language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
openai__openai-python
src/openai/types/beta/threads/runs/run_step_delta_message_delta.py
{ "start": 250, "end": 390 }
class ____(BaseModel): message_id: Optional[str] = None """The ID of the message that was created by this run step."""
MessageCreation
python
django__django
django/core/paginator.py
{ "start": 463, "end": 511 }
class ____(InvalidPage): pass
PageNotAnInteger
python
dagster-io__dagster
python_modules/libraries/dagster-dg-cli/dagster_dg_cli/api_layer/api/run.py
{ "start": 356, "end": 591 }
class ____: """API for run metadata operations.""" client: IGraphQLClient def get_run(self, run_id: str) -> "DgApiRun": """Get run metadata by ID.""" return get_run_via_graphql(self.client, run_id)
DgApiRunApi
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeVarTuple13.py
{ "start": 343, "end": 560 }
class ____(Protocol[Unpack[Ts]]): def __call__(self, *args: *Ts) -> tuple[Unpack[Ts]]: ... def invoke_posonly(fn: CallbackPosOnly[Unpack[Ts]], *args: *Ts) -> tuple[Unpack[Ts]]: return fn(*args)
CallbackPosOnly
python
kamyu104__LeetCode-Solutions
Python/generate-binary-strings-without-adjacent-zeros.py
{ "start": 641, "end": 1043 }
class ____(object): def validStrings(self, n): """ :type n: int :rtype: List[str] """ q = [[]] for _ in xrange(n): new_q = [] for x in q: if not x or x[-1] == '1': new_q.append(x+['0']) new_q.append(x+['1']) q = new_q return ["".join(x) for x in q]
Solution2
python
huggingface__transformers
src/transformers/models/d_fine/modeling_d_fine.py
{ "start": 91919, "end": 95479 }
class ____(nn.Module): def __init__(self, config: DFineConfig): super().__init__() self.normalize_before = config.normalize_before # self-attention self.self_attn = DFineMultiheadAttention( embed_dim=config.encoder_hidden_dim, num_heads=config.num_attention_heads, dropout=config.dropout, ) self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps) self.dropout = config.dropout self.activation_fn = ACT2FN[config.encoder_activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, config.encoder_hidden_dim) self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, **kwargs, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. position_embeddings (`torch.FloatTensor`, *optional*): Object queries (also called content embeddings), to be added to the hidden states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) if self.normalize_before: hidden_states = self.final_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
DFineEncoderLayer
python
django__django
django/contrib/sites/migrations/0001_initial.py
{ "start": 148, "end": 1361 }
class ____(migrations.Migration): dependencies = [] operations = [ migrations.CreateModel( name="Site", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "domain", models.CharField( max_length=100, verbose_name="domain name", validators=[_simple_domain_name_validator], ), ), ("name", models.CharField(max_length=50, verbose_name="display name")), ], options={ "ordering": ["domain"], "db_table": "django_site", "verbose_name": "site", "verbose_name_plural": "sites", }, bases=(models.Model,), managers=[ ("objects", django.contrib.sites.models.SiteManager()), ], ), ]
Migration
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/descriptor1.py
{ "start": 1281, "end": 1437 }
class ____: def __get__(self, instance: Any, owner: Any) -> int | None: ... def __set__(self, owner: Any, value: int | None) -> None: ...
Descriptor1
python
plotly__plotly.py
plotly/graph_objs/_deprecations.py
{ "start": 11937, "end": 12836 }
class ____(dict): """ plotly.graph_objs.Marker is deprecated. Please replace it with one of the following more specific types - plotly.graph_objs.scatter.Marker - plotly.graph_objs.histogram.selected.Marker - etc. """ def __init__(self, *args, **kwargs): """ plotly.graph_objs.Marker is deprecated. Please replace it with one of the following more specific types - plotly.graph_objs.scatter.Marker - plotly.graph_objs.histogram.selected.Marker - etc. """ warnings.warn( """plotly.graph_objs.Marker is deprecated. Please replace it with one of the following more specific types - plotly.graph_objs.scatter.Marker - plotly.graph_objs.histogram.selected.Marker - etc. """, DeprecationWarning, ) super().__init__(*args, **kwargs)
Marker
python
celery__celery
t/unit/contrib/test_migrate.py
{ "start": 1241, "end": 1524 }
class ____: def test_strtotal(self): x = State() assert x.strtotal == '?' x.total_apx = 100 assert x.strtotal == '100' def test_repr(self): x = State() assert repr(x) x.filtered = 'foo' assert repr(x)
test_State
python
pytorch__pytorch
torch/distributed/flight_recorder/components/types.py
{ "start": 5310, "end": 12011 }
class ____: """ Util class to keep track of the state of an entry and standardize the way we log the error info during analysis. """ def __init__(self, entry: dict[str, Any], expected_ranks: set[int]) -> None: self.pg_name = entry["process_group"][0] self.desc = entry["process_group"][1] self.pg_desc = ( f"{self.pg_name}:{self.desc}" if self.desc != "undefined" else self.pg_name ) self.profiling_name = entry["profiling_name"] self.collective_seq_id = entry["collective_seq_id"] self.p2p_seq_id = entry["p2p_seq_id"] self.record_id = entry["record_id"] self.input_sizes = entry["input_sizes"] self.output_sizes = entry["output_sizes"] self.collective_state = entry["state"] self.collective_frames = entry.get("frames", []) self.expected_ranks = expected_ranks self.missing_ranks: set[int] self.input_numel: int self.output_numel: int self.errors: set[tuple[int, MatchInfo]] def log( self, logger: FlightRecorderLogger, logger_msg: str, frame_formatter: Any, total_numel: Optional[tuple[int, int]] = None, errors: Optional[set[tuple[int, MatchInfo]]] = None, missing_ranks: Optional[set[int]] = None, ) -> None: logger.info( logger_msg, self.collective_seq_id, ) logger.info("internal record id: %s", self.record_id) logger.info("group info: %s", self.pg_desc) logger.info("collective: %s", self.profiling_name) if missing_ranks: self.missing_ranks = missing_ranks logger.info("missing ranks: %s", missing_ranks) if total_numel: self.input_numel = total_numel[0] self.output_numel = total_numel[1] logger.info("total input numel: %d", total_numel[0]) logger.info("total output numel: %d", total_numel[1]) logger.info("input sizes: %s", self.input_sizes) logger.info("output sizes: %s", self.output_sizes) logger.info("world size: %d", len(self.expected_ranks)) logger.info("expected ranks: %s", str(self.expected_ranks)) logger.info("collective state: %s", self.collective_state) if errors: self.errors = errors error_msg = ", ".join( f"Culprit rank {error[0]}; {str(error[1])}" for error in errors ) logger.info("error msg: %s", error_msg) logger.info( "collective stack trace: \n %s", frame_formatter(self.collective_frames) ) def to_collective( self, id: int, errors: Optional[set[tuple[int, MatchInfo]]] = None, idx_map: Optional[dict[int, int]] = None, all_entries: Optional[dict[int, list[dict[str, Any]]]] = None, ) -> Collective: if not errors: return Collective( id=id, group_id=self.pg_name, record_id=self.record_id, pg_desc=self.pg_desc, pass_check=True, collective_seq_id=self.collective_seq_id, p2p_seq_id=self.p2p_seq_id, collective_name=self.profiling_name, input_sizes=self.input_sizes, output_sizes=self.output_sizes, expected_ranks=self.expected_ranks, collective_state=self.collective_state, collective_frames=self.collective_frames, missing_ranks=getattr(self, "missing_ranks", None), ) else: assert idx_map is not None, "idx_map is None" assert all_entries is not None, "all_entries is None" mismatch_collectives = {} for rank, error in errors: idx = idx_map[rank] entry = all_entries[rank][idx] desc = entry["process_group"][1] pg_name = entry["process_group"][0] mismatch_collectives[rank] = Collective( id=id, group_id=entry["process_group"][0], record_id=entry["record_id"], pg_desc=f"{pg_name}:{desc}" if desc != "undefined" else pg_name, pass_check=False, collective_seq_id=entry["collective_seq_id"], p2p_seq_id=entry["p2p_seq_id"], collective_name=entry["profiling_name"], input_sizes=entry["input_sizes"], output_sizes=entry["output_sizes"], expected_ranks=self.expected_ranks, collective_state=entry["state"], collective_frames=entry.get("frames", []), type_of_mismatch=error, ) return Collective( id=id, group_id=self.pg_name, record_id=self.record_id, pg_desc=self.pg_desc, pass_check=False, collective_seq_id=self.collective_seq_id, p2p_seq_id=self.p2p_seq_id, collective_name=self.profiling_name, input_sizes=self.input_sizes, output_sizes=self.output_sizes, expected_ranks=self.expected_ranks, collective_state=self.collective_state, collective_frames=self.collective_frames, input_numel=self.input_numel if hasattr(self, "input_numel") else None, output_numel=self.output_numel if hasattr(self, "output_numel") else None, missing_ranks=self.missing_ranks if hasattr(self, "missing_ranks") else None, mismatch_collectives=mismatch_collectives, ) def to_nccl_call( self, all_entries: dict[int, list[dict[str, Any]]], idx_map: dict[int, int], nccl_call_id: int, collective_id: Any, ) -> list[NCCLCall]: result = [] for i, k in idx_map.items(): all_entries[i].pop(k) result.append( NCCLCall( id=nccl_call_id, collective_id=collective_id, group_id=self.pg_name, # type: ignore[arg-type] global_rank=i, traceback_id=0, # type: ignore[arg-type] collective_type=self.profiling_name, sizes=self.input_sizes, ) ) nccl_call_id += 1 return result
EntryState
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 853616, "end": 854047 }
class ____(sgqlc.types.Type, Node): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("actor", "created_at", "issue") actor = sgqlc.types.Field(Actor, graphql_name="actor") created_at = sgqlc.types.Field( sgqlc.types.non_null(DateTime), graphql_name="createdAt" ) issue = sgqlc.types.Field(sgqlc.types.non_null(Issue), graphql_name="issue")
PinnedEvent
python
doocs__leetcode
solution/0600-0699/0641.Design Circular Deque/Solution.py
{ "start": 0, "end": 2578 }
class ____: def __init__(self, k: int): """ Initialize your data structure here. Set the size of the deque to be k. """ self.q = [0] * k self.front = 0 self.size = 0 self.capacity = k def insertFront(self, value: int) -> bool: """ Adds an item at the front of Deque. Return true if the operation is successful. """ if self.isFull(): return False if not self.isEmpty(): self.front = (self.front - 1 + self.capacity) % self.capacity self.q[self.front] = value self.size += 1 return True def insertLast(self, value: int) -> bool: """ Adds an item at the rear of Deque. Return true if the operation is successful. """ if self.isFull(): return False idx = (self.front + self.size) % self.capacity self.q[idx] = value self.size += 1 return True def deleteFront(self) -> bool: """ Deletes an item from the front of Deque. Return true if the operation is successful. """ if self.isEmpty(): return False self.front = (self.front + 1) % self.capacity self.size -= 1 return True def deleteLast(self) -> bool: """ Deletes an item from the rear of Deque. Return true if the operation is successful. """ if self.isEmpty(): return False self.size -= 1 return True def getFront(self) -> int: """ Get the front item from the deque. """ if self.isEmpty(): return -1 return self.q[self.front] def getRear(self) -> int: """ Get the last item from the deque. """ if self.isEmpty(): return -1 idx = (self.front + self.size - 1) % self.capacity return self.q[idx] def isEmpty(self) -> bool: """ Checks whether the circular deque is empty or not. """ return self.size == 0 def isFull(self) -> bool: """ Checks whether the circular deque is full or not. """ return self.size == self.capacity # Your MyCircularDeque object will be instantiated and called as such: # obj = MyCircularDeque(k) # param_1 = obj.insertFront(value) # param_2 = obj.insertLast(value) # param_3 = obj.deleteFront() # param_4 = obj.deleteLast() # param_5 = obj.getFront() # param_6 = obj.getRear() # param_7 = obj.isEmpty() # param_8 = obj.isFull()
MyCircularDeque
python
rapidsai__cudf
python/cudf_polars/cudf_polars/experimental/benchmarks/pdsh.py
{ "start": 31158, "end": 56209 }
class ____: """PDS-H DuckDB query definitions.""" name: str = "pdsh" @staticmethod def q1(run_config: RunConfig) -> str: """Query 1.""" return """ select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate <= DATE '1998-09-02' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus """ @staticmethod def q2(run_config: RunConfig) -> str: """Query 2.""" return """ select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment from part, supplier, partsupp, nation, region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 15 and p_type like '%BRASS' and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'EUROPE' and ps_supplycost = ( select min(ps_supplycost) from partsupp, supplier, nation, region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'EUROPE' ) order by s_acctbal desc, n_name, s_name, p_partkey limit 100 """ @staticmethod def q3(run_config: RunConfig) -> str: """Query 3.""" return """ select l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriority from customer, orders, lineitem where c_mktsegment = 'BUILDING' and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < '1995-03-15' and l_shipdate > '1995-03-15' group by l_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate limit 10 """ @staticmethod def q4(run_config: RunConfig) -> str: """Query 4.""" return """ select o_orderpriority, count(*) as order_count from orders where o_orderdate >= timestamp '1993-07-01' and o_orderdate < timestamp '1993-07-01' + interval '3' month and exists ( select * from lineitem where l_orderkey = o_orderkey and l_commitdate < l_receiptdate ) group by o_orderpriority order by o_orderpriority """ @staticmethod def q5(run_config: RunConfig) -> str: """Query 5.""" return """ select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue from customer, orders, lineitem, supplier, nation, region where c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'ASIA' and o_orderdate >= timestamp '1994-01-01' and o_orderdate < timestamp '1994-01-01' + interval '1' year group by n_name order by revenue desc """ @staticmethod def q6(run_config: RunConfig) -> str: """Query 6.""" return """ select sum(l_extendedprice * l_discount) as revenue from lineitem where l_shipdate >= timestamp '1994-01-01' and l_shipdate < timestamp '1994-01-01' + interval '1' year and l_discount between .06 - 0.01 and .06 + 0.01 and l_quantity < 24 """ @staticmethod def q7(run_config: RunConfig) -> str: """Query 7.""" return """ select supp_nation, cust_nation, l_year, sum(volume) as revenue from ( select n1.n_name as supp_nation, n2.n_name as cust_nation, year(l_shipdate) as l_year, l_extendedprice * (1 - l_discount) as volume from supplier, lineitem, orders, customer, nation n1, nation n2 where s_suppkey = l_suppkey and o_orderkey = l_orderkey and c_custkey = o_custkey and s_nationkey = n1.n_nationkey and c_nationkey = n2.n_nationkey and ( (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY') or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE') ) and l_shipdate between timestamp '1995-01-01' and timestamp '1996-12-31' ) as shipping group by supp_nation, cust_nation, l_year order by supp_nation, cust_nation, l_year """ @staticmethod def q8(run_config: RunConfig) -> str: """Query 8.""" return """ select o_year, round( sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume) , 2) as mkt_share from ( select extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) as volume, n2.n_name as nation from part, supplier, lineitem, orders, customer, nation n1, nation n2, region where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'AMERICA' and s_nationkey = n2.n_nationkey and o_orderdate between timestamp '1995-01-01' and timestamp '1996-12-31' and p_type = 'ECONOMY ANODIZED STEEL' ) as all_nations group by o_year order by o_year """ @staticmethod def q9(run_config: RunConfig) -> str: """Query 9.""" return """ select nation, o_year, round(sum(amount), 2) as sum_profit from ( select n_name as nation, year(o_orderdate) as o_year, l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount from part, supplier, lineitem, partsupp, orders, nation where s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey = l_orderkey and s_nationkey = n_nationkey and p_name like '%green%' ) as profit group by nation, o_year order by nation, o_year desc """ @staticmethod def q10(run_config: RunConfig) -> str: """Query 10.""" return """ select c_custkey, c_name, round(sum(l_extendedprice * (1 - l_discount)), 2) as revenue, c_acctbal, n_name, c_address, c_phone, c_comment from customer, orders, lineitem, nation where c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date '1993-10-01' and o_orderdate < date '1993-10-01' + interval '3' month and l_returnflag = 'R' and c_nationkey = n_nationkey group by c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc limit 20 """ @staticmethod def q11(run_config: RunConfig) -> str: """Query 11.""" return f""" select ps_partkey, round(sum(ps_supplycost * ps_availqty), 2) as value from partsupp, supplier, nation where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'GERMANY' group by ps_partkey having sum(ps_supplycost * ps_availqty) > ( select sum(ps_supplycost * ps_availqty) * {0.0001 / run_config.scale_factor} from partsupp, supplier, nation where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'GERMANY' ) order by value desc """ @staticmethod def q12(run_config: RunConfig) -> str: """Query 12.""" return """ select l_shipmode, sum(case when o_orderpriority = '1-URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as high_line_count, sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-HIGH' then 1 else 0 end) as low_line_count from orders, lineitem where o_orderkey = l_orderkey and l_shipmode in ('MAIL', 'SHIP') and l_commitdate < l_receiptdate and l_shipdate < l_commitdate and l_receiptdate >= date '1994-01-01' and l_receiptdate < date '1994-01-01' + interval '1' year group by l_shipmode order by l_shipmode """ @staticmethod def q13(run_config: RunConfig) -> str: """Query 13.""" return """ select c_count, count(*) as custdist from ( select c_custkey, count(o_orderkey) from customer left outer join orders on c_custkey = o_custkey and o_comment not like '%special%requests%' group by c_custkey )as c_orders (c_custkey, c_count) group by c_count order by custdist desc, c_count desc """ @staticmethod def q14(run_config: RunConfig) -> str: """Query 14.""" return """ select round(100.00 * sum(case when p_type like 'PROMO%' then l_extendedprice * (1 - l_discount) else 0 end) / sum(l_extendedprice * (1 - l_discount)), 2) as promo_revenue from lineitem, part where l_partkey = p_partkey and l_shipdate >= date '1995-09-01' and l_shipdate < date '1995-09-01' + interval '1' month """ @staticmethod def q15(run_config: RunConfig) -> str: """Query 15.""" return """ with revenue (supplier_no, total_revenue) as ( select l_suppkey, sum(l_extendedprice * (1 - l_discount)) from lineitem where l_shipdate >= date '1996-01-01' and l_shipdate < date '1996-01-01' + interval '3' month group by l_suppkey ) select s_suppkey, s_name, s_address, s_phone, total_revenue from supplier, revenue where s_suppkey = supplier_no and total_revenue = ( select max(total_revenue) from revenue ) order by s_suppkey """ @staticmethod def q16(run_config: RunConfig) -> str: """Query 16.""" return """ select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt from partsupp, part where p_partkey = ps_partkey and p_brand <> 'Brand#45' and p_type not like 'MEDIUM POLISHED%' and p_size in (49, 14, 23, 45, 19, 3, 36, 9) and ps_suppkey not in ( select s_suppkey from supplier where s_comment like '%Customer%Complaints%' ) group by p_brand, p_type, p_size order by supplier_cnt desc, p_brand, p_type, p_size """ @staticmethod def q17(run_config: RunConfig) -> str: """Query 17.""" return """ select round(sum(l_extendedprice) / 7.0, 2) as avg_yearly from lineitem, part where p_partkey = l_partkey and p_brand = 'Brand#23' and p_container = 'MED BOX' and l_quantity < ( select 0.2 * avg(l_quantity) from lineitem where l_partkey = p_partkey ) """ @staticmethod def q18(run_config: RunConfig) -> str: """Query 18.""" return """ select c_name, c_custkey, o_orderkey, o_orderdate as o_orderdat, o_totalprice, sum(l_quantity) as col6 from customer, orders, lineitem where o_orderkey in ( select l_orderkey from lineitem group by l_orderkey having sum(l_quantity) > 300 ) and c_custkey = o_custkey and o_orderkey = l_orderkey group by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice order by o_totalprice desc, o_orderdate limit 100 """ @staticmethod def q19(run_config: RunConfig) -> str: """Query 19.""" return """ select round(sum(l_extendedprice* (1 - l_discount)), 2) as revenue from lineitem, part where ( p_partkey = l_partkey and p_brand = 'Brand#12' and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG') and l_quantity >= 1 and l_quantity <= 1 + 10 and p_size between 1 and 5 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#23' and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK') and l_quantity >= 10 and l_quantity <= 20 and p_size between 1 and 10 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#34' and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG') and l_quantity >= 20 and l_quantity <= 30 and p_size between 1 and 15 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) """ @staticmethod def q20(run_config: RunConfig) -> str: """Query 20.""" return """ select s_name, s_address from supplier, nation where s_suppkey in ( select ps_suppkey from partsupp where ps_partkey in ( select p_partkey from part where p_name like 'forest%' ) and ps_availqty > ( select 0.5 * sum(l_quantity) from lineitem where l_partkey = ps_partkey and l_suppkey = ps_suppkey and l_shipdate >= date '1994-01-01' and l_shipdate < date '1994-01-01' + interval '1' year ) ) and s_nationkey = n_nationkey and n_name = 'CANADA' order by s_name """ @staticmethod def q21(run_config: RunConfig) -> str: """Query 21.""" return """ select s_name, count(*) as numwait from supplier, lineitem l1, orders, nation where s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and o_orderstatus = 'F' and l1.l_receiptdate > l1.l_commitdate and exists ( select * from lineitem l2 where l2.l_orderkey = l1.l_orderkey and l2.l_suppkey <> l1.l_suppkey ) and not exists ( select * from lineitem l3 where l3.l_orderkey = l1.l_orderkey and l3.l_suppkey <> l1.l_suppkey and l3.l_receiptdate > l3.l_commitdate ) and s_nationkey = n_nationkey and n_name = 'SAUDI ARABIA' group by s_name order by numwait desc, s_name limit 100 """ @staticmethod def q22(run_config: RunConfig) -> str: """Query 22.""" return """ select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal from ( select substring(c_phone from 1 for 2) as cntrycode, c_acctbal from customer where substring(c_phone from 1 for 2) in (13, 31, 23, 29, 30, 18, 17) and c_acctbal > ( select avg(c_acctbal) from customer where c_acctbal > 0.00 and substring (c_phone from 1 for 2) in (13, 31, 23, 29, 30, 18, 17) ) and not exists ( select * from orders where o_custkey = c_custkey ) ) as custsale group by cntrycode order by cntrycode """ if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Run PDS-H benchmarks.") parser.add_argument( "--engine", choices=["polars", "duckdb", "validate"], default="polars", help="Which engine to use for executing the benchmarks or to validate results.", ) args, extra_args = parser.parse_known_args() if args.engine == "polars": run_polars(PDSHQueries, extra_args, num_queries=22) elif args.engine == "duckdb": run_duckdb(PDSHDuckDBQueries, extra_args, num_queries=22) elif args.engine == "validate": run_validate( PDSHQueries, PDSHDuckDBQueries, extra_args, num_queries=22, check_dtypes=True, check_column_order=True, )
PDSHDuckDBQueries
python
pytorch__pytorch
torch/_inductor/runtime/caching/context.py
{ "start": 7156, "end": 7335 }
class ____(TypedDict): torch_version_hash: bool triton_version_hash: bool runtime: bool runtime_version: bool accelerator_properties: bool
SelectedCompileContext
python
ipython__ipython
IPython/terminal/prompts.py
{ "start": 320, "end": 2889 }
class ____: def __init__(self, shell): self.shell = shell def vi_mode(self): if (getattr(self.shell.pt_app, 'editing_mode', None) == EditingMode.VI and self.shell.prompt_includes_vi_mode): mode = str(self.shell.pt_app.app.vi_state.input_mode) if mode.startswith('InputMode.'): mode = mode[10:13].lower() elif mode.startswith('vi-'): mode = mode[3:6] return '['+mode+'] ' return '' def current_line(self) -> int: if self.shell.pt_app is not None: return self.shell.pt_app.default_buffer.document.cursor_position_row or 0 return 0 def in_prompt_tokens(self): return [ (Token.Prompt.Mode, self.vi_mode()), ( Token.Prompt.LineNumber, self.shell.prompt_line_number_format.format( line=1, rel_line=-self.current_line() ), ), (Token.Prompt, "In ["), (Token.PromptNum, str(self.shell.execution_count)), (Token.Prompt, ']: '), ] def _width(self): return fragment_list_width(self.in_prompt_tokens()) def continuation_prompt_tokens( self, width: int | None = None, *, lineno: int | None = None, wrap_count: int | None = None, ): if width is None: width = self._width() line = lineno + 1 if lineno is not None else 0 if wrap_count: return [ ( Token.Prompt.Wrap, # (" " * (width - 2)) + "\N{HORIZONTAL ELLIPSIS} ", (" " * (width - 2)) + "\N{VERTICAL ELLIPSIS} ", ), ] prefix = " " * len( self.vi_mode() ) + self.shell.prompt_line_number_format.format( line=line, rel_line=line - self.current_line() - 1 ) return [ ( getattr(Token.Prompt.Continuation, f"L{lineno}"), prefix + (" " * (width - len(prefix) - 5)) + "...:", ), (Token.Prompt.Padding, " "), ] def rewrite_prompt_tokens(self): width = self._width() return [ (Token.Prompt, ('-' * (width - 2)) + '> '), ] def out_prompt_tokens(self): return [ (Token.OutPrompt, 'Out['), (Token.OutPromptNum, str(self.shell.execution_count)), (Token.OutPrompt, ']: '), ]
Prompts
python
apache__airflow
providers/google/tests/unit/google/marketing_platform/hooks/test_search_ads.py
{ "start": 6964, "end": 7805 }
class ____: def setup_method(self): with mock.patch( "airflow.providers.google.marketing_platform.hooks.search_ads.GoogleBaseHook.__init__", new=mock_base_gcp_hook_default_project_id, ): self.hook = GoogleSearchAdsHook(gcp_conn_id=GCP_CONN_ID) @mock.patch("airflow.providers.google.marketing_platform.hooks.search_ads.GoogleSearchAdsHook._authorize") @mock.patch("airflow.providers.google.marketing_platform.hooks.search_ads.build") def test_gen_conn(self, mock_build, mock_authorize): result = self.hook.get_conn() mock_build.assert_called_once_with( "doubleclicksearch", "v2", http=mock_authorize.return_value, cache_discovery=False, ) assert mock_build.return_value == result
TestSearchAdsHook
python
allegroai__clearml
clearml/backend_api/services/v2_23/datasets.py
{ "start": 179587, "end": 182014 }
class ____(Request): """ Get unique source ids from the given dataset version :param version: Dataset version ID. If not provided, returns sources used by all versions. :type version: str :param dataset: Dataset ID :type dataset: str :param max_count: Number of sources to return. default=100, Optional :type max_count: int """ _service = "datasets" _action = "get_source_ids" _version = "2.23" _schema = { "definitions": {}, "properties": { "dataset": {"description": "Dataset ID", "type": "string"}, "max_count": { "default": 100, "description": "Number of sources to return. default=100, Optional", "type": "integer", }, "version": { "description": "Dataset version ID. If not provided, returns sources used by all versions.", "type": ["string", "null"], }, }, "required": ["dataset"], "type": "object", } def __init__(self, dataset, version=None, max_count=100, **kwargs): super(GetSourceIdsRequest, self).__init__(**kwargs) self.version = version self.dataset = dataset self.max_count = max_count @schema_property("version") def version(self): return self._property_version @version.setter def version(self, value): if value is None: self._property_version = None return self.assert_isinstance(value, "version", six.string_types) self._property_version = value @schema_property("dataset") def dataset(self): return self._property_dataset @dataset.setter def dataset(self, value): if value is None: self._property_dataset = None return self.assert_isinstance(value, "dataset", six.string_types) self._property_dataset = value @schema_property("max_count") def max_count(self): return self._property_max_count @max_count.setter def max_count(self, value): if value is None: self._property_max_count = None return if isinstance(value, float) and value.is_integer(): value = int(value) self.assert_isinstance(value, "max_count", six.integer_types) self._property_max_count = value
GetSourceIdsRequest
python
tensorflow__tensorflow
tensorflow/python/data/kernel_tests/shard_test.py
{ "start": 1333, "end": 4534 }
class ____(test_base.DatasetTestBase, parameterized.TestCase): @combinations.generate(test_base.default_test_combinations()) def testSimpleCase(self): dataset = dataset_ops.Dataset.range(10).shard(5, 2) self.assertDatasetProduces(dataset, expected_output=[2, 7]) @combinations.generate(test_base.default_test_combinations()) def testNestedData(self): dataset_a = dataset_ops.Dataset.range(10) dataset_b = dataset_ops.Dataset.range(10, 0, -1) dataset = dataset_ops.Dataset.zip((dataset_a, dataset_b)).shard(5, 2) self.assertDatasetProduces(dataset, expected_output=[(2, 8), (7, 3)]) @combinations.generate(test_base.default_test_combinations()) def testOffsetZero(self): dataset = dataset_ops.Dataset.range(10).shard(5, 0) self.assertDatasetProduces(dataset, expected_output=[0, 5]) @combinations.generate(test_base.default_test_combinations()) def testOffsetGreaterNumShards(self): with self.assertRaises(errors.InvalidArgumentError): dataset = dataset_ops.Dataset.range(10).shard(5, 7) self.evaluate(self.getNext(dataset)()) @combinations.generate(test_base.default_test_combinations()) def testNegativeOffset(self): with self.assertRaises(errors.InvalidArgumentError): dataset = dataset_ops.Dataset.range(10).shard(5, -3) self.evaluate(self.getNext(dataset)()) @combinations.generate(test_base.default_test_combinations()) def testNegativeNumShards(self): with self.assertRaises(errors.InvalidArgumentError): dataset = dataset_ops.Dataset.range(10).shard(-3, 1) self.evaluate(self.getNext(dataset)()) @combinations.generate(test_base.default_test_combinations()) def testZeroNumShards(self): with self.assertRaises(errors.InvalidArgumentError): dataset = dataset_ops.Dataset.range(10).shard(0, 1) self.evaluate(self.getNext(dataset)()) @combinations.generate(test_base.default_test_combinations()) def testIteratorEndsBeforeFirstElem(self): dataset = dataset_ops.Dataset.range(1).shard(5, 2) self.assertDatasetProduces(dataset, expected_output=[]) @combinations.generate(test_base.default_test_combinations()) def testLargerWorkerPool(self): dataset = dataset_ops.Dataset.range(10).shard(7, 5) self.assertDatasetProduces(dataset, expected_output=[5]) @combinations.generate(test_base.default_test_combinations()) def testIndexEqualsNumShards(self): dataset = dataset_ops.Dataset.range(10).shard(5, 4) self.assertDatasetProduces(dataset, expected_output=[4, 9]) @combinations.generate(test_base.default_test_combinations()) def testIndexEqualsNumShards2(self): dataset = dataset_ops.Dataset.range(10).shard(4, 3) self.assertDatasetProduces(dataset, expected_output=[3, 7]) @combinations.generate(test_base.default_test_combinations()) def testNumShardsLargerThanDataset(self): dataset = dataset_ops.Dataset.range(10).shard(20, 5) self.assertDatasetProduces(dataset, expected_output=[5]) @combinations.generate(test_base.default_test_combinations()) def testName(self): dataset = dataset_ops.Dataset.from_tensors(42).shard(1, 0, name="shard") self.assertDatasetProduces(dataset, [42])
ShardTest
python
bokeh__bokeh
tests/unit/bokeh/test_settings.py
{ "start": 11350, "end": 14167 }
class ____: def test_allowed_ws_origin(self): assert bs.settings.allowed_ws_origin.default == [] def test_auth_module(self): assert bs.settings.auth_module.default is None def test_browser(self): assert bs.settings.browser.default is None def test_cdn_version(self): assert bs.settings.cdn_version.default is None def test_chromedriver_path(self): assert bs.settings.chromedriver_path.default is None def test_cookie_secret(self): assert bs.settings.cookie_secret.default is None def test_docs_cdn(self): assert bs.settings.docs_cdn.default is None def test_docs_version(self): assert bs.settings.docs_version.default is None def test_ico_path(self): assert bs.settings.ico_path.default == "default" def test_ignore_filename(self): assert bs.settings.ignore_filename.default is False def test_log_level(self): assert bs.settings.log_level.default == "info" def test_minified(self): assert bs.settings.minified.default is True def test_nodejs_path(self): assert bs.settings.nodejs_path.default is None def test_perform_document_validation(self): assert bs.settings.perform_document_validation.default is True def test_pretty(self): assert bs.settings.pretty.default is False def test_py_log_level(self): assert bs.settings.py_log_level.default == "none" def test_resources(self): assert bs.settings.resources.default == "cdn" def test_rootdir(self): assert bs.settings.rootdir.default is None def test_secret_key(self): assert bs.settings.secret_key.default is None def test_serialize_include_defaults(self): assert bs.settings.serialize_include_defaults.default is False def test_sign_sessions(self): assert bs.settings.sign_sessions.default is False def test_simple_ids(self): assert bs.settings.simple_ids.default is True def test_ssl_certfile(self): assert bs.settings.ssl_certfile.default is None def test_ssl_keyfile(self): assert bs.settings.ssl_keyfile.default is None def test_ssl_password(self): assert bs.settings.ssl_password.default is None def test_validation_level(self): assert bs.settings.validation_level.default == "none" def test_xsrf_cookies(self): assert bs.settings.xsrf_cookies.default is False #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
TestDefaults
python
kamyu104__LeetCode-Solutions
Python/3sum-closest.py
{ "start": 31, "end": 859 }
class ____(object): def threeSumClosest(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ result, min_diff = 0, float("inf") nums.sort() for i in reversed(xrange(2, len(nums))): if i+1 < len(nums) and nums[i] == nums[i+1]: continue left, right = 0, i-1 while left < right: total = nums[left]+nums[right]+nums[i] if total < target: left += 1 elif total > target: right -= 1 else: return target if abs(total-target) < min_diff: min_diff = abs(total-target) result = total return result
Solution
python
tensorflow__tensorflow
tensorflow/python/distribute/packed_distributed_variable.py
{ "start": 9542, "end": 14024 }
class ____(object): """Holds a packed distributed variable and a device.""" def __init__(self, var, device): self._var = var self._device = device def __getattr__(self, name): # Exceptions raised inside the contextmanager can cause a reference # cycle.[1] The cycle involves the current frame, which holds the reference # to the outer frame. Tensorflow, e.g. iterators, relies on object # finalizers to clean up resources. Such references prevents the resource # from being deleted and can cause leaks and errors. One corner the case is # that iterators are kept alive and the garbage collector happens to run # after auto control dependencies; this causes the deletion to lose the # control dependencies to operations that uses such resources. # # Catch and re-raise the exception seems to workaround the issue. # # [1] https://bugs.python.org/issue43533 try: with ops.device(self._device): return getattr(self._var, name) except: # pylint: disable=try-except-raise raise def var(self): return self._var def value(self): with ops.device(self._device): return self._var.value() def read_value(self): with ops.device(self._device): return self._var.read_value() @property def initial_value(self): return self._var.initial_value(self._device) def initialized_value(self): with ops.device(self._device): return self._var.initialized_value() @property def device(self): return self._device @property def handle(self): with ops.device(self._device): return self._var.handle def on_device_handle(self): with ops.device(self._device): return self._var.get_var_on_current_device().handle @property def op(self) -> ops.Operation: with ops.device(self._device): return self._var.op def assign_sub(self, delta, use_locking=None, name=None, read_value=True): with ops.device(self._device): return self._var.assign_sub(delta, use_locking, name, read_value) def assign_add(self, delta, use_locking=None, name=None, read_value=True): with ops.device(self._device): return self._var.assign_add(delta, use_locking, name, read_value) def assign(self, value, use_locking=None, name=None, read_value=True): with ops.device(self._device): return self._var.assign(value, use_locking, name, read_value) def scatter_sub(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_sub(sparse_delta, use_locking, name) def scatter_add(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_add(sparse_delta, use_locking, name) def scatter_mul(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_mul(sparse_delta, use_locking, name) def scatter_div(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_div(sparse_delta, use_locking, name) def scatter_min(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_min(sparse_delta, use_locking, name) def scatter_max(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_max(sparse_delta, use_locking, name) def scatter_update(self, sparse_delta, use_locking=False, name=None): with ops.device(self._device): return self._var.scatter_update(sparse_delta, use_locking, name) def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False): with ops.device(self._device): return self._var._dense_var_to_tensor( # pylint: disable=protected-access dtype=dtype, name=name, as_ref=as_ref) def _as_graph_element(self): return self._var._as_graph_element() # pylint: disable=protected-access def _tensor_conversion_packed_var_and_device(var, dtype=None, name=None, as_ref=False): return var._dense_var_to_tensor(dtype=dtype, name=name, as_ref=as_ref) # pylint: disable=protected-access tensor_conversion_registry.register_tensor_conversion_function( PackedVarAndDevice, _tensor_conversion_packed_var_and_device)
PackedVarAndDevice
python
fluentpython__example-code
14-it-generator/sentence_genexp.py
{ "start": 148, "end": 989 }
class ____: def __init__(self, text): self.text = text def __repr__(self): return 'Sentence(%s)' % reprlib.repr(self.text) def __iter__(self): return (match.group() for match in RE_WORD.finditer(self.text)) # END SENTENCE_GENEXP def main(): import sys import warnings try: filename = sys.argv[1] word_number = int(sys.argv[2]) except (IndexError, ValueError): print('Usage: %s <file-name> <word-number>' % sys.argv[0]) sys.exit(1) with open(filename, 'rt', encoding='utf-8') as text_file: s = Sentence(text_file.read()) for n, word in enumerate(s, 1): if n == word_number: print(word) break else: warnings.warn('last word is #%d, "%s"' % (n, word)) if __name__ == '__main__': main()
Sentence
python
tensorflow__tensorflow
tensorflow/python/ops/ragged/ragged_bincount_ops_test.py
{ "start": 1725, "end": 11831 }
class ____(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.parameters([{ "dtype": np.int32, }, { "dtype": np.int64, }]) def test_ragged_input_count(self, dtype): x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]], dtype) # pyformat: disable expected_output = [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 2, 1]] # pyformat: enable self.assertAllEqual(expected_output, self.evaluate(bincount_ops.bincount(arr=x, axis=-1))) @parameterized.parameters([{ "dtype": np.int32, }, { "dtype": np.int64, }]) def test_ragged_input_binary(self, dtype): x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]]) # pyformat: disable expected_output = [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1]] # pyformat: enable self.assertAllEqual( expected_output, self.evaluate( bincount_ops.bincount(arr=x, axis=-1, binary_output=True))) @parameterized.parameters([{ "dtype": np.int32, }, { "dtype": np.int64, }]) def test_ragged_input_count_with_weights(self, dtype): x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]]) weights = ragged_factory_ops.constant([[], [], [.1, .2, .3], [], [.2, .5, .6, .3]]) # pyformat: disable expected_output = [ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [.2, .3, 0, .1, 0, 0], [0, 0, 0, 0, 0, 0], [.5, 0, 0, 0, .9, .2]] # pyformat: enable self.assertAllClose( expected_output, self.evaluate(bincount_ops.bincount(arr=x, weights=weights, axis=-1))) @parameterized.parameters([{ "dtype": np.int32, }, { "dtype": np.int64, }]) def test_ragged_input_count_np(self, dtype): np.random.seed(42) num_rows = 128 num_cols = 27 size = 1000 inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype) np_out = np.reshape( np.concatenate( [np.bincount(inp[j, :], minlength=size) for j in range(num_rows)], axis=0), (num_rows, size)) x = ragged_tensor.RaggedTensor.from_tensor(inp) self.assertAllEqual( np_out, self.evaluate(bincount_ops.bincount(arr=x, minlength=size, axis=-1))) @parameterized.parameters([{ "dtype": np.int32, }, { "dtype": np.int64, }]) def test_ragged_input_count_np_with_weights(self, dtype): np.random.seed(42) num_rows = 128 num_cols = 27 size = 1000 inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype) np_weight = np.random.random((num_rows, num_cols)) np_out = np.reshape( np.concatenate([ np.bincount(inp[j, :], weights=np_weight[j, :], minlength=size) for j in range(num_rows) ], axis=0), (num_rows, size)) x = ragged_tensor.RaggedTensor.from_tensor(inp) weights = ragged_tensor.RaggedTensor.from_tensor(np_weight) self.assertAllEqual( np_out, self.evaluate( bincount_ops.bincount( arr=x, weights=weights, minlength=size, axis=-1))) @parameterized.product( ( dict( tid="_r2", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), expected=[0, 1, 2, 3], # no implied zeros ), dict( tid="_r3", x_factory=_ragged_factory([[[], [1]], [[2, 2], [3, 3, 3]]]), expected=[0, 1, 2, 3], # no implied zeros ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_default(self, x_factory, minlength, maxlength, expected, tid=None): x = x_factory() expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( bincount_ops.bincount(x, minlength=minlength, maxlength=maxlength) ), ) self.assertAllEqual( expected, self.evaluate( bincount_ops.bincount( x, minlength=minlength, maxlength=maxlength, axis=0 ) ), ) @parameterized.product( ( dict( tid="_r2", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), # no implied zeros expected=[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]], ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_axis_neg_1(self, tid, x_factory, minlength, maxlength, expected): x = x_factory() expected = _adjust_expected_rank2(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( bincount_ops.bincount( x, minlength=minlength, maxlength=maxlength, axis=-1 ) ), ) @parameterized.product( ( dict( tid="_r2", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), weights_factory=_ragged_factory([[], [1], [2, 3], [4, 5, 6]]), axis=None, expected=[0, 1, 5, 15], # no implied zeros ), dict( tid="_r3", x_factory=_ragged_factory([[[], [1]], [[2, 2], [3, 3, 3]]]), weights_factory=_ragged_factory([[[], [1]], [[2, 3], [4, 5, 6]]]), expected=[0, 1, 5, 15], # no implied zeros axis=None, ), dict( tid="_r2_axis_neg_1", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), weights_factory=_ragged_factory([[], [1], [2, 3], [4, 5, 6]]), # no implied zeros expected=[ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 5, 0], [0, 0, 0, 15], ], axis=-1, ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_weights( self, tid, x_factory, weights_factory, minlength, maxlength, expected, axis, ): device_set = set([d.device_type for d in tf_config.list_physical_devices()]) if "GPU" in device_set and not test_util.is_xla_enabled(): self.skipTest( "b/263004039 The DenseBincount GPU kernel does not support weights." " unsorted_segment_sum should be used instead on GPU." ) x = x_factory() weights = weights_factory() if axis == -1: expected = _adjust_expected_rank2(expected, minlength, maxlength) else: expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( bincount_ops.bincount( x, weights=weights, minlength=minlength, maxlength=maxlength, axis=axis, ) ), ) @parameterized.product( ( dict( tid="_r2", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), expected=[0, 1, 1, 1], # no implied zeros axis=None, ), dict( tid="_r3", x_factory=_ragged_factory([[[], [1]], [[2, 2], [3, 3, 3]]]), expected=[0, 1, 1, 1], # no implied zeros axis=None, ), dict( tid="_r2_axis_neg_1", x_factory=_ragged_factory([[], [1], [2, 2], [3, 3, 3]]), # no implied zeros expected=[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], axis=-1, ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_binary_output( self, tid, x_factory, minlength, maxlength, expected, axis=None, ): x = x_factory() if axis == -1: expected = _adjust_expected_rank2(expected, minlength, maxlength) else: expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( bincount_ops.bincount( x, minlength=minlength, maxlength=maxlength, binary_output=True, axis=axis, ) ), )
TestDenseBincount
python
tensorflow__tensorflow
tensorflow/python/framework/immutable_dict_test.py
{ "start": 932, "end": 3483 }
class ____(test_util.TensorFlowTestCase, parameterized.TestCase): def testGetItem(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(d['x'], 1) self.assertEqual(d['y'], 2) with self.assertRaises(KeyError): d['z'] # pylint: disable=pointless-statement def testIter(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(set(iter(d)), set(['x', 'y'])) def testContains(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertIn('x', d) self.assertIn('y', d) self.assertNotIn('z', d) def testLen(self): d1 = immutable_dict.ImmutableDict({}) self.assertLen(d1, 0) # pylint: disable=g-generic-assert d2 = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertLen(d2, 2) def testRepr(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) s = repr(d) self.assertTrue(s == "ImmutableDict({'x': 1, 'y': 2})" or s == "ImmutableDict({'y': 1, 'x': 2})") def testGet(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(d.get('x'), 1) self.assertEqual(d.get('y'), 2) self.assertIsNone(d.get('z')) self.assertEqual(d.get('z', 'Foo'), 'Foo') def testKeys(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(set(d.keys()), set(['x', 'y'])) def testValues(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(set(d.values()), set([1, 2])) def testItems(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(set(d.items()), set([('x', 1), ('y', 2)])) def testEqual(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertEqual(d, {'x': 1, 'y': 2}) def testNotEqual(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) self.assertNotEqual(d, {'x': 1}) def testSetItemFails(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) with self.assertRaises(TypeError): d['x'] = 5 # pylint: disable=unsupported-assignment-operation with self.assertRaises(TypeError): d['z'] = 5 # pylint: disable=unsupported-assignment-operation def testDelItemFails(self): d = immutable_dict.ImmutableDict({'x': 1, 'y': 2}) with self.assertRaises(TypeError): del d['x'] # pylint: disable=unsupported-delete-operation with self.assertRaises(TypeError): del d['z'] # pylint: disable=unsupported-delete-operation if __name__ == '__main__': googletest.main()
ImmutableDictTest
python
psf__black
tests/data/cases/preview_long_strings__regression.py
{ "start": 12787, "end": 14207 }
class ____(StepBase): def who(self): self.cmd = 'SR AAAA-CORRECT NAME IS {last_name} {first_name}{middle_name} {title}/P{passenger_association}'.format( last_name=last_name, first_name=first_name, middle_name=middle_name, title=title, passenger_association=passenger_association, ) xxxxxxx_xxxxxx_xxxxxxx = xxx( [ xxxxxxxxxxxx( xxxxxx_xxxxxxx=( '((x.aaaaaaaaa = "xxxxxx.xxxxxxxxxxxxxxxxxxxxx") || (x.xxxxxxxxx = "xxxxxxxxxxxx")) && ' # xxxxx xxxxxxxxxxxx xxxx xxx (xxxxxxxxxxxxxxxx) xx x xxxxxxxxx xx xxxxxx. "(x.bbbbbbbbbbbb.xxx != " '"xxx:xxx:xxx::cccccccccccc:xxxxxxx-xxxx/xxxxxxxxxxx/xxxxxxxxxxxxxxxxx") && ' ) ) ] ) if __name__ == "__main__": for i in range(4, 8): cmd = ( r"for pid in $(ps aux | grep paster | grep -v grep | grep '\-%d' | awk '{print $2}'); do kill $pid; done" % (i) ) def A(): def B(): def C(): def D(): def E(): def F(): def G(): assert ( c_float(val[0][0] / val[0][1]).value == c_float(value[0][0] / value[0][1]).value ), "%s didn't roundtrip" % tag
Step
python
ijl__orjson
test/test_dataclass.py
{ "start": 1389, "end": 1521 }
class ____(abc.ABC): @abc.abstractmethod def key(self): raise NotImplementedError @dataclass(frozen=True)
AbstractBase
python
astropy__astropy
astropy/units/tests/test_quantity_non_ufuncs.py
{ "start": 64471, "end": 66274 }
class ____: # For these, making behaviour work means deviating only slightly from # the docstring, and by default they fail miserably. So, might as well. def setup_method(self): self.q = np.arange(3.0) * u.Jy def test_array2string(self): # The default formatters cannot handle units, so if we do not pass # a relevant formatter, we are better off just treating it as an # array (which happens for all subtypes). out0 = np.array2string(self.q) expected0 = str(self.q.value) assert out0 == expected0 # Arguments are interpreted as usual. out1 = np.array2string(self.q, separator=", ") expected1 = "[0., 1., 2.]" assert out1 == expected1 # If we do pass in a formatter, though, it should be used. out2 = np.array2string(self.q, separator=", ", formatter={"all": str}) expected2 = "[0.0 Jy, 1.0 Jy, 2.0 Jy]" assert out2 == expected2 # Also as positional argument (no, nobody will do this!) if NUMPY_LT_2_4: args = (self.q, None, None, None, ", ", "", np._NoValue, {"float": str}) out3 = np.array2string(*args) assert out3 == expected2 # But not if the formatter is not relevant for us. out4 = np.array2string(self.q, separator=", ", formatter={"int": str}) assert out4 == expected1 def test_array_repr(self): out = np.array_repr(self.q) assert out == "Quantity([0., 1., 2.], unit='Jy')" q2 = self.q.astype("f4") out2 = np.array_repr(q2) assert out2 == "Quantity([0., 1., 2.], unit='Jy', dtype=float32)" def test_array_str(self): out = np.array_str(self.q) expected = str(self.q) assert out == expected
TestStringFunctions
python
allegroai__clearml
clearml/backend_api/services/v2_13/tasks.py
{ "start": 312147, "end": 314794 }
class ____(Response): """ Response of tasks.get_configurations endpoint. :param configurations: Configurations (keyed by task ID) :type configurations: Sequence[dict] """ _service = "tasks" _action = "get_configurations" _version = "2.13" _schema = { "definitions": { "configuration_item": { "properties": { "description": { "description": "The parameter description. Optional", "type": ["string", "null"], }, "name": { "description": "Name of the parameter. Should be unique", "type": ["string", "null"], }, "type": { "description": "Type of the parameter. Optional", "type": ["string", "null"], }, "value": { "description": "Value of the parameter", "type": ["string", "null"], }, }, "type": "object", } }, "properties": { "configurations": { "description": "Configurations (keyed by task ID)", "items": { "properties": { "configuration": { "description": "Configuration list", "items": {"$ref": "#/definitions/configuration_item"}, "type": "array", }, "task": {"description": "Task ID", "type": "string"}, }, "type": "object", }, "type": ["array", "null"], } }, "type": "object", } def __init__(self, configurations: Optional[List[dict]] = None, **kwargs: Any) -> None: super(GetConfigurationsResponse, self).__init__(**kwargs) self.configurations = configurations @schema_property("configurations") def configurations(self) -> Optional[List[dict]]: return self._property_configurations @configurations.setter def configurations(self, value: Optional[List[dict]]) -> None: if value is None: self._property_configurations = None return self.assert_isinstance(value, "configurations", (list, tuple)) self.assert_isinstance(value, "configurations", (dict,), is_array=True) self._property_configurations = value
GetConfigurationsResponse
python
run-llama__llama_index
llama-index-packs/llama-index-packs-snowflake-query-engine/llama_index/packs/snowflake_query_engine/base.py
{ "start": 303, "end": 2634 }
class ____(BaseLlamaPack): """ Snowflake query engine pack. It uses snowflake-sqlalchemy to connect to Snowflake, then calls NLSQLTableQueryEngine to query data. """ def __init__( self, user: str, password: str, account: str, database: str, schema: str, warehouse: str, role: str, tables: List[str], **kwargs: Any, ) -> None: """Init params.""" # workaround for https://github.com/snowflakedb/snowflake-sqlalchemy/issues/380. try: snowflake_sqlalchemy_20_monkey_patches() except Exception: raise ImportError("Please run `pip install snowflake-sqlalchemy`") if not os.environ.get("OPENAI_API_KEY", None): raise ValueError("OpenAI API Token is missing or blank.") snowflake_uri = f"snowflake://{user}:{password}@{account}/{database}/{schema}?warehouse={warehouse}&role={role}" engine = create_engine(snowflake_uri) self._sql_database = SQLDatabase(engine) self.tables = tables self.query_engine = NLSQLTableQueryEngine( sql_database=self._sql_database, tables=self.tables ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "sql_database": self._sql_database, "query_engine": self.query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs) def snowflake_sqlalchemy_20_monkey_patches(): import sqlalchemy.util.compat # make strings always return unicode strings sqlalchemy.util.compat.string_types = (str,) sqlalchemy.types.String.RETURNS_UNICODE = True import snowflake.sqlalchemy.snowdialect snowflake.sqlalchemy.snowdialect.SnowflakeDialect.returns_unicode_strings = True # make has_table() support the `info_cache` kwarg import snowflake.sqlalchemy.snowdialect def has_table(self, connection, table_name, schema=None, info_cache=None): """ Checks if the table exists. """ return self._has_object(connection, "TABLE", table_name, schema) snowflake.sqlalchemy.snowdialect.SnowflakeDialect.has_table = has_table
SnowflakeQueryEnginePack
python
kamyu104__LeetCode-Solutions
Python/construct-binary-tree-from-preorder-and-inorder-traversal.py
{ "start": 982, "end": 1666 }
class ____(object): def buildTree(self, preorder, inorder): """ :type preorder: List[int] :type inorder: List[int] :rtype: TreeNode """ preorder_iterator = iter(preorder) inorder_lookup = {n: i for i, n in enumerate(inorder)} def helper(start, end): if start > end: return None root_val = next(preorder_iterator) root = TreeNode(root_val) idx = inorder_lookup[root_val] root.left = helper(start, idx-1) root.right = helper(idx+1, end) return root return helper(0, len(inorder)-1)
Solution2
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocol48.py
{ "start": 281, "end": 548 }
class ____: def method1(self) -> tuple[Self, Self]: ... def method2(self): x = apply_method1(self) reveal_type(x, expected_text="tuple[Self@A, Self@A]") def func1(a: A): x = apply_method1(a) reveal_type(x, expected_text="tuple[A, A]")
A
python
PrefectHQ__prefect
src/prefect/server/schemas/statuses.py
{ "start": 677, "end": 935 }
class ____(AutoEnum): """Enumeration of work queue statuses.""" READY = AutoEnum.auto() NOT_READY = AutoEnum.auto() PAUSED = AutoEnum.auto() def in_kebab_case(self) -> str: return self.value.lower().replace("_", "-")
WorkQueueStatus
python
gevent__gevent
src/greentest/3.9/test_socket.py
{ "start": 112695, "end": 118639 }
class ____(SendrecvmsgBase): # Tests for recvmsg() which can also be emulated using # recvmsg_into(), and can use any socket type. def testRecvmsg(self): # Receive a simple message with recvmsg[_into](). msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG)) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) def _testRecvmsg(self): self.sendToServer(MSG) def testRecvmsgExplicitDefaults(self): # Test recvmsg[_into]() with default arguments provided explicitly. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG), 0, 0) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) def _testRecvmsgExplicitDefaults(self): self.sendToServer(MSG) def testRecvmsgShorter(self): # Receive a message smaller than buffer. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG) + 42) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) def _testRecvmsgShorter(self): self.sendToServer(MSG) def testRecvmsgTrunc(self): # Receive part of message, check for truncation indicators. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG) - 3) self.assertEqual(msg, MSG[:-3]) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=False) def _testRecvmsgTrunc(self): self.sendToServer(MSG) def testRecvmsgShortAncillaryBuf(self): # Test ancillary data buffer too small to hold any ancillary data. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG), 1) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) def _testRecvmsgShortAncillaryBuf(self): self.sendToServer(MSG) def testRecvmsgLongAncillaryBuf(self): # Test large ancillary data buffer. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG), 10240) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) def _testRecvmsgLongAncillaryBuf(self): self.sendToServer(MSG) def testRecvmsgAfterClose(self): # Check that recvmsg[_into]() fails on a closed socket. self.serv_sock.close() self.assertRaises(OSError, self.doRecvmsg, self.serv_sock, 1024) def _testRecvmsgAfterClose(self): pass def testRecvmsgTimeout(self): # Check that timeout works. try: self.serv_sock.settimeout(0.03) self.assertRaises(socket.timeout, self.doRecvmsg, self.serv_sock, len(MSG)) finally: self.misc_event.set() def _testRecvmsgTimeout(self): self.assertTrue(self.misc_event.wait(timeout=self.fail_timeout)) @requireAttrs(socket, "MSG_PEEK") def testRecvmsgPeek(self): # Check that MSG_PEEK in flags enables examination of pending # data without consuming it. # Receive part of data with MSG_PEEK. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG) - 3, 0, socket.MSG_PEEK) self.assertEqual(msg, MSG[:-3]) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) # Ignoring MSG_TRUNC here (so this test is the same for stream # and datagram sockets). Some wording in POSIX seems to # suggest that it needn't be set when peeking, but that may # just be a slip. self.checkFlags(flags, eor=False, ignore=getattr(socket, "MSG_TRUNC", 0)) # Receive all data with MSG_PEEK. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG), 0, socket.MSG_PEEK) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) # Check that the same data can still be received normally. msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG)) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) @testRecvmsgPeek.client_skip def _testRecvmsgPeek(self): self.sendToServer(MSG) @requireAttrs(socket.socket, "sendmsg") def testRecvmsgFromSendmsg(self): # Test receiving with recvmsg[_into]() when message is sent # using sendmsg(). self.serv_sock.settimeout(self.fail_timeout) msg, ancdata, flags, addr = self.doRecvmsg(self.serv_sock, len(MSG)) self.assertEqual(msg, MSG) self.checkRecvmsgAddress(addr, self.cli_addr) self.assertEqual(ancdata, []) self.checkFlags(flags, eor=True) @testRecvmsgFromSendmsg.client_skip def _testRecvmsgFromSendmsg(self): self.assertEqual(self.sendmsgToServer([MSG[:3], MSG[3:]]), len(MSG))
RecvmsgGenericTests
python
skorch-dev__skorch
skorch/exceptions.py
{ "start": 639, "end": 741 }
class ____(SkorchException): """The net cannot be used for training"""
SkorchTrainingImpossibleError
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1124004, "end": 1124855 }
class ____(sgqlc.types.Type, Node): """Represents a 'demilestoned' event on a given issue or pull request. """ __schema__ = github_schema __field_names__ = ("actor", "created_at", "milestone_title", "subject") actor = sgqlc.types.Field(Actor, graphql_name="actor") """Identifies the actor who performed the event.""" created_at = sgqlc.types.Field(sgqlc.types.non_null(DateTime), graphql_name="createdAt") """Identifies the date and time when the object was created.""" milestone_title = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="milestoneTitle") """Identifies the milestone title associated with the 'demilestoned' event. """ subject = sgqlc.types.Field(sgqlc.types.non_null("MilestoneItem"), graphql_name="subject") """Object referenced by event."""
DemilestonedEvent
python
huggingface__transformers
src/transformers/models/sam_hq/modeling_sam_hq.py
{ "start": 46276, "end": 46919 }
class ____(SamHQPreTrainedModel): config: SamHQVisionConfig main_input_name = "pixel_values" def __init__(self, config: SamHQVisionConfig): super().__init__(config) self.vision_encoder = SamHQVisionEncoder(config) self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_encoder.patch_embed @auto_docstring def forward( self, pixel_values: Optional[torch.FloatTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, SamHQVisionEncoderOutput]: return self.vision_encoder(pixel_values, **kwargs)
SamHQVisionModel
python
Textualize__textual
src/textual/drivers/win32.py
{ "start": 1679, "end": 2015 }
class ____(Structure): """https://docs.microsoft.com/en-us/windows/console/key-event-record-str""" _fields_ = [ ("bKeyDown", BOOL), ("wRepeatCount", WORD), ("wVirtualKeyCode", WORD), ("wVirtualScanCode", WORD), ("uChar", uChar), ("dwControlKeyState", DWORD), ]
KEY_EVENT_RECORD
python
django__django
tests/from_db_value/models.py
{ "start": 47, "end": 99 }
class ____(decimal.Decimal): currency = "USD"
Cash
python
bokeh__bokeh
src/bokeh/plotting/contour.py
{ "start": 2168, "end": 2378 }
class ____: ''' Coordinates for all filled polygons over a whole sequence of contour levels. ''' xs: list[list[list[np.ndarray]]] ys: list[list[list[np.ndarray]]] @dataclass(frozen=True)
FillCoords
python
pytransitions__transitions
transitions/extensions/asyncio.py
{ "start": 12606, "end": 25847 }
class ____(Machine): """Machine manages states, transitions and models. In case it is initialized without a specific model (or specifically no model), it will also act as a model itself. Machine takes also care of decorating models with conveniences functions related to added transitions and states during runtime. Attributes: states (OrderedDict): Collection of all registered states. events (dict): Collection of transitions ordered by trigger/event. models (list): List of models attached to the machine. initial (str): Name of the initial state for new models. prepare_event (list): Callbacks executed when an event is triggered. before_state_change (list): Callbacks executed after condition checks but before transition is conducted. Callbacks will be executed BEFORE the custom callbacks assigned to the transition. after_state_change (list): Callbacks executed after the transition has been conducted. Callbacks will be executed AFTER the custom callbacks assigned to the transition. finalize_event (list): Callbacks will be executed after all transitions callbacks have been executed. Callbacks mentioned here will also be called if a transition or condition check raised an error. on_exception: A callable called when an event raises an exception. If not set, the Exception will be raised instead. queued (bool or str): Whether transitions in callbacks should be executed immediately (False) or sequentially. send_event (bool): When True, any arguments passed to trigger methods will be wrapped in an EventData object, allowing indirect and encapsulated access to data. When False, all positional and keyword arguments will be passed directly to all callback methods. auto_transitions (bool): When True (default), every state will automatically have an associated to_{state}() convenience trigger in the base model. ignore_invalid_triggers (bool): When True, any calls to trigger methods that are not valid for the present state (e.g., calling an a_to_b() trigger when the current state is c) will be silently ignored rather than raising an invalid transition exception. name (str): Name of the ``Machine`` instance mainly used for easier log message distinction. """ state_cls = AsyncState transition_cls = AsyncTransition event_cls = AsyncEvent async_tasks = {} protected_tasks = [] current_context = contextvars.ContextVar('current_context', default=None) def __init__(self, model=Machine.self_literal, states=None, initial='initial', transitions=None, send_event=False, auto_transitions=True, ordered_transitions=False, ignore_invalid_triggers=None, before_state_change=None, after_state_change=None, name=None, queued=False, prepare_event=None, finalize_event=None, model_attribute='state', model_override=False, on_exception=None, on_final=None, **kwargs): super().__init__(model=None, states=states, initial=initial, transitions=transitions, send_event=send_event, auto_transitions=auto_transitions, ordered_transitions=ordered_transitions, ignore_invalid_triggers=ignore_invalid_triggers, before_state_change=before_state_change, after_state_change=after_state_change, name=name, queued=bool(queued), prepare_event=prepare_event, finalize_event=finalize_event, model_attribute=model_attribute, model_override=model_override, on_exception=on_exception, on_final=on_final, **kwargs) self._transition_queue_dict = _DictionaryMock(self._transition_queue) if queued is True else {} self._queued = queued for model in listify(model): self.add_model(model) def add_model(self, model, initial=None): super().add_model(model, initial) if self.has_queue == 'model': for mod in listify(model): self._transition_queue_dict[id(self) if mod is self.self_literal else id(mod)] = deque() async def dispatch(self, trigger, *args, **kwargs): """Trigger an event on all models assigned to the machine. Args: trigger (str): Event name *args (list): List of arguments passed to the event trigger **kwargs (dict): Dictionary of keyword arguments passed to the event trigger Returns: bool The truth value of all triggers combined with AND """ results = await self.await_all([partial(getattr(model, trigger), *args, **kwargs) for model in self.models]) return all(results) async def callbacks(self, funcs, event_data): """Triggers a list of callbacks""" await self.await_all([partial(event_data.machine.callback, func, event_data) for func in funcs]) async def callback(self, func, event_data): """Trigger a callback function with passed event_data parameters. In case func is a string, the callable will be resolved from the passed model in event_data. This function is not intended to be called directly but through state and transition callback definitions. Args: func (string, callable): The callback function. 1. First, if the func is callable, just call it 2. Second, we try to import string assuming it is a path to a func 3. Fallback to a model attribute event_data (EventData): An EventData instance to pass to the callback (if event sending is enabled) or to extract arguments from (if event sending is disabled). """ func = self.resolve_callable(func, event_data) res = func(event_data) if self.send_event else func(*event_data.args, **event_data.kwargs) if inspect.isawaitable(res): await res @staticmethod async def await_all(callables): """ Executes callables without parameters in parallel and collects their results. Args: callables (list): A list of callable functions Returns: list: A list of results. Using asyncio the list will be in the same order as the passed callables. """ return await asyncio.gather(*[func() for func in callables]) async def switch_model_context(self, model): warnings.warn("Please replace 'AsyncMachine.switch_model_context' with " "'AsyncMachine.cancel_running_transitions'.", category=DeprecationWarning) await self.cancel_running_transitions(model) async def cancel_running_transitions(self, model, msg=None): """ This method is called by an `AsyncTransition` when all conditional tests have passed and the transition will happen. This requires already running tasks to be cancelled. Args: model (object): The currently processed model msg (str): Optional message to pass to a running task's cancel request (deprecated). """ if msg is not None: warnings.warn( "When you call cancel_running_transitions with a custom message " "transitions will re-raise all raised CancelledError. " "Make sure to catch them in your code. " "The parameter 'msg' will likely be removed in a future release.", category=DeprecationWarning) for running_task in self.async_tasks.get(id(model), []): if self.current_context.get() == running_task or running_task in self.protected_tasks: continue if running_task.done() is False: _LOGGER.debug("Cancel running tasks...") running_task.cancel(msg or CANCELLED_MSG) async def process_context(self, func, model): """ This function is called by an `AsyncEvent` to make callbacks processed in Event._trigger cancellable. Using asyncio this will result in a try-catch block catching CancelledEvents. Args: func (partial): The partial of Event._trigger with all parameters already assigned model (object): The currently processed model Returns: bool: returns the success state of the triggered event """ if self.current_context.get() is None: token = self.current_context.set(asyncio.current_task()) if id(model) in self.async_tasks: self.async_tasks[id(model)].append(asyncio.current_task()) else: self.async_tasks[id(model)] = [asyncio.current_task()] try: res = await self._process_async(func, model) except asyncio.CancelledError as err: # raise CancelledError only if the task was not cancelled by internal processes # we indicate internal cancellation by passing CANCELLED_MSG to cancel() if CANCELLED_MSG not in err.args and sys.version_info >= (3, 11): _LOGGER.debug("%sExternal cancellation of task. Raise CancelledError...", self.name) raise res = False finally: self.async_tasks[id(model)].remove(asyncio.current_task()) self.current_context.reset(token) if len(self.async_tasks[id(model)]) == 0: del self.async_tasks[id(model)] else: res = await self._process_async(func, model) return res def remove_model(self, model): """Remove a model from the state machine. The model will still contain all previously added triggers and callbacks, but will not receive updates when states or transitions are added to the Machine. If an event queue is used, all queued events of that model will be removed.""" models = listify(model) if self.has_queue == 'model': for mod in models: del self._transition_queue_dict[id(mod)] self.models.remove(mod) else: for mod in models: self.models.remove(mod) if len(self._transition_queue) > 0: queue = self._transition_queue new_queue = [queue.popleft()] + [e for e in queue if e.args[0].model not in models] self._transition_queue.clear() self._transition_queue.extend(new_queue) async def _can_trigger(self, model, trigger, *args, **kwargs): state = self.get_model_state(model) event_data = AsyncEventData(state, AsyncEvent(name=trigger, machine=self), self, model, args, kwargs) for trigger_name in self.get_triggers(state): if trigger_name != trigger: continue for transition in self.events[trigger_name].transitions[state.name]: try: _ = self.get_state(transition.dest) if transition.dest is not None else transition.source except ValueError: continue event_data.transition = transition try: await self.callbacks(self.prepare_event, event_data) await self.callbacks(transition.prepare, event_data) if all(await self.await_all([partial(c.check, event_data) for c in transition.conditions])): return True except BaseException as err: event_data.error = err if self.on_exception: await self.callbacks(self.on_exception, event_data) else: raise return False def _process(self, trigger): raise RuntimeError("AsyncMachine should not call `Machine._process`. Use `Machine._process_async` instead.") async def _process_async(self, trigger, model): # default processing if not self.has_queue: if not self._transition_queue: # if trigger raises an Error, it has to be handled by the Machine.process caller return await trigger() raise MachineError("Attempt to process events synchronously while transition queue is not empty!") self._transition_queue_dict[id(model)].append(trigger) # another entry in the queue implies a running transition; skip immediate execution if len(self._transition_queue_dict[id(model)]) > 1: return True while self._transition_queue_dict[id(model)]: try: await self._transition_queue_dict[id(model)][0]() except BaseException: # if a transition raises an exception, clear queue and delegate exception handling self._transition_queue_dict[id(model)].clear() raise try: self._transition_queue_dict[id(model)].popleft() except KeyError: return True return True
AsyncMachine
python
django-import-export__django-import-export
tests/core/admin.py
{ "start": 2317, "end": 2401 }
class ____(ExportActionModelAdmin): pass @admin.register(Author)
UUIDCategoryAdmin
python
altair-viz__altair
altair/utils/server.py
{ "start": 572, "end": 709 }
class ____: def makefile(self, *args, **kwargs): return IO(b"GET /") def sendall(self, response): pass
MockRequest
python
kamyu104__LeetCode-Solutions
Python/two-sum-ii-input-array-is-sorted.py
{ "start": 29, "end": 373 }
class ____(object): def twoSum(self, nums, target): start, end = 0, len(nums) - 1 while start != end: sum = nums[start] + nums[end] if sum > target: end -= 1 elif sum < target: start += 1 else: return [start + 1, end + 1]
Solution
python
walkccc__LeetCode
solutions/3458. Select K Disjoint Special Substrings/3458.py
{ "start": 0, "end": 870 }
class ____: def maxSubstringLength(self, s: str, k: int) -> bool: n = len(s) first = [n] * 26 last = [-1] * 26 # dp[i] := the maximum disjoint special substrings for the first i letters dp = [0] * (n + 1) seenOrder = [] for i, c in enumerate(s): a = ord(c) - ord('a') if first[a] == n: first[a] = i seenOrder.append(c) last[a] = i for c in seenOrder: a = ord(c) - ord('a') for j in range(first[a], last[a]): b = ord(s[j]) - ord('a') first[a] = min(first[a], first[b]) last[a] = max(last[a], last[b]) for i, c in enumerate(s): a = ord(c) - ord('a') if last[a] != i or (first[a] == 0 and i == n - 1): dp[i + 1] = dp[i] else: # Start a new special substring. dp[i + 1] = max(dp[i], 1 + dp[first[a]]) return dp[n] >= k
Solution
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/test_vertex_ai.py
{ "start": 120231, "end": 124516 }
class ____: @mock.patch(VERTEX_AI_PATH.format("pipeline_job.PipelineJobHook")) @mock.patch("google.cloud.aiplatform_v1.types.PipelineJob.to_dict") def test_execute(self, to_dict_mock, mock_hook): op = RunPipelineJobOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, region=GCP_LOCATION, project_id=GCP_PROJECT, display_name=DISPLAY_NAME, template_path=TEST_TEMPLATE_PATH, job_id=TEST_PIPELINE_JOB_ID, pipeline_root="", parameter_values={}, input_artifacts={}, enable_caching=False, encryption_spec_key_name="", labels={}, failure_policy="", service_account="", network="", create_request_timeout=None, experiment=None, ) op.execute(context={"ti": mock.MagicMock(), "task": mock.MagicMock()}) mock_hook.assert_called_once_with(gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN) mock_hook.return_value.submit_pipeline_job.assert_called_once_with( project_id=GCP_PROJECT, region=GCP_LOCATION, display_name=DISPLAY_NAME, template_path=TEST_TEMPLATE_PATH, job_id=TEST_PIPELINE_JOB_ID, pipeline_root="", parameter_values={}, input_artifacts={}, enable_caching=False, encryption_spec_key_name="", labels={}, failure_policy="", service_account="", network="", create_request_timeout=None, experiment=None, ) @mock.patch(VERTEX_AI_PATH.format("pipeline_job.PipelineJobHook")) def test_execute_enters_deferred_state(self, mock_hook): task = RunPipelineJobOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, region=GCP_LOCATION, project_id=GCP_PROJECT, display_name=DISPLAY_NAME, template_path=TEST_TEMPLATE_PATH, job_id=TEST_PIPELINE_JOB_ID, deferrable=True, ) mock_hook.return_value.exists.return_value = False with pytest.raises(TaskDeferred) as exc: task.execute(context={"ti": mock.MagicMock(), "task": mock.MagicMock()}) assert isinstance(exc.value.trigger, RunPipelineJobTrigger), "Trigger is not a RunPipelineJobTrigger" @mock.patch(VERTEX_AI_PATH.format("pipeline_job.PipelineJobHook")) def test_execute_complete_success(self, mock_hook): task = RunPipelineJobOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, region=GCP_LOCATION, project_id=GCP_PROJECT, display_name=DISPLAY_NAME, template_path=TEST_TEMPLATE_PATH, job_id=TEST_PIPELINE_JOB_ID, deferrable=True, ) expected_pipeline_job = expected_result = { "name": f"projects/{GCP_PROJECT}/locations/{GCP_LOCATION}/pipelineJobs/{TEST_PIPELINE_JOB_ID}", } mock_hook.return_value.exists.return_value = False mock_ti = mock.MagicMock() mock_context = {"ti": mock_ti} actual_result = task.execute_complete( context=mock_context, event={"status": "success", "message": "", "job": expected_pipeline_job} ) assert actual_result == expected_result def test_execute_complete_error_status_raises_exception(self): task = RunPipelineJobOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, region=GCP_LOCATION, project_id=GCP_PROJECT, display_name=DISPLAY_NAME, template_path=TEST_TEMPLATE_PATH, job_id=TEST_PIPELINE_JOB_ID, deferrable=True, ) with pytest.raises(AirflowException): task.execute_complete( context=None, event={"status": "error", "message": "test message", "job": None} )
TestVertexAIRunPipelineJobOperator
python
pydantic__pydantic
tests/test_forward_ref.py
{ "start": 16411, "end": 17036 }
class ____(BaseModel): foo_user: FooUser user: User @field_serializer('user') def serialize_user(self, v): return f'User({v.y})' """ ) m = module.Model(foo_user={'x': 'user1'}, user={'y': 'user2'}) # TODO: How can we replicate this custom-encoder functionality without affecting the serialization of `User`? assert m.model_dump_json() == '{"foo_user":{"x":"user1"},"user":"User(user2)"}' def test_pep585_self_referencing_generics(create_module): module = create_module( # language=Python """ from __future__ import annotations from pydantic import BaseModel
Model
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 997211, "end": 997987 }
class ____(sgqlc.types.relay.Connection): """The connection type for TeamDiscussionComment.""" __schema__ = github_schema __field_names__ = ("edges", "nodes", "page_info", "total_count") edges = sgqlc.types.Field(sgqlc.types.list_of("TeamDiscussionCommentEdge"), graphql_name="edges") """A list of edges.""" nodes = sgqlc.types.Field(sgqlc.types.list_of("TeamDiscussionComment"), graphql_name="nodes") """A list of nodes.""" page_info = sgqlc.types.Field(sgqlc.types.non_null(PageInfo), graphql_name="pageInfo") """Information to aid in pagination.""" total_count = sgqlc.types.Field(sgqlc.types.non_null(Int), graphql_name="totalCount") """Identifies the total count of items in the connection."""
TeamDiscussionCommentConnection
python
run-llama__llama_index
llama-index-integrations/llms/llama-index-llms-nvidia-triton/llama_index/llms/nvidia_triton/utils.py
{ "start": 1877, "end": 3076 }
class ____(Queue): """A Generator that provides the inference results from an LLM.""" def __init__( self, client: "GrpcTritonClient", request_id: str, force_batch: bool, model_name: str, max_tokens: int, ) -> None: """Instantiate the generator class.""" super().__init__() self._client = client self.request_id = request_id self._batch = force_batch self._model_name = model_name self._max_tokens = max_tokens self._counter = 0 def __iter__(self) -> "StreamingResponseGenerator": """Return self as a generator.""" return self def __next__(self) -> str: """Return the next retrieved token.""" val = self.get() if val is None or val in STOP_WORDS or self._counter == self._max_tokens - 1: self._stop_stream() raise StopIteration self._counter += 1 return val def _stop_stream(self) -> None: """Drain and shutdown the Triton stream.""" self._client.stop_stream( self._model_name, self.request_id, signal=not self._batch )
StreamingResponseGenerator
python
django__django
tests/modeladmin/models.py
{ "start": 548, "end": 983 }
class ____(models.Model): main_band = models.ForeignKey(Band, models.CASCADE, related_name="main_concerts") opening_band = models.ForeignKey( Band, models.CASCADE, related_name="opening_concerts", blank=True ) day = models.CharField(max_length=3, choices=((1, "Fri"), (2, "Sat"))) transport = models.CharField( max_length=100, choices=((1, "Plane"), (2, "Train"), (3, "Bus")), blank=True )
Concert
python
kamyu104__LeetCode-Solutions
Python/maximum-number-of-non-overlapping-substrings.py
{ "start": 1207, "end": 2446 }
class ____(object): def maxNumOfSubstrings(self, s): """ :type s: str :rtype: List[str] """ def find_right_from_left(s, first, last, left): right, i = last[ord(s[left])-ord('a')], left while i <= right: if first[ord(s[i])-ord('a')] < left: return -1 right = max(right, last[ord(s[i])-ord('a')]) i += 1 return right first, last = [float("inf")]*26, [float("-inf")]*26 for i, c in enumerate(s): first[ord(c)-ord('a')] = min(first[ord(c)-ord('a')], i) last[ord(c)-ord('a')] = max(last[ord(c)-ord('a')], i) intervals = [] for c in xrange(len(first)): if first[c] == float("inf"): continue left, right = first[c], find_right_from_left(s, first, last, first[c]) if right != -1: intervals.append((right, left)) intervals.sort() # Time: O(26log26) result, prev = [], -1 for right, left in intervals: if left <= prev: continue result.append(s[left:right+1]) prev = right return result
Solution2
python
miyuchina__mistletoe
mistletoe/span_token.py
{ "start": 8941, "end": 9545 }
class ____(SpanToken): """ Span-level HTML token. This is an inline token without children. Attributes: content (str): the raw HTML content. """ pattern = re.compile('|'.join([_open_tag, _closing_tag, _comment, _instruction, _declaration, _cdata]), re.DOTALL) parse_inner = False parse_group = 0 HTMLSpan = HtmlSpan """ Deprecated name of the `HtmlSpan` class. """ # Note: The following XWiki tokens are based on the XWiki Syntax 2.0 (or above; 1.0 was deprecated years ago already).
HtmlSpan
python
getsentry__sentry
src/sentry/auth/providers/saml2/activedirectory/provider.py
{ "start": 80, "end": 197 }
class ____(GenericSAML2Provider): name = "Active Directory" key = "active-directory"
ActiveDirectorySAML2Provider
python
xlwings__xlwings
xlwings/_xlwindows.py
{ "start": 22427, "end": 24202 }
class ____(base_classes.Books): def __init__(self, xl, app): self.xl = xl self.app = app @property def api(self): return self.xl @property def active(self): return Book(self.xl.Application.ActiveWorkbook) def __call__(self, name_or_index): try: return Book(xl=self.xl(name_or_index)) except pywintypes.com_error: raise KeyError(name_or_index) def __len__(self): return self.xl.Count def add(self): return Book(xl=self.xl.Add()) def open( self, fullname, update_links=None, read_only=None, format=None, password=None, write_res_password=None, ignore_read_only_recommended=None, origin=None, delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None, local=None, corrupt_load=None, ): # update_links: According to VBA docs, only constants 0 and 3 are supported if update_links: update_links = UpdateLinks.xlUpdateLinksAlways # Workbooks.Open params are position only on pywin32 return Book( xl=self.xl.Open( fullname, update_links, read_only, format, password, write_res_password, ignore_read_only_recommended, origin, delimiter, editable, notify, converter, add_to_mru, local, corrupt_load, ) ) def __iter__(self): for xl in self.xl: yield Book(xl=xl)
Books
python
airbytehq__airbyte
airbyte-integrations/connectors/source-google-sheets/unit_tests/integration/conftest/request_builder.py
{ "start": 304, "end": 1636 }
class ____: @classmethod def get_account_endpoint(cls) -> RequestBuilder: return cls(resource="values:batchGet") def __init__(self, resource: str = None) -> None: self._spreadsheet_id = None self._query_params = {} self._body = None self.resource = resource def with_include_grid_data(self, include_grid_data: bool) -> RequestBuilder: self._query_params["includeGridData"] = "true" if include_grid_data else "false" return self def with_alt(self, alt: str) -> RequestBuilder: self._query_params["alt"] = alt return self def with_ranges(self, ranges: str) -> RequestBuilder: self._query_params["ranges"] = ranges return self def with_major_dimension(self, dimension: str) -> RequestBuilder: self._query_params["majorDimension"] = dimension return self def with_spreadsheet_id(self, spreadsheet_id: str) -> RequestBuilder: self._spreadsheet_id = spreadsheet_id return self def build(self) -> HttpRequest: endpoint = f"/{self.resource}" if self.resource else "" return HttpRequest( url=f"{GOOGLE_SHEETS_BASE_URL}/{self._spreadsheet_id}{endpoint}", query_params=self._query_params, body=self._body, )
RequestBuilder
python
dateutil__dateutil
src/dateutil/tz/tz.py
{ "start": 5055, "end": 8940 }
class ____(_tzinfo): """ A :class:`tzinfo` subclass built around the ``time`` timezone functions. """ def __init__(self): super(tzlocal, self).__init__() self._std_offset = datetime.timedelta(seconds=-time.timezone) if time.daylight: self._dst_offset = datetime.timedelta(seconds=-time.altzone) else: self._dst_offset = self._std_offset self._dst_saved = self._dst_offset - self._std_offset self._hasdst = bool(self._dst_saved) self._tznames = tuple(time.tzname) def utcoffset(self, dt): if dt is None and self._hasdst: return None if self._isdst(dt): return self._dst_offset else: return self._std_offset def dst(self, dt): if dt is None and self._hasdst: return None if self._isdst(dt): return self._dst_offset - self._std_offset else: return ZERO @tzname_in_python2 def tzname(self, dt): return self._tznames[self._isdst(dt)] def is_ambiguous(self, dt): """ Whether or not the "wall time" of a given datetime is ambiguous in this zone. :param dt: A :py:class:`datetime.datetime`, naive or time zone aware. :return: Returns ``True`` if ambiguous, ``False`` otherwise. .. versionadded:: 2.6.0 """ naive_dst = self._naive_is_dst(dt) return (not naive_dst and (naive_dst != self._naive_is_dst(dt - self._dst_saved))) def _naive_is_dst(self, dt): timestamp = _datetime_to_timestamp(dt) return time.localtime(timestamp + time.timezone).tm_isdst def _isdst(self, dt, fold_naive=True): # We can't use mktime here. It is unstable when deciding if # the hour near to a change is DST or not. # # timestamp = time.mktime((dt.year, dt.month, dt.day, dt.hour, # dt.minute, dt.second, dt.weekday(), 0, -1)) # return time.localtime(timestamp).tm_isdst # # The code above yields the following result: # # >>> import tz, datetime # >>> t = tz.tzlocal() # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRDT' # >>> datetime.datetime(2003,2,16,0,tzinfo=t).tzname() # 'BRST' # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRST' # >>> datetime.datetime(2003,2,15,22,tzinfo=t).tzname() # 'BRDT' # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRDT' # # Here is a more stable implementation: # if not self._hasdst: return False # Check for ambiguous times: dstval = self._naive_is_dst(dt) fold = getattr(dt, 'fold', None) if self.is_ambiguous(dt): if fold is not None: return not self._fold(dt) else: return True return dstval def __eq__(self, other): if isinstance(other, tzlocal): return (self._std_offset == other._std_offset and self._dst_offset == other._dst_offset) elif isinstance(other, tzutc): return (not self._hasdst and self._tznames[0] in {'UTC', 'GMT'} and self._std_offset == ZERO) elif isinstance(other, tzoffset): return (not self._hasdst and self._tznames[0] == other._name and self._std_offset == other._offset) else: return NotImplemented __hash__ = None def __ne__(self, other): return not (self == other) def __repr__(self): return "%s()" % self.__class__.__name__ __reduce__ = object.__reduce__
tzlocal
python
pytest-dev__pytest
src/_pytest/config/__init__.py
{ "start": 3298, "end": 7103 }
class ____(Exception): def __init__( self, path: pathlib.Path, *, cause: Exception, ) -> None: self.path = path self.cause = cause def __str__(self) -> str: return f"{type(self.cause).__name__}: {self.cause} (from {self.path})" def filter_traceback_for_conftest_import_failure( entry: _pytest._code.TracebackEntry, ) -> bool: """Filter tracebacks entries which point to pytest internals or importlib. Make a special case for importlib because we use it to import test modules and conftest files in _pytest.pathlib.import_path. """ return filter_traceback(entry) and "importlib" not in str(entry.path).split(os.sep) def print_conftest_import_error(e: ConftestImportFailure, file: TextIO) -> None: exc_info = ExceptionInfo.from_exception(e.cause) tw = TerminalWriter(file) tw.line(f"ImportError while loading conftest '{e.path}'.", red=True) exc_info.traceback = exc_info.traceback.filter( filter_traceback_for_conftest_import_failure ) exc_repr = ( exc_info.getrepr(style="short", chain=False) if exc_info.traceback else exc_info.exconly() ) formatted_tb = str(exc_repr) for line in formatted_tb.splitlines(): tw.line(line.rstrip(), red=True) def print_usage_error(e: UsageError, file: TextIO) -> None: tw = TerminalWriter(file) for msg in e.args: tw.line(f"ERROR: {msg}\n", red=True) def main( args: list[str] | os.PathLike[str] | None = None, plugins: Sequence[str | _PluggyPlugin] | None = None, ) -> int | ExitCode: """Perform an in-process test run. :param args: List of command line arguments. If `None` or not given, defaults to reading arguments directly from the process command line (:data:`sys.argv`). :param plugins: List of plugin objects to be auto-registered during initialization. :returns: An exit code. """ # Handle a single `--version` argument early to avoid starting up the entire pytest infrastructure. new_args = sys.argv[1:] if args is None else args if isinstance(new_args, Sequence) and new_args.count("--version") == 1: sys.stdout.write(f"pytest {__version__}\n") return ExitCode.OK old_pytest_version = os.environ.get("PYTEST_VERSION") try: os.environ["PYTEST_VERSION"] = __version__ try: config = _prepareconfig(new_args, plugins) except ConftestImportFailure as e: print_conftest_import_error(e, file=sys.stderr) return ExitCode.USAGE_ERROR try: ret: ExitCode | int = config.hook.pytest_cmdline_main(config=config) try: return ExitCode(ret) except ValueError: return ret finally: config._ensure_unconfigure() except UsageError as e: print_usage_error(e, file=sys.stderr) return ExitCode.USAGE_ERROR finally: if old_pytest_version is None: os.environ.pop("PYTEST_VERSION", None) else: os.environ["PYTEST_VERSION"] = old_pytest_version def console_main() -> int: """The CLI entry point of pytest. This function is not meant for programmable use; use `main()` instead. """ # https://docs.python.org/3/library/signal.html#note-on-sigpipe try: code = main() sys.stdout.flush() return code except BrokenPipeError: # Python flushes standard streams on exit; redirect remaining output # to devnull to avoid another BrokenPipeError at shutdown devnull = os.open(os.devnull, os.O_WRONLY) os.dup2(devnull, sys.stdout.fileno()) return 1 # Python exits with error code 1 on EPIPE
ConftestImportFailure
python
davidhalter__jedi
jedi/inference/value/instance.py
{ "start": 18087, "end": 19062 }
class ____(TreeNameDefinition): """ This name calculates the parent_context lazily. """ def __init__(self, instance, class_context, tree_name): self._instance = instance self.class_context = class_context self.tree_name = tree_name @property def parent_context(self): return self._instance.create_instance_context(self.class_context, self.tree_name) def get_defining_qualified_value(self): return self._instance def infer(self): stmt = search_ancestor(self.tree_name, 'expr_stmt') if stmt is not None: if stmt.children[1].type == "annassign": from jedi.inference.gradual.annotation import infer_annotation values = infer_annotation( self.parent_context, stmt.children[1].children[1] ).execute_annotation() if values: return values return super().infer()
SelfName
python
dask__dask
dask/dataframe/dask_expr/_merge.py
{ "start": 28397, "end": 28618 }
class ____(Merge): def _lower(self): # This is cheap and avoids shuffling unnecessary data right = DropDuplicatesBlockwise(self.right) return Merge(self.left, right, *self.operands[2:])
SemiMerge
python
pypa__pip
src/pip/_internal/utils/temp_dir.py
{ "start": 6597, "end": 9307 }
class ____(TempDirectory): """Helper class that creates a temporary directory adjacent to a real one. Attributes: original The original directory to create a temp directory for. path After calling create() or entering, contains the full path to the temporary directory. delete Whether the directory should be deleted when exiting (when used as a contextmanager) """ # The characters that may be used to name the temp directory # We always prepend a ~ and then rotate through these until # a usable name is found. # pkg_resources raises a different error for .dist-info folder # with leading '-' and invalid metadata LEADING_CHARS = "-~.=%0123456789" def __init__(self, original: str, delete: bool | None = None) -> None: self.original = original.rstrip("/\\") super().__init__(delete=delete) @classmethod def _generate_names(cls, name: str) -> Generator[str, None, None]: """Generates a series of temporary names. The algorithm replaces the leading characters in the name with ones that are valid filesystem characters, but are not valid package names (for both Python and pip definitions of package). """ for i in range(1, len(name)): for candidate in itertools.combinations_with_replacement( cls.LEADING_CHARS, i - 1 ): new_name = "~" + "".join(candidate) + name[i:] if new_name != name: yield new_name # If we make it this far, we will have to make a longer name for i in range(len(cls.LEADING_CHARS)): for candidate in itertools.combinations_with_replacement( cls.LEADING_CHARS, i ): new_name = "~" + "".join(candidate) + name if new_name != name: yield new_name def _create(self, kind: str) -> str: root, name = os.path.split(self.original) for candidate in self._generate_names(name): path = os.path.join(root, candidate) try: os.mkdir(path) except OSError as ex: # Continue if the name exists already if ex.errno != errno.EEXIST: raise else: path = os.path.realpath(path) break else: # Final fallback on the default behavior. path = os.path.realpath(tempfile.mkdtemp(prefix=f"pip-{kind}-")) logger.debug("Created temporary directory: %s", path) return path
AdjacentTempDirectory
python
allegroai__clearml
clearml/backend_api/services/v2_23/queues.py
{ "start": 23845, "end": 26540 }
class ____(Request): """ Create a new queue :param name: Queue name Unique within the company. :type name: str :param tags: User-defined tags list :type tags: Sequence[str] :param system_tags: System tags list. This field is reserved for system use, please don't use it. :type system_tags: Sequence[str] """ _service = "queues" _action = "create" _version = "2.23" _schema = { "definitions": {}, "properties": { "name": { "description": "Queue name Unique within the company.", "type": "string", }, "system_tags": { "description": "System tags list. This field is reserved for system use, please don't use it.", "items": {"type": "string"}, "type": "array", }, "tags": { "description": "User-defined tags list", "items": {"type": "string"}, "type": "array", }, }, "required": ["name"], "type": "object", } def __init__( self, name: str, tags: Optional[List[str]] = None, system_tags: Optional[List[str]] = None, **kwargs: Any ) -> None: super(CreateRequest, self).__init__(**kwargs) self.name = name self.tags = tags self.system_tags = system_tags @schema_property("name") def name(self) -> str: return self._property_name @name.setter def name(self, value: str) -> None: if value is None: self._property_name = None return self.assert_isinstance(value, "name", six.string_types) self._property_name = value @schema_property("tags") def tags(self) -> Optional[List[str]]: return self._property_tags @tags.setter def tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_tags = None return self.assert_isinstance(value, "tags", (list, tuple)) self.assert_isinstance(value, "tags", six.string_types, is_array=True) self._property_tags = value @schema_property("system_tags") def system_tags(self) -> Optional[List[str]]: return self._property_system_tags @system_tags.setter def system_tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_system_tags = None return self.assert_isinstance(value, "system_tags", (list, tuple)) self.assert_isinstance(value, "system_tags", six.string_types, is_array=True) self._property_system_tags = value
CreateRequest
python
rapidsai__cudf
python/cudf_polars/cudf_polars/utils/config.py
{ "start": 32964, "end": 33434 }
class ____: """ Configuration for the CUDA stream pool. Parameters ---------- pool_size The size of the CUDA stream pool. flags The flags to use for the CUDA stream pool. """ pool_size: int = 16 flags: CudaStreamFlags = CudaStreamFlags.NON_BLOCKING def build(self) -> CudaStreamPool: return CudaStreamPool( pool_size=self.pool_size, flags=self.flags, )
CUDAStreamPoolConfig
python
RaRe-Technologies__gensim
gensim/models/ldaseqmodel.py
{ "start": 28864, "end": 48810 }
class ____(utils.SaveLoad): """Encapsulate the inner State Space Language Model for DTM. Some important attributes of this class: * `obs` is a matrix containing the document to topic ratios. * `e_log_prob` is a matrix containing the topic to word ratios. * `mean` contains the mean values to be used for inference for each word for a time slice. * `variance` contains the variance values to be used for inference of word in a time slice. * `fwd_mean` and`fwd_variance` are the forward posterior values for the mean and the variance. * `zeta` is an extra variational parameter with a value for each time slice. """ def __init__(self, vocab_len=None, num_time_slices=None, num_topics=None, obs_variance=0.5, chain_variance=0.005): self.vocab_len = vocab_len self.num_time_slices = num_time_slices self.obs_variance = obs_variance self.chain_variance = chain_variance self.num_topics = num_topics # setting up matrices self.obs = np.zeros((vocab_len, num_time_slices)) self.e_log_prob = np.zeros((vocab_len, num_time_slices)) self.mean = np.zeros((vocab_len, num_time_slices + 1)) self.fwd_mean = np.zeros((vocab_len, num_time_slices + 1)) self.fwd_variance = np.zeros((vocab_len, num_time_slices + 1)) self.variance = np.zeros((vocab_len, num_time_slices + 1)) self.zeta = np.zeros(num_time_slices) # the following are class variables which are to be integrated during Document Influence Model self.m_update_coeff = None self.mean_t = None self.variance_t = None self.influence_sum_lgl = None self.w_phi_l = None self.w_phi_sum = None self.w_phi_l_sq = None self.m_update_coeff_g = None def update_zeta(self): """Update the Zeta variational parameter. Zeta is described in the appendix and is equal to sum (exp(mean[word] + Variance[word] / 2)), over every time-slice. It is the value of variational parameter zeta which maximizes the lower bound. Returns ------- list of float The updated zeta values for each time slice. """ for j, val in enumerate(self.zeta): self.zeta[j] = np.sum(np.exp(self.mean[:, j + 1] + self.variance[:, j + 1] / 2)) return self.zeta def compute_post_variance(self, word, chain_variance): r"""Get the variance, based on the `Variational Kalman Filtering approach for Approximate Inference (section 3.1) <https://mimno.infosci.cornell.edu/info6150/readings/dynamic_topic_models.pdf>`_. This function accepts the word to compute variance for, along with the associated sslm class object, and returns the `variance` and the posterior approximation `fwd_variance`. Notes ----- This function essentially computes Var[\beta_{t,w}] for t = 1:T .. :math:: fwd\_variance[t] \equiv E((beta_{t,w}-mean_{t,w})^2 |beta_{t}\ for\ 1:t) = (obs\_variance / fwd\_variance[t - 1] + chain\_variance + obs\_variance ) * (fwd\_variance[t - 1] + obs\_variance) .. :math:: variance[t] \equiv E((beta_{t,w}-mean\_cap_{t,w})^2 |beta\_cap_{t}\ for\ 1:t) = fwd\_variance[t - 1] + (fwd\_variance[t - 1] / fwd\_variance[t - 1] + obs\_variance)^2 * (variance[t - 1] - (fwd\_variance[t-1] + obs\_variance)) Parameters ---------- word: int The word's ID. chain_variance : float Gaussian parameter defined in the beta distribution to dictate how the beta values evolve over time. Returns ------- (numpy.ndarray, numpy.ndarray) The first returned value is the variance of each word in each time slice, the second value is the inferred posterior variance for the same pairs. """ INIT_VARIANCE_CONST = 1000 T = self.num_time_slices variance = self.variance[word] fwd_variance = self.fwd_variance[word] # forward pass. Set initial variance very high fwd_variance[0] = chain_variance * INIT_VARIANCE_CONST for t in range(1, T + 1): if self.obs_variance: c = self.obs_variance / (fwd_variance[t - 1] + chain_variance + self.obs_variance) else: c = 0 fwd_variance[t] = c * (fwd_variance[t - 1] + chain_variance) # backward pass variance[T] = fwd_variance[T] for t in range(T - 1, -1, -1): if fwd_variance[t] > 0.0: c = np.power((fwd_variance[t] / (fwd_variance[t] + chain_variance)), 2) else: c = 0 variance[t] = (c * (variance[t + 1] - chain_variance)) + ((1 - c) * fwd_variance[t]) return variance, fwd_variance def compute_post_mean(self, word, chain_variance): """Get the mean, based on the `Variational Kalman Filtering approach for Approximate Inference (section 3.1) <https://mimno.infosci.cornell.edu/info6150/readings/dynamic_topic_models.pdf>`_. Notes ----- This function essentially computes E[\beta_{t,w}] for t = 1:T. .. :math:: Fwd_Mean(t) ≡ E(beta_{t,w} | beta_ˆ 1:t ) = (obs_variance / fwd_variance[t - 1] + chain_variance + obs_variance ) * fwd_mean[t - 1] + (1 - (obs_variance / fwd_variance[t - 1] + chain_variance + obs_variance)) * beta .. :math:: Mean(t) ≡ E(beta_{t,w} | beta_ˆ 1:T ) = fwd_mean[t - 1] + (obs_variance / fwd_variance[t - 1] + obs_variance) + (1 - obs_variance / fwd_variance[t - 1] + obs_variance)) * mean[t] Parameters ---------- word: int The word's ID. chain_variance : float Gaussian parameter defined in the beta distribution to dictate how the beta values evolve over time. Returns ------- (numpy.ndarray, numpy.ndarray) The first returned value is the mean of each word in each time slice, the second value is the inferred posterior mean for the same pairs. """ T = self.num_time_slices obs = self.obs[word] fwd_variance = self.fwd_variance[word] mean = self.mean[word] fwd_mean = self.fwd_mean[word] # forward fwd_mean[0] = 0 for t in range(1, T + 1): c = self.obs_variance / (fwd_variance[t - 1] + chain_variance + self.obs_variance) fwd_mean[t] = c * fwd_mean[t - 1] + (1 - c) * obs[t - 1] # backward pass mean[T] = fwd_mean[T] for t in range(T - 1, -1, -1): if chain_variance == 0.0: c = 0.0 else: c = chain_variance / (fwd_variance[t] + chain_variance) mean[t] = c * fwd_mean[t] + (1 - c) * mean[t + 1] return mean, fwd_mean def compute_expected_log_prob(self): """Compute the expected log probability given values of m. The appendix describes the Expectation of log-probabilities in equation 5 of the DTM paper; The below implementation is the result of solving the equation and is implemented as in the original Blei DTM code. Returns ------- numpy.ndarray of float The expected value for the log probabilities for each word and time slice. """ for (w, t), val in np.ndenumerate(self.e_log_prob): self.e_log_prob[w][t] = self.mean[w][t + 1] - np.log(self.zeta[t]) return self.e_log_prob def sslm_counts_init(self, obs_variance, chain_variance, sstats): """Initialize the State Space Language Model with LDA sufficient statistics. Called for each topic-chain and initializes initial mean, variance and Topic-Word probabilities for the first time-slice. Parameters ---------- obs_variance : float, optional Observed variance used to approximate the true and forward variance. chain_variance : float Gaussian parameter defined in the beta distribution to dictate how the beta values evolve over time. sstats : numpy.ndarray Sufficient statistics of the LDA model. Corresponds to matrix beta in the linked paper for time slice 0, expected shape (`self.vocab_len`, `num_topics`). """ W = self.vocab_len T = self.num_time_slices log_norm_counts = np.copy(sstats) log_norm_counts /= sum(log_norm_counts) log_norm_counts += 1.0 / W log_norm_counts /= sum(log_norm_counts) log_norm_counts = np.log(log_norm_counts) # setting variational observations to transformed counts self.obs = (np.repeat(log_norm_counts, T, axis=0)).reshape(W, T) # set variational parameters self.obs_variance = obs_variance self.chain_variance = chain_variance # compute post variance, mean for w in range(W): self.variance[w], self.fwd_variance[w] = self.compute_post_variance(w, self.chain_variance) self.mean[w], self.fwd_mean[w] = self.compute_post_mean(w, self.chain_variance) self.zeta = self.update_zeta() self.e_log_prob = self.compute_expected_log_prob() def fit_sslm(self, sstats): """Fits variational distribution. This is essentially the m-step. Maximizes the approximation of the true posterior for a particular topic using the provided sufficient statistics. Updates the values using :meth:`~gensim.models.ldaseqmodel.sslm.update_obs` and :meth:`~gensim.models.ldaseqmodel.sslm.compute_expected_log_prob`. Parameters ---------- sstats : numpy.ndarray Sufficient statistics for a particular topic. Corresponds to matrix beta in the linked paper for the current time slice, expected shape (`self.vocab_len`, `num_topics`). Returns ------- float The lower bound for the true posterior achieved using the fitted approximate distribution. """ W = self.vocab_len bound = 0 old_bound = 0 sslm_fit_threshold = 1e-6 sslm_max_iter = 2 converged = sslm_fit_threshold + 1 # computing variance, fwd_variance self.variance, self.fwd_variance = \ (np.array(x) for x in zip(*(self.compute_post_variance(w, self.chain_variance) for w in range(W)))) # column sum of sstats totals = sstats.sum(axis=0) iter_ = 0 model = "DTM" if model == "DTM": bound = self.compute_bound(sstats, totals) if model == "DIM": bound = self.compute_bound_fixed(sstats, totals) logger.info("initial sslm bound is %f", bound) while converged > sslm_fit_threshold and iter_ < sslm_max_iter: iter_ += 1 old_bound = bound self.obs, self.zeta = self.update_obs(sstats, totals) if model == "DTM": bound = self.compute_bound(sstats, totals) if model == "DIM": bound = self.compute_bound_fixed(sstats, totals) converged = np.fabs((bound - old_bound) / old_bound) logger.info("iteration %i iteration lda seq bound is %f convergence is %f", iter_, bound, converged) self.e_log_prob = self.compute_expected_log_prob() return bound def compute_bound(self, sstats, totals): """Compute the maximized lower bound achieved for the log probability of the true posterior. Uses the formula presented in the appendix of the DTM paper (formula no. 5). Parameters ---------- sstats : numpy.ndarray Sufficient statistics for a particular topic. Corresponds to matrix beta in the linked paper for the first time slice, expected shape (`self.vocab_len`, `num_topics`). totals : list of int of length `len(self.time_slice)` The totals for each time slice. Returns ------- float The maximized lower bound. """ w = self.vocab_len t = self.num_time_slices term_1 = 0 term_2 = 0 term_3 = 0 val = 0 ent = 0 chain_variance = self.chain_variance # computing mean, fwd_mean self.mean, self.fwd_mean = \ (np.array(x) for x in zip(*(self.compute_post_mean(w, self.chain_variance) for w in range(w)))) self.zeta = self.update_zeta() val = sum(self.variance[w][0] - self.variance[w][t] for w in range(w)) / 2 * chain_variance logger.info("Computing bound, all times") for t in range(1, t + 1): term_1 = 0.0 term_2 = 0.0 ent = 0.0 for w in range(w): m = self.mean[w][t] prev_m = self.mean[w][t - 1] v = self.variance[w][t] # w_phi_l is only used in Document Influence Model; the values are always zero in this case # w_phi_l = sslm.w_phi_l[w][t - 1] # exp_i = np.exp(-prev_m) # term_1 += (np.power(m - prev_m - (w_phi_l * exp_i), 2) / (2 * chain_variance)) - # (v / chain_variance) - np.log(chain_variance) term_1 += \ (np.power(m - prev_m, 2) / (2 * chain_variance)) - (v / chain_variance) - np.log(chain_variance) term_2 += sstats[w][t - 1] * m ent += np.log(v) / 2 # note the 2pi's cancel with term1 (see doc) term_3 = -totals[t - 1] * np.log(self.zeta[t - 1]) val += term_2 + term_3 + ent - term_1 return val def update_obs(self, sstats, totals): """Optimize the bound with respect to the observed variables. TODO: This is by far the slowest function in the whole algorithm. Replacing or improving the performance of this would greatly speed things up. Parameters ---------- sstats : numpy.ndarray Sufficient statistics for a particular topic. Corresponds to matrix beta in the linked paper for the first time slice, expected shape (`self.vocab_len`, `num_topics`). totals : list of int of length `len(self.time_slice)` The totals for each time slice. Returns ------- (numpy.ndarray of float, numpy.ndarray of float) The updated optimized values for obs and the zeta variational parameter. """ OBS_NORM_CUTOFF = 2 STEP_SIZE = 0.01 TOL = 1e-3 W = self.vocab_len T = self.num_time_slices runs = 0 mean_deriv_mtx = np.zeros((T, T + 1)) norm_cutoff_obs = None for w in range(W): w_counts = sstats[w] counts_norm = 0 # now we find L2 norm of w_counts for i in range(len(w_counts)): counts_norm += w_counts[i] * w_counts[i] counts_norm = np.sqrt(counts_norm) if counts_norm < OBS_NORM_CUTOFF and norm_cutoff_obs is not None: obs = self.obs[w] norm_cutoff_obs = np.copy(obs) else: if counts_norm < OBS_NORM_CUTOFF: w_counts = np.zeros(len(w_counts)) # TODO: apply lambda function for t in range(T): mean_deriv_mtx[t] = self.compute_mean_deriv(w, t, mean_deriv_mtx[t]) deriv = np.zeros(T) args = self, w_counts, totals, mean_deriv_mtx, w, deriv obs = self.obs[w] model = "DTM" if model == "DTM": # slowest part of method obs = optimize.fmin_cg( f=f_obs, fprime=df_obs, x0=obs, gtol=TOL, args=args, epsilon=STEP_SIZE, disp=0 ) if model == "DIM": pass runs += 1 if counts_norm < OBS_NORM_CUTOFF: norm_cutoff_obs = obs self.obs[w] = obs self.zeta = self.update_zeta() return self.obs, self.zeta def compute_mean_deriv(self, word, time, deriv): """Helper functions for optimizing a function. Compute the derivative of: .. :math:: E[\beta_{t,w}]/d obs_{s,w} for t = 1:T. Parameters ---------- word : int The word's ID. time : int The time slice. deriv : list of float Derivative for each time slice. Returns ------- list of float Mean derivative for each time slice. """ T = self.num_time_slices fwd_variance = self.variance[word] deriv[0] = 0 # forward pass for t in range(1, T + 1): if self.obs_variance > 0.0: w = self.obs_variance / (fwd_variance[t - 1] + self.chain_variance + self.obs_variance) else: w = 0.0 val = w * deriv[t - 1] if time == t - 1: val += (1 - w) deriv[t] = val for t in range(T - 1, -1, -1): if self.chain_variance == 0.0: w = 0.0 else: w = self.chain_variance / (fwd_variance[t] + self.chain_variance) deriv[t] = w * deriv[t] + (1 - w) * deriv[t + 1] return deriv def compute_obs_deriv(self, word, word_counts, totals, mean_deriv_mtx, deriv): """Derivation of obs which is used in derivative function `df_obs` while optimizing. Parameters ---------- word : int The word's ID. word_counts : list of int Total word counts for each time slice. totals : list of int of length `len(self.time_slice)` The totals for each time slice. mean_deriv_mtx : list of float Mean derivative for each time slice. deriv : list of float Mean derivative for each time slice. Returns ------- list of float Mean derivative for each time slice. """ # flag init_mult = 1000 T = self.num_time_slices mean = self.mean[word] variance = self.variance[word] # only used for DIM mode # w_phi_l = self.w_phi_l[word] # m_update_coeff = self.m_update_coeff[word] # temp_vector holds temporary zeta values self.temp_vect = np.zeros(T) for u in range(T): self.temp_vect[u] = np.exp(mean[u + 1] + variance[u + 1] / 2) for t in range(T): mean_deriv = mean_deriv_mtx[t] term1 = 0 term2 = 0 term3 = 0 term4 = 0 for u in range(1, T + 1): mean_u = mean[u] mean_u_prev = mean[u - 1] dmean_u = mean_deriv[u] dmean_u_prev = mean_deriv[u - 1] term1 += (mean_u - mean_u_prev) * (dmean_u - dmean_u_prev) term2 += (word_counts[u - 1] - (totals[u - 1] * self.temp_vect[u - 1] / self.zeta[u - 1])) * dmean_u model = "DTM" if model == "DIM": # do some stuff pass if self.chain_variance: term1 = - (term1 / self.chain_variance) term1 = term1 - (mean[0] * mean_deriv[0]) / (init_mult * self.chain_variance) else: term1 = 0.0 deriv[t] = term1 + term2 + term3 + term4 return deriv
sslm
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte/managed/generated/sources.py
{ "start": 245862, "end": 248174 }
class ____(GeneratedAirbyteSource): class AuthenticateViaHarvestOAuth: @public def __init__( self, client_id: str, client_secret: str, refresh_token: str, auth_type: Optional[str] = None, ): self.auth_type = check.opt_str_param(auth_type, "auth_type") self.client_id = check.str_param(client_id, "client_id") self.client_secret = check.str_param(client_secret, "client_secret") self.refresh_token = check.str_param(refresh_token, "refresh_token") class AuthenticateWithPersonalAccessToken: @public def __init__(self, api_token: str, auth_type: Optional[str] = None): self.auth_type = check.opt_str_param(auth_type, "auth_type") self.api_token = check.str_param(api_token, "api_token") @public def __init__( self, name: str, account_id: str, replication_start_date: str, credentials: Union[ "HarvestSource.AuthenticateViaHarvestOAuth", "HarvestSource.AuthenticateWithPersonalAccessToken", ], ): """Airbyte Source for Harvest. Documentation can be found at https://docs.airbyte.com/integrations/sources/harvest Args: name (str): The name of the destination. account_id (str): Harvest account ID. Required for all Harvest requests in pair with Personal Access Token replication_start_date (str): UTC date and time in the format 2017-01-25T00:00:00Z. Any data before this date will not be replicated. credentials (Union[HarvestSource.AuthenticateViaHarvestOAuth, HarvestSource.AuthenticateWithPersonalAccessToken]): Choose how to authenticate to Harvest. """ self.account_id = check.str_param(account_id, "account_id") self.replication_start_date = check.str_param( replication_start_date, "replication_start_date" ) self.credentials = check.inst_param( credentials, "credentials", ( HarvestSource.AuthenticateViaHarvestOAuth, HarvestSource.AuthenticateWithPersonalAccessToken, ), ) super().__init__("Harvest", name)
HarvestSource
python
scikit-image__scikit-image
src/skimage/_shared/utils.py
{ "start": 16210, "end": 18239 }
class ____: """Class to indicate a failed transform estimation. The ``from_estimate`` class method of each transform type may return an instance of this class to indicate some failure in the estimation process. Parameters ---------- message : str Message indicating reason for failed estimation. Attributes ---------- message : str Message above. Raises ------ FailedEstimationAccessError Exception raised for missing attributes or if the instance is used as a callable. """ error_cls = FailedEstimationAccessError hint = ( "You can check for a failed estimation by truth testing the returned " "object. For failed estimations, `bool(estimation_result)` will be `False`. " "E.g.\n\n" " if not estimation_result:\n" " raise RuntimeError(f'Failed estimation: {estimation_result}')" ) def __init__(self, message): self.message = message def __bool__(self): return False def __repr__(self): return f"{type(self).__name__}({self.message!r})" def __str__(self): return self.message def __call__(self, *args, **kwargs): msg = ( f'{type(self).__name__} is not callable. {self.message}\n\n' f'Hint: {self.hint}' ) raise self.error_cls(msg) def __getattr__(self, name): msg = ( f'{type(self).__name__} has no attribute {name!r}. {self.message}\n\n' f'Hint: {self.hint}' ) raise self.error_cls(msg) @contextmanager def _ignore_deprecated_estimate_warning(): """Filter warnings about the deprecated `estimate` method. Use either as decorator or context manager. """ with warnings.catch_warnings(): warnings.filterwarnings( action="ignore", category=FutureWarning, message="`estimate` is deprecated", module="skimage", ) yield
FailedEstimation
python
tensorflow__tensorflow
tensorflow/python/training/monitored_session.py
{ "start": 38115, "end": 41522 }
class ____(_MonitoredSession): """Session-like object that handles initialization, recovery and hooks. Example usage: ```python saver_hook = CheckpointSaverHook(...) summary_hook = SummarySaverHook(...) with MonitoredSession(session_creator=ChiefSessionCreator(...), hooks=[saver_hook, summary_hook]) as sess: while not sess.should_stop(): sess.run(train_op) ``` Initialization: At creation time the monitored session does following things in given order: * calls `hook.begin()` for each given hook * finalizes the graph via `scaffold.finalize()` * create session * initializes the model via initialization ops provided by `Scaffold` * restores variables if a checkpoint exists * launches queue runners * calls `hook.after_create_session()` Run: When `run()` is called, the monitored session does following things: * calls `hook.before_run()` * calls TensorFlow `session.run()` with merged fetches and feed_dict * calls `hook.after_run()` * returns result of `session.run()` asked by user * if `AbortedError` or `UnavailableError` occurs, it recovers or reinitializes the session before executing the run() call again Exit: At the `close()`, the monitored session does following things in order: * calls `hook.end()` * closes the queue runners and the session * suppresses `OutOfRange` error which indicates that all inputs have been processed if the monitored_session is used as a context How to set `tf.compat.v1.Session` arguments: * In most cases you can set session arguments as follows: ```python MonitoredSession( session_creator=ChiefSessionCreator(master=..., config=...)) ``` * In distributed setting for a non-chief worker, you can use following: ```python MonitoredSession( session_creator=WorkerSessionCreator(master=..., config=...)) ``` See `MonitoredTrainingSession` for an example usage based on chief or worker. Note: This is not a `tf.compat.v1.Session`. For example, it cannot do following: * it cannot be set as default session. * it cannot be sent to saver.save. * it cannot be sent to tf.train.start_queue_runners. @compatibility(TF2) This API is not compatible with eager execution and `tf.function`. To migrate to TF2, rewrite the code to be compatible with eager execution. Check the [migration guide](https://www.tensorflow.org/guide/migrate#1_replace_v1sessionrun_calls) on replacing `Session.run` calls. In Keras, session hooks can be replaced by Callbacks e.g. [logging hook notebook]( https://github.com/tensorflow/docs/blob/master/site/en/guide/migrate/logging_stop_hook.ipynb) For more details please read [Better performance with tf.function](https://www.tensorflow.org/guide/function). @end_compatibility Args: session_creator: A factory object to create session. Typically a `ChiefSessionCreator` which is the default one. hooks: An iterable of `SessionRunHook' objects. Returns: A MonitoredSession object. """ def __init__(self, session_creator=None, hooks=None, stop_grace_period_secs=120): super(MonitoredSession, self).__init__( session_creator, hooks, should_recover=True, stop_grace_period_secs=stop_grace_period_secs) @tf_export(v1=['train.SingularMonitoredSession'])
MonitoredSession
python
getsentry__sentry
src/sentry/apidocs/parameters.py
{ "start": 30193, "end": 30431 }
class ____: DASHBOARD_ID = OpenApiParameter( name="dashboard_id", location="path", required=True, type=int, description="""The ID of the dashboard you'd like to retrieve.""", )
DashboardParams
python
pypa__pipenv
pipenv/patched/pip/_internal/commands/show.py
{ "start": 918, "end": 1920 }
class ____(Command): """ Show information about one or more installed packages. The output is in RFC-compliant mail header format. """ usage = """ %prog [options] <package> ...""" ignore_require_venv = True def add_options(self) -> None: self.cmd_opts.add_option( "-f", "--files", dest="files", action="store_true", default=False, help="Show the full list of installed files for each package.", ) self.parser.insert_option_group(0, self.cmd_opts) def run(self, options: Values, args: List[str]) -> int: if not args: logger.warning("ERROR: Please provide a package name or names.") return ERROR query = args results = search_packages_info(query) if not print_results( results, list_files=options.files, verbose=options.verbose ): return ERROR return SUCCESS
ShowCommand
python
catalyst-team__catalyst
catalyst/engines/torch.py
{ "start": 1234, "end": 5867 }
class ____(Engine): """Distributed multi-GPU-based engine. Args: *args: args for Accelerator.__init__ address: master node (rank 0)'s address, should be either the IP address or the hostname of node 0, for single node multi-proc training, can simply be 127.0.0.1 port: master node (rank 0)'s free port that needs to be used for communication during distributed training world_size: the number of processes to use for distributed training. Should be less or equal to the number of GPUs workers_dist_rank: the rank of the first process to run on the node. It should be a number between `number of initialized processes` and `world_size - 1`, the other processes on the node wiil have ranks `# of initialized processes + 1`, `# of initialized processes + 2`, ..., `# of initialized processes + num_node_workers - 1` num_node_workers: the number of processes to launch on the node. For GPU training, this is recommended to be set to the number of GPUs on the current node so that each process can be bound to a single GPU process_group_kwargs: parameters for `torch.distributed.init_process_group`. More info here: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group # noqa: E501, W505 **kwargs: kwargs for Accelerator.__init__ """ def __init__( self, *args, address: str = "127.0.0.1", port: Union[str, int] = 2112, world_size: Optional[int] = None, workers_dist_rank: int = 0, num_node_workers: Optional[int] = None, process_group_kwargs: Dict[str, Any] = None, **kwargs ): """Init.""" self._address = os.environ.get("MASTER_ADDR", address) self._port = os.environ.get("MASTER_PORT", port) self._num_local_workers = num_node_workers or torch.cuda.device_count() or 1 self._workers_global_rank = workers_dist_rank self._world_size = world_size or self._num_local_workers self._process_group_kwargs = process_group_kwargs or {} self._args = args self._kwargs = kwargs def spawn(self, fn: Callable, *args, **kwargs): """Spawns processes with specified ``fn`` and ``args``/``kwargs``. Args: fn (function): Function is called as the entrypoint of the spawned process. This function must be defined at the top level of a module so it can be pickled and spawned. This is a requirement imposed by multiprocessing. The function is called as ``fn(i, *args)``, where ``i`` is the process index and ``args`` is the passed through tuple of arguments. *args: Arguments passed to spawn method. **kwargs: Keyword-arguments passed to spawn method. Returns: wrapped function (if needed). """ return mp.spawn( fn, args=(self._world_size,), nprocs=self._num_local_workers, join=True, ) def setup(self, local_rank: int, world_size: int): """Initialize DDP variables and processes if required. Args: local_rank: process rank. Default is `-1`. world_size: number of devices in netwok to expect for train. Default is `1`. """ process_group_kwargs = { "backend": "nccl", "world_size": world_size, **self._process_group_kwargs, } global_rank = self._workers_global_rank + local_rank os.environ["MASTER_ADDR"] = str(self._address) os.environ["MASTER_PORT"] = str(self._port) os.environ["WORLD_SIZE"] = str(world_size) os.environ["RANK"] = str(global_rank) os.environ["LOCAL_RANK"] = str(local_rank) dist.init_process_group(**process_group_kwargs) super().__init__(self, *self._args, **self._kwargs) def cleanup(self): """Cleans DDP variables and processes.""" dist.destroy_process_group() def mean_reduce_ddp_metrics(self, metrics: Dict) -> Dict: """Syncs ``metrics`` over ``world_size`` in the distributed mode.""" metrics = { k: mean_reduce( torch.tensor(v, device=self.device), world_size=self.state.num_processes, ) for k, v in metrics.items() } return metrics
DistributedDataParallelEngine
python
Lightning-AI__lightning
tests/tests_fabric/utilities/test_registry.py
{ "start": 238, "end": 2105 }
class ____: """A callback in another library that gets registered through entry points.""" pass def test_load_external_callbacks(): """Test that the connector collects Callback instances from factories registered through entry points.""" def factory_no_callback(): return [] def factory_one_callback(): return ExternalCallback() def factory_one_callback_list(): return [ExternalCallback()] def factory_multiple_callbacks_list(): return [ExternalCallback(), ExternalCallback()] with _make_entry_point_query_mock(factory_no_callback): callbacks = _load_external_callbacks("lightning.pytorch.callbacks_factory") assert callbacks == [] with _make_entry_point_query_mock(factory_one_callback): callbacks = _load_external_callbacks("lightning.pytorch.callbacks_factory") assert isinstance(callbacks[0], ExternalCallback) with _make_entry_point_query_mock(factory_one_callback_list): callbacks = _load_external_callbacks("lightning.pytorch.callbacks_factory") assert isinstance(callbacks[0], ExternalCallback) with _make_entry_point_query_mock(factory_multiple_callbacks_list): callbacks = _load_external_callbacks("lightning.pytorch.callbacks_factory") assert isinstance(callbacks[0], ExternalCallback) assert isinstance(callbacks[1], ExternalCallback) @contextlib.contextmanager def _make_entry_point_query_mock(callback_factory): query_mock = MagicMock() entry_point = Mock() entry_point.name = "mocked" entry_point.load.return_value = callback_factory if _PYTHON_GREATER_EQUAL_3_10_0: query_mock.return_value = [entry_point] else: query_mock().get.return_value = [entry_point] with mock.patch("lightning.fabric.utilities.registry.entry_points", query_mock): yield
ExternalCallback
python
joke2k__faker
tests/providers/test_phone_number.py
{ "start": 5859, "end": 6660 }
class ____: """Test de_CH phone number provider methods""" pattern: Pattern = re.compile(r"(\+41|0) ?(?P<dialing_code>\d{2}) \d{3} \d{2} \d{2}") def test_phone_number(self, faker, num_samples): for _ in range(num_samples): phone_number = faker.phone_number() assert self.pattern.fullmatch(phone_number) assert self.pattern.match(phone_number).group("dialing_code") in DeChPhoneNumberProvider.landline_codes def test_cellphone_number(self, faker, num_samples): for _ in range(num_samples): cellphone_number = faker.cellphone_number() assert self.pattern.fullmatch(cellphone_number) assert self.pattern.match(cellphone_number).group("dialing_code") in DeChPhoneNumberProvider.dialing_codes
TestDeCh
python
PyCQA__pycodestyle
pycodestyle.py
{ "start": 67932, "end": 80804 }
class ____: """Load a Python source file, tokenize it, check coding style.""" def __init__(self, filename=None, lines=None, options=None, report=None, **kwargs): if options is None: options = StyleGuide(kwargs).options else: assert not kwargs self._io_error = None self._physical_checks = options.physical_checks self._logical_checks = options.logical_checks self._ast_checks = options.ast_checks self.max_line_length = options.max_line_length self.max_doc_length = options.max_doc_length self.indent_size = options.indent_size self.fstring_start = self.tstring_start = 0 self.multiline = False # in a multiline string? self.hang_closing = options.hang_closing self.indent_size = options.indent_size self.verbose = options.verbose self.filename = filename # Dictionary where a checker can store its custom state. self._checker_states = {} if filename is None: self.filename = 'stdin' self.lines = lines or [] elif filename == '-': self.filename = 'stdin' self.lines = stdin_get_value().splitlines(True) elif lines is None: try: self.lines = readlines(filename) except OSError: (exc_type, exc) = sys.exc_info()[:2] self._io_error = f'{exc_type.__name__}: {exc}' self.lines = [] else: self.lines = lines if self.lines: ord0 = ord(self.lines[0][0]) if ord0 in (0xef, 0xfeff): # Strip the UTF-8 BOM if ord0 == 0xfeff: self.lines[0] = self.lines[0][1:] elif self.lines[0][:3] == '\xef\xbb\xbf': self.lines[0] = self.lines[0][3:] self.report = report or options.report self.report_error = self.report.error self.noqa = False def report_invalid_syntax(self): """Check if the syntax is valid.""" (exc_type, exc) = sys.exc_info()[:2] if len(exc.args) > 1: offset = exc.args[1] if len(offset) > 2: offset = offset[1:3] else: offset = (1, 0) self.report_error(offset[0], offset[1] or 0, f'E901 {exc_type.__name__}: {exc.args[0]}', self.report_invalid_syntax) def readline(self): """Get the next line from the input buffer.""" if self.line_number >= self.total_lines: return '' line = self.lines[self.line_number] self.line_number += 1 if self.indent_char is None and line[:1] in WHITESPACE: self.indent_char = line[0] return line def run_check(self, check, argument_names): """Run a check plugin.""" arguments = [getattr(self, name) for name in argument_names] return check(*arguments) def init_checker_state(self, name, argument_names): """Prepare custom state for the specific checker plugin.""" if 'checker_state' in argument_names: self.checker_state = self._checker_states.setdefault(name, {}) def check_physical(self, line): """Run all physical checks on a raw input line.""" self.physical_line = line for name, check, argument_names in self._physical_checks: self.init_checker_state(name, argument_names) result = self.run_check(check, argument_names) if result is not None: (offset, text) = result self.report_error(self.line_number, offset, text, check) if text[:4] == 'E101': self.indent_char = line[0] def build_tokens_line(self): """Build a logical line from tokens.""" logical = [] comments = [] length = 0 prev_row = prev_col = mapping = None for token_type, text, start, end, line in self.tokens: if token_type in SKIP_TOKENS: continue if not mapping: mapping = [(0, start)] if token_type == tokenize.COMMENT: comments.append(text) continue if token_type == tokenize.STRING: text = mute_string(text) elif token_type in {FSTRING_MIDDLE, TSTRING_MIDDLE}: # pragma: >=3.12 cover # noqa: E501 # fstring tokens are "unescaped" braces -- re-escape! brace_count = text.count('{') + text.count('}') text = 'x' * (len(text) + brace_count) end = (end[0], end[1] + brace_count) if prev_row: (start_row, start_col) = start if prev_row != start_row: # different row prev_text = self.lines[prev_row - 1][prev_col - 1] if prev_text == ',' or (prev_text not in '{[(' and text not in '}])'): text = ' ' + text elif prev_col != start_col: # different column text = line[prev_col:start_col] + text logical.append(text) length += len(text) mapping.append((length, end)) (prev_row, prev_col) = end self.logical_line = ''.join(logical) self.noqa = comments and noqa(''.join(comments)) return mapping def check_logical(self): """Build a line from tokens and run all logical checks on it.""" self.report.increment_logical_line() mapping = self.build_tokens_line() if not mapping: return mapping_offsets = [offset for offset, _ in mapping] (start_row, start_col) = mapping[0][1] start_line = self.lines[start_row - 1] self.indent_level = expand_indent(start_line[:start_col]) if self.blank_before < self.blank_lines: self.blank_before = self.blank_lines if self.verbose >= 2: print(self.logical_line[:80].rstrip()) for name, check, argument_names in self._logical_checks: if self.verbose >= 4: print(' ' + name) self.init_checker_state(name, argument_names) for offset, text in self.run_check(check, argument_names) or (): if not isinstance(offset, tuple): # As mappings are ordered, bisecting is a fast way # to find a given offset in them. token_offset, pos = mapping[bisect.bisect_left( mapping_offsets, offset)] offset = (pos[0], pos[1] + offset - token_offset) self.report_error(offset[0], offset[1], text, check) if self.logical_line: self.previous_indent_level = self.indent_level self.previous_logical = self.logical_line if not self.indent_level: self.previous_unindented_logical_line = self.logical_line self.blank_lines = 0 self.tokens = [] def check_ast(self): """Build the file's AST and run all AST checks.""" try: tree = compile(''.join(self.lines), '', 'exec', PyCF_ONLY_AST) except (ValueError, SyntaxError, TypeError): return self.report_invalid_syntax() for name, cls, __ in self._ast_checks: checker = cls(tree, self.filename) for lineno, offset, text, check in checker.run(): if not self.lines or not noqa(self.lines[lineno - 1]): self.report_error(lineno, offset, text, check) def generate_tokens(self): """Tokenize file, run physical line checks and yield tokens.""" if self._io_error: self.report_error(1, 0, 'E902 %s' % self._io_error, readlines) tokengen = tokenize.generate_tokens(self.readline) try: prev_physical = '' for token in tokengen: if token[2][0] > self.total_lines: return self.noqa = token[4] and noqa(token[4]) self.maybe_check_physical(token, prev_physical) yield token prev_physical = token[4] except (SyntaxError, tokenize.TokenError): self.report_invalid_syntax() def maybe_check_physical(self, token, prev_physical): """If appropriate for token, check current physical line(s).""" # Called after every token, but act only on end of line. if token.type == FSTRING_START: # pragma: >=3.12 cover self.fstring_start = token.start[0] elif token.type == TSTRING_START: # pragma: >=3.14 cover self.tstring_start = token.start[0] # a newline token ends a single physical line. elif _is_eol_token(token): # if the file does not end with a newline, the NEWLINE # token is inserted by the parser, but it does not contain # the previous physical line in `token[4]` if token.line == '': self.check_physical(prev_physical) else: self.check_physical(token.line) elif ( token.type == tokenize.STRING and '\n' in token.string or token.type == FSTRING_END or token.type == TSTRING_END ): # Less obviously, a string that contains newlines is a # multiline string, either triple-quoted or with internal # newlines backslash-escaped. Check every physical line in # the string *except* for the last one: its newline is # outside of the multiline string, so we consider it a # regular physical line, and will check it like any other # physical line. # # Subtleties: # - we don't *completely* ignore the last line; if it # contains the magical "# noqa" comment, we disable all # physical checks for the entire multiline string # - have to wind self.line_number back because initially it # points to the last line of the string, and we want # check_physical() to give accurate feedback if noqa(token.line): return if token.type == FSTRING_END: # pragma: >=3.12 cover start = self.fstring_start elif token.type == TSTRING_END: # pragma: >=3.12 cover start = self.tstring_start else: start = token.start[0] end = token.end[0] self.multiline = True self.line_number = start for line_number in range(start, end): self.check_physical(self.lines[line_number - 1] + '\n') self.line_number += 1 self.multiline = False def check_all(self, expected=None, line_offset=0): """Run all checks on the input file.""" self.report.init_file(self.filename, self.lines, expected, line_offset) self.total_lines = len(self.lines) if self._ast_checks: self.check_ast() self.line_number = 0 self.indent_char = None self.indent_level = self.previous_indent_level = 0 self.previous_logical = '' self.previous_unindented_logical_line = '' self.tokens = [] self.blank_lines = self.blank_before = 0 parens = 0 for token in self.generate_tokens(): self.tokens.append(token) token_type, text = token[0:2] if self.verbose >= 3: if token[2][0] == token[3][0]: pos = '[{}:{}]'.format(token[2][1] or '', token[3][1]) else: pos = 'l.%s' % token[3][0] print('l.%s\t%s\t%s\t%r' % (token[2][0], pos, tokenize.tok_name[token[0]], text)) if token_type == tokenize.OP: if text in '([{': parens += 1 elif text in '}])': parens -= 1 elif not parens: if token_type in NEWLINE: if token_type == tokenize.NEWLINE: self.check_logical() self.blank_before = 0 elif len(self.tokens) == 1: # The physical line contains only this token. self.blank_lines += 1 del self.tokens[0] else: self.check_logical() if self.tokens: self.check_physical(self.lines[-1]) self.check_logical() return self.report.get_file_results()
Checker
python
tornadoweb__tornado
tornado/test/web_test.py
{ "start": 85492, "end": 86021 }
class ____(WebTestCase): def get_handlers(self): return [("/foo", RequestHandler)] def get_app_kwargs(self): class Custom404Handler(RequestHandler): def get(self): self.set_status(404) self.write("custom 404 response") return dict(default_handler_class=Custom404Handler) def test_404(self): response = self.fetch("/") self.assertEqual(response.code, 404) self.assertEqual(response.body, b"custom 404 response")
Custom404Test
python
pytorch__pytorch
benchmarks/tensorexpr/reduction.py
{ "start": 7666, "end": 8286 }
class ____(DynamicReduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super().__init__(mode, device, dtype, 0, dim0, dim1) @staticmethod def default_configs(): parent_config = DynamicReduce2DBench.default_configs()[0] return [parent_config[1:]] def config(self): parent_config = super().config() return parent_config[1:] @staticmethod def module(): return "reduce2d_dynamic_outer" benchmark.register_benchmark_class(DynamicReduce2DInnerBench) benchmark.register_benchmark_class(DynamicReduce2DOuterBench)
DynamicReduce2DOuterBench
python
readthedocs__readthedocs.org
readthedocs/projects/models.py
{ "start": 3635, "end": 5104 }
class ____(models.Model): """ Project to project relationship. This is used for subprojects. Terminology: We should say main project and subproject. Saying "child" and "parent" only has internal, technical value. """ parent = models.ForeignKey( "projects.Project", verbose_name=_("Main project"), related_name="subprojects", on_delete=models.CASCADE, ) child = models.ForeignKey( "projects.Project", verbose_name=_("Subproject"), related_name="superprojects", on_delete=models.CASCADE, ) alias = models.SlugField( _("Alias"), max_length=255, null=True, blank=True, db_index=False, ) objects = ChildRelatedProjectQuerySet.as_manager() def save(self, *args, **kwargs): if not self.alias: self.alias = self.child.slug super().save(*args, **kwargs) # HACK def get_absolute_url(self): return Resolver().resolve_version(project=self.child) @cached_property def subproject_prefix(self): """ Returns the path prefix of the subproject. This normally is ``/projects/<subproject-alias>/``, but if the project has a custom subproject prefix, that will be used. """ prefix = self.parent.custom_subproject_prefix or "/projects/" return unsafe_join_url_path(prefix, self.alias, "/")
ProjectRelationship
python
PrefectHQ__prefect
tests/test_serializers.py
{ "start": 5716, "end": 13171 }
class ____: @pytest.mark.parametrize("data", SERIALIZER_TEST_CASES) def test_simple_roundtrip(self, data: Any): serializer = JSONSerializer() serialized = serializer.dumps(data) assert serializer.loads(serialized) == data @pytest.mark.parametrize("data", EXCEPTION_TEST_CASES) def test_exception_roundtrip(self, data: Any): serializer = JSONSerializer() serialized = serializer.dumps(data) assert exceptions_equal(serializer.loads(serialized), data) @pytest.mark.parametrize( "data", [ complex_str.encode("utf-8"), complex_str.encode("ASCII"), complex_str.encode("latin_1"), [complex_str.encode("utf-8")], {"key": complex_str.encode("ASCII")}, ], ) def test_simple_roundtrip_with_complex_bytes(self, data: Any): serializer = JSONSerializer() serialized = serializer.dumps(data) assert serializer.loads(serialized) == data def test_allows_orjson(self): # orjson does not support hooks serializer = JSONSerializer( jsonlib="orjson", object_encoder=None, object_decoder=None ) serialized = serializer.dumps("test") assert serializer.loads(serialized) == "test" def test_uses_alternative_json_library(self, monkeypatch: pytest.MonkeyPatch): dumps_mock = MagicMock() loads_mock = MagicMock() monkeypatch.setattr("orjson.dumps", dumps_mock) monkeypatch.setattr("orjson.loads", loads_mock) serializer = JSONSerializer(jsonlib="orjson") serializer.dumps("test") serializer.loads(b"test") dumps_mock.assert_called_once_with("test", default=prefect_json_object_encoder) loads_mock.assert_called_once_with( "test", object_hook=prefect_json_object_decoder ) def test_json_serializer_does_not_consume_iobase_objects(self): serializer = JSONSerializer() string_io_content = "hello world from unit test" string_io = io.StringIO(string_io_content) data_with_stream = {"my_stream": string_io, "other_data": 123} string_io.seek(0) assert string_io.tell() == 0, "Initial seek(0) failed" serialized_data = serializer.dumps(data_with_stream) assert string_io.tell() == 0, "Stream pointer moved after dumps()" assert string_io.read() == string_io_content, ( "Stream content changed or was consumed after dumps()" ) string_io.seek(0) deserialized_data = json.loads(serialized_data.decode()) deserialized_stream_placeholder: dict[str, Any] = deserialized_data.get( "my_stream" ) assert isinstance(deserialized_stream_placeholder, dict), ( f"Deserialized 'my_stream' should be a dict placeholder, " f"but got {type(deserialized_stream_placeholder)}" ) assert deserialized_stream_placeholder.get("__class__") == to_qualified_name( io.StringIO ), ( f"Placeholder __class__ ('{deserialized_stream_placeholder.get('__class__')}') " f"does not match expected ('{to_qualified_name(io.StringIO)}')" ) placeholder_data_string = deserialized_stream_placeholder.get("data") assert isinstance(placeholder_data_string, str), ( f"Placeholder data field should be a string, " f"but got {type(placeholder_data_string)}" ) expected_placeholder_prefix = "<Prefect IOStream Placeholder:" expected_placeholder_type_info = f"type={string_io.__class__.__name__}" expected_placeholder_repr_info = f"repr={repr(string_io)}" expected_placeholder_suffix = "(original content not read)>" assert expected_placeholder_prefix in placeholder_data_string, ( f"Placeholder prefix '{expected_placeholder_prefix}' missing in placeholder string: {placeholder_data_string}" ) assert expected_placeholder_type_info in placeholder_data_string, ( f"Expected type info '{expected_placeholder_type_info}' not in placeholder string: {placeholder_data_string}" ) assert expected_placeholder_repr_info in placeholder_data_string, ( f"Expected repr info '{expected_placeholder_repr_info}' not in placeholder string: {placeholder_data_string}" ) assert expected_placeholder_suffix in placeholder_data_string, ( f"Placeholder suffix '{expected_placeholder_suffix}' missing in placeholder string: {placeholder_data_string}" ) assert deserialized_data.get("other_data") == 123, "Other data was altered" def test_allows_custom_encoder(self, monkeypatch: pytest.MonkeyPatch): fake_object_encoder = MagicMock(return_value="foobar!") prefect_object_encoder = MagicMock() monkeypatch.setattr( "prefect.serializers.fake_object_encoder", fake_object_encoder, raising=False, ) monkeypatch.setattr( "prefect.serializers.prefect_json_object_encoder", prefect_object_encoder, ) serializer = JSONSerializer( object_encoder="prefect.serializers.fake_object_encoder" ) # Encoder hooks are only called for unsupported objects obj = uuid.uuid4() result = serializer.dumps(obj) assert result == b'"foobar!"' prefect_object_encoder.assert_not_called() fake_object_encoder.assert_called_once_with(obj) def test_allows_custom_decoder(self, monkeypatch: pytest.MonkeyPatch): fake_object_decoder = MagicMock(return_value="test") prefect_object_decoder = MagicMock() monkeypatch.setattr( "prefect.serializers.fake_object_decoder", fake_object_decoder, raising=False, ) monkeypatch.setattr( "prefect.serializers.prefect_json_object_decoder", prefect_object_decoder, ) serializer = JSONSerializer( object_decoder="prefect.serializers.fake_object_decoder" ) # Decoder hooks are only called for dicts assert serializer.loads(json.dumps({"foo": "bar"}).encode()) == "test" fake_object_decoder.assert_called_once_with({"foo": "bar"}) prefect_object_decoder.assert_not_called() def test_allows_custom_kwargs(self, monkeypatch: pytest.MonkeyPatch): dumps_mock = MagicMock() loads_mock = MagicMock() monkeypatch.setattr("json.dumps", dumps_mock) monkeypatch.setattr("json.loads", loads_mock) serializer = JSONSerializer( dumps_kwargs={"foo": "bar"}, loads_kwargs={"bar": "foo"} ) serializer.dumps("test") serializer.loads(b"test") dumps_mock.assert_called_once_with( "test", default=prefect_json_object_encoder, foo="bar" ) loads_mock.assert_called_once_with( "test", object_hook=prefect_json_object_decoder, bar="foo" ) def test_does_not_allow_object_hook_collision(self): with pytest.raises(ValidationError): JSONSerializer(loads_kwargs={"object_hook": "foo"}) def test_does_not_allow_default_collision(self): with pytest.raises(ValidationError): JSONSerializer(dumps_kwargs={"default": "foo"})
TestJSONSerializer
python
pytorch__pytorch
torch/distributed/_tools/ilp_utils.py
{ "start": 594, "end": 2080 }
class ____(TypedDict): fqn: str # per-module params param_per_module: int # per-module grads grad_per_module: int # total accumulated gradients up to and including this module grad_total: int # per module fw activation size (excluding input and output) act_fw_per_module: int # per module bw activation size during peak_bw act_bw_per_module: int # per module activation grad size during peak_bw act_grad_per_module: int # total activation size up to but excluding the current module # includes input of the current module (i.e., output of previous module) act_total: int # Inputs to the module input_per_module: int # Outputs of the module output_per_module: int # Total fw run-time of the module fw_runtime_per_module: float # Total bw run-time of the module bw_runtime_per_module: float # Is this module a leaf module is_leaf: bool # Total ac run-time of the module sac_runtime: float # Total ac_memory for the module sac_memory: int # Number of piecewise-linear functions used for approximating ac tradeoff curve n_segments: int # Slopes of the of piecewise-linear functions slopes: list[float] # Intercepts of the of piecewise-linear functions intercepts: list[float] # X breakpoints of the of piecewise-linear functions breakpoints: list[float] # Original trade-off curves tradeoff_curve: OrderedDict[float, float]
ModStats
python
huggingface__transformers
src/transformers/models/llama/tokenization_llama.py
{ "start": 1661, "end": 7565 }
class ____(TokenizersBackend): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. This uses notably ByteFallback and no normalization. ```python >>> from transformers import LlamaTokenizer >>> tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") >>> tokenizer.encode("Hello this is a test") [1, 15043, 445, 338, 263, 1243] ``` If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the values of the first token and final token of an encoded sequence will not be correct). For more details, checkout [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): The end of sequence token. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Llama should be used add_prefix_space (`bool`, *optional*): Whether or not the tokenizer should automatically add a prefix space """ vocab_files_names = VOCAB_FILES_NAMES padding_side = "left" model_input_names = ["input_ids", "attention_mask"] def __init__( self, clean_up_tokenization_spaces=False, unk_token="<unk>", bos_token="<s>", eos_token="</s>", add_bos_token=True, add_eos_token=False, use_default_system_prompt=False, legacy=False, add_prefix_space=None, vocab=None, merges=None, **kwargs, ): self.add_prefix_space = add_prefix_space if add_prefix_space is not None else True if vocab is not None: self._vocab = ( {token: idx for idx, (token, _score) in enumerate(vocab)} if isinstance(vocab, list) else vocab ) else: self._vocab = { str(unk_token): 0, str(bos_token): 1, str(eos_token): 2, } special_tokens = {str(eos_token), str(bos_token), str(unk_token)} filtered_vocab = {t: i for t, i in self._vocab.items() if t not in special_tokens} if merges is not None: self._merges = [tuple(merge) if isinstance(merge, list) else merge for merge in merges] else: self._merges = generate_merges(filtered_vocab) self._tokenizer = Tokenizer( BPE(vocab=self._vocab, merges=self._merges, fuse_unk=True, byte_fallback=True, dropout=None) ) self._tokenizer.normalizer = None self._tokenizer.pre_tokenizer = pre_tokenizers.Metaspace( replacement="▁", prepend_scheme=_get_prepend_scheme(self.add_prefix_space, self), split=False ) sequence = [ decoders.Replace("▁", " "), decoders.ByteFallback(), decoders.Fuse(), ] if self.add_prefix_space: sequence += [decoders.Strip(content=" ", left=1)] self._tokenizer.decoder = decoders.Sequence(sequence) tokenizer_object = self._tokenizer super().__init__( tokenizer_object=tokenizer_object, clean_up_tokenization_spaces=clean_up_tokenization_spaces, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, use_default_system_prompt=use_default_system_prompt, add_prefix_space=add_prefix_space, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.use_default_system_prompt = use_default_system_prompt self._post_init() def _post_init(self): """Post-initialization setup that needs to run after _tokenizer is set.""" # Only set pre_tokenizer/normalizer for Llama-3 style tokenizers (use Sequence) pre_tok = self._tokenizer.pre_tokenizer if pre_tok is None or type(pre_tok).__name__ != "Sequence": self._tokenizer.pre_tokenizer = pre_tokenizers.Metaspace( replacement="▁", prepend_scheme="first", split=False ) self._tokenizer.normalizer = None self.add_tokens([AddedToken(token, special=True) for token in self.all_special_tokens]) super()._post_init() self.update_post_processor() __all__ = ["LlamaTokenizer", "LlamaTokenizerFast"] # Backward alias LlamaTokenizerFast = LlamaTokenizer
LlamaTokenizer
python
tensorflow__tensorflow
tensorflow/python/keras/utils/data_utils.py
{ "start": 12884, "end": 16922 }
class ____(object): """Base object for fitting to a sequence of data, such as a dataset. Every `Sequence` must implement the `__getitem__` and the `__len__` methods. If you want to modify your dataset between epochs you may implement `on_epoch_end`. The method `__getitem__` should return a complete batch. Notes: `Sequence` are a safer way to do multiprocessing. This structure guarantees that the network will only train once on each sample per epoch which is not the case with generators. Examples: ```python from skimage.io import imread from skimage.transform import resize import numpy as np import math # Here, `x_set` is list of path to the images # and `y_set` are the associated classes. class CIFAR10Sequence(Sequence): def __init__(self, x_set, y_set, batch_size): self.x, self.y = x_set, y_set self.batch_size = batch_size def __len__(self): return math.ceil(len(self.x) / self.batch_size) def __getitem__(self, idx): batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size] return np.array([ resize(imread(file_name), (200, 200)) for file_name in batch_x]), np.array(batch_y) ``` """ @abstractmethod def __getitem__(self, index): """Gets batch at position `index`. Args: index: position of the batch in the Sequence. Returns: A batch """ raise NotImplementedError @abstractmethod def __len__(self): """Number of batch in the Sequence. Returns: The number of batches in the Sequence. """ raise NotImplementedError def on_epoch_end(self): """Method called at the end of every epoch. """ pass def __iter__(self): """Create a generator that iterate over the Sequence.""" for item in (self[i] for i in range(len(self))): yield item def iter_sequence_infinite(seq): """Iterates indefinitely over a Sequence. Args: seq: `Sequence` instance. Yields: Batches of data from the `Sequence`. """ while True: for item in seq: yield item # Global variables to be shared across processes _SHARED_SEQUENCES = {} # We use a Value to provide unique id to different processes. _SEQUENCE_COUNTER = None # Because multiprocessing pools are inherently unsafe, starting from a clean # state can be essential to avoiding deadlocks. In order to accomplish this, we # need to be able to check on the status of Pools that we create. _DATA_POOLS = weakref.WeakSet() _WORKER_ID_QUEUE = None # Only created if needed. _WORKER_IDS = set() _FORCE_THREADPOOL = False _FORCE_THREADPOOL_LOCK = threading.RLock() def dont_use_multiprocessing_pool(f): @functools.wraps(f) def wrapped(*args, **kwargs): with _FORCE_THREADPOOL_LOCK: global _FORCE_THREADPOOL old_force_threadpool, _FORCE_THREADPOOL = _FORCE_THREADPOOL, True out = f(*args, **kwargs) _FORCE_THREADPOOL = old_force_threadpool return out return wrapped def get_pool_class(use_multiprocessing): global _FORCE_THREADPOOL if not use_multiprocessing or _FORCE_THREADPOOL: return multiprocessing.dummy.Pool # ThreadPool return multiprocessing.Pool def get_worker_id_queue(): """Lazily create the queue to track worker ids.""" global _WORKER_ID_QUEUE if _WORKER_ID_QUEUE is None: _WORKER_ID_QUEUE = multiprocessing.Queue() return _WORKER_ID_QUEUE def init_pool(seqs): global _SHARED_SEQUENCES _SHARED_SEQUENCES = seqs def get_index(uid, i): """Get the value from the Sequence `uid` at index `i`. To allow multiple Sequences to be used at the same time, we use `uid` to get a specific one. A single Sequence would cause the validation to overwrite the training Sequence. Args: uid: int, Sequence identifier i: index Returns: The value at index `i`. """ return _SHARED_SEQUENCES[uid][i]
Sequence
python
kamyu104__LeetCode-Solutions
Python/number-of-changing-keys.py
{ "start": 38, "end": 238 }
class ____(object): def countKeyChanges(self, s): """ :type s: str :rtype: int """ return sum(s[i].lower() != s[i+1].lower() for i in xrange(len(s)-1))
Solution
python
eventlet__eventlet
eventlet/green/http/client.py
{ "start": 57274, "end": 57442 }
class ____(Exception): # Subclasses that define an __init__ must call Exception.__init__ # or define self.args. Otherwise, str() will fail. pass
HTTPException
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_table03.py
{ "start": 315, "end": 1708 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_table03.xlsx") self.ignore_elements = {"xl/charts/chart1.xml": ["<a:pPr"]} def test_create_file(self): """Test XlsxWriter chart axis table properties.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "column"}) chart.axis_ids = [108636032, 108643840] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series({"values": "=Sheet1!$A$1:$A$5"}) chart.add_series({"values": "=Sheet1!$B$1:$B$5"}) chart.add_series({"values": "=Sheet1!$C$1:$C$5"}) chart.set_table( { "vertical": False, "horizontal": False, "outline": False, "show_keys": True, "font": {"bold": True, "italic": True, "color": "red", "baseline": -1}, } ) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
django__django
tests/db_functions/text/test_reverse.py
{ "start": 250, "end": 2367 }
class ____(TestCase): @classmethod def setUpTestData(cls): cls.john = Author.objects.create(name="John Smith", alias="smithj") cls.elena = Author.objects.create(name="Élena Jordan", alias="elena") cls.python = Author.objects.create(name="パイソン") def test_null(self): author = Author.objects.annotate(backward=Reverse("alias")).get( pk=self.python.pk ) self.assertEqual( author.backward, "" if connection.features.interprets_empty_strings_as_nulls else None, ) def test_basic(self): authors = Author.objects.annotate( backward=Reverse("name"), constant=Reverse(Value("static string")), ) self.assertQuerySetEqual( authors, [ ("John Smith", "htimS nhoJ", "gnirts citats"), ("Élena Jordan", "nadroJ anelÉ", "gnirts citats"), ("パイソン", "ンソイパ", "gnirts citats"), ], lambda a: (a.name, a.backward, a.constant), ordered=False, ) def test_transform(self): with register_lookup(CharField, Reverse): authors = Author.objects.all() self.assertCountEqual( authors.filter(name__reverse=self.john.name[::-1]), [self.john] ) self.assertCountEqual( authors.exclude(name__reverse=self.john.name[::-1]), [self.elena, self.python], ) def test_expressions(self): author = Author.objects.annotate(backward=Reverse(Trim("name"))).get( pk=self.john.pk ) self.assertEqual(author.backward, self.john.name[::-1]) with register_lookup(CharField, Reverse), register_lookup(CharField, Length): authors = Author.objects.all() self.assertCountEqual( authors.filter(name__reverse__length__gt=7), [self.john, self.elena] ) self.assertCountEqual( authors.exclude(name__reverse__length__gt=7), [self.python] )
ReverseTests
python
kubernetes-client__python
kubernetes/client/models/v1_rbd_volume_source.py
{ "start": 383, "end": 10731 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'fs_type': 'str', 'image': 'str', 'keyring': 'str', 'monitors': 'list[str]', 'pool': 'str', 'read_only': 'bool', 'secret_ref': 'V1LocalObjectReference', 'user': 'str' } attribute_map = { 'fs_type': 'fsType', 'image': 'image', 'keyring': 'keyring', 'monitors': 'monitors', 'pool': 'pool', 'read_only': 'readOnly', 'secret_ref': 'secretRef', 'user': 'user' } def __init__(self, fs_type=None, image=None, keyring=None, monitors=None, pool=None, read_only=None, secret_ref=None, user=None, local_vars_configuration=None): # noqa: E501 """V1RBDVolumeSource - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._fs_type = None self._image = None self._keyring = None self._monitors = None self._pool = None self._read_only = None self._secret_ref = None self._user = None self.discriminator = None if fs_type is not None: self.fs_type = fs_type self.image = image if keyring is not None: self.keyring = keyring self.monitors = monitors if pool is not None: self.pool = pool if read_only is not None: self.read_only = read_only if secret_ref is not None: self.secret_ref = secret_ref if user is not None: self.user = user @property def fs_type(self): """Gets the fs_type of this V1RBDVolumeSource. # noqa: E501 fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#rbd # noqa: E501 :return: The fs_type of this V1RBDVolumeSource. # noqa: E501 :rtype: str """ return self._fs_type @fs_type.setter def fs_type(self, fs_type): """Sets the fs_type of this V1RBDVolumeSource. fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#rbd # noqa: E501 :param fs_type: The fs_type of this V1RBDVolumeSource. # noqa: E501 :type: str """ self._fs_type = fs_type @property def image(self): """Gets the image of this V1RBDVolumeSource. # noqa: E501 image is the rados image name. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The image of this V1RBDVolumeSource. # noqa: E501 :rtype: str """ return self._image @image.setter def image(self, image): """Sets the image of this V1RBDVolumeSource. image is the rados image name. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param image: The image of this V1RBDVolumeSource. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and image is None: # noqa: E501 raise ValueError("Invalid value for `image`, must not be `None`") # noqa: E501 self._image = image @property def keyring(self): """Gets the keyring of this V1RBDVolumeSource. # noqa: E501 keyring is the path to key ring for RBDUser. Default is /etc/ceph/keyring. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The keyring of this V1RBDVolumeSource. # noqa: E501 :rtype: str """ return self._keyring @keyring.setter def keyring(self, keyring): """Sets the keyring of this V1RBDVolumeSource. keyring is the path to key ring for RBDUser. Default is /etc/ceph/keyring. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param keyring: The keyring of this V1RBDVolumeSource. # noqa: E501 :type: str """ self._keyring = keyring @property def monitors(self): """Gets the monitors of this V1RBDVolumeSource. # noqa: E501 monitors is a collection of Ceph monitors. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The monitors of this V1RBDVolumeSource. # noqa: E501 :rtype: list[str] """ return self._monitors @monitors.setter def monitors(self, monitors): """Sets the monitors of this V1RBDVolumeSource. monitors is a collection of Ceph monitors. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param monitors: The monitors of this V1RBDVolumeSource. # noqa: E501 :type: list[str] """ if self.local_vars_configuration.client_side_validation and monitors is None: # noqa: E501 raise ValueError("Invalid value for `monitors`, must not be `None`") # noqa: E501 self._monitors = monitors @property def pool(self): """Gets the pool of this V1RBDVolumeSource. # noqa: E501 pool is the rados pool name. Default is rbd. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The pool of this V1RBDVolumeSource. # noqa: E501 :rtype: str """ return self._pool @pool.setter def pool(self, pool): """Sets the pool of this V1RBDVolumeSource. pool is the rados pool name. Default is rbd. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param pool: The pool of this V1RBDVolumeSource. # noqa: E501 :type: str """ self._pool = pool @property def read_only(self): """Gets the read_only of this V1RBDVolumeSource. # noqa: E501 readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The read_only of this V1RBDVolumeSource. # noqa: E501 :rtype: bool """ return self._read_only @read_only.setter def read_only(self, read_only): """Sets the read_only of this V1RBDVolumeSource. readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param read_only: The read_only of this V1RBDVolumeSource. # noqa: E501 :type: bool """ self._read_only = read_only @property def secret_ref(self): """Gets the secret_ref of this V1RBDVolumeSource. # noqa: E501 :return: The secret_ref of this V1RBDVolumeSource. # noqa: E501 :rtype: V1LocalObjectReference """ return self._secret_ref @secret_ref.setter def secret_ref(self, secret_ref): """Sets the secret_ref of this V1RBDVolumeSource. :param secret_ref: The secret_ref of this V1RBDVolumeSource. # noqa: E501 :type: V1LocalObjectReference """ self._secret_ref = secret_ref @property def user(self): """Gets the user of this V1RBDVolumeSource. # noqa: E501 user is the rados user name. Default is admin. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :return: The user of this V1RBDVolumeSource. # noqa: E501 :rtype: str """ return self._user @user.setter def user(self, user): """Sets the user of this V1RBDVolumeSource. user is the rados user name. Default is admin. More info: https://examples.k8s.io/volumes/rbd/README.md#how-to-use-it # noqa: E501 :param user: The user of this V1RBDVolumeSource. # noqa: E501 :type: str """ self._user = user def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1RBDVolumeSource): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1RBDVolumeSource): return True return self.to_dict() != other.to_dict()
V1RBDVolumeSource
python
scipy__scipy
scipy/stats/tests/test_distributions.py
{ "start": 51085, "end": 54095 }
class ____: def setup_method(self): self.rng = np.random.default_rng(7672986002) def test_rvs(self): vals = stats.geom.rvs(0.75, size=(2, 50), random_state=self.rng) assert_(np.all(vals >= 0)) assert_(np.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.geom.rvs(0.75, random_state=self.rng) assert_(isinstance(val, int)) val = stats.geom(0.75).rvs(3, random_state=self.rng) assert_(isinstance(val, np.ndarray)) assert_(val.dtype.char in typecodes['AllInteger']) def test_rvs_9313(self): # previously, RVS were converted to `np.int32` on some platforms, # causing overflow for moderately large integer output (gh-9313). # Check that this is resolved to the extent possible w/ `np.int64`. rvs = stats.geom.rvs(np.exp(-35), size=5, random_state=self.rng) assert rvs.dtype == np.int64 assert np.all(rvs > np.iinfo(np.int32).max) def test_pmf(self): vals = stats.geom.pmf([1, 2, 3], 0.5) assert_array_almost_equal(vals, [0.5, 0.25, 0.125]) def test_logpmf(self): # regression test for ticket 1793 vals1 = np.log(stats.geom.pmf([1, 2, 3], 0.5)) vals2 = stats.geom.logpmf([1, 2, 3], 0.5) assert_allclose(vals1, vals2, rtol=1e-15, atol=0) # regression test for gh-4028 val = stats.geom.logpmf(1, 1) assert_equal(val, 0.0) def test_cdf_sf(self): vals = stats.geom.cdf([1, 2, 3], 0.5) vals_sf = stats.geom.sf([1, 2, 3], 0.5) expected = array([0.5, 0.75, 0.875]) assert_array_almost_equal(vals, expected) assert_array_almost_equal(vals_sf, 1-expected) def test_logcdf_logsf(self): vals = stats.geom.logcdf([1, 2, 3], 0.5) vals_sf = stats.geom.logsf([1, 2, 3], 0.5) expected = array([0.5, 0.75, 0.875]) assert_array_almost_equal(vals, np.log(expected)) assert_array_almost_equal(vals_sf, np.log1p(-expected)) def test_ppf(self): vals = stats.geom.ppf([0.5, 0.75, 0.875], 0.5) expected = array([1.0, 2.0, 3.0]) assert_array_almost_equal(vals, expected) def test_ppf_underflow(self): # this should not underflow assert_allclose(stats.geom.ppf(1e-20, 1e-20), 1.0, atol=1e-14) def test_entropy_gh18226(self): # gh-18226 reported that `geom.entropy` produced a warning and # inaccurate output for small p. Check that this is resolved. h = stats.geom(0.0146).entropy() assert_allclose(h, 5.219397961962308, rtol=1e-15) def test_rvs_gh18372(self): # gh-18372 reported that `geom.rvs` could produce negative numbers, # with `RandomState` PRNG, but the support is positive integers. # Check that this is resolved. random_state = np.random.RandomState(294582935) assert (stats.geom.rvs(1e-30, size=10, random_state=random_state) > 0).all()
TestGeom
python
ray-project__ray
python/ray/autoscaler/local/coordinator_server.py
{ "start": 2545, "end": 4471 }
class ____(threading.Thread): """Initializes HTTPServer and serves CoordinatorSenderNodeProvider forever. It handles requests from the remote CoordinatorSenderNodeProvider. The requests are forwarded to LocalNodeProvider function calls. """ def __init__(self, list_of_node_ips, host, port): """Initialize HTTPServer and serve forever by invoking self.run().""" logger.info( "Running on prem coordinator server on address " + build_address(host, port) ) threading.Thread.__init__(self) self._port = port self._list_of_node_ips = list_of_node_ips address = (host, self._port) config = {"list_of_node_ips": list_of_node_ips} self._server = HTTPServer( address, runner_handler(LocalNodeProvider(config, cluster_name=None)), ) self.start() def run(self): self._server.serve_forever() def shutdown(self): """Shutdown the underlying server.""" self._server.shutdown() self._server.server_close() def main(): parser = argparse.ArgumentParser( description="Please provide a list of node ips and port." ) parser.add_argument( "--ips", required=True, help="Comma separated list of node ips." ) parser.add_argument( "--host", type=str, required=False, help="The Host on which the coordinator listens.", ) parser.add_argument( "--port", type=int, required=True, help="The port on which the coordinator listens.", ) args = parser.parse_args() host = args.host or socket.gethostbyname(socket.gethostname()) list_of_node_ips = args.ips.split(",") OnPremCoordinatorServer( list_of_node_ips=list_of_node_ips, host=host, port=args.port, ) if __name__ == "__main__": main()
OnPremCoordinatorServer
python
tensorflow__tensorflow
tensorflow/python/autograph/pyct/error_utils.py
{ "start": 4376, "end": 4663 }
class ____(KeyError): def __init__(self, message, original_key): super(MultilineMessageKeyError, self).__init__(original_key) self.__message = message def __str__(self): return self.__message MultilineMessageKeyError.__name__ = KeyError.__name__
MultilineMessageKeyError
python
sqlalchemy__sqlalchemy
test/base/test_except.py
{ "start": 13768, "end": 17300 }
class ____(Exception): def __init__(self, msg): self.msg = msg def __eq__(self, other): return isinstance(other, EqException) and other.msg == self.msg ALL_EXC = [ ( [sa_exceptions.SQLAlchemyError], [lambda cls: cls(1, 2, code="42")], ), ([sa_exceptions.ObjectNotExecutableError], [lambda cls: cls("xx")]), ( [sa_exceptions.EmulatedDBAPIException], [lambda cls: cls("xx", EqException("original"))], ), ( [ sa_exceptions.ArgumentError, sa_exceptions.DuplicateColumnError, sa_exceptions.ConstraintColumnNotFoundError, sa_exceptions.NoSuchModuleError, sa_exceptions.NoForeignKeysError, sa_exceptions.AmbiguousForeignKeysError, sa_exceptions.CompileError, sa_exceptions.IdentifierError, sa_exceptions.DisconnectionError, sa_exceptions.InvalidatePoolError, sa_exceptions.TimeoutError, sa_exceptions.InvalidRequestError, sa_exceptions.IllegalStateChangeError, sa_exceptions.NoInspectionAvailable, sa_exceptions.PendingRollbackError, sa_exceptions.ResourceClosedError, sa_exceptions.NoSuchColumnError, sa_exceptions.NoResultFound, sa_exceptions.MultipleResultsFound, sa_exceptions.NoReferenceError, sa_exceptions.AwaitRequired, sa_exceptions.MissingGreenlet, sa_exceptions.NoSuchTableError, sa_exceptions.UnreflectableTableError, sa_exceptions.UnboundExecutionError, ], [lambda cls: cls("foo", code="42")], ), ( [sa_exceptions.CircularDependencyError], [ lambda cls: cls("msg", ["cycles"], "edges"), lambda cls: cls("msg", ["cycles"], "edges", "xx", "zz"), ], ), ( [sa_exceptions.UnsupportedCompilationError], [lambda cls: cls("cmp", "el"), lambda cls: cls("cmp", "el", "msg")], ), ( [sa_exceptions.NoReferencedTableError], [lambda cls: cls("msg", "tbl")], ), ( [sa_exceptions.NoReferencedColumnError], [lambda cls: cls("msg", "tbl", "col")], ), ( [sa_exceptions.StatementError], [ lambda cls: cls("msg", "stmt", (), "orig"), lambda cls: cls("msg", "stmt", (), "orig", True, "99", True), details, ], ), ( [ sa_exceptions.DBAPIError, sa_exceptions.InterfaceError, sa_exceptions.DatabaseError, sa_exceptions.DataError, sa_exceptions.OperationalError, sa_exceptions.IntegrityError, sa_exceptions.InternalError, sa_exceptions.ProgrammingError, sa_exceptions.NotSupportedError, ], [ lambda cls: cls("stmt", (), "orig"), lambda cls: cls("stmt", (), "orig", True, True, "99", True), details, ], ), ( [ sa_exceptions.SADeprecationWarning, sa_exceptions.Base20DeprecationWarning, sa_exceptions.LegacyAPIWarning, sa_exceptions.MovedIn20Warning, sa_exceptions.SAWarning, ], [lambda cls: cls("foo", code="42")], ), ([sa_exceptions.SAPendingDeprecationWarning], [lambda cls: cls(1, 2, 3)]), ([sa_exceptions.SATestSuiteWarning], [lambda cls: cls()]), ]
EqException
python
huggingface__transformers
src/transformers/models/blip/modeling_blip_text.py
{ "start": 15072, "end": 18745 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, cache_position: Optional[torch.Tensor] = None, ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache: # The model acts as encoder decoder but is not an encoder decoder. So we cast all cache objects to # `EncoderDecoderCache` type assuming that the incoming cache is from `self_attention` if isinstance(past_key_values, DynamicCache): past_key_values = EncoderDecoderCache(past_key_values, DynamicCache(config=self.config)) elif past_key_values is None: past_key_values = EncoderDecoderCache( DynamicCache(config=self.config), DynamicCache(config=self.config) ) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and encoder_hidden_states is not None else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, past_key_values, output_attentions, cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, past_key_values, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
BlipTextEncoder
python
django__django
tests/model_fields/tests.py
{ "start": 15957, "end": 17187 }
class ____(TestCase): @classmethod def setUpTestData(cls): cls.foo1 = Foo.objects.create(a="a", d="12.34") cls.foo2 = Foo.objects.create(a="b", d="12.34") cls.bar1 = Bar.objects.create(a=cls.foo1, b="b") cls.bar2 = Bar.objects.create(a=cls.foo2, b="a") cls.field = Bar._meta.get_field("a") def assertChoicesEqual(self, choices, objs): self.assertCountEqual(choices, [(obj.pk, str(obj)) for obj in objs]) def test_get_choices(self): self.assertChoicesEqual( self.field.get_choices(include_blank=False, limit_choices_to={"a": "a"}), [self.foo1], ) self.assertChoicesEqual( self.field.get_choices(include_blank=False, limit_choices_to={}), [self.foo1, self.foo2], ) def test_get_choices_reverse_related_field(self): field = self.field.remote_field self.assertChoicesEqual( field.get_choices(include_blank=False, limit_choices_to={"b": "b"}), [self.bar1], ) self.assertChoicesEqual( field.get_choices(include_blank=False, limit_choices_to={}), [self.bar1, self.bar2], )
GetChoicesLimitChoicesToTests
python
pola-rs__polars
py-polars/src/polars/io/iceberg/dataset.py
{ "start": 18005, "end": 19553 }
class ____(_ResolvedScanDataBase): """Resolved parameters for a native Iceberg scan.""" sources: list[str] projected_iceberg_schema: pyiceberg.schema.Schema column_mapping: pa.Schema default_values: dict[int, pl.Series | str] deletion_files: dict[int, list[str]] min_max_statistics: pl.DataFrame | None # This is here for test purposes, as the `min_max_statistics` on this # dataclass contain coalesced values from `default_values`, a test may # access the statistics loader directly to inspect the values before # coalescing. statistics_loader: IcebergStatisticsLoader | None storage_options: dict[str, str] | None # (physical, deleted) row_count: tuple[int, int] | None _snapshot_id_key: str def to_lazyframe(self) -> pl.LazyFrame: from polars.io.parquet.functions import scan_parquet return scan_parquet( self.sources, cast_options=ScanCastOptions._default_iceberg(), missing_columns="insert", extra_columns="ignore", storage_options=self.storage_options, _column_mapping=("iceberg-column-mapping", self.column_mapping), _default_values=("iceberg", self.default_values), _deletion_files=("iceberg-position-delete", self.deletion_files), _table_statistics=self.min_max_statistics, _row_count=self.row_count, ) @property def snapshot_id_key(self) -> str: return self._snapshot_id_key @dataclass
_NativeIcebergScanData
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/memberAccess18.py
{ "start": 319, "end": 663 }
class ____(Generic[_T]): thing: _T def __getitem__(self, key: str) -> _T: return self.thing def __getattr__(self, key: str) -> _T: return self.thing c1: CollectionThing[Descriptor] = CollectionThing() reveal_type(c1["key"], expected_text="Descriptor") reveal_type(c1.key, expected_text="Descriptor")
CollectionThing
python
tensorflow__tensorflow
tensorflow/lite/python/lite.py
{ "start": 70729, "end": 76773 }
class ____(TFLiteConverterBaseV2): """Converts the given frozen graph into TensorFlow Lite model.""" def __init__(self, funcs, trackable_obj=None): """Constructor for TFLiteConverter. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteFrozenGraphConverterV2, self).__init__() self._funcs = funcs self._trackable_obj = trackable_obj self.experimental_lower_to_saved_model = True @convert_phase( Component.PREPARE_TF_MODEL, SubComponent.FREEZE_CONCRETE_FUNCTION ) def _freeze_concrete_function(self): """Convert the given ConcreteFunction to frozen graph. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. frozen_func: The frozen ConcreteFunction. Raises: ValueError: none or multiple ConcreteFunctions provided. """ if len(self._funcs) == 0: # pylint: disable=g-explicit-length-test raise ValueError("No ConcreteFunction is specified.") if len(self._funcs) > 1: raise ValueError( "This converter can only convert a single " "ConcreteFunction. Converting multiple functions is " "under development." ) frozen_func, graph_def = ( _convert_to_constants.convert_variables_to_constants_v2_as_graph( self._funcs[0], lower_control_flow=False ) ) input_tensors = [ tensor for tensor in frozen_func.inputs if tensor.dtype != _dtypes.resource ] output_tensors = frozen_func.outputs return graph_def, input_tensors, output_tensors, frozen_func @convert_phase( Component.PREPARE_TF_MODEL, SubComponent.CONVERT_CONCRETE_FUNCTIONS_TO_SAVED_MODEL, ) def _convert_concrete_functions_to_saved_model(self, output_dir): """Save concrete functions to the SavedModel format. Args: output_dir: The output directory to save the SavedModel. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. """ if len(self._funcs) == 0: # pylint: disable=g-explicit-length-test raise ValueError("No ConcreteFunction is specified.") if not self.experimental_lower_to_saved_model: return None, None, None # Without the provided trackable obj, it is not able to serialize the given # concrete functions as a saved model format. Also when trackable obj is # a function, use the original concrete function conversion pipeline. if not self._trackable_obj or isinstance( self._trackable_obj, (_function.ConcreteFunction, _def_function.Function), ): return None, None, None signatures = {} signature_keys = [] try: if len(self._funcs) == 1: signatures[_signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( self._funcs[0] ) signature_keys = [ _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY ] else: for func in self._funcs: signatures[func.graph.name] = func signature_keys.append(func.graph.name) _save.save( self._trackable_obj, output_dir, signatures=signatures, options=_save_options.SaveOptions(save_debug_info=True), ) except Exception: # pylint: disable=broad-except # When storing the given concrete function to a saved model is failed, # let's use original concrete function conversion pipeline. return None, None, None self.saved_model_dir = output_dir self._saved_model_tags = set([_tag_constants.SERVING]) self._saved_model_exported_names = signature_keys self._parse_saved_model_args(always_enable_saved_model_import=True) if self.saved_model_dir: graph_def, input_tensors, output_tensors = self._load_saved_model( self.saved_model_dir, self._saved_model_tags ) self._trackable_obj = _load(self.saved_model_dir, self._saved_model_tags) return graph_def, input_tensors, output_tensors return None, None, None def _convert_as_saved_model(self): """Converts the given concrete functions as a saved model format. Returns: The converted data in serialized format. """ temp_dir = tempfile.mkdtemp() try: graph_def, input_tensors, _ = ( self._convert_concrete_functions_to_saved_model(temp_dir) ) if self.saved_model_dir: self._validate_inputs(graph_def, input_tensors) return self._convert_from_saved_model(graph_def) finally: shutil.rmtree(temp_dir, True) return None @_export_metrics def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: No concrete function is specified. Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ if self.experimental_lower_to_saved_model: saved_model_convert_result = self._convert_as_saved_model() if saved_model_convert_result: return saved_model_convert_result graph_def, input_tensors, output_tensors, frozen_func = ( self._freeze_concrete_function() ) graph_def = self._optimize_tf_model( graph_def, input_tensors, output_tensors, frozen_func ) return super(TFLiteFrozenGraphConverterV2, self).convert( graph_def, input_tensors, output_tensors )
TFLiteFrozenGraphConverterV2
python
scikit-learn__scikit-learn
sklearn/_loss/link.py
{ "start": 5197, "end": 5593 }
class ____(BaseLink): """Half the logit link function g(x)=1/2 * logit(x). Used for the exponential loss. """ interval_y_pred = Interval(0, 1, False, False) def link(self, y_pred, out=None): out = logit(y_pred, out=out) out *= 0.5 return out def inverse(self, raw_prediction, out=None): return expit(2 * raw_prediction, out)
HalfLogitLink
python
pypa__setuptools
setuptools/_vendor/typeguard/_memo.py
{ "start": 130, "end": 1303 }
class ____: """ Contains information necessary for type checkers to do their work. .. attribute:: globals :type: dict[str, Any] Dictionary of global variables to use for resolving forward references. .. attribute:: locals :type: dict[str, Any] Dictionary of local variables to use for resolving forward references. .. attribute:: self_type :type: type | None When running type checks within an instance method or class method, this is the class object that the first argument (usually named ``self`` or ``cls``) refers to. .. attribute:: config :type: TypeCheckConfiguration Contains the configuration for a particular set of type checking operations. """ __slots__ = "globals", "locals", "self_type", "config" def __init__( self, globals: dict[str, Any], locals: dict[str, Any], *, self_type: type | None = None, config: TypeCheckConfiguration = global_config, ): self.globals = globals self.locals = locals self.self_type = self_type self.config = config
TypeCheckMemo
python
walkccc__LeetCode
solutions/1408. String Matching in an Array/1408-2.py
{ "start": 0, "end": 84 }
class ____: def __init__(self): self.children: dict[str, TrieNode] = {}
TrieNode
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/testing/suite/test_sequence.py
{ "start": 6040, "end": 9704 }
class ____(fixtures.TablesTest): run_deletes = None __requires__ = ("sequences",) __sparse_driver_backend__ = True @classmethod def define_tables(cls, metadata): normalize_sequence(config, Sequence("user_id_seq", metadata=metadata)) normalize_sequence( config, Sequence( "other_seq", metadata=metadata, nomaxvalue=True, nominvalue=True, ), ) if testing.requires.schemas.enabled: normalize_sequence( config, Sequence( "user_id_seq", schema=config.test_schema, metadata=metadata ), ) normalize_sequence( config, Sequence( "schema_seq", schema=config.test_schema, metadata=metadata ), ) Table( "user_id_table", metadata, Column("id", Integer, primary_key=True), ) def test_has_sequence(self, connection): eq_(inspect(connection).has_sequence("user_id_seq"), True) def test_has_sequence_cache(self, connection, metadata): insp = inspect(connection) eq_(insp.has_sequence("user_id_seq"), True) ss = normalize_sequence(config, Sequence("new_seq", metadata=metadata)) eq_(insp.has_sequence("new_seq"), False) ss.create(connection) try: eq_(insp.has_sequence("new_seq"), False) insp.clear_cache() eq_(insp.has_sequence("new_seq"), True) finally: ss.drop(connection) def test_has_sequence_other_object(self, connection): eq_(inspect(connection).has_sequence("user_id_table"), False) @testing.requires.schemas def test_has_sequence_schema(self, connection): eq_( inspect(connection).has_sequence( "user_id_seq", schema=config.test_schema ), True, ) def test_has_sequence_neg(self, connection): eq_(inspect(connection).has_sequence("some_sequence"), False) @testing.requires.schemas def test_has_sequence_schemas_neg(self, connection): eq_( inspect(connection).has_sequence( "some_sequence", schema=config.test_schema ), False, ) @testing.requires.schemas def test_has_sequence_default_not_in_remote(self, connection): eq_( inspect(connection).has_sequence( "other_sequence", schema=config.test_schema ), False, ) @testing.requires.schemas def test_has_sequence_remote_not_in_default(self, connection): eq_(inspect(connection).has_sequence("schema_seq"), False) def test_get_sequence_names(self, connection): exp = {"other_seq", "user_id_seq"} res = set(inspect(connection).get_sequence_names()) is_true(res.intersection(exp) == exp) is_true("schema_seq" not in res) @testing.requires.schemas def test_get_sequence_names_no_sequence_schema(self, connection): eq_( inspect(connection).get_sequence_names( schema=config.test_schema_2 ), [], ) @testing.requires.schemas def test_get_sequence_names_sequences_schema(self, connection): eq_( sorted( inspect(connection).get_sequence_names( schema=config.test_schema ) ), ["schema_seq", "user_id_seq"], )
HasSequenceTest
python
numpy__numpy
numpy/matrixlib/tests/test_defmatrix.py
{ "start": 6906, "end": 8601 }
class ____: def test_basic(self): import numpy.linalg as linalg A = np.array([[1., 2.], [3., 4.]]) mA = matrix(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** i).A, B)) B = np.dot(B, A) Ainv = linalg.inv(A) B = np.identity(2) for i in range(6): assert_(np.allclose((mA ** -i).A, B)) B = np.dot(B, Ainv) assert_(np.allclose((mA * mA).A, np.dot(A, A))) assert_(np.allclose((mA + mA).A, (A + A))) assert_(np.allclose((3 * mA).A, (3 * A))) mA2 = matrix(A) mA2 *= 3 assert_(np.allclose(mA2.A, 3 * A)) def test_pow(self): """Test raising a matrix to an integer power works as expected.""" m = matrix("1. 2.; 3. 4.") m2 = m.copy() m2 **= 2 mi = m.copy() mi **= -1 m4 = m2.copy() m4 **= 2 assert_array_almost_equal(m2, m**2) assert_array_almost_equal(m4, np.dot(m2, m2)) assert_array_almost_equal(np.dot(mi, m), np.eye(2)) def test_scalar_type_pow(self): m = matrix([[1, 2], [3, 4]]) for scalar_t in [np.int8, np.uint8]: two = scalar_t(2) assert_array_almost_equal(m ** 2, m ** two) def test_notimplemented(self): '''Check that 'not implemented' operations produce a failure.''' A = matrix([[1., 2.], [3., 4.]]) # __rpow__ with assert_raises(TypeError): 1.0**A # __mul__ with something not a list, ndarray, tuple, or scalar with assert_raises(TypeError): A * object()
TestAlgebra
python
pandas-dev__pandas
asv_bench/benchmarks/io/json.py
{ "start": 2811, "end": 5168 }
class ____(BaseIO): fname = "__test__.json" params = [ ["split", "columns", "index", "values", "records"], ["df", "df_date_idx", "df_td_int_ts", "df_int_floats", "df_int_float_str"], ] param_names = ["orient", "frame"] def setup(self, orient, frame): N = 10**5 ncols = 5 index = date_range("20000101", periods=N, freq="h") timedeltas = timedelta_range(start=1, periods=N, freq="s") datetimes = date_range(start=1, periods=N, freq="s") ints = np.random.randint(100000000, size=N) longints = sys.maxsize * np.random.randint(100000000, size=N) floats = np.random.randn(N) strings = Index([f"i-{i}" for i in range(N)], dtype=object) self.df = DataFrame(np.random.randn(N, ncols), index=np.arange(N)) self.df_date_idx = DataFrame(np.random.randn(N, ncols), index=index) self.df_td_int_ts = DataFrame( { "td_1": timedeltas, "td_2": timedeltas, "int_1": ints, "int_2": ints, "ts_1": datetimes, "ts_2": datetimes, }, index=index, ) self.df_int_floats = DataFrame( { "int_1": ints, "int_2": ints, "int_3": ints, "float_1": floats, "float_2": floats, "float_3": floats, }, index=index, ) self.df_int_float_str = DataFrame( { "int_1": ints, "int_2": ints, "float_1": floats, "float_2": floats, "str_1": strings, "str_2": strings, }, index=index, ) self.df_longint_float_str = DataFrame( { "longint_1": longints, "longint_2": longints, "float_1": floats, "float_2": floats, "str_1": strings, "str_2": strings, }, index=index, ) def time_to_json(self, orient, frame): getattr(self, frame).to_json(self.fname, orient=orient) def peakmem_to_json(self, orient, frame): getattr(self, frame).to_json(self.fname, orient=orient)
ToJSON
python
PyCQA__pylint
tests/utils/unittest_ast_walker.py
{ "start": 478, "end": 2877 }
class ____: class MockLinter: def __init__(self, msgs: dict[str, bool]) -> None: self._msgs = msgs def is_message_enabled(self, msgid: str) -> bool: return self._msgs.get(msgid, True) class Checker(BaseChecker): # pylint: disable-next=super-init-not-called def __init__(self) -> None: self.called: set[str] = set() @only_required_for_messages("first-message") def visit_module( self, module: nodes.Module # pylint: disable=unused-argument ) -> None: self.called.add("module") @only_required_for_messages("second-message") def visit_call(self, module: nodes.Call) -> None: raise NotImplementedError @only_required_for_messages("second-message", "third-message") def visit_assignname( self, module: nodes.AssignName # pylint: disable=unused-argument ) -> None: self.called.add("assignname") @only_required_for_messages("second-message") def leave_assignname(self, module: nodes.AssignName) -> None: raise NotImplementedError def test_only_required_for_messages(self) -> None: linter = self.MockLinter( {"first-message": True, "second-message": False, "third-message": True} ) walker = ASTWalker(linter) # type: ignore[arg-type] checker = self.Checker() walker.add_checker(checker) walker.walk(astroid.parse("x = func()")) assert {"module", "assignname"} == checker.called def test_deprecated_methods(self) -> None: class Checker(BaseChecker): # pylint: disable-next=super-init-not-called def __init__(self) -> None: self.called = False @only_required_for_messages("first-message") def visit_assname( self, node: nodes.AssignName # pylint: disable=unused-argument ) -> None: self.called = True linter = self.MockLinter({"first-message": True}) walker = ASTWalker(linter) # type: ignore[arg-type] checker = Checker() walker.add_checker(checker) with warnings.catch_warnings(record=True): warnings.simplefilter("always") walker.walk(astroid.parse("x = 1")) assert not checker.called
TestASTWalker