .pdf How-To Guides How-To Guides# A chain is made up of links, which can be either primitives or other chains. Primitives can be either prompts, models, arbitrary functions, or other chains. The examples here are broken up into three sections: Generic Functionality Covers both generic chains (that are useful in a wide variety of applications) as well as generic functionality related to those chains. Async API for Chain Loading from LangChainHub LLM Chain Additional ways of running LLM Chain Parsing the outputs Initialize from string Sequential Chains Serialization Transformation Chain Index-related Chains Chains related to working with indexes. Analyze Document Chat Over Documents with Chat History Graph QA Hypothetical Document Embeddings Question Answering with Sources Question Answering Summarization Retrieval Question/Answering Retrieval Question Answering with Sources Vector DB Text Generation All other chains All other types of chains! API Chains Self-Critique Chain with Constitutional AI BashChain LLMCheckerChain LLM Math LLMRequestsChain LLMSummarizationCheckerChain Moderation OpenAPI Chain PAL SQL Chain example previous Getting Started next Async API for Chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/chains/how_to_guides.html
504d9508b6bc-0
.ipynb .pdf Getting Started Contents Why do we need chains? Quick start: Using LLMChain Different ways of calling chains Add memory to chains Debug Chain Combine chains with the SequentialChain Create a custom chain with the Chain class Getting Started# In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it. In this tutorial, we will cover: Using a simple LLM chain Creating sequential chains Creating a custom chain Why do we need chains?# Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components. Quick start: Using LLMChain# The LLMChain is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM. To use the LLMChain, first create a prompt template. from langchain.prompts import PromptTemplate from langchain.llms import OpenAI llm = OpenAI(temperature=0.9) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM. from langchain.chains import LLMChain chain = LLMChain(llm=llm, prompt=prompt) # Run the chain only specifying the input variable. print(chain.run("colorful socks")) Cheerful Toes.
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-1
print(chain.run("colorful socks")) Cheerful Toes. You can use a chat model in an LLMChain as well: from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, ) human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="What is a good name for a company that makes {product}?", input_variables=["product"], ) ) chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt]) chat = ChatOpenAI(temperature=0.9) chain = LLMChain(llm=chat, prompt=chat_prompt_template) print(chain.run("colorful socks")) Rainbow Footwear Co. Different ways of calling chains# All classes inherited from Chain offer a few ways of running chain logic. The most direct one is by using __call__: chat = ChatOpenAI(temperature=0) prompt_template = "Tell me a {adjective} joke" llm_chain = LLMChain( llm=chat, prompt=PromptTemplate.from_template(prompt_template) ) llm_chain(inputs={"adjective":"lame"}) {'adjective': 'lame', 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'} By default, __call__ returns both the input and output key values. You can configure it to only return output key values by setting return_only_outputs to True. llm_chain("lame", return_only_outputs=True) {'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-2
{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'} If the Chain only takes one input key (i.e. only has one element in its input_variables), you can use run method. Note that run outputs a string instead of a dictionary. llm_chain.run({"adjective":"lame"}) 'Why did the tomato turn red? Because it saw the salad dressing!' Besides, in the case of one input key, you can input the string directly without specifying the input mapping. # These two are equivalent llm_chain.run({"adjective":"lame"}) llm_chain.run("lame") # These two are also equivalent llm_chain("lame") llm_chain({"adjective":"lame"}) {'adjective': 'lame', 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'} Tips: You can easily integrate a Chain object as a Tool in your Agent via its run method. See an example here. Add memory to chains# Chain supports taking a BaseMemory object as its memory argument, allowing Chain object to persist data across multiple calls. In other words, it makes Chain a stateful object. from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory conversation = ConversationChain( llm=chat, memory=ConversationBufferMemory() ) conversation.run("Answer briefly. What are the first 3 colors of a rainbow?") # -> The first three colors of a rainbow are red, orange, and yellow. conversation.run("And the next 4?") # -> The next four colors of a rainbow are green, blue, indigo, and violet. 'The next four colors of a rainbow are green, blue, indigo, and violet.'
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-3
'The next four colors of a rainbow are green, blue, indigo, and violet.' Essentially, BaseMemory defines an interface of how langchain stores memory. It allows reading of stored data through load_memory_variables method and storing new data through save_context method. You can learn more about it in Memory section. Debug Chain# It can be hard to debug Chain object solely from its output as most Chain objects involve a fair amount of input prompt preprocessing and LLM output post-processing. Setting verbose to True will print out some internal states of the Chain object while it is being ran. conversation = ConversationChain( llm=chat, memory=ConversationBufferMemory(), verbose=True ) conversation.run("What is ChatGPT?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: What is ChatGPT? AI: > Finished chain. 'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.' Combine chains with the SequentialChain#
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-4
Combine chains with the SequentialChain# The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the SimpleSequentialChain. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next. In this tutorial, our sequential chain will: First, create a company name for a product. We will reuse the LLMChain we’d previously initialized to create this company name. Then, create a catchphrase for the product. We will initialize a new LLMChain to create this catchphrase, as shown below. second_prompt = PromptTemplate( input_variables=["company_name"], template="Write a catchphrase for the following company: {company_name}", ) chain_two = LLMChain(llm=llm, prompt=second_prompt) Now we can combine the two LLMChains, so that we can create a company name and a catchphrase in a single step. from langchain.chains import SimpleSequentialChain overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True) # Run the chain specifying only the input variable for the first chain. catchphrase = overall_chain.run("colorful socks") print(catchphrase) > Entering new SimpleSequentialChain chain... Rainbow Socks Co. "Step into Color with Rainbow Socks Co!" > Finished chain. "Step into Color with Rainbow Socks Co!" Create a custom chain with the Chain class#
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-5
"Step into Color with Rainbow Socks Co!" Create a custom chain with the Chain class# LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 LLMChains. In order to create a custom chain: Start by subclassing the Chain class, Fill out the input_keys and output_keys properties, Add the _call method that shows how to execute the chain. These steps are demonstrated in the example below: from langchain.chains import LLMChain from langchain.chains.base import Chain from typing import Dict, List class ConcatenateChain(Chain): chain_1: LLMChain chain_2: LLMChain @property def input_keys(self) -> List[str]: # Union of the input keys of the two chains. all_input_vars = set(self.chain_1.input_keys).union(set(self.chain_2.input_keys)) return list(all_input_vars) @property def output_keys(self) -> List[str]: return ['concat_output'] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: output_1 = self.chain_1.run(inputs) output_2 = self.chain_2.run(inputs) return {'concat_output': output_1 + output_2} Now, we can try running the chain that we called. prompt_1 = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain_1 = LLMChain(llm=llm, prompt=prompt_1) prompt_2 = PromptTemplate( input_variables=["product"],
https://python.langchain.com/en/latest/modules/chains/getting_started.html
504d9508b6bc-6
prompt_2 = PromptTemplate( input_variables=["product"], template="What is a good slogan for a company that makes {product}?", ) chain_2 = LLMChain(llm=llm, prompt=prompt_2) concat_chain = ConcatenateChain(chain_1=chain_1, chain_2=chain_2) concat_output = concat_chain.run("colorful socks") print(f"Concatenated output:\n{concat_output}") Concatenated output: Kaleidoscope Socks. "Put Some Color in Your Step!" That’s it! For more details about how to do cool things with Chains, check out the how-to guide for chains. previous Chains next How-To Guides Contents Why do we need chains? Quick start: Using LLMChain Different ways of calling chains Add memory to chains Debug Chain Combine chains with the SequentialChain Create a custom chain with the Chain class By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/modules/chains/getting_started.html
444ee436a932-0
.ipynb .pdf Sequential Chains Contents SimpleSequentialChain Sequential Chain Memory in Sequential Chains Sequential Chains# The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another. In this notebook we will walk through some examples for how to do this, using sequential chains. Sequential chains are defined as a series of chains, called in deterministic order. There are two types of sequential chains: SimpleSequentialChain: The simplest form of sequential chains, where each step has a singular input/output, and the output of one step is the input to the next. SequentialChain: A more general form of sequential chains, allowing for multiple inputs/outputs. SimpleSequentialChain# In this series of chains, each individual chain has a single input and a single output, and the output of one step is used as input to the next. Let’s walk through a toy example of doing this, where the first chain takes in the title of an imaginary play and then generates a synopsis for that title, and the second chain takes in the synopsis of that play and generates an imaginary review for that play. from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # This is an LLMChain to write a synopsis given a title of a play. llm = OpenAI(temperature=.7) template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. Title: {title} Playwright: This is a synopsis for the above play:""" prompt_template = PromptTemplate(input_variables=["title"], template=template) synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)
https://python.langchain.com/en/latest/modules/chains/generic/sequential_chains.html