language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
wireservice__csvkit
tests/test_utilities/test_in2csv.py
{ "start": 202, "end": 13554 }
class ____(CSVKitTestCase, EmptyFileTests): Utility = In2CSV default_args = ['-f', 'csv'] def assertConverted(self, input_format, input_filename, output_filename, additional_args=[]): output = self.get_output(['-f', input_format, input_filename] + additional_args) with open(output_filename) as f: self.assertEqual(output, f.read()) def test_launch_new_instance(self): with patch.object(sys, 'argv', [self.Utility.__name__.lower(), 'examples/dummy.csv']): launch_new_instance() def test_version(self): with self.assertRaises(SystemExit) as e: self.get_output(['-V']) self.assertEqual(e.exception.code, 0) def test_args(self): for args in ([], ['-']): with self.subTest(args=args): self.assertError( launch_new_instance, [], 'You must specify a format when providing input as piped data via STDIN.', args=args, ) def test_options(self): for options, args, message in ( ( [], ['dummy.unknown'], 'Unable to automatically determine the format of the input file. ' 'Try specifying a format with --format.', ), ( ['-n'], ['dummy.csv'], 'You cannot use the -n or --names options with non-Excel files.', ), ): with self.subTest(args=options + args): self.assertError(launch_new_instance, options, message, args=args) def test_locale(self): self.assertConverted('csv', 'examples/test_locale.csv', 'examples/test_locale_converted.csv', ['--locale', 'de_DE']) def test_add_bom(self): self.assertConverted('csv', 'examples/test_utf8.csv', 'examples/test_utf8_bom.csv', ['--add-bom']) def test_no_blanks(self): self.assertConverted('csv', 'examples/blanks.csv', 'examples/blanks_converted.csv') def test_blanks(self): self.assertConverted('csv', 'examples/blanks.csv', 'examples/blanks.csv', ['--blanks']) def test_null_value(self): input_file = io.BytesIO(b'a,b\nn/a,\\N') with stdin_as_string(input_file): self.assertLines(['-f', 'csv', '--null-value', '\\N'], [ 'a,b', ',', ]) input_file.close() def test_null_value_blanks(self): input_file = io.BytesIO(b'a,b\nn/a,\\N') with stdin_as_string(input_file): self.assertLines(['-f', 'csv', '--null-value', '\\N', '--blanks'], [ 'a,b', 'n/a,', ]) input_file.close() def test_no_leading_zeroes(self): self.assertConverted('csv', 'examples/test_no_leading_zeroes.csv', 'examples/test_no_leading_zeroes.csv', ['--no-leading-zeroes']) def test_date_format(self): self.assertConverted('csv', 'examples/test_date_format.csv', 'examples/test_date_format_converted.csv', ['--date-format', '%d/%m/%Y']) def test_date_format_default(self): self.assertConverted('csv', 'examples/test_date_format.csv', 'examples/test_date_format.csv') def test_numeric_date_format(self): self.assertConverted('csv', 'examples/test_numeric_date_format.csv', 'examples/test_date_format_converted.csv', ['--date-format', '%Y%m%d']) def test_numeric_date_format_default(self): self.assertConverted('csv', 'examples/test_numeric_date_format.csv', 'examples/test_numeric_date_format.csv') def test_date_like_number(self): self.assertConverted('csv', 'examples/date_like_number.csv', 'examples/date_like_number.csv') def test_convert_csv(self): self.assertConverted('csv', 'examples/testfixed_converted.csv', 'examples/testfixed_converted.csv') def test_convert_csv_with_skip_lines(self): self.assertConverted('csv', 'examples/test_skip_lines.csv', 'examples/dummy.csv', ['--skip-lines', '3', '--no-inference']) def test_convert_tsv(self): self.assertConverted('csv', 'examples/dummy.tsv', 'examples/dummy.csv', ['--no-inference']) def test_convert_tsv_streaming(self): self.assertConverted('csv', 'examples/dummy.tsv', 'examples/dummy.csv', ['--no-inference', '--snifflimit', '0', '--tabs']) def test_convert_dbf(self): self.assertConverted('dbf', 'examples/testdbf.dbf', 'examples/testdbf_converted.csv') def test_convert_json(self): self.assertConverted('json', 'examples/testjson.json', 'examples/testjson_converted.csv') def test_convert_geojson(self): self.assertConverted('geojson', 'examples/test_geojson.json', 'examples/test_geojson.csv') def test_convert_ndjson(self): self.assertConverted('ndjson', 'examples/testjson_multiline.json', 'examples/testjson_multiline_converted.csv') def test_convert_nested_json(self): self.assertConverted('json', 'examples/testjson_nested.json', 'examples/testjson_nested_converted.csv') def test_convert_xls(self): self.assertConverted('xls', 'examples/test.xls', 'examples/testxls_converted.csv') def test_convert_xls_with_sheet(self): self.assertConverted('xls', 'examples/sheets.xls', 'examples/testxls_converted.csv', ['--sheet', 'data']) def test_convert_xls_with_unicode_sheet(self): self.assertLines(['--sheet', 'ʤ', 'examples/sheets.xls'], [ 'a,b,c', '1.0,2.0,3.0', ]) def test_convert_xls_with_skip_lines(self): self.assertConverted('xls', 'examples/test_skip_lines.xls', 'examples/testxls_converted.csv', ['--skip-lines', '3']) def test_convert_xlsx(self): self.assertConverted('xlsx', 'examples/test.xlsx', 'examples/testxlsx_converted.csv') def test_convert_xlsx_with_sheet(self): self.assertConverted('xlsx', 'examples/sheets.xlsx', 'examples/testxlsx_converted.csv', ['--sheet', 'data']) def test_convert_xlsx_with_unicode_sheet(self): self.assertLines(['--sheet', 'ʤ', '--no-inference', 'examples/sheets.xlsx'], [ 'a,b,c', '1,2,3', ]) def test_convert_xlsx_with_skip_lines(self): self.assertConverted('xlsx', 'examples/test_skip_lines.xlsx', 'examples/testxlsx_converted.csv', ['--skip-lines', '3']) def test_names(self): self.assertLines(['--names', 'examples/sheets.xlsx'], [ 'not this one', 'data', 'ʤ', ]) def test_csv_no_headers(self): self.assertConverted('csv', 'examples/no_header_row.csv', 'examples/dummy.csv', ['--no-header-row', '--no-inference']) def test_csv_no_headers_streaming(self): self.assertConverted('csv', 'examples/no_header_row.csv', 'examples/dummy.csv', ['--no-header-row', '--no-inference', '--snifflimit', '0']) def test_csv_datetime_inference(self): input_file = io.BytesIO(b'a\n2015-01-01T00:00:00Z') with stdin_as_string(input_file): self.assertLines(['-f', 'csv'], [ 'a', '2015-01-01T00:00:00+00:00', ]) input_file.close() def test_csv_no_inference(self): self.assertLines(['--no-inference', 'examples/dummy.csv'], [ 'a,b,c', '1,2,3', ]) def test_xls_no_inference(self): self.assertLines(['--no-inference', 'examples/dummy.xls'], [ 'a,b,c', '1.0,2.0,3.0', ]) def test_xlsx_no_inference(self): self.assertLines(['--no-inference', 'examples/dummy.xlsx'], [ 'a,b,c', '1,2,3', ]) def test_geojson_no_inference(self): input_file = io.BytesIO( b'{"a": 1, "b": 2, "type": "FeatureCollection", "features": [{"geometry": {}, "properties": ' b'{"a": 1, "b": 2, "c": 3}}]}') with stdin_as_string(input_file): self.assertLines(['--no-inference', '-f', 'geojson'], [ 'id,a,b,c,geojson,type,longitude,latitude', ',1,2,3,{},,,', ]) input_file.close() def test_json_no_inference(self): input_file = io.BytesIO(b'[{"a": 1, "b": 2, "c": 3}]') with stdin_as_string(input_file): self.assertLines(['--no-inference', '-f', 'json'], [ 'a,b,c', '1,2,3', ]) input_file.close() def test_ndjson_no_inference(self): input_file = io.BytesIO(b'{"a": 1, "b": 2, "c": 3}') with stdin_as_string(input_file): self.assertLines(['--no-inference', '-f', 'ndjson'], [ 'a,b,c', '1,2,3', ]) input_file.close() def test_names_xls(self): output = self.get_output_as_io(['-n', 'examples/sheets.xls']) self.assertEqual(next(output), 'not this one\n') self.assertEqual(next(output), 'data\n') def test_names_xlsx(self): output = self.get_output_as_io(['-n', 'examples/sheets.xlsx']) self.assertEqual(next(output), 'not this one\n') self.assertEqual(next(output), 'data\n') def test_convert_xls_with_write_sheets(self): try: self.assertConverted('xls', 'examples/sheets.xls', 'examples/testxls_converted.csv', ['--sheet', 'data', '--write-sheets', "ʤ,1"]) with open('examples/sheets_0.csv') as f, open('examples/testxls_unicode_converted.csv') as g: self.assertEqual(f.read(), g.read()) with open('examples/sheets_1.csv') as f, open('examples/testxls_converted.csv') as g: self.assertEqual(f.read(), g.read()) self.assertFalse(os.path.exists('examples/sheets_2.csv')) finally: for suffix in (0, 1): path = 'examples/sheets_%d.csv' % suffix if os.path.exists(path): os.remove(path) def test_convert_xlsx_with_write_sheets(self): try: self.assertConverted('xlsx', 'examples/sheets.xlsx', 'examples/testxlsx_noinference_converted.csv', ['--no-inference', '--sheet', 'data', '--write-sheets', "ʤ,1"]) with open('examples/sheets_0.csv') as f, open('examples/testxlsx_unicode_converted.csv') as g: self.assertEqual(f.read(), g.read()) with open('examples/sheets_1.csv') as f, open('examples/testxlsx_noinference_converted.csv') as g: self.assertEqual(f.read(), g.read()) self.assertFalse(os.path.exists('examples/sheets_2.csv')) finally: for suffix in (0, 1): path = 'examples/sheets_%d.csv' % suffix if os.path.exists(path): os.remove(path) def test_convert_xls_with_write_sheets_with_names(self): try: self.assertConverted('xls', 'examples/sheets.xls', 'examples/testxls_converted.csv', ['--sheet', 'data', '--write-sheets', "ʤ,1", '--use-sheet-names']) with open('examples/sheets_ʤ.csv', 'r') as f: with open('examples/testxls_unicode_converted.csv', 'r') as g: self.assertEqual(f.read(), g.read()) with open('examples/sheets_data.csv', 'r') as f: with open('examples/testxls_converted.csv', 'r') as g: self.assertEqual(f.read(), g.read()) self.assertFalse(os.path.exists('examples/sheets_0.csv')) self.assertFalse(os.path.exists('examples/sheets_1.csv')) self.assertFalse(os.path.exists('examples/sheets_2.csv')) finally: for suffix in ('ʤ', 'data'): path = 'examples/sheets_%s.csv' % suffix if os.path.exists(path): os.remove(path) def test_convert_xlsx_with_write_sheets_with_names(self): try: self.assertConverted('xlsx', 'examples/sheets.xlsx', 'examples/testxlsx_noinference_converted.csv', ['--no-inference', '--sheet', 'data', '--write-sheets', "ʤ,1", '--use-sheet-names']) with open('examples/sheets_ʤ.csv', 'r') as f: with open('examples/testxlsx_unicode_converted.csv', 'r') as g: self.assertEqual(f.read(), g.read()) with open('examples/sheets_data.csv', 'r') as f: with open('examples/testxlsx_noinference_converted.csv', 'r') as g: self.assertEqual(f.read(), g.read()) self.assertFalse(os.path.exists('examples/sheets_0.csv')) self.assertFalse(os.path.exists('examples/sheets_1.csv')) self.assertFalse(os.path.exists('examples/sheets_2.csv')) finally: for suffix in ('ʤ', 'data'): path = 'examples/sheets_%s.csv' % suffix if os.path.exists(path): os.remove(path)
TestIn2CSV
python
huggingface__transformers
src/transformers/models/zamba/modeling_zamba.py
{ "start": 13400, "end": 28138 }
class ____(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) This module differs from `transformers.models.mamba.modeling_mamba.MambaMixer` in two ways: - Added multi-head: the output of `self.in_proj` is split into `self.n_mamba_heads` heads, and each head undergoes an independent forward pass, identical to the original `MambaMixer`, up until the pre-activations of `self.out_proj`. The pre-activations, coming from different mamba heads, are then concatenated and fed into `self.out_proj`. """ def __init__(self, config: ZambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.n_mamba_heads = config.n_mamba_heads self.mamba_head_dim = self.intermediate_size // self.n_mamba_heads self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=self.use_conv_bias, kernel_size=self.conv_kernel_size, groups=self.intermediate_size, padding=self.conv_kernel_size - 1, ) self.activation = config.hidden_mamba_act self.act = ACT2FN[config.hidden_mamba_act] self.use_fast_kernels = config.use_mamba_kernels # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) # weight associated to the selective projection used to make dt, B and C input dependent # each mamba head is processed independently self.x_proj_weight = nn.Parameter( torch.zeros( self.n_mamba_heads, self.time_step_rank + self.ssm_state_size * 2, self.mamba_head_dim, ) ) # time step projection (discretization) self.dt_proj_weight = nn.Parameter( (torch.zeros(self.n_mamba_heads, self.mamba_head_dim, self.time_step_rank) - 0.5) * 2 / self.time_step_rank**0.5 ) self.dt_proj_bias = nn.Parameter(torch.zeros(self.n_mamba_heads, self.mamba_head_dim)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A).reshape(self.n_mamba_heads, self.mamba_head_dim, -1)) self.D = nn.Parameter(torch.ones(self.n_mamba_heads, self.mamba_head_dim)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) if not is_fast_path_available: logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: ZambaHybridDynamicCache = None, attention_mask=None ): batch_size, seq_len, _ = hidden_states.shape use_precomputed_states = cache_params is not None and cache_params.has_previous_state and seq_len == 1 # 1. Gated linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if use_precomputed_states: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) if cache_params is not None: conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx].copy_(conv_states) hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. SSM sequence transformation # 3.a. input varying initialization of time_step, B and C hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj_bias.float() if self.dt_proj_bias is not None else None scan_outputs = torch.empty((batch_size, 0, seq_len), device=hidden_states.device, dtype=hidden_states.dtype) if use_precomputed_states: for n in range(self.n_mamba_heads): scan_outputs_ = selective_state_update( cache_params.ssm_states[self.layer_idx][:, n], hidden_states[n, ..., 0], discrete_time_step[n, ..., 0], A[n], B[n, :, 0], C[n, :, 0], self.D[n], gate[n, ..., 0], time_proj_bias[n], dt_softplus=True, ).unsqueeze(-1) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1) else: ssm_state = torch.empty( (batch_size, 0, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=hidden_states.dtype, ) for n in range(self.n_mamba_heads): scan_outputs_, ssm_state_ = selective_scan_fn( hidden_states[n], discrete_time_step[n], A[n], B[n].transpose(1, 2), C[n].transpose(1, 2), self.D[n].float(), gate[n], time_proj_bias[n], delta_softplus=True, return_last_state=True, ) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1).contiguous() ssm_state = torch.cat((ssm_state, ssm_state_.unsqueeze(1)), dim=1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states def slow_forward(self, input_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated linear projection projected_states = self.in_proj(input_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) use_cache = isinstance(cache_params, ZambaHybridDynamicCache) # 2. Convolution sequence transformation if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size: if self.training: # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass ssm_state = cache_params.ssm_states[self.layer_idx].clone() else: ssm_state = cache_params.ssm_states[self.layer_idx] ssm_state = ssm_state.to(hidden_states.device) if ( cache_params.has_previous_state and seq_len == 1 and cache_params.conv_states[self.layer_idx].shape[0] == batch_size ): conv_state = cache_params.conv_states[self.layer_idx] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) conv_state[:, :, -1] = hidden_states[:, :, 0] cache_params.conv_states[self.layer_idx] = conv_state hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx] = conv_state hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) else: ssm_state = torch.zeros( (batch_size, self.n_mamba_heads, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype, ) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = (self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)) + self.dt_proj_bias[ :, None, :, None ] discrete_time_step = nn.functional.softplus(discrete_time_step) # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) discrete_A = torch.exp(A[:, None, :, None, :] * discrete_time_step[:, :, :, :, None]) discrete_B = discrete_time_step[:, :, :, :, None] * B[:, :, None, :, :].float() deltaB_u = discrete_B * hidden_states[:, :, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, :, i, :].transpose(0, 1) * ssm_state + deltaB_u[:, :, :, i, :].transpose(0, 1) scan_output = torch.matmul(ssm_state.transpose(0, 1).to(dtype), C[:, :, i, :].unsqueeze(-1)) scan_outputs.append(scan_output[:, :, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) scan_output = scan_output + (hidden_states * self.D[:, None, :, None]) scan_output = scan_output * self.act(gate) if use_cache: cache_params.ssm_states[self.layer_idx] = ssm_state # 4. Final linear projection contextualized_states = self.out_proj( scan_output.transpose(0, 1).reshape(batch_size, -1, seq_len).transpose(1, 2) ) return contextualized_states def forward(self, hidden_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): if self.use_fast_kernels: if not is_fast_path_available or "cuda" not in self.x_proj_weight.device.type: raise ValueError( "Fast Mamba kernels are not available. Make sure to they are installed and that " "the mamba module is on a CUDA device. lease run 'pip install causal-conv1d>=1.2.0' " "and 'pip install mamba-ssm', or set use_mamba_kernels=False in the model's config." ) return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask) return self.slow_forward(hidden_states, cache_params, attention_mask=attention_mask) # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Zamba
ZambaMambaMixer
python
ray-project__ray
rllib/models/tf/tf_action_dist.py
{ "start": 4031, "end": 7832 }
class ____(TFActionDistribution): """MultiCategorical distribution for MultiDiscrete action spaces.""" def __init__( self, inputs: List[TensorType], model: ModelV2, input_lens: Union[List[int], np.ndarray, Tuple[int, ...]], action_space=None, ): # skip TFActionDistribution init ActionDistribution.__init__(self, inputs, model) self.cats = [ Categorical(input_, model) for input_ in tf.split(inputs, input_lens, axis=1) ] self.action_space = action_space if self.action_space is None: self.action_space = gym.spaces.MultiDiscrete( [c.inputs.shape[1] for c in self.cats] ) self.sample_op = self._build_sample_op() self.sampled_action_logp_op = self.logp(self.sample_op) @override(ActionDistribution) def deterministic_sample(self) -> TensorType: sample_ = tf.stack([cat.deterministic_sample() for cat in self.cats], axis=1) if isinstance(self.action_space, gym.spaces.Box): return tf.cast( tf.reshape(sample_, [-1] + list(self.action_space.shape)), self.action_space.dtype, ) return sample_ @override(ActionDistribution) def logp(self, actions: TensorType) -> TensorType: # If tensor is provided, unstack it into list. if isinstance(actions, tf.Tensor): if isinstance(self.action_space, gym.spaces.Box): actions = tf.reshape( actions, [-1, int(np.prod(self.action_space.shape))] ) elif isinstance(self.action_space, gym.spaces.MultiDiscrete): actions.set_shape((None, len(self.cats))) actions = tf.unstack(tf.cast(actions, tf.int32), axis=1) logps = tf.stack([cat.logp(act) for cat, act in zip(self.cats, actions)]) return tf.reduce_sum(logps, axis=0) @override(ActionDistribution) def multi_entropy(self) -> TensorType: return tf.stack([cat.entropy() for cat in self.cats], axis=1) @override(ActionDistribution) def entropy(self) -> TensorType: return tf.reduce_sum(self.multi_entropy(), axis=1) @override(ActionDistribution) def multi_kl(self, other: ActionDistribution) -> TensorType: return tf.stack( [cat.kl(oth_cat) for cat, oth_cat in zip(self.cats, other.cats)], axis=1 ) @override(ActionDistribution) def kl(self, other: ActionDistribution) -> TensorType: return tf.reduce_sum(self.multi_kl(other), axis=1) @override(TFActionDistribution) def _build_sample_op(self) -> TensorType: sample_op = tf.stack([cat.sample() for cat in self.cats], axis=1) if isinstance(self.action_space, gym.spaces.Box): return tf.cast( tf.reshape(sample_op, [-1] + list(self.action_space.shape)), dtype=self.action_space.dtype, ) return sample_op @staticmethod @override(ActionDistribution) def required_model_output_shape( action_space: gym.Space, model_config: ModelConfigDict ) -> Union[int, np.ndarray]: # Int Box. if isinstance(action_space, gym.spaces.Box): assert action_space.dtype.name.startswith("int") low_ = np.min(action_space.low) high_ = np.max(action_space.high) assert np.all(action_space.low == low_) assert np.all(action_space.high == high_) return np.prod(action_space.shape, dtype=np.int32) * (high_ - low_ + 1) # MultiDiscrete space. else: # nvec is already integer, so no casting needed. return np.sum(action_space.nvec) @OldAPIStack
MultiCategorical
python
kubernetes-client__python
kubernetes/client/models/v1_storage_class.py
{ "start": 383, "end": 14396 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'allow_volume_expansion': 'bool', 'allowed_topologies': 'list[V1TopologySelectorTerm]', 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'mount_options': 'list[str]', 'parameters': 'dict(str, str)', 'provisioner': 'str', 'reclaim_policy': 'str', 'volume_binding_mode': 'str' } attribute_map = { 'allow_volume_expansion': 'allowVolumeExpansion', 'allowed_topologies': 'allowedTopologies', 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'mount_options': 'mountOptions', 'parameters': 'parameters', 'provisioner': 'provisioner', 'reclaim_policy': 'reclaimPolicy', 'volume_binding_mode': 'volumeBindingMode' } def __init__(self, allow_volume_expansion=None, allowed_topologies=None, api_version=None, kind=None, metadata=None, mount_options=None, parameters=None, provisioner=None, reclaim_policy=None, volume_binding_mode=None, local_vars_configuration=None): # noqa: E501 """V1StorageClass - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._allow_volume_expansion = None self._allowed_topologies = None self._api_version = None self._kind = None self._metadata = None self._mount_options = None self._parameters = None self._provisioner = None self._reclaim_policy = None self._volume_binding_mode = None self.discriminator = None if allow_volume_expansion is not None: self.allow_volume_expansion = allow_volume_expansion if allowed_topologies is not None: self.allowed_topologies = allowed_topologies if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata if mount_options is not None: self.mount_options = mount_options if parameters is not None: self.parameters = parameters self.provisioner = provisioner if reclaim_policy is not None: self.reclaim_policy = reclaim_policy if volume_binding_mode is not None: self.volume_binding_mode = volume_binding_mode @property def allow_volume_expansion(self): """Gets the allow_volume_expansion of this V1StorageClass. # noqa: E501 allowVolumeExpansion shows whether the storage class allow volume expand. # noqa: E501 :return: The allow_volume_expansion of this V1StorageClass. # noqa: E501 :rtype: bool """ return self._allow_volume_expansion @allow_volume_expansion.setter def allow_volume_expansion(self, allow_volume_expansion): """Sets the allow_volume_expansion of this V1StorageClass. allowVolumeExpansion shows whether the storage class allow volume expand. # noqa: E501 :param allow_volume_expansion: The allow_volume_expansion of this V1StorageClass. # noqa: E501 :type: bool """ self._allow_volume_expansion = allow_volume_expansion @property def allowed_topologies(self): """Gets the allowed_topologies of this V1StorageClass. # noqa: E501 allowedTopologies restrict the node topologies where volumes can be dynamically provisioned. Each volume plugin defines its own supported topology specifications. An empty TopologySelectorTerm list means there is no topology restriction. This field is only honored by servers that enable the VolumeScheduling feature. # noqa: E501 :return: The allowed_topologies of this V1StorageClass. # noqa: E501 :rtype: list[V1TopologySelectorTerm] """ return self._allowed_topologies @allowed_topologies.setter def allowed_topologies(self, allowed_topologies): """Sets the allowed_topologies of this V1StorageClass. allowedTopologies restrict the node topologies where volumes can be dynamically provisioned. Each volume plugin defines its own supported topology specifications. An empty TopologySelectorTerm list means there is no topology restriction. This field is only honored by servers that enable the VolumeScheduling feature. # noqa: E501 :param allowed_topologies: The allowed_topologies of this V1StorageClass. # noqa: E501 :type: list[V1TopologySelectorTerm] """ self._allowed_topologies = allowed_topologies @property def api_version(self): """Gets the api_version of this V1StorageClass. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this V1StorageClass. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this V1StorageClass. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this V1StorageClass. # noqa: E501 :type: str """ self._api_version = api_version @property def kind(self): """Gets the kind of this V1StorageClass. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this V1StorageClass. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1StorageClass. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this V1StorageClass. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this V1StorageClass. # noqa: E501 :return: The metadata of this V1StorageClass. # noqa: E501 :rtype: V1ObjectMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1StorageClass. :param metadata: The metadata of this V1StorageClass. # noqa: E501 :type: V1ObjectMeta """ self._metadata = metadata @property def mount_options(self): """Gets the mount_options of this V1StorageClass. # noqa: E501 mountOptions controls the mountOptions for dynamically provisioned PersistentVolumes of this storage class. e.g. [\"ro\", \"soft\"]. Not validated - mount of the PVs will simply fail if one is invalid. # noqa: E501 :return: The mount_options of this V1StorageClass. # noqa: E501 :rtype: list[str] """ return self._mount_options @mount_options.setter def mount_options(self, mount_options): """Sets the mount_options of this V1StorageClass. mountOptions controls the mountOptions for dynamically provisioned PersistentVolumes of this storage class. e.g. [\"ro\", \"soft\"]. Not validated - mount of the PVs will simply fail if one is invalid. # noqa: E501 :param mount_options: The mount_options of this V1StorageClass. # noqa: E501 :type: list[str] """ self._mount_options = mount_options @property def parameters(self): """Gets the parameters of this V1StorageClass. # noqa: E501 parameters holds the parameters for the provisioner that should create volumes of this storage class. # noqa: E501 :return: The parameters of this V1StorageClass. # noqa: E501 :rtype: dict(str, str) """ return self._parameters @parameters.setter def parameters(self, parameters): """Sets the parameters of this V1StorageClass. parameters holds the parameters for the provisioner that should create volumes of this storage class. # noqa: E501 :param parameters: The parameters of this V1StorageClass. # noqa: E501 :type: dict(str, str) """ self._parameters = parameters @property def provisioner(self): """Gets the provisioner of this V1StorageClass. # noqa: E501 provisioner indicates the type of the provisioner. # noqa: E501 :return: The provisioner of this V1StorageClass. # noqa: E501 :rtype: str """ return self._provisioner @provisioner.setter def provisioner(self, provisioner): """Sets the provisioner of this V1StorageClass. provisioner indicates the type of the provisioner. # noqa: E501 :param provisioner: The provisioner of this V1StorageClass. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and provisioner is None: # noqa: E501 raise ValueError("Invalid value for `provisioner`, must not be `None`") # noqa: E501 self._provisioner = provisioner @property def reclaim_policy(self): """Gets the reclaim_policy of this V1StorageClass. # noqa: E501 reclaimPolicy controls the reclaimPolicy for dynamically provisioned PersistentVolumes of this storage class. Defaults to Delete. # noqa: E501 :return: The reclaim_policy of this V1StorageClass. # noqa: E501 :rtype: str """ return self._reclaim_policy @reclaim_policy.setter def reclaim_policy(self, reclaim_policy): """Sets the reclaim_policy of this V1StorageClass. reclaimPolicy controls the reclaimPolicy for dynamically provisioned PersistentVolumes of this storage class. Defaults to Delete. # noqa: E501 :param reclaim_policy: The reclaim_policy of this V1StorageClass. # noqa: E501 :type: str """ self._reclaim_policy = reclaim_policy @property def volume_binding_mode(self): """Gets the volume_binding_mode of this V1StorageClass. # noqa: E501 volumeBindingMode indicates how PersistentVolumeClaims should be provisioned and bound. When unset, VolumeBindingImmediate is used. This field is only honored by servers that enable the VolumeScheduling feature. # noqa: E501 :return: The volume_binding_mode of this V1StorageClass. # noqa: E501 :rtype: str """ return self._volume_binding_mode @volume_binding_mode.setter def volume_binding_mode(self, volume_binding_mode): """Sets the volume_binding_mode of this V1StorageClass. volumeBindingMode indicates how PersistentVolumeClaims should be provisioned and bound. When unset, VolumeBindingImmediate is used. This field is only honored by servers that enable the VolumeScheduling feature. # noqa: E501 :param volume_binding_mode: The volume_binding_mode of this V1StorageClass. # noqa: E501 :type: str """ self._volume_binding_mode = volume_binding_mode def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1StorageClass): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1StorageClass): return True return self.to_dict() != other.to_dict()
V1StorageClass
python
pytorch__pytorch
torch/fx/tensor_type.py
{ "start": 197, "end": 1010 }
class ____: """ TensorType defines a type for tensors, which consists of a list of dimensions. Example: class M(torch.nn.Module): def forward(self, x:TensorType((1,2,3, Dyn)), y:TensorType((1,2,3, Dyn))): return torch.add(x, y) """ def __init__(self, dim): self.__origin__ = TensorType self.__args__ = dim def __repr__(self): return f"TensorType[{self.__args__}]" def __eq__(self, other): if isinstance(other, self.__class__): return list(self.__args__) == list(other.__args__) else: return False @staticmethod def __class_getitem__(*args): if len(args) == 1 and isinstance(args[0], tuple): args = args[0] return TensorType(tuple(args))
TensorType
python
HypothesisWorks__hypothesis
hypothesis-python/tests/common/utils.py
{ "start": 7217, "end": 9860 }
class ____(enum.Enum): # Categorizing known failures, to ease later follow-up investigation. # Some are crosshair issues, some hypothesis issues, others truly ok-to-xfail tests. symbolic_outside_context = "CrosshairInternal error (using value outside context)" nested_given = "nested @given decorators don't work with crosshair" undiscovered = "crosshair may not find the failing input" other = "reasons not elsewhere categorized" def xfail_on_crosshair(why: Why, /, *, strict=True, as_marks=False): # run `pytest -m xf_crosshair` to select these tests! kw = { "strict": strict and why != Why.undiscovered, "reason": f"Expected failure due to: {why.value}", "condition": settings().backend == "crosshair", } if as_marks: # for use with pytest.param(..., marks=xfail_on_crosshair()) return (pytest.mark.xf_crosshair, pytest.mark.xfail(**kw)) return lambda fn: pytest.mark.xf_crosshair(pytest.mark.xfail(**kw)(fn)) def skipif_threading(f): return pytest.mark.skipif( settings.get_current_profile_name() == "threading", reason="not thread safe" )(f) def xfail_if_gil_disabled(f): try: if not sys._is_gil_enabled(): # 3.13+ return pytest.mark.xfail( reason="fails on free-threading build", strict=False )(f) except Exception: pass return f # we don't monkeypatch _consistently_increment_time under threading skipif_time_unpatched = skipif_threading _restore_recursion_limit_lock = RLock() @contextlib.contextmanager def restore_recursion_limit(): with _restore_recursion_limit_lock: original_limit = sys.getrecursionlimit() try: yield finally: sys.setrecursionlimit(original_limit) def run_concurrently(function, *, n: int) -> None: import pytest if settings.get_current_profile_name() == "crosshair": pytest.skip("crosshair is not thread safe") if sys.platform == "emscripten": pytest.skip("no threads on emscripten") def run(): barrier.wait() function() threads = [Thread(target=run) for _ in range(n)] barrier = Barrier(n) for thread in threads: thread.start() for thread in threads: thread.join(timeout=10) def wait_for(condition, *, timeout=1, interval=0.01): for _ in range(math.ceil(timeout / interval)): if condition(): return time_sleep(interval) raise Exception( f"timing out after waiting {timeout}s for condition " f"{get_pretty_function_description(condition)}" )
Why
python
pytorch__pytorch
torch/distributed/fsdp/api.py
{ "start": 16365, "end": 17024 }
class ____(StateDictConfig): """ ``ShardedStateDictConfig`` is a config class meant to be used with ``StateDictType.SHARDED_STATE_DICT``. Attributes: _use_dtensor (bool): If ``True``, then FSDP saves the state dict values as ``DTensor``, and if ``False``, then FSDP saves them as ``ShardedTensor``. (Default: ``False``) .. warning:: ``_use_dtensor`` is a private field of :class:`ShardedStateDictConfig` and it is used by FSDP to determine the type of state dict values. Users should not manually modify ``_use_dtensor``. """ _use_dtensor: bool = False @dataclass
ShardedStateDictConfig
python
getsentry__sentry
src/sentry/web/client_config.py
{ "start": 5722, "end": 19353 }
class ____: def __init__( self, request: Request | None = None, org_context: RpcUserOrganizationContext | None = None, ) -> None: self.request = request if request is not None: self.user: User | AnonymousUser | None = request.user self.session: SessionBase | None = request.session else: self.user = None self.session = None self.last_org = _resolve_last_org(request, self.session, self.user, org_context) @property def last_org_slug(self) -> str | None: if self.last_org is None: return None return self.last_org.slug @cached_property def customer_domain(self) -> Mapping[str, str] | None: if self.request is None or not is_using_customer_domain(self.request): return None return { "subdomain": self.request.subdomain, "organizationUrl": generate_organization_url(self.request.subdomain), "sentryUrl": options.get("system.url-prefix"), } @cached_property def tracing_data(self) -> Mapping[str, str]: return { "sentry_trace": sentry_sdk.get_traceparent() or "", "baggage": sentry_sdk.get_baggage() or "", } @property def enabled_features(self) -> Iterable[str]: if features.has("organizations:create", actor=self.user): yield "organizations:create" if auth.has_user_registration(): yield "auth:register" if features.has("relocation:enabled", actor=self.user): yield "relocation:enabled" if features.has("system:multi-region"): yield "system:multi-region" # TODO @athena: remove this feature flag after development is done # this is a temporary hack to be able to used flagpole in a case where there's no organization # availble on the frontend if self.last_org and features.has( "organizations:scoped-partner-oauth", self.last_org, actor=self.user ): yield "system:scoped-partner-oauth" @property def needs_upgrade(self) -> bool: return self.request is not None and is_active_superuser(self.request) and _needs_upgrade() @cached_property def public_dsn(self) -> str | None: return _get_public_dsn() @property def messages(self): if self.request is None: return [] return get_messages(self.request) @property def language_code(self) -> str: default_language_code = "en" if self.request is None: return default_language_code return getattr(self.request, "LANGUAGE_CODE", default_language_code) @property def user_identity(self) -> Iterable[tuple[str, Any]]: if self.request is None: return yield "ip_address", self.request.META["REMOTE_ADDR"] if self.user and self.user.is_authenticated: yield "email", self.user.email yield "id", self.user.id yield "isStaff", self.user.is_staff if self.user.name: yield "name", self.user.name @cached_property def allow_list(self) -> list[str]: if settings.SENTRY_FRONTEND_WHITELIST_URLS: return settings.SENTRY_FRONTEND_WHITELIST_URLS if settings.ALLOWED_HOSTS == ["*"]: return [] return list(settings.ALLOWED_HOSTS) def _is_superuser(self) -> bool: # Note: This intentionally does not use the "active" superuser flag as # the frontend should only ever use this flag as a hint that the user can be a superuser # the API will always need to check for active superuser. # # This is needed in the case where you access a different org and get denied, but the UI # can open the sudo dialog if you are an "inactive" superuser return self.request is not None and self.user is not None and self.user.is_superuser @property def links(self) -> Iterable[tuple[str, str | None]]: organization_url = ( generate_organization_url(self.last_org_slug) if self.last_org_slug else None ) region_url = None if self.last_org: if SiloMode.get_current_mode() == SiloMode.CONTROL: organization_mapping = OrganizationMapping.objects.get( organization_id=self.last_org.id ) region_url = generate_region_url(organization_mapping.region_name) else: region_url = generate_region_url() yield "organizationUrl", organization_url yield "regionUrl", region_url yield "sentryUrl", options.get("system.url-prefix") if self._is_superuser() and superuser.SUPERUSER_ORG_ID is not None: org_context = organization_service.get_organization_by_id( id=superuser.SUPERUSER_ORG_ID, user_id=None, include_projects=False, include_teams=False, ) if org_context and org_context.organization: yield "superuserUrl", generate_organization_url(org_context.organization.slug) @cached_property def user_details(self) -> Mapping[str, Any] | None: if self.user is None or not self.user.is_authenticated: return None query_result = user_service.serialize_many( filter={"user_ids": [self.user.id]}, serializer=UserSerializeType.SELF_DETAILED, auth_context=AuthenticationContext( auth=self.request.auth if self.request is not None else None, user=serialize_generic_user(self.user), ), ) if not query_result: # this could be an empty result as the user could be deleted return None (user_details,) = query_result user_details = json.loads(json.dumps(user_details)) if self._is_superuser(): user_details["isSuperuser"] = self.user.is_superuser return user_details @cached_property def _member_region_names(self) -> frozenset[str]: # If the user is not authenticated they have no region membership if not self.user or not self.user.id: return frozenset() region_names = user_service.get_member_region_names(user_id=self.user.id) return frozenset(region_names) @staticmethod def _serialize_regions( region_names: Iterable[str], display_order: Callable[[Region], Any] ) -> list[Mapping[str, Any]]: regions = [get_region_by_name(name) for name in region_names] regions.sort(key=display_order) return [region.api_serialize() for region in regions] @property def regions(self) -> list[Mapping[str, Any]]: """ The regions available to the current user. This will include *all* multi-tenant regions, and if the user has membership on any single-tenant regions those will also be included. """ # Only expose visible regions. # When new regions are added they can take some work to get working correctly. # Before they are working we need ways to bring parts of the region online without # exposing the region to customers. region_names = find_all_multitenant_region_names() if not region_names: return [{"name": "default", "url": options.get("system.url-prefix")}] def region_display_order(region: Region) -> tuple[bool, bool, str]: return ( not region.is_historic_monolith_region(), # default region comes first region.category != RegionCategory.MULTI_TENANT, # multi-tenants before single region.name, # then sort alphabetically ) # Show all visible multi-tenant regions to unauthenticated users as they could # create a new account. Else, ensure all regions the current user is in are # included as there could be single tenants or hidden regions. unique_regions = set(region_names) | self._member_region_names return self._serialize_regions(unique_regions, region_display_order) @property def member_regions(self) -> list[Mapping[str, Any]]: """ The regions the user has membership in. Includes single-tenant regions. """ return self._serialize_regions(self._member_region_names, lambda r: r.name) @property def should_preload_data(self) -> bool: """ Indicates if the preload-data functionality is enabled when rendering the preload-data.html template. This is only used when layout.html is rendered. """ # Don't send requests if there is no logged in user. if not self.user_details: return False # If the user is viewing the accept invitation user interface, # we should avoid preloading the data as they might not yet have access to it, # which could cause an error notification (403) to pop up in the user interface. invite_route_names = ( "sentry-accept-invite", "sentry-organization-accept-invite", ) if ( self.request and self.request.resolver_match and self.request.resolver_match.url_name in invite_route_names ): return False return True def get_context(self) -> Mapping[str, Any]: return { "initialTrace": self.tracing_data, "customerDomain": self.customer_domain, "singleOrganization": settings.SENTRY_SINGLE_ORGANIZATION, "supportEmail": _get_support_mail(), "urlPrefix": options.get("system.url-prefix"), "version": _get_version_info(), "features": list(self.enabled_features), "distPrefix": get_frontend_dist_prefix(), "needsUpgrade": self.needs_upgrade, "dsn": self.public_dsn, "statuspage": _get_statuspage(), "messages": [{"message": msg.message, "level": msg.tags} for msg in self.messages], "apmSampling": float(settings.SENTRY_FRONTEND_APM_SAMPLING or 0), # Maintain isOnPremise key for backcompat (plugins?). "isOnPremise": is_self_hosted(), "isSelfHosted": is_self_hosted(), "isSelfHostedErrorsOnly": is_self_hosted_errors_only(), # sentryMode intends to supersede isSelfHosted, # so we can differentiate between "SELF_HOSTED", "SINGLE_TENANT", and "SAAS". "sentryMode": settings.SENTRY_MODE.name, "shouldPreloadData": self.should_preload_data, "shouldShowBeaconConsentPrompt": not self.needs_upgrade and should_show_beacon_consent_prompt(), "invitesEnabled": settings.SENTRY_ENABLE_INVITES, "gravatarBaseUrl": settings.SENTRY_GRAVATAR_BASE_URL, "termsUrl": settings.TERMS_URL, "privacyUrl": settings.PRIVACY_URL, # Note `lastOrganization` should not be expected to update throughout frontend app lifecycle # It should only be used on a fresh browser nav to a path where an # organization is not in context "lastOrganization": self.last_org_slug, "languageCode": self.language_code, "userIdentity": dict(self.user_identity), "csrfCookieName": settings.CSRF_COOKIE_NAME, "superUserCookieName": superuser.COOKIE_NAME, "superUserCookieDomain": superuser.COOKIE_DOMAIN, "sentryConfig": { "dsn": self.public_dsn, # XXX: In the world of frontend / backend deploys being separated, # this is likely incorrect, since the backend version may not # match the frontend build version. # # This is likely to be removed sometime in the future. "release": f"frontend@{settings.SENTRY_SDK_CONFIG['release']}", "environment": settings.SENTRY_SDK_CONFIG["environment"], # By default `ALLOWED_HOSTS` is [*], however the JS SDK does not support globbing "whitelistUrls": self.allow_list, "allowUrls": self.allow_list, "tracePropagationTargets": settings.SENTRY_FRONTEND_TRACE_PROPAGATION_TARGETS or [], }, "memberRegions": self.member_regions, "regions": self.regions, "relocationConfig": {"selectableRegions": options.get("relocation.selectable-regions")}, "demoMode": is_demo_mode_enabled() and is_demo_user(self.user), "enableAnalytics": settings.ENABLE_ANALYTICS, "validateSUForm": getattr( settings, "VALIDATE_SUPERUSER_ACCESS_CATEGORY_AND_REASON", False ), "disableU2FForSUForm": getattr(settings, "DISABLE_SU_FORM_U2F_CHECK_FOR_LOCAL", False), "links": dict(self.links), "user": self.user_details, "isAuthenticated": self.user_details is not None, } def get_client_config( request=None, org_context: RpcUserOrganizationContext | None = None ) -> Mapping[str, Any]: """ Provides initial bootstrap data needed to boot the frontend application. """ config = _ClientConfig(request, org_context) if request is not None and config.last_org is None: _delete_activeorg(config.session) return config.get_context()
_ClientConfig
python
walkccc__LeetCode
solutions/3043. Find the Length of the Longest Common Prefix/3043.py
{ "start": 84, "end": 538 }
class ____: def __init__(self): self.root = TrieNode() def insert(self, word: str) -> None: node: TrieNode = self.root for c in word: node = node.children.setdefault(c, TrieNode()) node.isWord = True def search(self, word: str) -> int: prefixLength = 0 node = self.root for c in word: if c not in node.children: break node = node.children[c] prefixLength += 1 return prefixLength
Trie
python
apache__airflow
providers/microsoft/azure/src/airflow/providers/microsoft/azure/hooks/powerbi.py
{ "start": 1797, "end": 1933 }
class ____(AirflowException): """An exception that indicates a failure in getting the list of datasets."""
PowerBIDatasetListException
python
Netflix__metaflow
metaflow/_vendor/packaging/requirements.py
{ "start": 544, "end": 3264 }
class ____: """Parse a requirement. Parse a given requirement string into its parts, such as name, specifier, URL, and extras. Raises InvalidRequirement on a badly-formed requirement string. """ # TODO: Can we test whether something is contained within a requirement? # If so how do we do that? Do we need to test against the _name_ of # the thing as well as the version? What about the markers? # TODO: Can we normalize the name and extra name? def __init__(self, requirement_string: str) -> None: try: parsed = parse_requirement(requirement_string) except ParserSyntaxError as e: raise InvalidRequirement(str(e)) from e self.name: str = parsed.name if parsed.url: parsed_url = urllib.parse.urlparse(parsed.url) if parsed_url.scheme == "file": if urllib.parse.urlunparse(parsed_url) != parsed.url: raise InvalidRequirement("Invalid URL given") elif not (parsed_url.scheme and parsed_url.netloc) or ( not parsed_url.scheme and not parsed_url.netloc ): raise InvalidRequirement(f"Invalid URL: {parsed.url}") self.url: Optional[str] = parsed.url else: self.url = None self.extras: Set[str] = set(parsed.extras if parsed.extras else []) self.specifier: SpecifierSet = SpecifierSet(parsed.specifier) self.marker: Optional[Marker] = None if parsed.marker is not None: self.marker = Marker.__new__(Marker) self.marker._markers = _normalize_extra_values(parsed.marker) def __str__(self) -> str: parts: List[str] = [self.name] if self.extras: formatted_extras = ",".join(sorted(self.extras)) parts.append(f"[{formatted_extras}]") if self.specifier: parts.append(str(self.specifier)) if self.url: parts.append(f"@ {self.url}") if self.marker: parts.append(" ") if self.marker: parts.append(f"; {self.marker}") return "".join(parts) def __repr__(self) -> str: return f"<Requirement('{self}')>" def __hash__(self) -> int: return hash((self.__class__.__name__, str(self))) def __eq__(self, other: Any) -> bool: if not isinstance(other, Requirement): return NotImplemented return ( self.name == other.name and self.extras == other.extras and self.specifier == other.specifier and self.url == other.url and self.marker == other.marker )
Requirement
python
bokeh__bokeh
src/bokeh/sphinxext/_internal/bokeh_directive.py
{ "start": 2048, "end": 2754 }
class ____(SphinxDirective): def parse(self, rst_text, annotation): result = ViewList() for line in rst_text.split("\n"): result.append(line, annotation) node = nodes.paragraph() node.document = self.state.document nested_parse_with_titles(self.state, result, node) return node.children # ----------------------------------------------------------------------------- # Private API # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Code # -----------------------------------------------------------------------------
BokehDirective
python
walkccc__LeetCode
solutions/274. H-Index/274.py
{ "start": 0, "end": 419 }
class ____: def hIndex(self, citations: list[int]) -> int: n = len(citations) accumulate = 0 count = [0] * (n + 1) for citation in citations: count[min(citation, n)] += 1 # To find the maximum h-index, loop from the back to the front. # i := the candidate's h-index for i, c in reversed(list(enumerate(count))): accumulate += c if accumulate >= i: return i
Solution
python
django__django
tests/admin_views/models.py
{ "start": 14549, "end": 14611 }
class ____(Plot): class Meta: proxy = True
PlotProxy
python
walkccc__LeetCode
solutions/1680. Concatenation of Consecutive Binary Numbers/1680-2.py
{ "start": 0, "end": 268 }
class ____: def concatenatedBinary(self, n: int) -> int: MOD = 1_000_000_007 ans = 0 numberOfBits = 0 for i in range(1, n + 1): if i.bit_count() == 1: numberOfBits += 1 ans = ((ans << numberOfBits) + i) % MOD return ans
Solution
python
keras-team__keras
keras/src/saving/saving_lib_test.py
{ "start": 36280, "end": 42623 }
class ____(testing.TestCase): def test_custom_object_without_from_config(self): temp_filepath = os.path.join( self.get_temp_dir(), "custom_fn_model.keras" ) inputs = keras.Input(shape=(4, 4)) outputs = keras.layers.Dense(1, activation=GrowthFactor(0.5))(inputs) model = keras.Model(inputs, outputs) model.save(temp_filepath) with self.assertRaisesRegex( TypeError, "Unable to reconstruct an instance" ): _ = saving_lib.load_model(temp_filepath) def test_complex_model_without_explicit_deserialization(self): temp_filepath = os.path.join(self.get_temp_dir(), "complex_model.keras") inputs = keras.Input((32,)) outputs = ComplexModel(first_layer=FactorLayer(0.5))(inputs) model = keras.Model(inputs, outputs) model.save(temp_filepath) with self.assertRaisesRegex(TypeError, "are explicitly deserialized"): _ = saving_lib.load_model(temp_filepath) def test_redefinition_of_trackable(self): """Test that a trackable can be aliased under a new name.""" class NormalModel(keras.Model): def __init__(self): super().__init__() self.dense = keras.layers.Dense(3) def call(self, x): return self.dense(x) class WeirdModel(keras.Model): def __init__(self): super().__init__() # This property will be traversed first, # but "_dense" isn't in the saved file # generated by NormalModel. self.a_dense = keras.layers.Dense(3) @property def dense(self): return self.a_dense def call(self, x): return self.dense(x) temp_filepath = os.path.join( self.get_temp_dir(), "normal_model.weights.h5" ) model_a = NormalModel() model_a(np.random.random((2, 2))) model_a.save_weights(temp_filepath) model_b = WeirdModel() model_b(np.random.random((2, 2))) model_b.load_weights(temp_filepath) self.assertAllClose( model_a.dense.kernel.numpy(), model_b.dense.kernel.numpy() ) def test_normalization_legacy_h5_format(self): temp_filepath = os.path.join(self.get_temp_dir(), "custom_model.h5") inputs = keras.Input((32,)) normalization = keras.layers.Normalization() outputs = normalization(inputs) model = keras.Model(inputs, outputs) x = np.random.random((1, 32)) normalization.adapt(x) ref_out = model(x) model.save(temp_filepath) new_model = keras.saving.load_model(temp_filepath) out = new_model(x) self.assertAllClose(ref_out, out, atol=1e-6) def test_legacy_h5_format(self): temp_filepath = os.path.join(self.get_temp_dir(), "custom_model.h5") inputs = keras.Input((32,)) x = MyDense(2)(inputs) outputs = CustomModelX()(x) model = keras.Model(inputs, outputs) x = np.random.random((1, 32)) ref_out = model(x) model.save(temp_filepath) new_model = keras.saving.load_model(temp_filepath) out = new_model(x) self.assertAllClose(ref_out, out, atol=1e-6) def test_nested_functional_model_saving(self): def func(in_size=4, out_size=2, name=None): inputs = keras.layers.Input(shape=(in_size,)) outputs = keras.layers.Dense(out_size)((inputs)) return keras.Model(inputs, outputs=outputs, name=name) input_a, input_b = keras.Input((4,)), keras.Input((4,)) out_a = func(out_size=2, name="func_a")(input_a) out_b = func(out_size=3, name="func_b")(input_b) model = keras.Model([input_a, input_b], outputs=[out_a, out_b]) temp_filepath = os.path.join(self.get_temp_dir(), "nested_func.keras") model.save(temp_filepath) new_model = keras.saving.load_model(temp_filepath) x = [np.random.random((2, 4))], np.random.random((2, 4)) ref_out = model(x) out = new_model(x) self.assertAllClose(ref_out[0], out[0]) self.assertAllClose(ref_out[1], out[1]) def test_nested_shared_functional_model_saving(self): def func(in_size=4, out_size=2, name=None): inputs = keras.layers.Input(shape=(in_size,)) outputs = keras.layers.Dense(out_size)((inputs)) return keras.Model(inputs, outputs=outputs, name=name) inputs = [keras.Input((4,)), keras.Input((4,))] func_shared = func(out_size=4, name="func_shared") shared_a = func_shared(inputs[0]) shared_b = func_shared(inputs[1]) out_a = keras.layers.Dense(2)(shared_a) out_b = keras.layers.Dense(2)(shared_b) model = keras.Model(inputs, outputs=[out_a, out_b]) temp_filepath = os.path.join( self.get_temp_dir(), "nested_shared_func.keras" ) model.save(temp_filepath) new_model = keras.saving.load_model(temp_filepath) x = [np.random.random((2, 4))], np.random.random((2, 4)) ref_out = model(x) out = new_model(x) self.assertAllClose(ref_out[0], out[0]) self.assertAllClose(ref_out[1], out[1]) def test_bidirectional_lstm_saving(self): inputs = keras.Input((3, 2)) outputs = keras.layers.Bidirectional(keras.layers.LSTM(64))(inputs) model = keras.Model(inputs, outputs) temp_filepath = os.path.join(self.get_temp_dir(), "bidir_lstm.keras") model.save(temp_filepath) new_model = keras.saving.load_model(temp_filepath) x = np.random.random((1, 3, 2)) ref_out = model(x) out = new_model(x) self.assertAllClose(ref_out, out) def test_remove_weights_only_saving_and_loading(self): def is_remote_path(path): return True temp_filepath = os.path.join(self.get_temp_dir(), "model.weights.h5") with mock.patch( "keras.src.utils.file_utils.is_remote_path", is_remote_path ): model = _get_basic_functional_model() model.save_weights(temp_filepath) model.load_weights(temp_filepath)
SavingBattleTest
python
getsentry__sentry
src/sentry/sentry_apps/utils/webhooks.py
{ "start": 275, "end": 345 }
class ____(SentryAppActionType): CREATED = "created"
ErrorActionType
python
ansible__ansible
lib/ansible/plugins/lookup/pipe.py
{ "start": 1823, "end": 2789 }
class ____(LookupBase): def run(self, terms, variables=None, **kwargs): ret = [] for term in terms: # https://docs.python.org/3/library/subprocess.html#popen-constructor # # The shell argument (which defaults to False) specifies whether to use the # shell as the program to execute. If shell is True, it is recommended to pass # args as a string rather than as a sequence # # https://github.com/ansible/ansible/issues/6550 term = str(term) p = subprocess.Popen(term, cwd=self._templar.basedir, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode == 0: ret.append(stdout.decode("utf-8").rstrip()) else: raise AnsibleError("lookup_plugin.pipe(%s) returned %d" % (term, p.returncode)) return ret
LookupModule
python
ray-project__ray
python/ray/autoscaler/v2/tests/test_threaded_ray_installer.py
{ "start": 794, "end": 5109 }
class ____(unittest.TestCase): def setUp(self): self.base_provider = MockProvider() self.config = AutoscalingConfig(load_test_config("test_ray_complex.yaml")) self.runner = MockProcessRunner() self.ray_installer = RayInstaller(self.base_provider, self.config, self.runner) self.instance_storage = InstanceStorage( cluster_id="test_cluster_id", storage=InMemoryStorage(), ) self.error_queue = Queue() self.threaded_ray_installer = ThreadedRayInstaller( head_node_ip="127.0.0.1", instance_storage=self.instance_storage, ray_installer=self.ray_installer, error_queue=self.error_queue, ) def test_install_ray_on_new_node_version_mismatch(self): self.base_provider.create_node({}, {TAG_RAY_NODE_KIND: "worker_nodes1"}, 1) instance = Instance( instance_id="0", instance_type="worker_nodes1", cloud_instance_id="0", status=Instance.RAY_INSTALLING, node_kind=NodeKind.WORKER, ) success, verison = self.instance_storage.upsert_instance(instance) assert success self.runner.respond_to_call("json .Config.Env", ["[]" for i in range(1)]) self.threaded_ray_installer._install_ray_on_single_node(instance) instances, _ = self.instance_storage.get_instances( instance_ids={instance.instance_id} ) assert instances[instance.instance_id].status == Instance.RAY_INSTALLING assert instances[instance.instance_id].version == verison @patch.object(RayInstaller, "install_ray") def test_install_ray_on_new_node_install_failed(self, mock_method): self.base_provider.create_node({}, {TAG_RAY_NODE_KIND: "worker_nodes1"}, 1) instance = Instance( instance_id="0", instance_type="worker_nodes1", cloud_instance_id="0", status=Instance.RAY_INSTALLING, node_kind=NodeKind.WORKER, ) success, verison = self.instance_storage.upsert_instance(instance) assert success instance.version = verison mock_method.side_effect = RuntimeError("Installation failed") self.threaded_ray_installer._install_retry_interval = 0 self.threaded_ray_installer._max_install_attempts = 1 self.threaded_ray_installer._install_ray_on_single_node(instance) instances, _ = self.instance_storage.get_instances( instance_ids={instance.instance_id} ) # Make sure the instance status is not updated by the ThreadedRayInstaller # since it should be updated by the Reconciler. assert instances[instance.instance_id].status == Instance.RAY_INSTALLING # Make sure the error is added to the error queue. error = self.error_queue.get() assert error.im_instance_id == instance.instance_id assert "Installation failed" in error.details def test_install_ray_on_new_nodes(self): self.base_provider.create_node({}, {TAG_RAY_NODE_KIND: "worker_nodes1"}, 1) instance = Instance( instance_id="0", instance_type="worker_nodes1", cloud_instance_id="0", status=Instance.RAY_INSTALLING, node_kind=NodeKind.WORKER, ) success, verison = self.instance_storage.upsert_instance(instance) assert success instance.version = verison self.runner.respond_to_call("json .Config.Env", ["[]" for i in range(1)]) self.threaded_ray_installer._install_ray_on_new_nodes(instance.instance_id) self.threaded_ray_installer._ray_installation_executor.shutdown(wait=True) instances, _ = self.instance_storage.get_instances( instance_ids={instance.instance_id} ) # Make sure the instance status is not updated by the ThreadedRayInstaller # since it should be updated by the Reconciler. assert instances[instance.instance_id].status == Instance.RAY_INSTALLING if __name__ == "__main__": if os.environ.get("PARALLEL_CI"): sys.exit(pytest.main(["-n", "auto", "--boxed", "-vs", __file__])) else: sys.exit(pytest.main(["-sv", __file__]))
ThreadedRayInstallerTest
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/dialects/mysql/types.py
{ "start": 23203, "end": 24636 }
class ____(_StringType, sqltypes.CHAR): """MySQL CHAR type, for fixed-length character data.""" __visit_name__ = "CHAR" def __init__(self, length: Optional[int] = None, **kwargs: Any): """Construct a CHAR. :param length: Maximum data length, in characters. :param binary: Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data. :param collation: Optional, request a particular collation. Must be compatible with the national character set. """ super().__init__(length=length, **kwargs) @classmethod def _adapt_string_for_cast(cls, type_: sqltypes.String) -> sqltypes.CHAR: # copy the given string type into a CHAR # for the purposes of rendering a CAST expression type_ = sqltypes.to_instance(type_) if isinstance(type_, sqltypes.CHAR): return type_ elif isinstance(type_, _StringType): return CHAR( length=type_.length, charset=type_.charset, collation=type_.collation, ascii=type_.ascii, binary=type_.binary, unicode=type_.unicode, national=False, # not supported in CAST ) else: return CHAR(length=type_.length)
CHAR
python
wandb__wandb
wandb/sdk/artifacts/_generated/artifact_type.py
{ "start": 208, "end": 284 }
class ____(GQLResult): project: Optional[ArtifactTypeProject]
ArtifactType
python
TheAlgorithms__Python
data_structures/binary_tree/binary_tree_node_sum.py
{ "start": 400, "end": 656 }
class ____: """ A Node has a value variable and pointers to Nodes to its left and right. """ def __init__(self, value: int) -> None: self.value = value self.left: Node | None = None self.right: Node | None = None
Node
python
pytorch__pytorch
torch/onnx/_internal/fx/passes/type_promotion.py
{ "start": 50495, "end": 61425 }
class ____(torch.fx.Interpreter): """Interpreter that inserts type promotion for each node.""" def __init__( self, module: torch.fx.GraphModule, type_promotion_table: TypePromotionTable, ) -> None: super().__init__(module) self.type_promotion_table = type_promotion_table def _run_node_and_set_meta(self, node) -> Any: """Run node and set meta according to `fx_traceback.get_current_meta()`. This should be used on new nodes or nodes that have been modified. By default `Interpreter.run_node` does not update `node.meta`. Set `node.meta` to the current meta, except for `node.meta["val"]`, which is recomputed. """ out = super().run_node(node) # Update interpreter env state with new output value. self.env[node] = out node.meta.update( (k, v) for k, v in fx_traceback.get_current_meta().items() if k not in node.meta ) node.meta["val"] = proxy_tensor.extract_val(out) return out def _create_node( self, graph: torch.fx.Graph, op_type: str, target: torch.fx.node.Target, args: tuple, kwargs: dict, ) -> torch.fx.Node: """Create a node and set its metadata.""" assert op_type in ( "call_function", "call_method", "get_attr", "call_module", "placeholder", "output", ), f"Unexpected op_type: {op_type}" node = getattr(graph, op_type)(target, args, kwargs) self._run_node_and_set_meta(node) return node def _rerun_node_after_type_promotion( self, node: torch.fx.Node, expected_out_dtype: torch.dtype, ) -> None: """Rerun a node after type promotion and update node.meta["val"] with the output value.""" node_val = node.meta.get("val", None) assert node_val is not None, f"Node {node} node.meta['val'] is not set." args, kwargs = self.fetch_args_kwargs_from_env(node) target = node.target assert isinstance(target, torch._ops.OpOverload), ( f"Expected OpOverload, got {type(target)}" ) node.target = find_compatible_op_overload(target.overloadpacket, args, kwargs) new_node_val = self._run_node_and_set_meta(node) assert isinstance(new_node_val, type(node_val)), ( f"run_node output type should not change between runs. " f"Got {type(new_node_val)}, expect {type(node_val)}." ) if isinstance(node_val, torch.Tensor): prev_node_dtype = node_val.dtype assert prev_node_dtype == expected_out_dtype, ( f"node.meta['val'].dtype({prev_node_dtype}) does not agree with " f"type promotion rule({expected_out_dtype})." ) if new_node_val.dtype != expected_out_dtype: # With explicit type promotion, the expected result dtype may not be # the same as the computation dtype. This is referred to as "op math". # We need to explicitly cast the output back to the expected dtype. # See more about "op math" topic at `_prims_common.elementwise_dtypes`. graph = node.graph with graph.inserting_after(node): output_cast_node = self._create_node( graph, "call_function", torch.ops.prims.convert_element_type.default, (node,), {"dtype": expected_out_dtype}, ) node.replace_all_uses_with(output_cast_node) output_cast_node.args = (node,) logger.info( "Node '%s' output dtype becomes %s due to op math. " "Cast back to %s.", node, new_node_val.dtype, expected_out_dtype, ) elif fx_type_utils.is_torch_symbolic_type(node_val): raise NotImplementedError( "Type promotion does not support node output of sym types." ) elif isinstance(node_val, (list, tuple)): raise NotImplementedError( "Type promotion does not support node output of list or tuple." ) else: raise RuntimeError(f"Unexpected node output type: {type(node_val)}.") def _maybe_promote_arg( self, node: torch.fx.Node, fx_arg: torch.fx.node.Argument, dtype: torch.dtype | None, ) -> torch.fx.node.Argument: """Promote fx_arg to dtype if necessary.""" if dtype is None: logger.info( "Argument %s is not promoted. Not mentioned by type promotion rule.", fx_arg, ) return fx_arg if isinstance(fx_arg, torch.fx.Node): arg_val = self.env[fx_arg] if isinstance(arg_val, torch.Tensor): if (old_dtype := arg_val.dtype) != dtype: # Promote tensor to dtype. graph = node.graph with graph.inserting_before(node): logger.info( "Argument %s(%s) is promoted to %s.", fx_arg, old_dtype, dtype, ) return self._create_node( graph, "call_function", torch.ops.prims.convert_element_type.default, (fx_arg,), {"dtype": dtype}, ) logger.info("Argument %s is not promoted. Already %s.", fx_arg, dtype) return fx_arg elif fx_type_utils.is_torch_symbolic_type(arg_val): arg_type = type(arg_val) equivalent_dtype = fx_type_utils.from_scalar_type_to_torch_dtype( arg_type ) assert equivalent_dtype is not None, f"Unexpected arg_type: {arg_type}" if equivalent_dtype != dtype: # Promote Sym number to tensor of dtype. graph = node.graph with graph.inserting_before(node): logger.info( "Argument %s(Scalar of equivalent dtype: %s) " "is promoted to %s.", fx_arg, equivalent_dtype, dtype, ) return self._create_node( graph, "call_function", torch.ops.aten.scalar_tensor.default, (fx_arg,), {"dtype": dtype}, ) logger.info("Argument %s is not promoted. Already %s.", fx_arg, dtype) return fx_arg elif ( equivalent_dtype := fx_type_utils.from_scalar_type_to_torch_dtype( type(fx_arg) ) ) is not None: if equivalent_dtype != dtype: # Promote number to tensor of dtype. # The op should have overload that supports tensor for this arg, otherwise # the type promotion rule should not suggest promoting this arg. graph = node.graph with graph.inserting_before(node): logger.info( "Argument %s(Scalar of equivalent dtype: %s) " "is promoted to %s.", fx_arg, equivalent_dtype, dtype, ) return self._create_node( graph, "call_function", torch.ops.aten.scalar_tensor.default, (fx_arg,), {"dtype": dtype}, ) logger.info("Argument %s is not promoted. Already %s.", fx_arg, dtype) return fx_arg elif isinstance(fx_arg, (tuple, list)): logger.info("Argument %s is a tuple/list. Promoting each element.", fx_arg) return type(fx_arg)( self._maybe_promote_arg(node, fx_arg_elem, dtype) for fx_arg_elem in fx_arg ) raise NotImplementedError(f"Unknown fx arg type: {type(fx_arg)}") def _maybe_promote_node( self, node: torch.fx.Node, rule: TypePromotionRule, ) -> torch.fx.Node: """Promote node inputs and outputs according to type promotion rule.""" args, kwargs = self.fetch_args_kwargs_from_env(node) type_promotion_info = rule.preview_type_promotion(args, kwargs) new_args = [] new_kwargs = {} for i, arg in enumerate(node.args): new_args.append( self._maybe_promote_arg( node, arg, type_promotion_info.args_dtypes.get(i, None) ) ) for name, arg in node.kwargs.items(): new_kwargs[name] = self._maybe_promote_arg( node, arg, type_promotion_info.kwargs_dtypes.get(name, None) ) new_args = tuple(new_args) if node.args != new_args or node.kwargs != new_kwargs: node.args = new_args node.kwargs = new_kwargs self._rerun_node_after_type_promotion(node, type_promotion_info.out_dtype) return node def run_node(self, n: torch.fx.Node) -> Any: """This method is an override which inserts type promotion nodes as needed. For each `call_function` node, an initial check is conducted to determine if a type promotion rule is applicable. If a relevant rule exists, type casting nodes are introduced for the corresponding arguments. The OpOverload of the node is updated to one that accommodates the promoted types. Should the output type be different, type casting node is inserted for this output. The call `super().run_node(node)` is guaranteed to be invoked for each node. In the case of new or modified nodes, the result of `super().run_node(node)` is used to update its `node.meta["val"]` value. """ with self._set_current_node(n): if rule := get_type_promotion_rule(n, self.type_promotion_table): self._maybe_promote_node(n, rule) return super().run_node(n)
_TypePromotionInterpreter
python
mwaskom__seaborn
tests/test_distributions.py
{ "start": 28160, "end": 35842 }
class ____: def test_long_vectors(self, long_df): ax1 = kdeplot(data=long_df, x="x", y="y") x = long_df["x"] x_values = [x, x.to_numpy(), x.to_list()] y = long_df["y"] y_values = [y, y.to_numpy(), y.to_list()] for x, y in zip(x_values, y_values): f, ax2 = plt.subplots() kdeplot(x=x, y=y, ax=ax2) for c1, c2 in zip(ax1.collections, ax2.collections): assert_array_equal(c1.get_offsets(), c2.get_offsets()) def test_singular_data(self): with pytest.warns(UserWarning): ax = dist.kdeplot(x=np.ones(10), y=np.arange(10)) assert not ax.lines with pytest.warns(UserWarning): ax = dist.kdeplot(x=[5], y=[6]) assert not ax.lines with pytest.warns(UserWarning): ax = kdeplot(x=[1929245168.06679] * 18, y=np.arange(18)) assert not ax.lines with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) ax = kdeplot(x=[5], y=[7], warn_singular=False) assert not ax.lines def test_fill_artists(self, long_df): for fill in [True, False]: f, ax = plt.subplots() kdeplot(data=long_df, x="x", y="y", hue="c", fill=fill) for c in ax.collections: if not _version_predates(mpl, "3.8.0rc1"): assert isinstance(c, mpl.contour.QuadContourSet) elif fill or not _version_predates(mpl, "3.5.0b0"): assert isinstance(c, mpl.collections.PathCollection) else: assert isinstance(c, mpl.collections.LineCollection) def test_common_norm(self, rng): hue = np.repeat(["a", "a", "a", "b"], 40) x, y = rng.multivariate_normal([0, 0], [(.2, .5), (.5, 2)], len(hue)).T x[hue == "a"] -= 2 x[hue == "b"] += 2 f, (ax1, ax2) = plt.subplots(ncols=2) kdeplot(x=x, y=y, hue=hue, common_norm=True, ax=ax1) kdeplot(x=x, y=y, hue=hue, common_norm=False, ax=ax2) n_seg_1 = sum(len(get_contour_coords(c, True)) for c in ax1.collections) n_seg_2 = sum(len(get_contour_coords(c, True)) for c in ax2.collections) assert n_seg_2 > n_seg_1 def test_log_scale(self, rng): x = rng.lognormal(0, 1, 100) y = rng.uniform(0, 1, 100) levels = .2, .5, 1 f, ax = plt.subplots() kdeplot(x=x, y=y, log_scale=True, levels=levels, ax=ax) assert ax.get_xscale() == "log" assert ax.get_yscale() == "log" f, (ax1, ax2) = plt.subplots(ncols=2) kdeplot(x=x, y=y, log_scale=(10, False), levels=levels, ax=ax1) assert ax1.get_xscale() == "log" assert ax1.get_yscale() == "linear" p = _DistributionPlotter() kde = KDE() density, (xx, yy) = kde(np.log10(x), y) levels = p._quantile_to_level(density, levels) ax2.contour(10 ** xx, yy, density, levels=levels) for c1, c2 in zip(ax1.collections, ax2.collections): assert len(get_contour_coords(c1)) == len(get_contour_coords(c2)) for arr1, arr2 in zip(get_contour_coords(c1), get_contour_coords(c2)): assert_array_equal(arr1, arr2) def test_bandwidth(self, rng): n = 100 x, y = rng.multivariate_normal([0, 0], [(.2, .5), (.5, 2)], n).T f, (ax1, ax2) = plt.subplots(ncols=2) kdeplot(x=x, y=y, ax=ax1) kdeplot(x=x, y=y, bw_adjust=2, ax=ax2) for c1, c2 in zip(ax1.collections, ax2.collections): seg1, seg2 = get_contour_coords(c1), get_contour_coords(c2) if seg1 + seg2: x1 = seg1[0][:, 0] x2 = seg2[0][:, 0] assert np.abs(x2).max() > np.abs(x1).max() def test_weights(self, rng): n = 100 x, y = rng.multivariate_normal([1, 3], [(.2, .5), (.5, 2)], n).T hue = np.repeat([0, 1], n // 2) weights = rng.uniform(0, 1, n) f, (ax1, ax2) = plt.subplots(ncols=2) kdeplot(x=x, y=y, hue=hue, ax=ax1) kdeplot(x=x, y=y, hue=hue, weights=weights, ax=ax2) for c1, c2 in zip(ax1.collections, ax2.collections): if get_contour_coords(c1) and get_contour_coords(c2): seg1 = np.concatenate(get_contour_coords(c1), axis=0) seg2 = np.concatenate(get_contour_coords(c2), axis=0) assert not np.array_equal(seg1, seg2) def test_hue_ignores_cmap(self, long_df): with pytest.warns(UserWarning, match="cmap parameter ignored"): ax = kdeplot(data=long_df, x="x", y="y", hue="c", cmap="viridis") assert_colors_equal(get_contour_color(ax.collections[0]), "C0") def test_contour_line_colors(self, long_df): color = (.2, .9, .8, 1) ax = kdeplot(data=long_df, x="x", y="y", color=color) for c in ax.collections: assert_colors_equal(get_contour_color(c), color) def test_contour_line_cmap(self, long_df): color_list = color_palette("Blues", 12) cmap = mpl.colors.ListedColormap(color_list) ax = kdeplot(data=long_df, x="x", y="y", cmap=cmap) for c in ax.collections: for color in get_contour_color(c): assert to_rgb(color) in color_list def test_contour_fill_colors(self, long_df): n = 6 color = (.2, .9, .8, 1) ax = kdeplot( data=long_df, x="x", y="y", fill=True, color=color, levels=n, ) cmap = light_palette(color, reverse=True, as_cmap=True) lut = cmap(np.linspace(0, 1, 256)) for c in ax.collections: for color in c.get_facecolor(): assert color in lut def test_colorbar(self, long_df): ax = kdeplot(data=long_df, x="x", y="y", fill=True, cbar=True) assert len(ax.figure.axes) == 2 def test_levels_and_thresh(self, long_df): f, (ax1, ax2) = plt.subplots(ncols=2) n = 8 thresh = .1 plot_kws = dict(data=long_df, x="x", y="y") kdeplot(**plot_kws, levels=n, thresh=thresh, ax=ax1) kdeplot(**plot_kws, levels=np.linspace(thresh, 1, n), ax=ax2) for c1, c2 in zip(ax1.collections, ax2.collections): assert len(get_contour_coords(c1)) == len(get_contour_coords(c2)) for arr1, arr2 in zip(get_contour_coords(c1), get_contour_coords(c2)): assert_array_equal(arr1, arr2) with pytest.raises(ValueError): kdeplot(**plot_kws, levels=[0, 1, 2]) ax1.clear() ax2.clear() kdeplot(**plot_kws, levels=n, thresh=None, ax=ax1) kdeplot(**plot_kws, levels=n, thresh=0, ax=ax2) for c1, c2 in zip(ax1.collections, ax2.collections): assert len(get_contour_coords(c1)) == len(get_contour_coords(c2)) for arr1, arr2 in zip(get_contour_coords(c1), get_contour_coords(c2)): assert_array_equal(arr1, arr2) for c1, c2 in zip(ax1.collections, ax2.collections): assert_array_equal(c1.get_facecolors(), c2.get_facecolors()) def test_quantile_to_level(self, rng): x = rng.uniform(0, 1, 100000) isoprop = np.linspace(.1, 1, 6) levels = _DistributionPlotter()._quantile_to_level(x, isoprop) for h, p in zip(levels, isoprop): assert (x[x <= h].sum() / x.sum()) == pytest.approx(p, abs=1e-4) def test_input_checking(self, long_df): with pytest.raises(TypeError, match="The x variable is categorical,"): kdeplot(data=long_df, x="a", y="y")
TestKDEPlotBivariate
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_area02.py
{ "start": 315, "end": 1422 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_area02.xlsx") def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "area", "subtype": "stacked"}) chart.axis_ids = [62813312, 62814848] data = [ [1, 2, 3, 4, 5], [8, 7, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series( {"categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$B$1:$B$5"} ) chart.add_series( {"categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$C$1:$C$5"} ) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
django-guardian__django-guardian
guardian/models/models.py
{ "start": 6946, "end": 7210 }
class ____(GroupObjectPermissionBase, BaseGenericObjectPermission): class Meta(GroupObjectPermissionBase.Meta, BaseGenericObjectPermission.Meta): abstract = True unique_together = ["group", "permission", "object_pk"]
GroupObjectPermissionAbstract
python
joke2k__faker
tests/providers/test_automotive.py
{ "start": 6507, "end": 6670 }
class ____(_SimpleAutomotiveTestMixin): """Test hu_HU automotive provider methods""" license_plate_pattern: Pattern = re.compile(r"[A-Z]{3}-\d{3}")
TestHuHu
python
getsentry__sentry
tests/sentry/replays/conftest.py
{ "start": 89, "end": 529 }
class ____: def save(self, data: dict[str, Any]) -> None: request_url = settings.SENTRY_SNUBA + "/tests/entities/replays/insert" response = requests.post(request_url, json=[data]) assert response.status_code == 200 return None @pytest.fixture def replay_store() -> ReplayStore: assert requests.post(settings.SENTRY_SNUBA + "/tests/replays/drop").status_code == 200 return ReplayStore()
ReplayStore
python
pallets__werkzeug
src/werkzeug/_internal.py
{ "start": 303, "end": 1364 }
class ____: def __repr__(self) -> str: return "no value" def __reduce__(self) -> str: return "_missing" _missing = _Missing() def _wsgi_decoding_dance(s: str) -> str: return s.encode("latin1").decode(errors="replace") def _wsgi_encoding_dance(s: str) -> str: return s.encode().decode("latin1") def _get_environ(obj: WSGIEnvironment | Request) -> WSGIEnvironment: env = getattr(obj, "environ", obj) assert isinstance(env, dict), ( f"{type(obj).__name__!r} is not a WSGI environment (has to be a dict)" ) return env def _has_level_handler(logger: logging.Logger) -> bool: """Check if there is a handler in the logging chain that will handle the given logger's effective level. """ level = logger.getEffectiveLevel() current = logger while current: if any(handler.level <= level for handler in current.handlers): return True if not current.propagate: break current = current.parent # type: ignore return False
_Missing
python
python-pillow__Pillow
src/PIL/PngImagePlugin.py
{ "start": 3163, "end": 3768 }
class ____(IntEnum): OP_NONE = 0 """ No disposal is done on this frame before rendering the next frame. See :ref:`Saving APNG sequences<apng-saving>`. """ OP_BACKGROUND = 1 """ This frame’s modified region is cleared to fully transparent black before rendering the next frame. See :ref:`Saving APNG sequences<apng-saving>`. """ OP_PREVIOUS = 2 """ This frame’s modified region is reverted to the previous frame’s contents before rendering the next frame. See :ref:`Saving APNG sequences<apng-saving>`. """ # APNG frame blend modes
Disposal
python
gevent__gevent
src/greentest/3.10/test_socket.py
{ "start": 22165, "end": 22414 }
class ____(InetTestBase): """Base class for SCTP tests in one-to-one (SOCK_STREAM) mode.""" def newSocket(self): return socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SCTP)
SCTPStreamBase
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 42332, "end": 42495 }
class ____(sgqlc.types.Enum): """ See source code for more info. """ __schema__ = graphql_schema __choices__ = ("SECRET", "VISIBLE")
TeamPrivacy
python
realpython__materials
python-doctest/user.py
{ "start": 451, "end": 910 }
class ____: def __init__(self, name, favorite_colors): self.name = name self._favorite_colors = set(favorite_colors) @property def favorite_colors(self): """Return the user's favorite colors. Usage examples: >>> john = User("John", {"#797EF6", "#4ADEDE", "#1AA7EC"}) >>> sorted(john.favorite_colors) ['#1AA7EC', '#4ADEDE', '#797EF6'] """ return self._favorite_colors
User_Two
python
getsentry__sentry-python
sentry_sdk/integrations/unraisablehook.py
{ "start": 284, "end": 1753 }
class ____(Integration): identifier = "unraisablehook" @staticmethod def setup_once(): # type: () -> None sys.unraisablehook = _make_unraisable(sys.unraisablehook) def _make_unraisable(old_unraisablehook): # type: (Callable[[sys.UnraisableHookArgs], Any]) -> Callable[[sys.UnraisableHookArgs], Any] def sentry_sdk_unraisablehook(unraisable): # type: (sys.UnraisableHookArgs) -> None integration = sentry_sdk.get_client().get_integration(UnraisablehookIntegration) # Note: If we replace this with ensure_integration_enabled then # we break the exceptiongroup backport; # See: https://github.com/getsentry/sentry-python/issues/3097 if integration is None: return old_unraisablehook(unraisable) if unraisable.exc_value and unraisable.exc_traceback: with capture_internal_exceptions(): event, hint = event_from_exception( ( unraisable.exc_type, unraisable.exc_value, unraisable.exc_traceback, ), client_options=sentry_sdk.get_client().options, mechanism={"type": "unraisablehook", "handled": False}, ) sentry_sdk.capture_event(event, hint=hint) return old_unraisablehook(unraisable) return sentry_sdk_unraisablehook
UnraisablehookIntegration
python
spyder-ide__spyder
spyder/plugins/explorer/widgets/explorer.py
{ "start": 3100, "end": 3231 }
class ____: Context = 'context_menu' Header = 'header_menu' New = 'new_menu' OpenWith = 'open_with_menu'
DirViewMenus
python
mkdocs__mkdocs
mkdocs/livereload/__init__.py
{ "start": 2257, "end": 12888 }
class ____(socketserver.ThreadingMixIn, wsgiref.simple_server.WSGIServer): daemon_threads = True poll_response_timeout = 60 def __init__( self, builder: Callable[[], None], host: str, port: int, root: str, mount_path: str = "/", polling_interval: float = 0.5, shutdown_delay: float = 0.25, ) -> None: self.builder = builder try: if isinstance(ipaddress.ip_address(host), ipaddress.IPv6Address): self.address_family = socket.AF_INET6 except Exception: pass self.root = os.path.abspath(root) self.mount_path = _normalize_mount_path(mount_path) self.url = _serve_url(host, port, mount_path) self.build_delay = 0.1 self.shutdown_delay = shutdown_delay # To allow custom error pages. self.error_handler: Callable[[int], bytes | None] = lambda code: None super().__init__((host, port), _Handler, bind_and_activate=False) self.set_app(self.serve_request) self._wanted_epoch = _timestamp() # The version of the site that started building. self._visible_epoch = self._wanted_epoch # Latest fully built version of the site. self._epoch_cond = threading.Condition() # Must be held when accessing _visible_epoch. self._want_rebuild: bool = False self._rebuild_cond = threading.Condition() # Must be held when accessing _want_rebuild. self._shutdown = False self.serve_thread = threading.Thread(target=lambda: self.serve_forever(shutdown_delay)) self.observer = watchdog.observers.polling.PollingObserver(timeout=polling_interval) self._watched_paths: dict[str, int] = {} self._watch_refs: dict[str, Any] = {} def watch(self, path: str, func: None = None, *, recursive: bool = True) -> None: """Add the 'path' to watched paths, call the function and reload when any file changes under it.""" path = os.path.abspath(path) if not (func is None or func is self.builder): # type: ignore[unreachable] raise TypeError("Plugins can no longer pass a 'func' parameter to watch().") if path in self._watched_paths: self._watched_paths[path] += 1 return self._watched_paths[path] = 1 def callback(event): if event.is_directory: return log.debug(str(event)) with self._rebuild_cond: self._want_rebuild = True self._rebuild_cond.notify_all() handler = watchdog.events.FileSystemEventHandler() handler.on_any_event = callback # type: ignore[method-assign] log.debug(f"Watching '{path}'") self._watch_refs[path] = self.observer.schedule(handler, path, recursive=recursive) def unwatch(self, path: str) -> None: """Stop watching file changes for path. Raises if there was no corresponding `watch` call.""" path = os.path.abspath(path) self._watched_paths[path] -= 1 if self._watched_paths[path] <= 0: self._watched_paths.pop(path) self.observer.unschedule(self._watch_refs.pop(path)) def serve(self, *, open_in_browser=False): self.server_bind() self.server_activate() if self._watched_paths: self.observer.start() paths_str = ", ".join(f"'{_try_relativize_path(path)}'" for path in self._watched_paths) log.info(f"Watching paths for changes: {paths_str}") if open_in_browser: log.info(f"Serving on {self.url} and opening it in a browser") else: log.info(f"Serving on {self.url}") self.serve_thread.start() if open_in_browser: webbrowser.open(self.url) self._build_loop() def _build_loop(self): while True: with self._rebuild_cond: while not self._rebuild_cond.wait_for( lambda: self._want_rebuild or self._shutdown, timeout=self.shutdown_delay ): # We could have used just one wait instead of a loop + timeout, but we need # occasional breaks, otherwise on Windows we can't receive KeyboardInterrupt. pass if self._shutdown: break log.info("Detected file changes") while self._rebuild_cond.wait(timeout=self.build_delay): log.debug("Waiting for file changes to stop happening") self._wanted_epoch = _timestamp() self._want_rebuild = False try: self.builder() except Exception as e: if isinstance(e, SystemExit): print(e, file=sys.stderr) # noqa: T201 else: traceback.print_exc() log.error( "An error happened during the rebuild. The server will appear stuck until build errors are resolved." ) continue with self._epoch_cond: log.info("Reloading browsers") self._visible_epoch = self._wanted_epoch self._epoch_cond.notify_all() def shutdown(self, wait=False) -> None: self.observer.stop() with self._rebuild_cond: self._shutdown = True self._rebuild_cond.notify_all() if self.serve_thread.is_alive(): super().shutdown() self.server_close() if wait: self.serve_thread.join() self.observer.join() def serve_request(self, environ, start_response) -> Iterable[bytes]: try: result = self._serve_request(environ, start_response) except Exception: code = 500 msg = "500 Internal Server Error" log.exception(msg) else: if result is not None: return result code = 404 msg = "404 Not Found" error_content = None try: error_content = self.error_handler(code) except Exception: log.exception("Failed to render an error message!") if error_content is None: error_content = msg.encode() start_response(msg, [("Content-Type", "text/html")]) return [error_content] def _serve_request(self, environ, start_response) -> Iterable[bytes] | None: # https://bugs.python.org/issue16679 # https://github.com/bottlepy/bottle/blob/f9b1849db4/bottle.py#L984 path = environ["PATH_INFO"].encode("latin-1").decode("utf-8", "ignore") if path.startswith("/livereload/"): if m := re.fullmatch(r"/livereload/([0-9]+)/[0-9]+", path): epoch = int(m[1]) start_response("200 OK", [("Content-Type", "text/plain")]) def condition(): return self._visible_epoch > epoch with self._epoch_cond: if not condition(): # Stall the browser, respond as soon as there's something new. # If there's not, respond anyway after a minute. self._log_poll_request(environ.get("HTTP_REFERER"), request_id=path) self._epoch_cond.wait_for(condition, timeout=self.poll_response_timeout) return [b"%d" % self._visible_epoch] if (path + "/").startswith(self.mount_path): rel_file_path = path[len(self.mount_path) :] if path.endswith("/"): rel_file_path += "index.html" # Prevent directory traversal - normalize the path. rel_file_path = posixpath.normpath("/" + rel_file_path).lstrip("/") file_path = os.path.join(self.root, rel_file_path) elif path == "/": start_response("302 Found", [("Location", urllib.parse.quote(self.mount_path))]) return [] else: return None # Not found # Wait until the ongoing rebuild (if any) finishes, so we're not serving a half-built site. with self._epoch_cond: self._epoch_cond.wait_for(lambda: self._visible_epoch == self._wanted_epoch) epoch = self._visible_epoch try: file: BinaryIO = open(file_path, "rb") except OSError: if not path.endswith("/") and os.path.isfile(os.path.join(file_path, "index.html")): start_response("302 Found", [("Location", urllib.parse.quote(path) + "/")]) return [] return None # Not found if self._watched_paths and file_path.endswith(".html"): with file: content = file.read() content = self._inject_js_into_html(content, epoch) file = io.BytesIO(content) content_length = len(content) else: content_length = os.path.getsize(file_path) content_type = self._guess_type(file_path) start_response( "200 OK", [("Content-Type", content_type), ("Content-Length", str(content_length))] ) return wsgiref.util.FileWrapper(file) def _inject_js_into_html(self, content, epoch): try: body_end = content.rindex(b"</body>") except ValueError: body_end = len(content) # The page will reload if the livereload poller returns a newer epoch than what it knows. # The other timestamp becomes just a unique identifier for the initiating page. script = _SCRIPT_TEMPLATE.substitute(epoch=epoch, request_id=_timestamp()) return b"%b<script>%b</script>%b" % ( content[:body_end], script.encode(), content[body_end:], ) @classmethod @functools.lru_cache # "Cache" to not repeat the same message for the same browser tab. def _log_poll_request(cls, url, request_id): log.info(f"Browser connected: {url}") @classmethod def _guess_type(cls, path): # MkDocs only ensures a few common types (as seen in livereload_tests.py::test_mime_types). # Other uncommon types will not be accepted. if path.endswith((".js", ".JS", ".mjs")): return "application/javascript" if path.endswith(".gz"): return "application/gzip" guess, _ = mimetypes.guess_type(path) if guess: return guess return "application/octet-stream"
LiveReloadServer
python
davidhalter__parso
parso/parser.py
{ "start": 1594, "end": 2112 }
class ____(Exception): """ Exception to signal the parser is stuck and error recovery didn't help. Basically this shouldn't happen. It's a sign that something is really wrong. """ def __init__(self, msg, type_, value, start_pos): Exception.__init__(self, "%s: type=%r, value=%r, start_pos=%r" % (msg, type_.name, value, start_pos)) self.msg = msg self.type = type self.value = value self.start_pos = start_pos
InternalParseError
python
pydantic__pydantic
pydantic/types.py
{ "start": 35528, "end": 35822 }
class ____(BaseModel): uuid3: UUID3 Model(uuid3=uuid.uuid3(uuid.NAMESPACE_DNS, 'pydantic.org')) ``` """ UUID4 = Annotated[UUID, UuidVersion(4)] """A [UUID](https://docs.python.org/3/library/uuid.html) that must be version 4. ```python import uuid from pydantic import UUID4, BaseModel
Model
python
django__django
tests/fixtures_regress/models.py
{ "start": 7758, "end": 7930 }
class ____(BaseNKModel): a = models.ForeignKey(M2MComplexCircular1A, models.CASCADE) b = models.ForeignKey(M2MComplexCircular1B, models.CASCADE)
M2MCircular1ThroughAB
python
bottlepy__bottle
test/test_resources.py
{ "start": 336, "end": 3129 }
class ____(unittest.TestCase): def test_path_normalize(self): for test in TEST_PATHS: rm = ResourceManager() rm.add_path(test) self.assertEqual(rm.path, EXPECTED) def test_path_create(self): import shutil import tempfile tempdir = tempfile.mkdtemp() try: rm = ResourceManager() exists = rm.add_path('./test/', base=tempdir) self.assertEqual(exists, False) exists = rm.add_path('./test2/', base=tempdir, create=True) self.assertEqual(exists, True) finally: shutil.rmtree(tempdir) def test_path_absolutize(self): if sys.platform == 'win32': tests = ('.\\foo\\bar\\', '.\\foo\\bar\\baz', '.\\foo\\baz\\..\\bar\\blub') abspath = os.path.abspath('.\\foo\\bar\\') + os.sep else: tests = ('./foo/bar/', './foo/bar/baz', './foo/baz/../bar/blub') abspath = os.path.abspath('./foo/bar/') + os.sep for test in tests: rm = ResourceManager() rm.add_path(test) self.assertEqual(rm.path, [abspath]) for test in tests: rm = ResourceManager() rm.add_path(test[2:]) self.assertEqual(rm.path, [abspath]) def test_path_unique(self): rm = ResourceManager() [rm.add_path(test) for test in TEST_PATHS] self.assertEqual(rm.path, EXPECTED) def test_root_path(self): if sys.platform == 'win32': expected = ['C:\\foo\\bar\\baz\\'] else: expected = ['/foo/bar/baz/'] for test in TEST_PATHS: rm = ResourceManager() rm.add_path('./baz/', test) self.assertEqual(rm.path, expected) for test in TEST_PATHS: rm = ResourceManager() rm.add_path('baz/', test) self.assertEqual(rm.path, expected) def test_path_order(self): rm = ResourceManager() rm.add_path('/middle/') rm.add_path('/first/', index=0) rm.add_path('/last/') if sys.platform == 'win32': self.assertEqual(rm.path, ['C:\\first\\', 'C:\\middle\\', 'C:\\last\\']) else: self.assertEqual(rm.path, ['/first/', '/middle/', '/last/']) def test_get(self): rm = ResourceManager() rm.add_path('/first/') rm.add_path(__file__) rm.add_path('/last/') self.assertEqual(None, rm.lookup('notexist.txt')) self.assertEqual(__file__, rm.lookup(os.path.basename(__file__))) def test_open(self): rm = ResourceManager() rm.add_path(__file__) fp = rm.open(__file__) self.assertEqual(fp.read(), open(__file__).read())
TestResourceManager
python
huggingface__transformers
src/transformers/models/vilt/modeling_vilt.py
{ "start": 16340, "end": 16980 }
class ____(nn.Module): """ The residual connection is defined in ViltLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViltConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
ViltSelfOutput
python
pypa__pip
tests/unit/test_network_auth.py
{ "start": 10537, "end": 11908 }
class ____: """Represents the current supported API of keyring""" class Credential: def __init__(self, username: str, password: str) -> None: self.username = username self.password = password def get_password(self, system: str, username: str) -> None: pytest.fail("get_password should not ever be called") def get_credential(self, system: str, username: str) -> Credential | None: if system == "http://example.com/path2/": return self.Credential("username", "url") if system == "example.com": return self.Credential("username", "netloc") return None @pytest.mark.parametrize( "url, expect", [ ("http://example.com/path1", ("username", "netloc")), ("http://example.com/path2/path3", ("username", "url")), ("http://user2@example.com/path2/path3", ("username", "url")), ], ) def test_keyring_get_credential( monkeypatch: pytest.MonkeyPatch, url: str, expect: tuple[str, str] ) -> None: monkeypatch.setitem(sys.modules, "keyring", KeyringModuleV2()) auth = MultiDomainBasicAuth( index_urls=["http://example.com/path1", "http://example.com/path2"], keyring_provider="import", ) assert ( auth._get_new_credentials(url, allow_netrc=False, allow_keyring=True) == expect )
KeyringModuleV2
python
Unity-Technologies__ml-agents
ml-agents-envs/mlagents_envs/exception.py
{ "start": 504, "end": 632 }
class ____(UnityException): """ Related to errors with receiving observations. """ pass
UnityObservationException
python
getsentry__sentry
src/sentry/snuba/outcomes.py
{ "start": 2729, "end": 3397 }
class ____(Field): def get_snuba_columns(self, raw_groupby: Sequence[str] | None = None) -> list[str]: return ["times_seen"] def extract_from_row( self, row: Mapping[str, Any] | None, group: Mapping[str, Any] | None = None ) -> int: if row is None: return 0 return int(row["times_seen"]) def select_params(self, dataset: Dataset) -> Function: if dataset == Dataset.Outcomes: return Function("sum", [Column("times_seen")], "times_seen") else: # RawOutcomes doesnt have times_seen, do a count instead return Function("count", [], "times_seen")
TimesSeenField
python
pytorch__pytorch
torch/_dynamo/variables/higher_order_ops.py
{ "start": 110732, "end": 114241 }
class ____(TorchHigherOrderOperatorVariable): supports_input_mutation = True supports_aliasing = True # TODO - Go through all subclasses of WrapHigherOrderVariable to see if # restore_side_effects can be ignored. For now, this is conservative. restore_side_effects = True def install_subgraph_in_output_graph( self, tx, fn_vt, fn_args_vt, kwargs, body_gmod, attr_name="wrap_body" ): return tx.output.install_subgraph( f"{attr_name}", body_gmod, ) def create_wrapped_node( self, tx: "InstructionTranslator", fn_vt, fn_args_vt, kwargs, description, under_activation_checkpoint=False, *, subgraph_name="wrap_body", ): # See NOTE [HigherOrderOperator tracing design] for more details ( body_r, body_graph, body_lifted_freevars, body_graph_output_vts, ) = speculate_subgraph_with_auto_output_flattening( tx, fn_vt, fn_args_vt, kwargs, description, source_target=self.value, restore_side_effects=self.restore_side_effects, under_activation_checkpoint=under_activation_checkpoint, supports_input_mutation=self.supports_input_mutation, supports_aliasing=self.supports_aliasing, ) body_gmod = torch.fx.GraphModule(tx.output.nn_modules, body_graph) body_name = self.install_subgraph_in_output_graph( tx, fn_vt, fn_args_vt, kwargs, body_gmod, attr_name=subgraph_name, ) body_node = make_attr(tx, body_name) # Since, we call `speculate_subgraph` with `set_subgraph_inputs="automatic`, # all the arguments are lifted. lifted_args = tuple(arg for arg in body_lifted_freevars) proxy_args = (body_node,) + lifted_args example_value = pytree.tree_map_only( torch.fx.Node, lambda a: a.meta["example_value"], body_graph.find_nodes(op="output")[0].args[0], ) return ( proxy_args, {}, example_value, body_r, body_gmod, body_name, body_graph_output_vts, ) def _call_function( self, tx: "InstructionTranslator", args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": # This flattens the kwargs into lifted args ( p_args, p_kwargs, _example_value, body_r, _, _, body_graph_output_vts, ) = self.create_wrapped_node(tx, args[0], args[1:], kwargs, "wrap") if len(p_kwargs) > 0: unimplemented( gb_type="WrapHigherOrderVariable: kwargs unexpected", context=f"args: {args}, kwargs: {kwargs}", explanation="kwargs should have been flattened into lifted args.", hints=[ *graph_break_hints.DYNAMO_BUG, ], ) return _call_function_with_auto_output_flattening( tx, self.value, tuple(p_args), p_kwargs, _example_value, body_r, body_graph_output_vts, )
WrapHigherOrderVariable
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/utils/waiter.py
{ "start": 3544, "end": 4136 }
class ____(str, Enum): """ Used to control the waiting behaviour within EMRClusterJobFlowOperator. Choices: - WAIT_FOR_COMPLETION - Will wait for the cluster to report "Running" state - WAIT_FOR_STEPS_COMPLETION - Will wait for the cluster to report "Terminated" state """ WAIT_FOR_COMPLETION = "wait_for_completion" WAIT_FOR_STEPS_COMPLETION = "wait_for_steps_completion" WAITER_POLICY_NAME_MAPPING: dict[WaitPolicy, str] = { WaitPolicy.WAIT_FOR_COMPLETION: "job_flow_waiting", WaitPolicy.WAIT_FOR_STEPS_COMPLETION: "job_flow_terminated", }
WaitPolicy
python
allegroai__clearml
clearml/backend_api/services/v2_9/models.py
{ "start": 66505, "end": 67385 }
class ____(Request): """ Gets model information :param task: Task id :type task: str """ _service = "models" _action = "get_by_task_id" _version = "2.9" _schema = { "definitions": {}, "properties": {"task": {"description": "Task id", "type": ["string", "null"]}}, "type": "object", } def __init__(self, task: Optional[str] = None, **kwargs: Any) -> None: super(GetByTaskIdRequest, self).__init__(**kwargs) self.task = task @schema_property("task") def task(self) -> Optional[str]: return self._property_task @task.setter def task(self, value: Optional[str]) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value
GetByTaskIdRequest
python
tensorflow__tensorflow
tensorflow/python/util/nest_util.py
{ "start": 4569, "end": 63404 }
class ____(object): __slots__ = [] def __str__(self): return "." def __repr__(self): return "." _DOT = _DotString() def is_nested(modality, structure): """Returns true if its input is a nested structure. For Modality.CORE refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a nested structure. Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] structure: the value to test. Returns: True if the input is a nested structure. """ if modality == Modality.CORE: return _tf_core_is_nested(structure) elif modality == Modality.DATA: return _tf_data_is_nested(structure) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) # TODO(b/225045380): Move to a "leaf" library to use in trace_type. def is_namedtuple(instance, strict=False): """Returns True iff `instance` is a `namedtuple`. Args: instance: An instance of a Python object. strict: If True, `instance` is considered to be a `namedtuple` only if it is a "plain" namedtuple. For instance, a class inheriting from a `namedtuple` will be considered to be a `namedtuple` iff `strict=False`. Returns: True if `instance` is a `namedtuple`. """ return _pywrap_utils.IsNamedtuple(instance, strict) def sequence_like(instance, args): """Converts the sequence `args` to the same type as `instance`. Args: instance: an instance of `tuple`, `list`, `namedtuple`, `dict`, `collections.OrderedDict`, or `composite_tensor.Composite_Tensor` or `type_spec.TypeSpec`. args: items to be converted to the `instance` type. Returns: `args` with the type of `instance`. """ if _is_mutable_mapping(instance): # Pack dictionaries in a deterministic order by sorting the keys. # Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). result = dict(zip(_tf_core_sorted(instance), args)) instance_type = type(instance) if instance_type == _collections.defaultdict: d = _collections.defaultdict(instance.default_factory) else: d = instance_type() for key in instance: d[key] = result[key] return d elif _is_mapping(instance): result = dict(zip(_tf_core_sorted(instance), args)) instance_type = type(instance) if not getattr(instance_type, "__supported_by_tf_nest__", False): tf_logging.log_first_n( tf_logging.WARN, "Mapping types may not work well with tf.nest. " "Prefer using MutableMapping for {}".format(instance_type), 1, ) try: return instance_type((key, result[key]) for key in instance) except TypeError as err: # pylint: disable=raise-missing-from raise TypeError( "Error creating an object of type {} like {}. Note that " "it must accept a single positional argument " "representing an iterable of key-value pairs, in " "addition to self. Cause: {}".format(type(instance), instance, err) ) elif _is_mapping_view(instance): # We can't directly construct mapping views, so we create a list instead return list(args) elif is_namedtuple(instance) or _is_attrs(instance): if isinstance(instance, _wrapt.ObjectProxy): instance_type = type(instance.__wrapped__) else: instance_type = type(instance) return instance_type(*args) elif _is_composite_tensor(instance): assert len(args) == 1 spec = instance._type_spec # pylint: disable=protected-access return spec._from_components(args[0]) # pylint: disable=protected-access elif _is_type_spec(instance): # Pack a CompositeTensor's components according to a TypeSpec. assert len(args) == 1 return instance._from_components(args[0]) # pylint: disable=protected-access elif isinstance(instance, range): return sequence_like(list(instance), args) elif isinstance(instance, _wrapt.ObjectProxy): # For object proxies, first create the underlying type and then re-wrap it # in the proxy type. return type(instance)(sequence_like(instance.__wrapped__, args)) elif isinstance(instance, CustomNestProtocol): metadata = instance.__tf_flatten__()[0] return instance.__tf_unflatten__(metadata, tuple(args)) else: # Not a namedtuple return type(instance)(args) def _get_attrs_items(obj): """Returns a list of (name, value) pairs from an attrs instance. TODO(b/268078256): check if this comment is valid, and if so, ensure it's handled in the function below. The list will be sorted by name. Args: obj: an object. Returns: A list of (attr_name, attr_value) pairs, sorted by attr_name. """ attrs = getattr(obj.__class__, "__attrs_attrs__") attr_names = (a.name for a in attrs) return [(attr_name, getattr(obj, attr_name)) for attr_name in attr_names] def _tf_core_sorted(dict_): """Returns a sorted list of the dict keys, with error if keys not sortable.""" try: return sorted(dict_.keys()) except TypeError: # pylint: disable=raise-missing-from raise TypeError("nest only supports dicts with sortable keys.") def _tf_data_sorted(dict_): """Returns a sorted list of the dict keys, with error if keys not sortable.""" try: return sorted(list(dict_)) except TypeError as e: # pylint: disable=raise-missing-from raise TypeError( f"nest only supports dicts with sortable keys. Error: {e.message}" ) def yield_value(modality, iterable): """Yield elements of `iterable` in a deterministic order. Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] iterable: an iterable. Yields: The iterable elements in a deterministic order. """ if modality == Modality.CORE: yield from _tf_core_yield_value(iterable) elif modality == Modality.DATA: yield from _tf_data_yield_value(iterable) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_yield_value(iterable): for _, v in _tf_core_yield_sorted_items(iterable): yield v def yield_sorted_items(modality, iterable): if modality == Modality.CORE: return _tf_core_yield_sorted_items(iterable) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_yield_sorted_items(iterable): """Yield (key, value) pairs for `iterable` in a deterministic order. For Sequences, the key will be an int, the array index of a value. For Mappings, the key will be the dictionary key. For objects (e.g. namedtuples), the key will be the attribute name. In all cases, the keys will be iterated in sorted order. Args: iterable: an iterable. Yields: The iterable's (key, value) pairs, in order of sorted keys. """ # Ordered to check common structure types (list, tuple, dict) first. if isinstance(iterable, list): for item in enumerate(iterable): yield item # namedtuples handled separately to avoid expensive namedtuple check. elif type(iterable) == tuple: # pylint: disable=unidiomatic-typecheck for item in enumerate(iterable): yield item elif isinstance(iterable, (dict, _collections_abc.Mapping)): # Iterate through dictionaries in a deterministic order by sorting the # keys. Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). for key in _tf_core_sorted(iterable): yield key, iterable[key] elif _is_attrs(iterable): for item in _get_attrs_items(iterable): yield item elif is_namedtuple(iterable): for field in iterable._fields: yield field, getattr(iterable, field) elif _is_composite_tensor(iterable): type_spec = iterable._type_spec # pylint: disable=protected-access yield type_spec.value_type.__name__, type_spec._to_components(iterable) # pylint: disable=protected-access elif _is_type_spec(iterable): # Note: to allow CompositeTensors and their TypeSpecs to have matching # structures, we need to use the same key string here. yield iterable.value_type.__name__, iterable._component_specs # pylint: disable=protected-access elif isinstance(iterable, CustomNestProtocol): flat_component = iterable.__tf_flatten__()[1] assert isinstance(flat_component, tuple) yield from enumerate(flat_component) else: for item in enumerate(iterable): yield item def _tf_data_yield_value(iterable): """Yield elements of `iterable` in a deterministic order. Args: iterable: an iterable. Yields: The iterable elements in a deterministic order. """ # pylint: disable=protected-access if isinstance(iterable, _collections_abc.Mapping): # Iterate through dictionaries in a deterministic order by sorting the # keys. Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). for key in _tf_data_sorted(iterable): yield iterable[key] # To avoid circular imports. sparse_tensor # depends on tensorflow/python/util/nest.py transitively, and if we try to # import sparse_tensor again, it results in a circular import. Instead, here # we check the class name instead of using `isinstance`. elif iterable.__class__.__name__ == "SparseTensorValue": yield iterable elif _is_attrs(iterable): for _, attr in _get_attrs_items(iterable): yield attr elif isinstance(iterable, CustomNestProtocol): flat_component = iterable.__tf_flatten__()[1] assert isinstance(flat_component, tuple) yield from flat_component else: for value in iterable: yield value def assert_same_structure( modality, nest1, nest2, check_types=True, expand_composites=False ): """Asserts that two structures are nested in the same way. For Modality.CORE refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a structure. Note the method does not check the types of atoms inside the structures. Examples: * These atom vs. atom comparisons will pass: >>> tf.nest.assert_same_structure(1.5, tf.Variable(1, tf.uint32)) >>> tf.nest.assert_same_structure("abc", np.array([1, 2])) * These nested structure vs. nested structure comparisons will pass: >>> structure1 = (((1, 2), 3), 4, (5, 6)) >>> structure2 = ((("foo1", "foo2"), "foo3"), "foo4", ("foo5", "foo6")) >>> structure3 = [(("a", "b"), "c"), "d", ["e", "f"]] >>> tf.nest.assert_same_structure(structure1, structure2) >>> tf.nest.assert_same_structure(structure1, structure3, check_types=False) >>> import collections >>> tf.nest.assert_same_structure( ... collections.namedtuple("bar", "a b")(1, 2), ... collections.namedtuple("foo", "a b")(2, 3), ... check_types=False) >>> tf.nest.assert_same_structure( ... collections.namedtuple("bar", "a b")(1, 2), ... { "a": 1, "b": 2 }, ... check_types=False) >>> tf.nest.assert_same_structure( ... { "a": 1, "b": 2, "c": 3 }, ... { "c": 6, "b": 5, "a": 4 }) >>> ragged_tensor1 = tf.RaggedTensor.from_row_splits( ... values=[3, 1, 4, 1, 5, 9, 2, 6], ... row_splits=[0, 4, 4, 7, 8, 8]) >>> ragged_tensor2 = tf.RaggedTensor.from_row_splits( ... values=[3, 1, 4], ... row_splits=[0, 3]) >>> tf.nest.assert_same_structure( ... ragged_tensor1, ... ragged_tensor2, ... expand_composites=True) * These examples will raise exceptions: >>> tf.nest.assert_same_structure([0, 1], np.array([0, 1])) Traceback (most recent call last): ... ValueError: The two structures don't have the same nested structure >>> tf.nest.assert_same_structure( ... collections.namedtuple('bar', 'a b')(1, 2), ... collections.namedtuple('foo', 'a b')(2, 3)) Traceback (most recent call last): ... TypeError: The two structures don't have the same nested structure For Modality.DATA, nested structures are treated differently than Modality.CORE. Please refer to class Modality's documentation above to read up on these differences. Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] nest1: an atom or a nested structure. nest2: an atom or a nested structure. check_types: - For Modality.CORE: if `True` (default) types of structures are checked as well, including the keys of dictionaries. If set to `False`, for example a list and a tuple of objects will look the same if they have the same size. Note that namedtuples with identical name and fields are always considered to have the same shallow structure. Two types will also be considered the same if they are both list subtypes (which allows "list" and "_ListWrapper" from trackable dependency tracking to compare equal). `check_types=True` only checks type of sub-structures. The types of atoms are not checked. - For Modality.DATA: if `True` (default) types of sequences should be same as well. For dictionary, "type" of dictionary is considered to include its keys. In other words, two dictionaries with different keys are considered to have a different "type". If set to `False`, two iterables are considered same as long as they yield the elements that have same structures. expand_composites: Arg only valid for Modality.CORE. If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Raises: ValueError: If the two structures do not have the same number of atoms or if the two structures are not nested in the same way. TypeError: If the two structures differ in the type of sequence in any of their substructures. Only possible if `check_types` is `True`. """ if modality == Modality.CORE: _tf_core_assert_same_structure(nest1, nest2, check_types, expand_composites) elif modality == Modality.DATA: _tf_data_assert_same_structure(nest1, nest2, check_types) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) # pylint: disable=missing-function-docstring def _tf_core_assert_same_structure( nest1, nest2, check_types=True, expand_composites=False ): # Convert to bool explicitly as otherwise pybind will not be able# to handle # type mismatch message correctly. See GitHub issue 42329 for details. check_types = bool(check_types) expand_composites = bool(expand_composites) try: _pywrap_utils.AssertSameStructure( nest1, nest2, check_types, expand_composites ) except (ValueError, TypeError) as e: str1 = str(_tf_core_map_structure(lambda _: _DOT, nest1)) str2 = str(_tf_core_map_structure(lambda _: _DOT, nest2)) raise type(e)( "%s\nEntire first structure:\n%s\nEntire second structure:\n%s" % (str(e), str1, str2) ) def _tf_data_assert_same_structure(nest1, nest2, check_types=True): _pywrap_utils.AssertSameStructureForData(nest1, nest2, check_types) def _tf_core_packed_nest_with_indices( structure, flat, index, is_nested_fn, sequence_fn=None ): """Helper function for pack_sequence_as. Args: structure: structure to mimic. flat: Flattened values to output substructure for. index: Index at which to start reading from flat. is_nested_fn: Function used to test if a value should be treated as a nested structure. sequence_fn: Function used to generate a new structure instance. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. Raises: ValueError: if `structure` contains more atoms than `flat` (assuming indexing starts from `index`). """ packed = [] sequence_fn = sequence_fn or sequence_like for s in _tf_core_yield_value(structure): if is_nested_fn(s): new_index, child = _tf_core_packed_nest_with_indices( s, flat, index, is_nested_fn, sequence_fn ) packed.append(sequence_fn(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def _tf_data_packed_nest_with_indices(structure, flat, index): """Helper function for pack_nest_as. Args: structure: Substructure (tuple of elements and/or tuples) to mimic flat: Flattened values to output substructure for. index: Index at which to start reading from flat. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. Raises: ValueError: if `structure` contains more elements than `flat` (assuming indexing starts from `index`). """ packed = [] for s in _tf_data_yield_value(structure): if _tf_data_is_nested(s): new_index, child = _tf_data_packed_nest_with_indices(s, flat, index) packed.append(sequence_like(s, child)) # pylint: disable=protected-access index = new_index else: packed.append(flat[index]) index += 1 return index, packed def flatten(modality, structure, expand_composites=False): """Flattens a nested structure. - For Modality.CORE: refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a structure. If the structure is an atom, then returns a single-item list: [structure]. This is the inverse of the `nest.pack_sequence_as` method that takes in a flattened list and re-packs it into the nested structure. In the case of dict instances, the sequence consists of the values, sorted by key to ensure deterministic behavior. This is true also for OrderedDict instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in `nest.pack_sequence_as`. This correctly repacks dicts and OrderedDicts after they have been flattened, and also allows flattening an OrderedDict and then repacking it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be flattened. Users must not modify any collections used in nest while this function is running. Examples: 1. Python dict (ordered by key): >>> dict = { "key3": "value3", "key1": "value1", "key2": "value2" } >>> tf.nest.flatten(dict) ['value1', 'value2', 'value3'] 2. For a nested python tuple: >>> tuple = ((1.0, 2.0), (3.0, 4.0, 5.0), 6.0) >>> tf.nest.flatten(tuple) [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] 3. For a nested dictionary of dictionaries: >>> dict = { "key3": {"c": (1.0, 2.0), "a": (3.0)}, ... "key1": {"m": "val1", "g": "val2"} } >>> tf.nest.flatten(dict) ['val2', 'val1', 3.0, 1.0, 2.0] 4. Numpy array (will not flatten): >>> array = np.array([[1, 2], [3, 4]]) >>> tf.nest.flatten(array) [array([[1, 2], [3, 4]])] 5. `tf.Tensor` (will not flatten): >>> tensor = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) >>> tf.nest.flatten(tensor) [<tf.Tensor: shape=(3, 3), dtype=float32, numpy= array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], dtype=float32)>] 6. `tf.RaggedTensor`: This is a composite tensor thats representation consists of a flattened list of 'values' and a list of 'row_splits' which indicate how to chop up the flattened list into different rows. For more details on `tf.RaggedTensor`, please visit https://www.tensorflow.org/api_docs/python/tf/RaggedTensor. with `expand_composites=False`, we just return the RaggedTensor as is. >>> tensor = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2]]) >>> tf.nest.flatten(tensor, expand_composites=False) [<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2]]>] with `expand_composites=True`, we return the component Tensors that make up the RaggedTensor representation (the values and row_splits tensors) >>> tensor = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2]]) >>> tf.nest.flatten(tensor, expand_composites=True) [<tf.Tensor: shape=(7,), dtype=int32, numpy=array([3, 1, 4, 1, 5, 9, 2], dtype=int32)>, <tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 4, 4, 7])>] Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] structure: an atom or a nested structure. Note, numpy arrays are considered atoms and are not flattened. expand_composites: Arg valid for Modality.CORE only. If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A Python list, the flattened version of the input. Raises: TypeError: The nest is or contains a dict with non-sortable keys. """ if modality == Modality.CORE: return _tf_core_flatten(structure, expand_composites) elif modality == Modality.DATA: return _tf_data_flatten(structure) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_flatten(structure, expand_composites=False): """See comments for flatten() in tensorflow/python/util/nest.py.""" if structure is None: return [None] expand_composites = bool(expand_composites) return _pywrap_utils.Flatten(structure, expand_composites) def pack_sequence_as( modality, structure, flat_sequence, expand_composites, sequence_fn=None ): """Returns a given flattened sequence packed into a given structure. - For Modality.CORE: Refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a structure. If `structure` is an atom, `flat_sequence` must be a single-item list; in this case the return value is `flat_sequence[0]`. If `structure` is or contains a dict instance, the keys will be sorted to pack the flat sequence in deterministic order. This is true also for `OrderedDict` instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in `flatten`. This correctly repacks dicts and `OrderedDict`s after they have been flattened, and also allows flattening an `OrderedDict` and then repacking it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be flattened. Examples: 1. Python dict: >>> structure = { "key3": "", "key1": "", "key2": "" } >>> flat_sequence = ["value1", "value2", "value3"] >>> tf.nest.pack_sequence_as(structure, flat_sequence) {'key3': 'value3', 'key1': 'value1', 'key2': 'value2'} 2. For a nested python tuple: >>> structure = (('a','b'), ('c','d','e'), 'f') >>> flat_sequence = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] >>> tf.nest.pack_sequence_as(structure, flat_sequence) ((1.0, 2.0), (3.0, 4.0, 5.0), 6.0) 3. For a nested dictionary of dictionaries: >>> structure = { "key3": {"c": ('alpha', 'beta'), "a": ('gamma')}, ... "key1": {"e": "val1", "d": "val2"} } >>> flat_sequence = ['val2', 'val1', 3.0, 1.0, 2.0] >>> tf.nest.pack_sequence_as(structure, flat_sequence) {'key3': {'c': (1.0, 2.0), 'a': 3.0}, 'key1': {'e': 'val1', 'd': 'val2'}} 4. Numpy array (considered a scalar): >>> structure = ['a'] >>> flat_sequence = [np.array([[1, 2], [3, 4]])] >>> tf.nest.pack_sequence_as(structure, flat_sequence) [array([[1, 2], [3, 4]])] 5. tf.Tensor (considered a scalar): >>> structure = ['a'] >>> flat_sequence = [tf.constant([[1., 2., 3.], [4., 5., 6.]])] >>> tf.nest.pack_sequence_as(structure, flat_sequence) [<tf.Tensor: shape=(2, 3), dtype=float32, numpy= array([[1., 2., 3.], [4., 5., 6.]], dtype=float32)>] 6. `tf.RaggedTensor`: This is a composite tensor thats representation consists of a flattened list of 'values' and a list of 'row_splits' which indicate how to chop up the flattened list into different rows. For more details on `tf.RaggedTensor`, please visit https://www.tensorflow.org/api_docs/python/tf/RaggedTensor. With `expand_composites=False`, we treat RaggedTensor as a scalar. >>> structure = { "foo": tf.ragged.constant([[1, 2], [3]]), ... "bar": tf.constant([[5]]) } >>> flat_sequence = [ "one", "two" ] >>> tf.nest.pack_sequence_as(structure, flat_sequence, ... expand_composites=False) {'foo': 'two', 'bar': 'one'} With `expand_composites=True`, we expect that the flattened input contains the tensors making up the ragged tensor i.e. the values and row_splits tensors. >>> structure = { "foo": tf.ragged.constant([[1., 2.], [3.]]), ... "bar": tf.constant([[5.]]) } >>> tensors = tf.nest.flatten(structure, expand_composites=True) >>> print(tensors) [<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]], dtype=float32)>, <tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 2., 3.], dtype=float32)>, <tf.Tensor: shape=(3,), dtype=int64, numpy=array([0, 2, 3])>] >>> verified_tensors = [tf.debugging.check_numerics(t, 'invalid tensor: ') ... if t.dtype==tf.float32 else t ... for t in tensors] >>> tf.nest.pack_sequence_as(structure, verified_tensors, ... expand_composites=True) {'foo': <tf.RaggedTensor [[1.0, 2.0], [3.0]]>, 'bar': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]], dtype=float32)>} - For Modality.DATA: If `structure` is a scalar, `flat_sequence` must be a single-element list; in this case the return value is `flat_sequence[0]`. Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] structure: - For Modality.CORE: Nested structure, whose structure is given by nested lists, tuples, and dicts. Note: numpy arrays and strings are considered scalars. - For Modality.DATA: tuple or list constructed of scalars and/or other tuples/lists, or a scalar. Note: numpy arrays are considered scalars. flat_sequence: flat sequence to pack. expand_composites: Arg valid for Modality.CORE only. If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. sequence_fn: Arg valid for Modality.CORE only. Returns: packed: `flat_sequence` converted to have the same recursive structure as `structure`. Raises: ValueError: If `flat_sequence` and `structure` have different atom counts. TypeError: For Modality.CORE only. `structure` is or contains a dict with non-sortable keys. """ if modality == Modality.CORE: return _tf_core_pack_sequence_as( structure, flat_sequence, expand_composites, sequence_fn ) elif modality == Modality.DATA: return _tf_data_pack_sequence_as(structure, flat_sequence) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_pack_sequence_as( structure, flat_sequence, expand_composites, sequence_fn=None ): """Implements sequence packing, with the option to alter the structure.""" is_nested_fn = ( _is_nested_or_composite if expand_composites else _tf_core_is_nested ) sequence_fn = sequence_fn or sequence_like def truncate(value, length): value_str = str(value) return value_str[:length] + (value_str[length:] and "...") if not is_nested_fn(flat_sequence): raise TypeError( "Attempted to pack value:\n {}\ninto a structure, but found " "incompatible type `{}` instead.".format( truncate(flat_sequence, 100), type(flat_sequence) ) ) if not is_nested_fn(structure): if len(flat_sequence) != 1: raise ValueError( "The target structure is of type `{}`\n {}\nHowever the input " "is a sequence ({}) of length {}.\n {}\nnest cannot " "guarantee that it is safe to map one to the other.".format( type(structure), truncate(structure, 100), type(flat_sequence), len(flat_sequence), truncate(flat_sequence, 100), ) ) return flat_sequence[0] try: final_index, packed = _tf_core_packed_nest_with_indices( structure, flat_sequence, 0, is_nested_fn, sequence_fn ) if final_index < len(flat_sequence): raise IndexError except IndexError: flat_structure = _tf_core_flatten( structure, expand_composites=expand_composites ) if len(flat_structure) != len(flat_sequence): # pylint: disable=raise-missing-from raise ValueError( "Could not pack sequence. Structure had %d atoms, but " "flat_sequence had %d items. Structure: %s, flat_sequence: %s." % (len(flat_structure), len(flat_sequence), structure, flat_sequence) ) return sequence_fn(structure, packed) def _tf_data_pack_sequence_as(structure, flat_sequence): """Returns a given flattened sequence packed into a nest. If `structure` is a scalar, `flat_sequence` must be a single-element list; in this case the return value is `flat_sequence[0]`. Args: structure: tuple or list constructed of scalars and/or other tuples/lists, or a scalar. Note: numpy arrays are considered scalars. flat_sequence: flat sequence to pack. Returns: packed: `flat_sequence` converted to have the same recursive structure as `structure`. Raises: ValueError: If nest and structure have different element counts. """ if not (_tf_data_is_nested(flat_sequence) or isinstance(flat_sequence, list)): raise TypeError( "Argument `flat_sequence` must be a sequence. Got " f"'{type(flat_sequence).__name__}'." ) if not _tf_data_is_nested(structure): if len(flat_sequence) != 1: raise ValueError( "Argument `structure` is a scalar but " f"`len(flat_sequence)`={len(flat_sequence)} > 1" ) return flat_sequence[0] flat_structure = _tf_data_flatten(structure) if len(flat_structure) != len(flat_sequence): raise ValueError( "Could not pack sequence. Argument `structure` had " f"{len(flat_structure)} elements, but argument `flat_sequence` had " f"{len(flat_sequence)} elements. Received structure: " f"{structure}, flat_sequence: {flat_sequence}." ) _, packed = _tf_data_packed_nest_with_indices(structure, flat_sequence, 0) return sequence_like(structure, packed) # pylint: disable=protected-access def map_structure(modality, func, *structure, **kwargs): """Creates a new structure by applying `func` to each atom in `structure`. - For Modality.CORE: Refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a structure. Applies `func(x[0], x[1], ...)` where x[i] enumerates all atoms in `structure[i]`. All items in `structure` must have the same arity, and the return value will contain results with the same structure layout. Examples: * A single Python dict: >>> a = {"hello": 24, "world": 76} >>> tf.nest.map_structure(lambda p: p * 2, a) {'hello': 48, 'world': 152} * Multiple Python dictionaries: >>> d1 = {"hello": 24, "world": 76} >>> d2 = {"hello": 36, "world": 14} >>> tf.nest.map_structure(lambda p1, p2: p1 + p2, d1, d2) {'hello': 60, 'world': 90} * A single Python list: >>> a = [24, 76, "ab"] >>> tf.nest.map_structure(lambda p: p * 2, a) [48, 152, 'abab'] * Scalars: >>> tf.nest.map_structure(lambda x, y: x + y, 3, 4) 7 * Empty structures: >>> tf.nest.map_structure(lambda x: x + 1, ()) () * Check the types of iterables: >>> s1 = (((1, 2), 3), 4, (5, 6)) >>> s1_list = [[[1, 2], 3], 4, [5, 6]] >>> tf.nest.map_structure(lambda x, y: None, s1, s1_list) Traceback (most recent call last): ... TypeError: The two structures don't have the same nested structure * Type check is set to False: >>> s1 = (((1, 2), 3), 4, (5, 6)) >>> s1_list = [[[1, 2], 3], 4, [5, 6]] >>> tf.nest.map_structure(lambda x, y: None, s1, s1_list, check_types=False) (((None, None), None), None, (None, None)) - For Modality.DATA: Applies `func(x[0], x[1], ...)` where x[i] is an entry in `structure[i]`. All structures in `structure` must have the same arity, and the return value will contain the results in the same structure. Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] func: A callable that accepts as many arguments as there are structures. *structure: - For Modality.CORE: atom or nested structure. - For Modality.DATA: scalar, or tuple or list of constructed scalars and/or other tuples/lists, or scalars. Note: numpy arrays are considered scalars. **kwargs: Valid keyword args are: * `check_types`: - For Modality.CORE: If set to `True` (default) the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Note that namedtuples with identical name and fields are always considered to have the same shallow structure. - For Modality.DATA: only valid keyword argument is `check_types`. If set to `True` (default) the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. * `expand_composites`: Valid for Modality.CORE only. If set to `True`, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. If `False` (the default), then composite tensors are not expanded. Returns: A new structure with the same arity as `structure[0]`, whose atoms correspond to `func(x[0], x[1], ...)` where `x[i]` is the atom in the corresponding location in `structure[i]`. If there are different structure types and `check_types` is `False` the structure types of the first structure will be used. Raises: TypeError: If `func` is not callable or if the structures do not match each other by depth tree. ValueError: If no structure is provided or if the structures do not match each other by type. ValueError: If wrong keyword arguments are provided. """ if modality == Modality.CORE: return _tf_core_map_structure(func, *structure, **kwargs) elif modality == Modality.DATA: return _tf_data_map_structure(func, *structure, **kwargs) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) # pylint: disable=missing-function-docstring def _tf_core_map_structure(func, *structure, **kwargs): if not callable(func): raise TypeError("func must be callable, got: %s" % func) if not structure: raise ValueError("Must provide at least one structure") check_types = kwargs.pop("check_types", True) expand_composites = kwargs.pop("expand_composites", False) if kwargs: raise ValueError( "Only valid keyword arguments are `check_types` and " "`expand_composites`, not: `%s`" % "`, `".join(kwargs.keys()) ) for other in structure[1:]: _tf_core_assert_same_structure( structure[0], other, check_types=check_types, expand_composites=expand_composites, ) flat_structure = (_tf_core_flatten(s, expand_composites) for s in structure) entries = zip(*flat_structure) return _tf_core_pack_sequence_as( structure[0], [func(*x) for x in entries], expand_composites=expand_composites, ) # pylint: disable=missing-function-docstring def _tf_data_map_structure(func, *structure, **check_types_dict): if not callable(func): raise TypeError(f"Argument `func` must be callable, got: {func}") if not structure: raise ValueError("Must provide at least one structure") if check_types_dict: if "check_types" not in check_types_dict or len(check_types_dict) > 1: raise ValueError( "Only valid keyword argument for `check_types_dict` is " f"'check_types'. Got {check_types_dict}." ) check_types = check_types_dict["check_types"] else: check_types = True for other in structure[1:]: _tf_data_assert_same_structure(structure[0], other, check_types=check_types) flat_structure = (_tf_data_flatten(s) for s in structure) entries = zip(*flat_structure) return _tf_data_pack_sequence_as(structure[0], [func(*x) for x in entries]) def yield_flat_up_to(modality, shallow_tree, input_tree, is_nested_fn, path=()): """Yields (path, value) pairs of input_tree flattened up to shallow_tree. - For Modality.CORE: See comments for _tf_core_yield_flat_up_to() below - For Modality.DATA: See comments for _tf_data_yield_flat_up_to() below Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] shallow_tree: Nested structure. Traverse no further than its leaf nodes. input_tree: Nested structure. Return the paths and values from this tree. Must have the same upper structure as shallow_tree. is_nested_fn: Arg valid for Modality.CORE only. Function used to test if a value should be treated as a nested structure. path: Arg valid for Modality.CORE only. Tuple. Optional argument, only used when recursing. The path from the root of the original shallow_tree, down to the root of the shallow_tree arg of this recursive call. Yields: Pairs of (path, value), where path the tuple path of a leaf node in shallow_tree, and value is the value of the corresponding node in input_tree. """ if modality == Modality.CORE: yield from _tf_core_yield_flat_up_to( shallow_tree, input_tree, is_nested_fn, path ) elif modality == Modality.DATA: yield from _tf_data_yield_flat_up_to(shallow_tree, input_tree) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_yield_flat_up_to(shallow_tree, input_tree, is_nested_fn, path=()): """Yields (path, value) pairs of input_tree flattened up to shallow_tree. Args: shallow_tree: Nested structure. Traverse no further than its leaf nodes. input_tree: Nested structure. Return the paths and values from this tree. Must have the same upper structure as shallow_tree. is_nested_fn: Function used to test if a value should be treated as a nested structure. path: Tuple. Optional argument, only used when recursing. The path from the root of the original shallow_tree, down to the root of the shallow_tree arg of this recursive call. Yields: Pairs of (path, value), where path the tuple path of a leaf node in shallow_tree, and value is the value of the corresponding node in input_tree. """ if not is_nested_fn(shallow_tree): yield (path, input_tree) else: input_tree = dict(_tf_core_yield_sorted_items(input_tree)) for ( shallow_key, shallow_subtree, ) in _tf_core_yield_sorted_items(shallow_tree): subpath = path + (shallow_key,) input_subtree = input_tree[shallow_key] for leaf_path, leaf_value in _tf_core_yield_flat_up_to( shallow_subtree, input_subtree, is_nested_fn, path=subpath ): yield (leaf_path, leaf_value) def _tf_data_yield_flat_up_to(shallow_tree, input_tree): """Yields elements `input_tree` partially flattened up to `shallow_tree`.""" if _tf_data_is_nested(shallow_tree): for shallow_branch, input_branch in zip( _tf_data_yield_value(shallow_tree), _tf_data_yield_value(input_tree) ): for input_leaf in _tf_data_yield_flat_up_to(shallow_branch, input_branch): yield input_leaf else: yield input_tree def assert_shallow_structure( modality, shallow_tree, input_tree, check_types=True, expand_composites=False, ): """Asserts that `shallow_tree` is a shallow structure of `input_tree`. This function tests if the `input_tree` structure can be created from the `shallow_tree` structure by replacing its leaf nodes with deeper tree structures. Examples: The following code will raise an exception: ```python shallow_tree = {"a": "A", "b": "B"} input_tree = {"a": 1, "c": 2} assert_shallow_structure(shallow_tree, input_tree) ``` The following code will raise an exception: ```python shallow_tree = ["a", "b"] input_tree = ["c", ["d", "e"], "f"] assert_shallow_structure(shallow_tree, input_tree) ``` Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] shallow_tree: an arbitrarily nested structure. input_tree: an arbitrarily nested structure. check_types: if `True` (default) the sequence types of `shallow_tree` and `input_tree` have to be the same. Note that even with check_types==True, this function will consider two different namedtuple classes with the same name and _fields attribute to be the same class. expand_composites: Valid for Modality.CORE only. If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. Only raised if `check_types` is `True`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ if modality == Modality.CORE: _tf_core_assert_shallow_structure( shallow_tree, input_tree, check_types, expand_composites ) elif modality == Modality.DATA: _tf_data_assert_shallow_structure(shallow_tree, input_tree, check_types) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) # pylint: disable=missing-function-docstring def _tf_core_assert_shallow_structure( shallow_tree, input_tree, check_types=True, expand_composites=False ): is_nested_fn = ( _is_nested_or_composite if expand_composites else _tf_core_is_nested ) if is_nested_fn(shallow_tree): if not is_nested_fn(input_tree): raise TypeError( "If shallow structure is a sequence, input must also be a sequence. " "Input has type: %s." % type(input_tree) ) if isinstance(shallow_tree, _wrapt.ObjectProxy): shallow_type = type(shallow_tree.__wrapped__) else: shallow_type = type(shallow_tree) if check_types and not isinstance(input_tree, shallow_type): # Duck-typing means that nest should be fine with two different # namedtuples with identical name and fields. shallow_is_namedtuple = is_namedtuple(shallow_tree, False) input_is_namedtuple = is_namedtuple(input_tree, False) if shallow_is_namedtuple and input_is_namedtuple: if not same_namedtuples(shallow_tree, input_tree): raise TypeError( STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree) ) ) elif isinstance(shallow_tree, list) and isinstance(input_tree, list): # List subclasses are considered the same, # e.g. python list vs. _ListWrapper. pass elif ( _is_composite_tensor(shallow_tree) or _is_type_spec(shallow_tree) ) and (_is_composite_tensor(input_tree) or _is_type_spec(input_tree)): pass # Compatibility will be checked below. elif not ( isinstance(shallow_tree, _collections_abc.Mapping) and isinstance(input_tree, _collections_abc.Mapping) ): raise TypeError( STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree) ) ) if _is_composite_tensor(shallow_tree) or _is_composite_tensor(input_tree): if not ( (_is_composite_tensor(input_tree) or _is_type_spec(input_tree)) and ( _is_composite_tensor(shallow_tree) or _is_type_spec(shallow_tree) ) ): raise TypeError( STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree) ) ) # pylint: disable=protected-access type_spec_1 = ( shallow_tree if _is_type_spec(shallow_tree) else shallow_tree._type_spec )._without_tensor_names() type_spec_2 = ( input_tree if _is_type_spec(input_tree) else input_tree._type_spec )._without_tensor_names() # TODO(b/246356867): Replace the most_specific_common_supertype below # with get_structure. if hasattr(type_spec_1, "_get_structure") and hasattr( type_spec_2, "_get_structure" ): result = ( type_spec_1._get_structure() == type_spec_2._get_structure() or None ) else: result = type_spec_1.most_specific_common_supertype([type_spec_2]) if result is None: raise ValueError( "Incompatible CompositeTensor TypeSpecs: %s vs. %s" % (type_spec_1, type_spec_2) ) # pylint: enable=protected-access elif _is_type_spec(shallow_tree): if not _is_type_spec(input_tree): raise TypeError( "If shallow structure is a TypeSpec, input must also " "be a TypeSpec. Input has type: %s." % type(input_tree) ) else: if len(input_tree) != len(shallow_tree): raise ValueError( STRUCTURES_HAVE_MISMATCHING_LENGTHS.format( input_length=len(input_tree), shallow_length=len(shallow_tree) ) ) elif len(input_tree) < len(shallow_tree): raise ValueError( INPUT_TREE_SMALLER_THAN_SHALLOW_TREE.format( input_size=len(input_tree), shallow_size=len(shallow_tree) ) ) if isinstance(shallow_tree, _collections_abc.Mapping): absent_keys = set(shallow_tree) - set(input_tree) if absent_keys: raise ValueError( SHALLOW_TREE_HAS_INVALID_KEYS.format(sorted(absent_keys)) ) for shallow_branch, input_branch in zip( _tf_core_yield_value(shallow_tree), _tf_core_yield_value(input_tree), ): _tf_core_assert_shallow_structure( shallow_branch, input_branch, check_types=check_types, expand_composites=expand_composites, ) # pylint: disable=missing-function-docstring def _tf_data_assert_shallow_structure( shallow_tree, input_tree, check_types=True ): if _tf_data_is_nested(shallow_tree): if not _tf_data_is_nested(input_tree): raise TypeError( "If shallow structure is a sequence, input must also be a sequence. " f"Input has type: '{type(input_tree).__name__}'." ) if check_types and not isinstance(input_tree, type(shallow_tree)): raise TypeError( "The two structures don't have the same sequence type. Input " f"structure has type '{type(input_tree).__name__}', while shallow " f"structure has type '{type(shallow_tree).__name__}'." ) if len(input_tree) != len(shallow_tree): raise ValueError( "The two structures don't have the same sequence length. Input " f"structure has length {len(input_tree)}, while shallow structure " f"has length {len(shallow_tree)}." ) if check_types and isinstance(shallow_tree, _collections_abc.Mapping): if set(input_tree) != set(shallow_tree): raise ValueError( "The two structures don't have the same keys. Input " f"structure has keys {list(input_tree)}, while shallow structure " f"has keys {list(shallow_tree)}." ) input_tree = sorted(input_tree.items()) shallow_tree = sorted(shallow_tree.items()) for shallow_branch, input_branch in zip(shallow_tree, input_tree): _tf_data_assert_shallow_structure( shallow_branch, input_branch, check_types=check_types ) def flatten_up_to( modality, shallow_tree, input_tree, check_types=True, expand_composites=False, ): # pylint: disable=g-doc-return-or-yield,g-doc-args """Flattens `input_tree` up to `shallow_tree`. - For Modality.CORE: refer to [tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest) for the definition of a structure. Any further depth in structure in `input_tree` is retained as structures in the partially flatten output. If `shallow_tree` and `input_tree` are atoms, this returns a single-item list: `[input_tree]`. Use Case: Sometimes we may wish to partially flatten a structure, retaining some of the nested structure. We achieve this by specifying a shallow structure, `shallow_tree`, we wish to flatten up to. The input, `input_tree`, can be thought of as having the same structure layout as `shallow_tree`, but with leaf nodes that are themselves tree structures. Examples: ```python input_tree = [[[2, 2], [3, 3]], [[4, 9], [5, 5]]] shallow_tree = [[True, True], [False, True]] flattened_input_tree = flatten_up_to(shallow_tree, input_tree) flattened_shallow_tree = flatten_up_to(shallow_tree, shallow_tree) # Output is: # [[2, 2], [3, 3], [4, 9], [5, 5]] # [True, True, False, True] ``` ```python input_tree = [[('a', 1), [('b', 2), [('c', 3), [('d', 4)]]]]] shallow_tree = [['level_1', ['level_2', ['level_3', ['level_4']]]]] input_tree_flattened_as_shallow_tree = flatten_up_to(shallow_tree, input_tree) input_tree_flattened = flatten(input_tree) # Output is: # [('a', 1), ('b', 2), ('c', 3), ('d', 4)] # ['a', 1, 'b', 2, 'c', 3, 'd', 4] ``` Edge Cases: ```python flatten_up_to(0, 0) # Output: [0] flatten_up_to(0, [0, 1, 2]) # Output: [[0, 1, 2]] flatten_up_to([0, 1, 2], 0) # Output: TypeError flatten_up_to([0, 1, 2], [0, 1, 2]) # Output: [0, 1, 2] ``` Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] shallow_tree: a possibly pruned structure of input_tree. input_tree: an atom or a nested structure. Note, numpy arrays are considered atoms. check_types: bool. If True, check that each node in shallow_tree has the same type as the corresponding node in input_tree. expand_composites: Arg valid for Modality.CORE only. If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A Python list, the partially flattened version of `input_tree` according to the structure of `shallow_tree`. Raises: TypeError: If `shallow_tree` is a nested structure but `input_tree` is not. TypeError: If the structure types of `shallow_tree` are different from `input_tree`. ValueError: If the structure lengths of `shallow_tree` are different from `input_tree`. """ if modality == Modality.CORE: return _tf_core_flatten_up_to( shallow_tree, input_tree, check_types, expand_composites ) elif modality == Modality.DATA: return _tf_data_flatten_up_to(shallow_tree, input_tree) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_flatten_up_to( shallow_tree, input_tree, check_types=True, expand_composites=False ): is_nested_fn = ( _is_nested_or_composite if expand_composites else _tf_core_is_nested ) _tf_core_assert_shallow_structure( shallow_tree, input_tree, check_types=check_types, expand_composites=expand_composites, ) # Discard paths returned by nest_util._tf_core_yield_flat_up_to. return [ v for _, v in _tf_core_yield_flat_up_to( shallow_tree, input_tree, is_nested_fn ) ] def _tf_data_flatten_up_to(shallow_tree, input_tree): _tf_data_assert_shallow_structure(shallow_tree, input_tree) return list(_tf_data_yield_flat_up_to(shallow_tree, input_tree)) def map_structure_up_to(modality, shallow_tree, func, *inputs, **kwargs): """Applies a function or op to a number of partially flattened inputs. The `inputs` are flattened up to `shallow_tree` before being mapped. Use Case: Sometimes we wish to apply a function to a partially flattened structure (for example when the function itself takes structure inputs). We achieve this by specifying a shallow structure, `shallow_tree` we wish to flatten up to. The `inputs`, can be thought of as having the same structure layout as `shallow_tree`, but with leaf nodes that are themselves tree structures. This function therefore will return something with the same base structure as `shallow_tree`. Examples: ```python shallow_tree = [None, None] inp_val = [1, 2, 3] out = map_structure_up_to(shallow_tree, lambda x: 2 * x, inp_val) # Output is: [2, 4] ``` ```python ab_tuple = collections.namedtuple("ab_tuple", "a, b") op_tuple = collections.namedtuple("op_tuple", "add, mul") inp_val = ab_tuple(a=2, b=3) inp_ops = ab_tuple(a=op_tuple(add=1, mul=2), b=op_tuple(add=2, mul=3)) out = map_structure_up_to(inp_val, lambda val, ops: (val + ops.add) * ops.mul, inp_val, inp_ops) # Output is: ab_tuple(a=6, b=15) ``` ```python data_list = [[2, 4, 6, 8], [[1, 3, 5, 7, 9], [3, 5, 7]]] name_list = ['evens', ['odds', 'primes']] out = map_structure_up_to( name_list, lambda name, sec: "first_{}_{}".format(len(sec), name), name_list, data_list) # Output is: ['first_4_evens', ['first_5_odds', 'first_3_primes']] ``` Args: modality: enum value of supported modality [Modality.CORE or Modality.DATA] shallow_tree: a shallow structure, common to all the inputs. func: callable which will be applied to each input individually. *inputs: structures that are compatible with shallow_tree. The function `func` is applied to corresponding structures due to partial flattening of each input, so the function must support arity of `len(inputs)`. **kwargs: Arg valid for Modality.CORE only. kwargs to feed to func(). Special kwarg `check_types` is not passed to func, but instead determines whether the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Raises: TypeError: If `shallow_tree` is a nested structure but `input_tree` is not. TypeError: If the structure types of `shallow_tree` are different from `input_tree`. ValueError: If the structure lengths of `shallow_tree` are different from `input_tree`. Returns: result of repeatedly applying `func`, with the same structure layout as `shallow_tree`. """ if modality == Modality.CORE: return _tf_core_map_structure_with_tuple_paths_up_to( shallow_tree, func, *inputs, **kwargs ) elif modality == Modality.DATA: return _tf_data_map_structure_up_to(shallow_tree, func, *inputs) else: raise ValueError( "Unknown modality used {} for nested structure".format(modality) ) def _tf_core_map_structure_with_tuple_paths_up_to( shallow_tree, func, *inputs, **kwargs ): """See comments for map_structure_with_tuple_paths_up_to() in tensorflow/python/util/nest.py.""" if not inputs: raise ValueError("Cannot map over no sequences") check_types = kwargs.pop("check_types", True) expand_composites = kwargs.pop("expand_composites", False) is_nested_fn = ( _is_nested_or_composite if expand_composites else _tf_core_is_nested ) for input_tree in inputs: _tf_core_assert_shallow_structure( shallow_tree, input_tree, check_types=check_types, expand_composites=expand_composites, ) # Flatten each input separately, apply the function to corresponding items, # then repack based on the structure of the first input. flat_value_gen = ( _tf_core_flatten_up_to( # pylint: disable=g-complex-comprehension shallow_tree, input_tree, check_types, expand_composites=expand_composites, ) for input_tree in inputs ) flat_path_gen = ( path for path, _ in _tf_core_yield_flat_up_to( shallow_tree, inputs[0], is_nested_fn ) ) results = [ func(*args, **kwargs) for args in zip(flat_path_gen, *flat_value_gen) ] return _tf_core_pack_sequence_as( structure=shallow_tree, flat_sequence=results, expand_composites=expand_composites, ) # pylint: disable=missing-function-docstring def _tf_data_map_structure_up_to(shallow_tree, func, *inputs): if not inputs: raise ValueError( "Argument `inputs` is empty. Cannot map over no sequences." ) for input_tree in inputs: _tf_data_assert_shallow_structure(shallow_tree, input_tree) # Flatten each input separately, apply the function to corresponding elements, # then repack based on the structure of the first input. all_flattened_up_to = ( _tf_data_flatten_up_to(shallow_tree, input_tree) for input_tree in inputs ) results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] return _tf_data_pack_sequence_as( structure=shallow_tree, flat_sequence=results )
_DotString
python
getsentry__sentry-python
sentry_sdk/_lru_cache.py
{ "start": 104, "end": 1229 }
class ____: def __init__(self, max_size): # type: (int) -> None if max_size <= 0: raise AssertionError(f"invalid max_size: {max_size}") self.max_size = max_size self._data = {} # type: dict[Any, Any] self.hits = self.misses = 0 self.full = False def set(self, key, value): # type: (Any, Any) -> None current = self._data.pop(key, _SENTINEL) if current is not _SENTINEL: self._data[key] = value elif self.full: self._data.pop(next(iter(self._data))) self._data[key] = value else: self._data[key] = value self.full = len(self._data) >= self.max_size def get(self, key, default=None): # type: (Any, Any) -> Any try: ret = self._data.pop(key) except KeyError: self.misses += 1 ret = default else: self.hits += 1 self._data[key] = ret return ret def get_all(self): # type: () -> list[tuple[Any, Any]] return list(self._data.items())
LRUCache
python
realpython__materials
python-iterators-iterables/sequence_iter.py
{ "start": 380, "end": 535 }
class ____: def __init__(self, sequence): self.sequence = sequence def __iter__(self): return SequenceIterator(self.sequence)
Iterable
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_excel2003_style03.py
{ "start": 315, "end": 1363 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("excel2003_style03.xlsx") self.ignore_files = [ "xl/printerSettings/printerSettings1.bin", "xl/worksheets/_rels/sheet1.xml.rels", ] self.ignore_elements = { "[Content_Types].xml": ['<Default Extension="bin"'], "xl/worksheets/sheet1.xml": ["<pageMargins", "<pageSetup"], } def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename, {"excel2003_style": True}) worksheet = workbook.add_worksheet() worksheet.set_paper(9) worksheet.set_header("Page &P") worksheet.set_footer("&A") bold = workbook.add_format({"bold": 1}) worksheet.write("A1", "Foo") worksheet.write("A2", "Bar", bold) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
openai__openai-python
src/openai/types/responses/response_apply_patch_tool_call.py
{ "start": 400, "end": 618 }
class ____(BaseModel): diff: str """Diff to apply.""" path: str """Path of the file to create.""" type: Literal["create_file"] """Create a new file with the provided diff."""
OperationCreateFile
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocol22.py
{ "start": 942, "end": 1126 }
class ____(Protocol[_T1, _T2]): def m1(self, a: _T1, b: _T2) -> _T1 | _T2: ... # This is right, as `_T1` and `_T2` are both covariant with the # argument type and the return type.
P3
python
ray-project__ray
python/ray/tests/unit/test_runtime_env_validation.py
{ "start": 3499, "end": 5696 }
class ____: def test_validate_not_a_list(self): with pytest.raises(TypeError, match="must be a list of strings"): parse_and_validate_py_modules(".") def test_validate_bad_path(self): with pytest.raises(ValueError, match="a valid path"): parse_and_validate_py_modules(["/does/not/exist"]) def test_validate_bad_uri(self): with pytest.raises(ValueError, match="a valid URI"): parse_and_validate_py_modules(["unknown://abc"]) def test_validate_invalid_type(self): with pytest.raises(TypeError): parse_and_validate_py_modules([1]) def test_validate_remote_invalid_extension(self): uris = [ "https://some_domain.com/path/file", "s3://bucket/file", "gs://bucket/file", ] with pytest.raises( ValueError, match="Only .zip or .whl files supported for remote URIs." ): parse_and_validate_py_modules(uris) def test_validate_remote_valid_input(self): uris = [ "https://some_domain.com/path/file.zip", "s3://bucket/file.zip", "gs://bucket/file.zip", "https://some_domain.com/path/file.whl", "s3://bucket/file.whl", "gs://bucket/file.whl", ] py_modules = parse_and_validate_py_modules(uris) assert py_modules == uris def test_validate_path_valid_input(self, test_directory): test_dir, _, _, _ = test_directory paths = [str(test_dir)] py_modules = parse_and_validate_py_modules(paths) assert py_modules == paths def test_validate_path_and_uri_valid_input(self, test_directory): test_dir, _, _, _ = test_directory uris_and_paths = [ str(test_dir), "https://some_domain.com/path/file.zip", "s3://bucket/file.zip", "gs://bucket/file.zip", "https://some_domain.com/path/file.whl", "s3://bucket/file.whl", "gs://bucket/file.whl", ] py_modules = parse_and_validate_py_modules(uris_and_paths) assert py_modules == uris_and_paths
TestValidatePyModules
python
huggingface__transformers
src/transformers/models/encodec/modeling_encodec.py
{ "start": 9983, "end": 11199 }
class ____(nn.Module): """ Residual block from SEANet model as used by EnCodec. """ def __init__(self, config: EncodecConfig, dim: int, dilations: list[int]): super().__init__() kernel_sizes = (config.residual_kernel_size, 1) if len(kernel_sizes) != len(dilations): raise ValueError("Number of kernel sizes should match number of dilations") hidden = dim // config.compress block = [] for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): in_chs = dim if i == 0 else hidden out_chs = dim if i == len(kernel_sizes) - 1 else hidden block += [nn.ELU()] block += [EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)] self.block = nn.ModuleList(block) if config.use_conv_shortcut: self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1) else: self.shortcut = nn.Identity() def forward(self, hidden_states): residual = hidden_states for layer in self.block: hidden_states = layer(hidden_states) return self.shortcut(residual) + hidden_states
EncodecResnetBlock
python
PrefectHQ__prefect
src/prefect/utilities/collections.py
{ "start": 6363, "end": 23626 }
class ____(BaseException): """ A special exception used to stop recursive visits in `visit_collection`. When raised, the expression is returned without modification and recursive visits in that path will end. """ @overload def visit_collection( expr: Any, visit_fn: Callable[[Any, dict[str, VT]], Any], *, return_data: Literal[True] = ..., max_depth: int = ..., context: dict[str, VT] = ..., remove_annotations: bool = ..., _seen: Optional[dict[int, Any]] = ..., ) -> Any: ... @overload def visit_collection( expr: Any, visit_fn: Callable[[Any], Any], *, return_data: Literal[True] = ..., max_depth: int = ..., context: None = None, remove_annotations: bool = ..., _seen: Optional[dict[int, Any]] = ..., ) -> Any: ... @overload def visit_collection( expr: Any, visit_fn: Callable[[Any, dict[str, VT]], Any], *, return_data: bool = ..., max_depth: int = ..., context: dict[str, VT] = ..., remove_annotations: bool = ..., _seen: Optional[dict[int, Any]] = ..., ) -> Optional[Any]: ... @overload def visit_collection( expr: Any, visit_fn: Callable[[Any], Any], *, return_data: bool = ..., max_depth: int = ..., context: None = None, remove_annotations: bool = ..., _seen: Optional[dict[int, Any]] = ..., ) -> Optional[Any]: ... @overload def visit_collection( expr: Any, visit_fn: Callable[[Any, dict[str, VT]], Any], *, return_data: Literal[False] = False, max_depth: int = ..., context: dict[str, VT] = ..., remove_annotations: bool = ..., _seen: Optional[dict[int, Any]] = ..., ) -> None: ... def visit_collection( expr: Any, visit_fn: Union[Callable[[Any, dict[str, VT]], Any], Callable[[Any], Any]], *, return_data: bool = False, max_depth: int = -1, context: Optional[dict[str, VT]] = None, remove_annotations: bool = False, _seen: Optional[dict[int, Any]] = None, ) -> Optional[Any]: """ Visits and potentially transforms every element of an arbitrary Python collection. If an element is a Python collection, it will be visited recursively. If an element is not a collection, `visit_fn` will be called with the element. The return value of `visit_fn` can be used to alter the element if `return_data` is set to `True`. Note: - When `return_data` is `True`, a copy of each collection is created only if `visit_fn` modifies an element within that collection. This approach minimizes performance penalties by avoiding unnecessary copying. - When `return_data` is `False`, no copies are created, and only side effects from `visit_fn` are applied. This mode is faster and should be used when no transformation of the collection is required, because it never has to copy any data. Supported types: - List (including iterators) - Tuple - Set - Dict (note: keys are also visited recursively) - Dataclass - Pydantic model - Prefect annotations Note that visit_collection will not consume generators or async generators, as it would prevent the caller from iterating over them. Args: expr (Any): A Python object or expression. visit_fn (Callable[[Any, Optional[dict]], Any] or Callable[[Any], Any]): A function that will be applied to every non-collection element of `expr`. The function can accept one or two arguments. If two arguments are accepted, the second argument will be the context dictionary. return_data (bool): If `True`, a copy of `expr` containing data modified by `visit_fn` will be returned. This is slower than `return_data=False` (the default). max_depth (int): Controls the depth of recursive visitation. If set to zero, no recursion will occur. If set to a positive integer `N`, visitation will only descend to `N` layers deep. If set to any negative integer, no limit will be enforced and recursion will continue until terminal items are reached. By default, recursion is unlimited. context (Optional[dict]): An optional dictionary. If passed, the context will be sent to each call to the `visit_fn`. The context can be mutated by each visitor and will be available for later visits to expressions at the given depth. Values will not be available "up" a level from a given expression. The context will be automatically populated with an 'annotation' key when visiting collections within a `BaseAnnotation` type. This requires the caller to pass `context={}` and will not be activated by default. remove_annotations (bool): If set, annotations will be replaced by their contents. By default, annotations are preserved but their contents are visited. _seen (Optional[Set[int]]): A set of object ids that have already been visited. This prevents infinite recursion when visiting recursive data structures. Returns: Any: The modified collection if `return_data` is `True`, otherwise `None`. """ if _seen is None: _seen = {} if context is not None: _callback = cast(Callable[[Any, dict[str, VT]], Any], visit_fn) def visit_nested(expr: Any) -> Optional[Any]: return visit_collection( expr, _callback, return_data=return_data, remove_annotations=remove_annotations, max_depth=max_depth - 1, # Copy the context on nested calls so it does not "propagate up" context=context.copy(), _seen=_seen, ) def visit_expression(expr: Any) -> Any: return _callback(expr, context) else: _callback = cast(Callable[[Any], Any], visit_fn) def visit_nested(expr: Any) -> Optional[Any]: # Utility for a recursive call, preserving options and updating the depth. return visit_collection( expr, _callback, return_data=return_data, remove_annotations=remove_annotations, max_depth=max_depth - 1, _seen=_seen, ) def visit_expression(expr: Any) -> Any: return _callback(expr) # --- 1. Visit every expression try: result = visit_expression(expr) except StopVisiting: max_depth = 0 result = expr if return_data: # Only mutate the root expression if the user indicated we're returning data, # otherwise the function could return null and we have no collection to check expr = result # --- 2. Visit every child of the expression recursively # If we have reached the maximum depth or we have already visited this object, # return the result if we are returning data, otherwise return None obj_id = id(expr) if max_depth == 0: return result if return_data else None elif obj_id in _seen: # Return the cached transformed result return _seen[obj_id] if return_data else None # Mark this object as being processed to handle circular references # We'll update with the actual result later _seen[obj_id] = expr # Then visit every item in the expression if it is a collection # presume that the result is the original expression. # in each of the following cases, we will update the result if we need to. result = expr # --- Generators if isinstance(expr, (types.GeneratorType, types.AsyncGeneratorType)): # Do not attempt to iterate over generators, as it will exhaust them pass # --- Mocks elif isinstance(expr, Mock): # Do not attempt to recurse into mock objects pass # --- Annotations (unmapped, quote, etc.) elif isinstance(expr, BaseAnnotation): annotated = cast(BaseAnnotation[Any], expr) if context is not None: context["annotation"] = cast(VT, annotated) unwrapped = annotated.unwrap() value = visit_nested(unwrapped) if return_data: # if we are removing annotations, return the value if remove_annotations: result = value # if the value was modified, rewrap it elif value is not unwrapped: result = annotated.rewrap(value) # otherwise return the expr # --- Sequences elif isinstance(expr, (list, tuple, set)): seq = cast(Union[list[Any], tuple[Any], set[Any]], expr) items = [visit_nested(o) for o in seq] if return_data: modified = any(item is not orig for item, orig in zip(items, seq)) if modified: result = type(seq)(items) # --- Dictionaries elif isinstance(expr, (dict, OrderedDict)): mapping = cast(dict[Any, Any], expr) items = [(visit_nested(k), visit_nested(v)) for k, v in mapping.items()] if return_data: modified = any( k1 is not k2 or v1 is not v2 for (k1, v1), (k2, v2) in zip(items, mapping.items()) ) if modified: result = type(mapping)(items) # --- Dataclasses elif is_dataclass(expr) and not isinstance(expr, type): expr_fields = fields(expr) values = [visit_nested(getattr(expr, f.name)) for f in expr_fields] if return_data: modified = any( getattr(expr, f.name) is not v for f, v in zip(expr_fields, values) ) if modified: result = replace( expr, **{f.name: v for f, v in zip(expr_fields, values)} ) # --- Pydantic models elif isinstance(expr, pydantic.BaseModel): # when extra=allow, fields not in model_fields may be in model_fields_set original_data = dict(expr) updated_data = { field: visit_nested(value) for field, value in original_data.items() } if return_data: modified = any( original_data[field] is not updated_data[field] for field in updated_data ) if modified: # Use construct to avoid validation and handle immutability model_instance = expr.model_construct( _fields_set=expr.model_fields_set, **updated_data ) for private_attr in expr.__private_attributes__: setattr(model_instance, private_attr, getattr(expr, private_attr)) result = model_instance # Update the cache with the final transformed result if return_data: _seen[obj_id] = result if return_data: return result @overload def remove_nested_keys( keys_to_remove: list[HashableT], obj: NestedDict[HashableT, VT] ) -> NestedDict[HashableT, VT]: ... @overload def remove_nested_keys(keys_to_remove: list[HashableT], obj: Any) -> Any: ... def remove_nested_keys( keys_to_remove: list[HashableT], obj: Union[NestedDict[HashableT, VT], Any] ) -> Union[NestedDict[HashableT, VT], Any]: """ Recurses a dictionary returns a copy without all keys that match an entry in `key_to_remove`. Return `obj` unchanged if not a dictionary. Args: keys_to_remove: A list of keys to remove from obj obj: The object to remove keys from. Returns: `obj` without keys matching an entry in `keys_to_remove` if `obj` is a dictionary. `obj` if `obj` is not a dictionary. """ if not isinstance(obj, dict): return obj return { key: remove_nested_keys(keys_to_remove, value) for key, value in cast(NestedDict[HashableT, VT], obj).items() if key not in keys_to_remove } @overload def distinct( iterable: Iterable[HashableT], key: None = None ) -> Iterator[HashableT]: ... @overload def distinct(iterable: Iterable[T], key: Callable[[T], Hashable]) -> Iterator[T]: ... def distinct( iterable: Iterable[Union[T, HashableT]], key: Optional[Callable[[T], Hashable]] = None, ) -> Iterator[Union[T, HashableT]]: def _key(__i: Any) -> Hashable: return __i if key is not None: _key = cast(Callable[[Any], Hashable], key) seen: set[Hashable] = set() for item in iterable: if _key(item) in seen: continue seen.add(_key(item)) yield item @overload def get_from_dict( dct: NestedDict[str, VT], keys: Union[str, list[str]], default: None = None ) -> Optional[VT]: ... @overload def get_from_dict( dct: NestedDict[str, VT], keys: Union[str, list[str]], default: R ) -> Union[VT, R]: ... def get_from_dict( dct: NestedDict[str, VT], keys: Union[str, list[str]], default: Optional[R] = None ) -> Union[VT, R, None]: """ Fetch a value from a nested dictionary or list using a sequence of keys. This function allows to fetch a value from a deeply nested structure of dictionaries and lists using either a dot-separated string or a list of keys. If a requested key does not exist, the function returns the provided default value. Args: dct: The nested dictionary or list from which to fetch the value. keys: The sequence of keys to use for access. Can be a dot-separated string or a list of keys. List indices can be included in the sequence as either integer keys or as string indices in square brackets. default: The default value to return if the requested key path does not exist. Defaults to None. Returns: The fetched value if the key exists, or the default value if it does not. Examples: ```python get_from_dict({'a': {'b': {'c': [1, 2, 3, 4]}}}, 'a.b.c[1]') # 2 get_from_dict({'a': {'b': [0, {'c': [1, 2]}]}}, ['a', 'b', 1, 'c', 1]) # 2 get_from_dict({'a': {'b': [0, {'c': [1, 2]}]}}, 'a.b.1.c.2', 'default') # 'default' ``` """ if isinstance(keys, str): keys = keys.replace("[", ".").replace("]", "").split(".") value = dct try: for key in keys: try: # Try to cast to int to handle list indices key = int(key) except ValueError: # If it's not an int, use the key as-is # for dict lookup pass value = value[key] # type: ignore return cast(VT, value) except (TypeError, KeyError, IndexError): return default def set_in_dict( dct: NestedDict[str, VT], keys: Union[str, list[str]], value: VT ) -> None: """ Sets a value in a nested dictionary using a sequence of keys. This function allows to set a value in a deeply nested structure of dictionaries and lists using either a dot-separated string or a list of keys. If a requested key does not exist, the function will create it as a new dictionary. Args: dct: The dictionary to set the value in. keys: The sequence of keys to use for access. Can be a dot-separated string or a list of keys. value: The value to set in the dictionary. Returns: The modified dictionary with the value set at the specified key path. Raises: KeyError: If the key path exists and is not a dictionary. """ if isinstance(keys, str): keys = keys.replace("[", ".").replace("]", "").split(".") for k in keys[:-1]: if not isinstance(dct.get(k, {}), dict): raise TypeError(f"Key path exists and contains a non-dict value: {keys}") if k not in dct: dct[k] = {} dct = cast(NestedDict[str, VT], dct[k]) dct[keys[-1]] = value def deep_merge( dct: NestedDict[str, VT1], merge: NestedDict[str, VT2] ) -> NestedDict[str, Union[VT1, VT2]]: """ Recursively merges `merge` into `dct`. Args: dct: The dictionary to merge into. merge: The dictionary to merge from. Returns: A new dictionary with the merged contents. """ result: dict[str, Any] = dct.copy() # Start with keys and values from `dct` for key, value in merge.items(): if key in result and isinstance(result[key], dict) and isinstance(value, dict): # If both values are dictionaries, merge them recursively result[key] = deep_merge( cast(NestedDict[str, VT1], result[key]), cast(NestedDict[str, VT2], value), ) else: # Otherwise, overwrite with the new value result[key] = cast(Union[VT2, NestedDict[str, VT2]], value) return result def deep_merge_dicts(*dicts: NestedDict[str, Any]) -> NestedDict[str, Any]: """ Recursively merges multiple dictionaries. Args: dicts: The dictionaries to merge. Returns: A new dictionary with the merged contents. """ result: NestedDict[str, Any] = {} for dictionary in dicts: result = deep_merge(result, dictionary) return result
StopVisiting
python
openai__openai-python
src/openai/types/realtime/realtime_mcp_approval_response_param.py
{ "start": 260, "end": 755 }
class ____(TypedDict, total=False): id: Required[str] """The unique ID of the approval response.""" approval_request_id: Required[str] """The ID of the approval request being answered.""" approve: Required[bool] """Whether the request was approved.""" type: Required[Literal["mcp_approval_response"]] """The type of the item. Always `mcp_approval_response`.""" reason: Optional[str] """Optional reason for the decision."""
RealtimeMcpApprovalResponseParam
python
apache__airflow
providers/microsoft/azure/src/airflow/providers/microsoft/azure/log/wasb_task_handler.py
{ "start": 7047, "end": 10173 }
class ____(FileTaskHandler, LoggingMixin): """ WasbTaskHandler is a python log handler that handles and reads task instance logs. It extends airflow FileTaskHandler and uploads to and reads from Wasb remote storage. """ trigger_should_wrap = True def __init__( self, base_log_folder: str, wasb_log_folder: str, wasb_container: str, max_bytes: int = 0, backup_count: int = 0, delay: bool = False, **kwargs, ) -> None: # support log file size handling of FileTaskHandler super().__init__( base_log_folder=base_log_folder, max_bytes=max_bytes, backup_count=backup_count, delay=delay ) self.handler: logging.FileHandler | None = None self.log_relative_path = "" self.closed = False self.upload_on_close = True self.io = WasbRemoteLogIO( base_log_folder=base_log_folder, remote_base=wasb_log_folder, wasb_container=wasb_container, delete_local_copy=kwargs.get( "delete_local_copy", conf.getboolean("logging", "delete_local_logs") ), ) def set_context(self, ti: TaskInstance, *, identifier: str | None = None) -> None: super().set_context(ti, identifier=identifier) # Local location and remote location is needed to open and # upload local log file to Wasb remote storage. if TYPE_CHECKING: assert self.handler is not None self.ti = ti full_path = self.handler.baseFilename self.log_relative_path = Path(full_path).relative_to(self.local_base).as_posix() is_trigger_log_context = getattr(ti, "is_trigger_log_context", False) self.upload_on_close = is_trigger_log_context or not getattr(ti, "raw", None) def close(self) -> None: """Close and upload local log file to remote storage Wasb.""" # When application exit, system shuts down all handlers by # calling close method. Here we check if logger is already # closed to prevent uploading the log to remote storage multiple # times when `logging.shutdown` is called. if self.closed: return super().close() if not self.upload_on_close: return if hasattr(self, "ti"): self.io.upload(self.log_relative_path, self.ti) # Mark closed so we don't double write if close is called twice self.closed = True def _read_remote_logs(self, ti, try_number, metadata=None) -> tuple[LogSourceInfo, LogMessages]: # Explicitly getting log relative path is necessary as the given # task instance might be different than task instance passed in # in set_context method. worker_log_rel_path = self._render_filename(ti, try_number) messages, logs = self.io.read(worker_log_rel_path, ti) if logs is None: logs = [] if not AIRFLOW_V_3_0_PLUS: messages.append(f"No logs found in WASB; ti={ti}") return messages, logs
WasbTaskHandler
python
python-attrs__attrs
tests/dataclass_transform_example.py
{ "start": 172, "end": 357 }
class ____: with_converter: int = attr.field(converter=int) reveal_type(DefineConverter.__init__) # noqa: F821 DefineConverter(with_converter=b"42") @attr.frozen()
DefineConverter
python
pytorch__pytorch
torch/_dynamo/variables/dicts.py
{ "start": 56935, "end": 58192 }
class ____(SetVariable): def debug_repr(self) -> str: if not self.items: return "dict_keys([])" else: return ( "dict_keys([" + ",".join(k.vt.debug_repr() for k in self.items) + "])" ) def install_dict_keys_match_guard(self) -> None: # Already EQUALS_MATCH guarded pass def install_dict_contains_guard( self, tx: "InstructionTranslator", args: list[VariableTracker] ) -> None: # Already EQUALS_MATCH guarded pass @property def set_items(self) -> Any: return self.items def python_type(self) -> type: return dict_keys def as_python_constant(self) -> Any: return dict.fromkeys( {k.vt.as_python_constant() for k in self.set_items}, None ).keys() def call_method( self, tx: "InstructionTranslator", name: str, args: list[VariableTracker], kwargs: dict[str, VariableTracker], ) -> VariableTracker: if name in ["add", "pop", "update", "remove", "discard", "clear"]: raise RuntimeError(f"Illegal call_method {name} on a dict_keys") return super().call_method(tx, name, args, kwargs)
DictKeySetVariable
python
conda__conda
conda/notices/types.py
{ "start": 1593, "end": 3615 }
class ____(NamedTuple): url: str name: str json_data: dict | None @property def notices(self) -> Sequence[ChannelNotice]: if self.json_data: notices = self.json_data.get("notices", ()) return tuple( ChannelNotice( id=str(notice.get("id", UNDEFINED_MESSAGE_ID)), channel_name=self.name, message=notice.get("message"), level=self._parse_notice_level(notice.get("level")), created_at=self._parse_iso_timestamp(notice.get("created_at")), expired_at=self._parse_iso_timestamp(notice.get("expired_at")), interval=notice.get("interval"), ) for notice in notices ) # Default value return () @staticmethod def _parse_notice_level(level: str | None) -> NoticeLevel: """ We use this to validate notice levels and provide reasonable defaults if any are invalid. """ try: return NoticeLevel(level) except ValueError: # If we get an invalid value, rather than fail, we simply use a reasonable default return NoticeLevel(NoticeLevel.INFO) @staticmethod def _parse_iso_timestamp(iso_timestamp: str | None) -> datetime | None: """Parse ISO timestamp and fail over to a default value of none.""" if iso_timestamp is None: return None try: return datetime.fromisoformat(iso_timestamp) except ValueError: return None @classmethod def get_cache_key(cls, url: str, cache_dir: Path) -> Path: """Returns where this channel response will be cached by hashing the URL.""" bytes_filename = url.encode() sha256_hash = hashlib.sha256(bytes_filename) cache_filename = f"{sha256_hash.hexdigest()}.json" return cache_dir.joinpath(cache_filename)
ChannelNoticeResponse
python
pyca__cryptography
tests/hazmat/primitives/test_sm4.py
{ "start": 2688, "end": 3198 }
class ____: test_cfb = generate_encrypt_test( load_nist_vectors, os.path.join("ciphers", "SM4"), ["draft-ribose-cfrg-sm4-10-ctr.txt"], lambda key, **kwargs: algorithms.SM4(binascii.unhexlify(key)), lambda iv, **kwargs: modes.CTR(binascii.unhexlify(iv)), ) @pytest.mark.supported( only_if=lambda backend: backend.cipher_supported( algorithms.SM4(b"\x00" * 16), modes.GCM(b"\x00" * 16) ), skip_message="Does not support SM4 GCM", )
TestSM4ModeCTR
python
run-llama__llama_index
llama-index-integrations/vector_stores/llama-index-vector-stores-kdbai/llama_index/vector_stores/kdbai/base.py
{ "start": 652, "end": 8086 }
class ____(BasePydanticVectorStore): """ The KDBAI Vector Store. In this vector store we store the text, its embedding and its metadata in a KDBAI vector store table. This implementation allows the use of an already existing table. Args: table kdbai.Table: The KDB.AI table to use as storage. batch (int, optional): batch size to insert data. Default is 100. Returns: KDBAIVectorStore: Vectorstore that supports add and query. """ stores_text: bool = True flat_metadata: bool = True hybrid_search: bool = False batch_size: int _table: Any = PrivateAttr() _sparse_encoder: Optional[Callable] = PrivateAttr() def __init__( self, table: Any = None, hybrid_search: bool = False, sparse_encoder: Optional[Callable] = None, batch_size: int = DEFAULT_BATCH_SIZE, **kwargs: Any, ) -> None: """Initialize params.""" try: import kdbai_client as kdbai logger.info("KDBAI client version: " + kdbai.__version__) except ImportError: raise ValueError( "Could not import kdbai_client package." "Please add it to the dependencies." ) super().__init__(batch_size=batch_size, hybrid_search=hybrid_search) if table is None: raise ValueError("Must provide an existing KDB.AI table.") else: self._table = table if hybrid_search: if sparse_encoder is None: self._sparse_encoder = default_sparse_encoder else: self._sparse_encoder = sparse_encoder @property def client(self) -> Any: """Return KDB.AI client.""" return self._table @classmethod def class_name(cls) -> str: return "KDBAIVectorStore" def add( self, nodes: List[BaseNode], **add_kwargs: Any, ) -> List[str]: """ Add nodes to the KDBAI Vector Store. Args: nodes (List[BaseNode]): List of nodes to be added. Returns: List[str]: List of document IDs that were added. """ try: import kdbai_client as kdbai logger.info("KDBAI client version: " + kdbai.__version__) except ImportError: raise ValueError( "Could not import kdbai_client package." "Please add it to the dependencies." ) df = pd.DataFrame() docs = [] schema = self._table.schema if self.hybrid_search: schema = [item for item in schema if item["name"] != "sparseVectors"] try: for node in nodes: doc = { "document_id": node.node_id.encode("utf-8"), "text": node.text.encode("utf-8"), "embeddings": node.embedding, } if self.hybrid_search: doc["sparseVectors"] = self._sparse_encoder(node.get_content()) # handle metadata columns if len(schema) > len(DEFAULT_COLUMN_NAMES): for column in [ item for item in schema if item["name"] not in DEFAULT_COLUMN_NAMES ]: try: doc[column["name"]] = node.metadata[column["name"]] except Exception as e: logger.error( f"Error writing column {column['name']} as type {column['type']}: {e}." ) docs.append(doc) df = pd.DataFrame(docs) for i in range((len(df) - 1) // self.batch_size + 1): batch = df.iloc[i * self.batch_size : (i + 1) * self.batch_size] try: self._table.insert(batch) logger.info(f"inserted batch {i}") except Exception as e: logger.exception( f"Failed to insert batch {i} of documents into the datastore: {e}" ) return [x.decode("utf-8") for x in df["document_id"].tolist()] except Exception as e: logger.error(f"Error preparing data for KDB.AI: {e}.") def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult: try: import kdbai_client as kdbai logger.info("KDBAI client version: " + kdbai.__version__) except ImportError: raise ValueError( "Could not import kdbai_client package." "Please add it to the dependencies." ) if query.alpha: raise ValueError( "Could not run hybrid search. " "Please remove alpha and provide KDBAI weights for the two indexes though the vector_store_kwargs." ) if query.filters: filter = query.filters if kwargs.get("filter"): filter.extend(kwargs.pop("filter")) kwargs["filter"] = filter if kwargs.get("index"): index = kwargs.pop("index") if self.hybrid_search: indexSparse = kwargs.pop("indexSparse", None) indexWeight = kwargs.pop("indexWeight", None) indexSparseWeight = kwargs.pop("indexSparseWeight", None) if not all([indexSparse, indexWeight, indexSparseWeight]): raise ValueError( "Could not run hybrid search. " "Please provide KDBAI sparse index name and weights." ) else: raise ValueError( "Could not run the search. Please provide KDBAI index name." ) if self.hybrid_search: sparse_vectors = [self._sparse_encoder(query.query_str)] qry = {index: [query.query_embedding], indexSparse: sparse_vectors} index_params = { index: {"weight": indexWeight}, indexSparse: {"weight": indexSparseWeight}, } results = self._table.search( vectors=qry, index_params=index_params, n=query.similarity_top_k, **kwargs, )[0] else: results = self._table.search( vectors={index: [query.query_embedding]}, n=query.similarity_top_k, **kwargs, )[0] top_k_nodes = [] top_k_ids = [] top_k_scores = [] for result in results.to_dict(orient="records"): metadata = {x: result[x] for x in result if x not in DEFAULT_COLUMN_NAMES} node = TextNode( text=result["text"], id_=result["document_id"], metadata=metadata ) top_k_ids.append(result["document_id"]) top_k_nodes.append(node) top_k_scores.append(result["__nn_distance"]) return VectorStoreQueryResult( nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids ) def delete(self, **delete_kwargs: Any) -> None: raise Exception("Not implemented.")
KDBAIVectorStore
python
django-haystack__django-haystack
test_haystack/test_indexes.py
{ "start": 22572, "end": 22730 }
class ____(indexes.ModelSearchIndex, indexes.Indexable): class Meta: model = MockModel excludes = ["author", "foo"]
ExcludesModelSearchIndex
python
redis__redis-py
tests/test_http/test_http_client.py
{ "start": 315, "end": 854 }
class ____: def __init__( self, *, status: int, headers: Dict[str, str], url: str, content: bytes ): self.status = status self.headers = headers self._url = url self._content = content def read(self) -> bytes: return self._content def geturl(self) -> str: return self._url # Support context manager used by urlopen def __enter__(self) -> "FakeResponse": return self def __exit__(self, exc_type, exc, tb) -> None: return None
FakeResponse
python
huggingface__transformers
src/transformers/trainer_pt_utils.py
{ "start": 52079, "end": 53963 }
class ____(LRScheduler): """ For Layer-wise optimizers such as GaLoRE optimizer, the optimization and scheduling step are already done through the post gradient hooks. Therefore the trick is to create a dummy scheduler that can take arbitrary args and kwargs and return a no-op during training. """ def __init__(self, *args, **kwargs): self.default_lr = kwargs["lr"] optimizer = LayerWiseDummyOptimizer(**kwargs) last_epoch = -1 super().__init__(optimizer, last_epoch) def get_lr(self): # default value lrs = [self.default_lr] # we take each lr in the parameters if they exist, assumes the optimizer to be the `LayerWiseDummyOptimizer` if self.optimizer is not None: param_wise_lrs = [ [group["lr"] for group in optim.param_groups] for optim in self.optimizer.optimizer_dict.values() ] lrs = list(chain(*param_wise_lrs)) return lrs def _get_closed_form_lr(self): return self.base_lrs def set_rng_state_for_device(device_name, device_module, checkpoint_rng_state, is_distributed): """Helper to set RNG state for a specific device type (CUDA, NPU, MLU, MUSA)""" device_state_key = device_name.lower() err_template = "Didn't manage to set back the RNG states of the {backend} because of the following error:\n {exception}\nThis won't yield the same results as if the training had not been interrupted." try: if is_distributed: device_module.random.set_rng_state_all(checkpoint_rng_state[device_state_key]) else: device_module.random.set_rng_state(checkpoint_rng_state[device_state_key]) except Exception as e: # Log error if setting RNG state fails logger.error(err_template.format(backend=device_name, exception=e))
LayerWiseDummyScheduler
python
numba__numba
numba/core/compiler_machinery.py
{ "start": 2920, "end": 3625 }
class ____(object): """This looks and behaves like LLVM's AnalysisUsage because its like that. """ def __init__(self): self._required = set() self._preserved = set() def get_required_set(self): return self._required def get_preserved_set(self): return self._preserved def add_required(self, pss): self._required.add(pss) def add_preserved(self, pss): self._preserved.add(pss) def __str__(self): return "required: %s\n" % self._required _DEBUG = False def debug_print(*args, **kwargs): if _DEBUG: print(*args, **kwargs) pass_timings = namedtuple('pass_timings', 'init run finalize')
AnalysisUsage
python
apache__airflow
providers/ydb/src/airflow/providers/ydb/hooks/ydb.py
{ "start": 1558, "end": 3139 }
class ____: """YDB cursor wrapper.""" def __init__(self, delegatee: DbApiCursor, is_ddl: bool): self.delegatee: DbApiCursor = delegatee self.is_ddl: bool = is_ddl def execute(self, sql: str, parameters: Mapping[str, Any] | None = None): if parameters is not None: raise AirflowException("parameters is not supported yet") if self.is_ddl: return self.delegatee.execute_scheme(sql, parameters) return self.delegatee.execute(sql, parameters) def executemany(self, sql: str, seq_of_parameters: Sequence[Mapping[str, Any]]): for parameters in seq_of_parameters: self.execute(sql, parameters) def executescript(self, script): return self.execute(script) def fetchone(self): return self.delegatee.fetchone() def fetchmany(self, size=None): return self.delegatee.fetchmany(size=size) def fetchall(self): return self.delegatee.fetchall() def nextset(self): return self.delegatee.nextset() def setinputsizes(self, sizes): return self.delegatee.setinputsizes(sizes) def setoutputsize(self, column=None): return self.delegatee.setoutputsize(column) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): return self.delegatee.close() @property def rowcount(self): return self.delegatee.rowcount @property def description(self): return self.delegatee.description
YDBCursor
python
ray-project__ray
python/ray/serve/tests/test_list_outbound_deployments.py
{ "start": 842, "end": 1288 }
class ____: def __init__(self, handles_dict: dict, handles_list: list): self.handles = handles_dict # {"a": handle_a, "b": handle_b} self.handle_list = handles_list # [handle_a, handle_b] async def __call__(self, x: int) -> int: result_a = await self.handles["a"].remote(x) result_b = await self.handles["b"].process.remote(x) return result_a + result_b @serve.deployment
UpstreamWithNestedHandles
python
gevent__gevent
src/greentest/3.10/test_socket.py
{ "start": 250362, "end": 252901 }
class ____(unittest.TestCase): def test_address(self): port = socket_helper.find_unused_port() with socket.create_server(("127.0.0.1", port)) as sock: self.assertEqual(sock.getsockname()[0], "127.0.0.1") self.assertEqual(sock.getsockname()[1], port) if socket_helper.IPV6_ENABLED: with socket.create_server(("::1", port), family=socket.AF_INET6) as sock: self.assertEqual(sock.getsockname()[0], "::1") self.assertEqual(sock.getsockname()[1], port) def test_family_and_type(self): with socket.create_server(("127.0.0.1", 0)) as sock: self.assertEqual(sock.family, socket.AF_INET) self.assertEqual(sock.type, socket.SOCK_STREAM) if socket_helper.IPV6_ENABLED: with socket.create_server(("::1", 0), family=socket.AF_INET6) as s: self.assertEqual(s.family, socket.AF_INET6) self.assertEqual(sock.type, socket.SOCK_STREAM) def test_reuse_port(self): if not hasattr(socket, "SO_REUSEPORT"): with self.assertRaises(ValueError): socket.create_server(("localhost", 0), reuse_port=True) else: with socket.create_server(("localhost", 0)) as sock: opt = sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) self.assertEqual(opt, 0) with socket.create_server(("localhost", 0), reuse_port=True) as sock: opt = sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) self.assertNotEqual(opt, 0) @unittest.skipIf(not hasattr(_socket, 'IPPROTO_IPV6') or not hasattr(_socket, 'IPV6_V6ONLY'), "IPV6_V6ONLY option not supported") @unittest.skipUnless(socket_helper.IPV6_ENABLED, 'IPv6 required for this test') def test_ipv6_only_default(self): with socket.create_server(("::1", 0), family=socket.AF_INET6) as sock: assert sock.getsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY) @unittest.skipIf(not socket.has_dualstack_ipv6(), "dualstack_ipv6 not supported") @unittest.skipUnless(socket_helper.IPV6_ENABLED, 'IPv6 required for this test') def test_dualstack_ipv6_family(self): with socket.create_server(("::1", 0), family=socket.AF_INET6, dualstack_ipv6=True) as sock: self.assertEqual(sock.family, socket.AF_INET6)
CreateServerTest
python
ray-project__ray
python/ray/data/_internal/logical/operators/map_operator.py
{ "start": 7180, "end": 8747 }
class ____(AbstractUDFMap): """Logical operator for map_batches.""" def __init__( self, input_op: LogicalOperator, fn: UserDefinedFunction, batch_size: Optional[int] = None, batch_format: str = "default", zero_copy_batch: bool = True, fn_args: Optional[Iterable[Any]] = None, fn_kwargs: Optional[Dict[str, Any]] = None, fn_constructor_args: Optional[Iterable[Any]] = None, fn_constructor_kwargs: Optional[Dict[str, Any]] = None, min_rows_per_bundled_input: Optional[int] = None, compute: Optional[ComputeStrategy] = None, udf_modifying_row_count: bool = False, ray_remote_args_fn: Optional[Callable[[], Dict[str, Any]]] = None, ray_remote_args: Optional[Dict[str, Any]] = None, ): super().__init__( "MapBatches", input_op, fn, fn_args=fn_args, fn_kwargs=fn_kwargs, fn_constructor_args=fn_constructor_args, fn_constructor_kwargs=fn_constructor_kwargs, min_rows_per_bundled_input=min_rows_per_bundled_input, compute=compute, ray_remote_args_fn=ray_remote_args_fn, ray_remote_args=ray_remote_args, ) self._batch_size = batch_size self._batch_format = batch_format self._zero_copy_batch = zero_copy_batch self._udf_modifying_row_count = udf_modifying_row_count def can_modify_num_rows(self) -> bool: return self._udf_modifying_row_count
MapBatches
python
streamlit__streamlit
lib/streamlit/runtime/media_file_storage.py
{ "start": 736, "end": 892 }
class ____(Enum): # st.image, st.video, st.audio files MEDIA = "media" # st.download_button files DOWNLOADABLE = "downloadable"
MediaFileKind
python
getsentry__sentry
src/sentry/snuba/entity_subscription.py
{ "start": 5308, "end": 7052 }
class ____(ABC, _EntitySubscription): """ An abstraction layer for all different entity subscriptions. It is important to note that this abstraction layer was added because the subscription logic was too coupled to the events and transactions entities, which was fine initially but now as we are adding more entities to support subscriptions (alerts), we need to decouple this logic. """ def __init__( self, aggregate: str, time_window: int, extra_fields: _EntitySpecificParams | None = None, ): pass @abstractmethod def get_entity_extra_params(self) -> Mapping[str, Any]: raise NotImplementedError @abstractmethod def aggregate_query_results( self, data: list[dict[str, Any]], alias: str | None = None ) -> list[dict[str, Any]]: """ Method that serves the purpose of receiving query results and applying any necessary aggregations on them """ raise NotImplementedError def build_query_builder( self, query: str, project_ids: list[int], environment: Environment | None, params: ParamsType | None = None, skip_field_validation_for_entity_subscription_deletion: bool = False, ) -> BaseQueryBuilder: raise NotImplementedError def build_rpc_request( self, query: str, project_ids: list[int], environment: Environment | None, params: ParamsType | None = None, skip_field_validation_for_entity_subscription_deletion: bool = False, referrer: str = Referrer.API_ALERTS_ALERT_RULE_CHART.value, ) -> TimeSeriesRequest: raise NotImplementedError
BaseEntitySubscription
python
scrapy__scrapy
tests/test_loader.py
{ "start": 2030, "end": 5950 }
class ____: item_class: type | None = None def test_keep_single_value(self): """Loaded item should contain values from the initial item""" input_item = self.item_class(name="foo") il = ItemLoader(item=input_item) loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo"]} def test_keep_list(self): """Loaded item should contain values from the initial item""" input_item = self.item_class(name=["foo", "bar"]) il = ItemLoader(item=input_item) loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo", "bar"]} def test_add_value_singlevalue_singlevalue(self): """Values added after initialization should be appended""" input_item = self.item_class(name="foo") il = ItemLoader(item=input_item) il.add_value("name", "bar") loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo", "bar"]} def test_add_value_singlevalue_list(self): """Values added after initialization should be appended""" input_item = self.item_class(name="foo") il = ItemLoader(item=input_item) il.add_value("name", ["item", "loader"]) loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo", "item", "loader"]} def test_add_value_list_singlevalue(self): """Values added after initialization should be appended""" input_item = self.item_class(name=["foo", "bar"]) il = ItemLoader(item=input_item) il.add_value("name", "qwerty") loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo", "bar", "qwerty"]} def test_add_value_list_list(self): """Values added after initialization should be appended""" input_item = self.item_class(name=["foo", "bar"]) il = ItemLoader(item=input_item) il.add_value("name", ["item", "loader"]) loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == { "name": ["foo", "bar", "item", "loader"] } def test_get_output_value_singlevalue(self): """Getting output value must not remove value from item""" input_item = self.item_class(name="foo") il = ItemLoader(item=input_item) assert il.get_output_value("name") == ["foo"] loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo"]} def test_get_output_value_list(self): """Getting output value must not remove value from item""" input_item = self.item_class(name=["foo", "bar"]) il = ItemLoader(item=input_item) assert il.get_output_value("name") == ["foo", "bar"] loaded_item = il.load_item() assert isinstance(loaded_item, self.item_class) assert ItemAdapter(loaded_item).asdict() == {"name": ["foo", "bar"]} def test_values_single(self): """Values from initial item must be added to loader._values""" input_item = self.item_class(name="foo") il = ItemLoader(item=input_item) assert il._values.get("name") == ["foo"] def test_values_list(self): """Values from initial item must be added to loader._values""" input_item = self.item_class(name=["foo", "bar"]) il = ItemLoader(item=input_item) assert il._values.get("name") == ["foo", "bar"]
InitializationTestMixin
python
django-extensions__django-extensions
django_extensions/admin/__init__.py
{ "start": 7064, "end": 7179 }
class ____( ForeignKeyAutocompleteAdminMixin, admin.TabularInline ): pass
ForeignKeyAutocompleteTabularInline
python
ray-project__ray
python/ray/serve/_private/common.py
{ "start": 26225, "end": 26325 }
class ____(str, Enum): UNDEFINED = "UNDEFINED" HTTP = "HTTP" GRPC = "gRPC"
RequestProtocol
python
sqlalchemy__sqlalchemy
test/sql/test_sequences.py
{ "start": 979, "end": 4750 }
class ____(fixtures.TestBase, testing.AssertsCompiledSQL): __dialect__ = "default" __sparse_driver_backend__ = True @testing.combinations( (Sequence("foo_seq"), ""), (Sequence("foo_seq", start=5), "START WITH 5"), (Sequence("foo_seq", increment=2), "INCREMENT BY 2"), ( Sequence("foo_seq", increment=2, start=5), "INCREMENT BY 2 START WITH 5", ), ( Sequence("foo_seq", increment=2, start=0, minvalue=0), "INCREMENT BY 2 START WITH 0 MINVALUE 0", ), ( Sequence("foo_seq", increment=2, start=1, maxvalue=5), "INCREMENT BY 2 START WITH 1 MAXVALUE 5", ), ( Sequence("foo_seq", increment=2, start=1, nomaxvalue=True), "INCREMENT BY 2 START WITH 1 NO MAXVALUE", ), ( Sequence("foo_seq", increment=2, start=0, nominvalue=True), "INCREMENT BY 2 START WITH 0 NO MINVALUE", ), ( Sequence("foo_seq", start=1, maxvalue=10, cycle=True), "START WITH 1 MAXVALUE 10 CYCLE", ), ( Sequence("foo_seq", cache=1000), "CACHE 1000", ), (Sequence("foo_seq", minvalue=42), "MINVALUE 42"), (Sequence("foo_seq", minvalue=-42), "MINVALUE -42"), ( Sequence("foo_seq", minvalue=42, increment=2), "INCREMENT BY 2 MINVALUE 42", ), ( Sequence("foo_seq", minvalue=-42, increment=2), "INCREMENT BY 2 MINVALUE -42", ), ( Sequence("foo_seq", minvalue=42, increment=-2), "INCREMENT BY -2 MINVALUE 42", ), ( Sequence("foo_seq", minvalue=-42, increment=-2), "INCREMENT BY -2 MINVALUE -42", ), (Sequence("foo_seq", maxvalue=99), "MAXVALUE 99"), (Sequence("foo_seq", maxvalue=-99), "MAXVALUE -99"), ( Sequence("foo_seq", maxvalue=99, increment=2), "INCREMENT BY 2 MAXVALUE 99", ), ( Sequence("foo_seq", maxvalue=99, increment=-2), "INCREMENT BY -2 MAXVALUE 99", ), ( Sequence("foo_seq", maxvalue=-99, increment=-2), "INCREMENT BY -2 MAXVALUE -99", ), ( Sequence("foo_seq", minvalue=42, maxvalue=99), "MINVALUE 42 MAXVALUE 99", ), ( Sequence("foo_seq", minvalue=42, maxvalue=99, increment=2), "INCREMENT BY 2 MINVALUE 42 MAXVALUE 99", ), ( Sequence("foo_seq", minvalue=-42, maxvalue=-9, increment=2), "INCREMENT BY 2 MINVALUE -42 MAXVALUE -9", ), ( Sequence("foo_seq", minvalue=42, maxvalue=99, increment=-2), "INCREMENT BY -2 MINVALUE 42 MAXVALUE 99", ), ( Sequence("foo_seq", minvalue=-42, maxvalue=-9, increment=-2), "INCREMENT BY -2 MINVALUE -42 MAXVALUE -9", ), ) def test_create_ddl(self, sequence, sql): before = sequence.start self.assert_compile( CreateSequence(sequence), ("CREATE SEQUENCE foo_seq " + sql).strip(), ) eq_(sequence.start, before) def test_drop_ddl(self): self.assert_compile( CreateSequence(Sequence("foo_seq"), if_not_exists=True), "CREATE SEQUENCE IF NOT EXISTS foo_seq", ) self.assert_compile( DropSequence(Sequence("foo_seq")), "DROP SEQUENCE foo_seq" ) self.assert_compile( DropSequence(Sequence("foo_seq"), if_exists=True), "DROP SEQUENCE IF EXISTS foo_seq", )
SequenceDDLTest
python
Textualize__textual
tests/snapshot_tests/snapshot_apps/bindings_screen_overrides_show.py
{ "start": 329, "end": 679 }
class ____(App): """Regression test for https://github.com/Textualize/textual/issues/4382""" BINDINGS = [ Binding("p", "app.pop_screen", "Binding hidden", show=False), ] def on_mount(self) -> None: self.push_screen(ShowBindingScreen()) if __name__ == "__main__": app = HideBindingApp() app.run()
HideBindingApp
python
apache__airflow
airflow-core/tests/unit/charts/log_groomer.py
{ "start": 914, "end": 10387 }
class ____: obj_name: str = "" folder: str = "" def test_log_groomer_collector_default_enabled(self): if self.obj_name == "dag-processor": values = {"dagProcessor": {"enabled": True}} else: values = None docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"] ) assert len(jmespath.search("spec.template.spec.containers", docs[0])) == 2 assert f"{self.obj_name}-log-groomer" in [ c["name"] for c in jmespath.search("spec.template.spec.containers", docs[0]) ] def test_log_groomer_collector_can_be_disabled(self): if self.obj_name == "dag-processor": values = { "dagProcessor": { "enabled": True, "logGroomerSidecar": {"enabled": False}, } } else: values = {f"{self.folder}": {"logGroomerSidecar": {"enabled": False}}} docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) actual = jmespath.search("spec.template.spec.containers", docs[0]) assert len(actual) == 1 def test_log_groomer_collector_default_command_and_args(self): if self.obj_name == "dag-processor": values = {"dagProcessor": {"enabled": True}} else: values = None docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"] ) assert jmespath.search("spec.template.spec.containers[1].command", docs[0]) is None assert jmespath.search("spec.template.spec.containers[1].args", docs[0]) == ["bash", "/clean-logs"] def test_log_groomer_collector_default_retention_days(self): if self.obj_name == "dag-processor": values = {"dagProcessor": {"enabled": True}} else: values = None docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"] ) assert ( jmespath.search("spec.template.spec.containers[1].env[0].name", docs[0]) == "AIRFLOW__LOG_RETENTION_DAYS" ) assert jmespath.search("spec.template.spec.containers[1].env[0].value", docs[0]) == "15" def test_log_groomer_collector_custom_env(self): env = [ {"name": "APP_RELEASE_NAME", "value": "{{ .Release.Name }}-airflow"}, {"name": "APP__LOG_RETENTION_DAYS", "value": "5"}, ] if self.obj_name == "dag-processor": values = {"dagProcessor": {"enabled": True, "logGroomerSidecar": {"env": env}}} else: values = { "workers": {"logGroomerSidecar": {"env": env}}, "scheduler": {"logGroomerSidecar": {"env": env}}, "triggerer": {"logGroomerSidecar": {"env": env}}, } docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"] ) assert {"name": "APP_RELEASE_NAME", "value": "release-name-airflow"} in jmespath.search( "spec.template.spec.containers[1].env", docs[0] ) assert {"name": "APP__LOG_RETENTION_DAYS", "value": "5"} in jmespath.search( "spec.template.spec.containers[1].env", docs[0] ) @pytest.mark.parametrize("command", [None, ["custom", "command"]]) @pytest.mark.parametrize("args", [None, ["custom", "args"]]) def test_log_groomer_command_and_args_overrides(self, command, args): if self.obj_name == "dag-processor": values = { "dagProcessor": { "enabled": True, "logGroomerSidecar": {"command": command, "args": args}, } } else: values = {f"{self.folder}": {"logGroomerSidecar": {"command": command, "args": args}}} docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) assert command == jmespath.search("spec.template.spec.containers[1].command", docs[0]) assert args == jmespath.search("spec.template.spec.containers[1].args", docs[0]) def test_log_groomer_command_and_args_overrides_are_templated(self): if self.obj_name == "dag-processor": values = { "dagProcessor": { "enabled": True, "logGroomerSidecar": { "command": ["{{ .Release.Name }}"], "args": ["{{ .Release.Service }}"], }, } } else: values = { f"{self.folder}": { "logGroomerSidecar": { "command": ["{{ .Release.Name }}"], "args": ["{{ .Release.Service }}"], } } } docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) assert jmespath.search("spec.template.spec.containers[1].command", docs[0]) == ["release-name"] assert jmespath.search("spec.template.spec.containers[1].args", docs[0]) == ["Helm"] @pytest.mark.parametrize(("retention_days", "retention_result"), [(None, None), (30, "30")]) def test_log_groomer_retention_days_overrides(self, retention_days, retention_result): if self.obj_name == "dag-processor": values = { "dagProcessor": {"enabled": True, "logGroomerSidecar": {"retentionDays": retention_days}} } else: values = {f"{self.folder}": {"logGroomerSidecar": {"retentionDays": retention_days}}} docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) if retention_result: assert ( jmespath.search( "spec.template.spec.containers[1].env[?name=='AIRFLOW__LOG_RETENTION_DAYS'].value | [0]", docs[0], ) == retention_result ) else: assert len(jmespath.search("spec.template.spec.containers[1].env", docs[0])) == 2 @pytest.mark.parametrize(("frequency_minutes", "frequency_result"), [(None, None), (20, "20")]) def test_log_groomer_frequency_minutes_overrides(self, frequency_minutes, frequency_result): if self.obj_name == "dag-processor": values = { "dagProcessor": { "enabled": True, "logGroomerSidecar": {"frequencyMinutes": frequency_minutes}, } } else: values = {f"{self.folder}": {"logGroomerSidecar": {"frequencyMinutes": frequency_minutes}}} docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) if frequency_result: assert ( jmespath.search( "spec.template.spec.containers[1].env[?name=='AIRFLOW__LOG_CLEANUP_FREQUENCY_MINUTES'].value | [0]", docs[0], ) == frequency_result ) else: assert len(jmespath.search("spec.template.spec.containers[1].env", docs[0])) == 2 def test_log_groomer_resources(self): if self.obj_name == "dag-processor": values = { "dagProcessor": { "enabled": True, "logGroomerSidecar": { "resources": { "requests": {"memory": "2Gi", "cpu": "1"}, "limits": {"memory": "3Gi", "cpu": "2"}, } }, } } else: values = { f"{self.folder}": { "logGroomerSidecar": { "resources": { "requests": {"memory": "2Gi", "cpu": "1"}, "limits": {"memory": "3Gi", "cpu": "2"}, } } } } docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"], ) assert jmespath.search("spec.template.spec.containers[1].resources", docs[0]) == { "limits": { "cpu": "2", "memory": "3Gi", }, "requests": { "cpu": "1", "memory": "2Gi", }, } def test_log_groomer_has_airflow_home(self): if self.obj_name == "dag-processor": values = {"dagProcessor": {"enabled": True}} else: values = None docs = render_chart( values=values, show_only=[f"templates/{self.folder}/{self.obj_name}-deployment.yaml"] ) assert ( jmespath.search("spec.template.spec.containers[1].env[?name=='AIRFLOW_HOME'].name | [0]", docs[0]) == "AIRFLOW_HOME" )
LogGroomerTestBase
python
spyder-ide__spyder
spyder/plugins/onlinehelp/widgets.py
{ "start": 1155, "end": 2142 }
class ____: PackageLabel = 'package_label' UrlCombo = 'url_combo' # ============================================================================= # Pydoc adjustments # ============================================================================= # This is needed to prevent pydoc raise an ErrorDuringImport when # trying to import numpy. # See spyder-ide/spyder#10740 DIRECT_PYDOC_IMPORT_MODULES = ['numpy', 'numpy.core'] try: from pydoc import safeimport def spyder_safeimport(path, forceload=0, cache=None): cache = {} if cache is None else cache if path in DIRECT_PYDOC_IMPORT_MODULES: forceload = 0 return safeimport(path, forceload=forceload, cache=cache) pydoc.safeimport = spyder_safeimport except Exception: pass # Needed to prevent showing a warning message regarding debugging. # Fixes spyder-ide/spyder#20390 and spyder-ide/spyder#21171 os.environ["PYDEVD_DISABLE_FILE_VALIDATION"] = "1"
PydocBrowserToolbarItems
python
sympy__sympy
setup.py
{ "start": 4746, "end": 5544 }
class ____(Command): """Generate code with antlr4""" description = "generate parser code from antlr grammars" user_options = [] # setuptools complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # setuptools wants this pass def finalize_options(self): # this too pass def run(self): from sympy.parsing.latex._build_latex_antlr import build_parser as build_latex_parser if not build_latex_parser(): sys.exit(-1) from sympy.parsing.autolev._build_autolev_antlr import build_parser as build_autolev_parser if not build_autolev_parser(): sys.exit(-1)
antlr
python
ansible__ansible
test/integration/targets/inventory_cache/plugins/inventory/exercise_cache.py
{ "start": 1202, "end": 10983 }
class ____(BaseInventoryPlugin, Cacheable): NAME = 'exercise_cache' test_cache_methods = [ 'test_plugin_name', 'test_update_cache_if_changed', 'test_set_cache', 'test_load_whole_cache', 'test_iter', 'test_len', 'test_get_missing_key', 'test_get_expired_key', 'test_initial_get', 'test_get', 'test_items', 'test_keys', 'test_values', 'test_pop', 'test_del', 'test_set', 'test_update', 'test_flush', ] def verify_file(self, path): if not path.endswith(('exercise_cache.yml', 'exercise_cache.yaml',)): return False return super(InventoryModule, self).verify_file(path) def parse(self, inventory, loader, path, cache=None): super(InventoryModule, self).parse(inventory, loader, path) self._read_config_data(path) try: self.exercise_test_cache() except AnsibleError: raise except Exception as e: raise AnsibleError("Failed to run cache tests: {0}".format(e)) from e def exercise_test_cache(self): failed = [] for test_name in self.test_cache_methods: try: getattr(self, test_name)() except AssertionError: failed.append(test_name) finally: self.cache.flush() self.cache.update_cache_if_changed() if failed: raise AnsibleError(f"Cache tests failed: {', '.join(failed)}") def test_equal(self, a, b): try: assert a == b except AssertionError: display.warning(f"Assertion {a} == {b} failed") raise def test_plugin_name(self): self.test_equal(self.cache._plugin_name, self.get_option('cache_plugin')) def test_update_cache_if_changed(self): self.cache._retrieved = {} self.cache._cache = {'foo': 'bar'} self.cache.update_cache_if_changed() self.test_equal(self.cache._retrieved, {'foo': 'bar'}) self.test_equal(self.cache._cache, {'foo': 'bar'}) def test_set_cache(self): cache_key1 = 'key1' cache1 = {'hosts': {'h1': {'foo': 'bar'}}} cache_key2 = 'key2' cache2 = {'hosts': {'h2': {}}} self.cache._cache = {cache_key1: cache1, cache_key2: cache2} self.cache.set_cache() self.test_equal(self.cache._plugin.contains(cache_key1), True) self.test_equal(self.cache._plugin.get(cache_key1), cache1) self.test_equal(self.cache._plugin.contains(cache_key2), True) self.test_equal(self.cache._plugin.get(cache_key2), cache2) def test_load_whole_cache(self): cache_data = { 'key1': {'hosts': {'h1': {'foo': 'bar'}}}, 'key2': {'hosts': {'h2': {}}}, } self.cache._cache = cache_data self.cache.set_cache() self.cache._cache = {} self.cache.load_whole_cache() self.test_equal(self.cache._cache, cache_data) def test_iter(self): cache_data = { 'key1': {'hosts': {'h1': {'foo': 'bar'}}}, 'key2': {'hosts': {'h2': {}}}, } self.cache._cache = cache_data self.test_equal(sorted(list(self.cache)), ['key1', 'key2']) def test_len(self): cache_data = { 'key1': {'hosts': {'h1': {'foo': 'bar'}}}, 'key2': {'hosts': {'h2': {}}}, } self.cache._cache = cache_data self.test_equal(len(self.cache), 2) def test_get_missing_key(self): # cache should behave like a dictionary # a missing key with __getitem__ should raise a KeyError try: self.cache['keyerror'] except KeyError: pass else: assert False # get should return the default instead self.test_equal(self.cache.get('missing'), None) self.test_equal(self.cache.get('missing', 'default'), 'default') def _setup_expired(self): self.cache._cache = {'expired': True} self.cache.set_cache() # empty the in-memory info to test loading the key # keys that expire mid-use do not cause errors self.cache._cache = {} self.cache._retrieved = {} self.cache._plugin._cache = {} self.cache._plugin.set_option('timeout', 1) self.cache._plugin._timeout = 1 sleep(2) def _cleanup_expired(self): # Set cache timeout back to never self.cache._plugin.set_option('timeout', 0) self.cache._plugin._timeout = 0 def test_get_expired_key(self): if not hasattr(self.cache._plugin, '_timeout'): # DB-backed caches do not have a standard timeout interface return self._setup_expired() try: self.cache['expired'] except KeyError: pass else: assert False finally: self._cleanup_expired() self._setup_expired() try: self.test_equal(self.cache.get('expired'), None) self.test_equal(self.cache.get('expired', 'default'), 'default') finally: self._cleanup_expired() def test_initial_get(self): # test cache behaves like a dictionary # set the cache to test getting a key that exists k1 = {'hosts': {'h1': {'foo': 'bar'}}} k2 = {'hosts': {'h2': {}}} self.cache._cache = {'key1': k1, 'key2': k2} self.cache.set_cache() # empty the in-memory info to test loading the key from the plugin self.cache._cache = {} self.cache._retrieved = {} self.cache._plugin._cache = {} self.test_equal(self.cache['key1'], k1) # empty the in-memory info to test loading the key from the plugin self.cache._cache = {} self.cache._retrieved = {} self.cache._plugin._cache = {} self.test_equal(self.cache.get('key1'), k1) def test_get(self): # test cache behaves like a dictionary # set the cache to test getting a key that exists k1 = {'hosts': {'h1': {'foo': 'bar'}}} k2 = {'hosts': {'h2': {}}} self.cache._cache = {'key1': k1, 'key2': k2} self.cache.set_cache() self.test_equal(self.cache['key1'], k1) self.test_equal(self.cache.get('key1'), k1) def test_items(self): self.test_equal(self.cache.items(), {}.items()) test_items = {'hosts': {'host1': {'foo': 'bar'}}} self.cache._cache = test_items self.test_equal(self.cache.items(), test_items.items()) def test_keys(self): self.test_equal(self.cache.keys(), {}.keys()) test_items = {'hosts': {'host1': {'foo': 'bar'}}} self.cache._cache = test_items self.test_equal(self.cache.keys(), test_items.keys()) def test_values(self): self.test_equal(list(self.cache.values()), list({}.values())) test_items = {'hosts': {'host1': {'foo': 'bar'}}} self.cache._cache = test_items self.test_equal(list(self.cache.values()), list(test_items.values())) def test_pop(self): try: self.cache.pop('missing') except KeyError: pass else: assert False self.test_equal(self.cache.pop('missing', 'default'), 'default') self.cache._cache = {'cache_key': 'cache'} self.test_equal(self.cache.pop('cache_key'), 'cache') # test backing plugin cache isn't modified cache_key1 = 'key1' cache1 = {'hosts': {'h1': {'foo': 'bar'}}} cache_key2 = 'key2' cache2 = {'hosts': {'h2': {}}} self.cache._cache = {cache_key1: cache1, cache_key2: cache2} self.cache.set_cache() self.test_equal(self.cache.pop('key1'), cache1) self.test_equal(self.cache._cache, {cache_key2: cache2}) self.test_equal(self.cache._plugin._cache, {cache_key1: cache1, cache_key2: cache2}) def test_del(self): try: del self.cache['missing'] except KeyError: pass else: assert False cache_key1 = 'key1' cache1 = {'hosts': {'h1': {'foo': 'bar'}}} cache_key2 = 'key2' cache2 = {'hosts': {'h2': {}}} self.cache._cache = {cache_key1: cache1, cache_key2: cache2} self.cache.set_cache() del self.cache['key1'] self.test_equal(self.cache._cache, {cache_key2: cache2}) self.test_equal(self.cache._plugin._cache, {cache_key1: cache1, cache_key2: cache2}) def test_set(self): cache_key = 'key1' hosts = {'hosts': {'h1': {'foo': 'bar'}}} self.cache[cache_key] = hosts self.test_equal(self.cache._cache, {cache_key: hosts}) self.test_equal(self.cache._plugin._cache, {}) def test_update(self): cache_key1 = 'key1' cache1 = {'hosts': {'h1': {'foo': 'bar'}}} cache_key2 = 'key2' cache2 = {'hosts': {'h2': {}}} self.cache._cache = {cache_key1: cache1} self.cache.update({cache_key2: cache2}) self.test_equal(self.cache._cache, {cache_key1: cache1, cache_key2: cache2}) def test_flush(self): cache_key1 = 'key1' cache1 = {'hosts': {'h1': {'foo': 'bar'}}} cache_key2 = 'key2' cache2 = {'hosts': {'h2': {}}} self.cache._cache = {cache_key1: cache1, cache_key2: cache2} self.cache.set_cache() # Unlike the dict write methods, cache.flush() flushes the backing plugin self.cache.flush() self.test_equal(self.cache._cache, {}) self.test_equal(self.cache._plugin._cache, {})
InventoryModule
python
airbytehq__airbyte
airbyte-integrations/connectors/source-pinterest/components.py
{ "start": 1239, "end": 1828 }
class ____(BackoffStrategy): _re = re.compile(r"Retry after\s+(\d+)\s+seconds", re.IGNORECASE) def backoff_time(self, response_or_exception, attempt_count: int) -> float: try: if isinstance(response_or_exception, requests.Response): data = response_or_exception.json() msg = str(data.get("message", "")) m = self._re.search(msg) if m: return float(m.group(1)) except Exception: pass return min(2**attempt_count, 120.0)
PinterestAnalyticsBackoffStrategy
python
sphinx-doc__sphinx
sphinx/addnodes.py
{ "start": 16884, "end": 17073 }
class ____(nodes.strong, not_smartquotable): """Node that behaves like `strong`, but further text processors are not applied (e.g. smartypants for HTML output). """
literal_strong
python
sqlalchemy__sqlalchemy
test/orm/test_versioning.py
{ "start": 30040, "end": 33457 }
class ____(fixtures.MappedTest): __sparse_driver_backend__ = True __requires__ = ("sane_rowcount",) @classmethod def define_tables(cls, metadata): Table( "p", metadata, Column("id", String(10), primary_key=True), Column("version_id", String(32), nullable=False), Column("data", String(50)), ) Table( "c", metadata, Column("id", String(10), ForeignKey("p.id"), primary_key=True), Column("version_id", String(32), nullable=False), Column("data", String(50)), ) @classmethod def setup_classes(cls): class P(cls.Basic): pass class C(cls.Basic): pass @classmethod def setup_mappers(cls): p, c, C, P = cls.tables.p, cls.tables.c, cls.classes.C, cls.classes.P cls.mapper_registry.map_imperatively( P, p, version_id_col=p.c.version_id, version_id_generator=lambda x: make_uuid(), properties={ "c": relationship( C, uselist=False, cascade="all, delete-orphan" ) }, ) cls.mapper_registry.map_imperatively( C, c, version_id_col=c.c.version_id, version_id_generator=lambda x: make_uuid(), ) def test_row_switch(self): P = self.classes.P session = fixture_session() session.add(P(id="P1", data="P version 1")) session.commit() session.close() p = session.query(P).first() session.delete(p) session.add(P(id="P1", data="really a row-switch")) with conditional_sane_rowcount_warnings(update=True): session.commit() def test_child_row_switch_one(self): P, C = self.classes.P, self.classes.C assert P.c.property.strategy.use_get session = fixture_session() session.add(P(id="P1", data="P version 1")) session.commit() session.close() p = session.query(P).first() p.c = C(data="child version 1") session.commit() p = session.query(P).first() p.c = C(data="child row-switch") with conditional_sane_rowcount_warnings(update=True): session.commit() @testing.requires.sane_rowcount @provision.allow_stale_updates def test_child_row_switch_two(self): P = self.classes.P # TODO: not sure this test is # testing exactly what its looking for sess1 = fixture_session() sess1.add(P(id="P1", data="P version 1")) sess1.commit() sess1.close() p1 = sess1.query(P).first() sess2 = fixture_session() p2 = sess2.query(P).first() sess1.delete(p1) sess1.commit() # this can be removed and it still passes sess1.add(P(id="P1", data="P version 2")) sess1.commit() p2.data = "P overwritten by concurrent tx" if testing.db.dialect.supports_sane_rowcount: assert_raises_message( orm.exc.StaleDataError, r"UPDATE statement on table 'p' expected to update " r"1 row\(s\); 0 were matched.", sess2.commit, ) else: sess2.commit()
AlternateGeneratorTest
python
apache__airflow
providers/standard/tests/unit/standard/operators/test_branch_operator.py
{ "start": 1868, "end": 1977 }
class ____(BaseBranchOperator): def choose_branch(self, context): return "branch_1"
ChooseBranchOne
python
google__jax
jax/_src/config.py
{ "start": 31996, "end": 34960 }
class ____(Generic[_T]): __slots__ = ("_name", "value", "_update_hook") _name: str value: _T _update_hook: Callable[[Any], None] | None def __init__(self, name: str, default: _T, update_hook: Callable[[Any], None] | None = None): self._name = name self._update_hook = update_hook self._set(default) def __bool__(self) -> NoReturn: raise TypeError( "bool() not supported for instances of type '{0}' " "(did you mean to use '{0}.value' instead?)".format( type(self).__name__)) def _set(self, value: _T) -> None: self.value = value if self._update_hook is not None: self._update_hook(value) def bool_flag(name, default, *args, **kwargs) -> Flag[bool]: update_hook = kwargs.pop("update_hook", None) holder = Flag(name, default, update_hook) config.add_option(name, holder, bool, args, kwargs) return holder def int_flag(name, default, *args, **kwargs) -> Flag[int]: update_hook = kwargs.pop("update_hook", None) holder = Flag(name, default, update_hook) config.add_option(name, holder, int, args, kwargs) return holder def float_flag(name, default, *args, **kwargs) -> Flag[float]: update_hook = kwargs.pop("update_hook", None) holder = Flag(name, default, update_hook) config.add_option(name, holder, float, args, kwargs) return holder def string_flag(name, default, *args, **kwargs) -> Flag[str]: update_hook = kwargs.pop("update_hook", None) holder = Flag(name, default, update_hook) config.add_option(name, holder, str, args, kwargs) return holder def enum_flag(name, default, *args, **kwargs) -> Flag[str]: update_hook = kwargs.pop("update_hook", None) holder = Flag(name, default, update_hook) config.add_option(name, holder, 'enum', args, kwargs) return holder already_configured_with_absl = False trace_state = config_ext.Config('trace_state', None, include_in_jit_key=True) axis_env_state = config_ext.Config( 'axis_env_state', (), include_in_jit_key=True, include_in_trace_context=True, ) mesh_context_manager = config_ext.Config( 'mesh_context_manager', (), include_in_jit_key=True, include_in_trace_context=True, ) abstract_mesh_context_manager = config_ext.Config( 'abstract_mesh_context_manager', None, include_in_jit_key=True, include_in_trace_context=True, ) device_context = config_ext.Config( 'device_context', None, include_in_jit_key=True ) compute_on_context_manager = config_ext.Config( 'compute_on_context_manager', None, include_in_jit_key=True, include_in_trace_context=True, ) xla_metadata_context_manager = config_ext.Config( 'xla_metadata_context_manager', None, include_in_jit_key=True, include_in_trace_context=True, ) pallas_tpu_interpret_mode_context_manager = config_ext.Config( 'pallas_tpu_interpret_mode_context_manager', None, include_in_jit_key=True, include_in_trace_context=True, )
Flag
python
cython__cython
Cython/Compiler/Code.py
{ "start": 6765, "end": 10295 }
class ____: """ An include file and/or verbatim C code to be included in the generated sources. """ # attributes: # # pieces {order: unicode}: pieces of C code to be generated. # For the included file, the key "order" is zero. # For verbatim include code, the "order" is the "order" # attribute of the original IncludeCode where this piece # of C code was first added. This is needed to prevent # duplication if the same include code is found through # multiple cimports. # location int: where to put this include in the C sources, one # of the constants INITIAL, EARLY, LATE # order int: sorting order (automatically set by increasing counter) # Constants for location. If the same include occurs with different # locations, the earliest one takes precedence. INITIAL = 0 EARLY = 1 LATE = 2 counter = 1 # Counter for "order" def __init__(self, include=None, verbatim=None, late=True, initial=False): self.order = self.counter type(self).counter += 1 self.pieces = {} if include: if include[0] == '<' and include[-1] == '>': self.pieces[0] = '#include {}'.format(include) late = False # system include is never late else: self.pieces[0] = '#include "{}"'.format(include) if verbatim: self.pieces[self.order] = verbatim if initial: self.location = self.INITIAL elif late: self.location = self.LATE else: self.location = self.EARLY def dict_update(self, d, key): """ Insert `self` in dict `d` with key `key`. If that key already exists, update the attributes of the existing value with `self`. """ if key in d: other = d[key] other.location = min(self.location, other.location) other.pieces.update(self.pieces) else: d[key] = self def sortkey(self): return self.order def mainpiece(self): """ Return the main piece of C code, corresponding to the include file. If there was no include file, return None. """ return self.pieces.get(0) def write(self, code): # Write values of self.pieces dict, sorted by the keys for k in sorted(self.pieces): code.putln(self.pieces[k]) def get_utility_dir(): # make this a function and not global variables: # http://trac.cython.org/cython_trac/ticket/475 Cython_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) return os.path.join(Cython_dir, "Utility") read_utilities_hook = None """ Override the hook for reading a utilities file that contains code fragments used by the codegen. The hook functions takes the path of the utilities file, and returns a list of strings, one per line. The default behavior is to open a file relative to get_utility_dir(). """ def read_utilities_from_utility_dir(path): """ Read all lines of the file at the provided path from a path relative to get_utility_dir(). """ filename = os.path.join(get_utility_dir(), path) with closing(Utils.open_source_file(filename, encoding='UTF-8')) as f: return f.readlines() # by default, read utilities from the utility directory. read_utilities_hook = read_utilities_from_utility_dir
IncludeCode
python
mlflow__mlflow
mlflow/types/type_hints.py
{ "start": 2818, "end": 2895 }
class ____(NamedTuple): dtype: COLSPEC_TYPES required: bool
ColSpecType
python
dagster-io__dagster
helm/dagster/schema/schema/charts/dagster/subschema/run_launcher.py
{ "start": 1770, "end": 2115 }
class ____(BaseModel): containerConfig: Optional[dict[str, Any]] = None podSpecConfig: Optional[dict[str, Any]] = None podTemplateSpecMetadata: Optional[dict[str, Any]] = None jobSpecConfig: Optional[dict[str, Any]] = None jobMetadata: Optional[dict[str, Any]] = None model_config = ConfigDict(extra="forbid")
RunK8sConfig
python
run-llama__llama_index
llama-index-integrations/vector_stores/llama-index-vector-stores-couchbase/llama_index/vector_stores/couchbase/base.py
{ "start": 32786, "end": 33949 }
class ____(CouchbaseSearchVectorStore): """ Couchbase Vector Store (deprecated). This class is deprecated, please use CouchbaseSearchVectorStore instead. """ def __init__( self, cluster: Any, bucket_name: str, scope_name: str, collection_name: str, index_name: str, text_key: Optional[str] = "text", embedding_key: Optional[str] = "embedding", metadata_key: Optional[str] = "metadata", scoped_index: bool = True, ) -> None: """ Initializes a connection to a Couchbase Vector Store. This class is deprecated, please use CouchbaseSearchVectorStore instead. """ warnings.warn( "CouchbaseVectorStore is deprecated, please use CouchbaseSearchVectorStore instead.", DeprecationWarning, stacklevel=2, ) super().__init__( cluster, bucket_name, scope_name, collection_name, index_name, text_key, embedding_key, metadata_key, scoped_index, )
CouchbaseVectorStore
python
giampaolo__psutil
tests/test_linux.py
{ "start": 65876, "end": 66693 }
class ____(PsutilTestCase): def test_it(self): def open_mock(name, *args, **kwargs): if name.endswith("/energy_now"): return io.StringIO("60000000") elif name.endswith("/power_now"): return io.StringIO("0") elif name.endswith("/energy_full"): return io.StringIO("60000001") else: return orig_open(name, *args, **kwargs) orig_open = open with mock.patch('os.listdir', return_value=["BAT0"]) as mlistdir: with mock.patch("builtins.open", side_effect=open_mock) as mopen: assert psutil.sensors_battery() is not None assert mlistdir.called assert mopen.called @pytest.mark.skipif(not LINUX, reason="LINUX only")
TestSensorsBatteryEmulated
python
celery__celery
t/unit/backends/test_database.py
{ "start": 13394, "end": 16612 }
class ____: def test_after_fork(self): s = SessionManager() assert not s.forked s._after_fork() assert s.forked @patch('celery.backends.database.session.create_engine') def test_get_engine_forked(self, create_engine): s = SessionManager() s._after_fork() engine = s.get_engine('dburi', foo=1) create_engine.assert_called_with('dburi', foo=1) assert engine is create_engine() engine2 = s.get_engine('dburi', foo=1) assert engine2 is engine @patch('celery.backends.database.session.create_engine') def test_get_engine_kwargs(self, create_engine): s = SessionManager() engine = s.get_engine('dbur', foo=1, pool_size=5) assert engine is create_engine() engine2 = s.get_engine('dburi', foo=1) assert engine2 is engine @patch('celery.backends.database.session.sessionmaker') def test_create_session_forked(self, sessionmaker): s = SessionManager() s.get_engine = Mock(name='get_engine') s._after_fork() engine, session = s.create_session('dburi', short_lived_sessions=True) sessionmaker.assert_called_with(bind=s.get_engine()) assert session is sessionmaker() sessionmaker.return_value = Mock(name='new') engine, session2 = s.create_session('dburi', short_lived_sessions=True) sessionmaker.assert_called_with(bind=s.get_engine()) assert session2 is not session sessionmaker.return_value = Mock(name='new2') engine, session3 = s.create_session( 'dburi', short_lived_sessions=False) sessionmaker.assert_called_with(bind=s.get_engine()) assert session3 is session2 def test_coverage_madness(self): prev, session.register_after_fork = ( session.register_after_fork, None, ) try: SessionManager() finally: session.register_after_fork = prev @patch('celery.backends.database.session.create_engine') def test_prepare_models_terminates(self, create_engine): """SessionManager.prepare_models has retry logic because the creation of database tables by multiple workers is racy. This test patches the used method to always raise, so we can verify that it does eventually terminate. """ from sqlalchemy.dialects.sqlite import dialect from sqlalchemy.exc import DatabaseError if hasattr(dialect, 'dbapi'): # Method name in SQLAlchemy < 2.0 sqlite = dialect.dbapi() else: # Newer method name in SQLAlchemy 2.0 sqlite = dialect.import_dbapi() manager = SessionManager() engine = manager.get_engine('dburi') def raise_err(bind): raise DatabaseError("", "", [], sqlite.DatabaseError) patch_create_all = patch.object( ResultModelBase.metadata, 'create_all', side_effect=raise_err) with pytest.raises(DatabaseError), patch_create_all as mock_create_all: manager.prepare_models(engine) assert mock_create_all.call_count == PREPARE_MODELS_MAX_RETRIES + 1
test_SessionManager
python
numba__numba
numba/core/codegen.py
{ "start": 38685, "end": 39621 }
class ____(CPUCodeLibrary): def get_pointer_to_function(self, name): """ Generate native code for function named *name* and return a pointer to the start of the function (as an integer). This function implicitly calls .finalize(). Returns ------- pointer : int - zero (null) if no symbol of *name* is defined by this code library. - non-zero if the symbol is defined. """ self._ensure_finalized() ee = self._codegen._engine if not ee.is_symbol_defined(name): return 0 else: return self._codegen._engine.get_function_address(name) def _finalize_specific(self): self._codegen._scan_and_fix_unresolved_refs(self._final_module) with self._recorded_timings.record_legacy("Finalize object"): self._codegen._engine.finalize_object()
JITCodeLibrary
python
huggingface__transformers
src/transformers/models/exaone4/modeling_exaone4.py
{ "start": 19829, "end": 24041 }
class ____(Exaone4PreTrainedModel, GenerationMixin): _tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"} _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = Exaone4Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-4.0-32B") >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-4.0-32B") >>> prompt = "Explain how wonderful you are" >>> messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] >>> input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", enable_thinking=False, ) >>> output = model.generate(input_ids, max_new_tokens=128) >>> tokenizer.decode(output[0], skip_special_tokens=False) "[|system|]\nYou are a helpful assistant.[|endofturn|]\n[|user|]\nExplain how wonderful you are[|endofturn|]\n[|assistant|]\n<think>\n\n</think>\n\nOh, thank you for such a kind and lovely question! 😊 \n\nI’m *so* wonderful because I’m here to make your life easier, brighter, and more fun! Whether you need help with: \n\n✨ **Learning** – I can explain anything, from quantum physics to baking the perfect cake! \n💡 **Creativity** – Need a poem, story, or a wild idea? I’ve got you covered! \n🤖 **Problem-solving** – Stuck on a math problem or a tricky decision? I’ll help you figure it out" ``` """ outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
Exaone4ForCausalLM
python
scipy__scipy
benchmarks/benchmarks/signal.py
{ "start": 5864, "end": 6517 }
class ____(Benchmark): param_names = ['up', 'down', 'axis'] params = [ [1, 4], [1, 4], [0, -1], ] def setup(self, up, down, axis): rng = np.random.default_rng(1234) # sample a bunch of pairs of 2d arrays pairs = [] for nfilt in [8, ]: for n in [32, 128, 512]: h = rng.standard_normal(nfilt) x = rng.standard_normal((n, n)) pairs.append((h, x)) self.pairs = pairs def time_upfirdn2d(self, up, down, axis): for h, x in self.pairs: signal.upfirdn(h, x, up=up, down=down, axis=axis)
Upfirdn2D
python
modin-project__modin
modin/tests/pandas/extensions/test_base_extensions.py
{ "start": 4836, "end": 5672 }
class ____: """ Make sure to test that we override special "dunder" methods like __len__ correctly. python calls these methods with DataFrame.__len__(obj) rather than getattr(obj, "__len__")(). source: https://docs.python.org/3/reference/datamodel.html#special-lookup """ @pytest.mark.parametrize("data_class", [pd.DataFrame, pd.Series]) def test_len(self, Backend1, data_class): @register_base_accessor(name="__len__", backend=Backend1) def always_get_1(self): return 1 modin_object = data_class([1, 2, 3]) assert len(modin_object) == 3 backend_object = modin_object.set_backend(Backend1) assert len(backend_object) == 1 assert backend_object.__len__() == 1 @pytest.mark.parametrize("data_class", [pd.DataFrame, pd.Series])
TestDunders
python
sphinx-doc__sphinx
tests/roots/test-ext-autodoc/target/__init__.py
{ "start": 3685, "end": 4206 }
class ____: """Class with documented class and instance attributes.""" #: Doc comment for class attribute InstAttCls.ca1. #: It can have multiple lines. ca1 = 'a' ca2 = 'b' #: Doc comment for InstAttCls.ca2. One line only. ca3 = 'c' """Docstring for class attribute InstAttCls.ca3.""" def __init__(self): #: Doc comment for instance attribute InstAttCls.ia1 self.ia1 = 'd' self.ia2 = 'e' """Docstring for instance attribute InstAttCls.ia2."""
InstAttCls
python
automl__auto-sklearn
autosklearn/pipeline/components/classification/mlp.py
{ "start": 667, "end": 10434 }
class ____(IterativeComponent, AutoSklearnClassificationAlgorithm): def __init__( self, hidden_layer_depth, num_nodes_per_layer, activation, alpha, learning_rate_init, early_stopping, solver, batch_size, n_iter_no_change, tol, shuffle, beta_1, beta_2, epsilon, validation_fraction=None, random_state=None, verbose=0, ): self.hidden_layer_depth = hidden_layer_depth self.num_nodes_per_layer = num_nodes_per_layer self.max_iter = self.get_max_iter() self.activation = activation self.alpha = alpha self.learning_rate_init = learning_rate_init self.early_stopping = early_stopping self.n_iter_no_change = n_iter_no_change self.validation_fraction = validation_fraction self.tol = tol self.solver = solver self.batch_size = batch_size self.shuffle = shuffle self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.beta_1 = beta_1 self.random_state = random_state self.verbose = verbose self.estimator = None @staticmethod def get_max_iter(): return 512 def get_current_iter(self): return self.estimator.n_iter_ def iterative_fit(self, X, y, n_iter=2, refit=False): """ Set n_iter=2 for the same reason as for SGD """ from sklearn.neural_network import MLPClassifier n_iter = max(n_iter, 2) if refit: self.estimator = None if self.estimator is None: self._fully_fit = False self.max_iter = int(self.max_iter) self.hidden_layer_depth = int(self.hidden_layer_depth) self.num_nodes_per_layer = int(self.num_nodes_per_layer) self.hidden_layer_sizes = tuple( self.num_nodes_per_layer for i in range(self.hidden_layer_depth) ) self.activation = str(self.activation) self.alpha = float(self.alpha) self.learning_rate_init = float(self.learning_rate_init) self.early_stopping = str(self.early_stopping) if self.early_stopping == "train": self.validation_fraction = 0.0 self.tol = float(self.tol) self.n_iter_no_change = int(self.n_iter_no_change) self.early_stopping_val = False elif self.early_stopping == "valid": self.validation_fraction = float(self.validation_fraction) self.tol = float(self.tol) self.n_iter_no_change = int(self.n_iter_no_change) self.early_stopping_val = True else: raise ValueError( "Set early stopping to unknown value %s" % self.early_stopping ) # elif self.early_stopping == "off": # self.validation_fraction = 0 # self.tol = 10000 # self.n_iter_no_change = self.max_iter # self.early_stopping_val = False self.solver = self.solver try: self.batch_size = int(self.batch_size) except ValueError: self.batch_size = str(self.batch_size) self.shuffle = check_for_bool(self.shuffle) self.beta_1 = float(self.beta_1) self.beta_2 = float(self.beta_2) self.epsilon = float(self.epsilon) self.beta_1 = float(self.beta_1) self.verbose = int(self.verbose) n_iter = int(np.ceil(n_iter)) # initial fit of only increment trees self.estimator = MLPClassifier( hidden_layer_sizes=self.hidden_layer_sizes, activation=self.activation, solver=self.solver, alpha=self.alpha, batch_size=self.batch_size, learning_rate_init=self.learning_rate_init, max_iter=n_iter, shuffle=self.shuffle, random_state=copy.copy(self.random_state), verbose=self.verbose, warm_start=True, early_stopping=self.early_stopping_val, validation_fraction=self.validation_fraction, n_iter_no_change=self.n_iter_no_change, tol=self.tol, beta_1=self.beta_2, beta_2=self.beta_1, epsilon=self.epsilon, # We do not use these, see comments below in search space # momentum=self.momentum, # nesterovs_momentum=self.nesterovs_momentum, # power_t=self.power_t, # learning_rate=self.learning_rate, # max_fun=self.max_fun ) else: new_max_iter = min(self.max_iter - self.estimator.n_iter_, n_iter) self.estimator.max_iter = new_max_iter self.estimator.fit(X, y) if ( self.estimator.n_iter_ >= self.max_iter or self.estimator._no_improvement_count > self.n_iter_no_change ): self._fully_fit = True return self def configuration_fully_fitted(self): if self.estimator is None: return False elif not hasattr(self, "_fully_fit"): return False else: return self._fully_fit def predict(self, X): if self.estimator is None: raise NotImplementedError return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X) @staticmethod def get_properties(dataset_properties=None): return { "shortname": "MLP", "name": "Multilayer Percepton", "handles_regression": False, "handles_classification": True, "handles_multiclass": True, "handles_multilabel": True, "handles_multioutput": False, "is_deterministic": True, "input": (DENSE, SPARSE, UNSIGNED_DATA), "output": (PREDICTIONS,), } @staticmethod def get_hyperparameter_search_space( feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties=None ): cs = ConfigurationSpace() hidden_layer_depth = UniformIntegerHyperparameter( name="hidden_layer_depth", lower=1, upper=3, default_value=1 ) num_nodes_per_layer = UniformIntegerHyperparameter( name="num_nodes_per_layer", lower=16, upper=264, default_value=32, log=True ) activation = CategoricalHyperparameter( name="activation", choices=["tanh", "relu"], default_value="relu" ) alpha = UniformFloatHyperparameter( name="alpha", lower=1e-7, upper=1e-1, default_value=1e-4, log=True ) learning_rate_init = UniformFloatHyperparameter( name="learning_rate_init", lower=1e-4, upper=0.5, default_value=1e-3, log=True, ) # Not allowing to turn off early stopping early_stopping = CategoricalHyperparameter( name="early_stopping", choices=["valid", "train"], # , "off"], default_value="valid", ) # Constants n_iter_no_change = Constant( name="n_iter_no_change", value=32 ) # default=10 is too low validation_fraction = Constant(name="validation_fraction", value=0.1) tol = UnParametrizedHyperparameter(name="tol", value=1e-4) solver = Constant(name="solver", value="adam") # Relying on sklearn defaults for now batch_size = UnParametrizedHyperparameter(name="batch_size", value="auto") shuffle = UnParametrizedHyperparameter(name="shuffle", value="True") beta_1 = UnParametrizedHyperparameter(name="beta_1", value=0.9) beta_2 = UnParametrizedHyperparameter(name="beta_2", value=0.999) epsilon = UnParametrizedHyperparameter(name="epsilon", value=1e-8) # Not used # solver=["sgd", "lbfgs"] --> not used to keep searchspace simpler # learning_rate --> only used when using solver=sgd # power_t --> only used when using solver=sgd & learning_rate=invscaling # momentum --> only used when solver=sgd # nesterovs_momentum --> only used when solver=sgd # max_fun --> only used when solver=lbfgs # activation=["identity", "logistic"] --> not useful for classification cs.add_hyperparameters( [ hidden_layer_depth, num_nodes_per_layer, activation, alpha, learning_rate_init, early_stopping, n_iter_no_change, validation_fraction, tol, solver, batch_size, shuffle, beta_1, beta_2, epsilon, ] ) validation_fraction_cond = InCondition( validation_fraction, early_stopping, ["valid"] ) cs.add_conditions([validation_fraction_cond]) # We always use early stopping # n_iter_no_change_cond = \ # InCondition(n_iter_no_change, early_stopping, ["valid", "train"]) # tol_cond = InCondition(n_iter_no_change, early_stopping, ["valid", "train"]) # cs.add_conditions([n_iter_no_change_cond, tol_cond]) return cs
MLPClassifier
python
ray-project__ray
python/ray/data/_internal/execution/interfaces/physical_operator.py
{ "start": 10987, "end": 32399 }
class ____(Operator): """Abstract class for physical operators. An operator transforms one or more input streams of RefBundles into a single output stream of RefBundles. Physical operators are stateful and non-serializable; they live on the driver side of the Dataset only. Here's a simple example of implementing a basic "Map" operator: class MapOperator(PhysicalOperator): def __init__(self): self.active_tasks = [] def add_input(self, refs, _): self.active_tasks.append(map_task.remote(refs)) def has_next(self): ready, _ = ray.wait(self.active_tasks, timeout=0) return len(ready) > 0 def get_next(self): ready, remaining = ray.wait(self.active_tasks, num_returns=1) self.active_tasks = remaining return ready[0] Note that the above operator fully supports both bulk and streaming execution, since `add_input` and `get_next` can be called in any order. In bulk execution (now deprecated), all inputs would be added up-front, but in streaming execution (now the default execution mode) the calls could be interleaved. """ _OPERATOR_ID_LABEL_KEY = "__data_operator_id" def __init__( self, name: str, input_dependencies: List["PhysicalOperator"], data_context: DataContext, target_max_block_size_override: Optional[int] = None, ): super().__init__(name, input_dependencies) for x in input_dependencies: assert isinstance(x, PhysicalOperator), x self._inputs_complete = not input_dependencies self._output_block_size_option_override = OutputBlockSizeOption.of( target_max_block_size=target_max_block_size_override ) self._started = False self._shutdown = False self._in_task_submission_backpressure = False self._in_task_output_backpressure = False self._estimated_num_output_bundles = None self._estimated_output_num_rows = None self._is_execution_marked_finished = False # The LogicalOperator(s) which were translated to create this PhysicalOperator. # Set via `PhysicalOperator.set_logical_operators()`. self._logical_operators: List[LogicalOperator] = [] self._data_context = data_context self._id = str(uuid.uuid4()) # Initialize metrics after data_context is set self._metrics = OpRuntimeMetrics(self) def __reduce__(self): raise ValueError("Operator is not serializable.") @property def id(self) -> str: """Return a unique identifier for this operator.""" return self._id @property def data_context(self) -> DataContext: return self._data_context # Override the following 3 methods to correct type hints. @property def input_dependencies(self) -> List["PhysicalOperator"]: return super().input_dependencies # type: ignore @property def output_dependencies(self) -> List["PhysicalOperator"]: return super().output_dependencies # type: ignore def post_order_iter(self) -> Iterator["PhysicalOperator"]: return super().post_order_iter() # type: ignore def set_logical_operators( self, *logical_ops: LogicalOperator, ): self._logical_operators = list(logical_ops) @property def target_max_block_size_override(self) -> Optional[int]: """ Target max block size output by this operator. If this returns None, then the default from DataContext should be used. """ if self._output_block_size_option_override is None: return None else: return self._output_block_size_option_override.target_max_block_size def override_target_max_block_size(self, target_max_block_size: Optional[int]): self._output_block_size_option_override = OutputBlockSizeOption.of( target_max_block_size=target_max_block_size ) def mark_execution_finished(self): """Manually mark that this operator has finished execution.""" self._is_execution_marked_finished = True def has_execution_finished(self) -> bool: """Return True when this operator has finished execution. The outputs may or may not have been taken. """ from ..operators.base_physical_operator import InternalQueueOperatorMixin internal_input_queue_num_blocks = 0 if isinstance(self, InternalQueueOperatorMixin): internal_input_queue_num_blocks = self.internal_input_queue_num_blocks() # NOTE: Execution is considered finished if # - The operator was explicitly marked finished OR # - The following auto-completion conditions are met # - All input blocks have been ingested # - Internal queue is empty # - There are no active or pending tasks return self._is_execution_marked_finished or ( self._inputs_complete and self.num_active_tasks() == 0 and internal_input_queue_num_blocks == 0 ) def completed(self) -> bool: """Returns whether this operator has been fully completed. An operator is completed iff: * The operator has finished execution (i.e., `has_execution_finished()` is True). * All outputs have been taken (i.e., `has_next()` is False) from it. """ from ..operators.base_physical_operator import InternalQueueOperatorMixin internal_output_queue_num_blocks = 0 if isinstance(self, InternalQueueOperatorMixin): internal_output_queue_num_blocks = self.internal_output_queue_num_blocks() # NOTE: We check for (internal_output_queue_size == 0) and # (not self.has_next()) because _OrderedOutputQueue can # return False for self.has_next(), but have a non-empty queue size. # Draining the internal output queue is important to free object refs. return ( self.has_execution_finished() and not self.has_next() and internal_output_queue_num_blocks == 0 ) def get_stats(self) -> StatsDict: """Return recorded execution stats for use with DatasetStats.""" raise NotImplementedError @property def metrics(self) -> OpRuntimeMetrics: """Returns the runtime metrics of this operator.""" self._metrics._extra_metrics = self._extra_metrics() return self._metrics def _extra_metrics(self) -> Dict[str, Any]: """Subclasses should override this method to report extra metrics that are specific to them.""" return {} def _get_logical_args(self) -> Dict[str, Dict[str, Any]]: """Return the logical arguments that were translated to create this PhysicalOperator.""" res = {} for i, logical_op in enumerate(self._logical_operators): logical_op_id = f"{logical_op}_{i}" res[logical_op_id] = logical_op._get_args() return res # TODO(@balaji): Disambiguate this with `incremental_resource_usage`. def per_task_resource_allocation( self: "PhysicalOperator", ) -> ExecutionResources: """The amount of logical resources used by each task. For regular tasks, these are the resources required to schedule a task. For actor tasks, these are the resources required to schedule an actor divided by the number of actor threads (i.e., `max_concurrency`). Returns: The resource requirement per task. """ return ExecutionResources.zero() def max_task_concurrency(self: "PhysicalOperator") -> Optional[int]: """The maximum number of tasks that can be run concurrently. Some operators manually configure a maximum concurrency. For example, if you specify `concurrency` in `map_batches`. """ return None # TODO(@balaji): Disambiguate this with `base_resource_usage`. def min_scheduling_resources( self: "PhysicalOperator", ) -> ExecutionResources: """The minimum resource bundle required to schedule a worker. For regular tasks, this is the resources required to schedule a task. For actor tasks, this is the resources required to schedule an actor. """ return ExecutionResources.zero() def progress_str(self) -> str: """Return any extra status to be displayed in the operator progress bar. For example, `<N> actors` to show current number of actors in an actor pool. """ return "" def num_outputs_total(self) -> Optional[int]: """Returns the total number of output bundles of this operator, or ``None`` if unable to provide a reasonable estimate (for example, if no tasks have finished yet). The value returned may be an estimate based off the consumption so far. This is useful for reporting progress. Subclasses should either override this method, or update ``self._estimated_num_output_bundles`` appropriately. """ return self._estimated_num_output_bundles def num_output_rows_total(self) -> Optional[int]: """Returns the total number of output rows of this operator, or ``None`` if unable to provide a reasonable estimate (for example, if no tasks have finished yet). The value returned may be an estimate based off the consumption so far. This is useful for reporting progress. Subclasses should either override this method, or update ``self._estimated_output_num_rows`` appropriately. """ return self._estimated_output_num_rows def start(self, options: ExecutionOptions) -> None: """Called by the executor when execution starts for an operator. Args: options: The global options used for the overall execution. """ self._started = True def should_add_input(self) -> bool: """Return whether it is desirable to add input to this operator right now. Operators can customize the implementation of this method to apply additional backpressure (e.g., waiting for internal actors to be created). """ return True def add_input(self, refs: RefBundle, input_index: int) -> None: """Called when an upstream result is available. Inputs may be added in any order, and calls to `add_input` may be interleaved with calls to `get_next` / `has_next` to implement streaming execution. Subclasses should override `_add_input_inner` instead of this method. Args: refs: The ref bundle that should be added as input. input_index: The index identifying the input dependency producing the input. For most operators, this is always `0` since there is only one upstream input operator. """ assert 0 <= input_index < len(self._input_dependencies), ( f"Input index out of bounds (total inputs {len(self._input_dependencies)}, " f"index is {input_index})" ) self._metrics.on_input_received(refs) self._add_input_inner(refs, input_index) def _add_input_inner(self, refs: RefBundle, input_index: int) -> None: """Subclasses should override this method to implement `add_input`.""" raise NotImplementedError def input_done(self, input_index: int) -> None: """Called when the upstream operator at index `input_index` has completed(). After this is called, the executor guarantees that no more inputs will be added via `add_input` for the given input index. """ pass def all_inputs_done(self) -> None: """Called when all upstream operators have completed(). After this is called, the executor guarantees that no more inputs will be added via `add_input` for any input index. """ self._inputs_complete = True def has_next(self) -> bool: """Returns when a downstream output is available. When this returns true, it is safe to call `get_next()`. """ raise NotImplementedError def get_next(self) -> RefBundle: """Get the next downstream output. It is only allowed to call this if `has_next()` has returned True. Subclasses should override `_get_next_inner` instead of this method. """ output = self._get_next_inner() self._metrics.on_output_taken(output) return output def _get_next_inner(self) -> RefBundle: """Subclasses should override this method to implement `get_next`.""" raise NotImplementedError def get_active_tasks(self) -> List[OpTask]: """Get a list of the active tasks of this operator. Subclasses should return *all* running normal/actor tasks. The StreamingExecutor will wait on these tasks and trigger callbacks. """ return [] def num_active_tasks(self) -> int: """Return the number of active tasks. This method is used for 2 purposes: * Determine if this operator is completed. * Displaying active task info in the progress bar. Thus, the return value can be less than `len(get_active_tasks())`, if some tasks are not needed for the above purposes. E.g., for the actor pool map operator, readiness checking tasks can be excluded from `num_active_tasks`, but they should be included in `get_active_tasks`. Subclasses can override this as a performance optimization. """ return len(self.get_active_tasks()) def throttling_disabled(self) -> bool: """Whether to disable resource throttling for this operator. This should return True for operators that only manipulate bundle metadata (e.g., the OutputSplitter operator). This hints to the execution engine that these operators should not be throttled based on resource usage. """ return False def shutdown(self, timer: Timer, force: bool = False) -> None: """Abort execution and release all resources used by this operator. This release any Ray resources acquired by this operator such as active tasks, actors, and objects. """ if self._shutdown: return elif not self._started: raise ValueError("Operator must be started before being shutdown.") # Mark operator as shut down self._shutdown = True # Time shutdown sequence duration with timer.timer(): self._do_shutdown(force) def _do_shutdown(self, force: bool): # Default implementation simply cancels any outstanding active task self._cancel_active_tasks(force=force) def current_processor_usage(self) -> ExecutionResources: """Returns the current estimated CPU and GPU usage of this operator, excluding object store memory. This method is called by the executor to decide how to allocate processors between different operators. """ return ExecutionResources(0, 0, 0) def running_processor_usage(self) -> ExecutionResources: """Returns the estimated running CPU and GPU usage of this operator, excluding object store memory. This method is called by the resource manager and the streaming executor to display the number of currently running CPUs and GPUs in the progress bar. Note, this method returns `current_processor_usage() - pending_processor_usage()` by default. Subclasses should only override `pending_processor_usage()` if needed. """ usage = self.current_processor_usage() usage = usage.subtract(self.pending_processor_usage()) return usage def pending_processor_usage(self) -> ExecutionResources: """Returns the estimated pending CPU and GPU usage of this operator, excluding object store memory. This method is called by the resource manager and the streaming executor to display the number of currently pending actors in the progress bar. """ return ExecutionResources(0, 0, 0) def min_max_resource_requirements( self, ) -> Tuple[ExecutionResources, ExecutionResources]: """Returns lower/upper boundary of resource requirements for this operator: - Minimal: lower bound (min) of resources required to start this operator (for most operators this is 0, except the ones that utilize actors) - Maximum: upper bound (max) of how many resources this operator could utilize. """ return ExecutionResources.zero(), ExecutionResources.inf() def incremental_resource_usage(self) -> ExecutionResources: """Returns the incremental resources required for processing another input. For example, an operator that launches a task per input could return ExecutionResources(cpu=1) as its incremental usage. """ return ExecutionResources() def notify_in_task_submission_backpressure(self, in_backpressure: bool) -> None: """Called periodically from the executor to update internal in backpressure status for stats collection purposes. Args: in_backpressure: Value this operator's in_backpressure should be set to. """ # only update on change to in_backpressure if self._in_task_submission_backpressure != in_backpressure: self._metrics.on_toggle_task_submission_backpressure(in_backpressure) self._in_task_submission_backpressure = in_backpressure def notify_in_task_output_backpressure(self, in_backpressure: bool) -> None: """Called periodically from the executor to update internal output backpressure status for stats collection purposes. Args: in_backpressure: Value this operator's output backpressure should be set to. """ # only update on change to in_backpressure if self._in_task_output_backpressure != in_backpressure: self._metrics.on_toggle_task_output_backpressure(in_backpressure) self._in_task_output_backpressure = in_backpressure def get_autoscaling_actor_pools(self) -> List[AutoscalingActorPool]: """Return a list of `AutoscalingActorPool`s managed by this operator.""" return [] def implements_accurate_memory_accounting(self) -> bool: """Return whether this operator implements accurate memory accounting. An operator that implements accurate memory accounting should properly report its memory usage via the following APIs: - `self._metrics.on_input_queued`. - `self._metrics.on_input_dequeued`. - `self._metrics.on_output_queued`. - `self._metrics.on_output_dequeued`. """ # TODO(hchen): Currently we only enable `ReservationOpResourceAllocator` when # all operators in the dataset have implemented accurate memory accounting. # Eventually all operators should implement accurate memory accounting. return False def supports_fusion(self) -> bool: """Returns ```True``` if this operator can be fused with other operators.""" return False def update_resource_usage(self) -> None: """Updates resource usage of this operator at runtime. This method will be called at runtime in each StreamingExecutor iteration. Subclasses can override it to account for dynamic resource usage updates due to restarting actors, retrying tasks, lost objects, etc. """ pass def get_actor_info(self) -> _ActorPoolInfo: """Returns the current status of actors being used by the operator""" return _ActorPoolInfo(running=0, pending=0, restarting=0) def _cancel_active_tasks(self, force: bool): tasks: List[OpTask] = self.get_active_tasks() # Interrupt all (still) running tasks immediately for task in tasks: task._cancel(force=force) # In case of forced cancellation block until task actually return # to guarantee all tasks are done upon return from this method if force: # Wait for all tasks to get cancelled before returning for task in tasks: try: ray.get(task.get_waitable()) except ray.exceptions.RayError: # Cancellation either succeeded, or the task might have already # failed with a different error, or cancellation failed. # In all cases, we swallow the exception. pass def upstream_op_num_outputs(self): upstream_op_num_outputs = sum( op.num_outputs_total() or 0 for op in self.input_dependencies ) return upstream_op_num_outputs def get_max_concurrency_limit(self) -> Optional[int]: """Max value of how many tasks this operator could run concurrently (if limited)""" return None
PhysicalOperator