language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
huggingface__transformers
src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
{ "start": 15586, "end": 17754 }
class ____(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=(config.conv_depthwise_kernel_size - 1) // 2, groups=config.hidden_size, bias=False, ) self.batch_norm = nn.BatchNorm1d(config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.conformer_conv_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states
Wav2Vec2ConformerConvolutionModule
python
fsspec__filesystem_spec
fsspec/exceptions.py
{ "start": 64, "end": 220 }
class ____(ValueError): """ Raised when a cached file is opened with a different blocksize than it was written with """
BlocksizeMismatchError
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/waiters/test_eks.py
{ "start": 1023, "end": 2513 }
class ____: def test_service_waiters(self): hook = EksHook() with open(hook.waiter_path) as config_file: expected_waiters = json.load(config_file)["waiters"] for waiter in list(expected_waiters.keys()): assert waiter in hook.list_waiters() assert waiter in hook._list_custom_waiters() @pytest.mark.db_test @mock_aws def test_existing_waiter_inherited(self): """ AwsBaseHook::get_waiter will first check if there is a custom waiter with the provided name and pass that through is it exists, otherwise it will check the custom waiters for the given service. This test checks to make sure that the waiter is the same whichever way you get it and no modifications are made. """ hook_waiter = EksHook().get_waiter("cluster_active") client_waiter = EksHook().conn.get_waiter("cluster_active") boto_waiter = boto3.client("eks").get_waiter("cluster_active") assert_all_match(hook_waiter.name, client_waiter.name, boto_waiter.name) assert_all_match(len(hook_waiter.__dict__), len(client_waiter.__dict__), len(boto_waiter.__dict__)) for attr in hook_waiter.__dict__: # Not all attributes in a Waiter are directly comparable # so the best we can do it make sure the same attrs exist. assert hasattr(boto_waiter, attr) assert hasattr(client_waiter, attr)
TestCustomEKSServiceWaiters
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_format13.py
{ "start": 315, "end": 1557 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_format13.xlsx") def test_create_file(self): """Test the creation of an XlsxWriter file with chart formatting.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "line"}) chart.axis_ids = [51785088, 51804032] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series( { "categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$B$1:$B$5", "data_labels": {"value": 1}, } ) chart.add_series( { "categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$C$1:$C$5", } ) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
django__django
tests/basic/models.py
{ "start": 1546, "end": 1612 }
class ____(PrimaryKeyWithDefault): pass
ChildPrimaryKeyWithDefault
python
ansible__ansible
lib/ansible/galaxy/collection/gpg.py
{ "start": 4667, "end": 5064 }
class ____(GpgBaseError): """"It was not possible to check the signature. This may be caused by a missing public key or an unsupported algorithm. A RC of 4 indicates unknown algorithm, a 9 indicates a missing public key. """ keyid: str pkalgo: int hashalgo: int sig_class: str time: int rc: int fpr: str @dataclass(frozen=True, slots=True)
GpgErrSig
python
readthedocs__readthedocs.org
readthedocs/projects/migrations/0034_remove_unused_project_model_fields.py
{ "start": 121, "end": 1261 }
class ____(migrations.Migration): safe = Safe.after_deploy() dependencies = [ ("projects", "0033_add_environment_variables"), ] operations = [ migrations.RemoveField( model_name="project", name="copyright", ), migrations.RemoveField( model_name="project", name="django_packages_url", ), migrations.RemoveField( model_name="project", name="mirror", ), migrations.RemoveField( model_name="project", name="num_major", ), migrations.RemoveField( model_name="project", name="num_minor", ), migrations.RemoveField( model_name="project", name="num_point", ), migrations.RemoveField( model_name="project", name="suffix", ), migrations.RemoveField( model_name="project", name="theme", ), migrations.RemoveField( model_name="project", name="version", ), ]
Migration
python
pypa__setuptools
setuptools/_vendor/backports/tarfile/__init__.py
{ "start": 9841, "end": 9951 }
class ____(TarError): """Exception for unsupported operations on stream-like TarFiles.""" pass
StreamError
python
doocs__leetcode
solution/2400-2499/2477.Minimum Fuel Cost to Report to the Capital/Solution.py
{ "start": 0, "end": 523 }
class ____: def minimumFuelCost(self, roads: List[List[int]], seats: int) -> int: def dfs(a: int, fa: int) -> int: nonlocal ans sz = 1 for b in g[a]: if b != fa: t = dfs(b, a) ans += ceil(t / seats) sz += t return sz g = defaultdict(list) for a, b in roads: g[a].append(b) g[b].append(a) ans = 0 dfs(0, -1) return ans
Solution
python
ray-project__ray
python/ray/train/v2/_internal/execution/callback.py
{ "start": 6369, "end": 6743 }
class ____(RayTrainCallback): """ Callbacks that are hooked to the train context event. These callbacks are created on the train driver process and then copied and passed to all the workers. The execution of these callbacks happens on the train context of the workers. """ @contextmanager def on_report(self): yield
TrainContextCallback
python
huggingface__transformers
src/transformers/models/glm4v_moe/modeling_glm4v_moe.py
{ "start": 26766, "end": 28083 }
class ____(PreTrainedModel): config: Glm4vMoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Glm4vMoeTextDecoderLayer", "Glm4vMoeVisionBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = False _supports_attention_backend = True _can_record_outputs = { "hidden_states": Glm4vMoeTextDecoderLayer, "attentions": Glm4vMoeTextAttention, "router_logits": OutputRecorder(nn.Linear, layer_name="mlp.gate", index=0), } input_modalities = ("text", "image", "video") @torch.no_grad() def _init_weights(self, module): super()._init_weights(module) if isinstance(module, Glm4vMoeTextTopkRouter): init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) elif isinstance(module, Glm4vMoeTextNaiveMoe): init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range) init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range) @dataclass @auto_docstring( custom_intro=""" Base class for Glm4vMoe causal language model (or autoregressive) outputs. """ )
Glm4vMoePreTrainedModel
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/array_ops/array_ops_test.py
{ "start": 44979, "end": 46265 }
class ____(test_lib.Benchmark): """Benchmark new strided slice operation on non-trivial case.""" def run_and_time(self, slice_op): self.evaluate(variables.global_variables_initializer()) for _ in range(10): _ = self.evaluate(slice_op) iters = 1000 t0 = time.time() for _ in range(iters): self.evaluate(slice_op) t1 = time.time() self.report_benchmark(iters=iters, wall_time=(t1 - t0) / 1000.0) def make_variable(self): n = 256 shape = (n, n, n) items = n**3 var = variables.Variable( array_ops.reshape(math_ops.linspace(1., float(items), items), shape), dtype=dtypes.float32) return var def benchmark_strided_slice_skip(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[::2, ::1, ::2] self.run_and_time(slice_op) def benchmark_strided_slice_easy(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[3::1, 3::1, 3::1] self.run_and_time(slice_op) def benchmark_slice_easy(self): with session.Session(): var = self.make_variable() slice_op = var[3::1, 3::1, 3::1] self.run_and_time(slice_op)
StridedSliceBenchmark
python
doocs__leetcode
solution/3100-3199/3157.Find the Level of Tree with Minimum Sum/Solution.py
{ "start": 192, "end": 729 }
class ____: def minimumLevel(self, root: Optional[TreeNode]) -> int: q = deque([root]) ans = 0 level, s = 1, inf while q: t = 0 for _ in range(len(q)): node = q.popleft() t += node.val if node.left: q.append(node.left) if node.right: q.append(node.right) if s > t: s = t ans = level level += 1 return ans
Solution
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/roots/mutation.py
{ "start": 21385, "end": 21822 }
class ____(graphene.Union): """The output from reloading a code location server.""" class Meta: types = ( GrapheneWorkspaceLocationEntry, GrapheneReloadNotSupported, GrapheneRepositoryLocationNotFound, GrapheneUnauthorizedError, GraphenePythonError, ) name = "ReloadRepositoryLocationMutationResult"
GrapheneReloadRepositoryLocationMutationResult
python
django-extensions__django-extensions
django_extensions/management/commands/raise_test_exception.py
{ "start": 175, "end": 635 }
class ____(BaseCommand): help = ( "Raises a test Exception named DjangoExtensionsTestException. " "Useful for debugging integration with error reporters like Sentry." ) @signalcommand def handle(self, *args, **options): message = ( "This is a test exception via the " "django-extensions raise_test_exception management command." ) raise DjangoExtensionsTestException(message)
Command
python
pytorch__pytorch
torch/testing/_internal/opinfo/refs.py
{ "start": 4301, "end": 5579 }
class ____(ReductionOpInfo): """ An OpInfo for a Python reference of an elementwise unary operation. """ def __init__( self, name, # the stringname of the callable Python reference *, op=None, # the function variant of the operation, populated as torch.<name> if None op_db=None, # The database of opinfos to search for the parent opinfo torch_opinfo_name, # the string name of the corresponding torch opinfo torch_opinfo_variant_name="", # the variant name for corresponding torch opinfo **kwargs, ): # additional kwargs override kwargs inherited from the torch opinfo self.torch_opinfo_name = torch_opinfo_name self.torch_opinfo_variant_name = torch_opinfo_variant_name self.torch_opinfo = _find_referenced_opinfo( torch_opinfo_name, torch_opinfo_variant_name, op_db=op_db ) assert isinstance(self.torch_opinfo, ReductionOpInfo) inherited = self.torch_opinfo._original_reduction_args ukwargs = _inherit_constructor_args(name, op, inherited, kwargs) # See https://github.com/pytorch/pytorch/issues/77216 self.validate_view_consistency = False super().__init__(**ukwargs)
ReductionPythonRefInfo
python
ray-project__ray
rllib/evaluation/tests/test_rollout_worker.py
{ "start": 2403, "end": 2715 }
class ____(gym.Env): def __init__(self): self.observation_space = gym.spaces.Discrete(1) self.action_space = gym.spaces.Discrete(2) def reset(self, *, seed=None, options=None): raise ValueError("kaboom") def step(self, action): raise ValueError("kaboom")
FailOnStepEnv
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/annotated2.py
{ "start": 225, "end": 262 }
class ____: ... def func1(): ...
ClassA
python
kamyu104__LeetCode-Solutions
Python/minimum-amount-of-time-to-collect-garbage.py
{ "start": 100, "end": 738 }
class ____(object): def garbageCollection(self, garbage, travel): """ :type garbage: List[str] :type travel: List[int] :rtype: int """ result = 0 lookup = {} for i in xrange(len(garbage)): for c in garbage[i]: lookup[c] = i if i+1 < len(travel): travel[i+1] += travel[i] result += len(garbage[i]) result += sum(travel[v-1] for _, v in lookup.iteritems() if v-1 >= 0) return result # Time: O(n * l), l = max(len(g) for g in garbage) = O(10) # Space: O(1) # simulation, prefix sum
Solution
python
pallets__click
src/click/types.py
{ "start": 20018, "end": 20164 }
class ____(_NumberParamTypeBase): name = "float" _number_class = float def __repr__(self) -> str: return "FLOAT"
FloatParamType
python
getsentry__sentry
tests/sentry/models/test_project.py
{ "start": 36722, "end": 37593 }
class ____(TestCase): def test_hybrid_cloud_deletion(self) -> None: proj = self.create_project() user = self.create_user() proj_id = proj.id with assume_test_silo_mode(SiloMode.CONTROL): UserOption.objects.set_value(user, "cool_key", "Hello!", project_id=proj.id) with outbox_runner(): proj.delete() assert not Project.objects.filter(id=proj_id).exists() # cascade is asynchronous, ensure there is still related search, with assume_test_silo_mode(SiloMode.CONTROL): assert UserOption.objects.filter(project_id=proj_id).exists() with self.tasks(): schedule_hybrid_cloud_foreign_key_jobs_control() # Ensure they are all now gone. assert not UserOption.objects.filter(project_id=proj_id).exists()
ProjectDeletionTest
python
HypothesisWorks__hypothesis
hypothesis-python/tests/cover/test_lookup.py
{ "start": 33615, "end": 37168 }
class ____: def __init__(self, foo: bool | None = None): self.foo = foo def test_from_type_can_be_default_or_annotation(): find_any(st.from_type(AnnotatedAndDefault), lambda x: x.foo is None) find_any(st.from_type(AnnotatedAndDefault), lambda x: isinstance(x.foo, bool)) @pytest.mark.parametrize("t", BUILTIN_TYPES, ids=lambda t: t.__name__) def test_resolves_builtin_types(t): with warnings.catch_warnings(): warnings.simplefilter("ignore", SmallSearchSpaceWarning) assert_simple_property(st.from_type(t), lambda v: isinstance(v, t)) @pytest.mark.parametrize("t", BUILTIN_TYPES, ids=lambda t: t.__name__) @given(data=st.data()) @settings(max_examples=20) def test_resolves_forwardrefs_to_builtin_types(t, data): if t.__name__ == "object" and settings.get_current_profile_name() == "threading": # from_type(ForwardRef("object")) pulls from register_type_strategy, # and depending on threading I've seen `st.builds(Bar, st.integers())` # (from this file) be registered in one iteration and not the next, # causing Hypothesis to raise FlakyStrategyDefinition. # # (I would also expect st.from_type(object) to have this problem, but # I haven't seen that error under threading, yet). pytest.skip("ForwardRef('object') is inherently flaky under concurrency") s = st.from_type(typing.ForwardRef(t.__name__)) v = data.draw(s) assert isinstance(v, t) @pytest.mark.parametrize("t", BUILTIN_TYPES, ids=lambda t: t.__name__) def test_resolves_type_of_builtin_types(t): assert_simple_property(st.from_type(type[t.__name__]), lambda v: v is t) @given( st.from_type(type[typing.Union["str", "int"]]) | st.from_type(_Type[typing.Union["str", "int"]]) ) def test_resolves_type_of_union_of_forwardrefs_to_builtins(x): assert x in (str, int) @pytest.mark.parametrize( "type_", [ # Old-style `List` because `list[int]() == list()`, so no need for the hint. getattr(typing, "List", None)[int], pytest.param( typing.Optional[int], marks=pytest.mark.skipif( sys.version_info >= (3, 14), reason="different error on 3.14+" ), ), ], ) def test_builds_suggests_from_type(type_): with pytest.raises( InvalidArgument, match=re.escape(f"try using from_type({type_!r})") ): check_can_generate_examples(st.builds(type_)) try: check_can_generate_examples(st.builds(type_, st.just("has an argument"))) raise AssertionError("Expected strategy to raise an error") except TypeError as err: assert not isinstance(err, InvalidArgument) @pytest.mark.skipif(sys.version_info < (3, 14), reason="different error on 3.14+") @pytest.mark.parametrize("type_", [typing.Optional[int]]) def test_builds_suggests_from_type_on_construction(type_): with pytest.raises( InvalidArgument, match=re.escape(f"Try using from_type({type_!r})") ): check_can_generate_examples(st.builds(type_)) with pytest.raises( InvalidArgument, match=re.escape(f"Try using from_type({type_!r})") ): check_can_generate_examples(st.builds(type_, st.just("has an argument"))) def test_builds_mentions_no_type_check(): @typing.no_type_check def f(x: int): pass msg = "@no_type_check decorator prevented Hypothesis from inferring a strategy" with pytest.raises(TypeError, match=msg): check_can_generate_examples(st.builds(f))
AnnotatedAndDefault
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/operators/sagemaker.py
{ "start": 60359, "end": 64891 }
class ____(SageMakerBaseOperator): """ Starts a SageMaker pipeline execution. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SageMakerStartPipelineOperator` :param config: The configuration to start the pipeline execution. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param pipeline_name: Name of the pipeline to start. :param display_name: The name this pipeline execution will have in the UI. Doesn't need to be unique. :param pipeline_params: Optional parameters for the pipeline. All parameters supplied need to already be present in the pipeline definition. :param wait_for_completion: If true, this operator will only complete once the pipeline is complete. :param check_interval: How long to wait between checks for pipeline status when waiting for completion. :param waiter_max_attempts: How many times to check the status before failing. :param verbose: Whether to print steps details when waiting for completion. Defaults to true, consider turning off for pipelines that have thousands of steps. :param deferrable: Run operator in the deferrable mode. :return str: Returns The ARN of the pipeline execution created in Amazon SageMaker. """ template_fields: Sequence[str] = aws_template_fields( "pipeline_name", "display_name", "pipeline_params", ) def __init__( self, *, pipeline_name: str, display_name: str = "airflow-triggered-execution", pipeline_params: dict | None = None, wait_for_completion: bool = False, check_interval: int = CHECK_INTERVAL_SECOND, waiter_max_attempts: int = 9999, verbose: bool = True, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(config={}, **kwargs) self.pipeline_name = pipeline_name self.display_name = display_name self.pipeline_params = pipeline_params self.wait_for_completion = wait_for_completion self.check_interval = check_interval self.waiter_max_attempts = waiter_max_attempts self.verbose = verbose self.deferrable = deferrable def execute(self, context: Context) -> str: arn = self.hook.start_pipeline( pipeline_name=self.pipeline_name, display_name=self.display_name, pipeline_params=self.pipeline_params, ) self.log.info( "Starting a new execution for pipeline %s, running with ARN %s", self.pipeline_name, arn ) if self.deferrable: self.defer( trigger=SageMakerPipelineTrigger( waiter_type=SageMakerPipelineTrigger.Type.COMPLETE, pipeline_execution_arn=arn, waiter_delay=self.check_interval, waiter_max_attempts=self.waiter_max_attempts, aws_conn_id=self.aws_conn_id, ), method_name="execute_complete", ) elif self.wait_for_completion: self.hook.check_status( arn, "PipelineExecutionStatus", lambda p: self.hook.describe_pipeline_exec(p, self.verbose), self.check_interval, non_terminal_states=self.hook.pipeline_non_terminal_states, max_ingestion_time=self.waiter_max_attempts * self.check_interval, ) return arn def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> str: validated_event = validate_execute_complete_event(event) if validated_event["status"] != "success": raise AirflowException(f"Failure during pipeline execution: {validated_event}") return validated_event["value"]
SageMakerStartPipelineOperator
python
django__django
django/contrib/gis/serializers/geojson.py
{ "start": 218, "end": 2732 }
class ____(JSONSerializer): """ Convert a queryset to GeoJSON, http://geojson.org/ """ def _init_options(self): super()._init_options() self.geometry_field = self.json_kwargs.pop("geometry_field", None) self.id_field = self.json_kwargs.pop("id_field", None) self.srid = self.json_kwargs.pop("srid", 4326) if ( self.selected_fields is not None and self.geometry_field is not None and self.geometry_field not in self.selected_fields ): self.selected_fields = [*self.selected_fields, self.geometry_field] def start_serialization(self): self._init_options() self._cts = {} # cache of CoordTransform's self.stream.write('{"type": "FeatureCollection", "features": [') def end_serialization(self): self.stream.write("]}") def start_object(self, obj): super().start_object(obj) self._geometry = None if self.geometry_field is None: # Find the first declared geometry field for field in obj._meta.fields: if hasattr(field, "geom_type"): self.geometry_field = field.name break def get_dump_object(self, obj): data = { "type": "Feature", "id": obj.pk if self.id_field is None else getattr(obj, self.id_field), "properties": self._current, } if ( self.selected_fields is None or "pk" in self.selected_fields ) and "pk" not in data["properties"]: data["properties"]["pk"] = obj._meta.pk.value_to_string(obj) if self._geometry: if self._geometry.srid != self.srid: # If needed, transform the geometry in the srid of the global # geojson srid. if self._geometry.srid not in self._cts: srs = SpatialReference(self.srid) self._cts[self._geometry.srid] = CoordTransform( self._geometry.srs, srs ) self._geometry.transform(self._cts[self._geometry.srid]) data["geometry"] = json.loads(self._geometry.geojson) else: data["geometry"] = None return data def handle_field(self, obj, field): if field.name == self.geometry_field: self._geometry = field.value_from_object(obj) else: super().handle_field(obj, field)
Serializer
python
Pylons__pyramid
tests/test_paster.py
{ "start": 107, "end": 1435 }
class ____(unittest.TestCase): def _callFUT(self, config_file, section_name, options=None, _loader=None): import pyramid.paster old_loader = pyramid.paster.get_config_loader try: if _loader is not None: pyramid.paster.get_config_loader = _loader return pyramid.paster.get_app( config_file, section_name, options=options ) finally: pyramid.paster.get_config_loader = old_loader def test_it(self): app = DummyApp() loader = DummyLoader(app=app) result = self._callFUT( '/foo/bar/myapp.ini', 'myapp', options={'a': 'b'}, _loader=loader ) self.assertEqual(loader.uri.path, '/foo/bar/myapp.ini') self.assertEqual(len(loader.calls), 1) self.assertEqual(loader.calls[0]['op'], 'app') self.assertEqual(loader.calls[0]['name'], 'myapp') self.assertEqual(loader.calls[0]['defaults'], {'a': 'b'}) self.assertEqual(result, app) def test_it_with_dummyapp_requiring_options(self): options = {'bar': 'baz'} app = self._callFUT( os.path.join(here, 'fixtures', 'dummy.ini'), 'myapp', options=options, ) self.assertEqual(app.settings['foo'], 'baz')
Test_get_app
python
encode__django-rest-framework
tests/test_one_to_one_with_inheritance.py
{ "start": 603, "end": 772 }
class ____(serializers.ModelSerializer): class Meta: model = ChildAssociatedModel fields = ['id', 'child_name'] # Tests
ChildAssociatedModelSerializer
python
keon__algorithms
algorithms/tree/bst/BSTIterator.py
{ "start": 1, "end": 459 }
class ____: def __init__(self, root): self.stack = [] while root: self.stack.append(root) root = root.left def has_next(self): return bool(self.stack) def next(self): node = self.stack.pop() tmp = node if tmp.right: tmp = tmp.right while tmp: self.stack.append(tmp) tmp = tmp.left return node.val
BSTIterator
python
django-import-export__django-import-export
tests/scripts/bulk_import.py
{ "start": 431, "end": 5342 }
class ____(resources.ModelResource): class Meta: model = Book fields = ("id", "name", "author_email", "price") use_bulk = True batch_size = 1000 skip_unchanged = True # skip_diff = True # This flag can speed up imports # Cannot be used when performing updates # force_init_instance = True instance_loader_class = CachedInstanceLoader def profile_duration(fn): @wraps(fn) def inner(*args, **kwargs): # Measure duration t = time.perf_counter() fn(*args, **kwargs) elapsed = time.perf_counter() - t print(f"Time {elapsed: 0.4}") return inner def profile_mem(fn): @wraps(fn) def inner(*args, **kwargs): # Measure memory mem, retval = memory_usage( (fn, args, kwargs), retval=True, timeout=200, interval=1e-7 ) print(f"Memory {max(mem) - min(mem)}") return retval return inner @profile_duration def do_import_duration(resource, dataset): resource.import_data(dataset) @profile_mem def do_import_mem(resource, dataset): resource.import_data(dataset) def do_create(): class _BookResource(resources.ModelResource): class Meta: model = Book fields = ("id", "name", "author_email", "price") use_bulk = True batch_size = 1000 skip_unchanged = True skip_diff = True force_init_instance = True print("\ndo_create()") # clearing down existing objects books = Book.objects.all() books._raw_delete(books.db) rows = [("", "Some new book", "email@example.com", "10.25")] * NUM_ROWS dataset = tablib.Dataset(*rows, headers=["id", "name", "author_email", "price"]) book_resource = _BookResource() do_import_duration(book_resource, dataset) do_import_mem(book_resource, dataset) # Book objects are created once for the 'duration' run, # and once for the 'memory' run assert Book.objects.count() == NUM_ROWS * 2 books._raw_delete(books.db) def do_update(): print("\ndo_update()") # clearing down existing objects books = Book.objects.all() books._raw_delete(books.db) rows = [("", "Some new book", "email@example.com", "10.25")] * NUM_ROWS books = [Book(name=r[1], author_email=r[2], price=r[3]) for r in rows] # run 'update' - there must be existing rows in the DB... # i.e. so they can be updated Book.objects.bulk_create(books) assert NUM_ROWS == Book.objects.count() # find the ids, so that we can perform the update all_books = Book.objects.all() rows = [(b.id, b.name, b.author_email, b.price) for b in all_books] dataset = tablib.Dataset(*rows, headers=["id", "name", "author_email", "price"]) book_resource = _BookResource() do_import_duration(book_resource, dataset) do_import_mem(book_resource, dataset) assert NUM_ROWS == Book.objects.count() books = Book.objects.all() books._raw_delete(books.db) def do_delete(): class _BookResource(resources.ModelResource): def for_delete(self, row, instance): return True class Meta: model = Book fields = ("id", "name", "author_email", "price") use_bulk = True batch_size = 1000 skip_diff = True instance_loader_class = CachedInstanceLoader print("\ndo_delete()") # clearing down existing objects books = Book.objects.all() books._raw_delete(books.db) rows = [("", "Some new book", "email@example.com", "10.25")] * NUM_ROWS books = [Book(name=r[1], author_email=r[2], price=r[3]) for r in rows] # deletes - there must be existing rows in the DB... # i.e. so they can be deleted Book.objects.bulk_create(books) assert NUM_ROWS == Book.objects.count() all_books = Book.objects.all() rows = [(b.id, b.name, b.author_email, b.price) for b in all_books] dataset = tablib.Dataset(*rows, headers=["id", "name", "author_email", "price"]) book_resource = _BookResource() do_import_duration(book_resource, dataset) assert 0 == Book.objects.count() # recreate rows which have just been deleted Book.objects.bulk_create(books) assert NUM_ROWS == Book.objects.count() all_books = Book.objects.all() rows = [(b.id, b.name, b.author_email, b.price) for b in all_books] dataset = tablib.Dataset(*rows, headers=["id", "name", "author_email", "price"]) do_import_mem(book_resource, dataset) assert 0 == Book.objects.count() def run(*args): if len(args) > 0: arg = args[0].lower() if arg == "create": do_create() if arg == "update": do_update() if arg == "delete": do_delete() else: do_create() do_update() do_delete()
_BookResource
python
huggingface__transformers
tests/models/mllama/test_image_processing_mllama.py
{ "start": 1100, "end": 5466 }
class ____: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, num_images=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_convert_rgb=True, do_pad=True, max_image_tiles=4, ): size = size if size is not None else {"height": 224, "width": 224} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.max_image_tiles = max_image_tiles self.image_size = image_size self.num_images = num_images self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_convert_rgb = do_convert_rgb self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_convert_rgb": self.do_convert_rgb, "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, "max_image_tiles": self.max_image_tiles, } def prepare_image_inputs( self, batch_size=None, min_resolution=None, max_resolution=None, num_channels=None, num_images=None, size_divisor=None, equal_resolution=False, numpify=False, torchify=False, ): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. One can specify whether the images are of the same resolution or not. """ assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" batch_size = batch_size if batch_size is not None else self.batch_size min_resolution = min_resolution if min_resolution is not None else self.min_resolution max_resolution = max_resolution if max_resolution is not None else self.max_resolution num_channels = num_channels if num_channels is not None else self.num_channels num_images = num_images if num_images is not None else self.num_images images_list = [] for i in range(batch_size): images = [] for j in range(num_images): if equal_resolution: width = height = max_resolution else: # To avoid getting image width/height 0 if size_divisor is not None: # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor` min_resolution = max(size_divisor, min_resolution) width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) images_list.append(images) if not numpify and not torchify: # PIL expects the channel dimension as last dimension images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list] if torchify: images_list = [[torch.from_numpy(image) for image in images] for images in images_list] return images_list def expected_output_image_shape(self, images): expected_output_image_shape = ( max(len(images) for images in images), self.max_image_tiles, self.num_channels, self.size["height"], self.size["width"], ) return expected_output_image_shape @require_torch @require_vision
MllamaImageProcessingTester
python
fabric__fabric
tests/task.py
{ "start": 1058, "end": 3072 }
class ____: def accepts_Invoke_level_kwargs(self): # Arbitrarily selected list of invoke-level kwargs... def body(c, parts): "I am a docstring" pass # Faux @task() t = fabric.task( name="dadbod", aliases=["heavenly", "check", "shop"], default=True, help={"parts": "See: the sum of"}, iterable=["parts"], )(body) assert t.body is body assert t.__doc__ == "I am a docstring" assert t.name == "dadbod" assert "heavenly" in t.aliases assert t.is_default assert "parts" in t.help assert "parts" in t.iterable def returns_Fabric_level_Task_instance(self): assert isinstance(fabric.task(Mock()), fabric.Task) def does_not_touch_klass_kwarg_if_explicitly_given(self): # Otherwise sub-subclassers would be screwed, yea? class SubFabTask(fabric.Task): pass assert isinstance(fabric.task(klass=SubFabTask)(Mock()), SubFabTask) class hosts_kwarg: # NOTE: these don't currently test anything besides "the value given is # attached as .hosts" but they guard against regressions and ensures # things work as documented, even if Executor is what really cares. def _run(self, hosts): @fabric.task(hosts=hosts) def mytask(c): pass assert mytask.hosts == hosts def values_may_be_connection_first_posarg_strings(self): self._run(["host1", "user@host2", "host3:2222"]) def values_may_be_Connection_constructor_kwarg_dicts(self): self._run( [ {"host": "host1"}, {"host": "host2", "user": "user"}, {"host": "host3", "port": 2222}, ] ) def values_may_be_mixed(self): self._run([{"host": "host1"}, "user@host2"]) def _dummy(c): pass
task_
python
pytorch__pytorch
benchmarks/operator_benchmark/pt/remainder_test.py
{ "start": 841, "end": 1654 }
class ____(op_bench.TorchBenchmarkBase): def init(self, M, N, K, device, dtype, op_func): self.dividend = torch.rand(M, N, K, device=device) self.dividend = (self.dividend * 1000 - 500).to(dtype=dtype) self.divisor = torch.rand(M, N, K, device=device) # +1 so we don't divide by zero self.divisor = (self.divisor * 40 + 1).to(dtype=dtype) self.inputs = {"dividend": self.dividend, "divisor": self.divisor} self.op_func = op_func def forward(self, dividend, divisor): return self.op_func(dividend, divisor) op_bench.generate_pt_tests_from_op_list( remainder_ops_list, remainder_short_configs + remainder_long_configs, RemainderOpBenchmark, ) if __name__ == "__main__": op_bench.benchmark_runner.main()
RemainderOpBenchmark
python
openai__openai-python
src/openai/types/vector_store_create_params.py
{ "start": 1574, "end": 1894 }
class ____(TypedDict, total=False): anchor: Required[Literal["last_active_at"]] """Anchor timestamp after which the expiration policy applies. Supported anchors: `last_active_at`. """ days: Required[int] """The number of days after the anchor time that the vector store will expire."""
ExpiresAfter
python
joke2k__faker
faker/providers/currency/en_AU/__init__.py
{ "start": 46, "end": 279 }
class ____(CurrencyProvider): price_formats = ["#.##", "%#.##", "%##.##", "%,###.##", "%#,###.##"] def pricetag(self) -> str: return "$\N{NO-BREAK SPACE}" + self.numerify(self.random_element(self.price_formats))
Provider
python
realpython__materials
python-raise-exception/api.py
{ "start": 18, "end": 365 }
class ____(Exception): pass def call_external_api(url): try: response = requests.get(url) response.raise_for_status() data = response.json() except requests.RequestException as error: raise APIError(f"{error}") from None return data print(call_external_api("https://api.github.com/events"))
APIError
python
matplotlib__matplotlib
lib/mpl_toolkits/axisartist/axis_artist.py
{ "start": 21713, "end": 38340 }
class ____(martist.Artist): """ An artist which draws axis (a line along which the n-th axes coord is constant) line, ticks, tick labels, and axis label. """ zorder = 2.5 @property def LABELPAD(self): return self.label.get_pad() @LABELPAD.setter def LABELPAD(self, v): self.label.set_pad(v) def __init__(self, axes, helper, offset=None, axis_direction="bottom", **kwargs): """ Parameters ---------- axes : `mpl_toolkits.axisartist.axislines.Axes` helper : `~mpl_toolkits.axisartist.axislines.AxisArtistHelper` """ # axes is also used to follow the axis attribute (tick color, etc). super().__init__(**kwargs) self.axes = axes self._axis_artist_helper = helper if offset is None: offset = (0, 0) self.offset_transform = ScaledTranslation( *offset, Affine2D().scale(1 / 72) # points to inches. + self.axes.get_figure(root=False).dpi_scale_trans) if axis_direction in ["left", "right"]: self.axis = axes.yaxis else: self.axis = axes.xaxis self._axisline_style = None self._axis_direction = axis_direction self._init_line() self._init_ticks(**kwargs) self._init_offsetText(axis_direction) self._init_label() # axis direction self._ticklabel_add_angle = 0. self._axislabel_add_angle = 0. self.set_axis_direction(axis_direction) # axis direction def set_axis_direction(self, axis_direction): """ Adjust the direction, text angle, and text alignment of tick labels and axis labels following the Matplotlib convention for the rectangle axes. The *axis_direction* must be one of [left, right, bottom, top]. ===================== ========== ========= ========== ========== Property left bottom right top ===================== ========== ========= ========== ========== ticklabel direction "-" "+" "+" "-" axislabel direction "-" "+" "+" "-" ticklabel angle 90 0 -90 180 ticklabel va center baseline center baseline ticklabel ha right center right center axislabel angle 180 0 0 180 axislabel va center top center bottom axislabel ha right center right center ===================== ========== ========= ========== ========== Note that the direction "+" and "-" are relative to the direction of the increasing coordinate. Also, the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom axis. Parameters ---------- axis_direction : {"left", "bottom", "right", "top"} """ self.major_ticklabels.set_axis_direction(axis_direction) self.label.set_axis_direction(axis_direction) self._axis_direction = axis_direction if axis_direction in ["left", "top"]: self.set_ticklabel_direction("-") self.set_axislabel_direction("-") else: self.set_ticklabel_direction("+") self.set_axislabel_direction("+") def set_ticklabel_direction(self, tick_direction): r""" Adjust the direction of the tick labels. Note that the *tick_direction*\s '+' and '-' are relative to the direction of the increasing coordinate. Parameters ---------- tick_direction : {"+", "-"} """ self._ticklabel_add_angle = _api.check_getitem( {"+": 0, "-": 180}, tick_direction=tick_direction) def invert_ticklabel_direction(self): self._ticklabel_add_angle = (self._ticklabel_add_angle + 180) % 360 self.major_ticklabels.invert_axis_direction() self.minor_ticklabels.invert_axis_direction() def set_axislabel_direction(self, label_direction): r""" Adjust the direction of the axis label. Note that the *label_direction*\s '+' and '-' are relative to the direction of the increasing coordinate. Parameters ---------- label_direction : {"+", "-"} """ self._axislabel_add_angle = _api.check_getitem( {"+": 0, "-": 180}, label_direction=label_direction) def get_transform(self): return self.axes.transAxes + self.offset_transform def get_helper(self): """ Return axis artist helper instance. """ return self._axis_artist_helper def set_axisline_style(self, axisline_style=None, **kwargs): """ Set the axisline style. The new style is completely defined by the passed attributes. Existing style attributes are forgotten. Parameters ---------- axisline_style : str or None The line style, e.g. '->', optionally followed by a comma-separated list of attributes. Alternatively, the attributes can be provided as keywords. If *None* this returns a string containing the available styles. Examples -------- The following two commands are equal: >>> set_axisline_style("->,size=1.5") >>> set_axisline_style("->", size=1.5) """ if axisline_style is None: return AxislineStyle.pprint_styles() if isinstance(axisline_style, AxislineStyle._Base): self._axisline_style = axisline_style else: self._axisline_style = AxislineStyle(axisline_style, **kwargs) self._init_line() def get_axisline_style(self): """Return the current axisline style.""" return self._axisline_style def _init_line(self): """ Initialize the *line* artist that is responsible to draw the axis line. """ tran = (self._axis_artist_helper.get_line_transform(self.axes) + self.offset_transform) axisline_style = self.get_axisline_style() if axisline_style is None: self.line = PathPatch( self._axis_artist_helper.get_line(self.axes), color=mpl.rcParams['axes.edgecolor'], fill=False, linewidth=mpl.rcParams['axes.linewidth'], capstyle=mpl.rcParams['lines.solid_capstyle'], joinstyle=mpl.rcParams['lines.solid_joinstyle'], transform=tran) else: self.line = axisline_style(self, transform=tran) def _draw_line(self, renderer): self.line.set_path(self._axis_artist_helper.get_line(self.axes)) if self.get_axisline_style() is not None: self.line.set_line_mutation_scale(self.major_ticklabels.get_size()) self.line.draw(renderer) def _init_ticks(self, **kwargs): axis_name = self.axis.axis_name trans = (self._axis_artist_helper.get_tick_transform(self.axes) + self.offset_transform) self.major_ticks = Ticks( kwargs.get( "major_tick_size", mpl.rcParams[f"{axis_name}tick.major.size"]), axis=self.axis, transform=trans) self.minor_ticks = Ticks( kwargs.get( "minor_tick_size", mpl.rcParams[f"{axis_name}tick.minor.size"]), axis=self.axis, transform=trans) size = mpl.rcParams[f"{axis_name}tick.labelsize"] self.major_ticklabels = TickLabels( axis=self.axis, axis_direction=self._axis_direction, figure=self.axes.get_figure(root=False), transform=trans, fontsize=size, pad=kwargs.get( "major_tick_pad", mpl.rcParams[f"{axis_name}tick.major.pad"]), ) self.minor_ticklabels = TickLabels( axis=self.axis, axis_direction=self._axis_direction, figure=self.axes.get_figure(root=False), transform=trans, fontsize=size, pad=kwargs.get( "minor_tick_pad", mpl.rcParams[f"{axis_name}tick.minor.pad"]), ) def _get_tick_info(self, tick_iter): """ Return a pair of: - list of locs and angles for ticks - list of locs, angles and labels for ticklabels. """ ticks_loc_angle = [] ticklabels_loc_angle_label = [] ticklabel_add_angle = self._ticklabel_add_angle for loc, angle_normal, angle_tangent, label in tick_iter: angle_label = angle_tangent - 90 + ticklabel_add_angle angle_tick = (angle_normal if 90 <= (angle_label - angle_normal) % 360 <= 270 else angle_normal + 180) ticks_loc_angle.append([loc, angle_tick]) ticklabels_loc_angle_label.append([loc, angle_label, label]) return ticks_loc_angle, ticklabels_loc_angle_label def _update_ticks(self, renderer=None): # set extra pad for major and minor ticklabels: use ticksize of # majorticks even for minor ticks. not clear what is best. if renderer is None: renderer = self.get_figure(root=True)._get_renderer() dpi_cor = renderer.points_to_pixels(1.) if self.major_ticks.get_visible() and self.major_ticks.get_tick_out(): ticklabel_pad = self.major_ticks._ticksize * dpi_cor self.major_ticklabels._external_pad = ticklabel_pad self.minor_ticklabels._external_pad = ticklabel_pad else: self.major_ticklabels._external_pad = 0 self.minor_ticklabels._external_pad = 0 majortick_iter, minortick_iter = \ self._axis_artist_helper.get_tick_iterators(self.axes) tick_loc_angle, ticklabel_loc_angle_label = \ self._get_tick_info(majortick_iter) self.major_ticks.set_locs_angles(tick_loc_angle) self.major_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) tick_loc_angle, ticklabel_loc_angle_label = \ self._get_tick_info(minortick_iter) self.minor_ticks.set_locs_angles(tick_loc_angle) self.minor_ticklabels.set_locs_angles_labels(ticklabel_loc_angle_label) def _draw_ticks(self, renderer): self._update_ticks(renderer) self.major_ticks.draw(renderer) self.major_ticklabels.draw(renderer) self.minor_ticks.draw(renderer) self.minor_ticklabels.draw(renderer) if (self.major_ticklabels.get_visible() or self.minor_ticklabels.get_visible()): self._draw_offsetText(renderer) _offsetText_pos = dict(left=(0, 1, "bottom", "right"), right=(1, 1, "bottom", "left"), bottom=(1, 0, "top", "right"), top=(1, 1, "bottom", "right")) def _init_offsetText(self, direction): x, y, va, ha = self._offsetText_pos[direction] self.offsetText = mtext.Annotation( "", xy=(x, y), xycoords="axes fraction", xytext=(0, 0), textcoords="offset points", color=mpl.rcParams['xtick.color'], horizontalalignment=ha, verticalalignment=va, ) self.offsetText.set_transform(IdentityTransform()) self.axes._set_artist_props(self.offsetText) def _update_offsetText(self): self.offsetText.set_text(self.axis.major.formatter.get_offset()) self.offsetText.set_size(self.major_ticklabels.get_size()) offset = (self.major_ticklabels.get_pad() + self.major_ticklabels.get_size() + 2) self.offsetText.xyann = (0, offset) def _draw_offsetText(self, renderer): self._update_offsetText() self.offsetText.draw(renderer) def _init_label(self, **kwargs): tr = (self._axis_artist_helper.get_axislabel_transform(self.axes) + self.offset_transform) self.label = AxisLabel( 0, 0, "__from_axes__", color="auto", fontsize=kwargs.get("labelsize", mpl.rcParams['axes.labelsize']), fontweight=mpl.rcParams['axes.labelweight'], axis=self.axis, transform=tr, axis_direction=self._axis_direction, ) self.label.set_figure(self.axes.get_figure(root=False)) labelpad = kwargs.get("labelpad", 5) self.label.set_pad(labelpad) def _update_label(self, renderer): if not self.label.get_visible(): return if self._ticklabel_add_angle != self._axislabel_add_angle: if ((self.major_ticks.get_visible() and not self.major_ticks.get_tick_out()) or (self.minor_ticks.get_visible() and not self.major_ticks.get_tick_out())): axislabel_pad = self.major_ticks._ticksize else: axislabel_pad = 0 else: axislabel_pad = max(self.major_ticklabels._axislabel_pad, self.minor_ticklabels._axislabel_pad) self.label._external_pad = axislabel_pad xy, angle_tangent = \ self._axis_artist_helper.get_axislabel_pos_angle(self.axes) if xy is None: return angle_label = angle_tangent - 90 x, y = xy self.label._ref_angle = angle_label + self._axislabel_add_angle self.label.set(x=x, y=y) def _draw_label(self, renderer): self._update_label(renderer) self.label.draw(renderer) def set_label(self, s): # docstring inherited self.label.set_text(s) def get_tightbbox(self, renderer=None): if not self.get_visible(): return self._axis_artist_helper.update_lim(self.axes) self._update_ticks(renderer) self._update_label(renderer) self.line.set_path(self._axis_artist_helper.get_line(self.axes)) if self.get_axisline_style() is not None: self.line.set_line_mutation_scale(self.major_ticklabels.get_size()) bb = [ *self.major_ticklabels.get_window_extents(renderer), *self.minor_ticklabels.get_window_extents(renderer), self.label.get_window_extent(renderer), self.offsetText.get_window_extent(renderer), self.line.get_window_extent(renderer), ] bb = [b for b in bb if b and (b.width != 0 or b.height != 0)] if bb: _bbox = Bbox.union(bb) return _bbox else: return None @martist.allow_rasterization def draw(self, renderer): # docstring inherited if not self.get_visible(): return renderer.open_group(__name__, gid=self.get_gid()) self._axis_artist_helper.update_lim(self.axes) self._draw_ticks(renderer) self._draw_line(renderer) self._draw_label(renderer) renderer.close_group(__name__) def toggle(self, all=None, ticks=None, ticklabels=None, label=None): """ Toggle visibility of ticks, ticklabels, and (axis) label. To turn all off, :: axis.toggle(all=False) To turn all off but ticks on :: axis.toggle(all=False, ticks=True) To turn all on but (axis) label off :: axis.toggle(all=True, label=False) """ if all: _ticks, _ticklabels, _label = True, True, True elif all is not None: _ticks, _ticklabels, _label = False, False, False else: _ticks, _ticklabels, _label = None, None, None if ticks is not None: _ticks = ticks if ticklabels is not None: _ticklabels = ticklabels if label is not None: _label = label if _ticks is not None: self.major_ticks.set_visible(_ticks) self.minor_ticks.set_visible(_ticks) if _ticklabels is not None: self.major_ticklabels.set_visible(_ticklabels) self.minor_ticklabels.set_visible(_ticklabels) if _label is not None: self.label.set_visible(_label)
AxisArtist
python
huggingface__transformers
src/transformers/image_utils.py
{ "start": 2351, "end": 2658 }
class ____(ExplicitEnum): COCO_DETECTION = AnnotationFormat.COCO_DETECTION.value COCO_PANOPTIC = AnnotationFormat.COCO_PANOPTIC.value AnnotationType = dict[str, Union[int, str, list[dict]]] def is_pil_image(img): return is_vision_available() and isinstance(img, PIL.Image.Image)
AnnotionFormat
python
python__mypy
mypyc/irbuild/for_helpers.py
{ "start": 20320, "end": 22389 }
class ____: """Abstract base class for generating for loops.""" def __init__( self, builder: IRBuilder, index: Lvalue, body_block: BasicBlock, loop_exit: BasicBlock, line: int, nested: bool, ) -> None: self.builder = builder self.index = index self.body_block = body_block self.line = line # Some for loops need a cleanup block that we execute at exit. We # create a cleanup block if needed. However, if we are generating a for # loop for a nested iterator, such as "e" in "enumerate(e)", the # outermost generator should generate the cleanup block -- we don't # need to do it here. if self.need_cleanup() and not nested: # Create a new block to handle cleanup after loop exit. self.loop_exit = BasicBlock() else: # Just use the existing loop exit block. self.loop_exit = loop_exit def need_cleanup(self) -> bool: """If this returns true, we need post-loop cleanup.""" return False def add_cleanup(self, exit_block: BasicBlock) -> None: """Add post-loop cleanup, if needed.""" if self.need_cleanup(): self.builder.activate_block(self.loop_exit) self.gen_cleanup() self.builder.goto(exit_block) def gen_condition(self) -> None: """Generate check for loop exit (e.g. exhaustion of iteration).""" def begin_body(self) -> None: """Generate ops at the beginning of the body (if needed).""" def gen_step(self) -> None: """Generate stepping to the next item (if needed).""" def gen_cleanup(self) -> None: """Generate post-loop cleanup (if needed).""" def load_len(self, expr: Value | AssignmentTarget) -> Value: """A helper to get collection length, used by several subclasses.""" return self.builder.builder.builtin_len( self.builder.read(expr, self.line), self.line, use_pyssize_t=True )
ForGenerator
python
pyca__cryptography
tests/x509/test_x509_ext.py
{ "start": 101975, "end": 104727 }
class ____: def test_invalid_access_method(self): with pytest.raises(TypeError): x509.AccessDescription( "notanoid", # type:ignore[arg-type] x509.DNSName("test"), ) def test_invalid_access_location(self): with pytest.raises(TypeError): x509.AccessDescription( AuthorityInformationAccessOID.CA_ISSUERS, "invalid", # type:ignore[arg-type] ) def test_valid_nonstandard_method(self): ad = x509.AccessDescription( ObjectIdentifier("2.999.1"), x509.UniformResourceIdentifier("http://example.com"), ) assert ad is not None def test_repr(self): ad = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) assert repr(ad) == ( "<AccessDescription(access_method=<ObjectIdentifier(oid=1.3.6" ".1.5.5.7.48.1, name=OCSP)>, access_location=<UniformResource" "Identifier(value='http://ocsp.domain.com')>)>" ) def test_eq(self): ad = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) ad2 = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) assert ad == ad2 def test_ne(self): ad = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) ad2 = x509.AccessDescription( AuthorityInformationAccessOID.CA_ISSUERS, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) ad3 = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://notthesame"), ) assert ad != ad2 assert ad != ad3 assert ad != object() def test_hash(self): ad = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) ad2 = x509.AccessDescription( AuthorityInformationAccessOID.OCSP, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) ad3 = x509.AccessDescription( AuthorityInformationAccessOID.CA_ISSUERS, x509.UniformResourceIdentifier("http://ocsp.domain.com"), ) assert hash(ad) == hash(ad2) assert hash(ad) != hash(ad3)
TestAccessDescription
python
langchain-ai__langchain
libs/langchain/langchain_classic/model_laboratory.py
{ "start": 398, "end": 4035 }
class ____: """A utility to experiment with and compare the performance of different models.""" def __init__(self, chains: Sequence[Chain], names: list[str] | None = None): """Initialize the ModelLaboratory with chains to experiment with. Args: chains: A sequence of chains to experiment with. Each chain must have exactly one input and one output variable. names: Optional list of names corresponding to each chain. If provided, its length must match the number of chains. Raises: ValueError: If any chain is not an instance of `Chain`. ValueError: If a chain does not have exactly one input variable. ValueError: If a chain does not have exactly one output variable. ValueError: If the length of `names` does not match the number of chains. """ for chain in chains: if not isinstance(chain, Chain): msg = ( # type: ignore[unreachable] "ModelLaboratory should now be initialized with Chains. " "If you want to initialize with LLMs, use the `from_llms` method " "instead (`ModelLaboratory.from_llms(...)`)" ) raise ValueError(msg) # noqa: TRY004 if len(chain.input_keys) != 1: msg = ( "Currently only support chains with one input variable, " f"got {chain.input_keys}" ) raise ValueError(msg) if len(chain.output_keys) != 1: msg = ( "Currently only support chains with one output variable, " f"got {chain.output_keys}" ) if names is not None and len(names) != len(chains): msg = "Length of chains does not match length of names." raise ValueError(msg) self.chains = chains chain_range = [str(i) for i in range(len(self.chains))] self.chain_colors = get_color_mapping(chain_range) self.names = names @classmethod def from_llms( cls, llms: list[BaseLLM], prompt: PromptTemplate | None = None, ) -> ModelLaboratory: """Initialize the ModelLaboratory with LLMs and an optional prompt. Args: llms: A list of LLMs to experiment with. prompt: An optional prompt to use with the LLMs. If provided, the prompt must contain exactly one input variable. Returns: An instance of `ModelLaboratory` initialized with LLMs. """ if prompt is None: prompt = PromptTemplate(input_variables=["_input"], template="{_input}") chains = [LLMChain(llm=llm, prompt=prompt) for llm in llms] names = [str(llm) for llm in llms] return cls(chains, names=names) def compare(self, text: str) -> None: """Compare model outputs on an input text. If a prompt was provided with starting the laboratory, then this text will be fed into the prompt. If no prompt was provided, then the input text is the entire prompt. Args: text: input text to run all models on. """ print(f"\033[1mInput:\033[0m\n{text}\n") # noqa: T201 for i, chain in enumerate(self.chains): name = self.names[i] if self.names is not None else str(chain) print_text(name, end="\n") output = chain.run(text) print_text(output, color=self.chain_colors[str(i)], end="\n\n")
ModelLaboratory
python
tensorflow__tensorflow
third_party/xla/xla/backends/cpu/testlib/elemental_kernel_emitter_test.py
{ "start": 1798, "end": 4403 }
class ____: op: HloOpcode np_op: Callable[[np.ndarray, ...], np.ndarray] input_ranges: tuple[float, float] = (-1.0, 1.0) decimal_precision: int = 6 # For simple unpacking def __iter__(self): return iter( (self.op, self.np_op, self.input_ranges, self.decimal_precision) ) def __repr__(self): return f"{self.op.name}({self.input_ranges})" @parameterized.product( op_def=[ ElementalHloOpcodeDef(HloOpcode.sine, np.sin), ElementalHloOpcodeDef(HloOpcode.cosine, np.cos), ElementalHloOpcodeDef(HloOpcode.tan, np.tan), ElementalHloOpcodeDef(HloOpcode.exponential, np.exp), ElementalHloOpcodeDef(HloOpcode.log, np.log, (0.01, 10.0)), ElementalHloOpcodeDef(HloOpcode.log_plus_one, np.log1p), ElementalHloOpcodeDef(HloOpcode.sqrt, np.sqrt), ElementalHloOpcodeDef( HloOpcode.rsqrt, lambda x: np.reciprocal(np.sqrt(x)) ), ElementalHloOpcodeDef(HloOpcode.cbrt, np.cbrt), ElementalHloOpcodeDef(HloOpcode.power, np.pow), ElementalHloOpcodeDef(HloOpcode.add, np.add), ElementalHloOpcodeDef(HloOpcode.subtract, np.subtract), ElementalHloOpcodeDef(HloOpcode.multiply, np.multiply), ElementalHloOpcodeDef(HloOpcode.divide, np.divide), ElementalHloOpcodeDef(HloOpcode.maximum, np.maximum), ElementalHloOpcodeDef(HloOpcode.minimum, np.minimum), ElementalHloOpcodeDef(HloOpcode.sign, np.sign), ElementalHloOpcodeDef(HloOpcode.negate, np.negative), ElementalHloOpcodeDef(HloOpcode.is_finite, np.isfinite, (-_inf, _inf)), ElementalHloOpcodeDef(HloOpcode.ceil, np.ceil, (-10.0, 10.0)), ElementalHloOpcodeDef(HloOpcode.floor, np.floor, (-5.0, 5.0)), ElementalHloOpcodeDef(HloOpcode.tanh, np.tanh), ElementalHloOpcodeDef(HloOpcode.atan2, np.arctan2), ElementalHloOpcodeDef(HloOpcode.erf, np_erf), ElementalHloOpcodeDef(HloOpcode.exponential_minus_one, np.expm1), # TODO(willfroom): Update to use better inputs for the following. ElementalHloOpcodeDef(HloOpcode.clamp, np.clip), # TODO(willfroom): Add complex ops. # ElementalHloOpcodeDef(HloOpcode.complex, np.complex), # ElementalHloOpcodeDef(HloOpcode.real, np.real), # ElementalHloOpcodeDef(HloOpcode.imag, np.imag), # TODO(willfroom): go through ElementalIrEmitter interface and ensure # that all ops are implemented. # ... ], shape=[(4,), (4, 3), (4, 3, 10)], dtype=[np.dtype(np.float32), np.dtype(np.float64)], )
ElementalHloOpcodeDef
python
huggingface__transformers
src/transformers/models/nanochat/modular_nanochat.py
{ "start": 5333, "end": 7918 }
class ____(LlamaModel): def __init__(self, config: NanoChatConfig): super().__init__(config) self.norm = NanoChatRMSNorm(eps=config.rms_norm_eps) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds: torch.Tensor = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position: torch.Tensor = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids) hidden_states = self.norm(hidden_states) # Additional norm before the layers for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_embeddings=position_embeddings, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) @auto_docstring
NanoChatModel
python
sphinx-doc__sphinx
sphinx/addnodes.py
{ "start": 1463, "end": 1577 }
class ____: """A node which does not support smart-quotes.""" support_smartquotes = False
not_smartquotable
python
optuna__optuna
optuna/samplers/nsgaii/_crossovers/_uniform.py
{ "start": 214, "end": 1760 }
class ____(BaseCrossover): """Uniform Crossover operation used by :class:`~optuna.samplers.NSGAIISampler`. Select each parameter with equal probability from the two parent individuals. For further information about uniform crossover, please refer to the following paper: - `Gilbert Syswerda. 1989. Uniform Crossover in Genetic Algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2-9. <https://www.researchgate.net/publication/201976488_Uniform_Crossover_in_Genetic_Algorithms>`__ Args: swapping_prob: Probability of swapping each parameter of the parents during crossover. """ n_parents = 2 def __init__(self, swapping_prob: float = 0.5) -> None: if not (0.0 <= swapping_prob <= 1.0): raise ValueError("`swapping_prob` must be a float value within the range [0.0, 1.0].") self._swapping_prob = swapping_prob def crossover( self, parents_params: np.ndarray, rng: np.random.RandomState, study: Study, search_space_bounds: np.ndarray, ) -> np.ndarray: # https://www.researchgate.net/publication/201976488_Uniform_Crossover_in_Genetic_Algorithms # Section 1 Introduction n_params = len(search_space_bounds) masks = (rng.rand(n_params) >= self._swapping_prob).astype(int) child_params = parents_params[masks, range(n_params)] return child_params
UniformCrossover
python
pytorch__pytorch
torch/_export/db/examples/tensor_setattr.py
{ "start": 42, "end": 337 }
class ____(torch.nn.Module): """ setattr() call onto tensors is not supported. """ def forward(self, x, attr): setattr(x, attr, torch.randn(3, 2)) return x + 4 example_args = (torch.randn(3, 2), "attr") tags = {"python.builtin"} model = TensorSetattr()
TensorSetattr
python
spack__spack
var/spack/test_repos/spack_repo/builtin_mock/packages/dependent_of_dev_build/package.py
{ "start": 218, "end": 559 }
class ____(Package): homepage = "example.com" url = "fake.com" version("0.0.0", sha256="0123456789abcdef0123456789abcdef") depends_on("dev-build-test-install") def install(self, spec, prefix): with open(prefix.filename, "w", encoding="utf-8") as f: f.write("This file is installed")
DependentOfDevBuild
python
dagster-io__dagster
python_modules/automation/automation_tests/dagster_docs_tests/test_common_errors.py
{ "start": 5083, "end": 7259 }
class ____: """Test detection of malformed parameter descriptions.""" # Using function-based validation approach def test_missing_parameter_descriptions(self): """Test detection of parameters without descriptions.""" docstring = '''"""Function with missing parameter descriptions. Args: param1: # Missing description param2: Valid description param3: # Another missing description Returns: Description of return value """''' result = validate_docstring_text(docstring, "test.function") # This might produce warnings but shouldn't break validation # The function should still be considered valid for RST syntax assert result.parsing_successful def test_malformed_type_annotations(self): """Test detection of malformed type annotations in parameters.""" docstring = '''"""Function with malformed type annotations. Args: param1 (str: Missing closing parenthesis param2 (int)): Extra closing parenthesis param3 str): Missing opening parenthesis Returns: Description of return value """''' result = validate_docstring_text(docstring, "test.function") # Should detect RST syntax issues from malformed parentheses assert result.has_warnings() or result.has_errors() def test_inconsistent_parameter_format(self): """Test detection of inconsistent parameter formatting.""" docstring = '''"""Function with inconsistent parameter formatting. Args: param1 (str): Formatted with type annotation param2: No type annotation param3 (int) - Wrong separator, should use colon param4 (bool): description with multiple lines but inconsistent formatting Returns: Description of return value """''' result = validate_docstring_text(docstring, "test.function") # Should still be valid RST but may have warnings about formatting assert result.parsing_successful
TestParameterDescriptionErrors
python
getsentry__sentry
tests/sentry/pipeline/test_pipeline.py
{ "start": 1095, "end": 1743 }
class ____(Pipeline[Never, PipelineSessionStore]): pipeline_name = "test_pipeline" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.finished = False self.dispatch_count = 0 @cached_property def provider(self) -> DummyProvider: ret = {"dummy": DummyProvider()}[self._provider_key] ret.set_pipeline(self) ret.update_config(self.config) return ret def get_pipeline_views(self) -> Sequence[PipelineStep]: return self.provider.get_pipeline_views() def finish_pipeline(self): self.finished = True @control_silo_test
DummyPipeline
python
plotly__plotly.py
_plotly_utils/png.py
{ "start": 42784, "end": 44085 }
class ____: """A PNG image. You can create an :class:`Image` object from an array of pixels by calling :meth:`png.from_array`. It can be saved to disk with the :meth:`save` method. """ def __init__(self, rows, info): """ .. note :: The constructor is not public. Please do not call it. """ self.rows = rows self.info = info def save(self, file): """Save the image to the named *file*. See `.write()` if you already have an open file object. In general, you can only call this method once; after it has been called the first time the PNG image is written, the source data will have been streamed, and cannot be streamed again. """ w = Writer(**self.info) with open(file, "wb") as fd: w.write(fd, self.rows) def write(self, file): """Write the image to the open file object. See `.save()` if you have a filename. In general, you can only call this method once; after it has been called the first time the PNG image is written, the source data will have been streamed, and cannot be streamed again. """ w = Writer(**self.info) w.write(file, self.rows)
Image
python
cython__cython
Cython/Debugger/Tests/test_libcython_in_gdb.py
{ "start": 906, "end": 1143 }
class ____(type): def __init__(self, name, bases, dict): for func_name, func in dict.items(): if inspect.isfunction(func): setattr(self, func_name, print_on_call_decorator(func))
TraceMethodCallMeta
python
numpy__numpy
benchmarks/benchmarks/bench_core.py
{ "start": 4442, "end": 5149 }
class ____(Benchmark): params = [ [bool, np.uint8, np.uint64, np.int64, np.float32, np.float64], [(1_000_000,), (1000, 1000), (100, ), (2, )] ] param_names = ["dtype", "shape"] def setup(self, dtype, size): self.x = np.random.randint(0, 3, size=size).astype(dtype) self.x_sparse = np.zeros(size).astype(dtype) self.x_sparse[1] = 1 self.x_sparse[-1] = 1 self.x_dense = np.ones(size).astype(dtype) def time_nonzero(self, dtype, size): np.nonzero(self.x) def time_nonzero_sparse(self, dtype, size): np.nonzero(self.x_sparse) def time_nonzero_dense(self, dtype, size): np.nonzero(self.x_dense)
Nonzero
python
Delgan__loguru
loguru/_simple_sinks.py
{ "start": 3244, "end": 5957 }
class ____: """A sink that handles asynchronous logging operations. Parameters ---------- function The async function to execute. loop The event loop to use. error_interceptor An interceptor for handling errors. """ def __init__(self, function, loop, error_interceptor): self._function = function self._loop = loop self._error_interceptor = error_interceptor self._tasks = weakref.WeakSet() def write(self, message): """Asynchronously write a message. Parameters ---------- message The message to write. """ try: loop = self._loop or get_running_loop() except RuntimeError: return coroutine = self._function(message) task = loop.create_task(coroutine) def check_exception(future): if future.cancelled() or future.exception() is None: return if not self._error_interceptor.should_catch(): raise future.exception() self._error_interceptor.print(message.record, exception=future.exception()) task.add_done_callback(check_exception) self._tasks.add(task) def stop(self): """Cancel all pending tasks.""" for task in self._tasks: task.cancel() def tasks_to_complete(self): """Return list of tasks that need to be completed. Returns ------- list List of tasks to complete. """ # To avoid errors due to "self._tasks" being mutated while iterated, the # "tasks_to_complete()" method must be protected by the same lock as "write()" (which # happens to be the handler lock). However, the tasks must not be awaited while the lock is # acquired as this could lead to a deadlock. Therefore, we first need to collect the tasks # to complete, then return them so that they can be awaited outside of the lock. return [self._complete_task(task) for task in self._tasks] async def _complete_task(self, task): """Complete a single task. Parameters ---------- task The task to complete. """ loop = get_running_loop() if get_task_loop(task) is not loop: return try: await task except Exception: pass # Handled in "check_exception()" def __getstate__(self): state = self.__dict__.copy() state["_tasks"] = None return state def __setstate__(self, state): self.__dict__.update(state) self._tasks = weakref.WeakSet()
AsyncSink
python
spack__spack
lib/spack/spack/repo.py
{ "start": 80367, "end": 80742 }
class ____(UnknownEntityError): """Raised when we encounter an unknown namespace""" def __init__(self, namespace, name=None): msg, long_msg = f"Unknown namespace: {namespace}", None if name == "yaml": long_msg = f"Did you mean to specify a filename with './{namespace}.{name}'?" super().__init__(msg, long_msg)
UnknownNamespaceError
python
google__pytype
pytype/tests/test_typeguard.py
{ "start": 111, "end": 789 }
class ____(test_base.BaseTest): """Tests for typing_extensions.TypeGuard.""" def test_typing_extensions(self): self.Check(""" from typing_extensions import TypeGuard def is_str_list(val: list[object]) -> TypeGuard[list[str]]: return all(isinstance(x, str) for x in val) def f(val: list[object]): if is_str_list(val): assert_type(val, list[str]) """) @test_utils.skipFromPy((3, 10), "3.9- must use typing_extensions") def test_unsupported_version(self): self.CheckWithErrors(""" from typing import TypeGuard # not-supported-yet """) @test_utils.skipBeforePy((3, 10), "New in 3.10")
TypingExtensionsTest
python
tensorflow__tensorflow
tensorflow/python/framework/op_def_library_test.py
{ "start": 55117, "end": 55856 }
class ____(test_util.TensorFlowTestCase): def testNoGraph(self): out = op_def_library.apply_op("Simple", a=3) self.assertEqual(out.graph, ops.get_default_graph()) def testDefaultGraph(self): graph = ops.Graph() with graph.as_default(): out = op_def_library.apply_op("Simple", a=3) self.assertEqual(out.graph, graph) def testDifferentGraphFails(self): with ops.Graph().as_default(): a = op_def_library.apply_op("Simple", a=3) with ops.Graph().as_default(): b = op_def_library.apply_op("Simple", a=4) with self.assertRaises(ValueError) as cm: op_def_library.apply_op("Binary", a=a, b=b) self.assertIn("must be from the same graph", str(cm.exception))
OpDefLibraryGraphTest
python
facebookresearch__faiss
tests/test_binary_hashindex.py
{ "start": 3490, "end": 5821 }
class ____(unittest.TestCase): def test_hash_and_multihash(self): d = 128 nq = 100 nb = 2000 (_, xb, xq) = make_binary_dataset(d, 0, nb, nq) index_ref = faiss.IndexBinaryFlat(d) index_ref.add(xb) k = 10 Dref, Iref = index_ref.search(xq, k) nfound = {} for nh in 0, 1, 3, 5: for nbit in 4, 7: if nh == 0: index = faiss.IndexBinaryHash(d, nbit) else: index = faiss.IndexBinaryMultiHash(d, nh, nbit) index.add(xb) index.nflip = 2 Dnew, Inew = index.search(xq, k) nf = 0 for i in range(nq): ref = Iref[i] new = Inew[i] snew = set(new) # no duplicates self.assertTrue(len(new) == len(snew)) nf += len(set(ref) & snew) nfound[(nh, nbit)] = nf self.assertGreater(nfound[(nh, 4)], nfound[(nh, 7)]) # test serialization index2 = faiss.deserialize_index_binary( faiss.serialize_index_binary(index)) D2, I2 = index2.search(xq, k) np.testing.assert_array_equal(Inew, I2) np.testing.assert_array_equal(Dnew, D2) self.assertGreater(3, abs(nfound[(0, 7)] - nfound[(1, 7)])) self.assertGreater(nfound[(3, 7)], nfound[(1, 7)]) self.assertGreater(nfound[(5, 7)], nfound[(3, 7)]) def subtest_result_order(self, nh): d = 128 nq = 10 nb = 200 (_, xb, xq) = make_binary_dataset(d, 0, nb, nq) nbit = 10 if nh == 0: index = faiss.IndexBinaryHash(d, nbit) else: index = faiss.IndexBinaryMultiHash(d, nh, nbit) index.add(xb) index.nflip = 5 k = 10 Do, Io = index.search(xq, k) self.assertTrue( np.all(Do[:, 1:] >= Do[:, :-1]) ) def test_result_order_binhash(self): self.subtest_result_order(0) def test_result_order_multihash(self): self.subtest_result_order(3) """ I suspect this test crashes CircleCI on Linux # this is an expensive test, so we don't run it by default
TestKnn
python
ray-project__ray
python/ray/tune/search/ax/ax_search.py
{ "start": 992, "end": 15666 }
class ____(Searcher): """Uses `Ax <https://ax.dev/>`_ to optimize hyperparameters. Ax is a platform for understanding, managing, deploying, and automating adaptive experiments. Ax provides an easy to use interface with BoTorch, a flexible, modern library for Bayesian optimization in PyTorch. More information can be found in https://ax.dev/. To use this search algorithm, you must install Ax: .. code-block:: bash $ pip install ax-platform Parameters: space: Parameters in the experiment search space. Required elements in the dictionaries are: "name" (name of this parameter, string), "type" (type of the parameter: "range", "fixed", or "choice", string), "bounds" for range parameters (list of two values, lower bound first), "values" for choice parameters (list of values), and "value" for fixed parameters (single value). metric: Name of the metric used as objective in this experiment. This metric must be present in `raw_data` argument to `log_data`. This metric must also be present in the dict reported/returned by the Trainable. If None but a mode was passed, the `ray.tune.result.DEFAULT_METRIC` will be used per default. mode: One of {min, max}. Determines whether objective is minimizing or maximizing the metric attribute. Defaults to "max". points_to_evaluate: Initial parameter suggestions to be run first. This is for when you already have some good parameters you want to run first to help the algorithm make better suggestions for future parameters. Needs to be a list of dicts containing the configurations. parameter_constraints: Parameter constraints, such as "x3 >= x4" or "x3 + x4 >= 2". outcome_constraints: Outcome constraints of form "metric_name >= bound", like "m1 <= 3." ax_client: Optional AxClient instance. If this is set, do not pass any values to these parameters: `space`, `metric`, `parameter_constraints`, `outcome_constraints`. **ax_kwargs: Passed to AxClient instance. Ignored if `AxClient` is not None. Tune automatically converts search spaces to Ax's format: .. code-block:: python from ray import tune from ray.tune.search.ax import AxSearch config = { "x1": tune.uniform(0.0, 1.0), "x2": tune.uniform(0.0, 1.0) } def easy_objective(config): for i in range(100): intermediate_result = config["x1"] + config["x2"] * i tune.report({"score": intermediate_result}) ax_search = AxSearch() tuner = tune.Tuner( easy_objective, tune_config=tune.TuneConfig( search_alg=ax_search, metric="score", mode="max", ), param_space=config, ) tuner.fit() If you would like to pass the search space manually, the code would look like this: .. code-block:: python from ray import tune from ray.tune.search.ax import AxSearch parameters = [ {"name": "x1", "type": "range", "bounds": [0.0, 1.0]}, {"name": "x2", "type": "range", "bounds": [0.0, 1.0]}, ] def easy_objective(config): for i in range(100): intermediate_result = config["x1"] + config["x2"] * i tune.report({"score": intermediate_result}) ax_search = AxSearch(space=parameters, metric="score", mode="max") tuner = tune.Tuner( easy_objective, tune_config=tune.TuneConfig( search_alg=ax_search, ), ) tuner.fit() """ def __init__( self, space: Optional[Union[Dict, List[Dict]]] = None, metric: Optional[str] = None, mode: Optional[str] = None, points_to_evaluate: Optional[List[Dict]] = None, parameter_constraints: Optional[List] = None, outcome_constraints: Optional[List] = None, ax_client: Optional[AxClient] = None, **ax_kwargs, ): assert ( ax is not None ), """Ax must be installed! You can install AxSearch with the command: `pip install ax-platform`.""" if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." super(AxSearch, self).__init__( metric=metric, mode=mode, ) self._ax = ax_client self._ax_kwargs = ax_kwargs or {} if isinstance(space, dict) and space: resolved_vars, domain_vars, grid_vars = parse_spec_vars(space) if domain_vars or grid_vars: logger.warning( UNRESOLVED_SEARCH_SPACE.format(par="space", cls=type(self)) ) space = self.convert_search_space(space) self._space = space self._parameter_constraints = parameter_constraints self._outcome_constraints = outcome_constraints self._points_to_evaluate = copy.deepcopy(points_to_evaluate) self._parameters = [] self._live_trial_mapping = {} if self._ax or self._space: self._setup_experiment() def _setup_experiment(self): if self._metric is None and self._mode: # If only a mode was passed, use anonymous metric self._metric = DEFAULT_METRIC if not self._ax: self._ax = AxClient(**self._ax_kwargs) try: exp = self._ax.experiment has_experiment = True except ValueError: has_experiment = False if not has_experiment: if not self._space: raise ValueError( "You have to create an Ax experiment by calling " "`AxClient.create_experiment()`, or you should pass an " "Ax search space as the `space` parameter to `AxSearch`, " "or pass a `param_space` dict to `tune.Tuner()`." ) if self._mode not in ["min", "max"]: raise ValueError( "Please specify the `mode` argument when initializing " "the `AxSearch` object or pass it to `tune.TuneConfig()`." ) self._ax.create_experiment( parameters=self._space, objective_name=self._metric, parameter_constraints=self._parameter_constraints, outcome_constraints=self._outcome_constraints, minimize=self._mode != "max", ) else: if any( [ self._space, self._parameter_constraints, self._outcome_constraints, self._mode, self._metric, ] ): raise ValueError( "If you create the Ax experiment yourself, do not pass " "values for these parameters to `AxSearch`: {}.".format( [ "space", "parameter_constraints", "outcome_constraints", "mode", "metric", ] ) ) exp = self._ax.experiment # Update mode and metric from experiment if it has been passed self._mode = "min" if exp.optimization_config.objective.minimize else "max" self._metric = exp.optimization_config.objective.metric.name self._parameters = list(exp.parameters) if self._ax._enforce_sequential_optimization: logger.warning( "Detected sequential enforcement. Be sure to use " "a ConcurrencyLimiter." ) def set_search_properties( self, metric: Optional[str], mode: Optional[str], config: Dict, **spec ): if self._ax: return False space = self.convert_search_space(config) self._space = space if metric: self._metric = metric if mode: self._mode = mode self._setup_experiment() return True def suggest(self, trial_id: str) -> Optional[Dict]: if not self._ax: raise RuntimeError( UNDEFINED_SEARCH_SPACE.format( cls=self.__class__.__name__, space="space" ) ) if not self._metric or not self._mode: raise RuntimeError( UNDEFINED_METRIC_MODE.format( cls=self.__class__.__name__, metric=self._metric, mode=self._mode ) ) if self._points_to_evaluate: config = self._points_to_evaluate.pop(0) parameters, trial_index = self._ax.attach_trial(config) else: try: parameters, trial_index = self._ax.get_next_trial() except (MaxParallelismReachedException, DataRequiredError): return None self._live_trial_mapping[trial_id] = trial_index try: suggested_config = unflatten_list_dict(parameters) except AssertionError: # Fails to unflatten if keys are out of order, which only happens # if search space includes a list with both constants and # tunable hyperparameters: # Ex: "a": [1, tune.uniform(2, 3), 4] suggested_config = unflatten_list_dict( {k: parameters[k] for k in sorted(parameters.keys())} ) return suggested_config def on_trial_complete(self, trial_id, result=None, error=False): """Notification for the completion of trial. Data of form key value dictionary of metric names and values. """ if result: self._process_result(trial_id, result) self._live_trial_mapping.pop(trial_id) def _process_result(self, trial_id, result): ax_trial_index = self._live_trial_mapping[trial_id] metrics_to_include = [self._metric] + [ oc.metric.name for oc in self._ax.experiment.optimization_config.outcome_constraints ] metric_dict = {} for key in metrics_to_include: val = result[key] if np.isnan(val) or np.isinf(val): # Don't report trials with NaN metrics to Ax self._ax.abandon_trial( trial_index=ax_trial_index, reason=f"nan/inf metrics reported by {trial_id}", ) return metric_dict[key] = (val, None) self._ax.complete_trial(trial_index=ax_trial_index, raw_data=metric_dict) @staticmethod def convert_search_space(spec: Dict): resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec) if grid_vars: raise ValueError( "Grid search parameters cannot be automatically converted " "to an Ax search space." ) # Flatten and resolve again after checking for grid search. spec = flatten_dict(spec, prevent_delimiter=True) resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec) def resolve_value(par, domain): sampler = domain.get_sampler() if isinstance(sampler, Quantized): logger.warning( "AxSearch does not support quantization. Dropped quantization." ) sampler = sampler.sampler if isinstance(domain, Float): if isinstance(sampler, LogUniform): return { "name": par, "type": "range", "bounds": [domain.lower, domain.upper], "value_type": "float", "log_scale": True, } elif isinstance(sampler, Uniform): return { "name": par, "type": "range", "bounds": [domain.lower, domain.upper], "value_type": "float", "log_scale": False, } elif isinstance(domain, Integer): if isinstance(sampler, LogUniform): return { "name": par, "type": "range", "bounds": [domain.lower, domain.upper - 1], "value_type": "int", "log_scale": True, } elif isinstance(sampler, Uniform): return { "name": par, "type": "range", "bounds": [domain.lower, domain.upper - 1], "value_type": "int", "log_scale": False, } elif isinstance(domain, Categorical): if isinstance(sampler, Uniform): return {"name": par, "type": "choice", "values": domain.categories} raise ValueError( "AxSearch does not support parameters of type " "`{}` with samplers of type `{}`".format( type(domain).__name__, type(domain.sampler).__name__ ) ) # Parameter name is e.g. "a/b/c" for nested dicts, # "a/d/0", "a/d/1" for nested lists (using the index in the list) fixed_values = [ {"name": "/".join(str(p) for p in path), "type": "fixed", "value": val} for path, val in resolved_vars ] resolved_values = [ resolve_value("/".join(str(p) for p in path), domain) for path, domain in domain_vars ] return fixed_values + resolved_values def save(self, checkpoint_path: str): save_object = self.__dict__ with open(checkpoint_path, "wb") as outputFile: cloudpickle.dump(save_object, outputFile) def restore(self, checkpoint_path: str): with open(checkpoint_path, "rb") as inputFile: save_object = cloudpickle.load(inputFile) self.__dict__.update(save_object)
AxSearch
python
doocs__leetcode
solution/1200-1299/1237.Find Positive Integer Solution for a Given Equation/Solution.py
{ "start": 349, "end": 723 }
class ____: def findSolution(self, customfunction: "CustomFunction", z: int) -> List[List[int]]: ans = [] for x in range(1, z + 1): y = 1 + bisect_left( range(1, z + 1), z, key=lambda y: customfunction.f(x, y) ) if customfunction.f(x, y) == z: ans.append([x, y]) return ans
Solution
python
paramiko__paramiko
tests/test_config.py
{ "start": 34572, "end": 36074 }
class ____: # NOTE: this is still a cherry-pick of a few levels of complexity, there's # no point testing literally all possible combinations. def test_originalhost_host(self): result = load_config("match-complex").lookup("target") assert result["hostname"] == "bogus" assert result["user"] == "rand" @patch("paramiko.config.getpass.getuser") def test_originalhost_localuser(self, getuser): getuser.return_value = "rando" result = load_config("match-complex").lookup("remote") assert result["user"] == "calrissian" @patch("paramiko.config.getpass.getuser") def test_everything_but_all(self, getuser): getuser.return_value = "rando" result = load_config("match-complex").lookup("www") assert result["port"] == "7777" @patch("paramiko.config.getpass.getuser") def test_everything_but_all_with_some_negated(self, getuser): getuser.return_value = "rando" result = load_config("match-complex").lookup("docs") assert result["port"] == "1234" def test_negated_canonical(self, socket): # !canonical in a config that is not canonicalized - does match result = load_config("match-canonical-no").lookup("specific") assert result["user"] == "overload" # !canonical in a config that is canonicalized - does NOT match result = load_config("match-canonical-yes").lookup("www") assert result["user"] == "hidden"
TestComplexMatching
python
fastapi__sqlmodel
docs_src/tutorial/fastapi/multiple_models/tutorial002.py
{ "start": 411, "end": 1271 }
class ____(HeroBase): id: int sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" connect_args = {"check_same_thread": False} engine = create_engine(sqlite_url, echo=True, connect_args=connect_args) def create_db_and_tables(): SQLModel.metadata.create_all(engine) app = FastAPI() @app.on_event("startup") def on_startup(): create_db_and_tables() @app.post("/heroes/", response_model=HeroPublic) def create_hero(hero: HeroCreate): with Session(engine) as session: db_hero = Hero.model_validate(hero) session.add(db_hero) session.commit() session.refresh(db_hero) return db_hero @app.get("/heroes/", response_model=List[HeroPublic]) def read_heroes(): with Session(engine) as session: heroes = session.exec(select(Hero)).all() return heroes
HeroPublic
python
pydantic__pydantic
pydantic/v1/types.py
{ "start": 10640, "end": 13028 }
class ____(str): strip_whitespace = False to_upper = False to_lower = False min_length: OptionalInt = None max_length: OptionalInt = None curtail_length: OptionalInt = None regex: Optional[Union[str, Pattern[str]]] = None strict = False @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: update_not_none( field_schema, minLength=cls.min_length, maxLength=cls.max_length, pattern=cls.regex and cls._get_pattern(cls.regex), ) @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield strict_str_validator if cls.strict else str_validator yield constr_strip_whitespace yield constr_upper yield constr_lower yield constr_length_validator yield cls.validate @classmethod def validate(cls, value: Union[str]) -> Union[str]: if cls.curtail_length and len(value) > cls.curtail_length: value = value[: cls.curtail_length] if cls.regex: if not re.match(cls.regex, value): raise errors.StrRegexError(pattern=cls._get_pattern(cls.regex)) return value @staticmethod def _get_pattern(regex: Union[str, Pattern[str]]) -> str: return regex if isinstance(regex, str) else regex.pattern def constr( *, strip_whitespace: bool = False, to_upper: bool = False, to_lower: bool = False, strict: bool = False, min_length: Optional[int] = None, max_length: Optional[int] = None, curtail_length: Optional[int] = None, regex: Optional[str] = None, ) -> Type[str]: # use kwargs then define conf in a dict to aid with IDE type hinting namespace = dict( strip_whitespace=strip_whitespace, to_upper=to_upper, to_lower=to_lower, strict=strict, min_length=min_length, max_length=max_length, curtail_length=curtail_length, regex=regex and re.compile(regex), ) return _registered(type('ConstrainedStrValue', (ConstrainedStr,), namespace)) if TYPE_CHECKING: StrictStr = str else: class StrictStr(ConstrainedStr): strict = True # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SET TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # This types superclass should be Set[T], but cython chokes on that...
ConstrainedStr
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 661346, "end": 661777 }
class ____(sgqlc.types.Type): """Autogenerated return type of FollowUser""" __schema__ = github_schema __field_names__ = ("client_mutation_id", "user") client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation.""" user = sgqlc.types.Field("User", graphql_name="user") """The user that was followed."""
FollowUserPayload
python
encode__django-rest-framework
tests/models.py
{ "start": 908, "end": 1011 }
class ____(RESTFrameworkModel): users = models.ManyToManyField(User) # ForeignKey
BasicModelWithUsers
python
tensorflow__tensorflow
tensorflow/python/eager/remote_cloud_tpu_test.py
{ "start": 1993, "end": 2997 }
class ____(absltest.TestCase): """Test that we can connect to a real Cloud TPU.""" def test_connect(self): # Log full diff on failure. self.maxDiff = None # pylint:disable=invalid-name self.assertCountEqual( EXPECTED_DEVICES_PRE_CONNECT, [device.name for device in config.list_logical_devices()]) resolver = tpu_cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu, zone=FLAGS.zone, project=FLAGS.project ) remote.connect_to_cluster(resolver) expected_devices = EXPECTED_DEVICES_PRE_CONNECT for task in range(FLAGS.num_tpu_devices // DEVICES_PER_TASK): expected_devices.extend([ template.format(task=task) for template in EXPECTED_NEW_DEVICES_AFTER_CONNECT_TEMPLATES ]) self.assertCountEqual( expected_devices, [device.name for device in config.list_logical_devices()]) tpu_cluster_resolver.initialize_tpu_system(resolver) if __name__ == '__main__': absltest.main()
RemoteCloudTPUTest
python
getsentry__sentry
src/sentry/auth/helper.py
{ "start": 3400, "end": 26929 }
class ____: # SSO auth handler auth_provider: AuthProvider provider: Provider organization: RpcOrganization request: HttpRequest identity: Mapping[str, Any] referrer: str | None = "in-app" @cached_property def user(self) -> User | AnonymousUser: email = self.identity.get("email") if email: try: user = resolve_email_to_user(email) except AmbiguousUserFromEmail as e: user = e.users[0] self.warn_about_ambiguous_email(email, e.users, user) if user is not None: return user return ( User.objects.get(id=self.request.user.id) if self.request.user.is_authenticated else self.request.user ) @staticmethod def warn_about_ambiguous_email(email: str, users: Collection[User], chosen_user: User) -> None: with sentry_sdk.isolation_scope() as scope: scope.set_level("warning") scope.set_tag("email", email) scope.set_extra("user_ids", [user.id for user in users]) scope.set_extra("chosen_user", chosen_user.id) sentry_sdk.capture_message("Handling identity from ambiguous email address") class _NotCompletedSecurityChecks(Exception): pass def _login(self, user: Any) -> None: metrics.incr( "sso.login_attempt", tags={ "provider": self.provider.key, }, sample_rate=1.0, skip_internal=False, ) user_was_logged_in = auth.login( self.request, user, after_2fa=self.request.build_absolute_uri(), organization_id=self.organization.id, ) if not user_was_logged_in: raise self._NotCompletedSecurityChecks() metrics.incr( "sso.login_success", tags={ "provider": self.provider.key, }, sample_rate=1.0, skip_internal=False, ) @staticmethod def _set_linked_flag(member: RpcOrganizationMember) -> None: if member.flags.sso__invalid or not member.flags.sso__linked: member.flags.sso__invalid = False member.flags.sso__linked = True organization_service.update_membership_flags(organization_member=member) def handle_existing_identity( self, state: AuthHelperSessionStore, auth_identity: AuthIdentity, ) -> HttpResponseRedirect: # TODO(dcramer): this is very similar to attach now = timezone.now() auth_identity.update( data=self.provider.update_identity( new_data=self.identity.get("data", {}), current_data=auth_identity.data ), last_verified=now, last_synced=now, ) member = organization_service.check_membership_by_id( organization_id=self.organization.id, user_id=auth_identity.user.id ) if member is None: # this is likely the case when someone was removed from the org # but still has access to rejoin member = self._handle_new_membership(auth_identity) else: self._set_linked_flag(member) user = auth_identity.user user.backend = settings.AUTHENTICATION_BACKENDS[0] data = state.data subdomain = None if data: subdomain = data.get("subdomain") or None if features.has("system:multi-region"): subdomain = self.organization.slug try: self._login(user) except self._NotCompletedSecurityChecks: return HttpResponseRedirect(self._get_login_redirect(subdomain)) state.clear() if not is_active_superuser(self.request): # set activeorg to ensure correct redirect upon logging in auth.set_active_org(self.request, self.organization.slug) return HttpResponseRedirect(self._get_login_redirect(subdomain)) def _get_login_redirect(self, subdomain: str | None) -> str: # TODO(domains) Passing this method the organization should let us consolidate and simplify subdomain # state tracking. login_redirect_url = auth.get_login_redirect(self.request) if subdomain is not None: url_prefix = generate_organization_url(subdomain) login_redirect_url = absolute_uri(login_redirect_url, url_prefix=url_prefix) return login_redirect_url def _handle_membership( self, request: HttpRequest, organization: RpcOrganization, auth_identity: AuthIdentity, ) -> tuple[User, RpcOrganizationMember]: user = User.objects.get(id=auth_identity.user_id) if is_demo_user(user) and not is_demo_org(organization): sentry_sdk.capture_message( "Demo user cannot be added to an organization that is not a demo organization.", level="warning", extras={ "user_id": user.id, "organization_id": organization.id, }, ) raise Exception( "Demo user cannot be added to an organization that is not a demo organization." ) # If the user is either currently *pending* invite acceptance (as indicated # from the invite token and member id in the session) OR an existing invite exists on this # organization for the email provided by the identity provider. invite_helper = ApiInviteHelper.from_session_or_email( request=request, organization_id=organization.id, email=user.email, logger=logger ) # If we are able to accept an existing invite for the user for this # organization, do so, otherwise handle new membership if invite_helper: if invite_helper.invite_approved: rpc_om = invite_helper.accept_invite(user) assert rpc_om return user, rpc_om # It's possible the user has an _invite request_ that hasn't been approved yet, # and is able to join the organization without an invite through the SSO flow. # In that case, delete the invite request and create a new membership. invite_helper.handle_invite_not_approved() flags = RpcOrganizationMemberFlags(sso__linked=True) # if the org doesn't have the ability to add members then anyone who got added # this way should be disabled until the org upgrades if not features.has("organizations:invite-members", organization): flags.member_limit__restricted = True # Otherwise create a new membership om = organization_service.add_organization_member( organization_id=organization.id, default_org_role=organization.default_role, role=organization.default_role, user_id=user.id, flags=flags, ) return user, om def _handle_new_membership(self, auth_identity: AuthIdentity) -> RpcOrganizationMember: user, om = self._handle_membership( request=self.request, organization=self.organization, auth_identity=auth_identity, ) log_service.record_audit_log( event=AuditLogEvent( organization_id=self.organization.id, date_added=timezone.now(), event_id=audit_log.get_event_id("MEMBER_ADD"), actor_user_id=user.id, actor_label=user.username, ip_address=self.request.META["REMOTE_ADDR"], target_object_id=om.id, data=om.get_audit_log_metadata(user.email), target_user_id=user.id, ) ) return om def _get_auth_identity(self, **params: Any) -> AuthIdentity | None: try: return AuthIdentity.objects.get(auth_provider_id=self.auth_provider.id, **params) except AuthIdentity.DoesNotExist: return None def handle_attach_identity(self, member: RpcOrganizationMember | None = None) -> AuthIdentity: """ Given an already authenticated user, attach or re-attach an identity. """ # prioritize identifying by the SSO provider's user ID with transaction.atomic(router.db_for_write(AuthIdentity)): auth_identity = self._get_auth_identity(ident=self.identity["id"]) if auth_identity is None: # otherwise look for an already attached identity # this can happen if the SSO provider's internal ID changes auth_identity = self._get_auth_identity(user_id=self.user.id) if auth_identity is None: assert self.user.is_authenticated auth_is_new = True auth_identity = AuthIdentity.objects.create( auth_provider=self.auth_provider, user_id=self.user.id, ident=self.identity["id"], data=self.identity.get("data", {}), ) else: auth_is_new = False # TODO(dcramer): this might leave the user with duplicate accounts, # and in that kind of situation its very reasonable that we could # test email addresses + is_managed to determine if we can auto # merge if auth_identity.user_id != self.user.id: wipe = self._wipe_existing_identity(auth_identity) else: wipe = None now = timezone.now() auth_identity.update( user_id=self.user.id, ident=self.identity["id"], data=self.provider.update_identity( new_data=self.identity.get("data", {}), current_data=auth_identity.data ), last_verified=now, last_synced=now, ) logger.info( "sso.login-pipeline.attach-existing-identity", extra={ "wipe_result": repr(wipe), "organization_id": self.organization.id, "user_id": self.user.id, "auth_identity_user_id": auth_identity.user.id, "auth_provider_id": self.auth_provider.id, "idp_identity_id": self.identity["id"], "idp_identity_email": self.identity.get("email"), }, ) if member is None: member = self._get_organization_member(auth_identity) self._set_linked_flag(member) if auth_is_new: log_service.record_audit_log( event=AuditLogEvent( organization_id=self.organization.id, date_added=timezone.now(), event_id=audit_log.get_event_id("SSO_IDENTITY_LINK"), actor_user_id=self.user.id, actor_label=self.user.username, ip_address=self.request.META["REMOTE_ADDR"], target_object_id=auth_identity.id, target_user_id=self.user.id, data=auth_identity.get_audit_log_data(), ) ) messages.add_message(self.request, messages.SUCCESS, OK_LINK_IDENTITY) return auth_identity def _wipe_existing_identity(self, auth_identity: AuthIdentity) -> Any: # it's possible the user has an existing identity, let's wipe it out # so that the new identifier gets used (other we'll hit a constraint) # violation since one might exist for (provider, user) as well as # (provider, ident) assert self.user.is_authenticated with outbox_context(transaction.atomic(router.db_for_write(AuthIdentity))): deletion_result = ( AuthIdentity.objects.exclude(id=auth_identity.id) .filter(auth_provider=self.auth_provider, user_id=self.user.id) .delete() ) for outbox in self.auth_provider.outboxes_for_mark_invalid_sso(auth_identity.user_id): outbox.save() return deletion_result def _get_organization_member(self, auth_identity: AuthIdentity) -> RpcOrganizationMember: """ Check to see if the user has a member associated, if not, create a new membership based on the auth_identity email. """ member = organization_service.check_membership_by_id( organization_id=self.organization.id, user_id=self.user.id ) if member is None: return self._handle_new_membership(auth_identity) return member def _respond( self, template: str, context: Mapping[str, Any] | None = None, status: int = 200, ) -> HttpResponse: default_context = {"organization": self.organization} if context: default_context.update(context) return render_to_response(template, default_context, self.request, status=status) def _post_login_redirect(self) -> HttpResponseRedirect: url = auth.get_login_redirect(self.request) if self.request.POST.get("op") == "newuser": # add events that we can handle on the front end provider = self.auth_provider.provider if self.auth_provider else None params = { "frontend_events": orjson.dumps( {"event_name": "Sign Up", "event_label": provider} ).decode() } url = add_params_to_url(url, params) response = HttpResponseRedirect(url) # Always remove any pending invite cookies, pending invites will have been # accepted during the SSO flow. remove_invite_details_from_session(self.request) return response def has_verified_account(self, verification_value: dict[str, Any]) -> bool: return bool( verification_value["email"] == self.identity["email"] and verification_value["user_id"] == self.user.id ) @property def _logged_in_user(self) -> User | None: """The user, if they have authenticated on this session.""" if is_demo_mode_enabled() and is_demo_user(self.request.user): return None return self.request.user if self.request.user.is_authenticated else None @property def _app_user(self) -> User | None: """The user, if they are represented persistently in our app.""" return self.user if isinstance(self.user, User) else None def _has_usable_password(self) -> bool: return bool(self._app_user and self._app_user.has_usable_password()) @cached_property def _login_form(self) -> AuthenticationForm: return AuthenticationForm( self.request, self.request.POST if self.request.POST.get("op") == "login" else None, initial={"username": self._app_user and self._app_user.username}, ) def _build_confirmation_response(self, is_new_account: bool) -> HttpResponse: existing_user, template = self._dispatch_to_confirmation(is_new_account) context = { "identity": self.identity, "provider": self.provider_name, "identity_display_name": self.identity.get("name") or self.identity.get("email"), "identity_identifier": self.identity.get("email") or self.identity.get("id"), "existing_user": existing_user, } if not self._logged_in_user: context["login_form"] = self._login_form return self._respond(f"sentry/{template}.html", context) def handle_unknown_identity( self, state: AuthHelperSessionStore, ) -> HttpResponse: """ Flow is activated upon a user logging in to where an AuthIdentity is not present. XXX(dcramer): this docstring is out of date The flow will attempt to answer the following: - Is there an existing user with the same email address? Should they be merged? - Is there an existing user (via authentication) that should be merged? - Should I create a new user based on this identity? """ op = self.request.POST.get("op") # we don't trust all IDP email verification, so users can also confirm via one time email link is_account_verified = False if verification_key := self.request.session.get(SSO_VERIFICATION_KEY): verification_value = get_verification_value_from_key(verification_key) if verification_value: is_account_verified = self.has_verified_account(verification_value) logger.info( "sso.login-pipeline.verified-email-existing-session-key", extra={ "user_id": self.user.id, "organization_id": self.organization.id, "has_verification_value": bool(verification_value), }, ) has_verified_email = self.user.id and cache.get(f"{SSO_VERIFICATION_KEY}:{self.user.id}") if has_verified_email and not verification_key: logger.info( "sso.login-pipeline.verified-email-missing-session-key", extra={ "user_id": self.user.id, "organization_id": self.organization.id, }, ) is_new_account = not self.user.is_authenticated # stateful if self._app_user and (self.identity.get("email_verified") or is_account_verified): # we only allow this flow to happen if the existing user has # membership, otherwise we short circuit because it might be # an attempt to hijack membership of another organization membership = organization_service.check_membership_by_id( user_id=self._app_user.id, organization_id=self.organization.id ) if membership is not None: try: self._login(self.user) except self._NotCompletedSecurityChecks: # adding is_account_verified to the check below in order to redirect # to 2fa when the user migrates their idp but has 2fa enabled, # otherwise it would stop them from linking their sso provider if self._has_usable_password() or is_account_verified: return self._post_login_redirect() else: is_new_account = True else: # assume they've confirmed they want to attach the identity op = "confirm" elif is_account_verified: op = "confirm" else: # force them to create a new account is_new_account = True # without a usable password they can't login, so default to a new account elif not self._has_usable_password(): is_new_account = True if op == "confirm" and (self.request.user.id == self.user.id) or is_account_verified: auth_identity = self.handle_attach_identity() elif op == "newuser": auth_identity = self.handle_new_user() elif op == "login" and not self._logged_in_user: # confirm authentication, login if self._login_form.is_valid(): # This flow is special. If we are going through a 2FA # flow here (login returns False) we want to instruct the # system to return upon completion of the 2fa flow to the # current URL and continue with the dialog. # # If there is no 2fa we don't need to do this and can just # go on. try: self._login(self._login_form.get_user()) except self._NotCompletedSecurityChecks: return self._post_login_redirect() else: auth.log_auth_failure(self.request, self.request.POST.get("username")) return self._build_confirmation_response(is_new_account) else: return self._build_confirmation_response(is_new_account) user = auth_identity.user user.backend = settings.AUTHENTICATION_BACKENDS[0] # XXX(dcramer): this is repeated from above try: self._login(user) except self._NotCompletedSecurityChecks: return self._post_login_redirect() state.clear() if not is_active_superuser(self.request): auth.set_active_org(self.request, self.organization.slug) return self._post_login_redirect() @property def provider_name(self) -> str: if self.auth_provider: return self.auth_provider.provider_name else: # A blank character is needed to prevent an HTML span from collapsing return " " def _dispatch_to_confirmation( self, is_new_account: bool ) -> tuple[User | AnonymousUser | None, str]: if self._logged_in_user: return self._logged_in_user, "auth-confirm-link" if self._app_user and not self._has_usable_password(): send_one_time_account_confirm_link( self._app_user, self.organization, self.auth_provider, self.identity["email"], self.identity["id"], ) return self.user, "auth-confirm-account" self.request.session.set_test_cookie() return None if is_new_account else self.user, "auth-confirm-identity" def handle_new_user(self) -> AuthIdentity: user = User.objects.create( username=uuid4().hex, email=self.identity["email"], name=self.identity.get("name", "")[:200], ) if settings.TERMS_URL and settings.PRIVACY_URL: user.update(flags=F("flags").bitor(User.flags.newsletter_consent_prompt)) try: with transaction.atomic(router.db_for_write(AuthIdentity)): auth_identity = AuthIdentity.objects.create( auth_provider=self.auth_provider, user=user, ident=self.identity["id"], data=self.identity.get("data", {}), ) except IntegrityError: auth_identity = AuthIdentity.objects.get( auth_provider_id=self.auth_provider.id, ident=self.identity["id"] ) auth_identity.update(user=user, data=self.identity.get("data", {})) user.send_confirm_emails(is_new_user=True) provider = self.auth_provider.provider if self.auth_provider else None user_signup.send_robust( sender=self.handle_new_user, user=user, source="sso", provider=provider, referrer=self.referrer, ) self._handle_new_membership(auth_identity) return auth_identity
AuthIdentityHandler
python
great-expectations__great_expectations
tests/expectations/metrics/conftest.py
{ "start": 466, "end": 606 }
class ____: def __init__(self, dialect: Dialect): self.dialect = dialect def connect(self) -> None: pass
MockSaEngine
python
pytorch__pytorch
torch/_inductor/codegen/cuda/cuda_cpp_scheduling.py
{ "start": 832, "end": 977 }
class ____(WhyNoFuse): def __init__(self, name1: str, name2: str) -> None: self.name1 = name1 self.name2 = name2
WhyNoFuseNames
python
scipy__scipy
scipy/stats/_multivariate.py
{ "start": 123449, "end": 127084 }
class ____(multi_rv_frozen): __class_getitem__ = None def __init__(self, df, scale, seed=None): """Create a frozen inverse Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : {None, int, `numpy.random.Generator`}, optional If `seed` is None the `numpy.random.Generator` singleton is used. If `seed` is an int, a new ``Generator`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` instance then that instance is used. """ self._dist = invwishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale ) # Get the determinant via Cholesky factorization self.C = scipy.linalg.cholesky(self.scale, lower=True) self.log_det_scale = 2 * np.sum(np.log(self.C.diagonal())) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.log_det_scale, self.C) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): return self._dist._entropy(self.dim, self.df, self.log_det_scale) # Set frozen generator docstrings from corresponding docstrings in # inverse Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']: method = invwishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) _multinomial_doc_default_callparams = """\ n : int Number of trials p : array_like Probability of a trial falling into each category; should sum to 1 """ _multinomial_doc_callparams_note = """\ `n` should be a nonnegative integer. Each element of `p` should be in the interval :math:`[0,1]` and the elements should sum to 1. If they do not sum to 1, the last element of the `p` array is not used and is replaced with the remaining probability left over from the earlier elements. """ _multinomial_doc_frozen_callparams = "" _multinomial_doc_frozen_callparams_note = """\ See class definition for a detailed description of parameters.""" multinomial_docdict_params = { '_doc_default_callparams': _multinomial_doc_default_callparams, '_doc_callparams_note': _multinomial_doc_callparams_note, '_doc_random_state': _doc_random_state } multinomial_docdict_noparams = { '_doc_default_callparams': _multinomial_doc_frozen_callparams, '_doc_callparams_note': _multinomial_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state }
invwishart_frozen
python
plotly__plotly.py
plotly/graph_objs/scatterternary/unselected/_textfont.py
{ "start": 233, "end": 2618 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "scatterternary.unselected" _path_str = "scatterternary.unselected.textfont" _valid_props = {"color"} @property def color(self): """ Sets the text font color of unselected points, applied only when a selection exists. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def _prop_descriptions(self): return """\ color Sets the text font color of unselected points, applied only when a selection exists. """ def __init__(self, arg=None, color=None, **kwargs): """ Construct a new Textfont object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scatterternary .unselected.Textfont` color Sets the text font color of unselected points, applied only when a selection exists. Returns ------- Textfont """ super().__init__("textfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.scatterternary.unselected.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.scatterternary.unselected.Textfont`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Textfont
python
pandas-dev__pandas
asv_bench/benchmarks/io/csv.py
{ "start": 5049, "end": 5569 }
class ____(BaseIO): fname = "__test__.csv" timeout = 1500 params = [1000, 10000, 100000] param_names = ["nobs"] def setup(self, nobs): d = "2018-11-29" dt = "2018-11-26 11:18:27.0" self.data = DataFrame( { "dt": [np.datetime64(dt)] * nobs, "d": [np.datetime64(d)] * nobs, "r": [np.random.uniform()] * nobs, } ) def time_frame(self, nobs): self.data.to_csv(self.fname)
ToCSVDatetimeBig
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/orm/descriptor_props.py
{ "start": 32648, "end": 34541 }
class ____(DescriptorProperty[_T]): """A 'do nothing' :class:`.MapperProperty` that disables an attribute on a concrete subclass that is only present on the inherited mapper, not the concrete classes' mapper. Cases where this occurs include: * When the superclass mapper is mapped against a "polymorphic union", which includes all attributes from all subclasses. * When a relationship() is configured on an inherited mapper, but not on the subclass mapper. Concrete mappers require that relationship() is configured explicitly on each subclass. """ def _comparator_factory( self, mapper: Mapper[Any] ) -> Type[PropComparator[_T]]: comparator_callable = None for m in self.parent.iterate_to_root(): p = m._props[self.key] if getattr(p, "comparator_factory", None) is not None: comparator_callable = p.comparator_factory break assert comparator_callable is not None return comparator_callable(p, mapper) # type: ignore def __init__(self) -> None: super().__init__() def warn() -> NoReturn: raise AttributeError( "Concrete %s does not implement " "attribute %r at the instance level. Add " "this property explicitly to %s." % (self.parent, self.key, self.parent) ) class NoninheritedConcreteProp: def __set__(s: Any, obj: Any, value: Any) -> NoReturn: warn() def __delete__(s: Any, obj: Any) -> NoReturn: warn() def __get__(s: Any, obj: Any, owner: Any) -> Any: if obj is None: return self.descriptor warn() self.descriptor = NoninheritedConcreteProp()
ConcreteInheritedProperty
python
django__django
tests/admin_inlines/admin.py
{ "start": 6717, "end": 6808 }
class ____(admin.ModelAdmin): inlines = [ReadOnlyChapterInline]
NovelReadonlyChapterAdmin
python
HypothesisWorks__hypothesis
hypothesis-python/tests/cover/test_type_lookup.py
{ "start": 7624, "end": 8834 }
class ____: __init__ = "Hello!" def test_uninspectable_builds(): with pytest.raises(TypeError, match="object is not callable"): check_can_generate_examples(st.builds(BrokenClass)) def test_uninspectable_from_type(): with pytest.raises(TypeError, match="object is not callable"): check_can_generate_examples(st.from_type(BrokenClass)) def _check_instances(t): # See https://github.com/samuelcolvin/pydantic/discussions/2508 return ( t.__module__ != "typing" and t.__name__ != "ByteString" and not t.__module__.startswith("pydantic") and t.__module__ != "typing_extensions" ) def maybe_mark(x): if x.__name__ in "Match Decimal IPv4Address": marks = xfail_on_crosshair(Why.other, as_marks=True, strict=False) return pytest.param(x, marks=marks) return x @pytest.mark.parametrize( "typ", sorted( (maybe_mark(x) for x in _global_type_lookup if _check_instances(x)), key=str, ), ) @given(data=st.data()) def test_can_generate_from_all_registered_types(data, typ): value = data.draw(st.from_type(typ), label="value") assert isinstance(value, typ) T = TypeVar("T")
BrokenClass
python
sqlalchemy__sqlalchemy
test/orm/test_syntax_extensions.py
{ "start": 787, "end": 1054 }
class ____(SyntaxExtension, ClauseElement): _traverse_internals = [] def apply_to_select(self, select_stmt): select_stmt.apply_syntax_extension_point( lambda existing: [*existing, self], "post_select", )
PostSelectClause
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocol3.py
{ "start": 3221, "end": 3737 }
class ____: x: str = "" # This should generate an error because named tuple # attributes are immutable. p9_1: Proto9 = NT9() # This should generate an error because frozen dataclass # attributes are immutable. p9_2: Proto9 = DCFrozen9() p9_3: Proto9 = DC9() # This should generate an error because named tuple # attributes are immutable. p10_1: Proto10 = NT9() # This should generate an error because frozen dataclass # attributes are immutable. p10_2: Proto10 = DCFrozen9() p10_3: Proto10 = DC9()
DCFrozen9
python
streamlit__streamlit
lib/streamlit/watcher/event_based_path_watcher.py
{ "start": 8600, "end": 9165 }
class ____: """Emits notifications when a single path is modified.""" def __init__( self, md5: str, modification_time: float, *, # keyword-only arguments: glob_pattern: str | None = None, allow_nonexistent: bool = False, ) -> None: self.md5 = md5 self.modification_time = modification_time self.glob_pattern = glob_pattern self.allow_nonexistent = allow_nonexistent self.on_changed = Signal() def __repr__(self) -> str: return repr_(self)
WatchedPath
python
huggingface__transformers
src/transformers/models/bamba/modeling_bamba.py
{ "start": 15938, "end": 19086 }
class ____(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: BambaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.rotary_fn = apply_rotary_pos_emb def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
BambaAttention
python
readthedocs__readthedocs.org
readthedocs/organizations/models.py
{ "start": 2045, "end": 9219 }
class ____(models.Model): """Organization model.""" # Auto fields pub_date = models.DateTimeField(_("Publication date"), auto_now_add=True) modified_date = models.DateTimeField(_("Modified date"), auto_now=True) # Foreign projects = models.ManyToManyField( "projects.Project", verbose_name=_("Projects"), related_name="organizations", blank=True, ) owners = models.ManyToManyField( User, verbose_name=_("Owners"), related_name="owner_organizations", through="OrganizationOwner", ) # Local name = models.CharField(_("Name"), max_length=100) slug = models.SlugField( _("Slug"), max_length=255, unique=True, null=False, blank=False, ) email = models.EmailField( _("Email"), help_text="Best email address for billing related inquiries", max_length=255, blank=True, null=True, ) description = models.TextField( _("Description"), help_text="A short description shown on your profile page", blank=True, null=True, ) url = models.URLField( _("Home Page"), help_text="The main website for your organization", max_length=255, blank=True, null=True, ) never_disable = models.BooleanField( _("Never disable"), help_text="Never disable this organization, even if its subscription ends", # TODO: remove after migration null=True, default=False, ) disabled = models.BooleanField( _("Disabled"), help_text="Docs and builds are disabled for this organization", default=False, ) artifacts_cleaned = models.BooleanField( _("Artifacts Cleaned"), help_text="Artifacts are cleaned out from storage", default=False, ) max_concurrent_builds = models.IntegerField( _("Maximum concurrent builds allowed for this organization"), null=True, blank=True, ) # TODO: This field can be removed, we are now using stripe_customer instead. stripe_id = models.CharField( _("Stripe customer ID"), max_length=100, blank=True, null=True, ) stripe_customer = models.OneToOneField( "djstripe.Customer", verbose_name=_("Stripe customer"), on_delete=models.SET_NULL, related_name="rtd_organization", null=True, blank=True, ) stripe_subscription = models.OneToOneField( "djstripe.Subscription", verbose_name=_("Stripe subscription"), on_delete=models.SET_NULL, related_name="rtd_organization", null=True, blank=True, ) notifications = GenericRelation( Notification, related_query_name="organization", content_type_field="attached_to_content_type", object_id_field="attached_to_id", ) avatar = models.ImageField( _("Avatar"), upload_to=_upload_organization_avatar_to, storage=_get_user_content_storage, validators=[FileExtensionValidator(allowed_extensions=["jpg", "jpeg", "png"])], blank=True, null=True, help_text="Avatar for your organization (JPG or PNG format, max 500x500px, 750KB)", ) # Managers objects = OrganizationQuerySet.as_manager() history = ExtraHistoricalRecords() class Meta: base_manager_name = "objects" verbose_name = _("organization") ordering = ["name"] get_latest_by = ["-pub_date"] def __str__(self): return self.name def get_stripe_subscription(self): status_priority = [ # Past due and unpaid should be taken into consideration first, # as the user needs to pay before they can access the service. # See https://docs.stripe.com/billing/subscriptions/overview#subscription-statuses. SubscriptionStatus.unpaid, SubscriptionStatus.past_due, SubscriptionStatus.incomplete_expired, SubscriptionStatus.incomplete, SubscriptionStatus.active, SubscriptionStatus.trialing, ] for status in status_priority: subscriptions = self.stripe_customer.subscriptions.filter(status=status) if subscriptions.exists(): if subscriptions.count() > 1: # NOTE: this should never happen, unless we manually # created another subscription for the user or if there # is a bug in our code. log.exception( "Organization has more than one subscription with the same status", organization_slug=self.slug, subscription_status=status, ) return subscriptions.order_by("created").last() # Fall back to the most recently created subscription. return self.stripe_customer.subscriptions.order_by("created").last() def get_absolute_url(self): return reverse("organization_detail", args=(self.slug,)) @property def users(self): return AdminPermission.members(self) @property def members(self): return AdminPermission.members(self) def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.name) if self.stripe_customer: self.stripe_id = self.stripe_customer.id # If the avatar is being changed, delete the previous one. try: previous_avatar = Organization.objects.get(pk=self.pk).avatar except Organization.DoesNotExist: previous_avatar = None if previous_avatar and previous_avatar != self.avatar: previous_avatar.delete(save=False) super().save(*args, **kwargs) def get_stripe_metadata(self): """Get metadata for the stripe account.""" return { "org:id": self.id, "org:slug": self.slug, } def add_member(self, user, team): """ Add member to organization team. user User to add to organization team team Team instance to add user to """ member = team.members.filter(pk=user.pk).first() if not member: member = TeamMember.objects.create(team=team, member=user) return member def get_avatar_url(self): """ Get the URL of the organization's avatar. Use the `avatar` field if it exists, otherwise use the gravatar from the organization's email. """ if self.avatar: return self.avatar.url if self.email: return get_gravatar_url(self.email, size=100) return settings.GRAVATAR_DEFAULT_IMAGE def delete(self, *args, **kwargs): """Override delete method to clean up related resources.""" # Delete the avatar file. if self.avatar: self.avatar.delete(save=False) super().delete(*args, **kwargs)
Organization
python
python__mypy
mypyc/irbuild/nonlocalcontrol.py
{ "start": 4856, "end": 5621 }
class ____(NonlocalControl): """Abstract nonlocal control that runs some cleanup code.""" def __init__(self, outer: NonlocalControl) -> None: self.outer = outer @abstractmethod def gen_cleanup(self, builder: IRBuilder, line: int) -> None: ... def gen_break(self, builder: IRBuilder, line: int) -> None: self.gen_cleanup(builder, line) self.outer.gen_break(builder, line) def gen_continue(self, builder: IRBuilder, line: int) -> None: self.gen_cleanup(builder, line) self.outer.gen_continue(builder, line) def gen_return(self, builder: IRBuilder, value: Value, line: int) -> None: self.gen_cleanup(builder, line) self.outer.gen_return(builder, value, line)
CleanupNonlocalControl
python
run-llama__llama_index
llama-index-integrations/llms/llama-index-llms-mymagic/llama_index/llms/mymagic/base.py
{ "start": 410, "end": 9568 }
class ____(LLM): """ MyMagicAI LLM. Examples: `pip install llama-index-llms-mymagic` ```python from llama_index.llms.mymagic import MyMagicAI llm = MyMagicAI( api_key="your-api-key", storage_provider="s3", # s3, gcs bucket_name="your-bucket-name", list_inputs="your list of inputs if you choose to pass directly", session="your-session-name", # files should be located in this folder on which batch inference will be run role_arn="your-role-arn", system_prompt="your-system-prompt", region="your-bucket-region", return_output=False, # Whether you want MyMagic API to return the output json input_json_file=None, # name of the input file (stored on the bucket) structured_output=None, # json schema of the output ) resp = llm.complete( question="your-question", model="choose-model", # check models at max_tokens=5, # number of tokens to generate, default is 10 ) print(resp) ``` """ base_url_template: str = "https://fastapi.mymagic.ai" completion_url: str = f"{base_url_template}/v1/completions" status_url: str = f"{base_url_template}/get_result" api_key: str = None list_inputs: Optional[List[str]] = Field( None, description="If user chooses to provide list of inputs to the model instead of specifying in a storage bucket.", ) storage_provider: str = Field( default=None, description="The storage provider to use." ) bucket_name: str = Field( default=None, description="The bucket name where the data is stored.", ) session: str = Field( default=None, description="The session to use. This is a subfolder in the bucket where your data is located.", ) role_arn: Optional[str] = Field( None, description="ARN for role assumption in AWS S3." ) system_prompt: Optional[str] = Field( default="Answer the question based only on the given content. Do not give explanations or examples. Do not continue generating more text after the answer.", description="The system prompt to use.", ) region: Optional[str] = Field( "eu-west-2", description="The region the bucket is in. Only used for AWS S3." ) input_json_file: Optional[str] = Field( None, description="Should the input be read from a single json file?" ) structured_output: Optional[Dict[str, Any]] = Field( None, description="User-defined structure for the response output" ) model: str = Field(default="mixtral8x7", description="The MyMagicAI model to use.") max_tokens: int = Field( default=10, description="The maximum number of tokens to generate." ) question = Field(default="", description="The user question.") question_data: Dict[str, Any] = Field( default_factory=dict, description="The data to send to the MyMagicAI API." ) return_output: Optional[bool] = Field( False, description="Whether MyMagic API should return the output json" ) def __init__( self, api_key: str, storage_provider: Optional[str] = None, input_json_file: Optional[str] = None, structured_output: Optional[Dict[str, Any]] = None, return_output: Optional[bool] = False, list_inputs: Optional[List[str]] = None, role_arn: Optional[str] = None, region: Optional[str] = "eu-west-2", session: str = None, bucket_name: Optional[str] = None, system_prompt: Optional[str] = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.return_output = return_output self.api_key = api_key self.question_data = { "list_inputs": list_inputs, "storage_provider": storage_provider, "bucket_name": bucket_name, "session": session, "role_arn": role_arn, "system_prompt": system_prompt, "region": region, "return_output": return_output, "input_json_file": input_json_file, "structured_output": structured_output, } @classmethod def class_name(cls) -> str: return "MyMagicAI" async def _submit_question(self, question_data: Dict[str, Any]) -> Dict[str, Any]: timeout_config = httpx.Timeout(600.0, connect=60.0) headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } async with httpx.AsyncClient(timeout=timeout_config) as client: resp = await client.post( self.completion_url, json=question_data, headers=headers, ) resp.raise_for_status() return resp.json() async def _get_result(self, task_id: str) -> Dict[str, Any]: url = f"{self.status_url}/{task_id}" timeout_config = httpx.Timeout(600.0, connect=60.0) async with httpx.AsyncClient(timeout=timeout_config) as client: resp = await client.get(url) resp.raise_for_status() return resp.json() async def acomplete( self, question: str, model: Optional[str] = None, max_tokens: Optional[int] = None, poll_interval: float = 1.0, ) -> CompletionResponse: self.question_data["question"] = question self.question_data["model"] = model or self.model self.max_tokens = self.question_data["max_tokens"] = ( max_tokens or self.max_tokens ) task_response = await self._submit_question(self.question_data) if self.return_output: return task_response task_id = task_response.get("task_id") while True: result = await self._get_result(task_id) if result["status"] != "PENDING": return result await asyncio.sleep(poll_interval) def _submit_question_sync(self, question_data: Dict[str, Any]) -> Dict[str, Any]: """Submits a question to the model synchronously.""" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } resp = requests.post( self.completion_url, json=question_data, headers=headers, ) resp.raise_for_status() return resp.json() def _get_result_sync(self, task_id: str) -> Dict[str, Any]: """Polls for the result of a task synchronously.""" url = f"{self.status_url}/{task_id}" response = requests.get(url, timeout=600.0) response.raise_for_status() return response.json() def complete( self, question: str, model: Optional[str] = None, max_tokens: Optional[int] = None, poll_interval: float = 1.0, ) -> CompletionResponse: self.question_data["question"] = question self.question_data["model"] = model or self.model self.max_tokens = self.question_data["max_tokens"] = ( max_tokens or self.max_tokens ) task_response = self._submit_question_sync(self.question_data) if self.return_output: return task_response task_id = task_response.get("task_id") while True: result = self._get_result_sync(task_id) if result["status"] != "PENDING": return CompletionResponse( text=result.get("message", ""), additional_kwargs={"status": result["status"]}, ) time.sleep(poll_interval) def stream_complete(self, question: str) -> CompletionResponseGen: raise NotImplementedError( "MyMagicAI does not currently support streaming completion." ) async def achat(self, question: str) -> ChatResponse: raise NotImplementedError("MyMagicAI does not currently support chat.") def chat(self, question: str) -> ChatResponse: raise NotImplementedError("MyMagicAI does not currently support chat.") async def astream_complete(self, question: str) -> CompletionResponseAsyncGen: raise NotImplementedError("MyMagicAI does not currently support streaming.") async def astream_chat(self, question: str) -> ChatResponseAsyncGen: raise NotImplementedError("MyMagicAI does not currently support streaming.") def chat(self, question: str) -> ChatResponse: raise NotImplementedError("MyMagicAI does not currently support chat.") def stream_chat(self, question: str) -> ChatResponseGen: raise NotImplementedError("MyMagicAI does not currently support chat.") @property def metadata(self) -> LLMMetadata: """LLM metadata.""" return LLMMetadata( num_output=self.max_tokens, model_name=self.model, is_chat_model=False, )
MyMagicAI
python
simonw__datasette
datasette/views/special.py
{ "start": 20633, "end": 21673 }
class ____(BaseView): name = "messages_debug" has_json_alternate = False async def get(self, request): await self.ds.ensure_permission(action="view-instance", actor=request.actor) return await self.render(["messages_debug.html"], request) async def post(self, request): await self.ds.ensure_permission(action="view-instance", actor=request.actor) post = await request.post_vars() message = post.get("message", "") message_type = post.get("message_type") or "INFO" assert message_type in ("INFO", "WARNING", "ERROR", "all") datasette = self.ds if message_type == "all": datasette.add_message(request, message, datasette.INFO) datasette.add_message(request, message, datasette.WARNING) datasette.add_message(request, message, datasette.ERROR) else: datasette.add_message(request, message, getattr(datasette, message_type)) return Response.redirect(self.ds.urls.instance())
MessagesDebugView
python
conda__conda
conda/plugins/types.py
{ "start": 6492, "end": 7045 }
class ____(CondaPlugin): """ Return type to use when defining a conda pre-command plugin hook. For details on how this is used, see :meth:`~conda.plugins.hookspec.CondaSpecs.conda_pre_commands`. :param name: Pre-command name (e.g., ``custom_plugin_pre_commands``). :param action: Callable which contains the code to be run. :param run_for: Represents the command(s) this will be run on (e.g. ``install`` or ``create``). """ name: str action: Callable[[str], None] run_for: set[str] @dataclass
CondaPreCommand
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/roots/query.py
{ "start": 7889, "end": 52311 }
class ____(graphene.ObjectType): """The root for all queries to retrieve data from the Dagster instance.""" class Meta: name = "Query" version = graphene.Field( graphene.NonNull(graphene.String), description="Retrieve the version of Dagster running in the Dagster deployment.", ) repositoriesOrError = graphene.Field( graphene.NonNull(GrapheneRepositoriesOrError), repositorySelector=graphene.Argument(GrapheneRepositorySelector), description="Retrieve all the repositories.", ) repositoryOrError = graphene.Field( graphene.NonNull(GrapheneRepositoryOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), description="Retrieve a repository by its location name and repository name.", ) workspaceOrError = graphene.Field( graphene.NonNull(GrapheneWorkspaceOrError), description="Retrieve the workspace and its locations.", ) locationStatusesOrError = graphene.Field( graphene.NonNull(GrapheneWorkspaceLocationStatusEntriesOrError), description="Retrieve location status for workspace locations.", ) workspaceLocationEntryOrError = graphene.Field( GrapheneWorkspaceLocationEntryOrError, name=graphene.Argument(graphene.NonNull(graphene.String)), description="Retrieve a workspace entry by name.", ) pipelineOrError = graphene.Field( graphene.NonNull(GraphenePipelineOrError), params=graphene.NonNull(GraphenePipelineSelector), description="Retrieve a job by its location name, repository name, and job name.", ) resourcesOrError = graphene.Field( graphene.NonNull(GrapheneResourcesOrError), pipelineSelector=graphene.NonNull(GraphenePipelineSelector), description="Retrieve the list of resources for a given job.", ) pipelineSnapshotOrError = graphene.Field( graphene.NonNull(GraphenePipelineSnapshotOrError), snapshotId=graphene.String(), activePipelineSelector=graphene.Argument(GraphenePipelineSelector), description=( "Retrieve a job snapshot by its id or location name, repository name, and job name." ), ) graphOrError = graphene.Field( graphene.NonNull(GrapheneGraphOrError), selector=graphene.Argument(GrapheneGraphSelector), description="Retrieve a graph by its location name, repository name, and graph name.", ) scheduler = graphene.Field( graphene.NonNull(GrapheneSchedulerOrError), description="Retrieve the name of the scheduler running in the Dagster deployment.", ) scheduleOrError = graphene.Field( graphene.NonNull(GrapheneScheduleOrError), schedule_selector=graphene.NonNull(GrapheneScheduleSelector), description="Retrieve a schedule by its location name, repository name, and schedule name.", ) schedulesOrError = graphene.Field( graphene.NonNull(GrapheneSchedulesOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), scheduleStatus=graphene.Argument(GrapheneInstigationStatus), description="Retrieve all the schedules.", ) topLevelResourceDetailsOrError = graphene.Field( graphene.NonNull(GrapheneResourceDetailsOrError), resourceSelector=graphene.NonNull(GrapheneResourceSelector), description=( "Retrieve a top level resource by its location name, repository name, and resource" " name." ), ) allTopLevelResourceDetailsOrError = graphene.Field( graphene.NonNull(GrapheneResourceDetailsListOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), description="Retrieve all the top level resources.", ) utilizedEnvVarsOrError = graphene.Field( graphene.NonNull(GrapheneEnvVarWithConsumersListOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), description="Retrieve all the utilized environment variables for the given repo.", ) sensorOrError = graphene.Field( graphene.NonNull(GrapheneSensorOrError), sensorSelector=graphene.NonNull(GrapheneSensorSelector), description="Retrieve a sensor by its location name, repository name, and sensor name.", ) sensorsOrError = graphene.Field( graphene.NonNull(GrapheneSensorsOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), sensorStatus=graphene.Argument(GrapheneInstigationStatus), description="Retrieve all the sensors.", ) instigationStateOrError = graphene.Field( graphene.NonNull(GrapheneInstigationStateOrError), instigationSelector=graphene.NonNull(GrapheneInstigationSelector), id=graphene.Argument(graphene.String), description=( "Retrieve the state for a schedule or sensor by its location name, repository name, and" " schedule/sensor name." ), ) instigationStatesOrError = graphene.Field( graphene.NonNull(GrapheneInstigationStatesOrError), repositoryID=graphene.NonNull(graphene.String), description=( "Retrieve the state for a group of instigators (schedule/sensor) by their containing repository id." ), ) partitionSetsOrError = graphene.Field( graphene.NonNull(GraphenePartitionSetsOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), pipelineName=graphene.NonNull(graphene.String), description=( "Retrieve the partition sets for a job by its location name, repository name, and job" " name." ), ) partitionSetOrError = graphene.Field( graphene.NonNull(GraphenePartitionSetOrError), repositorySelector=graphene.NonNull(GrapheneRepositorySelector), partitionSetName=graphene.String(), description=( "Retrieve a partition set by its location name, repository name, and partition set" " name." ), ) pipelineRunsOrError = graphene.Field( graphene.NonNull(GrapheneRunsOrError), filter=graphene.Argument(GrapheneRunsFilter), cursor=graphene.String(), limit=graphene.Int(), description="Retrieve runs after applying a filter, cursor, and limit.", ) pipelineRunOrError = graphene.Field( graphene.NonNull(GrapheneRunOrError), runId=graphene.NonNull(graphene.ID), description="Retrieve a run by its run id.", ) runsOrError = graphene.Field( graphene.NonNull(GrapheneRunsOrError), filter=graphene.Argument(GrapheneRunsFilter), cursor=graphene.String(), limit=graphene.Int(), description="Retrieve runs after applying a filter, cursor, and limit.", ) runOrError = graphene.Field( graphene.NonNull(GrapheneRunOrError), runId=graphene.NonNull(graphene.ID), description="Retrieve a run by its run id.", ) runsFeedOrError = graphene.Field( graphene.NonNull(GrapheneRunsFeedConnectionOrError), limit=graphene.NonNull(graphene.Int), cursor=graphene.String(), view=graphene.NonNull(GrapheneRunsFeedView), filter=graphene.Argument(GrapheneRunsFilter), description="Retrieve entries for the Runs Feed after applying a filter, cursor and limit.", ) runsFeedCountOrError = graphene.Field( graphene.NonNull(GrapheneRunsFeedCountOrError), view=graphene.NonNull(GrapheneRunsFeedView), filter=graphene.Argument(GrapheneRunsFilter), description="Retrieve the number of entries for the Runs Feed after applying a filter.", ) runTagKeysOrError = graphene.Field( GrapheneRunTagKeysOrError, description="Retrieve the distinct tag keys from all runs.", ) runTagsOrError = graphene.Field( GrapheneRunTagsOrError, tagKeys=graphene.Argument(graphene.List(graphene.NonNull(graphene.String))), valuePrefix=graphene.String(), limit=graphene.Int(), description="Retrieve all the distinct key-value tags from all runs.", ) runIdsOrError = graphene.Field( graphene.NonNull(GrapheneRunIdsOrError), filter=graphene.Argument(GrapheneRunsFilter), cursor=graphene.String(), limit=graphene.Int(), description="Retrieve run IDs after applying a filter, cursor, and limit.", ) runGroupOrError = graphene.Field( graphene.NonNull(GrapheneRunGroupOrError), runId=graphene.NonNull(graphene.ID), description="Retrieve a group of runs with the matching root run id.", ) isPipelineConfigValid = graphene.Field( graphene.NonNull(GraphenePipelineConfigValidationResult), pipeline=graphene.Argument(graphene.NonNull(GraphenePipelineSelector)), mode=graphene.Argument(graphene.NonNull(graphene.String)), runConfigData=graphene.Argument(GrapheneRunConfigData), description="Retrieve whether the run configuration is valid or invalid.", ) executionPlanOrError = graphene.Field( graphene.NonNull(GrapheneExecutionPlanOrError), pipeline=graphene.Argument(graphene.NonNull(GraphenePipelineSelector)), mode=graphene.Argument(graphene.NonNull(graphene.String)), runConfigData=graphene.Argument(GrapheneRunConfigData), description="Retrieve the execution plan for a job and its run configuration.", ) runConfigSchemaOrError = graphene.Field( graphene.NonNull(GrapheneRunConfigSchemaOrError), args={ "selector": graphene.Argument(graphene.NonNull(GraphenePipelineSelector)), "mode": graphene.Argument(graphene.String), }, description="Retrieve the run configuration schema for a job.", ) instance = graphene.Field( graphene.NonNull(GrapheneInstance), description="Retrieve the instance configuration for the Dagster deployment.", ) assetsOrError = graphene.Field( graphene.NonNull(GrapheneAssetsOrError), prefix=graphene.List(graphene.NonNull(graphene.String)), assetKeys=graphene.Argument(graphene.List(graphene.NonNull(GrapheneAssetKeyInput))), cursor=graphene.String(), limit=graphene.Int(), description="Retrieve all assets (both with or without a definition) after providing a list of asset keys, applying a prefix filter, cursor, and limit.", ) assetRecordsOrError = graphene.Field( graphene.NonNull(GrapheneAssetRecordsOrError), prefix=graphene.List(graphene.NonNull(graphene.String)), cursor=graphene.String(), limit=graphene.Int(), description="Retrieve materialized asset records after applying a prefix filter, cursor, and limit.", ) assetOrError = graphene.Field( graphene.NonNull(GrapheneAssetOrError), assetKey=graphene.Argument(graphene.NonNull(GrapheneAssetKeyInput)), description="Retrieve an asset by asset key.", ) assetNodes = graphene.Field( non_null_list(GrapheneAssetNode), group=graphene.Argument(GrapheneAssetGroupSelector), pipeline=graphene.Argument(GraphenePipelineSelector), assetKeys=graphene.Argument(graphene.List(graphene.NonNull(GrapheneAssetKeyInput))), loadMaterializations=graphene.Boolean(default_value=False), description=( "Retrieve asset nodes (assets with a definition) after applying a filter on asset group, job, and asset keys." ), ) assetNodeOrError = graphene.Field( graphene.NonNull(GrapheneAssetNodeOrError), assetKey=graphene.Argument(graphene.NonNull(GrapheneAssetKeyInput)), description="Retrieve an asset node by asset key.", ) assetNodeAdditionalRequiredKeys = graphene.Field( non_null_list(GrapheneAssetKey), assetKeys=graphene.Argument(non_null_list(GrapheneAssetKeyInput)), description="Retrieve a list of additional asset keys that must be materialized with the provided selection (due to @multi_assets with can_subset=False constraints.)", ) assetNodeDefinitionCollisions = graphene.Field( non_null_list(GrapheneAssetNodeDefinitionCollision), assetKeys=graphene.Argument(non_null_list(GrapheneAssetKeyInput)), description=( "Retrieve a list of asset keys where two or more repos provide an asset definition." " Note: Assets should " ) + "not be defined in more than one repository - this query is used to present warnings and" " errors in the Dagster UI.", ) partitionBackfillOrError = graphene.Field( graphene.NonNull(GraphenePartitionBackfillOrError), backfillId=graphene.Argument(graphene.NonNull(graphene.String)), description="Retrieve a backfill by backfill id.", ) assetBackfillPreview = graphene.Field( non_null_list(GrapheneAssetPartitions), params=graphene.Argument(graphene.NonNull(GrapheneAssetBackfillPreviewParams)), description="Fetch the partitions that would be targeted by a backfill, given the root partitions targeted.", ) partitionBackfillsOrError = graphene.Field( graphene.NonNull(GraphenePartitionBackfillsOrError), status=graphene.Argument(GrapheneBulkActionStatus), cursor=graphene.String(), limit=graphene.Int(), filters=graphene.Argument(GrapheneBulkActionsFilter), description="Retrieve backfills after applying a status filter, cursor, and limit.", ) permissions = graphene.Field( non_null_list(GraphenePermission), description="Retrieve the set of permissions for the Dagster deployment.", ) canBulkTerminate = graphene.Field( graphene.NonNull(graphene.Boolean), description="Returns whether the user has permission to terminate runs in the deployment", ) assetsLatestInfo = graphene.Field( non_null_list(GrapheneAssetLatestInfo), assetKeys=graphene.Argument(non_null_list(GrapheneAssetKeyInput)), description="Retrieve the latest materializations for a set of assets by asset keys.", ) logsForRun = graphene.Field( graphene.NonNull(GrapheneEventConnectionOrError), runId=graphene.NonNull(graphene.ID), afterCursor=graphene.String(), limit=graphene.Int(), description="Retrieve event logs after applying a run id filter, cursor, and limit.", ) capturedLogsMetadata = graphene.Field( graphene.NonNull(GrapheneCapturedLogsMetadata), logKey=graphene.Argument(non_null_list(graphene.String)), description="Retrieve the captured log metadata for a given log key.", ) capturedLogs = graphene.Field( graphene.NonNull(GrapheneCapturedLogs), logKey=graphene.Argument(non_null_list(graphene.String)), cursor=graphene.Argument(graphene.String), limit=graphene.Argument(graphene.Int), description="Captured logs are the stdout/stderr logs for a given log key", ) shouldShowNux = graphene.Field( graphene.NonNull(graphene.Boolean), description="Whether or not the NUX should be shown to the user", ) test = graphene.Field( GrapheneTestFields, description="Provides fields for testing behavior", ) autoMaterializeAssetEvaluationsOrError = graphene.Field( GrapheneAutoMaterializeAssetEvaluationRecordsOrError, assetKey=graphene.Argument(graphene.NonNull(GrapheneAssetKeyInput)), limit=graphene.Argument(graphene.NonNull(graphene.Int)), cursor=graphene.Argument(graphene.String), description="Retrieve the auto materialization evaluation records for an asset.", ) truePartitionsForAutomationConditionEvaluationNode = graphene.Field( non_null_list(graphene.String), assetKey=graphene.Argument(GrapheneAssetKeyInput), evaluationId=graphene.Argument(graphene.NonNull(graphene.ID)), nodeUniqueId=graphene.Argument(graphene.String), description="Retrieve the partition keys which were true for a specific automation condition evaluation node.", ) autoMaterializeEvaluationsForEvaluationId = graphene.Field( GrapheneAutoMaterializeAssetEvaluationRecordsOrError, evaluationId=graphene.Argument(graphene.NonNull(graphene.ID)), description=( "Retrieve the auto materialization evaluation records for a given evaluation ID." ), ) assetConditionEvaluationForPartition = graphene.Field( GrapheneAssetConditionEvaluation, assetKey=graphene.Argument(GrapheneAssetKeyInput), evaluationId=graphene.Argument(graphene.NonNull(graphene.ID)), partition=graphene.Argument(graphene.NonNull(graphene.String)), description="Retrieve the condition evaluation for an asset and partition.", ) assetConditionEvaluationRecordsOrError = graphene.Field( GrapheneAssetConditionEvaluationRecordsOrError, assetKey=graphene.Argument(GrapheneAssetKeyInput), assetCheckKey=graphene.Argument(GrapheneAssetCheckHandleInput, required=False), limit=graphene.Argument(graphene.NonNull(graphene.Int)), cursor=graphene.Argument(graphene.String), description="Retrieve the condition evaluation records for an asset.", ) assetConditionEvaluationsForEvaluationId = graphene.Field( GrapheneAssetConditionEvaluationRecordsOrError, evaluationId=graphene.Argument(graphene.NonNull(graphene.ID)), description=("Retrieve the condition evaluation records for a given evaluation ID."), ) autoMaterializeTicks = graphene.Field( non_null_list(GrapheneInstigationTick), dayRange=graphene.Int(), dayOffset=graphene.Int(), limit=graphene.Int(), cursor=graphene.String(), statuses=graphene.List(graphene.NonNull(GrapheneInstigationTickStatus)), beforeTimestamp=graphene.Float(), afterTimestamp=graphene.Float(), description="Fetch the history of auto-materialization ticks", ) assetCheckExecutions = graphene.Field( non_null_list(GrapheneAssetCheckExecution), assetKey=graphene.Argument(graphene.NonNull(GrapheneAssetKeyInput)), checkName=graphene.Argument(graphene.NonNull(graphene.String)), limit=graphene.NonNull(graphene.Int), cursor=graphene.String(), description="Retrieve the executions for a given asset check.", ) latestDefsStateInfo = graphene.Field( GrapheneDefsStateInfo, description="Retrieve the latest available DefsStateInfo for the current workspace.", ) @capture_error def resolve_repositoriesOrError( self, graphene_info: ResolveInfo, repositorySelector: Optional[GrapheneRepositorySelector] = None, ): if repositorySelector: return GrapheneRepositoryConnection( nodes=[ fetch_repository( graphene_info, RepositorySelector.from_graphql_input(repositorySelector), ) ] ) return fetch_repositories(graphene_info) @capture_error def resolve_repositoryOrError( self, graphene_info: ResolveInfo, repositorySelector: GrapheneRepositorySelector ): return fetch_repository( graphene_info, RepositorySelector.from_graphql_input(repositorySelector) ) @capture_error def resolve_workspaceOrError(self, graphene_info: ResolveInfo): return fetch_workspace(graphene_info.context) @capture_error def resolve_workspaceLocationEntryOrError(self, graphene_info: ResolveInfo, name: str): return fetch_location_entry(graphene_info.context, name) @capture_error def resolve_locationStatusesOrError(self, graphene_info: ResolveInfo): return fetch_location_statuses(graphene_info.context) @capture_error async def resolve_pipelineSnapshotOrError( self, graphene_info: ResolveInfo, snapshotId: Optional[str] = None, activePipelineSelector: Optional[GraphenePipelineSelector] = None, ): if activePipelineSelector: job_selector = pipeline_selector_from_graphql(activePipelineSelector) if snapshotId: return await get_job_snapshot_or_error_from_snap_or_selector( graphene_info, job_selector, snapshotId ) return await get_job_snapshot_or_error_from_job_selector(graphene_info, job_selector) elif snapshotId: return get_job_snapshot_or_error_from_snapshot_id(graphene_info, snapshotId) else: raise DagsterInvariantViolationError( "Must pass snapshotId or activePipelineSelector", ) @capture_error def resolve_graphOrError( self, graphene_info: ResolveInfo, selector: Optional[GrapheneGraphSelector] = None, ): if selector is None: raise DagsterInvariantViolationError( "Must pass graph selector", ) graph_selector = graph_selector_from_graphql(selector) return get_graph_or_error(graphene_info, graph_selector) def resolve_version(self, graphene_info: ResolveInfo): return graphene_info.context.version @capture_error def resolve_scheduler(self, graphene_info: ResolveInfo): return get_scheduler_or_error(graphene_info) @capture_error def resolve_scheduleOrError( self, graphene_info: ResolveInfo, schedule_selector: GrapheneScheduleSelector ): return get_schedule_or_error( graphene_info, ScheduleSelector.from_graphql_input(schedule_selector) ) @capture_error def resolve_schedulesOrError( self, graphene_info: ResolveInfo, repositorySelector: GrapheneRepositorySelector, scheduleStatus: Optional[GrapheneInstigationStatus] = None, ): if scheduleStatus == GrapheneInstigationStatus.RUNNING: instigator_statuses = { InstigatorStatus.RUNNING, InstigatorStatus.DECLARED_IN_CODE, } elif scheduleStatus == GrapheneInstigationStatus.STOPPED: instigator_statuses = {InstigatorStatus.STOPPED} else: instigator_statuses = None return get_schedules_or_error( graphene_info, RepositorySelector.from_graphql_input(repositorySelector), instigator_statuses, ) @capture_error def resolve_topLevelResourceDetailsOrError(self, graphene_info: ResolveInfo, resourceSelector): return get_resource_or_error( graphene_info, ResourceSelector.from_graphql_input(resourceSelector) ) def resolve_allTopLevelResourceDetailsOrError(self, graphene_info: ResolveInfo, **kwargs): return get_top_level_resources_or_error( graphene_info, RepositorySelector.from_graphql_input(kwargs.get("repositorySelector")), ) @capture_error def resolve_utilizedEnvVarsOrError(self, graphene_info: ResolveInfo, **kwargs): return get_utilized_env_vars_or_error( graphene_info, RepositorySelector.from_graphql_input(kwargs.get("repositorySelector")), ) @capture_error def resolve_sensorOrError( self, graphene_info: ResolveInfo, sensorSelector: GrapheneRepositorySelector ): return get_sensor_or_error(graphene_info, SensorSelector.from_graphql_input(sensorSelector)) @capture_error def resolve_sensorsOrError( self, graphene_info, repositorySelector: GrapheneRepositorySelector, sensorStatus: Optional[GrapheneInstigationStatus] = None, ): if sensorStatus == GrapheneInstigationStatus.RUNNING: instigator_statuses = { InstigatorStatus.RUNNING, InstigatorStatus.DECLARED_IN_CODE, } elif sensorStatus == GrapheneInstigationStatus.STOPPED: instigator_statuses = {InstigatorStatus.STOPPED} else: instigator_statuses = None return get_sensors_or_error( graphene_info, RepositorySelector.from_graphql_input(repositorySelector), instigator_statuses, ) @capture_error def resolve_instigationStateOrError( self, graphene_info: ResolveInfo, *, instigationSelector: GrapheneInstigationSelector, id: Optional[str] = None, ): return get_instigator_state_by_selector( graphene_info, InstigatorSelector.from_graphql_input(instigationSelector), CompoundID.from_string(id) if id else None, ) @capture_error def resolve_instigationStatesOrError( self, graphene_info: ResolveInfo, repositoryID: str, ): return get_instigation_states_by_repository_id( graphene_info, CompoundID.from_string(repositoryID), ) @capture_error async def resolve_pipelineOrError( self, graphene_info: ResolveInfo, params: GraphenePipelineSelector ): return GraphenePipeline( await get_remote_job_or_raise(graphene_info, pipeline_selector_from_graphql(params)) ) @capture_error def resolve_resourcesOrError( self, graphene_info: ResolveInfo, pipelineSelector: GraphenePipelineSelector ) -> Sequence[GrapheneResource]: from dagster_graphql.schema.errors import GraphenePipelineNotFoundError job_selector = pipeline_selector_from_graphql(pipelineSelector) if not graphene_info.context.has_job(job_selector): raise UserFacingGraphQLError(GraphenePipelineNotFoundError(selector=job_selector)) check.invariant( not job_selector.is_subset_selection, "resourcesOrError only accepts non-subsetted selectors", ) def _get_config_type(key: str): return graphene_info.context.get_config_type(job_selector, key) return GrapheneResourceConnection( resources=[ GrapheneResource(_get_config_type, resource_snap) for resource_snap in graphene_info.context.get_resources(job_selector) ] ) def resolve_pipelineRunsOrError( self, _graphene_info: ResolveInfo, filter: Optional[GrapheneRunsFilter] = None, # noqa: A002 cursor: Optional[str] = None, limit: Optional[int] = None, ): selector = filter.to_selector() if filter is not None else None return GrapheneRuns( filters=selector, cursor=cursor, limit=limit, ) async def resolve_pipelineRunOrError(self, graphene_info: ResolveInfo, runId: graphene.ID): return await gen_run_by_id(graphene_info, runId) def resolve_runsOrError( self, _graphene_info: ResolveInfo, filter: Optional[GrapheneRunsFilter] = None, # noqa: A002 cursor: Optional[str] = None, limit: Optional[int] = None, ): selector = filter.to_selector() if filter is not None else None return GrapheneRuns( filters=selector, cursor=cursor, limit=limit, ) def resolve_runIdsOrError( self, _graphene_info: ResolveInfo, filter: Optional[GrapheneRunsFilter] = None, # noqa: A002 cursor: Optional[str] = None, limit: Optional[int] = None, ): selector = filter.to_selector() if filter is not None else None return GrapheneRunIds( filters=selector, cursor=cursor, limit=limit, ) async def resolve_runOrError(self, graphene_info: ResolveInfo, runId): return await gen_run_by_id(graphene_info, runId) def resolve_runsFeedOrError( self, graphene_info: ResolveInfo, limit: int, view: GrapheneRunsFeedView, cursor: Optional[str] = None, filter: Optional[GrapheneRunsFilter] = None, # noqa: A002 ): selector = filter.to_selector() if filter is not None else None return get_runs_feed_entries( graphene_info=graphene_info, cursor=cursor, limit=limit, filters=selector, view=view ) def resolve_runsFeedCountOrError( self, graphene_info: ResolveInfo, view: GrapheneRunsFeedView, filter: Optional[GrapheneRunsFilter] = None, # noqa: A002 ): selector = filter.to_selector() if filter is not None else None return GrapheneRunsFeedCount( get_runs_feed_count( graphene_info, selector, view=view, ) ) @capture_error def resolve_partitionSetsOrError( self, graphene_info: ResolveInfo, repositorySelector: RepositorySelector, pipelineName: str, ): return get_partition_sets_or_error( graphene_info, RepositorySelector.from_graphql_input(repositorySelector), pipelineName, ) @capture_error def resolve_partitionSetOrError( self, graphene_info: ResolveInfo, repositorySelector: RepositorySelector, partitionSetName: Optional[str] = None, ): return get_partition_set( graphene_info, RepositorySelector.from_graphql_input(repositorySelector), # partitionSetName should prob be required partitionSetName, # type: ignore ) @capture_error def resolve_runTagKeysOrError(self, graphene_info: ResolveInfo): return get_run_tag_keys(graphene_info) @capture_error def resolve_runTagsOrError( self, graphene_info: ResolveInfo, tagKeys: list[str], valuePrefix: Optional[str] = None, limit: Optional[int] = None, ): return get_run_tags(graphene_info, tagKeys, valuePrefix, limit) @capture_error def resolve_runGroupOrError(self, graphene_info: ResolveInfo, runId): return get_run_group(graphene_info, runId) @capture_error async def resolve_isPipelineConfigValid( self, graphene_info: ResolveInfo, pipeline: GraphenePipelineSelector, mode: str, runConfigData: Optional[Any] = None, # custom scalar (GrapheneRunConfigData) ): return await validate_pipeline_config( graphene_info, pipeline_selector_from_graphql(pipeline), parse_run_config_input(runConfigData or {}, raise_on_error=False), ) @capture_error async def resolve_executionPlanOrError( self, graphene_info: ResolveInfo, pipeline: GraphenePipelineSelector, mode: str, runConfigData: Optional[Any] = None, # custom scalar (GrapheneRunConfigData) ): return await get_execution_plan( graphene_info, pipeline_selector_from_graphql(pipeline), parse_run_config_input(runConfigData or {}, raise_on_error=True), # type: ignore # (possible str) ) @capture_error async def resolve_runConfigSchemaOrError( self, graphene_info: ResolveInfo, selector: GraphenePipelineSelector, mode: Optional[str] = None, ): return await resolve_run_config_schema_or_error( graphene_info, pipeline_selector_from_graphql(selector), mode ) def resolve_instance(self, graphene_info: ResolveInfo): return GrapheneInstance(graphene_info.context.instance) def resolve_assetNodes( self, graphene_info: ResolveInfo, loadMaterializations: bool, group: Optional[GrapheneAssetGroupSelector] = None, pipeline: Optional[GraphenePipelineSelector] = None, assetKeys: Optional[Sequence[GrapheneAssetKeyInput]] = None, ) -> Sequence[GrapheneAssetNode]: if assetKeys == []: return [] elif not assetKeys: use_all_asset_keys = True resolved_asset_keys = None else: use_all_asset_keys = False resolved_asset_keys = set( AssetKey.from_graphql_input(asset_key_input) for asset_key_input in assetKeys or [] ) repo = None if group is not None: group_name = group.groupName repo_sel = RepositorySelector.from_graphql_input(group) repo_loc_entry = graphene_info.context.get_location_entry(repo_sel.location_name) repo_loc = repo_loc_entry.code_location if repo_loc_entry else None if not repo_loc or not repo_loc.has_repository(repo_sel.repository_name): return [] repo = repo_loc.get_repository(repo_sel.repository_name) remote_nodes = [ remote_node for remote_node in repo.asset_graph.asset_nodes if remote_node.group_name == group_name ] elif pipeline is not None: selector = pipeline_selector_from_graphql(pipeline) remote_nodes = graphene_info.context.get_assets_in_job(selector) else: if not use_all_asset_keys and resolved_asset_keys: remote_nodes = [ graphene_info.context.asset_graph.get(asset_key) for asset_key in resolved_asset_keys if graphene_info.context.asset_graph.has(asset_key) ] else: remote_nodes = [ remote_node for remote_node in graphene_info.context.asset_graph.asset_nodes ] # Filter down to requested asset keys results = [ remote_node for remote_node in remote_nodes if use_all_asset_keys or remote_node.key in check.not_none(resolved_asset_keys) ] if not results: return [] final_keys = [node.key for node in results] AssetRecord.prepare(graphene_info.context, final_keys) def load_asset_graph() -> RemoteAssetGraph: if repo is not None: return repo.asset_graph else: return graphene_info.context.asset_graph nodes = [ GrapheneAssetNode( remote_node=remote_node, ) for remote_node in results ] return sorted(nodes, key=lambda node: node.id) def resolve_assetNodeOrError(self, graphene_info: ResolveInfo, assetKey: GrapheneAssetKeyInput): asset_key_input = cast("Mapping[str, Sequence[str]]", assetKey) return get_asset_node(graphene_info, AssetKey.from_graphql_input(asset_key_input)) @capture_error def resolve_assetsOrError( self, graphene_info: ResolveInfo, prefix: Optional[Sequence[str]] = None, assetKeys: Optional[Sequence[GrapheneAssetKeyInput]] = None, cursor: Optional[str] = None, limit: Optional[int] = None, ): return get_assets( graphene_info, prefix=prefix, cursor=cursor, limit=limit, asset_keys=[ AssetKey.from_graphql_input(asset_key_input) for asset_key_input in assetKeys ] if assetKeys is not None else None, ) @capture_error def resolve_assetRecordsOrError( self, graphene_info: ResolveInfo, prefix: Optional[Sequence[str]] = None, cursor: Optional[str] = None, limit: Optional[int] = None, ): return get_asset_records( graphene_info, prefix=prefix, cursor=cursor, limit=limit, ) def resolve_assetOrError(self, graphene_info: ResolveInfo, assetKey: GrapheneAssetKeyInput): return get_asset(AssetKey.from_graphql_input(assetKey)) def resolve_assetNodeAdditionalRequiredKeys( self, graphene_info: ResolveInfo, assetKeys: Sequence[GrapheneAssetKeyInput], ): assert assetKeys is not None raw_asset_keys = cast("Sequence[Mapping[str, Sequence[str]]]", assetKeys) asset_keys = set(AssetKey.from_graphql_input(asset_key) for asset_key in raw_asset_keys) return get_additional_required_keys(graphene_info, asset_keys) def resolve_assetNodeDefinitionCollisions( self, graphene_info: ResolveInfo, assetKeys: Sequence[GrapheneAssetKeyInput], ): assert assetKeys is not None raw_asset_keys = cast("Sequence[Mapping[str, Sequence[str]]]", assetKeys) asset_keys = set(AssetKey.from_graphql_input(asset_key) for asset_key in raw_asset_keys) return get_asset_node_definition_collisions(graphene_info, asset_keys) @capture_error def resolve_partitionBackfillOrError(self, graphene_info: ResolveInfo, backfillId: str): return get_backfill(graphene_info, backfillId) @capture_error def resolve_partitionBackfillsOrError( self, graphene_info: ResolveInfo, status: Optional[GrapheneBulkActionStatus] = None, cursor: Optional[str] = None, limit: Optional[int] = None, filters: Optional[GrapheneBulkActionsFilter] = None, ): return get_backfills( graphene_info, status=BulkActionStatus.from_graphql_input(status) if status else None, cursor=cursor, limit=limit, filters=filters.to_selector() if filters else None, ) def resolve_assetBackfillPreview( self, graphene_info: ResolveInfo, params: GrapheneAssetBackfillPreviewParams ) -> Sequence[GrapheneAssetPartitions]: return get_asset_backfill_preview(graphene_info, params) def resolve_permissions(self, graphene_info: ResolveInfo): permissions = graphene_info.context.permissions return [GraphenePermission(permission, value) for permission, value in permissions.items()] def resolve_canBulkTerminate(self, graphene_info: ResolveInfo) -> bool: return graphene_info.context.has_permission(Permissions.TERMINATE_PIPELINE_EXECUTION) def resolve_assetsLatestInfo( self, graphene_info: ResolveInfo, assetKeys: Sequence[GrapheneAssetKeyInput], ): asset_keys = set(AssetKey.from_graphql_input(asset_key) for asset_key in assetKeys) return get_assets_latest_info(graphene_info, asset_keys) @capture_error def resolve_logsForRun( self, graphene_info: ResolveInfo, runId: str, afterCursor: Optional[str] = None, limit: Optional[int] = None, ): return get_logs_for_run(graphene_info, runId, afterCursor, limit) def resolve_capturedLogsMetadata( self, graphene_info: ResolveInfo, logKey: Sequence[str] ) -> GrapheneCapturedLogsMetadata: return get_captured_log_metadata(graphene_info, logKey) def resolve_capturedLogs( self, graphene_info: ResolveInfo, logKey: Sequence[str], cursor: Optional[str] = None, limit: Optional[int] = None, ) -> GrapheneCapturedLogs: log_data = get_compute_log_manager(graphene_info).get_log_data( logKey, cursor=cursor, max_bytes=limit ) return from_captured_log_data(log_data) def resolve_shouldShowNux(self, graphene_info): return graphene_info.context.instance.nux_enabled and not get_has_seen_nux() def resolve_test(self, _): return GrapheneTestFields() def resolve_autoMaterializeAssetEvaluationsOrError( self, graphene_info: ResolveInfo, assetKey: GrapheneAssetKeyInput, limit: int, cursor: Optional[str] = None, ): asset_key = AssetKey.from_graphql_input(assetKey) return fetch_auto_materialize_asset_evaluations( graphene_info=graphene_info, asset_key=asset_key, cursor=cursor, limit=limit, ) def resolve_autoMaterializeEvaluationsForEvaluationId( self, graphene_info: ResolveInfo, evaluationId: int, ): return fetch_auto_materialize_asset_evaluations_for_evaluation_id( graphene_info=graphene_info, evaluation_id=evaluationId ) def resolve_assetConditionEvaluationForPartition( self, graphene_info: ResolveInfo, assetKey: Optional[GrapheneAssetKeyInput], evaluationId: str, partition: str, ): return fetch_asset_condition_evaluation_record_for_partition( graphene_info=graphene_info, graphene_asset_key=assetKey, evaluation_id=int(evaluationId), partition_key=partition, ) def resolve_assetConditionEvaluationRecordsOrError( self, graphene_info: ResolveInfo, assetKey: Optional[GrapheneAssetKeyInput], limit: int, cursor: Optional[str] = None, assetCheckKey: Optional[GrapheneAssetCheckHandleInput] = None, ): return fetch_asset_condition_evaluation_records_for_asset_key( graphene_info=graphene_info, graphene_entity_key=check.not_none(assetKey or assetCheckKey), cursor=cursor, limit=limit, ) def resolve_truePartitionsForAutomationConditionEvaluationNode( self, graphene_info: ResolveInfo, assetKey: Optional[GrapheneAssetKeyInput], evaluationId: str, nodeUniqueId: str, ): return fetch_true_partitions_for_evaluation_node( graphene_info=graphene_info, graphene_entity_key=assetKey, evaluation_id=int(evaluationId), node_unique_id=nodeUniqueId, ) def resolve_assetConditionEvaluationsForEvaluationId( self, graphene_info: ResolveInfo, evaluationId: int ): return fetch_asset_condition_evaluation_records_for_evaluation_id( graphene_info=graphene_info, evaluation_id=evaluationId ) def resolve_autoMaterializeTicks( self, graphene_info, dayRange=None, dayOffset=None, limit=None, cursor=None, statuses=None, beforeTimestamp=None, afterTimestamp=None, ): # Only valid for ticks from before auto-materialize was moved to be powered by multiple # sensors from dagster._daemon.asset_daemon import ( _PRE_SENSOR_AUTO_MATERIALIZE_ORIGIN_ID, _PRE_SENSOR_AUTO_MATERIALIZE_SELECTOR_ID, ) return get_instigation_ticks( graphene_info=graphene_info, instigator_type=InstigatorType.AUTO_MATERIALIZE, instigator_origin_id=_PRE_SENSOR_AUTO_MATERIALIZE_ORIGIN_ID, selector_id=_PRE_SENSOR_AUTO_MATERIALIZE_SELECTOR_ID, batch_loader=None, dayRange=dayRange, dayOffset=dayOffset, limit=limit, cursor=cursor, status_strings=statuses, before=beforeTimestamp, after=afterTimestamp, ) def resolve_assetCheckExecutions( self, graphene_info: ResolveInfo, assetKey: GrapheneAssetKeyInput, checkName: str, limit: int, cursor: Optional[str] = None, ): return fetch_asset_check_executions( graphene_info.context, asset_check_key=AssetCheckKey( asset_key=AssetKey.from_graphql_input(assetKey), name=checkName ), limit=limit, cursor=cursor, ) def resolve_latestDefsStateInfo(self, graphene_info: ResolveInfo): defs_state_storage = graphene_info.context.instance.defs_state_storage latest_info = ( defs_state_storage.get_latest_defs_state_info() if defs_state_storage else None ) return GrapheneDefsStateInfo(latest_info) if latest_info else None
GrapheneQuery
python
ray-project__ray
python/ray/_private/thirdparty/pynvml/pynvml.py
{ "start": 64158, "end": 64335 }
class ____(_PrintableStructure): _fields_ = [ ('version', c_uint), ('bar1Size', c_ulonglong), ] VgpuTypeBar1Info_v1 = 0x1000010
c_nvmlVgpuTypeBar1Info_v1_t
python
apache__airflow
airflow-core/src/airflow/executors/workloads.py
{ "start": 2786, "end": 2979 }
class ____(BaseModel): """Schema for Callback with minimal required fields needed for Executors and Task SDK.""" id: uuid.UUID fetch_type: CallbackFetchMethod data: dict
Callback
python
getsentry__sentry
src/sentry/api/serializers/models/event.py
{ "start": 13962, "end": 18511 }
class ____(EventSerializer): """ Applies formatting to SQL queries in the serialized event. """ def __init__(self) -> None: super().__init__() self.formatted_sql_cache: dict[str, str] = {} def get_attrs(self, item_list, user, **kwargs): is_public = kwargs.pop("is_public", False) return super().get_attrs(item_list, user, is_public=is_public) # Various checks to ensure that we don't spend too much time formatting def _should_skip_formatting(self, query: str): if ( (not query) | (len(self.formatted_sql_cache) >= MAX_SQL_FORMAT_OPS) | (len(query) > MAX_SQL_FORMAT_LENGTH) ): return True return False def _remove_doublequotes(self, message: str) -> str: return SQL_DOUBLEQUOTES_REGEX.sub(r"\1", message) def _format_sql_query(self, message: str) -> str | None: formatted = self.formatted_sql_cache.get(message, None) if formatted is not None: return formatted if self._should_skip_formatting(message): return message formatted = sqlparse.format(message, reindent=True, wrap_after=80) if formatted != message: formatted = self._remove_doublequotes(formatted) self.formatted_sql_cache[message] = formatted return formatted def _format_breadcrumb_messages( self, event_data: EventSerializerResponse, event: Event | GroupEvent, user: User ) -> EventSerializerResponse: try: breadcrumbs = next( filter(lambda entry: entry["type"] == "breadcrumbs", event_data.get("entries", ())), None, ) if not breadcrumbs: return event_data for breadcrumb_item in breadcrumbs.get("data", {}).get("values", ()): breadcrumb_message = breadcrumb_item.get("message") breadcrumb_category = breadcrumb_item.get("category") if breadcrumb_category in FORMATTED_BREADCRUMB_CATEGORIES and breadcrumb_message: breadcrumb_item["messageFormat"] = "sql" breadcrumb_item["messageRaw"] = breadcrumb_message breadcrumb_item["message"] = self._format_sql_query(breadcrumb_message) return event_data except Exception as exc: sentry_sdk.capture_exception(exc) return event_data def _get_release_info( self, user, event, include_full_release_data: bool ) -> GroupEventReleaseSerializerResponse | None: version = event.get_tag("sentry:release") if not version: return None try: release = Release.objects.get( projects=event.project, organization_id=event.project.organization_id, version=version, ) except Release.DoesNotExist: return {"version": version} if include_full_release_data: return serialize(release, user) else: return serialize(release, user, GroupEventReleaseSerializer()) def _format_db_spans( self, event_data: EventSerializerResponse, event: Event | GroupEvent, user: User ) -> EventSerializerResponse: try: spans = next( filter(lambda entry: entry["type"] == "spans", event_data.get("entries", ())), None, ) if not spans: return event_data for span in spans.get("data", ()): span_description = span.get("description") if span.get("op") in FORMATTED_SPAN_OPS and span_description: span["description"] = self._format_sql_query(span_description) return event_data except Exception as exc: sentry_sdk.capture_exception(exc) return event_data def serialize(self, obj, attrs, user, **kwargs) -> SqlFormatEventSerializerResponse: include_full_release_data = kwargs.pop("include_full_release_data", False) result = super().serialize(obj, attrs, user, **kwargs) with sentry_sdk.start_span(op="serialize", name="Format SQL"): result = self._format_breadcrumb_messages(result, obj, user) result = self._format_db_spans(result, obj, user) release_info = self._get_release_info(user, obj, include_full_release_data) return {**result, "release": release_info}
SqlFormatEventSerializer
python
dagster-io__dagster
python_modules/libraries/dagster-airlift/dagster_airlift/core/components/airflow_instance/component.py
{ "start": 4221, "end": 4332 }
class ____(BaseModel): name: str auth_type: Literal["basic_auth", "mwaa"]
AirflowInstanceScaffolderParams
python
openai__openai-python
src/openai/resources/chat/completions/completions.py
{ "start": 2592, "end": 81258 }
class ____(SyncAPIResource): @cached_property def messages(self) -> Messages: return Messages(self._client) @cached_property def with_raw_response(self) -> CompletionsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return CompletionsWithRawResponse(self) @cached_property def with_streaming_response(self) -> CompletionsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return CompletionsWithStreamingResponse(self) def parse( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], audio: Optional[ChatCompletionAudioParam] | Omit = omit, response_format: type[ResponseFormatT] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ParsedChatCompletion[ResponseFormatT]: """Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class. You can pass a pydantic model to this method and it will automatically convert the model into a JSON schema, send it to the API and parse the response content back into the given model. This method will also automatically parse `function` tool calls if: - You use the `openai.pydantic_function_tool()` helper method - You mark your tool schema with `"strict": True` Example usage: ```py from pydantic import BaseModel from openai import OpenAI class Step(BaseModel): explanation: str output: str class MathResponse(BaseModel): steps: List[Step] final_answer: str client = OpenAI() completion = client.chat.completions.parse( model="gpt-4o-2024-08-06", messages=[ {"role": "system", "content": "You are a helpful math tutor."}, {"role": "user", "content": "solve 8x + 31 = 2"}, ], response_format=MathResponse, ) message = completion.choices[0].message if message.parsed: print(message.parsed.steps) print("answer: ", message.parsed.final_answer) ``` """ chat_completion_tools = _validate_input_tools(tools) extra_headers = { "X-Stainless-Helper-Method": "chat.completions.parse", **(extra_headers or {}), } def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]: return _parse_chat_completion( response_format=response_format, chat_completion=raw_completion, input_tools=chat_completion_tools, ) return self._post( "/chat/completions", body=maybe_transform( { "messages": messages, "model": model, "audio": audio, "frequency_penalty": frequency_penalty, "function_call": function_call, "functions": functions, "logit_bias": logit_bias, "logprobs": logprobs, "max_completion_tokens": max_completion_tokens, "max_tokens": max_tokens, "metadata": metadata, "modalities": modalities, "n": n, "parallel_tool_calls": parallel_tool_calls, "prediction": prediction, "presence_penalty": presence_penalty, "prompt_cache_key": prompt_cache_key, "prompt_cache_retention": prompt_cache_retention, "reasoning_effort": reasoning_effort, "response_format": _type_to_response_format(response_format), "safety_identifier": safety_identifier, "seed": seed, "service_tier": service_tier, "stop": stop, "store": store, "stream": False, "stream_options": stream_options, "temperature": temperature, "tool_choice": tool_choice, "tools": tools, "top_logprobs": top_logprobs, "top_p": top_p, "user": user, "verbosity": verbosity, "web_search_options": web_search_options, }, completion_create_params.CompletionCreateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, post_parser=parser, ), # we turn the `ChatCompletion` instance into a `ParsedChatCompletion` # in the `parser` function above cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion), stream=False, ) @overload def create( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], audio: Optional[ChatCompletionAudioParam] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: completion_create_params.ResponseFormat | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream: Optional[Literal[False]] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletion: """ **Starting a new project?** We recommend trying [Responses](https://platform.openai.com/docs/api-reference/responses) to take advantage of the latest OpenAI platform features. Compare [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). --- Creates a model response for the given chat conversation. Learn more in the [text generation](https://platform.openai.com/docs/guides/text-generation), [vision](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio) guides. Parameter support can differ depending on the model used to generate the response, particularly for newer reasoning models. Parameters that are only supported for reasoning models are noted below. For the current state of unsupported parameters in reasoning models, [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). Args: messages: A list of messages comprising the conversation so far. Depending on the [model](https://platform.openai.com/docs/models) you use, different message types (modalities) are supported, like [text](https://platform.openai.com/docs/guides/text-generation), [images](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio). model: Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. audio: Parameters for audio output. Required when audio output is requested with `modalities: ["audio"]`. [Learn more](https://platform.openai.com/docs/guides/audio). frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. function_call: Deprecated in favor of `tool_choice`. Controls which (if any) function is called by the model. `none` means the model will not call a function and instead generates a message. `auto` means the model can pick between generating a message or calling a function. Specifying a particular function via `{"name": "my_function"}` forces the model to call that function. `none` is the default when no functions are present. `auto` is the default if functions are present. functions: Deprecated in favor of `tools`. A list of functions the model may generate JSON inputs for. logit_bias: Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. logprobs: Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the `content` of `message`. max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat completion. This value can be used to control [costs](https://openai.com/api/pricing/) for text generated via API. This value is now deprecated in favor of `max_completion_tokens`, and is not compatible with [o-series models](https://platform.openai.com/docs/guides/reasoning). metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. modalities: Output types that you would like the model to generate. Most models are capable of generating text, which is the default: `["text"]` The `gpt-4o-audio-preview` model can also be used to [generate audio](https://platform.openai.com/docs/guides/audio). To request that this model generate both text and audio responses, you can use: `["text", "audio"]` n: How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep `n` as `1` to minimize costs. parallel_tool_calls: Whether to enable [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) during tool use. prediction: Static predicted output content, such as the content of a text file that is being regenerated. presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. prompt_cache_key: Used by OpenAI to cache responses for similar requests to optimize your cache hit rates. Replaces the `user` field. [Learn more](https://platform.openai.com/docs/guides/prompt-caching). prompt_cache_retention: The retention policy for the prompt cache. Set to `24h` to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours. [Learn more](https://platform.openai.com/docs/guides/prompt-caching#prompt-cache-retention). reasoning_effort: Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. response_format: An object specifying the format that the model must output. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. safety_identifier: A stable identifier used to help detect users of your application that may be violating OpenAI's usage policies. The IDs should be a string that uniquely identifies each user. We recommend hashing their username or email address, in order to avoid sending us any identifying information. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). seed: This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result. Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend. service_tier: Specifies the processing type used for serving the request. - If set to 'auto', then the request will be processed with the service tier configured in the Project settings. Unless otherwise configured, the Project will use 'default'. - If set to 'default', then the request will be processed with the standard pricing and performance for the selected model. - If set to '[flex](https://platform.openai.com/docs/guides/flex-processing)' or '[priority](https://openai.com/api-priority-processing/)', then the request will be processed with the corresponding service tier. - When not set, the default behavior is 'auto'. When the `service_tier` parameter is set, the response body will include the `service_tier` value based on the processing mode actually used to serve the request. This response value may be different from the value set in the parameter. stop: Not supported with latest reasoning models `o3` and `o4-mini`. Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence. store: Whether or not to store the output of this chat completion request for use in our [model distillation](https://platform.openai.com/docs/guides/distillation) or [evals](https://platform.openai.com/docs/guides/evals) products. Supports text and image inputs. Note: image inputs over 8MB will be dropped. stream: If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) for more information, along with the [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) guide for more information on how to handle the streaming events. stream_options: Options for streaming response. Only set this when you set `stream: true`. temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. tool_choice: Controls which (if any) tool is called by the model. `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. Specifying a particular tool via `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool. `none` is the default when no tools are present. `auto` is the default if tools are present. tools: A list of tools the model may call. You can provide either [custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) or [function tools](https://platform.openai.com/docs/guides/function-calling). top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. `logprobs` must be set to `true` if this parameter is used. top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both. user: This field is being replaced by `safety_identifier` and `prompt_cache_key`. Use `prompt_cache_key` instead to maintain caching optimizations. A stable identifier for your end-users. Used to boost cache hit rates by better bucketing similar requests and to help OpenAI detect and prevent abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). verbosity: Constrains the verbosity of the model's response. Lower values will result in more concise responses, while higher values will result in more verbose responses. Currently supported values are `low`, `medium`, and `high`. web_search_options: This tool searches the web for relevant results to use in a response. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ ... @overload def create( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], stream: Literal[True], audio: Optional[ChatCompletionAudioParam] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: completion_create_params.ResponseFormat | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Stream[ChatCompletionChunk]: """ **Starting a new project?** We recommend trying [Responses](https://platform.openai.com/docs/api-reference/responses) to take advantage of the latest OpenAI platform features. Compare [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). --- Creates a model response for the given chat conversation. Learn more in the [text generation](https://platform.openai.com/docs/guides/text-generation), [vision](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio) guides. Parameter support can differ depending on the model used to generate the response, particularly for newer reasoning models. Parameters that are only supported for reasoning models are noted below. For the current state of unsupported parameters in reasoning models, [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). Args: messages: A list of messages comprising the conversation so far. Depending on the [model](https://platform.openai.com/docs/models) you use, different message types (modalities) are supported, like [text](https://platform.openai.com/docs/guides/text-generation), [images](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio). model: Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. stream: If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) for more information, along with the [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) guide for more information on how to handle the streaming events. audio: Parameters for audio output. Required when audio output is requested with `modalities: ["audio"]`. [Learn more](https://platform.openai.com/docs/guides/audio). frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. function_call: Deprecated in favor of `tool_choice`. Controls which (if any) function is called by the model. `none` means the model will not call a function and instead generates a message. `auto` means the model can pick between generating a message or calling a function. Specifying a particular function via `{"name": "my_function"}` forces the model to call that function. `none` is the default when no functions are present. `auto` is the default if functions are present. functions: Deprecated in favor of `tools`. A list of functions the model may generate JSON inputs for. logit_bias: Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. logprobs: Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the `content` of `message`. max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat completion. This value can be used to control [costs](https://openai.com/api/pricing/) for text generated via API. This value is now deprecated in favor of `max_completion_tokens`, and is not compatible with [o-series models](https://platform.openai.com/docs/guides/reasoning). metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. modalities: Output types that you would like the model to generate. Most models are capable of generating text, which is the default: `["text"]` The `gpt-4o-audio-preview` model can also be used to [generate audio](https://platform.openai.com/docs/guides/audio). To request that this model generate both text and audio responses, you can use: `["text", "audio"]` n: How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep `n` as `1` to minimize costs. parallel_tool_calls: Whether to enable [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) during tool use. prediction: Static predicted output content, such as the content of a text file that is being regenerated. presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. prompt_cache_key: Used by OpenAI to cache responses for similar requests to optimize your cache hit rates. Replaces the `user` field. [Learn more](https://platform.openai.com/docs/guides/prompt-caching). prompt_cache_retention: The retention policy for the prompt cache. Set to `24h` to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours. [Learn more](https://platform.openai.com/docs/guides/prompt-caching#prompt-cache-retention). reasoning_effort: Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. response_format: An object specifying the format that the model must output. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. safety_identifier: A stable identifier used to help detect users of your application that may be violating OpenAI's usage policies. The IDs should be a string that uniquely identifies each user. We recommend hashing their username or email address, in order to avoid sending us any identifying information. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). seed: This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result. Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend. service_tier: Specifies the processing type used for serving the request. - If set to 'auto', then the request will be processed with the service tier configured in the Project settings. Unless otherwise configured, the Project will use 'default'. - If set to 'default', then the request will be processed with the standard pricing and performance for the selected model. - If set to '[flex](https://platform.openai.com/docs/guides/flex-processing)' or '[priority](https://openai.com/api-priority-processing/)', then the request will be processed with the corresponding service tier. - When not set, the default behavior is 'auto'. When the `service_tier` parameter is set, the response body will include the `service_tier` value based on the processing mode actually used to serve the request. This response value may be different from the value set in the parameter. stop: Not supported with latest reasoning models `o3` and `o4-mini`. Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence. store: Whether or not to store the output of this chat completion request for use in our [model distillation](https://platform.openai.com/docs/guides/distillation) or [evals](https://platform.openai.com/docs/guides/evals) products. Supports text and image inputs. Note: image inputs over 8MB will be dropped. stream_options: Options for streaming response. Only set this when you set `stream: true`. temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. tool_choice: Controls which (if any) tool is called by the model. `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. Specifying a particular tool via `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool. `none` is the default when no tools are present. `auto` is the default if tools are present. tools: A list of tools the model may call. You can provide either [custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) or [function tools](https://platform.openai.com/docs/guides/function-calling). top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. `logprobs` must be set to `true` if this parameter is used. top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both. user: This field is being replaced by `safety_identifier` and `prompt_cache_key`. Use `prompt_cache_key` instead to maintain caching optimizations. A stable identifier for your end-users. Used to boost cache hit rates by better bucketing similar requests and to help OpenAI detect and prevent abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). verbosity: Constrains the verbosity of the model's response. Lower values will result in more concise responses, while higher values will result in more verbose responses. Currently supported values are `low`, `medium`, and `high`. web_search_options: This tool searches the web for relevant results to use in a response. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ ... @overload def create( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], stream: bool, audio: Optional[ChatCompletionAudioParam] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: completion_create_params.ResponseFormat | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletion | Stream[ChatCompletionChunk]: """ **Starting a new project?** We recommend trying [Responses](https://platform.openai.com/docs/api-reference/responses) to take advantage of the latest OpenAI platform features. Compare [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). --- Creates a model response for the given chat conversation. Learn more in the [text generation](https://platform.openai.com/docs/guides/text-generation), [vision](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio) guides. Parameter support can differ depending on the model used to generate the response, particularly for newer reasoning models. Parameters that are only supported for reasoning models are noted below. For the current state of unsupported parameters in reasoning models, [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). Args: messages: A list of messages comprising the conversation so far. Depending on the [model](https://platform.openai.com/docs/models) you use, different message types (modalities) are supported, like [text](https://platform.openai.com/docs/guides/text-generation), [images](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio). model: Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. stream: If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) for more information, along with the [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) guide for more information on how to handle the streaming events. audio: Parameters for audio output. Required when audio output is requested with `modalities: ["audio"]`. [Learn more](https://platform.openai.com/docs/guides/audio). frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. function_call: Deprecated in favor of `tool_choice`. Controls which (if any) function is called by the model. `none` means the model will not call a function and instead generates a message. `auto` means the model can pick between generating a message or calling a function. Specifying a particular function via `{"name": "my_function"}` forces the model to call that function. `none` is the default when no functions are present. `auto` is the default if functions are present. functions: Deprecated in favor of `tools`. A list of functions the model may generate JSON inputs for. logit_bias: Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. logprobs: Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the `content` of `message`. max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat completion. This value can be used to control [costs](https://openai.com/api/pricing/) for text generated via API. This value is now deprecated in favor of `max_completion_tokens`, and is not compatible with [o-series models](https://platform.openai.com/docs/guides/reasoning). metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. modalities: Output types that you would like the model to generate. Most models are capable of generating text, which is the default: `["text"]` The `gpt-4o-audio-preview` model can also be used to [generate audio](https://platform.openai.com/docs/guides/audio). To request that this model generate both text and audio responses, you can use: `["text", "audio"]` n: How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep `n` as `1` to minimize costs. parallel_tool_calls: Whether to enable [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) during tool use. prediction: Static predicted output content, such as the content of a text file that is being regenerated. presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. prompt_cache_key: Used by OpenAI to cache responses for similar requests to optimize your cache hit rates. Replaces the `user` field. [Learn more](https://platform.openai.com/docs/guides/prompt-caching). prompt_cache_retention: The retention policy for the prompt cache. Set to `24h` to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours. [Learn more](https://platform.openai.com/docs/guides/prompt-caching#prompt-cache-retention). reasoning_effort: Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. response_format: An object specifying the format that the model must output. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. safety_identifier: A stable identifier used to help detect users of your application that may be violating OpenAI's usage policies. The IDs should be a string that uniquely identifies each user. We recommend hashing their username or email address, in order to avoid sending us any identifying information. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). seed: This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result. Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend. service_tier: Specifies the processing type used for serving the request. - If set to 'auto', then the request will be processed with the service tier configured in the Project settings. Unless otherwise configured, the Project will use 'default'. - If set to 'default', then the request will be processed with the standard pricing and performance for the selected model. - If set to '[flex](https://platform.openai.com/docs/guides/flex-processing)' or '[priority](https://openai.com/api-priority-processing/)', then the request will be processed with the corresponding service tier. - When not set, the default behavior is 'auto'. When the `service_tier` parameter is set, the response body will include the `service_tier` value based on the processing mode actually used to serve the request. This response value may be different from the value set in the parameter. stop: Not supported with latest reasoning models `o3` and `o4-mini`. Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence. store: Whether or not to store the output of this chat completion request for use in our [model distillation](https://platform.openai.com/docs/guides/distillation) or [evals](https://platform.openai.com/docs/guides/evals) products. Supports text and image inputs. Note: image inputs over 8MB will be dropped. stream_options: Options for streaming response. Only set this when you set `stream: true`. temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. tool_choice: Controls which (if any) tool is called by the model. `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. Specifying a particular tool via `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool. `none` is the default when no tools are present. `auto` is the default if tools are present. tools: A list of tools the model may call. You can provide either [custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) or [function tools](https://platform.openai.com/docs/guides/function-calling). top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. `logprobs` must be set to `true` if this parameter is used. top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both. user: This field is being replaced by `safety_identifier` and `prompt_cache_key`. Use `prompt_cache_key` instead to maintain caching optimizations. A stable identifier for your end-users. Used to boost cache hit rates by better bucketing similar requests and to help OpenAI detect and prevent abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). verbosity: Constrains the verbosity of the model's response. Lower values will result in more concise responses, while higher values will result in more verbose responses. Currently supported values are `low`, `medium`, and `high`. web_search_options: This tool searches the web for relevant results to use in a response. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ ... @required_args(["messages", "model"], ["messages", "model", "stream"]) def create( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], audio: Optional[ChatCompletionAudioParam] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: completion_create_params.ResponseFormat | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream: Optional[Literal[False]] | Literal[True] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletion | Stream[ChatCompletionChunk]: validate_response_format(response_format) return self._post( "/chat/completions", body=maybe_transform( { "messages": messages, "model": model, "audio": audio, "frequency_penalty": frequency_penalty, "function_call": function_call, "functions": functions, "logit_bias": logit_bias, "logprobs": logprobs, "max_completion_tokens": max_completion_tokens, "max_tokens": max_tokens, "metadata": metadata, "modalities": modalities, "n": n, "parallel_tool_calls": parallel_tool_calls, "prediction": prediction, "presence_penalty": presence_penalty, "prompt_cache_key": prompt_cache_key, "prompt_cache_retention": prompt_cache_retention, "reasoning_effort": reasoning_effort, "response_format": response_format, "safety_identifier": safety_identifier, "seed": seed, "service_tier": service_tier, "stop": stop, "store": store, "stream": stream, "stream_options": stream_options, "temperature": temperature, "tool_choice": tool_choice, "tools": tools, "top_logprobs": top_logprobs, "top_p": top_p, "user": user, "verbosity": verbosity, "web_search_options": web_search_options, }, completion_create_params.CompletionCreateParamsStreaming if stream else completion_create_params.CompletionCreateParamsNonStreaming, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=ChatCompletion, stream=stream or False, stream_cls=Stream[ChatCompletionChunk], ) def retrieve( self, completion_id: str, *, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletion: """Get a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` will be returned. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not completion_id: raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") return self._get( f"/chat/completions/{completion_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=ChatCompletion, ) def update( self, completion_id: str, *, metadata: Optional[Metadata], # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletion: """Modify a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` can be modified. Currently, the only supported modification is to update the `metadata` field. Args: metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not completion_id: raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") return self._post( f"/chat/completions/{completion_id}", body=maybe_transform({"metadata": metadata}, completion_update_params.CompletionUpdateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=ChatCompletion, ) def list( self, *, after: str | Omit = omit, limit: int | Omit = omit, metadata: Optional[Metadata] | Omit = omit, model: str | Omit = omit, order: Literal["asc", "desc"] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> SyncCursorPage[ChatCompletion]: """List stored Chat Completions. Only Chat Completions that have been stored with the `store` parameter set to `true` will be returned. Args: after: Identifier for the last chat completion from the previous pagination request. limit: Number of Chat Completions to retrieve. metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. model: The model used to generate the Chat Completions. order: Sort order for Chat Completions by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ return self._get_api_list( "/chat/completions", page=SyncCursorPage[ChatCompletion], options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, query=maybe_transform( { "after": after, "limit": limit, "metadata": metadata, "model": model, "order": order, }, completion_list_params.CompletionListParams, ), ), model=ChatCompletion, ) def delete( self, completion_id: str, *, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletionDeleted: """Delete a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` can be deleted. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not completion_id: raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") return self._delete( f"/chat/completions/{completion_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=ChatCompletionDeleted, ) def stream( self, *, messages: Iterable[ChatCompletionMessageParam], model: Union[str, ChatModel], audio: Optional[ChatCompletionAudioParam] | Omit = omit, response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | Omit = omit, frequency_penalty: Optional[float] | Omit = omit, function_call: completion_create_params.FunctionCall | Omit = omit, functions: Iterable[completion_create_params.Function] | Omit = omit, logit_bias: Optional[Dict[str, int]] | Omit = omit, logprobs: Optional[bool] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit, max_tokens: Optional[int] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, modalities: Optional[List[Literal["text", "audio"]]] | Omit = omit, n: Optional[int] | Omit = omit, parallel_tool_calls: bool | Omit = omit, prediction: Optional[ChatCompletionPredictionContentParam] | Omit = omit, presence_penalty: Optional[float] | Omit = omit, prompt_cache_key: str | Omit = omit, prompt_cache_retention: Optional[Literal["in-memory", "24h"]] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, safety_identifier: str | Omit = omit, seed: Optional[int] | Omit = omit, service_tier: Optional[Literal["auto", "default", "flex", "scale", "priority"]] | Omit = omit, stop: Union[Optional[str], SequenceNotStr[str], None] | Omit = omit, store: Optional[bool] | Omit = omit, stream_options: Optional[ChatCompletionStreamOptionsParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_choice: ChatCompletionToolChoiceOptionParam | Omit = omit, tools: Iterable[ChatCompletionToolUnionParam] | Omit = omit, top_logprobs: Optional[int] | Omit = omit, top_p: Optional[float] | Omit = omit, user: str | Omit = omit, verbosity: Optional[Literal["low", "medium", "high"]] | Omit = omit, web_search_options: completion_create_params.WebSearchOptions | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> ChatCompletionStreamManager[ResponseFormatT]: """Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API and automatic accumulation of each delta. This also supports all of the parsing utilities that `.parse()` does. Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response: ```py with client.chat.completions.stream( model="gpt-4o-2024-08-06", messages=[...], ) as stream: for event in stream: if event.type == "content.delta": print(event.delta, flush=True, end="") ``` When the context manager is entered, a `ChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events). When the context manager exits, the response will be closed, however the `stream` instance is still available outside the context manager. """ extra_headers = { "X-Stainless-Helper-Method": "chat.completions.stream", **(extra_headers or {}), } api_request: partial[Stream[ChatCompletionChunk]] = partial( self.create, messages=messages, model=model, audio=audio, stream=True, response_format=_type_to_response_format(response_format), frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, metadata=metadata, modalities=modalities, n=n, parallel_tool_calls=parallel_tool_calls, prediction=prediction, presence_penalty=presence_penalty, prompt_cache_key=prompt_cache_key, prompt_cache_retention=prompt_cache_retention, reasoning_effort=reasoning_effort, safety_identifier=safety_identifier, seed=seed, service_tier=service_tier, store=store, stop=stop, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, verbosity=verbosity, web_search_options=web_search_options, extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, ) return ChatCompletionStreamManager( api_request, response_format=response_format, input_tools=tools, )
Completions
python
django__django
tests/test_runner/tests.py
{ "start": 909, "end": 1091 }
class ____: def __init__(self): self.tests = [] def addTest(self, test): self.tests.append(test) def __iter__(self): yield from self.tests
MySuite
python
doocs__leetcode
solution/0700-0799/0791.Custom Sort String/Solution.py
{ "start": 0, "end": 184 }
class ____: def customSortString(self, order: str, s: str) -> str: d = {c: i for i, c in enumerate(order)} return ''.join(sorted(s, key=lambda x: d.get(x, 0)))
Solution
python
pexpect__pexpect
pexpect/_async_w_await.py
{ "start": 2156, "end": 3802 }
class ____(asyncio.Protocol): transport = None def set_expecter(self, expecter): self.expecter = expecter self.fut = asyncio.Future() def found(self, result): if not self.fut.done(): self.fut.set_result(result) self.transport.pause_reading() def error(self, exc): if not self.fut.done(): self.fut.set_exception(exc) self.transport.pause_reading() def connection_made(self, transport): self.transport = transport def data_received(self, data): spawn = self.expecter.spawn s = spawn._decoder.decode(data) spawn._log(s, "read") if self.fut.done(): spawn._before.write(s) spawn._buffer.write(s) return try: index = self.expecter.new_data(s) if index is not None: # Found a match self.found(index) except Exception as exc: self.expecter.errored() self.error(exc) def eof_received(self): # N.B. If this gets called, async will close the pipe (the spawn object) # for us try: self.expecter.spawn.flag_eof = True index = self.expecter.eof() except EOF as exc: self.error(exc) else: self.found(index) def connection_lost(self, exc): if isinstance(exc, OSError) and exc.errno == errno.EIO: # We may get here without eof_received being called, e.g on Linux self.eof_received() elif exc is not None: self.error(exc)
PatternWaiter
python
openai__openai-python
src/openai/types/beta/realtime/response_create_event_param.py
{ "start": 438, "end": 886 }
class ____(TypedDict, total=False): description: str """ The description of the function, including guidance on when and how to call it, and guidance about what to tell the user when calling (if anything). """ name: str """The name of the function.""" parameters: object """Parameters of the function in JSON Schema.""" type: Literal["function"] """The type of the tool, i.e. `function`."""
ResponseTool
python
jazzband__django-model-utils
tests/test_models/test_status_model.py
{ "start": 2745, "end": 2971 }
class ____(StatusModelTests): def setUp(self) -> None: self.model = StatusPlainTuple self.on_hold = StatusPlainTuple.STATUS[2][0] self.active = StatusPlainTuple.STATUS[0][0]
StatusModelPlainTupleTests
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/flake8_bugbear/class_as_data_structure.py
{ "start": 72, "end": 185 }
class ____: # B903 def __init__(self, x: float, y: float) -> None: self.x = x self.y = y
Point
python
nryoung__algorithms
algorithms/data_structures/binary_search_tree.py
{ "start": 432, "end": 732 }
class ____(object): """ Implementation of a Node in a Binary Search Tree. """ def __init__(self, key=None, val=None, size_of_subtree=1): self.key = key self.val = val self.size_of_subtree = size_of_subtree self.left = None self.right = None
Node
python
apache__avro
lang/py/avro/io.py
{ "start": 7442, "end": 14558 }
class ____: """Read leaf values.""" _reader: IO[bytes] def __init__(self, reader: IO[bytes]) -> None: """ reader is a Python object on which we can call read, seek, and tell. """ self._reader = reader @property def reader(self) -> IO[bytes]: return self._reader def read(self, n: int) -> bytes: """ Read n bytes. """ if n < 0: raise avro.errors.InvalidAvroBinaryEncoding(f"Requested {n} bytes to read, expected positive integer.") read_bytes = self.reader.read(n) if len(read_bytes) != n: raise avro.errors.InvalidAvroBinaryEncoding(f"Read {len(read_bytes)} bytes, expected {n} bytes") return read_bytes def read_null(self) -> None: """ null is written as zero bytes """ return None def read_boolean(self) -> bool: """ a boolean is written as a single byte whose value is either 0 (false) or 1 (true). """ return ord(self.read(1)) == 1 def read_int(self) -> int: """ int and long values are written using variable-length, zig-zag coding. """ return self.read_long() def read_long(self) -> int: """ int and long values are written using variable-length, zig-zag coding. """ b = ord(self.read(1)) n = b & 0x7F shift = 7 while (b & 0x80) != 0: b = ord(self.read(1)) n |= (b & 0x7F) << shift shift += 7 datum = (n >> 1) ^ -(n & 1) return datum def read_float(self) -> float: """ A float is written as 4 bytes. The float is converted into a 32-bit integer using a method equivalent to Java's floatToRawIntBits and then encoded in little-endian format. """ return float(STRUCT_FLOAT.unpack(self.read(4))[0]) def read_double(self) -> float: """ A double is written as 8 bytes. The double is converted into a 64-bit integer using a method equivalent to Java's doubleToRawLongBits and then encoded in little-endian format. """ return float(STRUCT_DOUBLE.unpack(self.read(8))[0]) def read_decimal_from_bytes(self, precision: int, scale: int) -> decimal.Decimal: """ Decimal bytes are decoded as signed short, int or long depending on the size of bytes. """ size = self.read_long() return self.read_decimal_from_fixed(precision, scale, size) def read_decimal_from_fixed(self, precision: int, scale: int, size: int) -> decimal.Decimal: """ Decimal is encoded as fixed. Fixed instances are encoded using the number of bytes declared in the schema. """ datum = self.read(size) unscaled_datum = 0 msb = struct.unpack("!b", datum[0:1])[0] leftmost_bit = (msb >> 7) & 1 if leftmost_bit == 1: modified_first_byte = ord(datum[0:1]) ^ (1 << 7) datum = bytearray([modified_first_byte]) + datum[1:] for offset in range(size): unscaled_datum <<= 8 unscaled_datum += ord(datum[offset : 1 + offset]) unscaled_datum += pow(-2, (size * 8) - 1) else: for offset in range(size): unscaled_datum <<= 8 unscaled_datum += ord(datum[offset : 1 + offset]) original_prec = decimal.getcontext().prec try: decimal.getcontext().prec = precision scaled_datum = decimal.Decimal(unscaled_datum).scaleb(-scale) finally: decimal.getcontext().prec = original_prec return scaled_datum def read_bytes(self) -> bytes: """ Bytes are encoded as a long followed by that many bytes of data. """ return self.read(self.read_long()) def read_utf8(self) -> str: """ A string is encoded as a long followed by that many bytes of UTF-8 encoded character data. """ return self.read_bytes().decode("utf-8") def read_date_from_int(self) -> datetime.date: """ int is decoded as python date object. int stores the number of days from the unix epoch, 1 January 1970 (ISO calendar). """ days_since_epoch = self.read_int() return datetime.date(1970, 1, 1) + datetime.timedelta(days_since_epoch) def _build_time_object(self, value: int, scale_to_micro: int) -> datetime.time: value = value * scale_to_micro value, microseconds = divmod(value, 1000000) value, seconds = divmod(value, 60) value, minutes = divmod(value, 60) hours = value return datetime.time(hour=hours, minute=minutes, second=seconds, microsecond=microseconds) def read_time_millis_from_int(self) -> datetime.time: """ int is decoded as python time object which represents the number of milliseconds after midnight, 00:00:00.000. """ milliseconds = self.read_int() return self._build_time_object(milliseconds, 1000) def read_time_micros_from_long(self) -> datetime.time: """ long is decoded as python time object which represents the number of microseconds after midnight, 00:00:00.000000. """ microseconds = self.read_long() return self._build_time_object(microseconds, 1) def read_timestamp_millis_from_long(self) -> datetime.datetime: """ long is decoded as python datetime object which represents the number of milliseconds from the unix epoch, 1 January 1970. """ timestamp_millis = self.read_long() timedelta = datetime.timedelta(microseconds=timestamp_millis * 1000) unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc) return unix_epoch_datetime + timedelta def read_timestamp_micros_from_long(self) -> datetime.datetime: """ long is decoded as python datetime object which represents the number of microseconds from the unix epoch, 1 January 1970. """ timestamp_micros = self.read_long() timedelta = datetime.timedelta(microseconds=timestamp_micros) unix_epoch_datetime = datetime.datetime(1970, 1, 1, 0, 0, 0, 0, tzinfo=avro.timezones.utc) return unix_epoch_datetime + timedelta def skip_null(self) -> None: pass def skip_boolean(self) -> None: self.skip(1) def skip_int(self) -> None: self.skip_long() def skip_long(self) -> None: b = ord(self.read(1)) while (b & 0x80) != 0: b = ord(self.read(1)) def skip_float(self) -> None: self.skip(4) def skip_double(self) -> None: self.skip(8) def skip_bytes(self) -> None: self.skip(self.read_long()) def skip_utf8(self) -> None: self.skip_bytes() def skip(self, n: int) -> None: self.reader.seek(self.reader.tell() + n)
BinaryDecoder
python
huggingface__transformers
src/transformers/models/ministral/modular_ministral.py
{ "start": 8710, "end": 8769 }
class ____(Qwen2DecoderLayer): pass
MinistralDecoderLayer
python
apache__airflow
airflow-core/tests/unit/always/test_project_structure.py
{ "start": 40400, "end": 40936 }
class ____(ExampleCoverageTest): PROVIDER = "slack" CLASS_DIRS = ProjectStructureTest.CLASS_DIRS BASE_CLASSES = { "airflow.providers.slack.transfers.base_sql_to_slack.BaseSqlToSlackOperator", "airflow.providers.slack.operators.slack.SlackAPIOperator", } MISSING_EXAMPLES_FOR_CLASSES = set() DEPRECATED_CLASSES = { "airflow.providers.slack.notifications.slack_notifier.py.", "airflow.providers.slack.transfers.sql_to_slack.SqlToSlackOperator", }
TestSlackProviderProjectStructure
python
apache__airflow
airflow-ctl/src/airflowctl/api/datamodels/generated.py
{ "start": 31474, "end": 32182 }
class ____(BaseModel): """ XCom response serializer with string return type. """ key: Annotated[str, Field(title="Key")] timestamp: Annotated[datetime, Field(title="Timestamp")] logical_date: Annotated[datetime | None, Field(title="Logical Date")] = None map_index: Annotated[int, Field(title="Map Index")] task_id: Annotated[str, Field(title="Task Id")] dag_id: Annotated[str, Field(title="Dag Id")] run_id: Annotated[str, Field(title="Run Id")] dag_display_name: Annotated[str, Field(title="Dag Display Name")] task_display_name: Annotated[str, Field(title="Task Display Name")] value: Annotated[str | None, Field(title="Value")] = None
XComResponseString
python
numpy__numpy
numpy/_typing/_nbit_base.py
{ "start": 2425, "end": 2560 }
class ____(_128Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] pass @final @set_module("numpy._typing")
_96Bit
python
kubernetes-client__python
kubernetes/client/models/v1_se_linux_options.py
{ "start": 383, "end": 5755 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'level': 'str', 'role': 'str', 'type': 'str', 'user': 'str' } attribute_map = { 'level': 'level', 'role': 'role', 'type': 'type', 'user': 'user' } def __init__(self, level=None, role=None, type=None, user=None, local_vars_configuration=None): # noqa: E501 """V1SELinuxOptions - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._level = None self._role = None self._type = None self._user = None self.discriminator = None if level is not None: self.level = level if role is not None: self.role = role if type is not None: self.type = type if user is not None: self.user = user @property def level(self): """Gets the level of this V1SELinuxOptions. # noqa: E501 Level is SELinux level label that applies to the container. # noqa: E501 :return: The level of this V1SELinuxOptions. # noqa: E501 :rtype: str """ return self._level @level.setter def level(self, level): """Sets the level of this V1SELinuxOptions. Level is SELinux level label that applies to the container. # noqa: E501 :param level: The level of this V1SELinuxOptions. # noqa: E501 :type: str """ self._level = level @property def role(self): """Gets the role of this V1SELinuxOptions. # noqa: E501 Role is a SELinux role label that applies to the container. # noqa: E501 :return: The role of this V1SELinuxOptions. # noqa: E501 :rtype: str """ return self._role @role.setter def role(self, role): """Sets the role of this V1SELinuxOptions. Role is a SELinux role label that applies to the container. # noqa: E501 :param role: The role of this V1SELinuxOptions. # noqa: E501 :type: str """ self._role = role @property def type(self): """Gets the type of this V1SELinuxOptions. # noqa: E501 Type is a SELinux type label that applies to the container. # noqa: E501 :return: The type of this V1SELinuxOptions. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this V1SELinuxOptions. Type is a SELinux type label that applies to the container. # noqa: E501 :param type: The type of this V1SELinuxOptions. # noqa: E501 :type: str """ self._type = type @property def user(self): """Gets the user of this V1SELinuxOptions. # noqa: E501 User is a SELinux user label that applies to the container. # noqa: E501 :return: The user of this V1SELinuxOptions. # noqa: E501 :rtype: str """ return self._user @user.setter def user(self, user): """Sets the user of this V1SELinuxOptions. User is a SELinux user label that applies to the container. # noqa: E501 :param user: The user of this V1SELinuxOptions. # noqa: E501 :type: str """ self._user = user def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1SELinuxOptions): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1SELinuxOptions): return True return self.to_dict() != other.to_dict()
V1SELinuxOptions