id
stringlengths
14
16
text
stringlengths
44
2.73k
source
stringlengths
49
114
43a4bce2b6b7-4
) self.callback_manager.on_text( str(table_names_to_use), color="yellow", verbose=self.verbose ) new_inputs = { self.sql_chain.input_key: inputs[self.input_key], "table_names_to_use": table_names_to_use, } return self.sql_chain(new_inputs, return_only_outputs=True) @property def _chain_type(self) -> str: return "sql_database_sequential_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
ea9765481171-0
Source code for langchain.chains.conversation.base """Chain that carries on a conversation and calls an LLM.""" from typing import Dict, List from pydantic import Extra, Field, root_validator from langchain.chains.conversation.prompt import PROMPT from langchain.chains.llm import LLMChain from langchain.memory.buffer import ConversationBufferMemory from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMemory [docs]class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. Example: .. code-block:: python from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) """ memory: BaseMemory = Field(default_factory=ConversationBufferMemory) """Default memory store.""" prompt: BasePromptTemplate = PROMPT """Default conversation prompt to use.""" input_key: str = "input" #: :meta private: output_key: str = "response" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables input_key = values["input_key"] if input_key in memory_keys: raise ValueError( f"The input key {input_key} was also found in the memory keys "
https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html
ea9765481171-1
f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) prompt_variables = values["prompt"].input_variables expected_keys = memory_keys + [input_key] if set(expected_keys) != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) return values By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html
248a46d5109f-0
Source code for langchain.chains.qa_with_sources.vector_db """Question-answering with sources over a vector database.""" import warnings from typing import Any, Dict, List from pydantic import Field, root_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.vectorstores.base import VectorStore [docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs]
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html
248a46d5109f-1
num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html
6699ad3c863d-0
Source code for langchain.chains.qa_with_sources.retrieval """Question-answering with sources over an index.""" from typing import Any, Dict, List from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain from langchain.docstore.document import Document from langchain.schema import BaseRetriever [docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over an index.""" retriever: BaseRetriever = Field(exclude=True) """Index to connect to.""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain.llm.get_num_tokens( doc.page_content ) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = self.retriever.get_relevant_documents(question)
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html
6699ad3c863d-1
docs = self.retriever.get_relevant_documents(question) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: question = inputs[self.question_key] docs = await self.retriever.aget_relevant_documents(question) return self._reduce_tokens_below_limit(docs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html
8ca251376aa5-0
Source code for langchain.chains.qa_with_sources.base """Question answering with sources over documents.""" from __future__ import annotations import re from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain from langchain.chains.qa_with_sources.map_reduce_prompt import ( COMBINE_PROMPT, EXAMPLE_PROMPT, QUESTION_PROMPT, ) from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseLanguageModel class BaseQAWithSourcesChain(Chain, ABC): """Question answering with sources over documents.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" question_key: str = "question" #: :meta private: input_docs_key: str = "docs" #: :meta private: answer_key: str = "answer" #: :meta private: sources_answer_key: str = "sources" #: :meta private: return_source_documents: bool = False """Return the source documents.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, document_prompt: BasePromptTemplate = EXAMPLE_PROMPT, question_prompt: BasePromptTemplate = QUESTION_PROMPT, combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
8ca251376aa5-1
combine_prompt: BasePromptTemplate = COMBINE_PROMPT, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Construct the chain from an LLM.""" llm_question_chain = LLMChain(llm=llm, prompt=question_prompt) llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt) combine_results_chain = StuffDocumentsChain( llm_chain=llm_combine_chain, document_prompt=document_prompt, document_variable_name="summaries", ) combine_document_chain = MapReduceDocumentsChain( llm_chain=llm_question_chain, combine_document_chain=combine_results_chain, document_variable_name="context", ) return cls( combine_documents_chain=combine_document_chain, **kwargs, ) @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Load chain from chain type.""" _chain_kwargs = chain_type_kwargs or {} combine_document_chain = load_qa_with_sources_chain( llm, chain_type=chain_type, **_chain_kwargs ) return cls(combine_documents_chain=combine_document_chain, **kwargs) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
8ca251376aa5-2
:meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ _output_keys = [self.answer_key, self.sources_answer_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @root_validator(pre=True) def validate_naming(cls, values: Dict) -> Dict: """Fix backwards compatability in naming.""" if "combine_document_chain" in values: values["combine_documents_chain"] = values.pop("combine_document_chain") return values @abstractmethod def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]: docs = self._get_docs(inputs) answer = self.combine_documents_chain.run(input_documents=docs, **inputs) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result @abstractmethod async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: """Get docs to run questioning over.""" async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]: docs = await self._aget_docs(inputs)
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
8ca251376aa5-3
docs = await self._aget_docs(inputs) answer = await self.combine_documents_chain.arun(input_documents=docs, **inputs) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result [docs]class QAWithSourcesChain(BaseQAWithSourcesChain): """Question answering with sources over documents.""" input_docs_key: str = "docs" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_docs_key, self.question_key] def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]: return inputs.pop(self.input_docs_key) async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]: return inputs.pop(self.input_docs_key) @property def _chain_type(self) -> str: return "qa_with_sources_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html
4c3594fef42b-0
Source code for langchain.chains.pal.base """Implements Program-Aided Language Models. As in https://arxiv.org/pdf/2211.10435.pdf. """ from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Extra from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT from langchain.chains.pal.math_prompt import MATH_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseLanguageModel from langchain.utilities import PythonREPL [docs]class PALChain(Chain): """Implements Program-Aided Language Models.""" llm: BaseLanguageModel prompt: BasePromptTemplate stop: str = "\n\n" get_answer_expr: str = "print(solution())" python_globals: Optional[Dict[str, Any]] = None python_locals: Optional[Dict[str, Any]] = None output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"]
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
4c3594fef42b-1
else: return [self.output_key, "intermediate_steps"] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: llm_chain = LLMChain(llm=self.llm, prompt=self.prompt) code = llm_chain.predict(stop=[self.stop], **inputs) self.callback_manager.on_text( code, color="green", end="\n", verbose=self.verbose ) repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals) res = repl.run(code + f"\n{self.get_answer_expr}") output = {self.output_key: res.strip()} if self.return_intermediate_steps: output["intermediate_steps"] = code return output [docs] @classmethod def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: """Load PAL from math prompt.""" return cls( llm=llm, prompt=MATH_PROMPT, stop="\n\n", get_answer_expr="print(solution())", **kwargs, ) [docs] @classmethod def from_colored_object_prompt( cls, llm: BaseLanguageModel, **kwargs: Any ) -> PALChain: """Load PAL from colored object prompt.""" return cls( llm=llm, prompt=COLORED_OBJECT_PROMPT, stop="\n\n\n", get_answer_expr="print(answer)", **kwargs, ) @property def _chain_type(self) -> str: return "pal_chain" By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
4c3594fef42b-2
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html
a48b7b062e7a-0
Source code for langchain.output_parsers.retry from __future__ import annotations from typing import TypeVar from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( BaseLanguageModel, BaseOutputParser, OutputParserException, PromptValue, ) NAIVE_COMPLETION_RETRY = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Please try again:""" NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Details: {error} Please try again:""" NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY) NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template( NAIVE_COMPLETION_RETRY_WITH_ERROR ) T = TypeVar("T") [docs]class RetryOutputParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt and the completion to another LLM, and telling it the completion did not satisfy criteria in the prompt. """ parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT, ) -> RetryOutputParser[T]: chain = LLMChain(llm=llm, prompt=prompt)
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
a48b7b062e7a-1
chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return self.parser._type [docs]class RetryWithErrorOutputParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt, the completion, AND the error that was raised to another language and telling it that the completion did not work, and raised the given error. Differs from RetryOutputParser in that this implementation provides the error that was raised back to the LLM, which in theory should give it more information on how to fix it. """ parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT, ) -> RetryWithErrorOutputParser[T]:
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
a48b7b062e7a-2
) -> RetryWithErrorOutputParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion, error=repr(e) ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
0c62f3c8450e-0
Source code for langchain.output_parsers.pydantic import json import re from typing import Type, TypeVar from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS from langchain.schema import BaseOutputParser, OutputParserException T = TypeVar("T", bound=BaseModel) [docs]class PydanticOutputParser(BaseOutputParser[T]): pydantic_object: Type[T] [docs] def parse(self, text: str) -> T: try: # Greedy search for 1st json candidate. match = re.search( "\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL ) json_str = "" if match: json_str = match.group() json_object = json.loads(json_str) return self.pydantic_object.parse_obj(json_object) except (json.JSONDecodeError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg) [docs] def get_format_instructions(self) -> str: schema = self.pydantic_object.schema() # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
0c62f3c8450e-1
@property def _type(self) -> str: return "pydantic" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
1e1de6f3100a-0
Source code for langchain.output_parsers.list from __future__ import annotations from abc import abstractmethod from typing import List from langchain.schema import BaseOutputParser [docs]class ListOutputParser(BaseOutputParser): """Class to parse the output of an LLM call to a list.""" @property def _type(self) -> str: return "list" [docs] @abstractmethod def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" [docs]class CommaSeparatedListOutputParser(ListOutputParser): """Parse out comma separated lists.""" [docs] def get_format_instructions(self) -> str: return ( "Your response should be a list of comma separated values, " "eg: `foo, bar, baz`" ) [docs] def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" return text.strip().split(", ") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/list.html
4e108b5847a2-0
Source code for langchain.output_parsers.structured from __future__ import annotations import json from typing import Any, List from pydantic import BaseModel from langchain.output_parsers.format_instructions import STRUCTURED_FORMAT_INSTRUCTIONS from langchain.schema import BaseOutputParser, OutputParserException line_template = '\t"{name}": {type} // {description}' [docs]class ResponseSchema(BaseModel): name: str description: str def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type="string" ) [docs]class StructuredOutputParser(BaseOutputParser): response_schemas: List[ResponseSchema] [docs] @classmethod def from_response_schemas( cls, response_schemas: List[ResponseSchema] ) -> StructuredOutputParser: return cls(response_schemas=response_schemas) [docs] def get_format_instructions(self) -> str: schema_str = "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] ) return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str) [docs] def parse(self, text: str) -> Any: if "```json" not in text: raise OutputParserException( f"Got invalid return object. Expected markdown code snippet with JSON " f"object, but got:\n{text}" ) json_string = text.split("```json")[1].strip().strip("```").strip() try: json_obj = json.loads(json_string) except json.JSONDecodeError as e: raise OutputParserException(f"Got invalid JSON object. Error: {e}")
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html
4e108b5847a2-1
raise OutputParserException(f"Got invalid JSON object. Error: {e}") for schema in self.response_schemas: if schema.name not in json_obj: raise OutputParserException( f"Got invalid return object. Expected key `{schema.name}` " f"to be present, but got {json_obj}" ) return json_obj @property def _type(self) -> str: return "structured" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html
d4b284e2a2e4-0
Source code for langchain.output_parsers.fix from __future__ import annotations from typing import TypeVar from langchain.chains.llm import LLMChain from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseLanguageModel, BaseOutputParser, OutputParserException T = TypeVar("T") [docs]class OutputFixingParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors.""" parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_FIX_PROMPT, ) -> OutputFixingParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse(self, completion: str) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return self.parser._type By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html
131121348fe4-0
Source code for langchain.output_parsers.regex from __future__ import annotations import re from typing import Dict, List, Optional from langchain.schema import BaseOutputParser [docs]class RegexParser(BaseOutputParser): """Class to parse the output into a dictionary.""" regex: str output_keys: List[str] default_output_key: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_parser" [docs] def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" match = re.search(self.regex, text) if match: return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)} else: if self.default_output_key is None: raise ValueError(f"Could not parse output: {text}") else: return { key: text if key == self.default_output_key else "" for key in self.output_keys } By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex.html
f1ab3c408d3f-0
Source code for langchain.output_parsers.rail_parser from __future__ import annotations from typing import Any, Dict from langchain.schema import BaseOutputParser [docs]class GuardrailsOutputParser(BaseOutputParser): guard: Any @property def _type(self) -> str: return "guardrails" [docs] @classmethod def from_rail(cls, rail_file: str, num_reasks: int = 1) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail(rail_file, num_reasks=num_reasks)) [docs] @classmethod def from_rail_string( cls, rail_str: str, num_reasks: int = 1 ) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks)) [docs] def get_format_instructions(self) -> str: return self.guard.raw_prompt.format_instructions [docs] def parse(self, text: str) -> Dict: return self.guard.parse(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/rail_parser.html
592b2ed001ff-0
Source code for langchain.output_parsers.regex_dict from __future__ import annotations import re from typing import Dict, Optional from langchain.schema import BaseOutputParser [docs]class RegexDictParser(BaseOutputParser): """Class to parse the output into a dictionary.""" regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private: output_key_to_format: Dict[str, str] no_update_value: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_dict_parser" [docs] def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" result = {} for output_key, expected_format in self.output_key_to_format.items(): specific_regex = self.regex_pattern.format(re.escape(expected_format)) matches = re.findall(specific_regex, text) if not matches: raise ValueError( f"No match found for output key: {output_key} with expected format \ {expected_format} on text {text}" ) elif len(matches) > 1: raise ValueError( f"Multiple matches found for output key: {output_key} with \ expected format {expected_format} on text {text}" ) elif ( self.no_update_value is not None and matches[0] == self.no_update_value ): continue else: result[output_key] = matches[0] return result By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex_dict.html
1f98b1262685-0
Source code for langchain.embeddings.llamacpp """Wrapper around llama.cpp embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.embeddings.base import Embeddings [docs]class LlamaCppEmbeddings(BaseModel, Embeddings): """Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ client: Any #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock")
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
1f98b1262685-1
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] n_ctx = values["n_ctx"] n_parts = values["n_parts"] seed = values["seed"] f16_kv = values["f16_kv"] logits_all = values["logits_all"] vocab_only = values["vocab_only"] use_mlock = values["use_mlock"] n_threads = values["n_threads"] n_batch = values["n_batch"] try: from llama_cpp import Llama values["client"] = Llama( model_path=model_path, n_ctx=n_ctx, n_parts=n_parts, seed=seed, f16_kv=f16_kv, logits_all=logits_all, vocab_only=vocab_only, use_mlock=use_mlock, n_threads=n_threads, n_batch=n_batch, embedding=True, ) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. "
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
1f98b1262685-2
raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception: raise NameError(f"Could not load Llama model from path: {model_path}") return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [self.client.embed(text) for text in texts] return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the Llama model. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed(text) return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
50828bd5a74f-0
Source code for langchain.embeddings.huggingface """Wrapper around HuggingFace embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field from langchain.embeddings.base import Embeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) [docs]class HuggingFaceEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} hf = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) """ client: Any #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME enviroment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: import sentence_transformers except ImportError as exc: raise ValueError( "Could not import sentence_transformers python package. "
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
50828bd5a74f-1
raise ValueError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence_transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client.encode(texts) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode(text) return embedding.tolist() [docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` and ``InstructorEmbedding`` python package installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} hf = HuggingFaceInstructEmbeddings(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
50828bd5a74f-2
hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME enviroment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: from InstructorEmbedding import INSTRUCTOR self.client = INSTRUCTOR( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) except ImportError as e: raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [[self.embed_instruction, text] for text in texts] embeddings = self.client.encode(instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
50828bd5a74f-3
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client.encode([instruction_pair])[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
d0f38ddda42f-0
Source code for langchain.embeddings.aleph_alpha from typing import Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): """ Wrapper for Aleph Alpha's Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example: .. code-block:: python from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) """ client: Any #: :meta private: model: Optional[str] = "luminous-base" """Model name to use.""" hosting: Optional[str] = "https://api.aleph-alpha.com" """Optional parameter that specifies which datacenters may process the request.""" normalize: Optional[bool] = True """Should returned embeddings be normalized""" compress_to_size: Optional[int] = 128 """Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim.""" contextual_control_threshold: Optional[int] = None """Attention control parameters only apply to those tokens that have
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
d0f38ddda42f-1
"""Attention control parameters only apply to those tokens that have explicitly been set in the request.""" control_log_additive: Optional[bool] = True """Apply controls on prompt items by adding the log(control_factor) to attention scores.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: from aleph_alpha_client import Client except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) values["client"] = Client(token=aleph_alpha_api_key) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's asymmetric Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) document_embeddings = [] for text in texts: document_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
d0f38ddda42f-2
"representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } document_request = SemanticEmbeddingRequest(**document_params) document_response = self.client.semantic_embed( request=document_request, model=self.model ) document_embeddings.append(document_response.embedding) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) symmetric_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Query, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } symmetric_request = SemanticEmbeddingRequest(**symmetric_params) symmetric_response = self.client.semantic_embed( request=symmetric_request, model=self.model ) return symmetric_response.embedding [docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
d0f38ddda42f-3
"""The symmetric version of the Aleph Alpha's semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric Example: .. code-block:: python from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding() text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) """ def _embed(self, text: str) -> List[float]: try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) query_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Symmetric, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } query_request = SemanticEmbeddingRequest(**query_params) query_response = self.client.semantic_embed( request=query_request, model=self.model ) return query_response.embedding [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ document_embeddings = [] for text in texts:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
d0f38ddda42f-4
""" document_embeddings = [] for text in texts: document_embeddings.append(self._embed(text)) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
c81dba63ba12-0
Source code for langchain.embeddings.tensorflow_hub """Wrapper around TensorflowHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" [docs]class TensorflowHubEmbeddings(BaseModel, Embeddings): """Wrapper around tensorflow_hub embedding models. To use, you should have the ``tensorflow_text`` python package installed. Example: .. code-block:: python from langchain.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) """ embed: Any #: :meta private: model_url: str = DEFAULT_MODEL_URL """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the tensorflow_hub and tensorflow_text.""" super().__init__(**kwargs) try: import tensorflow_hub import tensorflow_text # noqa self.embed = tensorflow_hub.load(self.model_url) except ImportError as e: raise ValueError( "Could not import some python packages." "Please install them." ) from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a TensorflowHub embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
c81dba63ba12-1
Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.embed(texts).numpy() return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a TensorflowHub embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.embed([text]).numpy()[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
8ff7d5d6338f-0
Source code for langchain.embeddings.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.llms.sagemaker_endpoint import ContentHandlerBase class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]]): """Content handler for LLM class.""" [docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain.embeddings import SagemakerEndpointEmbeddings endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpointEmbeddings( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
8ff7d5d6338f-1
credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: EmbeddingsContentHandler """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompts: List[str], model_kwargs: Dict) -> bytes: input_str = json.dumps({prompts: prompts, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"] """ # noqa: E501 model_kwargs: Optional[Dict] = None
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
8ff7d5d6338f-2
""" # noqa: E501 model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) return values def _embedding_func(self, texts: List[str]) -> List[List[float]]: """Call out to SageMaker Inference embedding endpoint.""" # replace newlines, which can negatively affect performance.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
8ff7d5d6338f-3
# replace newlines, which can negatively affect performance. texts = list(map(lambda x: x.replace("\n", " "), texts)) _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(texts, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return self.content_handler.transform_output(response["Body"]) [docs] def embed_documents( self, texts: List[str], chunk_size: int = 64 ) -> List[List[float]]: """Compute doc embeddings using a SageMaker Inference Endpoint. Args: texts: The list of texts to embed. chunk_size: The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ results = [] _chunk_size = len(texts) if chunk_size > len(texts) else chunk_size for i in range(0, len(texts), _chunk_size): response = self._embedding_func(texts[i : i + _chunk_size]) results.extend(response) return results [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a SageMaker inference endpoint.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
8ff7d5d6338f-4
"""Compute query embeddings using a SageMaker inference endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func([text])[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
d88e06bce2db-0
Source code for langchain.embeddings.huggingface_hub """Wrapper around HuggingFace Hub embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) [docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings): """Wrapper around HuggingFaceHub embedding models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = "feature-extraction" """Task to call the model with.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
d88e06bce2db-1
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] if not repo_id.startswith("sentence-transformers"): raise ValueError( "Currently only 'sentence-transformers' embedding models " f"are supported. Got invalid 'repo_id' {repo_id}." ) client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ # replace newlines, which can negatively affect performance. texts = [text.replace("\n", " ") for text in texts]
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
d88e06bce2db-2
texts = [text.replace("\n", " ") for text in texts] _model_kwargs = self.model_kwargs or {} responses = self.client(inputs=texts, params=_model_kwargs) return responses [docs] def embed_query(self, text: str) -> List[float]: """Call out to HuggingFaceHub's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embeddings for the text. """ response = self.embed_documents([text])[0] return response By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
43fc1820e818-0
Source code for langchain.embeddings.self_hosted """Running custom embedding models on self-hosted remote hardware.""" from typing import Any, Callable, List from pydantic import Extra from langchain.embeddings.base import Embeddings from langchain.llms import SelfHostedPipeline def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return pipeline(*args, **kwargs) [docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings): """Runs custom embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example using a model load function: .. code-block:: python from langchain.embeddings import SelfHostedEmbeddings from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") def get_pipeline(): model_id = "facebook/bart-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
43fc1820e818-1
model_load_fn=get_pipeline, hardware=gpu model_reqs=["./", "torch", "transformers"], ) Example passing in a pipeline path: .. code-block:: python from langchain.embeddings import SelfHostedHFEmbeddings import runhouse as rh from transformers import pipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") pipeline = pipeline(model="bert-base-uncased", task="feature-extraction") rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") embeddings = SelfHostedHFEmbeddings.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) """ inference_fn: Callable = _embed_documents """Inference function to extract the embeddings on the remote hardware.""" inference_kwargs: Any = None """Any kwargs to pass to the model's inference function.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed.s Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client(self.pipeline_ref, texts) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings [docs] def embed_query(self, text: str) -> List[float]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
43fc1820e818-2
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embeddings = self.client(self.pipeline_ref, text) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
eeebc8cd435a-0
Source code for langchain.embeddings.cohere """Wrapper around Cohere embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class CohereEmbeddings(BaseModel, Embeddings): """Wrapper around Cohere embedding models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key") """ client: Any #: :meta private: model: str = "large" """Model name to use.""" truncate: Optional[str] = None """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")""" cohere_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ValueError( "Could not import cohere python package. "
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
eeebc8cd435a-1
raise ValueError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.embed( model=self.model, texts=texts, truncate=self.truncate ).embeddings return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed( model=self.model, texts=[text], truncate=self.truncate ).embeddings[0] return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
5783b44702b3-0
Source code for langchain.embeddings.openai """Wrapper around OpenAI embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Literal, Optional, Set, Tuple, Union, ) import numpy as np from pydantic import BaseModel, Extra, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call."""
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
5783b44702b3-1
"""Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: return embeddings.client.create(**kwargs) return _embed_with_retry(**kwargs) [docs]class OpenAIEmbeddings(BaseModel, Embeddings): """Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name" ) text = "This is a test query." query_result = embeddings.embed_query(text)
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
5783b44702b3-2
text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model # to support Azure OpenAI Service custom deployment names embedding_ctx_length: int = 8191 openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Tuple[()]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["client"] = openai.Embedding except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." )
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
5783b44702b3-3
"Please install it with `pip install openai`." ) return values # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb def _get_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for i in range(len(texts))] try: import tiktoken tokens = [] indices = [] encoding = tiktoken.model.encoding_for_model(self.model) for i, text in enumerate(texts): # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]] indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = embed_with_retry( self, input=tokens[i : i + _chunk_size], engine=self.deployment, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] lens: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i])
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
5783b44702b3-4
results[indices[i]].append(batched_embeddings[i]) lens[indices[i]].append(len(batched_embeddings[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = embed_with_retry(self, input="", engine=self.deployment)[ "data" ][0]["embedding"] else: average = np.average(_result, axis=0, weights=lens[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) def _embedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # handle large input text if self.embedding_ctx_length > 0: return self._get_len_safe_embeddings([text], engine=engine)[0] else: # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return embed_with_retry(self, input=[text], engine=engine)["data"][0][ "embedding" ] [docs] def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
5783b44702b3-5
specified by the class. Returns: List of embeddings, one for each text. """ # handle batches of large input text if self.embedding_ctx_length > 0: return self._get_len_safe_embeddings(texts, engine=self.deployment) else: results = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(texts), _chunk_size): response = embed_with_retry( self, input=texts[i : i + _chunk_size], engine=self.deployment, ) results += [r["embedding"] for r in response["data"]] return results [docs] def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
b8c9f941b7f6-0
Source code for langchain.embeddings.self_hosted_hugging_face """Wrapper around HuggingFace embedding models for self-hosted remote hardware.""" import importlib import logging from typing import Any, Callable, List, Optional from langchain.embeddings.self_hosted import SelfHostedEmbeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) logger = logging.getLogger(__name__) def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return client.encode(*args, **kwargs) def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any: """Load the embedding model.""" if not instruct: import sentence_transformers client = sentence_transformers.SentenceTransformer(model_id) else: from InstructorEmbedding import INSTRUCTOR client = INSTRUCTOR(model_id) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
b8c9f941b7f6-1
if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) client = client.to(device) return client [docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): """Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) """ client: Any #: :meta private: model_id: str = DEFAULT_MODEL_NAME """Model name to use.""" model_reqs: List[str] = ["./", "sentence_transformers", "torch"] """Requirements to install on hardware to inference the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable = load_embedding_model
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
b8c9f941b7f6-2
model_load_fn: Callable = load_embedding_model """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Key word arguments to pass to the model load function.""" inference_fn: Callable = _embed_documents """Inference function to extract the embeddings.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): """Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
b8c9f941b7f6-3
model_name=model_name, hardware=gpu) """ model_id: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"] """Requirements to install on hardware to inference the model.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get( "model_id", DEFAULT_INSTRUCT_MODEL ) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
b8c9f941b7f6-4
text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client(self.pipeline_ref, [instruction_pair])[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
ea414bd6704f-0
Source code for langchain.embeddings.fake from typing import List import numpy as np from pydantic import BaseModel from langchain.embeddings.base import Embeddings [docs]class FakeEmbeddings(Embeddings, BaseModel): size: int def _get_embedding(self) -> List[float]: return list(np.random.normal(size=self.size)) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: return [self._get_embedding() for _ in texts] [docs] def embed_query(self, text: str) -> List[float]: return self._get_embedding() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/fake.html
fa629123646a-0
Source code for langchain.chat_models.azure_openai """Azure OpenAI chat wrapper.""" from __future__ import annotations import logging from typing import Any, Dict from pydantic import root_validator from langchain.chat_models.openai import ChatOpenAI from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureChatOpenAI(ChatOpenAI): """Wrapper around Azure OpenAI Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``OPENAI_API_TYPE`` (default: ``azure``) - ``OPENAI_API_KEY`` - ``OPENAI_API_BASE`` - ``OPENAI_API_VERSION`` For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( deployment_name="35-turbo-dev", openai_api_version="2023-03-15-preview", ) Be aware the API version may change. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ deployment_name: str = "" openai_api_type: str = "azure" openai_api_base: str = "" openai_api_version: str = "" openai_api_key: str = ""
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
fa629123646a-1
openai_api_version: str = "" openai_api_key: str = "" openai_organization: str = "" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY", ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", ) openai_api_version = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) openai_api_type = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_type = openai_api_type openai.api_base = openai_api_base openai.api_version = openai_api_version openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely "
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
fa629123646a-2
"`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { **super()._default_params, "engine": self.deployment_name, } By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
035e172adecb-0
Source code for langchain.chat_models.openai """OpenAI chat wrapper.""" from __future__ import annotations import logging import sys from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), )
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-1
), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: dict) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict["content"]) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-2
message_dict["name"] = message.additional_kwargs["name"] return message_dict [docs]class ChatOpenAI(BaseChatModel): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ client: Any #: :meta private: model_name: str = "gpt-3.5-turbo" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_organization: Optional[str] = None request_timeout: int = 60 """Timeout in seconds for the OpenAPI request.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-3
"""Configuration for this pydantic object.""" extra = Extra.ignore @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it "
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-4
"due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), )
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-5
), before_sleep=before_sleep_log(logger, logging.WARNING), ) [docs] def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token self.callback_manager.on_llm_new_token( token, verbose=self.verbose, )
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-6
token, verbose=self.verbose, ) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-7
inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if self.callback_manager.is_async: await self.callback_manager.on_llm_new_token( token, verbose=self.verbose, ) else: self.callback_manager.on_llm_new_token( token, verbose=self.verbose, ) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} [docs] def get_num_tokens(self, text: str) -> int: """Calculate num tokens with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. "
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-8
"This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) # create a GPT-3.5-Turbo encoder instance enc = tiktoken.encoding_for_model(self.model_name) # encode the text using the GPT-3.5-Turbo encoder tokenized_text = enc.encode(text) # calculate the number of tokens in the encoded text return len(tokenized_text) [docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314"
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
035e172adecb-9
model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo-0301": # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
1f1c066d9691-0
Source code for langchain.chat_models.promptlayer_openai """PromptLayer wrapper.""" import datetime from typing import List, Optional from langchain.chat_models import ChatOpenAI from langchain.schema import BaseMessage, ChatResult [docs]class PromptLayerChatOpenAI(ChatOpenAI): """Wrapper around OpenAI Chat large language models and PromptLayer. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerChatOpenAI adds to optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.chat_models import PromptLayerChatOpenAI openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: """Call ChatOpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(messages, stop) request_end_time = datetime.datetime.now().timestamp()
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
1f1c066d9691-1
request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) pl_request_id = promptlayer_api_request( "langchain.PromptLayerChatOpenAI", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: """Call ChatOpenAI agenerate and then call PromptLayer to log.""" from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(messages, stop) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerChatOpenAI.async", "langchain", message_dicts,
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
1f1c066d9691-2
"langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
c7d1e569488e-0
Source code for langchain.chat_models.anthropic from typing import Any, Dict, List, Optional from pydantic import Extra from langchain.chat_models.base import BaseChatModel from langchain.llms.anthropic import _AnthropicCommon from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) [docs]class ChatAnthropic(BaseChatModel, _AnthropicCommon): r"""Wrapper around Anthropic's large language model. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat" def _convert_one_message_to_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"{self.HUMAN_PROMPT} {message.content}" elif isinstance(message, AIMessage): message_text = f"{self.AI_PROMPT} {message.content}" elif isinstance(message, SystemMessage):
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
c7d1e569488e-1
elif isinstance(message, SystemMessage): message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>" else: raise ValueError(f"Got unknown type {message}") return message_text def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str: """Format a list of strings into a single string with necessary newlines. Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary newlines. """ return "".join( self._convert_one_message_to_text(message) for message in messages ) def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ if not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = self._convert_messages_to_text(messages) return ( text.rstrip() ) # trim off the trailing ' ' that might come from the "Assistant: " def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if stop: params["stop_sequences"] = stop
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
c7d1e569488e-2
if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = self.client.completion_stream(**params) for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] self.callback_manager.on_llm_new_token( delta, verbose=self.verbose, ) else: response = self.client.completion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = await self.client.acompletion_stream(**params) async for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if self.callback_manager.is_async: await self.callback_manager.on_llm_new_token( delta, verbose=self.verbose, ) else: self.callback_manager.on_llm_new_token( delta, verbose=self.verbose, ) else: response = await self.client.acompletion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
c7d1e569488e-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
1098e202edb9-0
.md .pdf Cloud Hosted Setup Contents Installation Environment Setup Cloud Hosted Setup# We offer a hosted version of tracing at langchainplus.vercel.app. You can use this to view traces from your run without having to run the server locally. Note: we are currently only offering this to a limited number of users. The hosted platform is VERY alpha, in active development, and data might be dropped at any time. Don’t depend on data being persisted in the system long term and don’t log traces that may contain sensitive information. If you’re interested in using the hosted platform, please fill out the form here. Installation# Login to the system and click “API Key” in the top right corner. Generate a new key and keep it safe. You will need it to authenticate with the system. Environment Setup# After installation, you must now set up your environment to use tracing. This can be done by setting an environment variable in your terminal by running export LANGCHAIN_HANDLER=langchain. You can also do this by adding the below snippet to the top of every script. IMPORTANT: this must go at the VERY TOP of your script, before you import anything from langchain. import os os.environ["LANGCHAIN_HANDLER"] = "langchain" You will also need to set an environment variable to specify the endpoint and your API key. This can be done with the following environment variables: LANGCHAIN_ENDPOINT = “https://langchain-api-gateway-57eoxz8z.uc.gateway.dev” LANGCHAIN_API_KEY - set this to the API key you generated during installation. An example of adding all relevant environment variables is below: import os os.environ["LANGCHAIN_HANDLER"] = "langchain" os.environ["LANGCHAIN_ENDPOINT"] = "https://langchain-api-gateway-57eoxz8z.uc.gateway.dev"
https://python.langchain.com/en/latest/tracing/hosted_installation.html
1098e202edb9-1
os.environ["LANGCHAIN_API_KEY"] = "my_api_key" # Don't commit this to your repo! Better to set it in your terminal. Contents Installation Environment Setup By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/tracing/hosted_installation.html
841575633edc-0
.ipynb .pdf Tracing Walkthrough Tracing Walkthrough# import os os.environ["LANGCHAIN_HANDLER"] = "langchain" ## Uncomment this if using hosted setup. # os.environ["LANGCHAIN_ENDPOINT"] = "https://langchain-api-gateway-57eoxz8z.uc.gateway.dev" ## Uncomment this if you want traces to be recorded to "my_session" instead of default. # os.environ["LANGCHAIN_SESSION"] = "my_session" ## Better to set this environment variable in the terminal ## Uncomment this if using hosted version. Replace "my_api_key" with your actual API Key. # os.environ["LANGCHAIN_API_KEY"] = "my_api_key" import langchain from langchain.agents import Tool, initialize_agent, load_tools from langchain.agents import AgentType from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI # Agent run with tracing. Ensure that OPENAI_API_KEY is set appropriately to run this example. llm = OpenAI(temperature=0) tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("What is 2 raised to .123243 power?") > Entering new AgentExecutor chain... I need to use a calculator to solve this. Action: Calculator Action Input: 2^.123243 Observation: Answer: 1.0891804557407723 Thought: I now know the final answer. Final Answer: 1.0891804557407723 > Finished chain. '1.0891804557407723' # Agent run with tracing using a chat model agent = initialize_agent(
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
841575633edc-1
# Agent run with tracing using a chat model agent = initialize_agent( tools, ChatOpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("What is 2 raised to .123243 power?") > Entering new AgentExecutor chain... Question: What is 2 raised to .123243 power? Thought: I need a calculator to solve this problem. Action: ``` { "action": "calculator", "action_input": "2^0.123243" } ``` Observation: calculator is not a valid tool, try another one. I made a mistake, I need to use the correct tool for this question. Action: ``` { "action": "calculator", "action_input": "2^0.123243" } ``` Observation: calculator is not a valid tool, try another one. I made a mistake, the tool name is actually "calc" instead of "calculator". Action: ``` { "action": "calc", "action_input": "2^0.123243" } ``` Observation: calc is not a valid tool, try another one. I made another mistake, the tool name is actually "Calculator" instead of "calc". Action: ``` { "action": "Calculator", "action_input": "2^0.123243" } ``` Observation: Answer: 1.0891804557407723 Thought:The final answer is 1.0891804557407723. Final Answer: 1.0891804557407723 > Finished chain. '1.0891804557407723' By Harrison Chase
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
841575633edc-2
'1.0891804557407723' By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
c64c84e608de-0
.md .pdf Locally Hosted Setup Contents Installation Environment Setup Locally Hosted Setup# This page contains instructions for installing and then setting up the environment to use the locally hosted version of tracing. Installation# Ensure you have Docker installed (see Get Docker) and that it’s running. Install the latest version of langchain: pip install langchain or pip install langchain -U to upgrade your existing version. Run langchain-server. This command was installed automatically when you ran the above command (pip install langchain). This will spin up the server in the terminal, hosted on port 4137 by default. Once you see the terminal output langchain-langchain-frontend-1 | ➜ Local: [http://localhost:4173/](http://localhost:4173/), navigate to http://localhost:4173/ You should see a page with your tracing sessions. See the overview page for a walkthrough of the UI. Currently, trace data is not guaranteed to be persisted between runs of langchain-server. If you want to persist your data, you can mount a volume to the Docker container. See the Docker docs for more info. To stop the server, press Ctrl+C in the terminal where you ran langchain-server. Environment Setup# After installation, you must now set up your environment to use tracing. This can be done by setting an environment variable in your terminal by running export LANGCHAIN_HANDLER=langchain. You can also do this by adding the below snippet to the top of every script. IMPORTANT: this must go at the VERY TOP of your script, before you import anything from langchain. import os os.environ["LANGCHAIN_HANDLER"] = "langchain" Contents Installation Environment Setup By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/tracing/local_installation.html
c64c84e608de-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/tracing/local_installation.html
fcdfc99e17b1-0
.md .pdf Question Answering over Docs Contents Document Question Answering Adding in sources Additional Related Resources End-to-end examples Question Answering over Docs# Conceptual Guide Question answering in this context refers to question answering over your document data. For question answering over other types of data, please see other sources documentation like SQL database Question Answering or Interacting with APIs. For question answering over many documents, you almost always want to create an index over the data. This can be used to smartly access the most relevant documents for a given question, allowing you to avoid having to pass all the documents to the LLM (saving you time and money). See this notebook for a more detailed introduction to this, but for a super quick start the steps involved are: Load Your Documents from langchain.document_loaders import TextLoader loader = TextLoader('../state_of_the_union.txt') See here for more information on how to get started with document loading. Create Your Index from langchain.indexes import VectorstoreIndexCreator index = VectorstoreIndexCreator().from_loaders([loader]) The best and most popular index by far at the moment is the VectorStore index. Query Your Index query = "What did the president say about Ketanji Brown Jackson" index.query(query) Alternatively, use query_with_sources to also get back the sources involved query = "What did the president say about Ketanji Brown Jackson" index.query_with_sources(query) Again, these high level interfaces obfuscate a lot of what is going on under the hood, so please see this notebook for a lower level walkthrough. Document Question Answering# Question answering involves fetching multiple documents, and then asking a question of them. The LLM response will contain the answer to your question, based on the content of the documents.
https://python.langchain.com/en/latest/use_cases/question_answering.html
fcdfc99e17b1-1
The LLM response will contain the answer to your question, based on the content of the documents. The recommended way to get started using a question answering chain is: from langchain.chains.question_answering import load_qa_chain chain = load_qa_chain(llm, chain_type="stuff") chain.run(input_documents=docs, question=query) The following resources exist: Question Answering Notebook: A notebook walking through how to accomplish this task. VectorDB Question Answering Notebook: A notebook walking through how to do question answering over a vector database. This can often be useful for when you have a LOT of documents, and you don’t want to pass them all to the LLM, but rather first want to do some semantic search over embeddings. Adding in sources# There is also a variant of this, where in addition to responding with the answer the language model will also cite its sources (eg which of the documents passed in it used). The recommended way to get started using a question answering with sources chain is: from langchain.chains.qa_with_sources import load_qa_with_sources_chain chain = load_qa_with_sources_chain(llm, chain_type="stuff") chain({"input_documents": docs, "question": query}, return_only_outputs=True) The following resources exist: QA With Sources Notebook: A notebook walking through how to accomplish this task. VectorDB QA With Sources Notebook: A notebook walking through how to do question answering with sources over a vector database. This can often be useful for when you have a LOT of documents, and you don’t want to pass them all to the LLM, but rather first want to do some semantic search over embeddings. Additional Related Resources# Additional related resources include:
https://python.langchain.com/en/latest/use_cases/question_answering.html
fcdfc99e17b1-2
Additional Related Resources# Additional related resources include: Utilities for working with Documents: Guides on how to use several of the utilities which will prove helpful for this task, including Text Splitters (for splitting up long documents) and Embeddings & Vectorstores (useful for the above Vector DB example). CombineDocuments Chains: A conceptual overview of specific types of chains by which you can accomplish this task. End-to-end examples# For examples to this done in an end-to-end manner, please see the following resources: Semantic search over a group chat with Sources Notebook: A notebook that semantically searches over a group chat conversation. previous Agent Simulations next Chatbots Contents Document Question Answering Adding in sources Additional Related Resources End-to-end examples By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/use_cases/question_answering.html
bb39de463c5b-0
.md .pdf Agent Simulations Contents Simulations with Two Agents Generative Agents Agent Simulations# Agent simulations involve interacting one of more agents with eachother. Agent simulations generally involve two main components: Long Term Memory Simulation Environment Specific implementations of agent simulations (or parts of agent simulations) include Simulations with Two Agents# CAMEL: an implementation of the CAMEL (Communicative Agents for “Mind” Exploration of Large Scale Language Model Society) paper, where two agents communicate with each other. Two Player D&D: an example of how to use a generic simulator for two agents to implement a variant of the popular Dungeons & Dragons role playing game. Generative Agents# Generative Agents: This notebook implements a generative agent based on the paper Generative Agents: Interactive Simulacra of Human Behavior by Park, et. al. previous Autonomous Agents next Question Answering over Docs Contents Simulations with Two Agents Generative Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations.html
b9cdd37eca32-0
.md .pdf Summarization Summarization# Conceptual Guide Summarization involves creating a smaller summary of multiple longer documents. This can be useful for distilling long documents into the core pieces of information. The recommended way to get started using a summarization chain is: from langchain.chains.summarize import load_summarize_chain chain = load_summarize_chain(llm, chain_type="map_reduce") chain.run(docs) The following resources exist: Summarization Notebook: A notebook walking through how to accomplish this task. Additional related resources include: Utilities for working with Documents: Guides on how to use several of the utilities which will prove helpful for this task, including Text Splitters (for splitting up long documents). previous Interacting with APIs next Extraction By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/use_cases/summarization.html
4fbfef61b211-0
.md .pdf Chatbots Chatbots# Conceptual Guide Since language models are good at producing text, that makes them ideal for creating chatbots. Aside from the base prompts/LLMs, an important concept to know for Chatbots is memory. Most chat based applications rely on remembering what happened in previous interactions, which memory is designed to help with. The following resources exist: ChatGPT Clone: A notebook walking through how to recreate a ChatGPT-like experience with LangChain. Conversation Memory: A notebook walking through how to use different types of conversational memory. Conversation Agent: A notebook walking through how to create an agent optimized for conversation. Additional related resources include: Memory Key Concepts: Explanation of key concepts related to memory. Memory Examples: A collection of how-to examples for working with memory. More end-to-end examples include: Voice Assistant: A notebook walking through how to create a voice assistant using LangChain. previous Question Answering over Docs next Querying Tabular Data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/use_cases/chatbots.html
339e48c1ecf3-0
.md .pdf Extraction Extraction# Conceptual Guide Most APIs and databases still deal with structured information. Therefore, in order to better work with those, it can be useful to extract structured information from text. Examples of this include: Extracting a structured row to insert into a database from a sentence Extracting multiple rows to insert into a database from a long document Extracting the correct API parameters from a user query This work is extremely related to output parsing. Output parsers are responsible for instructing the LLM to respond in a specific format. In this case, the output parsers specify the format of the data you would like to extract from the document. Then, in addition to the output format instructions, the prompt should also contain the data you would like to extract information from. While normal output parsers are good enough for basic structuring of response data, when doing extraction you often want to extract more complicated or nested structures. For a deep dive on extraction, we recommend checking out kor, a library that uses the existing LangChain chain and OutputParser abstractions but deep dives on allowing extraction of more complicated schemas. previous Summarization next Evaluation By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 25, 2023.
https://python.langchain.com/en/latest/use_cases/extraction.html
122bf7f8508b-0
.md .pdf Code Understanding Contents Conversational Retriever Chain Code Understanding# Overview LangChain is a useful tool designed to parse GitHub code repositories. By leveraging VectorStores, Conversational RetrieverChain, and GPT-4, it can answer questions in the context of an entire GitHub repository or generate new code. This documentation page outlines the essential components of the system and guides using LangChain for better code comprehension, contextual question answering, and code generation in GitHub repositories. Conversational Retriever Chain# Conversational RetrieverChain is a retrieval-focused system that interacts with the data stored in a VectorStore. Utilizing advanced techniques, like context-aware filtering and ranking, it retrieves the most relevant code snippets and information for a given user query. Conversational RetrieverChain is engineered to deliver high-quality, pertinent results while considering conversation history and context. LangChain Workflow for Code Understanding and Generation Index the code base: Clone the target repository, load all files within, chunk the files, and execute the indexing process. Optionally, you can skip this step and use an already indexed dataset. Embedding and Code Store: Code snippets are embedded using a code-aware embedding model and stored in a VectorStore. Query Understanding: GPT-4 processes user queries, grasping the context and extracting relevant details. Construct the Retriever: Conversational RetrieverChain searches the VectorStore to identify the most relevant code snippets for a given query. Build the Conversational Chain: Customize the retriever settings and define any user-defined filters as needed. Ask questions: Define a list of questions to ask about the codebase, and then use the ConversationalRetrievalChain to generate context-aware answers. The LLM (GPT-4) generates comprehensive, context-aware answers based on retrieved code snippets and conversation history. The full tutorial is available below.
https://python.langchain.com/en/latest/use_cases/code.html