language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
apache__airflow
providers/fab/src/airflow/providers/fab/auth_manager/views/user.py
{ "start": 4055, "end": 4869 }
class ____(MultiResourceUserMixin, UserRemoteUserModelView): """Customize permission names for FAB's builtin UserRemoteUserModelView.""" _class_permission_name = permissions.RESOURCE_USER class_permission_name_mapping = { "userinfoedit": permissions.RESOURCE_MY_PROFILE, "userinfo": permissions.RESOURCE_MY_PROFILE, } method_permission_name = { "add": "create", "userinfo": "read", "download": "read", "show": "read", "list": "read", "edit": "edit", "userinfoedit": "edit", "delete": "delete", } base_permissions = [ permissions.ACTION_CAN_CREATE, permissions.ACTION_CAN_READ, permissions.ACTION_CAN_EDIT, permissions.ACTION_CAN_DELETE, ]
CustomUserRemoteUserModelView
python
apache__airflow
providers/google/src/airflow/providers/google/suite/transfers/gcs_to_gdrive.py
{ "start": 1339, "end": 7947 }
class ____(BaseOperator): """ Copies objects from a Google Cloud Storage service to a Google Drive service, with renaming if requested. Using this operator requires the following OAuth 2.0 scope: .. code-block:: none https://www.googleapis.com/auth/drive .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GCSToGoogleDriveOperator` :param source_bucket: The source Google Cloud Storage bucket where the object is. (templated) :param source_object: The source name of the object to copy in the Google cloud storage bucket. (templated) You can use only one wildcard for objects (filenames) within your bucket. The wildcard can appear inside the object name or at the end of the object name. Appending a wildcard to the bucket name is unsupported. :param destination_object: The destination name of the object in the destination Google Drive service. (templated) If a wildcard is supplied in the source_object argument, this is the prefix that will be prepended to the final destination objects' paths. Note that the source path's part before the wildcard will be removed; if it needs to be retained it should be appended to destination_object. For example, with prefix ``foo/*`` and destination_object ``blah/``, the file ``foo/baz`` will be copied to ``blah/baz``; to retain the prefix write the destination_object as e.g. ``blah/foo``, in which case the copied file will be named ``blah/foo/baz``. :param destination_folder_id: The folder ID where the destination objects will be placed. It is an additive prefix for anything specified in destination_object. For example if folder ID ``xXyYzZ`` is called ``foo`` and the destination is ``bar/baz``, the file will end up in `foo/bar/baz`. This can be used to target an existing folder that is already visible to other users. The credentials provided must have access to this folder. :param move_object: When move object is True, the object is moved instead of copied to the new location. This is the equivalent of a mv command as opposed to a cp command. :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """ template_fields: Sequence[str] = ( "source_bucket", "source_object", "destination_object", "impersonation_chain", ) ui_color = "#f0eee4" def __init__( self, *, source_bucket: str, source_object: str, destination_object: str | None = None, destination_folder_id: str = "root", move_object: bool = False, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.source_bucket = source_bucket self.source_object = source_object self.destination_object = destination_object self.destination_folder_id = destination_folder_id self.move_object = move_object self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain self.gcs_hook: GCSHook | None = None self.gdrive_hook: GoogleDriveHook | None = None def execute(self, context: Context): self.gcs_hook = GCSHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.gdrive_hook = GoogleDriveHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) if WILDCARD in self.source_object: total_wildcards = self.source_object.count(WILDCARD) if total_wildcards > 1: error_msg = ( "Only one wildcard '*' is allowed in source_object parameter. " f"Found {total_wildcards} in {self.source_object}." ) raise AirflowException(error_msg) prefix, delimiter = self.source_object.split(WILDCARD, 1) objects = self.gcs_hook.list(self.source_bucket, prefix=prefix, delimiter=delimiter) # TODO: After deprecating delimiter and wildcards in source objects, # remove the previous line and uncomment the following: # match_glob = f"**/*{delimiter}" if delimiter else None # objects = self.gcs_hook.list(self.source_bucket, prefix=prefix, match_glob=match_glob) for source_object in objects: if self.destination_object is None: destination_object = source_object else: destination_object = source_object.replace(prefix, self.destination_object, 1) self._copy_single_object(source_object=source_object, destination_object=destination_object) else: self._copy_single_object( source_object=self.source_object, destination_object=self.destination_object ) def _copy_single_object(self, source_object, destination_object): self.log.info( "Executing copy of gs://%s/%s to gdrive://%s", self.source_bucket, source_object, destination_object, ) with tempfile.NamedTemporaryFile() as file: filename = file.name self.gcs_hook.download( bucket_name=self.source_bucket, object_name=source_object, filename=filename ) self.gdrive_hook.upload_file( local_location=filename, remote_location=destination_object, folder_id=self.destination_folder_id, ) if self.move_object: self.gcs_hook.delete(self.source_bucket, source_object)
GCSToGoogleDriveOperator
python
getsentry__sentry
src/sentry/lang/native/symbolicator.py
{ "start": 2498, "end": 15574 }
class ____: def __init__( self, task_kind: SymbolicatorTaskKind, on_request: Callable[[], None], project: Project, event_id: str, ): URLS = settings.SYMBOLICATOR_POOL_URLS pool = pool_for_platform(task_kind.platform) base_url = ( URLS.get(pool.value) or URLS.get(SymbolicatorPools.default.value) or options.get("symbolicator.options")["url"] ) base_url = base_url.rstrip("/") assert base_url self.base_url = base_url self.on_request = on_request self.project = project self.event_id = event_id def _process(self, task_name: str, path: str, **kwargs): """ This function will submit a symbolication task to a Symbolicator and handle polling it using the `SymbolicatorSession`. It will also correctly handle `TaskIdNotFound` and `ServiceUnavailable` errors. """ session = SymbolicatorSession( url=self.base_url, project_id=str(self.project.id), event_id=str(self.event_id), timeout=settings.SYMBOLICATOR_POLL_TIMEOUT, ) task_id: str | None = None json_response = None backoff = Backoff(BACKOFF_INITIAL, BACKOFF_MAX) with session: while True: try: if not task_id: # We are submitting a new task to Symbolicator json_response = session.create_task(path, **kwargs) else: # The task has already been submitted to Symbolicator and we are polling json_response = session.query_task(task_id) except TaskIdNotFound: # We have started a task on Symbolicator and are polling, but the task went away. # This can happen when Symbolicator was restarted or the load balancer routing changed in some way. # We can just re-submit the task using the same `session` and try again. We use the same `session` # to avoid the likelihood of this happening again. When Symbolicators are restarted due to a deploy # in a staggered fashion, we do not want to create a new `session`, being assigned a different # Symbolicator instance just to it restarted next. task_id = None backoff.reset() continue except ServiceUnavailable: # This error means that the Symbolicator instance bound to our `session` is not healthy. # By resetting the `worker_id`, the load balancer will route us to a different # Symbolicator instance. session.reset_worker_id() task_id = None # Backoff on repeated failures to create or query a task. backoff.sleep_failure() continue finally: self.on_request() backoff.reset() metrics.incr( "events.symbolicator.response", tags={ "response": json_response.get("status") or "null", "task_name": task_name, }, ) if json_response["status"] == "pending": # Symbolicator was not able to process the whole task within one timeout period. # Start polling using the `request_id`/`task_id`. task_id = json_response["request_id"] continue # Otherwise, we are done processing, yay return json_response def process_minidump( self, platform: str, minidump: CachedAttachment, rewrite_first_module: list[Any] ): (sources, process_response) = sources_for_symbolication(self.project) scraping_config = get_scraping_config(self.project) force_stored_attachment = not minidump.stored_id and in_random_rollout( "objectstore.force-stored-symbolication" ) if force_stored_attachment: session = get_attachments_session(self.project.organization_id, self.project.id) minidump.stored_id = session.put(minidump.load_data(self.project)) if minidump.stored_id: session = get_attachments_session(self.project.organization_id, self.project.id) storage_url = get_symbolicator_url(session, minidump.stored_id) json: dict[str, Any] = { "platform": platform, "sources": sources, "scraping": scraping_config, "options": {"dif_candidates": True}, "symbolicate": { "type": "minidump", "storage_url": storage_url, "rewrite_first_module": rewrite_first_module, }, } try: res = self._process("process_minidump", "symbolicate-any", json=json) return process_response(res) finally: if force_stored_attachment: session.delete(minidump.stored_id) minidump.stored_id = None data = { "platform": orjson.dumps(platform).decode(), "sources": orjson.dumps(sources).decode(), "scraping": orjson.dumps(scraping_config).decode(), "options": '{"dif_candidates": true}', "rewrite_first_module": orjson.dumps(rewrite_first_module).decode(), } files = {"upload_file_minidump": minidump.load_data(self.project)} res = self._process("process_minidump", "minidump", data=data, files=files) return process_response(res) def process_applecrashreport(self, platform: str, report: CachedAttachment): (sources, process_response) = sources_for_symbolication(self.project) scraping_config = get_scraping_config(self.project) force_stored_attachment = not report.stored_id and in_random_rollout( "objectstore.force-stored-symbolication" ) if force_stored_attachment: session = get_attachments_session(self.project.organization_id, self.project.id) report.stored_id = session.put(report.load_data(self.project)) if report.stored_id: session = get_attachments_session(self.project.organization_id, self.project.id) storage_url = get_symbolicator_url(session, report.stored_id) json: dict[str, Any] = { "platform": platform, "sources": sources, "scraping": scraping_config, "options": {"dif_candidates": True}, "symbolicate": { "type": "applecrashreport", "storage_url": storage_url, }, } try: res = self._process("process_applecrashreport", "symbolicate-any", json=json) return process_response(res) finally: if force_stored_attachment: session.delete(report.stored_id) report.stored_id = None data = { "platform": orjson.dumps(platform).decode(), "sources": orjson.dumps(sources).decode(), "scraping": orjson.dumps(scraping_config).decode(), "options": '{"dif_candidates": true}', } files = {"apple_crash_report": report.load_data(self.project)} res = self._process("process_applecrashreport", "applecrashreport", data=data, files=files) return process_response(res) def process_payload( self, platform, stacktraces, modules, frame_order, signal=None, apply_source_context=True ): """ Process a native event by symbolicating its frames. :param platform: The event's platform. This should be either unset or one of "objc", "cocoa", "swift", "native", "c", "csharp". :param stacktraces: The event's stacktraces. Frames must contain an `instruction_address`. Frames are expected to be ordered according to the frame_order (see below). :param modules: ProGuard modules and source bundles. They must contain a `uuid` and have a `type` of either "proguard" or "source". :param frame_order: The order of frames within stacktraces. See the documentation of `FrameOrder`. :param signal: A numeric crash signal value. This is optional. :param apply_source_context: Whether to add source context to frames. """ (sources, process_response) = sources_for_symbolication(self.project) scraping_config = get_scraping_config(self.project) json = { "platform": platform, "sources": sources, "options": { "dif_candidates": True, "apply_source_context": apply_source_context, "frame_order": frame_order.value, }, "stacktraces": stacktraces, "modules": modules, "scraping": scraping_config, } if signal: json["signal"] = signal res = self._process("symbolicate_stacktraces", "symbolicate", json=json) return process_response(res) def process_js( self, platform, stacktraces, modules, release, dist, frame_order, apply_source_context=True ): """ Process a JS event by remapping its frames with sourcemaps. :param platform: The event's platform. This should be unset, "javascript", or "node". :param stacktraces: The event's stacktraces. Frames must contain a `function` and a `module`. Frames are expected to be ordered according to the frame_order (see below). :param modules: Minified source files/sourcemaps Thy must contain a `type` field with value "sourcemap", a `code_file`, and a `debug_id`. :param release: The event's release. :param dist: The event's dist. :param frame_order: The order of frames within stacktraces. See the documentation of `FrameOrder`. :param apply_source_context: Whether to add source context to frames. """ source = get_internal_artifact_lookup_source(self.project) scraping_config = get_scraping_config(self.project) json = { "platform": platform, "source": source, "stacktraces": stacktraces, "modules": modules, "options": { "apply_source_context": apply_source_context, "frame_order": frame_order.value, }, "scraping": scraping_config, } if release is not None: json["release"] = release if dist is not None: json["dist"] = dist return self._process("symbolicate_js_stacktraces", "symbolicate-js", json=json) def process_jvm( self, platform, exceptions, stacktraces, modules, release_package, classes, frame_order, apply_source_context=True, ): """ Process a JVM event by remapping its frames and exceptions with ProGuard. :param platform: The event's platform. This should be either unset or "java". :param exceptions: The event's exceptions. These must contain a `type` and a `module`. :param stacktraces: The event's stacktraces. Frames must contain a `function` and a `module`. Frames are expected to be ordered according to the frame_order (see below). :param modules: ProGuard modules and source bundles. They must contain a `uuid` and have a `type` of either "proguard" or "source". :param release_package: The name of the release's package. This is optional. Used for determining whether frames are in-app. :param frame_order: The order of frames within stacktraces. See the documentation of `FrameOrder`. :param apply_source_context: Whether to add source context to frames. """ source = get_internal_source(self.project) json = { "platform": platform, "sources": [source], "exceptions": exceptions, "stacktraces": stacktraces, "modules": modules, "classes": classes, "options": { "apply_source_context": apply_source_context, "frame_order": frame_order.value, }, } if release_package is not None: json["release_package"] = release_package return self._process("symbolicate_jvm_stacktraces", "symbolicate-jvm", json=json)
Symbolicator
python
huggingface__transformers
src/transformers/models/plbart/modeling_plbart.py
{ "start": 10710, "end": 13723 }
class ____(GradientCheckpointingLayer): def __init__(self, config: PLBartConfig, layer_idx: Optional[int] = None): super().__init__() self.embed_dim = config.d_model self.self_attn = PLBartAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, layer_idx=layer_idx, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
PLBartEncoderLayer
python
aio-libs__aiohttp
aiohttp/multipart.py
{ "start": 38054, "end": 40066 }
class ____: def __init__(self, writer: Any) -> None: self._writer = writer self._encoding: str | None = None self._compress: ZLibCompressor | None = None self._encoding_buffer: bytearray | None = None def enable_encoding(self, encoding: str) -> None: if encoding == "base64": self._encoding = encoding self._encoding_buffer = bytearray() elif encoding == "quoted-printable": self._encoding = "quoted-printable" def enable_compression( self, encoding: str = "deflate", strategy: int | None = None ) -> None: self._compress = ZLibCompressor( encoding=encoding, suppress_deflate_header=True, strategy=strategy, ) async def write_eof(self) -> None: if self._compress is not None: chunk = self._compress.flush() if chunk: self._compress = None await self.write(chunk) if self._encoding == "base64": if self._encoding_buffer: await self._writer.write(base64.b64encode(self._encoding_buffer)) async def write(self, chunk: bytes) -> None: if self._compress is not None: if chunk: chunk = await self._compress.compress(chunk) if not chunk: return if self._encoding == "base64": buf = self._encoding_buffer assert buf is not None buf.extend(chunk) if buf: div, mod = divmod(len(buf), 3) enc_chunk, self._encoding_buffer = (buf[: div * 3], buf[div * 3 :]) if enc_chunk: b64chunk = base64.b64encode(enc_chunk) await self._writer.write(b64chunk) elif self._encoding == "quoted-printable": await self._writer.write(binascii.b2a_qp(chunk)) else: await self._writer.write(chunk)
MultipartPayloadWriter
python
jina-ai__jina
jina/serve/runtimes/gateway/gateway.py
{ "start": 1184, "end": 1390 }
class ____(JAMLCompatible, metaclass=GatewayType): """ The base class of all custom Gateways, can be used to build a custom interface to a Jina Flow that supports gateway logic """
BaseGateway
python
redis__redis-py
redis/cache.py
{ "start": 2510, "end": 3451 }
class ____(ABC): @property @abstractmethod def collection(self) -> OrderedDict: pass @property @abstractmethod def config(self) -> CacheConfigurationInterface: pass @property @abstractmethod def eviction_policy(self) -> EvictionPolicyInterface: pass @property @abstractmethod def size(self) -> int: pass @abstractmethod def get(self, key: CacheKey) -> Union[CacheEntry, None]: pass @abstractmethod def set(self, entry: CacheEntry) -> bool: pass @abstractmethod def delete_by_cache_keys(self, cache_keys: List[CacheKey]) -> List[bool]: pass @abstractmethod def delete_by_redis_keys(self, redis_keys: List[bytes]) -> List[bool]: pass @abstractmethod def flush(self) -> int: pass @abstractmethod def is_cachable(self, key: CacheKey) -> bool: pass
CacheInterface
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/classes1.py
{ "start": 354, "end": 391 }
class ____(metaclass=EMeta): pass
E
python
altair-viz__altair
altair/utils/execeval.py
{ "start": 369, "end": 2716 }
class ____: """Class to temporarily catch sys.displayhook.""" def __init__(self) -> None: self.output: Any | None = None def __enter__(self) -> Self: self.old_hook: Callable[[object], Any] = sys.displayhook sys.displayhook = self return self def __exit__(self, type, value, traceback) -> Literal[False]: sys.displayhook = self.old_hook # Returning False will cause exceptions to propagate return False def __call__(self, output: Any) -> None: self.output = output @overload def eval_block( code: str | Any, namespace: dict[str, Any] | None = ..., filename: str | ReadableBuffer | PathLike[Any] = ..., *, strict: Literal[False] = ..., ) -> Any | None: ... @overload def eval_block( code: str | Any, namespace: dict[str, Any] | None = ..., filename: str | ReadableBuffer | PathLike[Any] = ..., *, strict: Literal[True], ) -> Any: ... def eval_block( code: str | Any, namespace: dict[str, Any] | None = None, filename: str | ReadableBuffer | PathLike[Any] = "<string>", *, strict: bool = False, ) -> Any | None: """ Execute a multi-line block of code in the given namespace. If the final statement in the code is an expression, return the result of the expression. If ``strict``, raise a ``TypeError`` when the return value would be ``None``. """ tree = ast.parse(code, filename="<ast>", mode="exec") if namespace is None: namespace = {} catch_display = _CatchDisplay() if isinstance(tree.body[-1], ast.Expr): to_exec, to_eval = tree.body[:-1], tree.body[-1:] else: to_exec, to_eval = tree.body, [] for node in to_exec: compiled = compile(ast.Module([node], []), filename=filename, mode="exec") exec(compiled, namespace) with catch_display: for node in to_eval: compiled = compile( ast.Interactive([node]), filename=filename, mode="single" ) exec(compiled, namespace) if strict: output = catch_display.output if output is None: msg = f"Expected a non-None value but got {output!r}" raise TypeError(msg) else: return output else: return catch_display.output
_CatchDisplay
python
pandas-dev__pandas
pandas/tests/indexes/datetimes/test_npfuncs.py
{ "start": 81, "end": 384 }
class ____: def test_split_non_utc(self): # GH#14042 indices = date_range("2016-01-01 00:00:00+0200", freq="s", periods=10) result = np.split(indices, indices_or_sections=[])[0] expected = indices._with_freq(None) tm.assert_index_equal(result, expected)
TestSplit
python
zarr-developers__zarr-python
src/zarr/testing/store.py
{ "start": 782, "end": 20748 }
class ____(Generic[S, B]): store_cls: type[S] buffer_cls: type[B] @abstractmethod async def set(self, store: S, key: str, value: Buffer) -> None: """ Insert a value into a storage backend, with a specific key. This should not use any store methods. Bypassing the store methods allows them to be tested. """ ... @abstractmethod async def get(self, store: S, key: str) -> Buffer: """ Retrieve a value from a storage backend, by key. This should not use any store methods. Bypassing the store methods allows them to be tested. """ ... @abstractmethod @pytest.fixture def store_kwargs(self, *args: Any, **kwargs: Any) -> dict[str, Any]: """Kwargs for instantiating a store""" ... @abstractmethod def test_store_repr(self, store: S) -> None: ... @abstractmethod def test_store_supports_writes(self, store: S) -> None: ... def test_store_supports_partial_writes(self, store: S) -> None: assert not store.supports_partial_writes @abstractmethod def test_store_supports_listing(self, store: S) -> None: ... @pytest.fixture def open_kwargs(self, store_kwargs: dict[str, Any]) -> dict[str, Any]: return store_kwargs @pytest.fixture async def store(self, open_kwargs: dict[str, Any]) -> Store: return await self.store_cls.open(**open_kwargs) @pytest.fixture async def store_not_open(self, store_kwargs: dict[str, Any]) -> Store: return self.store_cls(**store_kwargs) def test_store_type(self, store: S) -> None: assert isinstance(store, Store) assert isinstance(store, self.store_cls) def test_store_eq(self, store: S, store_kwargs: dict[str, Any]) -> None: # check self equality assert store == store # check store equality with same inputs # asserting this is important for being able to compare (de)serialized stores store2 = self.store_cls(**store_kwargs) assert store == store2 async def test_serializable_store(self, store: S) -> None: new_store: S = pickle.loads(pickle.dumps(store)) assert new_store == store assert new_store.read_only == store.read_only # quickly roundtrip data to a key to test that new store works data_buf = self.buffer_cls.from_bytes(b"\x01\x02\x03\x04") key = "foo" await store.set(key, data_buf) observed = await store.get(key, prototype=default_buffer_prototype()) assert_bytes_equal(observed, data_buf) def test_store_read_only(self, store: S) -> None: assert not store.read_only with pytest.raises(AttributeError): store.read_only = False # type: ignore[misc] @pytest.mark.parametrize("read_only", [True, False]) async def test_store_open_read_only(self, open_kwargs: dict[str, Any], read_only: bool) -> None: open_kwargs["read_only"] = read_only store = await self.store_cls.open(**open_kwargs) assert store._is_open assert store.read_only == read_only async def test_store_context_manager(self, open_kwargs: dict[str, Any]) -> None: # Test that the context manager closes the store with await self.store_cls.open(**open_kwargs) as store: assert store._is_open # Test trying to open an already open store with pytest.raises(ValueError, match="store is already open"): await store._open() assert not store._is_open async def test_read_only_store_raises(self, open_kwargs: dict[str, Any]) -> None: kwargs = {**open_kwargs, "read_only": True} store = await self.store_cls.open(**kwargs) assert store.read_only # set with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await store.set("foo", self.buffer_cls.from_bytes(b"bar")) # delete with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await store.delete("foo") async def test_with_read_only_store(self, open_kwargs: dict[str, Any]) -> None: kwargs = {**open_kwargs, "read_only": True} store = await self.store_cls.open(**kwargs) assert store.read_only # Test that you cannot write to a read-only store with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await store.set("foo", self.buffer_cls.from_bytes(b"bar")) # Check if the store implements with_read_only try: writer = store.with_read_only(read_only=False) except NotImplementedError: # Test that stores that do not implement with_read_only raise NotImplementedError with the correct message with pytest.raises( NotImplementedError, match=f"with_read_only is not implemented for the {type(store)} store type.", ): store.with_read_only(read_only=False) return # Test that you can write to a new store copy assert not writer._is_open assert not writer.read_only await writer.set("foo", self.buffer_cls.from_bytes(b"bar")) await writer.delete("foo") # Test that you cannot write to the original store assert store.read_only with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await store.set("foo", self.buffer_cls.from_bytes(b"bar")) with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await store.delete("foo") # Test that you cannot write to a read-only store copy reader = store.with_read_only(read_only=True) assert reader.read_only with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await reader.set("foo", self.buffer_cls.from_bytes(b"bar")) with pytest.raises( ValueError, match="store was opened in read-only mode and does not support writing" ): await reader.delete("foo") @pytest.mark.parametrize("key", ["c/0", "foo/c/0.0", "foo/0/0"]) @pytest.mark.parametrize( ("data", "byte_range"), [ (b"\x01\x02\x03\x04", None), (b"\x01\x02\x03\x04", RangeByteRequest(1, 4)), (b"\x01\x02\x03\x04", OffsetByteRequest(1)), (b"\x01\x02\x03\x04", SuffixByteRequest(1)), (b"", None), ], ) async def test_get(self, store: S, key: str, data: bytes, byte_range: ByteRequest) -> None: """ Ensure that data can be read from the store using the store.get method. """ data_buf = self.buffer_cls.from_bytes(data) await self.set(store, key, data_buf) observed = await store.get(key, prototype=default_buffer_prototype(), byte_range=byte_range) start, stop = _normalize_byte_range_index(data_buf, byte_range=byte_range) expected = data_buf[start:stop] assert_bytes_equal(observed, expected) async def test_get_not_open(self, store_not_open: S) -> None: """ Ensure that data can be read from the store that isn't yet open using the store.get method. """ assert not store_not_open._is_open data_buf = self.buffer_cls.from_bytes(b"\x01\x02\x03\x04") key = "c/0" await self.set(store_not_open, key, data_buf) observed = await store_not_open.get(key, prototype=default_buffer_prototype()) assert_bytes_equal(observed, data_buf) async def test_get_raises(self, store: S) -> None: """ Ensure that a ValueError is raise for invalid byte range syntax """ data_buf = self.buffer_cls.from_bytes(b"\x01\x02\x03\x04") await self.set(store, "c/0", data_buf) with pytest.raises((ValueError, TypeError), match=r"Unexpected byte_range, got.*"): await store.get("c/0", prototype=default_buffer_prototype(), byte_range=(0, 2)) # type: ignore[arg-type] async def test_get_many(self, store: S) -> None: """ Ensure that multiple keys can be retrieved at once with the _get_many method. """ keys = tuple(map(str, range(10))) values = tuple(f"{k}".encode() for k in keys) for k, v in zip(keys, values, strict=False): await self.set(store, k, self.buffer_cls.from_bytes(v)) observed_buffers = await _collect_aiterator( store._get_many( zip( keys, (default_buffer_prototype(),) * len(keys), (None,) * len(keys), strict=False, ) ) ) observed_kvs = sorted(((k, b.to_bytes()) for k, b in observed_buffers)) # type: ignore[union-attr] expected_kvs = sorted(((k, b) for k, b in zip(keys, values, strict=False))) assert observed_kvs == expected_kvs @pytest.mark.parametrize("key", ["c/0", "foo/c/0.0", "foo/0/0"]) @pytest.mark.parametrize("data", [b"\x01\x02\x03\x04", b""]) async def test_getsize(self, store: S, key: str, data: bytes) -> None: """ Test the result of store.getsize(). """ data_buf = self.buffer_cls.from_bytes(data) expected = len(data_buf) await self.set(store, key, data_buf) observed = await store.getsize(key) assert observed == expected async def test_getsize_prefix(self, store: S) -> None: """ Test the result of store.getsize_prefix(). """ data_buf = self.buffer_cls.from_bytes(b"\x01\x02\x03\x04") keys = ["c/0/0", "c/0/1", "c/1/0", "c/1/1"] keys_values = [(k, data_buf) for k in keys] await store._set_many(keys_values) expected = len(data_buf) * len(keys) observed = await store.getsize_prefix("c") assert observed == expected async def test_getsize_raises(self, store: S) -> None: """ Test that getsize() raise a FileNotFoundError if the key doesn't exist. """ with pytest.raises(FileNotFoundError): await store.getsize("c/1000") @pytest.mark.parametrize("key", ["zarr.json", "c/0", "foo/c/0.0", "foo/0/0"]) @pytest.mark.parametrize("data", [b"\x01\x02\x03\x04", b""]) async def test_set(self, store: S, key: str, data: bytes) -> None: """ Ensure that data can be written to the store using the store.set method. """ assert not store.read_only data_buf = self.buffer_cls.from_bytes(data) await store.set(key, data_buf) observed = await self.get(store, key) assert_bytes_equal(observed, data_buf) async def test_set_not_open(self, store_not_open: S) -> None: """ Ensure that data can be written to the store that's not yet open using the store.set method. """ assert not store_not_open._is_open data_buf = self.buffer_cls.from_bytes(b"\x01\x02\x03\x04") key = "c/0" await store_not_open.set(key, data_buf) observed = await self.get(store_not_open, key) assert_bytes_equal(observed, data_buf) async def test_set_many(self, store: S) -> None: """ Test that a dict of key : value pairs can be inserted into the store via the `_set_many` method. """ keys = ["zarr.json", "c/0", "foo/c/0.0", "foo/0/0"] data_buf = [self.buffer_cls.from_bytes(k.encode()) for k in keys] store_dict = dict(zip(keys, data_buf, strict=True)) await store._set_many(store_dict.items()) for k, v in store_dict.items(): assert (await self.get(store, k)).to_bytes() == v.to_bytes() @pytest.mark.parametrize( "key_ranges", [ [], [("zarr.json", RangeByteRequest(0, 2))], [("c/0", RangeByteRequest(0, 2)), ("zarr.json", None)], [ ("c/0/0", RangeByteRequest(0, 2)), ("c/0/1", SuffixByteRequest(2)), ("c/0/2", OffsetByteRequest(2)), ], ], ) async def test_get_partial_values( self, store: S, key_ranges: list[tuple[str, ByteRequest]] ) -> None: # put all of the data for key, _ in key_ranges: await self.set(store, key, self.buffer_cls.from_bytes(bytes(key, encoding="utf-8"))) # read back just part of it observed_maybe = await store.get_partial_values( prototype=default_buffer_prototype(), key_ranges=key_ranges ) observed: list[Buffer] = [] expected: list[Buffer] = [] for obs in observed_maybe: assert obs is not None observed.append(obs) for idx in range(len(observed)): key, byte_range = key_ranges[idx] result = await store.get( key, prototype=default_buffer_prototype(), byte_range=byte_range ) assert result is not None expected.append(result) assert all( obs.to_bytes() == exp.to_bytes() for obs, exp in zip(observed, expected, strict=True) ) async def test_exists(self, store: S) -> None: assert not await store.exists("foo") await store.set("foo/zarr.json", self.buffer_cls.from_bytes(b"bar")) assert await store.exists("foo/zarr.json") async def test_delete(self, store: S) -> None: if not store.supports_deletes: pytest.skip("store does not support deletes") await store.set("foo/zarr.json", self.buffer_cls.from_bytes(b"bar")) assert await store.exists("foo/zarr.json") await store.delete("foo/zarr.json") assert not await store.exists("foo/zarr.json") async def test_delete_dir(self, store: S) -> None: if not store.supports_deletes: pytest.skip("store does not support deletes") await store.set("zarr.json", self.buffer_cls.from_bytes(b"root")) await store.set("foo-bar/zarr.json", self.buffer_cls.from_bytes(b"root")) await store.set("foo/zarr.json", self.buffer_cls.from_bytes(b"bar")) await store.set("foo/c/0", self.buffer_cls.from_bytes(b"chunk")) await store.delete_dir("foo") assert await store.exists("zarr.json") assert await store.exists("foo-bar/zarr.json") assert not await store.exists("foo/zarr.json") assert not await store.exists("foo/c/0") async def test_delete_nonexistent_key_does_not_raise(self, store: S) -> None: if not store.supports_deletes: pytest.skip("store does not support deletes") await store.delete("nonexistent_key") async def test_is_empty(self, store: S) -> None: assert await store.is_empty("") await self.set( store, "foo/bar", self.buffer_cls.from_bytes(bytes("something", encoding="utf-8")) ) assert not await store.is_empty("") assert await store.is_empty("fo") assert not await store.is_empty("foo/") assert not await store.is_empty("foo") assert await store.is_empty("spam/") async def test_clear(self, store: S) -> None: await self.set( store, "key", self.buffer_cls.from_bytes(bytes("something", encoding="utf-8")) ) await store.clear() assert await store.is_empty("") async def test_list(self, store: S) -> None: assert await _collect_aiterator(store.list()) == () prefix = "foo" data = self.buffer_cls.from_bytes(b"") store_dict = { prefix + "/zarr.json": data, **{prefix + f"/c/{idx}": data for idx in range(10)}, } await store._set_many(store_dict.items()) expected_sorted = sorted(store_dict.keys()) observed = await _collect_aiterator(store.list()) observed_sorted = sorted(observed) assert observed_sorted == expected_sorted async def test_list_prefix(self, store: S) -> None: """ Test that the `list_prefix` method works as intended. Given a prefix, it should return all the keys in storage that start with this prefix. """ prefixes = ("", "a/", "a/b/", "a/b/c/") data = self.buffer_cls.from_bytes(b"") fname = "zarr.json" store_dict = {p + fname: data for p in prefixes} await store._set_many(store_dict.items()) for prefix in prefixes: observed = tuple(sorted(await _collect_aiterator(store.list_prefix(prefix)))) expected: tuple[str, ...] = () for key in store_dict: if key.startswith(prefix): expected += (key,) expected = tuple(sorted(expected)) assert observed == expected async def test_list_empty_path(self, store: S) -> None: """ Verify that list and list_prefix work correctly when path is an empty string, i.e. no unwanted replacement occurs. """ data = self.buffer_cls.from_bytes(b"") store_dict = { "foo/bar/zarr.json": data, "foo/bar/c/1": data, "foo/baz/c/0": data, } await store._set_many(store_dict.items()) # Test list() observed_list = await _collect_aiterator(store.list()) observed_list_sorted = sorted(observed_list) expected_list_sorted = sorted(store_dict.keys()) assert observed_list_sorted == expected_list_sorted # Test list_prefix() with an empty prefix observed_prefix_empty = await _collect_aiterator(store.list_prefix("")) observed_prefix_empty_sorted = sorted(observed_prefix_empty) expected_prefix_empty_sorted = sorted(store_dict.keys()) assert observed_prefix_empty_sorted == expected_prefix_empty_sorted # Test list_prefix() with a non-empty prefix observed_prefix = await _collect_aiterator(store.list_prefix("foo/bar/")) observed_prefix_sorted = sorted(observed_prefix) expected_prefix_sorted = sorted(k for k in store_dict if k.startswith("foo/bar/")) assert observed_prefix_sorted == expected_prefix_sorted async def test_list_dir(self, store: S) -> None: root = "foo" store_dict = { root + "/zarr.json": self.buffer_cls.from_bytes(b"bar"), root + "/c/1": self.buffer_cls.from_bytes(b"\x01"), } assert await _collect_aiterator(store.list_dir("")) == () assert await _collect_aiterator(store.list_dir(root)) == () await store._set_many(store_dict.items()) keys_observed = await _collect_aiterator(store.list_dir(root)) keys_expected = {k.removeprefix(root + "/").split("/")[0] for k in store_dict} assert sorted(keys_observed) == sorted(keys_expected) keys_observed = await _collect_aiterator(store.list_dir(root + "/")) assert sorted(keys_expected) == sorted(keys_observed) async def test_set_if_not_exists(self, store: S) -> None: key = "k" data_buf = self.buffer_cls.from_bytes(b"0000") await self.set(store, key, data_buf) new = self.buffer_cls.from_bytes(b"1111") await store.set_if_not_exists("k", new) # no error result = await store.get(key, default_buffer_prototype()) assert result == data_buf await store.set_if_not_exists("k2", new) # no error result = await store.get("k2", default_buffer_prototype()) assert result == new
StoreTests
python
pyparsing__pyparsing
examples/pythonGrammarParser.py
{ "start": 5883, "end": 5942 }
class ____(SemanticGroup): label = "AND" pass
AndList
python
Textualize__textual
src/textual/demo/projects.py
{ "start": 656, "end": 2604 }
class ____(Vertical, can_focus=True, can_focus_children=False): """Display project information and open repo links.""" ALLOW_MAXIMIZE = True DEFAULT_CSS = """ Project { width: 1fr; height: auto; padding: 0 1; border: tall transparent; box-sizing: border-box; &:focus { border: tall $text-primary; background: $primary 20%; &.link { color: red !important; } } #title { text-style: bold; width: 1fr; } #author { text-style: italic; } .stars { color: $text-accent; text-align: right; text-style: bold; width: auto; } .header { height: 1; } .link { color: $text-accent; text-style: underline; } .description { color: $text-muted; } &.-hover { opacity: 1; } } """ BINDINGS = [ Binding( "enter", "open_repository", "open repo", tooltip="Open the GitHub repository in your browser", ) ] def __init__(self, project_info: ProjectInfo) -> None: self.project_info = project_info super().__init__() def compose(self) -> ComposeResult: info = self.project_info with Horizontal(classes="header"): yield Label(info.title, id="title") yield Label(f"★ {STARS[info.title]}", classes="stars") yield Label(info.author, id="author") yield Link(info.url, tooltip="Click to open project repository") yield Static(info.description, classes="description") @on(events.Enter) @on(events.Leave) def on_enter(self, event: events.Enter): event.stop() self.set_class(self.is_mouse_over, "-hover") def action_open_repository(self) -> None: self.app.open_url(self.project_info.url)
Project
python
kamyu104__LeetCode-Solutions
Python/count-artifacts-that-can-be-extracted.py
{ "start": 115, "end": 611 }
class ____(object): def digArtifacts(self, n, artifacts, dig): """ :type n: int :type artifacts: List[List[int]] :type dig: List[List[int]] :rtype: int """ lookup = set(map(tuple, dig)) return sum(all((i, j) in lookup for i in xrange(r1, r2+1) for j in xrange(c1, c2+1)) for r1, c1, r2, c2 in artifacts) # Time: O(a + d), a is the number of grids covered by artifacts, d is the size of dig # Space: O(a) # hash table
Solution
python
huggingface__transformers
src/transformers/models/kosmos2/modeling_kosmos2.py
{ "start": 35187, "end": 36132 }
class ____(nn.Module): def __init__(self, config: Kosmos2TextConfig): super().__init__() self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim) self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim) self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.ffn_layernorm(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states
Kosmos2TextFFN
python
PrefectHQ__prefect
tests/cli/test_deploy.py
{ "start": 218681, "end": 221677 }
class ____: @pytest.fixture async def work_pool(self, prefect_client): await prefect_client.create_work_pool( WorkPoolCreate(name="test-pool", type="test") ) async def test_uses_job_variables( self, project_dir: Path, work_pool: WorkPool, prefect_client: PrefectClient, ): await run_sync_in_worker_thread( invoke_and_assert, command=( "deploy ./flows/hello.py:my_flow -n test-name -p test-pool --version" " 1.0.0 -jv env=prod -t foo-bar --job-variable" ' \'{"resources":{"limits":{"cpu": 1}}}\'' ), expected_code=0, expected_output_contains=[ "An important name/test-name", "prefect worker start --pool 'test-pool'", ], ) deployment = await prefect_client.read_deployment_by_name( "An important name/test-name" ) assert deployment.name == "test-name" assert deployment.work_pool_name == "test-pool" assert deployment.version == "1.0.0" assert deployment.tags == ["foo-bar"] assert deployment.job_variables == { "env": "prod", "resources": {"limits": {"cpu": 1}}, } @pytest.mark.usefixtures("project_dir", "work_pool") async def test_rejects_json_strings(self): await run_sync_in_worker_thread( invoke_and_assert, command=( "deploy ./flows/hello.py:my_flow -n test-name -p test-pool --version" " 1.0.0 -jv env=prod -t foo-bar --job-variable 'my-variable'" ), expected_code=1, expected_output_contains=[ "Could not parse variable", ], ) @pytest.mark.usefixtures("project_dir", "work_pool") async def test_rejects_json_arrays(self): await run_sync_in_worker_thread( invoke_and_assert, command=( "deploy ./flows/hello.py:my_flow -n test-name -p test-pool --version" " 1.0.0 -jv env=prod -t foo-bar --job-variable ['my-variable']" ), expected_code=1, expected_output_contains=[ "Could not parse variable", ], ) @pytest.mark.usefixtures("project_dir", "work_pool") async def test_rejects_invalid_json(self): await run_sync_in_worker_thread( invoke_and_assert, command=( "deploy ./flows/hello.py:my_flow -n test-name -p test-pool --version" " 1.0.0 -jv env=prod -t foo-bar --job-variable " ' \'{"resources":{"limits":{"cpu"}\'' ), expected_code=1, expected_output_contains=[ "Could not parse variable", ], ) @pytest.mark.usefixtures("project_dir", "interactive_console", "work_pool")
TestDeployInfraOverrides
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/dialects/mssql/base.py
{ "start": 42373, "end": 43573 }
class ____(sqltypes._Binary): """Implement the SQL Server TIMESTAMP type. Note this is **completely different** than the SQL Standard TIMESTAMP type, which is not supported by SQL Server. It is a read-only datatype that does not support INSERT of values. .. seealso:: :class:`_mssql.ROWVERSION` """ __visit_name__ = "TIMESTAMP" # expected by _Binary to be present length = None def __init__(self, convert_int=False): """Construct a TIMESTAMP or ROWVERSION type. :param convert_int: if True, binary integer values will be converted to integers on read. """ self.convert_int = convert_int def result_processor(self, dialect, coltype): super_ = super().result_processor(dialect, coltype) if self.convert_int: def process(value): if super_: value = super_(value) if value is not None: # https://stackoverflow.com/a/30403242/34549 value = int(codecs.encode(value, "hex"), 16) return value return process else: return super_
TIMESTAMP
python
gevent__gevent
src/gevent/tests/test__pywsgi.py
{ "start": 24930, "end": 34654 }
class ____(TestCase): calls = 0 def setUp(self): super().setUp() self.calls = 0 def application(self, env, start_response): self.calls += 1 self.assertTrue(env.get('wsgi.input_terminated')) start_response('200 OK', [('Content-Type', 'text/plain')]) if env['PATH_INFO'] == '/a': data = env['wsgi.input'].read(6) return [data] if env['PATH_INFO'] == '/b': lines = list(iter(lambda: env['wsgi.input'].read(6), b'')) return lines if env['PATH_INFO'] == '/c': return list(iter(lambda: env['wsgi.input'].read(1), b'')) return [b'We should not get here', env['PATH_INFO'].encode('ascii')] def test_014_chunked_post(self): data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'2\r\noh\r\n4\r\n hai\r\n0\r\n\r\n') with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') # self.close_opened() # XXX: Why? with self.makefile() as fd: fd.write(data.replace(b'/a', b'/b')) read_http(fd, body='oh hai') with self.makefile() as fd: fd.write(data.replace(b'/a', b'/c')) read_http(fd, body='oh hai') def test_229_incorrect_chunk_no_newline(self): # Giving both a Content-Length and a Transfer-Encoding, # TE is preferred. But if the chunking is bad from the client, # missing its terminating newline, # the server doesn't hang data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Content-Length: 12\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'{"hi": "ho"}') with self.makefile() as fd: fd.write(data) read_http(fd, code=400) def test_229_incorrect_chunk_non_hex(self): # Giving both a Content-Length and a Transfer-Encoding, # TE is preferred. But if the chunking is bad from the client, # the server doesn't hang data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Content-Length: 12\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'{"hi": "ho"}\r\n') with self.makefile() as fd: fd.write(data) read_http(fd, code=400) def test_229_correct_chunk_quoted_ext(self): data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'2;token="oh hi"\r\noh\r\n4\r\n hai\r\n0\r\n\r\n') with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') def test_229_correct_chunk_token_ext(self): data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'2;token=oh_hi\r\noh\r\n4\r\n hai\r\n0\r\n\r\n') with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') def test_229_incorrect_chunk_token_ext_too_long(self): data = (b'POST /a HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n' b'Transfer-Encoding: chunked\r\n\r\n' b'2;token=oh_hi\r\noh\r\n4\r\n hai\r\n0\r\n\r\n') data = data.replace(b'oh_hi', b'_oh_hi' * 4000) with self.makefile() as fd: fd.write(data) read_http(fd, code=400) # XXX: Not sure which one, but one (or more) of these is leading to a # test timeout on Windows. Figure out what/why and solve. @greentest.skipOnWindows('Maybe hangs') def test_trailers_keepalive_ignored(self): # Trailers after a chunk are ignored. data1 = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: keep-alive\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0\r\n' # last-chunk # Normally the final CRLF would go here, but if you put in a # trailer, it doesn't. b'trailer1: value1\r\n' b'trailer2: value2\r\n' b'\r\n' # Really terminate the chunk. ) data2 = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: close\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n bye\r\n' b'0\r\n' # last-chunk ) with self.makefile() as fd: fd.write(data1) read_http(fd, body='oh hai') fd.write(data2) read_http(fd, body='oh bye') self.assertEqual(self.calls, 2) @greentest.skipOnWindows('Maybe hangs') def test_trailers_close_ignored(self): data = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: close\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0\r\n' # last-chunk # Normally the final CRLF would go here, but if you put in a # trailer, it doesn't. # b'\r\n' b'GETpath2a:123 HTTP/1.1\r\n' b'Host: a.com\r\n' b'Connection: close\r\n' b'\r\n' ) with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') with self.assertRaises(ConnectionClosed): read_http(fd) @greentest.skipOnWindows('Maybe hangs') def test_trailers_too_long(self): # Trailers after a chunk are ignored. data = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: keep-alive\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0\r\n' # last-chunk # Normally the final CRLF would go here, but if you put in a # trailer, it doesn't. b'trailer2: value2' # note lack of \r\n ) data += b't' * pywsgi.MAX_REQUEST_LINE # No termination, because we detect the trailer as being too # long and abort the connection. with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') with self.assertRaises(ConnectionClosed): read_http(fd, body='oh bye') @greentest.skipOnWindows('Maybe hangs') def test_trailers_request_smuggling_missing_last_chunk_keep_alive(self): # When something that looks like a request line comes in the trailer # as the first line, immediately after an invalid last chunk. # We detect this and abort the connection, because the # whitespace in the GET line isn't a legal part of a trailer. # If we didn't abort the connection, then, because we specified # keep-alive, the server would be hanging around waiting for more input. data = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: keep-alive\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0' # last-chunk, but missing the \r\n # Normally the final CRLF would go here, but if you put in a # trailer, it doesn't. # b'\r\n' b'GET /path2?a=:123 HTTP/1.1\r\n' b'Host: a.com\r\n' b'Connection: close\r\n' b'\r\n' ) with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') with self.assertRaises(ConnectionClosed): read_http(fd) self.assertEqual(self.calls, 1) @greentest.skipOnWindows('Maybe hangs') def test_trailers_request_smuggling_header_first(self): # When something that looks like a header comes in the first line. data = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: keep-alive\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0\r\n' # last-chunk, but only one CRLF b'Header: value\r\n' b'GET /path2?a=:123 HTTP/1.1\r\n' b'Host: a.com\r\n' b'Connection: close\r\n' b'\r\n' ) with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') with self.assertRaises(ConnectionClosed): read_http(fd, code=400) self.assertEqual(self.calls, 1) @greentest.skipOnWindows('Maybe hangs') def test_trailers_request_smuggling_request_terminates_then_header(self): data = ( b'POST /a HTTP/1.1\r\n' b'Host: localhost\r\n' b'Connection: keep-alive\r\n' b'Transfer-Encoding: chunked\r\n' b'\r\n' b'2\r\noh\r\n' b'4\r\n hai\r\n' b'0\r\n' # last-chunk b'\r\n' b'Header: value' b'GET /path2?a=:123 HTTP/1.1\r\n' b'Host: a.com\r\n' b'Connection: close\r\n' b'\r\n' ) with self.makefile() as fd: fd.write(data) read_http(fd, body='oh hai') read_http(fd, code=400) self.assertEqual(self.calls, 1)
TestChunkedPost
python
numba__numba
numba/cuda/stubs.py
{ "start": 6929, "end": 7075 }
class ____(Stub): """ brev(x) Returns the reverse of the bit pattern of x. For example, 0b10110110 becomes 0b01101101. """
brev
python
pytorch__pytorch
torch/testing/_internal/common_utils.py
{ "start": 119837, "end": 119932 }
class ____: # causes pytest to not recognize this class as a test __test__ = False
NoTest
python
geekcomputers__Python
venv/Lib/site-packages/pip/_internal/utils/logging.py
{ "start": 6842, "end": 11606 }
class ____(Filter): """ A logging Filter that excludes records from a logger (or its children). """ def filter(self, record: logging.LogRecord) -> bool: # The base Filter class allows only records from a logger (or its # children). return not super().filter(record) def setup_logging(verbosity: int, no_color: bool, user_log_file: Optional[str]) -> int: """Configures and sets up all of the logging Returns the requested logging level, as its integer value. """ # Determine the level to be logging at. if verbosity >= 2: level_number = logging.DEBUG elif verbosity == 1: level_number = VERBOSE elif verbosity == -1: level_number = logging.WARNING elif verbosity == -2: level_number = logging.ERROR elif verbosity <= -3: level_number = logging.CRITICAL else: level_number = logging.INFO level = logging.getLevelName(level_number) # The "root" logger should match the "console" level *unless* we also need # to log to a user log file. include_user_log = user_log_file is not None if include_user_log: additional_log_file = user_log_file root_level = "DEBUG" else: additional_log_file = "/dev/null" root_level = level # Disable any logging besides WARNING unless we have DEBUG level logging # enabled for vendored libraries. vendored_log_level = "WARNING" if level in ["INFO", "ERROR"] else "DEBUG" # Shorthands for clarity log_streams = { "stdout": "ext://sys.stdout", "stderr": "ext://sys.stderr", } handler_classes = { "stream": "pip._internal.utils.logging.RichPipStreamHandler", "file": "pip._internal.utils.logging.BetterRotatingFileHandler", } handlers = ["console", "console_errors", "console_subprocess"] + ( ["user_log"] if include_user_log else [] ) logging.config.dictConfig( { "version": 1, "disable_existing_loggers": False, "filters": { "exclude_warnings": { "()": "pip._internal.utils.logging.MaxLevelFilter", "level": logging.WARNING, }, "restrict_to_subprocess": { "()": "logging.Filter", "name": subprocess_logger.name, }, "exclude_subprocess": { "()": "pip._internal.utils.logging.ExcludeLoggerFilter", "name": subprocess_logger.name, }, }, "formatters": { "indent": { "()": IndentingFormatter, "format": "%(message)s", }, "indent_with_timestamp": { "()": IndentingFormatter, "format": "%(message)s", "add_timestamp": True, }, }, "handlers": { "console": { "level": level, "class": handler_classes["stream"], "no_color": no_color, "stream": log_streams["stdout"], "filters": ["exclude_subprocess", "exclude_warnings"], "formatter": "indent", }, "console_errors": { "level": "WARNING", "class": handler_classes["stream"], "no_color": no_color, "stream": log_streams["stderr"], "filters": ["exclude_subprocess"], "formatter": "indent", }, # A handler responsible for logging to the console messages # from the "subprocessor" logger. "console_subprocess": { "level": level, "class": handler_classes["stream"], "stream": log_streams["stderr"], "no_color": no_color, "filters": ["restrict_to_subprocess"], "formatter": "indent", }, "user_log": { "level": "DEBUG", "class": handler_classes["file"], "filename": additional_log_file, "encoding": "utf-8", "delay": True, "formatter": "indent_with_timestamp", }, }, "root": { "level": root_level, "handlers": handlers, }, "loggers": {"pip._vendor": {"level": vendored_log_level}}, } ) return level_number
ExcludeLoggerFilter
python
ray-project__ray
rllib/examples/envs/classes/multi_agent/footsies/game/footsies_binary.py
{ "start": 463, "end": 1123 }
class ____: # Uploaded 07.28.2025 S3_ROOT = "https://ray-example-data.s3.us-west-2.amazonaws.com/rllib/env-footsies/binaries/" # Zip file names ZIP_LINUX_SERVER = "footsies_linux_server_021725.zip" ZIP_LINUX_WINDOWED = "footsies_linux_windowed_021725.zip" ZIP_MAC_HEADLESS = "footsies_mac_headless_5709b6d.zip" ZIP_MAC_WINDOWED = "footsies_mac_windowed_5709b6d.zip" # Full URLs URL_LINUX_SERVER_BINARIES = S3_ROOT + ZIP_LINUX_SERVER URL_LINUX_WINDOWED_BINARIES = S3_ROOT + ZIP_LINUX_WINDOWED URL_MAC_HEADLESS_BINARIES = S3_ROOT + ZIP_MAC_HEADLESS URL_MAC_WINDOWED_BINARIES = S3_ROOT + ZIP_MAC_WINDOWED
BinaryUrls
python
ansible__ansible
test/units/module_utils/facts/system/test_lsb.py
{ "start": 1509, "end": 4399 }
class ____(BaseFactsTest): __test__ = True gather_subset = ['!all', 'lsb'] valid_subsets = ['lsb'] fact_namespace = 'ansible_lsb' collector_class = LSBFactCollector def _mock_module(self): mock_module = Mock() mock_module.params = {'gather_subset': self.gather_subset, 'gather_timeout': 10, 'filter': '*'} mock_module.get_bin_path = Mock(return_value='/usr/bin/lsb_release') mock_module.run_command = Mock(return_value=(0, lsb_release_a_fedora_output, '')) return mock_module def test_lsb_release_bin(self): module = self._mock_module() fact_collector = self.collector_class() facts_dict = fact_collector.collect(module=module) self.assertIsInstance(facts_dict, dict) self.assertEqual(facts_dict['lsb']['release'], '25') self.assertEqual(facts_dict['lsb']['id'], 'Fedora') self.assertEqual(facts_dict['lsb']['description'], 'Fedora release 25 (Twenty Five)') self.assertEqual(facts_dict['lsb']['codename'], 'TwentyFive') self.assertEqual(facts_dict['lsb']['major_release'], '25') def test_etc_lsb_release(self): module = self._mock_module() module.get_bin_path = Mock(return_value=None) with patch('ansible.module_utils.facts.system.lsb.os.path.exists', return_value=True): with patch('ansible.module_utils.facts.system.lsb.get_file_lines', return_value=etc_lsb_release_ubuntu14.splitlines()): fact_collector = self.collector_class() facts_dict = fact_collector.collect(module=module) self.assertIsInstance(facts_dict, dict) self.assertEqual(facts_dict['lsb']['release'], '14.04') self.assertEqual(facts_dict['lsb']['id'], 'Ubuntu') self.assertEqual(facts_dict['lsb']['description'], 'Ubuntu 14.04.3 LTS') self.assertEqual(facts_dict['lsb']['codename'], 'trusty') def test_etc_lsb_release_no_decimal_release(self): module = self._mock_module() module.get_bin_path = Mock(return_value=None) with patch('ansible.module_utils.facts.system.lsb.os.path.exists', return_value=True): with patch('ansible.module_utils.facts.system.lsb.get_file_lines', return_value=etc_lsb_release_no_decimal.splitlines()): fact_collector = self.collector_class() facts_dict = fact_collector.collect(module=module) self.assertIsInstance(facts_dict, dict) self.assertEqual(facts_dict['lsb']['release'], '11') self.assertEqual(facts_dict['lsb']['id'], 'AwesomeOS') self.assertEqual(facts_dict['lsb']['description'], 'AwesomeÖS 11') self.assertEqual(facts_dict['lsb']['codename'], 'stonehenge')
TestLSBFacts
python
sphinx-doc__sphinx
sphinx/search/de.py
{ "start": 191, "end": 589 }
class ____(SearchLanguage): lang = 'de' language_name = 'German' js_stemmer_rawcode = 'german-stemmer.js' stopwords = GERMAN_STOPWORDS def __init__(self, options: dict[str, str]) -> None: super().__init__(options) self.stemmer = snowballstemmer.stemmer('german') def stem(self, word: str) -> str: return self.stemmer.stemWord(word.lower())
SearchGerman
python
pypa__setuptools
setuptools/_distutils/tests/support.py
{ "start": 1370, "end": 4099 }
class ____: """Class to store options for retrieval via set_undefined_options().""" def __init__(self, **kwargs): vars(self).update(kwargs) def ensure_finalized(self): pass def copy_xxmodule_c(directory): """Helper for tests that need the xxmodule.c source file. Example use: def test_compile(self): copy_xxmodule_c(self.tmpdir) self.assertIn('xxmodule.c', os.listdir(self.tmpdir)) If the source file can be found, it will be copied to *directory*. If not, the test will be skipped. Errors during copy are not caught. """ shutil.copy(_get_xxmodule_path(), os.path.join(directory, 'xxmodule.c')) def _get_xxmodule_path(): source_name = 'xxmodule.c' if sys.version_info > (3, 9) else 'xxmodule-3.8.c' return os.path.join(os.path.dirname(__file__), source_name) def fixup_build_ext(cmd): """Function needed to make build_ext tests pass. When Python was built with --enable-shared on Unix, -L. is not enough to find libpython<blah>.so, because regrtest runs in a tempdir, not in the source directory where the .so lives. When Python was built with in debug mode on Windows, build_ext commands need their debug attribute set, and it is not done automatically for some reason. This function handles both of these things. Example use: cmd = build_ext(dist) support.fixup_build_ext(cmd) cmd.ensure_finalized() Unlike most other Unix platforms, Mac OS X embeds absolute paths to shared libraries into executables, so the fixup is not needed there. """ if os.name == 'nt': cmd.debug = sys.executable.endswith('_d.exe') elif sysconfig.get_config_var('Py_ENABLE_SHARED'): # To further add to the shared builds fun on Unix, we can't just add # library_dirs to the Extension() instance because that doesn't get # plumbed through to the final compiler command. runshared = sysconfig.get_config_var('RUNSHARED') if runshared is None: cmd.library_dirs = ['.'] else: if sys.platform == 'darwin': cmd.library_dirs = [] else: name, equals, value = runshared.partition('=') cmd.library_dirs = [d for d in value.split(os.pathsep) if d] def combine_markers(cls): """ pytest will honor markers as found on the class, but when markers are on multiple subclasses, only one appears. Use this decorator to combine those markers. """ cls.pytestmark = [ mark for base in itertools.chain([cls], cls.__bases__) for mark in getattr(base, 'pytestmark', []) ] return cls
DummyCommand
python
astropy__astropy
astropy/io/fits/column.py
{ "start": 13810, "end": 15223 }
class ____(str): """For P format in variable length table.""" # As far as I can tell from my reading of the FITS standard, a type code is # *required* for P and Q formats; there is no default _format_re_template = ( r"(?P<repeat>\d+)?{}(?P<dtype>[LXBIJKAEDCM])(?:\((?P<max>\d*)\))?" ) _format_code = "P" _format_re = re.compile(_format_re_template.format(_format_code)) _descriptor_format = "2i4" def __new__(cls, dtype, repeat=None, max=None): obj = super().__new__(cls, cls._descriptor_format) obj.format = NUMPY2FITS[dtype] obj.dtype = dtype obj.repeat = repeat obj.max = max return obj def __getnewargs__(self): return (self.dtype, self.repeat, self.max) @classmethod def from_tform(cls, format): m = cls._format_re.match(format) if not m or m.group("dtype") not in FITS2NUMPY: raise VerifyError(f"Invalid column format: {format}") repeat = m.group("repeat") array_dtype = m.group("dtype") max = m.group("max") if not max: max = None return cls(FITS2NUMPY[array_dtype], repeat=repeat, max=max) @property def tform(self): repeat = "" if self.repeat is None else self.repeat max = "" if self.max is None else self.max return f"{repeat}{self._format_code}{self.format}({max})"
_FormatP
python
django-extensions__django-extensions
tests/management/commands/test_update_permissions.py
{ "start": 405, "end": 2905 }
class ____(TestCase): def setUp(self): class PermModel(models.Model): class Meta: app_label = "django_extensions" permissions = (("test_permission", "test_permission"),) class TestModel(models.Model): class Meta: app_label = "testapp" permissions = (("testapp_permission", "testapp_permission"),) def test_works(self): original_stdout = sys.stdout out = sys.stdout = StringIO() call_command("update_permissions", stdout=out, verbosity=3) sys.stdout = original_stdout self.assertIn("Can change perm model", out.getvalue()) def test_should_reload_permission_only_for_specified_apps(self): original_stdout = sys.stdout out = sys.stdout = StringIO() call_command("update_permissions", "--apps=testapp", stdout=out, verbosity=3) sys.stdout = original_stdout self.assertNotIn( f"{DJANGO_EXTENSIONS_NAME} | perm model | Can add perm model", out.getvalue(), ) self.assertIn( f"{TESTAPP_NAME} | test model | Can add test model", out.getvalue() ) def test_should_reload_permission_only_for_all_apps(self): original_stdout = sys.stdout out = sys.stdout = StringIO() call_command("update_permissions", verbosity=3) sys.stdout = original_stdout self.assertIn( f"{DJANGO_EXTENSIONS_NAME} | perm model | Can add perm model", out.getvalue(), ) self.assertIn( f"{TESTAPP_NAME} | test model | Can add test model", out.getvalue() ) def test_should_update_permission_if_name_changed(self): original_stdout = sys.stdout out = sys.stdout = StringIO() call_command("update_permissions", verbosity=3, create_only=True) self.assertIn( f"{TESTAPP_NAME} | test model | testapp_permission", out.getvalue() ) testapp_permission = Permission.objects.get(name="testapp_permission") testapp_permission.name = "testapp_permission_wrong" testapp_permission.save() call_command("update_permissions", verbosity=3, update_only=True) sys.stdout = original_stdout self.assertIn( f"'{TESTAPP_NAME} | test model | testapp_permission_wrong' to '{TESTAPP_NAME} | test model | testapp_permission'", out.getvalue(), )
UpdatePermissionsTests
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 730260, "end": 730526 }
class ____(sgqlc.types.Type, Contribution): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("issue",) issue = sgqlc.types.Field(sgqlc.types.non_null("Issue"), graphql_name="issue")
CreatedIssueContribution
python
pytorch__pytorch
test/torch_np/numpy_tests/core/test_scalar_ctors.py
{ "start": 2333, "end": 3328 }
class ____(TestCase): """gh-15467""" def _do_test(self, t1, t2): x = t1(2) arr = np.array(x, dtype=t2) # type should be preserved exactly if t2 is None: assert arr.dtype.type is t1 else: assert arr.dtype.type is t2 arr1 = np.asarray(x, dtype=t2) if t2 is None: assert arr1.dtype.type is t1 else: assert arr1.dtype.type is t2 @parametrize("t1", int_types + uint_types) @parametrize("t2", int_types + uint_types + [None]) def test_integers(self, t1, t2): return self._do_test(t1, t2) @parametrize("t1", float_types) @parametrize("t2", float_types + [None]) def test_reals(self, t1, t2): return self._do_test(t1, t2) @parametrize("t1", cfloat_types) @parametrize("t2", cfloat_types + [None]) def test_complex(self, t1, t2): return self._do_test(t1, t2) if __name__ == "__main__": run_tests()
TestArrayFromScalar
python
pypa__pip
src/pip/_internal/utils/temp_dir.py
{ "start": 994, "end": 2079 }
class ____: """Manages temp directory behavior""" def __init__(self) -> None: self._should_delete: dict[str, bool] = {} def set_delete(self, kind: str, value: bool) -> None: """Indicate whether a TempDirectory of the given kind should be auto-deleted. """ self._should_delete[kind] = value def get_delete(self, kind: str) -> bool: """Get configured auto-delete flag for a given TempDirectory type, default True. """ return self._should_delete.get(kind, True) _tempdir_registry: TempDirectoryTypeRegistry | None = None @contextmanager def tempdir_registry() -> Generator[TempDirectoryTypeRegistry, None, None]: """Provides a scoped global tempdir registry that can be used to dictate whether directories should be deleted. """ global _tempdir_registry old_tempdir_registry = _tempdir_registry _tempdir_registry = TempDirectoryTypeRegistry() try: yield _tempdir_registry finally: _tempdir_registry = old_tempdir_registry
TempDirectoryTypeRegistry
python
walkccc__LeetCode
solutions/2340. Minimum Adjacent Swaps to Make a Valid Array/2340.py
{ "start": 0, "end": 714 }
class ____: def minimumSwaps(self, nums: list[int]) -> int: minIndex = self._getLeftmostMinIndex(nums) maxIndex = self._getRightmostMaxIndex(nums) swaps = minIndex + (len(nums) - 1 - maxIndex) return swaps if minIndex <= maxIndex else swaps - 1 def _getLeftmostMinIndex(self, nums: list[int]) -> int: mn = nums[0] minIndex = 0 for i in range(1, len(nums)): if nums[i] < mn: mn = nums[i] minIndex = i return minIndex def _getRightmostMaxIndex(self, nums: list[int]) -> int: mx = nums[-1] maxIndex = len(nums) - 1 for i in range(len(nums) - 2, -1, -1): if nums[i] > mx: mx = nums[i] maxIndex = i return maxIndex
Solution
python
google__jax
tests/api_test.py
{ "start": 259448, "end": 260134 }
class ____(jtu.JaxTestCase): def test_sharding_constraint_as_noop(self): def f(x): return jax.lax.with_sharding_constraint( x, jax.sharding.SingleDeviceSharding(jax.devices()[0])) def wsc_as_noop(ctx, operand, *args, **kwargs): del ctx, args, kwargs return [operand] rules = ((jax.lax.sharding_constraint_p, wsc_as_noop),) lowered_ir = ( jax.jit(f) .trace(jax.ShapeDtypeStruct((2, 4), dtype=jnp.bfloat16)) .lower(_private_parameters=mlir.LoweringParameters( override_lowering_rules=rules)) .as_text() ) self.assertNotIn("stablehlo.custom_call @Sharding", lowered_ir)
OverrideLoweringTest
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pyflakes/F841_0.py
{ "start": 3084, "end": 3175 }
class ____: def foo(): nonlocal __class__ __class__ = 1
NonlocalDunderClass
python
scipy__scipy
scipy/optimize/tests/test__shgo.py
{ "start": 7557, "end": 7933 }
class ____(StructTestFunction): def f(self, x): return ((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2 + (x[2] - 0.5) ** 2 + (x[3] - 0.5) ** 2) g = None cons = wrap_constraints(g) test_s = StructTestS(bounds=[(0, 2.0), ] * 4, expected_fun=0.0, expected_x=np.ones(4) - 0.5 )
StructTestS
python
keon__algorithms
tests/test_bfs.py
{ "start": 104, "end": 848 }
class ____(unittest.TestCase): def test_count_islands(self): grid_1 = [[1, 1, 1, 1, 0], [1, 1, 0, 1, 0], [1, 1, 0, 0, 0], [0, 0, 0, 0, 0]] self.assertEqual(1, count_islands(grid_1)) grid_2 = [[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1]] self.assertEqual(3, count_islands(grid_2)) grid_3 = [[1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 0, 0]] self.assertEqual(3, count_islands(grid_3)) grid_4 = [[1, 1, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 0, 0]] self.assertEqual(5, count_islands(grid_4))
TestCountIslands
python
pytorch__pytorch
test/inductor/test_lookup_table.py
{ "start": 5862, "end": 26659 }
class ____(BaseLookupTableTest): """Consolidated tests for lookup table functionality""" def test_lookup_mismatch(self): """Test mismatch scenario in lookup table""" kernel_inputs = self.create_mock_mm_kernel_inputs() lookup_table_data = { self.create_lookup_key("mm", kernel_inputs): [self.create_config("triton")] } with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() # looking for addmm but created the entry with mm - should mismatch the key and return # an empty result result = test_choices.lookup_template_configs( kernel_inputs, "addmm", ["triton"] ) self.assertEqual(result, {}) def test_successful_lookup_with_template_filtering(self): """Test successful lookup that filters configs by template_id""" kernel_inputs = self.create_mock_mm_kernel_inputs() config_list = [ self.create_config("triton", BLOCK_M=128, BLOCK_N=128), self.create_config("triton", BLOCK_M=64, BLOCK_N=64), self.create_config("tma", BLOCK_M=256, BLOCK_N=128), self.create_config("decompose_k", k_split=4), ] lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): config_list} with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() # Test triton template filtering result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) assert result is not None, "Result should not be None" self.assertEqual(len(result["triton"]), 2) for config in result["triton"]: self.assertNotIn("template_id", config) self.assertIn("BLOCK_M", config) # Test tma template filtering result = test_choices.lookup_template_configs(kernel_inputs, "mm", ["tma"]) assert result is not None, "Result should not be None" self.assertEqual(len(result["tma"]), 1) self.assertNotIn("template_id", result["tma"][0]) self.assertEqual(result["tma"][0]["BLOCK_M"], 256) # Test decompose_k template filtering result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["decompose_k"] ) assert result is not None, "Result should not be None" self.assertEqual(len(result["decompose_k"]), 1) self.assertNotIn("template_id", result["decompose_k"][0]) self.assertEqual(result["decompose_k"][0]["k_split"], 4) def test_empty_table(self): """Test when template lookup table is empty""" kernel_inputs = self.create_mock_mm_kernel_inputs() with patch.object(inductor_config.lookup_table, "table", {}): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) self.assertEqual(result, {}) def test_validation_error(self): """Test validation error for invalid config""" kernel_inputs = self.create_mock_mm_kernel_inputs() invalid_config = {"BLOCK_M": 128} # missing template_id lookup_table_data = { self.create_lookup_key("mm", kernel_inputs): [invalid_config] } with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() with self.assertRaises(ValueError) as cm: test_choices.lookup_template_configs(kernel_inputs, "mm", ["triton"]) self.assertIn("missing required 'template_id' field", str(cm.exception)) def test_cpu_input_returns_empty(self): """Test that CPU tensor input returns empty dict""" # Create kernel inputs with CPU tensors kernel_inputs = self.create_mock_mm_kernel_inputs(device=torch.device("cpu")) lookup_table_data = { self.create_lookup_key("mm", kernel_inputs): [self.create_config("triton")] } with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) self.assertEqual(result, {}) # Should return empty dict for CPU def test_multiple_calls_work(self): """Test that calling lookup functions multiple times works correctly""" kernel_inputs = self.create_mock_mm_kernel_inputs() config_list = [ self.create_config("triton", BLOCK_M=128), self.create_config("tma", BLOCK_M=256), ] lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): config_list} with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() # First calls result1 = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) result2 = test_choices.lookup_template_configs(kernel_inputs, "mm", ["tma"]) assert result1 is not None, "Result1 should not be None" assert result2 is not None, "Result2 should not be None" self.assertEqual(len(result1["triton"]), 1) self.assertEqual(len(result2["tma"]), 1) # Second calls should work the same result3 = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) result4 = test_choices.lookup_template_configs(kernel_inputs, "mm", ["tma"]) assert result3 is not None, "Result3 should not be None" assert result4 is not None, "Result4 should not be None" self.assertEqual(len(result3["triton"]), 1) self.assertEqual(len(result4["tma"]), 1) def test_batch_lookup_mixed_entries(self): """Test batch lookup where some templates have entries and others don't""" kernel_inputs = self.create_mock_mm_kernel_inputs() config_list = [ self.create_config("triton", BLOCK_M=128), self.create_config("tma", BLOCK_M=256), # No decompose_k config in lookup table ] lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): config_list} with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() # Test batch lookup with mixed results result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton", "tma", "decompose_k"] ) assert result is not None, "Result should not be None" # Should have entries for triton and tma, but not decompose_k self.assertIn("triton", result) self.assertIn("tma", result) self.assertNotIn("decompose_k", result) self.assertEqual(len(result["triton"]), 1) self.assertEqual(len(result["tma"]), 1) self.assertEqual(result["triton"][0]["BLOCK_M"], 128) self.assertEqual(result["tma"][0]["BLOCK_M"], 256) @parametrize( "config_hash,template_hash,expected_kept", [ # Hash matching (config kept) ("hash123", "hash123", True), # Hash mismatch (config filtered) ("hash123", "hash456", False), # Config without hash (config kept) (None, "hash123", True), # Template without hash (config kept) ("hash123", None, True), # Both None (config kept) (None, None, True), ], ) def test_template_hash_checking(self, config_hash, template_hash, expected_kept): """Test template hash validation behavior""" kernel_inputs = self.create_mock_mm_kernel_inputs() config = self.create_config("triton", BLOCK_M=128, BLOCK_N=64) if config_hash is not None: config["template_hash"] = config_hash template_hash_map = ( {"triton": template_hash} if template_hash is not None else {} ) lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): [config]} with ( patch.object(inductor_config.lookup_table, "table", lookup_table_data), patch.object(inductor_config.lookup_table, "check_src_hash", True), ): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"], template_hash_map ) if expected_kept: assert result is not None, "Result should not be None" self.assertIn("triton", result) self.assertEqual(len(result["triton"]), 1) # template_hash should be removed from returned config self.assertNotIn("template_hash", result["triton"][0]) else: # Config was filtered out due to hash mismatch self.assertEqual(result, {}) def test_template_hash_checking_disabled(self): """Test that hash checking is skipped when config flag is disabled""" kernel_inputs = self.create_mock_mm_kernel_inputs() # Create config with mismatching hash config = self.create_config("triton", BLOCK_M=128, template_hash="hash123") # Provide different template hash that would normally cause filtering template_hash_map = {"triton": "hash456"} lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): [config]} with ( patch.object(inductor_config.lookup_table, "table", lookup_table_data), patch.object( inductor_config.lookup_table, "check_src_hash", False, ), ): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"], template_hash_map ) # Should keep config even with mismatching hash since checking is disabled assert result is not None, "Result should not be None" self.assertIn("triton", result) self.assertEqual(len(result["triton"]), 1) # template_hash should still be removed from returned config self.assertNotIn("template_hash", result["triton"][0]) def test_template_hash_mixed_scenarios(self): """Test mixed hash scenarios with multiple configs""" kernel_inputs = self.create_mock_mm_kernel_inputs() config_list = [ self.create_config( "triton", BLOCK_M=128, template_hash="correct_hash" ), # Should be kept self.create_config( "triton", BLOCK_M=64, template_hash="wrong_hash" ), # Should be filtered self.create_config("triton", BLOCK_M=32), # No hash, should be kept ] template_hash_map = {"triton": "correct_hash"} lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): config_list} with ( patch.object(inductor_config.lookup_table, "table", lookup_table_data), patch.object(inductor_config.lookup_table, "check_src_hash", True), ): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"], template_hash_map ) assert result is not None, "Result should not be None" self.assertIn("triton", result) # Should keep 2 configs: the one with correct hash and the one without hash self.assertEqual(len(result["triton"]), 2) # Check that kept configs have expected BLOCK_M values kept_block_ms = [config["BLOCK_M"] for config in result["triton"]] self.assertIn(128, kept_block_ms) # Config with correct hash self.assertIn(32, kept_block_ms) # Config without hash self.assertNotIn( 64, kept_block_ms ) # Config with wrong hash should be filtered # template_hash should be removed from returned configs for config in result["triton"]: self.assertNotIn("template_hash", config) @parametrize( "config_hash,description", [ ("definitely_malformed_hash_!@#$%", "malformed hash"), (12345, "non-string hash"), ("", "empty string hash"), (None, "missing hash field"), ], ) def test_hash_checking_disabled_edge_cases(self, config_hash, description): """Test that configs are kept when hash checking is disabled, regardless of hash validity""" kernel_inputs = self.create_mock_mm_kernel_inputs() # Create config with potentially problematic hash config = self.create_config("triton", BLOCK_M=128) if config_hash is not None: config["template_hash"] = config_hash # If config_hash is None, don't add template_hash field at all # Provide a valid template hash that would normally be used for comparison template_hash_map = {"triton": "valid_template_hash_abc123"} lookup_table_data = {self.create_lookup_key("mm", kernel_inputs): [config]} with ( patch.object(inductor_config.lookup_table, "table", lookup_table_data), patch.object(inductor_config.lookup_table, "check_src_hash", False), ): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"], template_hash_map ) # Should keep config regardless of hash validity since checking is disabled assert result is not None, f"Result should not be None for {description}" self.assertIn( "triton", result, f"Should have triton result for {description}" ) self.assertEqual( len(result["triton"]), 1, f"Should have 1 config for {description}" ) # template_hash should be removed from returned config self.assertNotIn( "template_hash", result["triton"][0], f"template_hash should be removed from result for {description}", ) # Other config fields should be preserved self.assertEqual( result["triton"][0]["BLOCK_M"], 128, f"BLOCK_M should be preserved for {description}", ) @parametrize( "table_has_device_key,lookup_device_matches,expected_found", [ # Device-specific key in table, same device -> found (True, True, True), # Device-specific key in table, different device -> not found (True, False, False), # Device-agnostic key in table, same device -> found (False, True, True), # Device-agnostic key in table, different device -> found (device-agnostic) (False, False, True), ], ) def test_device_key_lookup_scenarios( self, table_has_device_key, lookup_device_matches, expected_found ): """Test lookup behavior with device-specific vs device-agnostic keys""" # Create kernel inputs for "device_1" (our reference device) kernel_inputs_device1 = self.create_mock_mm_kernel_inputs() # Create config config = self.create_config("triton", BLOCK_M=128) # Create a test choices class for generating the table key class TableKeyChoices(LookupTableChoices): @staticmethod def _get_device_key(device): if device.type != "cuda": return None return "device_1" # Always device_1 for table key generation table_key_choices = TableKeyChoices() # Generate table key based on whether it should include device if table_has_device_key: table_key = table_key_choices.make_lookup_key( kernel_inputs_device1, "mm", include_device=True ) else: table_key = table_key_choices.make_lookup_key( kernel_inputs_device1, "mm", include_device=False ) lookup_table_data = {table_key: [config]} # Create test choices class for the actual lookup with different device behavior if lookup_device_matches: class TestChoices(LookupTableChoices): @staticmethod def _get_device_key(device): if device.type != "cuda": return None return "device_1" else: class TestChoices(LookupTableChoices): @staticmethod def _get_device_key(device): if device.type != "cuda": return None return "device_2" with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = TestChoices() result = test_choices.lookup_template_configs( kernel_inputs_device1, "mm", ["triton"] ) if expected_found: assert result is not None, ( f"Result should not be None when expected_found={expected_found}" ) self.assertIn("triton", result, "Should have triton result when found") self.assertEqual(len(result["triton"]), 1, "Should have exactly 1 config") self.assertEqual( result["triton"][0]["BLOCK_M"], 128, "Config should be preserved" ) else: self.assertEqual( result, {}, f"Should return empty dict when expected_found={expected_found}", ) def test_device_key_priority(self): """Test that device-specific keys take priority over device-agnostic keys""" kernel_inputs = self.create_mock_mm_kernel_inputs() # Create two different configs device_specific_config = self.create_config( "triton", BLOCK_M=256 ) # Different BLOCK_M device_agnostic_config = self.create_config("triton", BLOCK_M=128) # Create a test choices instance to generate keys key_choices = LookupTableChoices() # Create both key types for the same inputs device_key = key_choices.make_lookup_key( kernel_inputs, "mm", include_device=True ) device_agnostic_key = key_choices.make_lookup_key( kernel_inputs, "mm", include_device=False ) # Put both in the table lookup_table_data = { device_key: [device_specific_config], device_agnostic_key: [device_agnostic_config], } with patch.object(inductor_config.lookup_table, "table", lookup_table_data): test_choices = LookupTableChoices() result = test_choices.lookup_template_configs( kernel_inputs, "mm", ["triton"] ) # Should get device-specific config (BLOCK_M=256), not device-agnostic (BLOCK_M=128) assert result is not None, "Result should not be None" self.assertIn("triton", result) self.assertEqual(len(result["triton"]), 1) self.assertEqual( result["triton"][0]["BLOCK_M"], 256, "Should use device-specific config when both exist", ) def test_make_lookup_key_variants(self): """Test the make_lookup_key_variants helper function""" kernel_inputs = self.create_mock_mm_kernel_inputs() test_choices = LookupTableChoices() device_key, device_agnostic_key = test_choices.make_lookup_key_variants( kernel_inputs, "mm" ) # Both should be strings self.assertIsInstance(device_key, str) self.assertIsInstance(device_agnostic_key, str) # Device key should be longer (contains device info) self.assertGreater(len(device_key), len(device_agnostic_key)) # Device-agnostic key should be contained in device key (as a substring after device part) self.assertIn(device_agnostic_key.split("+mm")[0], device_key)
TestLookupTable
python
PyCQA__pylint
pylint/checkers/design_analysis.py
{ "start": 9880, "end": 24682 }
class ____(BaseChecker): """Checker of potential misdesigns. Checks for sign of poor/misdesign: * number of methods, attributes, local variables... * size, complexity of functions, methods """ # configuration section name name = "design" # messages msgs = MSGS # configuration options options = ( ( "max-args", { "default": 5, "type": "int", "metavar": "<int>", "help": "Maximum number of arguments for function / method.", }, ), ( "max-positional-arguments", { "default": 5, "type": "int", "metavar": "<int>", "help": "Maximum number of positional arguments for function / method.", }, ), ( "max-locals", { "default": 15, "type": "int", "metavar": "<int>", "help": "Maximum number of locals for function / method body.", }, ), ( "max-returns", { "default": 6, "type": "int", "metavar": "<int>", "help": "Maximum number of return / yield for function / " "method body.", }, ), ( "max-branches", { "default": 12, "type": "int", "metavar": "<int>", "help": "Maximum number of branch for function / method body.", }, ), ( "max-statements", { "default": 50, "type": "int", "metavar": "<int>", "help": "Maximum number of statements in function / method body.", }, ), ( "max-parents", { "default": 7, "type": "int", "metavar": "<num>", "help": "Maximum number of parents for a class (see R0901).", }, ), ( "ignored-parents", { "default": (), "type": "csv", "metavar": "<comma separated list of class names>", "help": "List of qualified class names to ignore when counting class parents (see R0901)", }, ), ( "max-attributes", { "default": 7, "type": "int", "metavar": "<num>", "help": "Maximum number of attributes for a class \ (see R0902).", }, ), ( "min-public-methods", { "default": 2, "type": "int", "metavar": "<num>", "help": "Minimum number of public methods for a class \ (see R0903).", }, ), ( "max-public-methods", { "default": 20, "type": "int", "metavar": "<num>", "help": "Maximum number of public methods for a class \ (see R0904).", }, ), ( "max-bool-expr", { "default": 5, "type": "int", "metavar": "<num>", "help": "Maximum number of boolean expressions in an if " "statement (see R0916).", }, ), ( "exclude-too-few-public-methods", { "default": [], "type": "regexp_csv", "metavar": "<pattern>[,<pattern>...]", "help": "List of regular expressions of class ancestor names " "to ignore when counting public methods (see R0903)", }, ), ) def __init__(self, linter: PyLinter) -> None: super().__init__(linter) self._returns: list[int] self._branches: defaultdict[nodes.LocalsDictNodeNG, int] self._stmts: list[int] def open(self) -> None: """Initialize visit variables.""" self.linter.stats.reset_node_count() self._returns = [] self._branches = defaultdict(int) self._stmts = [] self._exclude_too_few_public_methods = ( self.linter.config.exclude_too_few_public_methods ) def _inc_all_stmts(self, amount: int) -> None: for i, _ in enumerate(self._stmts): self._stmts[i] += amount @only_required_for_messages( "too-many-ancestors", "too-many-instance-attributes", "too-few-public-methods", "too-many-public-methods", ) def visit_classdef(self, node: nodes.ClassDef) -> None: """Check size of inheritance hierarchy and number of instance attributes.""" parents = _get_parents( node, STDLIB_CLASSES_IGNORE_ANCESTOR.union(self.linter.config.ignored_parents), ) nb_parents = len(parents) if nb_parents > self.linter.config.max_parents: self.add_message( "too-many-ancestors", node=node, args=(nb_parents, self.linter.config.max_parents), ) # Something at inference time is modifying instance_attrs to add # properties from parent classes. Given how much we cache inference # results, mutating instance_attrs can become a real mess. Filter # them out here until the root cause is solved. # https://github.com/pylint-dev/astroid/issues/2273 root = node.root() filtered_attrs = [ k for (k, v) in node.instance_attrs.items() if v[0].root() is root ] if len(filtered_attrs) > self.linter.config.max_attributes: self.add_message( "too-many-instance-attributes", node=node, args=(len(filtered_attrs), self.linter.config.max_attributes), ) @only_required_for_messages("too-few-public-methods", "too-many-public-methods") def leave_classdef(self, node: nodes.ClassDef) -> None: """Check number of public methods.""" my_methods = sum( 1 for method in node.mymethods() if not method.name.startswith("_") ) # Does the class contain less than n public methods ? # This checks only the methods defined in the current class, # since the user might not have control over the classes # from the ancestors. It avoids some false positives # for classes such as unittest.TestCase, which provides # a lot of assert methods. It doesn't make sense to warn # when the user subclasses TestCase to add his own tests. if my_methods > self.linter.config.max_public_methods: self.add_message( "too-many-public-methods", node=node, args=(my_methods, self.linter.config.max_public_methods), ) # Stop here if the class is excluded via configuration. if node.type == "class" and self._exclude_too_few_public_methods: for ancestor in node.ancestors(): if any( pattern.match(ancestor.qname()) for pattern in self._exclude_too_few_public_methods ): return # Stop here for exception, metaclass, interface classes and other # classes for which we don't need to count the methods. if node.type != "class" or _is_exempt_from_public_methods(node): return # Does the class contain more than n public methods ? # This checks all the methods defined by ancestors and # by the current class. all_methods = _count_methods_in_class(node) if all_methods < self.linter.config.min_public_methods: self.add_message( "too-few-public-methods", node=node, args=(all_methods, self.linter.config.min_public_methods), ) @only_required_for_messages( "too-many-return-statements", "too-many-branches", "too-many-arguments", "too-many-locals", "too-many-positional-arguments", "too-many-statements", "keyword-arg-before-vararg", ) def visit_functiondef(self, node: nodes.FunctionDef) -> None: """Check function name, docstring, arguments, redefinition, variable names, max locals. """ # init branch and returns counters self._returns.append(0) # check number of arguments args = node.args.args + node.args.posonlyargs + node.args.kwonlyargs pos_args = node.args.args + node.args.posonlyargs ignored_argument_names = self.linter.config.ignored_argument_names if args is not None: ignored_args_num = 0 if ignored_argument_names: ignored_pos_args_num = sum( 1 for arg in pos_args if ignored_argument_names.match(arg.name) ) ignored_kwonly_args_num = sum( 1 for arg in node.args.kwonlyargs if ignored_argument_names.match(arg.name) ) ignored_args_num = ignored_pos_args_num + ignored_kwonly_args_num argnum = len(args) - ignored_args_num if argnum > self.linter.config.max_args: self.add_message( "too-many-arguments", node=node, args=(len(args), self.linter.config.max_args), ) pos_args_count = ( len(args) - len(node.args.kwonlyargs) - ignored_pos_args_num ) if pos_args_count > self.linter.config.max_positional_arguments: self.add_message( "too-many-positional-arguments", node=node, args=(pos_args_count, self.linter.config.max_positional_arguments), confidence=HIGH, ) else: ignored_args_num = 0 # check number of local variables locnum = len(node.locals) - ignored_args_num # decrement number of local variables if '_' is one of them if "_" in node.locals: locnum -= 1 if locnum > self.linter.config.max_locals: self.add_message( "too-many-locals", node=node, args=(locnum, self.linter.config.max_locals), ) # init new statements counter self._stmts.append(1) visit_asyncfunctiondef = visit_functiondef @only_required_for_messages( "too-many-return-statements", "too-many-branches", "too-many-arguments", "too-many-locals", "too-many-statements", ) def leave_functiondef(self, node: nodes.FunctionDef) -> None: """Most of the work is done here on close: checks for max returns, branch, return in __init__. """ returns = self._returns.pop() if returns > self.linter.config.max_returns: self.add_message( "too-many-return-statements", node=node, args=(returns, self.linter.config.max_returns), ) branches = self._branches[node] if branches > self.linter.config.max_branches: self.add_message( "too-many-branches", node=node, args=(branches, self.linter.config.max_branches), ) # check number of statements stmts = self._stmts.pop() if stmts > self.linter.config.max_statements: self.add_message( "too-many-statements", node=node, args=(stmts, self.linter.config.max_statements), ) leave_asyncfunctiondef = leave_functiondef def visit_return(self, _: nodes.Return) -> None: """Count number of returns.""" if not self._returns: return # return outside function, reported by the base checker self._returns[-1] += 1 def visit_default(self, node: nodes.NodeNG) -> None: """Default visit method -> increments the statements counter if necessary. """ if node.is_statement: self._inc_all_stmts(1) def visit_try(self, node: nodes.Try) -> None: """Increments the branches counter.""" branches = len(node.handlers) if node.orelse: branches += 1 if node.finalbody: branches += 1 self._inc_branch(node, branches) self._inc_all_stmts(branches) @only_required_for_messages("too-many-boolean-expressions", "too-many-branches") def visit_if(self, node: nodes.If) -> None: """Increments the branches counter and checks boolean expressions.""" self._check_boolean_expressions(node) branches = 1 # don't double count If nodes coming from some 'elif' if node.orelse and not ( len(node.orelse) == 1 and isinstance(node.orelse[0], nodes.If) ): branches += 1 self._inc_branch(node, branches) self._inc_all_stmts(branches) def _check_boolean_expressions(self, node: nodes.If) -> None: """Go through "if" node `node` and count its boolean expressions if the 'if' node test is a BoolOp node. """ condition = node.test if not isinstance(condition, nodes.BoolOp): return nb_bool_expr = _count_boolean_expressions(condition) if nb_bool_expr > self.linter.config.max_bool_expr: self.add_message( "too-many-boolean-expressions", node=condition, args=(nb_bool_expr, self.linter.config.max_bool_expr), ) def visit_while(self, node: nodes.While) -> None: """Increments the branches counter.""" branches = 1 if node.orelse: branches += 1 self._inc_branch(node, branches) visit_for = visit_while def visit_match(self, node: nodes.Match) -> None: """Increments the branches counter.""" self._inc_all_stmts(1) self._inc_branch(node, len(node.cases)) def _inc_branch(self, node: nodes.NodeNG, branchesnum: int = 1) -> None: """Increments the branches counter.""" self._branches[node.scope()] += branchesnum def register(linter: PyLinter) -> None: linter.register_checker(MisdesignChecker(linter))
MisdesignChecker
python
getsentry__sentry
src/sentry/search/events/fields.py
{ "start": 34059, "end": 34764 }
class ____(NumberRange): def __init__(self, name: str, start: float | None, end: float | None): super().__init__(name, start, end) self.has_default = True def get_default(self, params: ParamsType) -> int: if not params or not params.get("start") or not params.get("end"): raise InvalidFunctionArgument("function called without default") elif not isinstance(params.get("start"), datetime) or not isinstance( params.get("end"), datetime ): raise InvalidFunctionArgument("function called with invalid default") interval = (params["end"] - params["start"]).total_seconds() return int(interval)
IntervalDefault
python
plotly__plotly.py
plotly/graph_objs/histogram2d/_marker.py
{ "start": 233, "end": 2783 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "histogram2d" _path_str = "histogram2d.marker" _valid_props = {"color", "colorsrc"} @property def color(self): """ Sets the aggregation data. The 'color' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for `color`. The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val @property def _prop_descriptions(self): return """\ color Sets the aggregation data. colorsrc Sets the source reference on Chart Studio Cloud for `color`. """ def __init__(self, arg=None, color=None, colorsrc=None, **kwargs): """ Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram2d.Marker` color Sets the aggregation data. colorsrc Sets the source reference on Chart Studio Cloud for `color`. Returns ------- Marker """ super().__init__("marker") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.histogram2d.Marker constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram2d.Marker`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._set_property("colorsrc", arg, colorsrc) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Marker
python
rq__rq
tests/test_timeouts.py
{ "start": 519, "end": 2639 }
class ____(RQTestCase): def test_timer_death_penalty(self): """Ensure TimerDeathPenalty works correctly.""" q = Queue(connection=self.connection) q.empty() finished_job_registry = FinishedJobRegistry(connection=self.connection) failed_job_registry = FailedJobRegistry(connection=self.connection) # make sure death_penalty_class persists w = TimerBasedWorker([q], connection=self.connection) self.assertIsNotNone(w) self.assertEqual(w.death_penalty_class, TimerDeathPenalty) # Test short-running job doesn't raise JobTimeoutException job = q.enqueue(thread_friendly_sleep_func, args=(1,), job_timeout=3) w.work(burst=True) job.refresh() self.assertIn(job, finished_job_registry) # Test long-running job raises JobTimeoutException job = q.enqueue(thread_friendly_sleep_func, args=(5,), job_timeout=3) w.work(burst=True) self.assertIn(job, failed_job_registry) job.refresh() self.assertIn('rq.timeouts.JobTimeoutException', job.exc_info) # Test negative timeout doesn't raise JobTimeoutException, # which implies an unintended immediate timeout. job = q.enqueue(thread_friendly_sleep_func, args=(1,), job_timeout=-1) w.work(burst=True) job.refresh() self.assertIn(job, finished_job_registry) @patch('rq.timeouts.signal') def test_get_default_death_penalty_class(self, mock_signal): """get_default_death_penalty_class() returns the correct class.""" # By default, the mock object has a SIGALRM attribute, so # get_default_death_penalty_class returns UnixSignalDeathPenalty self.assertTrue(hasattr(mock_signal, 'SIGALRM')) self.assertEqual(get_default_death_penalty_class(), UnixSignalDeathPenalty) # It should return TimerDeathPenalty when SIGALRM is not available delattr(mock_signal, 'SIGALRM') self.assertFalse(hasattr(mock_signal, 'SIGALRM')) self.assertEqual(get_default_death_penalty_class(), TimerDeathPenalty)
TestTimeouts
python
apache__airflow
providers/openai/src/airflow/providers/openai/triggers/openai.py
{ "start": 1050, "end": 4439 }
class ____(BaseTrigger): """Triggers OpenAI Batch API.""" def __init__( self, conn_id: str, batch_id: str, poll_interval: float, end_time: float, ) -> None: super().__init__() self.conn_id = conn_id self.poll_interval = poll_interval self.batch_id = batch_id self.end_time = end_time def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize OpenAIBatchTrigger arguments and class path.""" return ( "airflow.providers.openai.triggers.openai.OpenAIBatchTrigger", { "conn_id": self.conn_id, "batch_id": self.batch_id, "poll_interval": self.poll_interval, "end_time": self.end_time, }, ) async def run(self) -> AsyncIterator[TriggerEvent]: """Make connection to OpenAI Client, and poll the status of batch.""" hook = OpenAIHook(conn_id=self.conn_id) try: while (batch := hook.get_batch(self.batch_id)) and BatchStatus.is_in_progress(batch.status): if self.end_time < time.time(): yield TriggerEvent( { "status": "error", "message": f"Batch {self.batch_id} has not reached a terminal status after " f"{time.time() - self.end_time} seconds.", "batch_id": self.batch_id, } ) return await asyncio.sleep(self.poll_interval) if batch.status == BatchStatus.COMPLETED: yield TriggerEvent( { "status": "success", "message": f"Batch {self.batch_id} has completed successfully.", "batch_id": self.batch_id, } ) elif batch.status in {BatchStatus.CANCELLED, BatchStatus.CANCELLING}: yield TriggerEvent( { "status": "cancelled", "message": f"Batch {self.batch_id} has been cancelled.", "batch_id": self.batch_id, } ) elif batch.status == BatchStatus.FAILED: yield TriggerEvent( { "status": "error", "message": f"Batch failed:\n{self.batch_id}", "batch_id": self.batch_id, } ) elif batch.status == BatchStatus.EXPIRED: yield TriggerEvent( { "status": "error", "message": f"Batch couldn't be completed within the hour time window :\n{self.batch_id}", "batch_id": self.batch_id, } ) yield TriggerEvent( { "status": "error", "message": f"Batch {self.batch_id} has failed.", "batch_id": self.batch_id, } ) except Exception as e: yield TriggerEvent({"status": "error", "message": str(e), "batch_id": self.batch_id})
OpenAIBatchTrigger
python
encode__django-rest-framework
tests/test_renderers.py
{ "start": 20627, "end": 21344 }
class ____(TestCase): def setUp(self): class TestSerializer(serializers.Serializer): test_field = serializers.CharField() self.renderer = HTMLFormRenderer() self.serializer = TestSerializer(data={}) def test_render_with_default_args(self): self.serializer.is_valid() renderer = HTMLFormRenderer() result = renderer.render(self.serializer.data) self.assertIsInstance(result, SafeText) def test_render_with_provided_args(self): self.serializer.is_valid() renderer = HTMLFormRenderer() result = renderer.render(self.serializer.data, None, {}) self.assertIsInstance(result, SafeText)
TestHTMLFormRenderer
python
astropy__astropy
astropy/units/tests/test_logarithmic.py
{ "start": 840, "end": 6020 }
class ____: def test_logarithmic_units(self): """Check logarithmic units are set up correctly.""" assert u.dB.to(u.dex) == 0.1 assert u.dex.to(u.mag) == -2.5 assert u.mag.to(u.dB) == -4 @pytest.mark.parametrize("lu_unit, lu_cls", list(zip(lu_units, lu_subclasses))) def test_callable_units(self, lu_unit, lu_cls): assert isinstance(lu_unit, u.UnitBase) assert callable(lu_unit) assert lu_unit._function_unit_class is lu_cls @pytest.mark.parametrize("lu_unit", lu_units) def test_equality_to_normal_unit_for_dimensionless(self, lu_unit): lu = lu_unit() assert lu == lu._default_function_unit # eg, MagUnit() == u.mag assert lu._default_function_unit == lu # and u.mag == MagUnit() @pytest.mark.parametrize("physical_unit", pu_sample) @pytest.mark.parametrize("lu_unit", lu_units) def test_call_units(self, lu_unit, physical_unit): """Create a LogUnit subclass using the callable unit and physical unit, and do basic check that output is right.""" lu1 = lu_unit(physical_unit) assert lu1.physical_unit == physical_unit assert lu1.function_unit == lu1._default_function_unit def test_call_invalid_unit(self): with pytest.raises(TypeError): u.mag([]) with pytest.raises(ValueError): u.mag(u.mag()) @pytest.mark.parametrize("physical_unit", pu_sample) @pytest.mark.parametrize("lu_cls", lu_subclasses + [u.LogUnit]) def test_subclass_creation(self, lu_cls, physical_unit): """Create a LogUnit subclass object for given physical unit, and do basic check that output is right.""" lu1 = lu_cls(physical_unit) assert lu1.physical_unit == physical_unit assert lu1.function_unit == lu1._default_function_unit lu2 = lu_cls(physical_unit, function_unit=2 * lu1._default_function_unit) assert lu2.physical_unit == physical_unit assert lu2.function_unit == u.Unit(2 * lu2._default_function_unit) with pytest.raises(ValueError): lu_cls(physical_unit, u.m) def test_lshift_magnitude(self): mag = 1.0 << u.ABmag assert isinstance(mag, u.Magnitude) assert mag.unit == u.ABmag assert mag.value == 1.0 # same test for an array, which should produce a view a2 = np.arange(10.0) q2 = a2 << u.ABmag assert isinstance(q2, u.Magnitude) assert q2.unit == u.ABmag assert np.all(q2.value == a2) a2[9] = 0.0 assert np.all(q2.value == a2) # a different magnitude unit mag = 10.0 << u.STmag assert isinstance(mag, u.Magnitude) assert mag.unit == u.STmag assert mag.value == 10.0 def test_ilshift_magnitude(self): # test in-place operation and conversion mag_fnu_cgs = u.mag(u.erg / u.s / u.cm**2 / u.Hz) m = np.arange(10.0) * u.mag(u.Jy) jy = m.physical m2 = m << mag_fnu_cgs assert np.all(m2 == m.to(mag_fnu_cgs)) m2 = m m <<= mag_fnu_cgs assert m is m2 # Check it was done in-place! assert np.all(m.value == m2.value) assert m.unit == mag_fnu_cgs # Check it works if equivalencies are in-place. with u.add_enabled_equivalencies(u.spectral_density(5500 * u.AA)): st = jy.to(u.ST) m <<= u.STmag assert m is m2 assert_quantity_allclose(m.physical, st) assert m.unit == u.STmag def test_lshift_errors(self): m = np.arange(10.0) * u.mag(u.Jy) with pytest.raises(u.UnitsError): m << u.STmag with pytest.raises(u.UnitsError): m << u.Jy with pytest.raises(u.UnitsError): m <<= u.STmag with pytest.raises(u.UnitsError): m <<= u.Jy def test_predefined_magnitudes(): assert_quantity_allclose( (-21.1 * u.STmag).physical, 1.0 * u.erg / u.cm**2 / u.s / u.AA ) assert_quantity_allclose( (-48.6 * u.ABmag).physical, 1.0 * u.erg / u.cm**2 / u.s / u.Hz ) assert_quantity_allclose((0 * u.M_bol).physical, c.L_bol0) assert_quantity_allclose( (0 * u.m_bol).physical, c.L_bol0 / (4.0 * np.pi * (10.0 * c.pc) ** 2) ) def test_predefined_reinitialisation(): assert u.mag("STflux") == u.STmag assert u.mag("ABflux") == u.ABmag assert u.mag("Bol") == u.M_bol assert u.mag("bol") == u.m_bol # required for backwards-compatibility, at least unless deprecated assert u.mag("ST") == u.STmag assert u.mag("AB") == u.ABmag def test_predefined_string_roundtrip(): """Ensure round-tripping; see #5015""" assert u.Unit(u.STmag.to_string()) == u.STmag assert u.Unit(u.ABmag.to_string()) == u.ABmag assert u.Unit(u.M_bol.to_string()) == u.M_bol assert u.Unit(u.m_bol.to_string()) == u.m_bol def test_inequality(): """Check __ne__ works (regression for #5342).""" lu1 = u.mag(u.Jy) lu2 = u.dex(u.Jy) lu3 = u.mag(u.Jy**2) lu4 = lu3 - lu1 assert lu1 != lu2 assert lu1 != lu3 assert lu1 == lu4
TestLogUnitCreation
python
huggingface__transformers
src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py
{ "start": 7166, "end": 8549 }
class ____(DepthAnythingNeck): def forward( self, hidden_states: list[torch.Tensor], patch_height: Optional[int] = None, patch_width: Optional[int] = None, prompt_depth: Optional[torch.Tensor] = None, ) -> list[torch.Tensor]: """ Args: hidden_states (`list[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise TypeError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features, prompt_depth=prompt_depth) return output @auto_docstring( custom_intro=""" Prompt Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """ )
PromptDepthAnythingNeck
python
ray-project__ray
rllib/connectors/connector.py
{ "start": 9571, "end": 11287 }
class ____(Connector): """Action connector connects policy outputs including actions, to user environments. An action connector transforms a single piece of policy output in ActionConnectorDataType format, which is basically PolicyOutputType plus env and agent IDs. Any functions that operate directly on PolicyOutputType can be easily adapted into an ActionConnector by using register_lambda_action_connector. Example: .. testcode:: from ray.rllib.connectors.action.lambdas import ( register_lambda_action_connector ) ZeroActionConnector = register_lambda_action_connector( "ZeroActionsConnector", lambda actions, states, fetches: ( np.zeros_like(actions), states, fetches ) ) More complicated action connectors can also be implemented by sub-classing this ActionConnector class. """ def __call__(self, ac_data: ActionConnectorDataType) -> ActionConnectorDataType: """Transform policy output before they are sent to a user environment. Args: ac_data: Env and agent IDs, plus policy output. Returns: The processed action connector data. """ return self.transform(ac_data) def transform(self, ac_data: ActionConnectorDataType) -> ActionConnectorDataType: """Implementation of the actual transform. Users should override transform instead of __call__ directly. Args: ac_data: Env and agent IDs, plus policy output. Returns: The processed action connector data. """ raise NotImplementedError @OldAPIStack
ActionConnector
python
django__django
tests/forms_tests/tests/test_formsets.py
{ "start": 76962, "end": 77021 }
class ____(TestIsBoundBehavior): pass
TestIsBoundBehavior
python
getsentry__sentry
src/sentry/models/files/control_file.py
{ "start": 516, "end": 1883 }
class ____(AbstractFile[ControlFileBlobIndex, ControlFileBlob]): blobs = models.ManyToManyField("sentry.ControlFileBlob", through="sentry.ControlFileBlobIndex") # Looking for the "blob" FK or the path attribute? These are deprecated and unavailable in the control silo class Meta: app_label = "sentry" db_table = "sentry_controlfile" FILE_BLOB_MODEL = ControlFileBlob FILE_BLOB_INDEX_MODEL = ControlFileBlobIndex DELETE_UNREFERENCED_BLOB_TASK = delete_unreferenced_blobs_control def _blob_index_records(self) -> Sequence[ControlFileBlobIndex]: return sorted( ControlFileBlobIndex.objects.filter(file=self).select_related("blob"), key=lambda fbi: fbi.offset, ) def _create_blob_index(self, blob: ControlFileBlob, offset: int) -> ControlFileBlobIndex: return ControlFileBlobIndex.objects.create(file=self, blob=blob, offset=offset) def _create_blob_from_file(self, contents: ContentFile, logger: Any) -> ControlFileBlob: return ControlFileBlob.from_file(contents, logger) def _get_blobs_by_id(self, blob_ids: Sequence[int]) -> models.QuerySet[ControlFileBlob]: return ControlFileBlob.objects.filter(id__in=blob_ids).all() def _delete_unreferenced_blob_task(self) -> Task[Any, Any]: return delete_unreferenced_blobs_control
ControlFile
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/dialects/oracle/cx_oracle.py
{ "start": 25017, "end": 25135 }
class ____(_LOBDataType, oracle.LONG): def get_dbapi_type(self, dbapi): return dbapi.LONG_STRING
_OracleLong
python
python-openxml__python-docx
src/docx/section.py
{ "start": 14443, "end": 16433 }
class ____(_BaseHeaderFooter): """Page footer, used for all three types (default, even-page, and first-page). Note that, like a document or table cell, a footer must contain a minimum of one paragraph and a new or otherwise "empty" footer contains a single empty paragraph. This first paragraph can be accessed as `footer.paragraphs[0]` for purposes of adding content to it. Using :meth:`add_paragraph()` by itself to add content will leave an empty paragraph above the newly added one. """ def _add_definition(self) -> FooterPart: """Return newly-added footer part.""" footer_part, rId = self._document_part.add_footer_part() self._sectPr.add_footerReference(self._hdrftr_index, rId) return footer_part @property def _definition(self): """|FooterPart| object containing content of this footer.""" footerReference = self._sectPr.get_footerReference(self._hdrftr_index) # -- currently this is never called when `._has_definition` evaluates False -- assert footerReference is not None return self._document_part.footer_part(footerReference.rId) def _drop_definition(self): """Remove footer definition (footer part) associated with this section.""" rId = self._sectPr.remove_footerReference(self._hdrftr_index) self._document_part.drop_rel(rId) @property def _has_definition(self) -> bool: """True if a footer is defined for this section.""" footerReference = self._sectPr.get_footerReference(self._hdrftr_index) return footerReference is not None @property def _prior_headerfooter(self): """|_Footer| proxy on prior sectPr element or None if this is first section.""" preceding_sectPr = self._sectPr.preceding_sectPr return ( None if preceding_sectPr is None else _Footer(preceding_sectPr, self._document_part, self._hdrftr_index) )
_Footer
python
kamyu104__LeetCode-Solutions
Python/sort-threats-by-severity-and-exploitability.py
{ "start": 40, "end": 277 }
class ____(object): def sortThreats(self, threats): """ :type threats: List[List[int]] :rtype: List[List[int]] """ threats.sort(key=lambda x: (-(2*x[1]+x[2]), x[0])) return threats
Solution
python
getsentry__sentry
src/django_picklefield/fields.py
{ "start": 1112, "end": 2799 }
class ____: """ A class used to wrap object that have properties that may clash with the ORM internals. For example, objects with the `prepare_database_save` property such as `django.db.Model` subclasses won't work under certain conditions and the same apply for trying to retrieve any `callable` object. """ __slots__ = ("_obj",) def __init__(self, obj: Any) -> None: self._obj = obj def wrap_conflictual_object(obj: Any) -> Any: if hasattr(obj, "prepare_database_save") or callable(obj): obj = _ObjectWrapper(obj) return obj def get_default_protocol() -> Any: return getattr(settings, "PICKLEFIELD_DEFAULT_PROTOCOL", DEFAULT_PROTOCOL) def dbsafe_encode( value: Any, compress_object: bool = False, pickle_protocol: Any = None, copy: bool = True ) -> Any: # We use deepcopy() here to avoid a problem with cPickle, where dumps # can generate different character streams for same lookup value if # they are referenced differently. # The reason this is important is because we do all of our lookups as # simple string matches, thus the character streams must be the same # for the lookups to work properly. See tests.py for more information. if pickle_protocol is None: pickle_protocol = get_default_protocol() if copy: # Copy can be very expensive if users aren't going to perform lookups # on the value anyway. value = deepcopy(value) value = dumps(value, protocol=pickle_protocol) if compress_object: value = compress(value) value = b64encode(value).decode() # decode bytes to str return PickledObject(value)
_ObjectWrapper
python
run-llama__llama_index
llama-index-core/llama_index/core/readers/string_iterable.py
{ "start": 214, "end": 1203 }
class ____(BasePydanticReader): """ String Iterable Reader. Gets a list of documents, given an iterable (e.g. list) of strings. Example: .. code-block:: python from llama_index.core.legacy import StringIterableReader, TreeIndex documents = StringIterableReader().load_data( texts=["I went to the store", "I bought an apple"] ) index = TreeIndex.from_documents(documents) query_engine = index.as_query_engine() query_engine.query("what did I buy?") # response should be something like "You bought an apple." """ is_remote: bool = False @classmethod def class_name(cls) -> str: return "StringIterableReader" def load_data(self, texts: List[str]) -> List[Document]: """Load the data.""" results = [] for text in texts: results.append(Document(text=text)) return results
StringIterableReader
python
apache__thrift
test/py/TestClient.py
{ "start": 15197, "end": 15378 }
class ____(MultiplexedOptionalTest): def get_protocol(self, transport): return make_pedantic(TCompactProtocol.TCompactProtocolFactory().getProtocol(transport))
CompactTest
python
tensorflow__tensorflow
tensorflow/tools/ci_build/osx/arm64/tensorflow_metal_plugin_test.py
{ "start": 20906, "end": 21769 }
class ____(test.TestCase): @test_util.run_in_graph_and_eager_modes def testL2Loss(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant( [1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="x", dtype=dtype ) l2loss = nn_ops.l2_loss(x) value = self.evaluate(l2loss) self.assertAllClose(7.0, value) @test_util.run_deprecated_v1 def testGradient(self): x_shape = [20, 7, 3] np.random.seed(1) # Make it reproducible. x_val = np.random.random_sample(x_shape).astype(np.float64) with self.cached_session(): x = constant_op.constant(x_val, name="x") output = nn_ops.l2_loss(x) err = gradient_checker.compute_gradient_error(x, x_shape, output, [1]) print("L2Loss gradient err = %g " % err) err_tolerance = 1e-10 self.assertLess(err, err_tolerance)
L2LossTest
python
pytorch__pytorch
torch/_dynamo/source.py
{ "start": 36551, "end": 37025 }
class ____(ChainedSource): def name(self) -> str: return f"___from_numpy({self.base.name()})" def guard_source(self) -> GuardSource: return self.base.guard_source() def reconstruct(self, codegen: "PyCodegen") -> None: codegen.add_push_null(lambda: codegen.load_import_from("torch", "as_tensor")) codegen(self.base) codegen.extend_output(create_call_function(1, False)) @dataclasses.dataclass(frozen=True)
NumpyTensorSource
python
pandas-dev__pandas
pandas/tests/indexes/test_engines.py
{ "start": 695, "end": 1716 }
class ____: @pytest.mark.parametrize( "scalar", [ pd.Timedelta(pd.Timestamp("2016-01-01").asm8.view("m8[ns]")), pd.Timestamp("2016-01-01")._value, pd.Timestamp("2016-01-01").to_pydatetime(), pd.Timestamp("2016-01-01").to_datetime64(), ], ) def test_not_contains_requires_timestamp(self, scalar): dti1 = pd.date_range("2016-01-01", periods=3) dti2 = dti1.insert(1, pd.NaT) # non-monotonic dti3 = dti1.insert(3, dti1[0]) # non-unique dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000) dti5 = dti4.insert(0, dti4[0]) # over size threshold, not unique msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))]) for dti in [dti1, dti2, dti3, dti4, dti5]: with pytest.raises(TypeError, match=msg): scalar in dti._engine with pytest.raises(KeyError, match=msg): dti._engine.get_loc(scalar)
TestDatetimeEngine
python
lepture__authlib
authlib/integrations/base_client/sync_app.py
{ "start": 5916, "end": 9729 }
class ____: client_cls = None def __init__( self, framework, name=None, fetch_token=None, update_token=None, client_id=None, client_secret=None, access_token_url=None, access_token_params=None, authorize_url=None, authorize_params=None, api_base_url=None, client_kwargs=None, server_metadata_url=None, compliance_fix=None, client_auth_methods=None, user_agent=None, **kwargs, ): self.framework = framework self.name = name self.client_id = client_id self.client_secret = client_secret self.access_token_url = access_token_url self.access_token_params = access_token_params self.authorize_url = authorize_url self.authorize_params = authorize_params self.api_base_url = api_base_url self.client_kwargs = client_kwargs or {} self.compliance_fix = compliance_fix self.client_auth_methods = client_auth_methods self._fetch_token = fetch_token self._update_token = update_token self._user_agent = user_agent or default_user_agent self._server_metadata_url = server_metadata_url self.server_metadata = kwargs def _on_update_token(self, token, refresh_token=None, access_token=None): raise NotImplementedError() def _get_oauth_client(self, **metadata): client_kwargs = {} client_kwargs.update(self.client_kwargs) client_kwargs.update(metadata) if self.authorize_url: client_kwargs["authorization_endpoint"] = self.authorize_url if self.access_token_url: client_kwargs["token_endpoint"] = self.access_token_url session = self.client_cls( client_id=self.client_id, client_secret=self.client_secret, update_token=self._on_update_token, **client_kwargs, ) if self.client_auth_methods: for f in self.client_auth_methods: session.register_client_auth_method(f) if self.compliance_fix: self.compliance_fix(session) session.headers["User-Agent"] = self._user_agent return session @staticmethod def _format_state_params(state_data, params): if state_data is None: raise MismatchingStateError() code_verifier = state_data.get("code_verifier") if code_verifier: params["code_verifier"] = code_verifier redirect_uri = state_data.get("redirect_uri") if redirect_uri: params["redirect_uri"] = redirect_uri return params @staticmethod def _create_oauth2_authorization_url(client, authorization_endpoint, **kwargs): rv = {} if client.code_challenge_method: code_verifier = kwargs.get("code_verifier") if not code_verifier: code_verifier = generate_token(48) kwargs["code_verifier"] = code_verifier rv["code_verifier"] = code_verifier log.debug(f"Using code_verifier: {code_verifier!r}") scope = kwargs.get("scope", client.scope) scope = ( (scope if isinstance(scope, (list, tuple)) else scope.split()) if scope else None ) if scope and "openid" in scope: # this is an OpenID Connect service nonce = kwargs.get("nonce") if not nonce: nonce = generate_token(20) kwargs["nonce"] = nonce rv["nonce"] = nonce url, state = client.create_authorization_url(authorization_endpoint, **kwargs) rv["url"] = url rv["state"] = state return rv
OAuth2Base
python
scipy__scipy
scipy/signal/tests/test_signaltools.py
{ "start": 96316, "end": 101878 }
class ____: def _setup_rank1(self, dt, xp): a = xp.linspace(0, 3, 4, dtype=dt) b = xp.linspace(1, 2, 2, dtype=dt) y_r = xp.asarray([0, 2, 5, 8, 3], dtype=dt) return a, b, y_r def equal_tolerance(self, res_dt): # default value of keyword decimal = 6 try: dt_info = np.finfo(res_dt) if hasattr(dt_info, 'resolution'): decimal = int(-0.5*np.log10(dt_info.resolution)) except Exception: pass return decimal def equal_tolerance_fft(self, res_dt): # FFT implementations convert longdouble arguments down to # double so don't expect better precision, see gh-9520 if res_dt == np.longdouble: return self.equal_tolerance(np.float64) else: return self.equal_tolerance(res_dt) @skip_xp_backends(np_only=True, reason="order='F'") def test_method(self, dt, xp): dt = getattr(xp, dt) a, b, y_r = self._setup_rank3(dt, xp) y_fft = correlate(a, b, method='fft') y_direct = correlate(a, b, method='direct') assert_array_almost_equal(y_r, y_fft, decimal=self.equal_tolerance_fft(y_fft.dtype),) assert_array_almost_equal(y_r, y_direct, decimal=self.equal_tolerance(y_direct.dtype),) assert y_fft.dtype == dt assert y_direct.dtype == dt def test_rank1_valid(self, dt, xp): if is_torch(xp) and dt in ["uint16", "uint32", "uint64"]: pytest.skip("torch does not support unsigned ints") dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank1(dt, xp) y = correlate(a, b, 'valid') assert_array_almost_equal(y, y_r[1:4]) assert y.dtype == dt # See gh-5897 y = correlate(b, a, 'valid') assert_array_almost_equal(y, xp.flip(y_r[1:4])) assert y.dtype == dt def test_rank1_same(self, dt, xp): if is_torch(xp) and dt in ["uint16", "uint32", "uint64"]: pytest.skip("torch does not support unsigned ints") dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank1(dt, xp) y = correlate(a, b, 'same') assert_array_almost_equal(y, y_r[:-1]) assert y.dtype == dt def test_rank1_full(self, dt, xp): if is_torch(xp) and dt in ["uint16", "uint32", "uint64"]: pytest.skip("torch does not support unsigned ints") dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank1(dt, xp) y = correlate(a, b, 'full') assert_array_almost_equal(y, y_r) assert y.dtype == dt def _setup_rank3(self, dt, xp): a = np.linspace(0, 39, 40).reshape((2, 4, 5), order='F').astype( dt) b = np.linspace(0, 23, 24).reshape((2, 3, 4), order='F').astype( dt) y_r = np.array([[[0., 184., 504., 912., 1360., 888., 472., 160.], [46., 432., 1062., 1840., 2672., 1698., 864., 266.], [134., 736., 1662., 2768., 3920., 2418., 1168., 314.], [260., 952., 1932., 3056., 4208., 2580., 1240., 332.], [202., 664., 1290., 1984., 2688., 1590., 712., 150.], [114., 344., 642., 960., 1280., 726., 296., 38.]], [[23., 400., 1035., 1832., 2696., 1737., 904., 293.], [134., 920., 2166., 3680., 5280., 3306., 1640., 474.], [325., 1544., 3369., 5512., 7720., 4683., 2192., 535.], [571., 1964., 3891., 6064., 8272., 4989., 2324., 565.], [434., 1360., 2586., 3920., 5264., 3054., 1312., 230.], [241., 700., 1281., 1888., 2496., 1383., 532., 39.]], [[22., 214., 528., 916., 1332., 846., 430., 132.], [86., 484., 1098., 1832., 2600., 1602., 772., 206.], [188., 802., 1698., 2732., 3788., 2256., 1018., 218.], [308., 1006., 1950., 2996., 4052., 2400., 1078., 230.], [230., 692., 1290., 1928., 2568., 1458., 596., 78.], [126., 354., 636., 924., 1212., 654., 234., 0.]]], dtype=np.float64).astype(dt) return a, b, y_r @skip_xp_backends(np_only=True, reason="order='F'") def test_rank3_valid(self, dt, xp): dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank3(dt, xp) y = correlate(a, b, "valid") assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5]) assert y.dtype == dt # See gh-5897 y = correlate(b, a, "valid") assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5][::-1, ::-1, ::-1]) assert y.dtype == dt @skip_xp_backends(np_only=True, reason="order='F'") def test_rank3_same(self, dt, xp): dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank3(dt, xp) y = correlate(a, b, "same") xp_assert_close(y, y_r[0:-1, 1:-1, 1:-2]) assert y.dtype == dt @skip_xp_backends(np_only=True, reason="order='F'") def test_rank3_all(self, dt, xp): dt = getattr(xp, dt) if isinstance(dt, str) else dt a, b, y_r = self._setup_rank3(dt, xp) y = correlate(a, b) xp_assert_close(y, y_r) assert y.dtype == dt @make_xp_test_case(correlate)
TestCorrelateReal
python
scipy__scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_U.py
{ "start": 1090, "end": 2587 }
class ____(Benchmark): r""" Ursem 3 objective function. This class defines the Ursem 3 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Ursem03}}(x) = - \sin(2.2 \pi x_1 + 0.5 \pi) \frac{2 - \lvert x_1 \rvert}{2} \frac{3 - \lvert x_1 \rvert}{2} - \sin(2.2 \pi x_2 + 0.5 \pi) \frac{2 - \lvert x_2 \rvert}{2} \frac{3 - \lvert x_2 \rvert}{2} with :math:`x_1 \in [-2, 2]`, :math:`x_2 \in [-1.5, 1.5]`. *Global optimum*: :math:`f(x) = -3` for :math:`x = [0, 0]` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 TODO Gavana and Jamil #157 disagree on the formulae here. Jamil squares the x[1] term in the sine expression. Gavana doesn't. Go with Gavana here. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-2, 2), (-1.5, 1.5)] self.global_optimum = [[0.0 for _ in range(self.N)]] self.fglob = -3.0 def fun(self, x, *args): self.nfev += 1 u = -(sin(2.2 * pi * x[0] + 0.5 * pi) * ((2.0 - abs(x[0])) / 2.0) * ((3.0 - abs(x[0])) / 2)) v = -(sin(2.2 * pi * x[1] + 0.5 * pi) * ((2.0 - abs(x[1])) / 2) * ((3.0 - abs(x[1])) / 2)) return u + v
Ursem03
python
spack__spack
lib/spack/spack/repo.py
{ "start": 70061, "end": 70741 }
class ____(RepoDescriptor): """A descriptor for a broken repository, used to indicate errors in the configuration that aren't fatal untill the repository is used.""" def __init__(self, name: Optional[str], error: str) -> None: super().__init__(name) self.error = error def initialize( self, fetch: bool = True, git: Optional[spack.util.executable.Executable] = None ) -> None: pass def construct( self, cache: spack.util.file_cache.FileCache, overrides: Optional[Dict[str, Any]] = None ) -> Dict[str, Union[Repo, Exception]]: return {self.name or "<unknown>": Exception(self.error)}
BrokenRepoDescriptor
python
pytorch__pytorch
torch/ao/nn/quantized/reference/modules/conv.py
{ "start": 3480, "end": 5176 }
class ____(_ConvNd, nn.Conv2d): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode="zeros", device=None, dtype=None, weight_qparams: dict[str, Any] | None = None, ): nn.Conv2d.__init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, # pyrefly: ignore [bad-argument-type] padding_mode, device, dtype, ) self._init_weight_qparams(weight_qparams, device) def forward(self, x: torch.Tensor) -> torch.Tensor: """ we have: w(float) -- quant - dequant \ x(float) ------------- F.conv2d --- In the full model, we will see w(float) -- quant - *dequant \ x -- quant --- *dequant -- *F.conv2d --- *quant - dequant and the backend should be able to fuse the ops with `*` into a quantized conv2d """ weight_quant_dequant = self.get_weight() result = F.conv2d( x, weight_quant_dequant, self.bias, self.stride, self.padding, self.dilation, self.groups, ) return result def _get_name(self): return "QuantizedConv2d(Reference)" @classmethod def from_float(cls, float_conv, weight_qparams): # type: ignore[override] return _ConvNd.from_float(cls, float_conv, weight_qparams)
Conv2d
python
getsentry__sentry
src/sentry/mail/forms/assigned_to.py
{ "start": 161, "end": 405 }
class ____(MemberTeamForm[AssigneeTargetType]): targetType = forms.ChoiceField(choices=ASSIGNEE_CHOICES) teamValue = AssigneeTargetType.TEAM memberValue = AssigneeTargetType.MEMBER targetTypeEnum = AssigneeTargetType
AssignedToForm
python
sqlalchemy__sqlalchemy
test/ext/test_associationproxy.py
{ "start": 43352, "end": 47493 }
class ____(fixtures.MappedTest): run_setup_mappers = "each" run_setup_classes = "each" @classmethod def define_tables(cls, metadata): Table( "parents", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("name", String(30)), ) Table( "children", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("parent_id", Integer, ForeignKey("parents.id")), Column("name", String(30)), ) @classmethod def insert_data(cls, connection): parents = cls.tables.parents connection.execute(parents.insert(), dict(name="p1")) @classmethod def setup_classes(cls): Parent.kids = association_proxy("children", "name") def test_weak_identity_map(self): self.mapper_registry.map_imperatively( Parent, self.tables.parents, properties=dict(children=relationship(Child)), ) self.mapper_registry.map_imperatively(Child, self.tables.children) session = fixture_session() def add_child(parent_name, child_name): parent = session.query(Parent).filter_by(name=parent_name).one() parent.kids.append(child_name) add_child("p1", "c1") gc_collect() add_child("p1", "c2") session.flush() p = session.query(Parent).filter_by(name="p1").one() assert set(p.kids) == {"c1", "c2"}, p.kids def test_copy(self): self.mapper_registry.map_imperatively( Parent, self.tables.parents, properties=dict(children=relationship(Child)), ) self.mapper_registry.map_imperatively(Child, self.tables.children) p = Parent("p1") p.kids.extend(["c1", "c2"]) p_copy = copy.copy(p) del p gc_collect() assert set(p_copy.kids) == {"c1", "c2"}, p_copy.kids def test_pickle_list(self): self.mapper_registry.map_imperatively( Parent, self.tables.parents, properties=dict(children=relationship(Child)), ) self.mapper_registry.map_imperatively(Child, self.tables.children) p = Parent("p1") p.kids.extend(["c1", "c2"]) r1 = pickle.loads(pickle.dumps(p)) assert r1.kids == ["c1", "c2"] # can't do this without parent having a cycle # r2 = pickle.loads(pickle.dumps(p.kids)) # assert r2 == ['c1', 'c2'] def test_pickle_set(self): self.mapper_registry.map_imperatively( Parent, self.tables.parents, properties=dict( children=relationship(Child, collection_class=set) ), ) self.mapper_registry.map_imperatively(Child, self.tables.children) p = Parent("p1") p.kids.update(["c1", "c2"]) r1 = pickle.loads(pickle.dumps(p)) assert r1.kids == {"c1", "c2"} # can't do this without parent having a cycle # r2 = pickle.loads(pickle.dumps(p.kids)) # assert r2 == set(['c1', 'c2']) def test_pickle_dict(self): self.mapper_registry.map_imperatively( Parent, self.tables.parents, properties=dict( children=relationship( KVChild, collection_class=collections.keyfunc_mapping( PickleKeyFunc("name") ), ) ), ) self.mapper_registry.map_imperatively(KVChild, self.tables.children) p = Parent("p1") p.kids.update({"c1": "v1", "c2": "v2"}) assert p.kids == {"c1": "c1", "c2": "c2"} r1 = pickle.loads(pickle.dumps(p)) assert r1.kids == {"c1": "c1", "c2": "c2"} # can't do this without parent having a cycle # r2 = pickle.loads(pickle.dumps(p.kids)) # assert r2 == {'c1': 'c1', 'c2': 'c2'}
ReconstitutionTest
python
django__django
tests/cache/closeable_cache.py
{ "start": 60, "end": 162 }
class ____: closed = False def close(self, **kwargs): self.closed = True
CloseHookMixin
python
pypa__warehouse
warehouse/accounts/models.py
{ "start": 15120, "end": 16536 }
class ____(db.Model): __tablename__ = "user_unique_logins" __table_args__ = ( UniqueConstraint( "user_id", "ip_address", name="_user_unique_logins_user_id_ip_address_uc" ), Index( "user_unique_logins_user_id_ip_address_idx", "user_id", "ip_address", unique=True, ), ) user_id: Mapped[UUID] = mapped_column( PG_UUID(as_uuid=True), ForeignKey("users.id", onupdate="CASCADE", ondelete="CASCADE"), nullable=False, index=True, ) user: Mapped[User] = orm.relationship(back_populates="unique_logins") ip_address: Mapped[str] = mapped_column(String, nullable=False) created: Mapped[datetime_now] last_used: Mapped[datetime_now] device_information: Mapped[dict | None] = mapped_column(JSONB, nullable=True) status: Mapped[UniqueLoginStatus] = mapped_column( Enum(UniqueLoginStatus, values_callable=lambda x: [e.value for e in x]), nullable=False, default=UniqueLoginStatus.PENDING, server_default=UniqueLoginStatus.PENDING.value, ) expires: Mapped[datetime.datetime | None] = mapped_column(TZDateTime) def __repr__(self): return ( f"<UserUniqueLogin(user={self.user.username!r}, " f"ip_address={self.ip_address!r}, " f"status={self.status!r})>" )
UserUniqueLogin
python
sqlalchemy__sqlalchemy
test/sql/test_inspect.py
{ "start": 315, "end": 1428 }
class ____(fixtures.TestBase): def test_table(self): t = Table("t", MetaData(), Column("x", Integer)) is_(inspect(t), t) assert t.is_selectable is_(t.selectable, t) def test_select(self): t = Table("t", MetaData(), Column("x", Integer)) s = t.select() is_(inspect(s), s) assert s.is_selectable is_(s.selectable, s) def test_column_expr(self): c = Column("x", Integer) is_(inspect(c), c) assert not c.is_selectable assert not hasattr(c, "selectable") def test_no_clause_element_on_clauseelement(self): # re [ticket:3802], there are in the wild examples # of looping over __clause_element__, therefore the # absence of __clause_element__ as a test for "this is the clause # element" must be maintained class Foo(ClauseElement): pass assert not hasattr(Foo(), "__clause_element__") def test_col_now_has_a_clauseelement(self): x = Column("foo", Integer) assert hasattr(x, "__clause_element__")
TestCoreInspection
python
explosion__spaCy
spacy/lang/bn/__init__.py
{ "start": 325, "end": 540 }
class ____(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS prefixes = TOKENIZER_PREFIXES suffixes = TOKENIZER_SUFFIXES infixes = TOKENIZER_INFIXES stop_words = STOP_WORDS
BengaliDefaults
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pylint/return_in_init.py
{ "start": 187, "end": 245 }
class ____: def __init__(self): return 1
MyClass
python
kamyu104__LeetCode-Solutions
Python/find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree.py
{ "start": 538, "end": 1673 }
class ____(object): def findCriticalAndPseudoCriticalEdges(self, n, edges): """ :type n: int :type edges: List[List[int]] :rtype: List[List[int]] """ def MST(n, edges, unused=None, used=None): union_find = UnionFind(n) weight = 0 if used is not None: u, v, w, _ = edges[used] if union_find.union_set(u, v): weight += w for i, (u, v, w, _) in enumerate(edges): if i == unused: continue if union_find.union_set(u, v): weight += w return weight if union_find.count == 1 else float("inf") for i, edge in enumerate(edges): edge.append(i) edges.sort(key=lambda x: x[2]) mst = MST(n, edges) result = [[], []] for i, edge in enumerate(edges): if mst < MST(n, edges, unused=i): result[0].append(edge[3]) elif mst == MST(n, edges, used=i): result[1].append(edge[3]) return result
Solution
python
apache__airflow
providers/redis/src/airflow/providers/redis/hooks/redis.py
{ "start": 1060, "end": 5348 }
class ____(BaseHook): """ Wrapper for connection to interact with Redis in-memory data structure store. You can set your db in the extra field of your connection as ``{"db": 3}``. Also you can set ssl parameters as: ``{"ssl": true, "ssl_cert_reqs": "require", "ssl_certfile": "/path/to/cert.pem", etc}``. """ conn_name_attr = "redis_conn_id" default_conn_name = "redis_default" conn_type = "redis" hook_name = "Redis" def __init__(self, redis_conn_id: str = default_conn_name, **kwargs) -> None: """ Prepare hook to connect to a Redis database. :param conn_id: the name of the connection that has the parameters we need to connect to Redis. """ super().__init__() self.redis_conn_id = redis_conn_id self.redis = None self.host = kwargs.get("host", None) self.port = kwargs.get("port", None) self.username = kwargs.get("username", None) self.password = kwargs.get("password", None) self.db = kwargs.get("db", None) def get_conn(self): """Return a Redis connection.""" conn = self.get_connection(self.redis_conn_id) self.host = conn.host self.port = conn.port self.username = conn.login self.password = None if str(conn.password).lower() in ["none", "false", ""] else conn.password self.db = conn.extra_dejson.get("db") # check for ssl parameters in conn.extra ssl_arg_names = [ "ssl", "ssl_cert_reqs", "ssl_ca_certs", "ssl_keyfile", "ssl_certfile", "ssl_check_hostname", ] ssl_args = {name: val for name, val in conn.extra_dejson.items() if name in ssl_arg_names} if not self.redis: self.log.debug( 'Initializing redis object for conn_id "%s" on %s:%s:%s', self.redis_conn_id, self.host, self.port, self.db, ) self.redis = Redis( host=self.host, port=self.port, username=self.username, password=self.password, db=self.db, **ssl_args, ) return self.redis @classmethod def get_ui_field_behaviour(cls) -> dict[str, Any]: """Return custom UI field behaviour for Redis connection.""" return { "hidden_fields": ["schema", "extra"], "relabeling": {}, } @classmethod def get_connection_form_widgets(cls) -> dict[str, Any]: """Return connection widgets to add to Redis connection form.""" from flask_appbuilder.fieldwidgets import BS3TextFieldWidget from flask_babel import lazy_gettext from wtforms import BooleanField, IntegerField, StringField from wtforms.validators import Optional, any_of return { "db": IntegerField(lazy_gettext("DB"), widget=BS3TextFieldWidget(), default=0), "ssl": BooleanField(lazy_gettext("Enable SSL"), default=False), "ssl_cert_reqs": StringField( lazy_gettext("SSL verify mode"), validators=[any_of(ALLOWED_SSL_CERT_REQS)], widget=BS3TextFieldWidget(), description=f"Must be one of: {', '.join(ALLOWED_SSL_CERT_REQS)}.", default=DEFAULT_SSL_CERT_REQS, ), "ssl_ca_certs": StringField( lazy_gettext("CA certificate path"), widget=BS3TextFieldWidget(), validators=[Optional()], default=None, ), "ssl_keyfile": StringField( lazy_gettext("Private key path"), widget=BS3TextFieldWidget(), validators=[Optional()], default=None, ), "ssl_certfile": StringField( lazy_gettext("Certificate path"), widget=BS3TextFieldWidget(), validators=[Optional()], default=None, ), "ssl_check_hostname": BooleanField(lazy_gettext("Enable hostname check"), default=False), }
RedisHook
python
walkccc__LeetCode
solutions/563. Binary Tree Tilt/563.py
{ "start": 0, "end": 320 }
class ____: def findTilt(self, root: TreeNode | None) -> int: ans = 0 def summ(root: TreeNode | None) -> None: nonlocal ans if not root: return 0 l = summ(root.left) r = summ(root.right) ans += abs(l - r) return root.val + l + r summ(root) return ans
Solution
python
walkccc__LeetCode
solutions/1183. Maximum Number of Ones/1183-2.py
{ "start": 0, "end": 459 }
class ____: def maximumNumberOfOnes( self, width: int, height: int, sideLength: int, maxOnes: int, ) -> int: subCount = [] def getCount(length: int, index: int) -> int: return (length - index - 1) // sideLength + 1 for i in range(sideLength): for j in range(sideLength): subCount.append(getCount(width, i) * getCount(height, j)) return sum(sorted(subCount, reverse=True)[:maxOnes])
Solution
python
cherrypy__cherrypy
cherrypy/lib/covercp.py
{ "start": 8207, "end": 12287 }
class ____(object): """HTTP handler for the coverage stats.""" def __init__(self, coverage, root=None): """Initialize the coverage stats application.""" self.coverage = coverage if root is None: # Guess initial depth. Files outside this path will not be # reachable from the web interface. root = os.path.dirname(cherrypy.__file__) self.root = root @cherrypy.expose def index(self): """Render the coverage stats index page.""" return TEMPLATE_FRAMESET % self.root.lower() @cherrypy.expose def menu( self, base='/', pct='50', showpct='', exclude=r'python\d\.\d|test|tut\d|tutorial', ): """Render HTML menu web page.""" # The coverage module uses all-lower-case names. base = base.lower().rstrip(os.sep) yield TEMPLATE_MENU yield TEMPLATE_FORM % locals() # Start by showing links for parent paths yield "<div id='crumbs'>" path = '' atoms = base.split(os.sep) atoms.pop() for atom in atoms: path += atom + os.sep yield ( "<a href='menu?base=%s&exclude=%s'>%s</a> %s" % (path, urllib.parse.quote_plus(exclude), atom, os.sep) ) yield '</div>' yield "<div id='tree'>" # Then display the tree tree = get_tree(base, exclude, self.coverage) if not tree: yield '<p>No modules covered.</p>' else: for chunk in _show_branch( tree, base, '/', pct, showpct == 'checked', exclude, coverage=self.coverage, ): yield chunk yield '</div>' yield '</body></html>' def annotated_file(self, filename, statements, excluded, missing): """Annotate given file with coverage information.""" with open(filename, 'r') as source: lines = source.readlines() buffer = [] for lineno, line in enumerate(lines): lineno += 1 line = line.strip('\n\r') empty_the_buffer = True if lineno in excluded: template = TEMPLATE_LOC_EXCLUDED elif lineno in missing: template = TEMPLATE_LOC_NOT_COVERED elif lineno in statements: template = TEMPLATE_LOC_COVERED else: empty_the_buffer = False buffer.append((lineno, line)) if empty_the_buffer: for lno, pastline in buffer: yield template % (lno, html.escape(pastline)) buffer = [] yield template % (lineno, html.escape(line)) @cherrypy.expose def report(self, name): """Render coverage stats as HTML.""" filename, statements, excluded, missing, _ = self.coverage.analysis2( name, ) pc = _percent(statements, missing) yield TEMPLATE_COVERAGE % dict( name=os.path.basename(name), fullpath=name, pc=pc, ) yield '<table>\n' for line in self.annotated_file( filename, statements, excluded, missing, ): yield line yield '</table>' yield '</body>' yield '</html>' def serve(path=localFile, port=8080, root=None): """Serve the coverage app over HTTP.""" if coverage is None: raise ImportError('The coverage module could not be imported.') from coverage import coverage cov = coverage(data_file=path) cov.load() cherrypy.config.update( { 'server.socket_port': int(port), 'server.thread_pool': 10, 'environment': 'production', }, ) cherrypy.quickstart(CoverStats(cov, root)) if __name__ == '__main__': serve(*tuple(sys.argv[1:]))
CoverStats
python
sphinx-doc__sphinx
sphinx/domains/cpp/_ast.py
{ "start": 148100, "end": 150450 }
class ____(ASTBase): def __init__( self, concept: ASTNestedName, params: list[ASTTemplateIntroductionParameter] ) -> None: assert len(params) > 0 self.concept = concept self.params = params def __eq__(self, other: object) -> bool: if not isinstance(other, ASTTemplateIntroduction): return NotImplemented return self.concept == other.concept and self.params == other.params def __hash__(self) -> int: return hash((self.concept, self.params)) def get_id(self, version: int) -> str: assert version >= 2 return ''.join([ # first do the same as a normal template parameter list 'I', *(param.get_id(version) for param in self.params), 'E', # let's use X expr E, which is otherwise for constant template args 'X', self.concept.get_id(version), 'I', *(param.get_id_as_arg(version) for param in self.params), 'E', 'E', ]) def _stringify(self, transform: StringifyTransform) -> str: res: list[str] = [] res.extend(( transform(self.concept), '{', ', '.join(transform(param) for param in self.params), '} ', )) return ''.join(res) def describe_signature_as_introducer( self, parentNode: desc_signature, mode: str, env: BuildEnvironment, symbol: Symbol, lineSpec: bool, ) -> None: # Note: 'lineSpec' has no effect on template introductions. signode = addnodes.desc_signature_line() parentNode += signode signode.sphinx_line_type = 'templateIntroduction' self.concept.describe_signature(signode, 'markType', env, symbol) signode += addnodes.desc_sig_punctuation('{', '{') first = True for param in self.params: if not first: signode += addnodes.desc_sig_punctuation(',', ',') signode += addnodes.desc_sig_space() first = False param.describe_signature(signode, mode, env, symbol) signode += addnodes.desc_sig_punctuation('}', '}') ################################################################################
ASTTemplateIntroduction
python
huggingface__transformers
src/transformers/models/qwen3_moe/modular_qwen3_moe.py
{ "start": 2820, "end": 3094 }
class ____(MixtralPreTrainedModel): _can_record_outputs = { "router_logits": OutputRecorder(Qwen3MoeTopKRouter, layer_name="mlp.router", index=0), "hidden_states": Qwen3MoeDecoderLayer, "attentions": Qwen3MoeAttention, }
Qwen3MoePreTrainedModel
python
kamyu104__LeetCode-Solutions
Python/split-concatenated-strings.py
{ "start": 31, "end": 658 }
class ____(object): def splitLoopedString(self, strs): """ :type strs: List[str] :rtype: str """ tmp = [] for s in strs: tmp += max(s, s[::-1]) s = "".join(tmp) result, st = "a", 0 for i in xrange(len(strs)): body = "".join([s[st + len(strs[i]):], s[0:st]]) for p in strs[i], strs[i][::-1]: for j in xrange(len(strs[i])): if p[j] >= result[0]: result = max(result, "".join([p[j:], body, p[:j]])) st += len(strs[i]) return result
Solution
python
getsentry__sentry
src/sentry/status_checks/base.py
{ "start": 1831, "end": 2022 }
class ____: def check(self) -> list[Problem]: """ Perform required checks and return a list of ``Problem`` instances. """ raise NotImplementedError
StatusCheck
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/vertex_ai/test_experiment_service.py
{ "start": 4839, "end": 5681 }
class ____: @mock.patch(VERTEX_AI_PATH.format("ExperimentRunHook")) def test_execute(self, mock_hook): op = ListExperimentRunsOperator( task_id=TASK_ID, project_id=GCP_PROJECT, location=GCP_LOCATION, experiment_name=TEST_EXPERIMENT_NAME, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) op.execute(context={"ti": mock.MagicMock()}) mock_hook.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) mock_hook.return_value.list_experiment_runs.assert_called_once_with( project_id=GCP_PROJECT, location=GCP_LOCATION, experiment_name=TEST_EXPERIMENT_NAME, )
TestVertexAIListExperimentRunsOperator
python
kamyu104__LeetCode-Solutions
Python/number-of-distinct-islands.py
{ "start": 37, "end": 918 }
class ____(object): def numDistinctIslands(self, grid): """ :type grid: List[List[int]] :rtype: int """ directions = {'l':[-1, 0], 'r':[ 1, 0], \ 'u':[ 0, 1], 'd':[ 0, -1]} def dfs(i, j, grid, island): if not (0 <= i < len(grid) and \ 0 <= j < len(grid[0]) and \ grid[i][j] > 0): return False grid[i][j] *= -1 for k, v in directions.iteritems(): island.append(k) dfs(i+v[0], j+v[1], grid, island) return True islands = set() for i in xrange(len(grid)): for j in xrange(len(grid[0])): island = [] if dfs(i, j, grid, island): islands.add("".join(island)) return len(islands)
Solution
python
coleifer__peewee
tests/cockroachdb.py
{ "start": 517, "end": 569 }
class ____(TestModel): data = JSONField()
JsonModel
python
openai__openai-python
src/openai/types/vector_store_update_params.py
{ "start": 313, "end": 920 }
class ____(TypedDict, total=False): expires_after: Optional[ExpiresAfter] """The expiration policy for a vector store.""" metadata: Optional[Metadata] """Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. """ name: Optional[str] """The name of the vector store."""
VectorStoreUpdateParams
python
doocs__leetcode
solution/0000-0099/0005.Longest Palindromic Substring/Solution2.py
{ "start": 0, "end": 479 }
class ____: def longestPalindrome(self, s: str) -> str: def f(l, r): while l >= 0 and r < n and s[l] == s[r]: l, r = l - 1, r + 1 return r - l - 1 n = len(s) start, mx = 0, 1 for i in range(n): a = f(i, i) b = f(i, i + 1) t = max(a, b) if mx < t: mx = t start = i - ((t - 1) >> 1) return s[start : start + mx]
Solution
python
tensorflow__tensorflow
tensorflow/python/data/experimental/ops/batching.py
{ "start": 12914, "end": 14358 }
class ____(dataset_ops.UnaryDataset): """A `Dataset` that batches ragged dense elements into `tf.sparse.SparseTensor`s.""" def __init__(self, input_dataset, batch_size, row_shape): """See `Dataset.dense_to_sparse_batch()` for more details.""" if not isinstance( dataset_ops.get_legacy_output_types(input_dataset), dtypes.DType): raise TypeError("`dense_to_sparse_batch` requires an input dataset whose " "elements have a single component, but the given dataset " "has the following component types: " f"{dataset_ops.get_legacy_output_types(input_dataset)}.") self._input_dataset = input_dataset self._batch_size = batch_size self._row_shape = row_shape self._element_spec = sparse_tensor.SparseTensorSpec( tensor_shape.TensorShape([None]).concatenate(self._row_shape), dataset_ops.get_legacy_output_types(input_dataset)) variant_tensor = ged_ops.dense_to_sparse_batch_dataset( self._input_dataset._variant_tensor, # pylint: disable=protected-access self._batch_size, row_shape=convert.partial_shape_to_tensor(self._row_shape), **self._flat_structure) super(_DenseToSparseBatchDataset, self).__init__(input_dataset, variant_tensor) @property def element_spec(self): return self._element_spec
_DenseToSparseBatchDataset
python
scikit-learn__scikit-learn
examples/calibration/plot_calibration_curve.py
{ "start": 6841, "end": 11519 }
class ____(LinearSVC): """LinearSVC with `predict_proba` method that naively scales `decision_function` output for binary classification.""" def fit(self, X, y): super().fit(X, y) df = self.decision_function(X) self.df_min_ = df.min() self.df_max_ = df.max() def predict_proba(self, X): """Min-max scale output of `decision_function` to [0, 1].""" df = self.decision_function(X) calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_) proba_pos_class = np.clip(calibrated_df, 0, 1) proba_neg_class = 1 - proba_pos_class proba = np.c_[proba_neg_class, proba_pos_class] return proba # %% lr = LogisticRegression(C=1.0) svc = NaivelyCalibratedLinearSVC(max_iter=10_000) svc_isotonic = CalibratedClassifierCV(svc, cv=2, method="isotonic") svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method="sigmoid") clf_list = [ (lr, "Logistic"), (svc, "SVC"), (svc_isotonic, "SVC + Isotonic"), (svc_sigmoid, "SVC + Sigmoid"), ] # %% fig = plt.figure(figsize=(10, 10)) gs = GridSpec(4, 2) ax_calibration_curve = fig.add_subplot(gs[:2, :2]) calibration_displays = {} for i, (clf, name) in enumerate(clf_list): clf.fit(X_train, y_train) display = CalibrationDisplay.from_estimator( clf, X_test, y_test, n_bins=10, name=name, ax=ax_calibration_curve, color=colors(i), ) calibration_displays[name] = display ax_calibration_curve.grid() ax_calibration_curve.set_title("Calibration plots (SVC)") # Add histogram grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)] for i, (_, name) in enumerate(clf_list): row, col = grid_positions[i] ax = fig.add_subplot(gs[row, col]) ax.hist( calibration_displays[name].y_prob, range=(0, 1), bins=10, label=name, color=colors(i), ) ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count") plt.tight_layout() plt.show() # %% # :class:`~sklearn.svm.LinearSVC` shows the opposite # behavior to :class:`~sklearn.naive_bayes.GaussianNB`; the calibration # curve has a sigmoid shape, which is typical for an under-confident # classifier. In the case of :class:`~sklearn.svm.LinearSVC`, this is caused # by the margin property of the hinge loss, which focuses on samples that are # close to the decision boundary (support vectors). Samples that are far # away from the decision boundary do not impact the hinge loss. It thus makes # sense that :class:`~sklearn.svm.LinearSVC` does not try to separate samples # in the high confidence region regions. This leads to flatter calibration # curves near 0 and 1 and is empirically shown with a variety of datasets # in Niculescu-Mizil & Caruana [1]_. # # Both kinds of calibration (sigmoid and isotonic) can fix this issue and # yield similar results. # # As before, we show the :ref:`brier_score_loss`, :ref:`log_loss`, # :ref:`precision, recall, F1 score <precision_recall_f_measure_metrics>` and # :ref:`ROC AUC <roc_metrics>`. scores = defaultdict(list) for i, (clf, name) in enumerate(clf_list): clf.fit(X_train, y_train) y_prob = clf.predict_proba(X_test) y_pred = clf.predict(X_test) scores["Classifier"].append(name) for metric in [brier_score_loss, log_loss, roc_auc_score]: score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize() scores[score_name].append(metric(y_test, y_prob[:, 1])) for metric in [precision_score, recall_score, f1_score]: score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize() scores[score_name].append(metric(y_test, y_pred)) score_df = pd.DataFrame(scores).set_index("Classifier") score_df.round(decimals=3) score_df # %% # As with :class:`~sklearn.naive_bayes.GaussianNB` above, calibration improves # both :ref:`brier_score_loss` and :ref:`log_loss` but does not alter the # prediction accuracy measures (precision, recall and F1 score) much. # # Summary # ------- # # Parametric sigmoid calibration can deal with situations where the calibration # curve of the base classifier is sigmoid (e.g., for # :class:`~sklearn.svm.LinearSVC`) but not where it is transposed-sigmoid # (e.g., :class:`~sklearn.naive_bayes.GaussianNB`). Non-parametric # isotonic calibration can deal with both situations but may require more # data to produce good results. # # References # ---------- # # .. [1] `Predicting Good Probabilities with Supervised Learning # <https://dl.acm.org/doi/pdf/10.1145/1102351.1102430>`_, # A. Niculescu-Mizil & R. Caruana, ICML 2005
NaivelyCalibratedLinearSVC
python
airbytehq__airbyte
airbyte-integrations/connectors/source-stripe/unit_tests/integration/test_external_account_bank_accounts.py
{ "start": 8069, "end": 14457 }
class ____(TestCase): @HttpMocker() def test_given_no_state_when_read_then_use_external_accounts_endpoint(self, http_mocker: HttpMocker) -> None: http_mocker.get( _external_accounts_request().with_object(_OBJECT).with_limit(100).build(), _external_bank_accounts_response().with_record(_an_external_bank_account()).build(), ) output = self._read(_config().with_start_date(_A_START_DATE), _NO_STATE) most_recent_state = output.most_recent_state assert most_recent_state.stream_descriptor == StreamDescriptor(name=_STREAM_NAME) assert int(most_recent_state.stream_state.updated) == int(_NOW.timestamp()) @HttpMocker() def test_given_state_when_read_then_query_events_using_types_and_state_value_plus_1(self, http_mocker: HttpMocker) -> None: start_date = _NOW - timedelta(days=40) state_datetime = _NOW - timedelta(days=5) cursor_value = int(state_datetime.timestamp()) + 1 http_mocker.get( _events_request().with_created_gte(state_datetime).with_created_lte(_NOW).with_limit(100).with_types(_EVENT_TYPES).build(), _events_response() .with_record(_an_event().with_cursor(cursor_value).with_field(_DATA_FIELD, _an_external_bank_account().build())) .build(), ) output = self._read( _config().with_start_date(start_date), StateBuilder().with_stream_state(_STREAM_NAME, {"updated": int(state_datetime.timestamp())}).build(), ) most_recent_state = output.most_recent_state assert most_recent_state.stream_descriptor == StreamDescriptor(name=_STREAM_NAME) assert most_recent_state.stream_state.updated == str(cursor_value) @HttpMocker() def test_given_object_is_not_back_account_when_read_then_filter_out(self, http_mocker: HttpMocker) -> None: start_date = _NOW - timedelta(days=40) state_datetime = _NOW - timedelta(days=5) http_mocker.get( StripeRequestBuilder.events_endpoint(_ACCOUNT_ID, _CLIENT_SECRET).with_any_query_params().build(), _events_response().with_record(_an_event().with_field(_DATA_FIELD, {"object": "not a bank account"})).build(), ) output = self._read( _config().with_start_date(start_date), StateBuilder().with_stream_state(_STREAM_NAME, {"updated": int(state_datetime.timestamp())}).build(), ) assert len(output.records) == 0 @HttpMocker() def test_given_state_and_pagination_when_read_then_return_records(self, http_mocker: HttpMocker) -> None: state_datetime = _NOW - timedelta(days=5) http_mocker.get( _events_request().with_created_gte(state_datetime).with_created_lte(_NOW).with_limit(100).with_types(_EVENT_TYPES).build(), _events_response() .with_pagination() .with_record(_an_event().with_id("last_record_id_from_first_page").with_field(_DATA_FIELD, _an_external_bank_account().build())) .build(), ) http_mocker.get( _events_request() .with_starting_after("last_record_id_from_first_page") .with_created_gte(state_datetime) .with_created_lte(_NOW) .with_limit(100) .with_types(_EVENT_TYPES) .build(), _events_response().with_record(self._an_external_account_event()).build(), ) output = self._read( _config(), StateBuilder().with_stream_state(_STREAM_NAME, {"updated": int(state_datetime.timestamp())}).build(), ) assert len(output.records) == 2 @HttpMocker() def test_given_state_and_small_slice_range_when_read_then_perform_multiple_queries(self, http_mocker: HttpMocker) -> None: state_datetime = _NOW - timedelta(days=5) slice_range = timedelta(days=3) slice_datetime = state_datetime + slice_range http_mocker.get( _events_request() .with_created_gte(state_datetime) .with_created_lte(slice_datetime - _AVOIDING_INCLUSIVE_BOUNDARIES) .with_limit(100) .with_types(_EVENT_TYPES) .build(), _events_response().with_record(self._an_external_account_event()).build(), ) http_mocker.get( _events_request().with_created_gte(slice_datetime).with_created_lte(_NOW).with_limit(100).with_types(_EVENT_TYPES).build(), _events_response().with_record(self._an_external_account_event()).with_record(self._an_external_account_event()).build(), ) output = self._read( _config().with_start_date(_NOW - timedelta(days=30)).with_slice_range_in_days(slice_range.days), StateBuilder().with_stream_state(_STREAM_NAME, {"updated": int(state_datetime.timestamp())}).build(), ) assert len(output.records) == 3 @HttpMocker() def test_given_state_earlier_than_30_days_when_read_then_query_events_using_types_and_event_lower_boundary( self, http_mocker: HttpMocker ) -> None: # this seems odd as we would miss some data between start_date and events_lower_boundary. In that case, we should hit the # external_accounts endpoint start_date = _NOW - timedelta(days=40) state_value = _NOW - timedelta(days=39) events_lower_boundary = _NOW - timedelta(days=30) http_mocker.get( _events_request() .with_created_gte(events_lower_boundary) .with_created_lte(_NOW) .with_limit(100) .with_types(_EVENT_TYPES) .build(), _events_response().with_record(self._an_external_account_event()).build(), ) self._read( _config().with_start_date(start_date), StateBuilder().with_stream_state(_STREAM_NAME, {"updated": int(state_value.timestamp())}).build(), ) # request matched http_mocker def _an_external_account_event(self) -> RecordBuilder: return _an_event().with_field(_DATA_FIELD, _an_external_bank_account().build()) def _read(self, config: ConfigBuilder, state: Optional[Dict[str, Any]], expecting_exception: bool = False) -> EntrypointOutput: return _read(config, SyncMode.incremental, state, expecting_exception)
IncrementalTest
python
doocs__leetcode
solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/Solution.py
{ "start": 63, "end": 676 }
class ____: def minTrioDegree(self, n: int, edges: List[List[int]]) -> int: g = [[False] * n for _ in range(n)] deg = [0] * n for u, v in edges: u, v = u - 1, v - 1 g[u][v] = g[v][u] = True deg[u] += 1 deg[v] += 1 ans = inf for i in range(n): for j in range(i + 1, n): if g[i][j]: for k in range(j + 1, n): if g[i][k] and g[j][k]: ans = min(ans, deg[i] + deg[j] + deg[k] - 6) return -1 if ans == inf else ans
Solution
python
dagster-io__dagster
python_modules/libraries/dagster-cloud-cli/dagster_cloud_cli/core/workspace.py
{ "start": 495, "end": 629 }
class ____: commit_hash: Optional[str] = None url: Optional[str] = None @whitelist_for_serdes @record(kw_only=False)
GitMetadata
python
joblib__joblib
joblib/externals/loky/initializers.py
{ "start": 961, "end": 2567 }
class ____: """Compound worker initializer This is meant to be used in conjunction with _chain_initializers to produce the necessary chained_args list to be passed to __call__. """ def __init__(self, initializers): self._initializers = initializers def __call__(self, *chained_args): for initializer, args in zip(self._initializers, chained_args): initializer(*args) def _chain_initializers(initializer_and_args): """Convenience helper to combine a sequence of initializers. If some initializers are None, they are filtered out. """ filtered_initializers = [] filtered_initargs = [] for initializer, initargs in initializer_and_args: if initializer is not None: filtered_initializers.append(initializer) filtered_initargs.append(initargs) if not filtered_initializers: return None, () elif len(filtered_initializers) == 1: return filtered_initializers[0], filtered_initargs[0] else: return _ChainedInitializer(filtered_initializers), filtered_initargs def _prepare_initializer(initializer, initargs): if initializer is not None and not callable(initializer): raise TypeError( f"initializer must be a callable, got: {initializer!r}" ) # Introspect runtime to determine if we need to propagate the viztracer # profiler information to the workers: return _chain_initializers( [ (initializer, initargs), _make_viztracer_initializer_and_initargs(), ] )
_ChainedInitializer
python
neetcode-gh__leetcode
python/0210-course-schedule-ii.py
{ "start": 0, "end": 789 }
class ____: def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: prereq = {c: [] for c in range(numCourses)} for crs, pre in prerequisites: prereq[crs].append(pre) output = [] visit, cycle = set(), set() def dfs(crs): if crs in cycle: return False if crs in visit: return True cycle.add(crs) for pre in prereq[crs]: if dfs(pre) == False: return False cycle.remove(crs) visit.add(crs) output.append(crs) return True for c in range(numCourses): if dfs(c) == False: return [] return output
Solution
python
pydata__xarray
xarray/plot/facetgrid.py
{ "start": 1556, "end": 37980 }
class ____(Generic[T_DataArrayOrSet]): """ Initialize the Matplotlib figure and FacetGrid object. The :class:`FacetGrid` is an object that links a xarray DataArray to a Matplotlib figure with a particular structure. In particular, :class:`FacetGrid` is used to draw plots with multiple axes, where each axes shows the same relationship conditioned on different levels of some dimension. It's possible to condition on up to two variables by assigning variables to the rows and columns of the grid. The general approach to plotting here is called "small multiples", where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one or more other variables is often called a "trellis plot". The basic workflow is to initialize the :class:`FacetGrid` object with the DataArray and the variable names that are used to structure the grid. Then plotting functions can be applied to each subset by calling :meth:`FacetGrid.map_dataarray` or :meth:`FacetGrid.map`. Attributes ---------- axs : ndarray of matplotlib.axes.Axes Array containing axes in corresponding position, as returned from :py:func:`matplotlib.pyplot.subplots`. col_labels : list of matplotlib.text.Annotation Column titles. row_labels : list of matplotlib.text.Annotation Row titles. fig : matplotlib.figure.Figure The figure containing all the axes. name_dicts : ndarray of dict Array containing dictionaries mapping coordinate names to values. ``None`` is used as a sentinel value for axes that should remain empty, i.e., sometimes the rightmost grid positions in the bottom row. """ data: T_DataArrayOrSet name_dicts: np.ndarray fig: Figure axs: np.ndarray row_names: list[np.ndarray] col_names: list[np.ndarray] figlegend: Legend | None quiverkey: QuiverKey | None cbar: Colorbar | None _single_group: bool | Hashable _nrow: int _row_var: Hashable | None _ncol: int _col_var: Hashable | None _col_wrap: int | None row_labels: list[Annotation | None] col_labels: list[Annotation | None] _x_var: None _y_var: None _hue_var: DataArray | None _cmap_extend: Any | None _mappables: list[ScalarMappable] _finalized: bool def __init__( self, data: T_DataArrayOrSet, col: Hashable | None = None, row: Hashable | None = None, col_wrap: int | None = None, sharex: bool = True, sharey: bool = True, figsize: Iterable[float] | None = None, aspect: float = 1, size: float = 3, subplot_kws: dict[str, Any] | None = None, ) -> None: """ Parameters ---------- data : DataArray or Dataset DataArray or Dataset to be plotted. row, col : str Dimension names that define subsets of the data, which will be drawn on separate facets in the grid. col_wrap : int, optional "Wrap" the grid the for the column variable after this number of columns, adding rows if ``col_wrap`` is less than the number of facets. sharex : bool, optional If true, the facets will share *x* axes. sharey : bool, optional If true, the facets will share *y* axes. figsize : Iterable of float or None, optional A tuple (width, height) of the figure in inches. If set, overrides ``size`` and ``aspect``. aspect : scalar, default: 1 Aspect ratio of each facet, so that ``aspect * size`` gives the width of each facet in inches. size : scalar, default: 3 Height (in inches) of each facet. See also: ``aspect``. subplot_kws : dict, optional Dictionary of keyword arguments for Matplotlib subplots (:py:func:`matplotlib.pyplot.subplots`). """ import matplotlib.pyplot as plt # Handle corner case of nonunique coordinates rep_col = col is not None and not data[col].to_index().is_unique rep_row = row is not None and not data[row].to_index().is_unique if rep_col or rep_row: raise ValueError( "Coordinates used for faceting cannot " "contain repeated (nonunique) values." ) # single_group is the grouping variable, if there is exactly one single_group: bool | Hashable if col and row: single_group = False nrow = len(data[row]) ncol = len(data[col]) nfacet = nrow * ncol if col_wrap is not None: warnings.warn( "Ignoring col_wrap since both col and row were passed", stacklevel=2 ) elif row and not col: single_group = row elif not row and col: single_group = col else: raise ValueError("Pass a coordinate name as an argument for row or col") # Compute grid shape if single_group: nfacet = len(data[single_group]) if col: # idea - could add heuristic for nice shapes like 3x4 ncol = nfacet if row: ncol = 1 if col_wrap is not None: # Overrides previous settings ncol = col_wrap nrow = int(np.ceil(nfacet / ncol)) # Set the subplot kwargs subplot_kws = {} if subplot_kws is None else subplot_kws if figsize is None: # Calculate the base figure size with extra horizontal space for a # colorbar cbar_space = 1 figsize = (ncol * size * aspect + cbar_space, nrow * size) fig, axs = plt.subplots( nrow, ncol, sharex=sharex, sharey=sharey, squeeze=False, figsize=figsize, subplot_kw=subplot_kws, ) # Set up the lists of names for the row and column facet variables col_names = list(data[col].to_numpy()) if col else [] row_names = list(data[row].to_numpy()) if row else [] if single_group: full: list[dict[Hashable, Any] | None] = [ {single_group: x} for x in data[single_group].to_numpy() ] empty: list[dict[Hashable, Any] | None] = [ None for x in range(nrow * ncol - len(full)) ] name_dict_list = full + empty else: rowcols = itertools.product(row_names, col_names) name_dict_list = [{row: r, col: c} for r, c in rowcols] name_dicts = np.array(name_dict_list).reshape(nrow, ncol) # Set up the class attributes # --------------------------- # First the public API self.data = data self.name_dicts = name_dicts self.fig = fig self.axs = axs self.row_names = row_names self.col_names = col_names # guides self.figlegend = None self.quiverkey = None self.cbar = None # Next the private variables self._single_group = single_group self._nrow = nrow self._row_var = row self._ncol = ncol self._col_var = col self._col_wrap = col_wrap self.row_labels = [None] * nrow self.col_labels = [None] * ncol self._x_var = None self._y_var = None self._hue_var = None self._cmap_extend = None self._mappables = [] self._finalized = False @property def axes(self) -> np.ndarray: warnings.warn( ( "self.axes is deprecated since 2022.11 in order to align with " "matplotlibs plt.subplots, use self.axs instead." ), DeprecationWarning, stacklevel=2, ) return self.axs @axes.setter def axes(self, axs: np.ndarray) -> None: warnings.warn( ( "self.axes is deprecated since 2022.11 in order to align with " "matplotlibs plt.subplots, use self.axs instead." ), DeprecationWarning, stacklevel=2, ) self.axs = axs @property def _left_axes(self) -> np.ndarray: return self.axs[:, 0] @property def _bottom_axes(self) -> np.ndarray: return self.axs[-1, :] def map_dataarray( self: T_FacetGrid, func: Callable, x: Hashable | None, y: Hashable | None, **kwargs: Any, ) -> T_FacetGrid: """ Apply a plotting function to a 2d facet's subset of the data. This is more convenient and less general than ``FacetGrid.map`` Parameters ---------- func : callable A plotting function with the same signature as a 2d xarray plotting method such as `xarray.plot.imshow` x, y : string Names of the coordinates to plot on x, y axes **kwargs additional keyword arguments to func Returns ------- self : FacetGrid object """ if kwargs.get("cbar_ax") is not None: raise ValueError("cbar_ax not supported by FacetGrid.") cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs( func, self.data.to_numpy(), **kwargs ) self._cmap_extend = cmap_params.get("extend") # Order is important func_kwargs = { k: v for k, v in kwargs.items() if k not in {"cmap", "colors", "cbar_kwargs", "levels"} } func_kwargs.update(cmap_params) # to avoid redundant calling, colorbar and labelling is instead handled # by `_finalize_grid` at the end func_kwargs["add_colorbar"] = False if func.__name__ != "surface": func_kwargs["add_labels"] = False # Get x, y labels for the first subplot x, y = _infer_xy_labels( darray=self.data.loc[self.name_dicts.flat[0]], x=x, y=y, imshow=func.__name__ == "imshow", rgb=kwargs.get("rgb"), ) for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True): # None is the sentinel value if d is not None: subset = self.data.loc[d] mappable = func( subset, x=x, y=y, ax=ax, **func_kwargs, _is_facetgrid=True ) self._mappables.append(mappable) xlabel = label_from_attrs(self.data[x]) ylabel = label_from_attrs(self.data[y]) self._finalize_grid(xlabel, ylabel) if kwargs.get("add_colorbar", True): self.add_colorbar(**cbar_kwargs) return self def map_plot1d( self: T_FacetGrid, func: Callable, x: Hashable | None, y: Hashable | None, *, z: Hashable | None = None, hue: Hashable | None = None, markersize: Hashable | None = None, linewidth: Hashable | None = None, **kwargs: Any, ) -> T_FacetGrid: """ Apply a plotting function to a 1d facet's subset of the data. This is more convenient and less general than ``FacetGrid.map`` Parameters ---------- func : A plotting function with the same signature as a 1d xarray plotting method such as `xarray.plot.scatter` x, y : Names of the coordinates to plot on x, y axes **kwargs additional keyword arguments to func Returns ------- self : FacetGrid object """ # Copy data to allow converting categoricals to integers and storing # them in self.data. It is not possible to copy in the init # unfortunately as there are tests that relies on self.data being # mutable (test_names_appear_somewhere()). Maybe something to deprecate # not sure how much that is used outside these tests. self.data = self.data.copy() if kwargs.get("cbar_ax") is not None: raise ValueError("cbar_ax not supported by FacetGrid.") if func.__name__ == "scatter": size_ = kwargs.pop("_size", markersize) size_r = _MARKERSIZE_RANGE else: size_ = kwargs.pop("_size", linewidth) size_r = _LINEWIDTH_RANGE # Guess what coords to use if some of the values in coords_to_plot are None: coords_to_plot: MutableMapping[str, Hashable | None] = dict( x=x, z=z, hue=hue, size=size_ ) coords_to_plot = _guess_coords_to_plot(self.data, coords_to_plot, kwargs) # Handle hues: hue = coords_to_plot["hue"] hueplt = self.data.coords[hue] if hue else None # TODO: _infer_line_data2 ? hueplt_norm = _Normalize(hueplt) self._hue_var = hueplt cbar_kwargs = kwargs.pop("cbar_kwargs", {}) if hueplt_norm.data is not None: if not hueplt_norm.data_is_numeric: # TODO: Ticks seems a little too hardcoded, since it will always # show all the values. But maybe it's ok, since plotting hundreds # of categorical data isn't that meaningful anyway. cbar_kwargs.update(format=hueplt_norm.format, ticks=hueplt_norm.ticks) kwargs.update(levels=hueplt_norm.levels) cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs( func, cast("DataArray", hueplt_norm.values).data, cbar_kwargs=cbar_kwargs, **kwargs, ) self._cmap_extend = cmap_params.get("extend") else: cmap_params = {} # Handle sizes: size_ = coords_to_plot["size"] sizeplt = self.data.coords[size_] if size_ else None sizeplt_norm = _Normalize(data=sizeplt, width=size_r) if sizeplt_norm.data is not None: self.data[size_] = sizeplt_norm.values # Add kwargs that are sent to the plotting function, # order is important ??? func_kwargs = { k: v for k, v in kwargs.items() if k not in {"cmap", "colors", "cbar_kwargs", "levels"} } func_kwargs.update(cmap_params) # Annotations will be handled later, skip those parts in the plotfunc: func_kwargs["add_colorbar"] = False func_kwargs["add_legend"] = False func_kwargs["add_title"] = False add_labels_ = np.zeros(self.axs.shape + (3,), dtype=bool) if kwargs.get("z") is not None: # 3d plots looks better with all labels. 3d plots can't sharex either so it # is easy to get lost while rotating the plots: add_labels_[:] = True else: # Subplots should have labels on the left and bottom edges only: add_labels_[-1, :, 0] = True # x add_labels_[:, 0, 1] = True # y # add_labels_[:, :, 2] = True # z # Set up the lists of names for the row and column facet variables: if self._single_group: full = tuple( {self._single_group: x} for x in range(self.data[self._single_group].size) ) empty = tuple(None for x in range(self._nrow * self._ncol - len(full))) name_d = full + empty else: rowcols = itertools.product( range(self.data[self._row_var].size), range(self.data[self._col_var].size), ) name_d = tuple({self._row_var: r, self._col_var: c} for r, c in rowcols) name_dicts = np.array(name_d).reshape(self._nrow, self._ncol) # Plot the data for each subplot: for add_lbls, d, ax in zip( add_labels_.reshape((self.axs.size, -1)), name_dicts.flat, self.axs.flat, strict=True, ): func_kwargs["add_labels"] = add_lbls # None is the sentinel value if d is not None: subset = self.data.isel(d) mappable = func( subset, x=x, y=y, ax=ax, hue=hue, _size=size_, **func_kwargs, _is_facetgrid=True, ) self._mappables.append(mappable) # Add titles and some touch ups: self._finalize_grid() self._set_lims() add_colorbar, add_legend = _determine_guide( hueplt_norm, sizeplt_norm, kwargs.get("add_colorbar"), kwargs.get("add_legend"), # kwargs.get("add_guide", None), # kwargs.get("hue_style", None), ) if add_legend: use_legend_elements = func.__name__ != "hist" if use_legend_elements: self.add_legend( use_legend_elements=use_legend_elements, hueplt_norm=hueplt_norm if not add_colorbar else _Normalize(None), sizeplt_norm=sizeplt_norm, primitive=self._mappables, legend_ax=self.fig, plotfunc=func.__name__, ) else: self.add_legend(use_legend_elements=use_legend_elements) if add_colorbar: # Colorbar is after legend so it correctly fits the plot: if "label" not in cbar_kwargs: cbar_kwargs["label"] = label_from_attrs(hueplt_norm.data) self.add_colorbar(**cbar_kwargs) return self def map_dataarray_line( self: T_FacetGrid, func: Callable, x: Hashable | None, y: Hashable | None, hue: Hashable | None, add_legend: bool = True, _labels=None, **kwargs: Any, ) -> T_FacetGrid: from xarray.plot.dataarray_plot import _infer_line_data for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True): # None is the sentinel value if d is not None: subset = self.data.loc[d] mappable = func( subset, x=x, y=y, ax=ax, hue=hue, add_legend=False, _labels=False, **kwargs, ) self._mappables.append(mappable) xplt, yplt, hueplt, huelabel = _infer_line_data( darray=self.data.loc[self.name_dicts.flat[0]], x=x, y=y, hue=hue ) xlabel = label_from_attrs(xplt) ylabel = label_from_attrs(yplt) self._hue_var = hueplt self._finalize_grid(xlabel, ylabel) if add_legend and hueplt is not None and huelabel is not None: self.add_legend(label=huelabel) return self def map_dataset( self: T_FacetGrid, func: Callable, x: Hashable | None = None, y: Hashable | None = None, hue: Hashable | None = None, hue_style: HueStyleOptions = None, add_guide: bool | None = None, **kwargs: Any, ) -> T_FacetGrid: from xarray.plot.dataset_plot import _infer_meta_data kwargs["add_guide"] = False if kwargs.get("markersize"): kwargs["size_mapping"] = _parse_size( self.data[kwargs["markersize"]], kwargs.pop("size_norm", None) ) meta_data = _infer_meta_data( self.data, x, y, hue, hue_style, add_guide, funcname=func.__name__ ) kwargs["meta_data"] = meta_data if hue and meta_data["hue_style"] == "continuous": cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs( func, self.data[hue].to_numpy(), **kwargs ) kwargs["meta_data"]["cmap_params"] = cmap_params kwargs["meta_data"]["cbar_kwargs"] = cbar_kwargs kwargs["_is_facetgrid"] = True if func.__name__ == "quiver" and "scale" not in kwargs: raise ValueError("Please provide scale.") # TODO: come up with an algorithm for reasonable scale choice for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True): # None is the sentinel value if d is not None: subset = self.data.loc[d] maybe_mappable = func( ds=subset, x=x, y=y, hue=hue, hue_style=hue_style, ax=ax, **kwargs ) # TODO: this is needed to get legends to work. # but maybe_mappable is a list in that case :/ self._mappables.append(maybe_mappable) self._finalize_grid(meta_data["xlabel"], meta_data["ylabel"]) if hue: hue_label = meta_data.pop("hue_label", None) self._hue_label = hue_label if meta_data["add_legend"]: self._hue_var = meta_data["hue"] self.add_legend(label=hue_label) elif meta_data["add_colorbar"]: self.add_colorbar(label=hue_label, **cbar_kwargs) if meta_data["add_quiverkey"]: self.add_quiverkey(kwargs["u"], kwargs["v"]) return self def _finalize_grid(self, *axlabels: Hashable) -> None: """Finalize the annotations and layout.""" if not self._finalized: self.set_axis_labels(*axlabels) self.set_titles() self.fig.tight_layout() for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True): if namedict is None: ax.set_visible(False) self._finalized = True def _adjust_fig_for_guide(self, guide) -> None: # Draw the plot to set the bounding boxes correctly if hasattr(self.fig.canvas, "get_renderer"): renderer = self.fig.canvas.get_renderer() else: raise RuntimeError("MPL backend has no renderer") self.fig.draw(renderer) # Calculate and set the new width of the figure so the legend fits guide_width = guide.get_window_extent(renderer).width / self.fig.dpi figure_width = self.fig.get_figwidth() total_width = figure_width + guide_width self.fig.set_figwidth(total_width) # Draw the plot again to get the new transformations self.fig.draw(renderer) # Now calculate how much space we need on the right side guide_width = guide.get_window_extent(renderer).width / self.fig.dpi space_needed = guide_width / total_width + 0.02 # margin = .01 # _space_needed = margin + space_needed right = 1 - space_needed # Place the subplot axes to give space for the legend self.fig.subplots_adjust(right=right) def add_legend( self, *, label: str | None = None, use_legend_elements: bool = False, **kwargs: Any, ) -> None: if use_legend_elements: self.figlegend = _add_legend(**kwargs) else: assert self._hue_var is not None self.figlegend = self.fig.legend( handles=self._mappables[-1], labels=list(self._hue_var.to_numpy()), title=label if label is not None else label_from_attrs(self._hue_var), loc=kwargs.pop("loc", "center right"), **kwargs, ) self._adjust_fig_for_guide(self.figlegend) def add_colorbar(self, **kwargs: Any) -> None: """Draw a colorbar.""" kwargs = kwargs.copy() if self._cmap_extend is not None: kwargs.setdefault("extend", self._cmap_extend) # dont pass extend as kwarg if it is in the mappable if hasattr(self._mappables[-1], "extend"): kwargs.pop("extend", None) if "label" not in kwargs: from xarray import DataArray assert isinstance(self.data, DataArray) kwargs.setdefault("label", label_from_attrs(self.data)) self.cbar = self.fig.colorbar( self._mappables[-1], ax=list(self.axs.flat), **kwargs ) def add_quiverkey(self, u: Hashable, v: Hashable, **kwargs: Any) -> None: kwargs = kwargs.copy() magnitude = _get_nice_quiver_magnitude(self.data[u], self.data[v]) units = self.data[u].attrs.get("units", "") self.quiverkey = self.axs.flat[-1].quiverkey( self._mappables[-1], X=0.8, Y=0.9, U=magnitude, label=f"{magnitude}\n{units}", labelpos="E", coordinates="figure", ) # TODO: does not work because self.quiverkey.get_window_extent(renderer) = 0 # https://github.com/matplotlib/matplotlib/issues/18530 # self._adjust_fig_for_guide(self.quiverkey.text) def _get_largest_lims(self) -> dict[str, tuple[float, float]]: """ Get largest limits in the facetgrid. Returns ------- lims_largest : dict[str, tuple[float, float]] Dictionary with the largest limits along each axis. Examples -------- >>> ds = xr.tutorial.scatter_example_dataset(seed=42) >>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w") >>> round(fg._get_largest_lims()["x"][0], 3) np.float64(-0.334) """ lims_largest: dict[str, tuple[float, float]] = dict( x=(np.inf, -np.inf), y=(np.inf, -np.inf), z=(np.inf, -np.inf) ) for axis in ("x", "y", "z"): # Find the plot with the largest xlim values: lower, upper = lims_largest[axis] for ax in self.axs.flat: get_lim: Callable[[], tuple[float, float]] | None = getattr( ax, f"get_{axis}lim", None ) if get_lim: lower_new, upper_new = get_lim() lower, upper = (min(lower, lower_new), max(upper, upper_new)) lims_largest[axis] = (lower, upper) return lims_largest def _set_lims( self, x: tuple[float, float] | None = None, y: tuple[float, float] | None = None, z: tuple[float, float] | None = None, ) -> None: """ Set the same limits for all the subplots in the facetgrid. Parameters ---------- x : tuple[float, float] or None, optional x axis limits. y : tuple[float, float] or None, optional y axis limits. z : tuple[float, float] or None, optional z axis limits. Examples -------- >>> ds = xr.tutorial.scatter_example_dataset(seed=42) >>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w") >>> fg._set_lims(x=(-0.3, 0.3), y=(0, 2), z=(0, 4)) >>> fg.axs[0, 0].get_xlim(), fg.axs[0, 0].get_ylim() ((np.float64(-0.3), np.float64(0.3)), (np.float64(0.0), np.float64(2.0))) """ lims_largest = self._get_largest_lims() # Set limits: for ax in self.axs.flat: for (axis, data_limit), parameter_limit in zip( lims_largest.items(), (x, y, z), strict=True ): set_lim = getattr(ax, f"set_{axis}lim", None) if set_lim: set_lim(data_limit if parameter_limit is None else parameter_limit) def set_axis_labels(self, *axlabels: Hashable) -> None: """Set axis labels on the left column and bottom row of the grid.""" from xarray.core.dataarray import DataArray for var, axis in zip(axlabels, ["x", "y", "z"], strict=False): if var is not None: if isinstance(var, DataArray): getattr(self, f"set_{axis}labels")(label_from_attrs(var)) else: getattr(self, f"set_{axis}labels")(str(var)) def _set_labels( self, axis: str, axes: Iterable, label: str | None = None, **kwargs ) -> None: if label is None: label = label_from_attrs(self.data[getattr(self, f"_{axis}_var")]) for ax in axes: getattr(ax, f"set_{axis}label")(label, **kwargs) def set_xlabels(self, label: str | None = None, **kwargs: Any) -> None: """Label the x axis on the bottom row of the grid.""" self._set_labels("x", self._bottom_axes, label, **kwargs) def set_ylabels(self, label: str | None = None, **kwargs: Any) -> None: """Label the y axis on the left column of the grid.""" self._set_labels("y", self._left_axes, label, **kwargs) def set_zlabels(self, label: str | None = None, **kwargs: Any) -> None: """Label the z axis.""" self._set_labels("z", self._left_axes, label, **kwargs) def set_titles( self, template: str = "{coord} = {value}", maxchar: int = 30, size=None, **kwargs, ) -> None: """ Draw titles either above each facet or on the grid margins. Parameters ---------- template : str, default: "{coord} = {value}" Template for plot titles containing {coord} and {value} maxchar : int, default: 30 Truncate titles at maxchar **kwargs : keyword args additional arguments to matplotlib.text Returns ------- self: FacetGrid object """ import matplotlib as mpl if size is None: size = mpl.rcParams["axes.labelsize"] nicetitle = functools.partial(_nicetitle, maxchar=maxchar, template=template) if self._single_group: for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True): # Only label the ones with data if d is not None: coord, value = list(d.items()).pop() title = nicetitle(coord, value) ax.set_title(title, size=size, **kwargs) else: # The row titles on the right edge of the grid for index, (ax, row_name, handle) in enumerate( zip(self.axs[:, -1], self.row_names, self.row_labels, strict=True) ): title = nicetitle(coord=self._row_var, value=row_name) if not handle: self.row_labels[index] = ax.annotate( title, xy=(1.02, 0.5), xycoords="axes fraction", rotation=270, ha="left", va="center", **kwargs, ) else: handle.set_text(title) handle.update(kwargs) # The column titles on the top row for index, (ax, col_name, handle) in enumerate( zip(self.axs[0, :], self.col_names, self.col_labels, strict=True) ): title = nicetitle(coord=self._col_var, value=col_name) if not handle: self.col_labels[index] = ax.set_title(title, size=size, **kwargs) else: handle.set_text(title) handle.update(kwargs) def set_ticks( self, max_xticks: int = _NTICKS, max_yticks: int = _NTICKS, fontsize: str | int = _FONTSIZE, ) -> None: """ Set and control tick behavior. Parameters ---------- max_xticks, max_yticks : int, optional Maximum number of labeled ticks to plot on x, y axes fontsize : string or int Font size as used by matplotlib text Returns ------- self : FacetGrid object """ from matplotlib.ticker import MaxNLocator # Both are necessary x_major_locator = MaxNLocator(nbins=max_xticks) y_major_locator = MaxNLocator(nbins=max_yticks) for ax in self.axs.flat: ax.xaxis.set_major_locator(x_major_locator) ax.yaxis.set_major_locator(y_major_locator) for tick in itertools.chain( ax.xaxis.get_major_ticks(), ax.yaxis.get_major_ticks() ): tick.label1.set_fontsize(fontsize) def map( self: T_FacetGrid, func: Callable, *args: Hashable, **kwargs: Any ) -> T_FacetGrid: """ Apply a plotting function to each facet's subset of the data. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. It must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. *args : Hashable Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. **kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : FacetGrid object """ import matplotlib.pyplot as plt for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True): if namedict is not None: data = self.data.loc[namedict] plt.sca(ax) innerargs = [data[a].to_numpy() for a in args] maybe_mappable = func(*innerargs, **kwargs) # TODO: better way to verify that an artist is mappable? # https://stackoverflow.com/questions/33023036/is-it-possible-to-detect-if-a-matplotlib-artist-is-a-mappable-suitable-for-use-w#33023522 if maybe_mappable and hasattr(maybe_mappable, "autoscale_None"): self._mappables.append(maybe_mappable) self._finalize_grid(*args[:2]) return self def _easy_facetgrid( data: T_DataArrayOrSet, plotfunc: Callable, kind: Literal["line", "dataarray", "dataset", "plot1d"], x: Hashable | None = None, y: Hashable | None = None, row: Hashable | None = None, col: Hashable | None = None, col_wrap: int | None = None, sharex: bool = True, sharey: bool = True, aspect: float | None = None, size: float | None = None, subplot_kws: dict[str, Any] | None = None, ax: Axes | None = None, figsize: Iterable[float] | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArrayOrSet]: """ Convenience method to call xarray.plot.FacetGrid from 2d plotting methods kwargs are the arguments to 2d plotting method """ if ax is not None: raise ValueError("Can't use axes when making faceted plots.") if aspect is None: aspect = 1 if size is None: size = 3 elif figsize is not None: raise ValueError("cannot provide both `figsize` and `size` arguments") if kwargs.get("z") is not None: # 3d plots doesn't support sharex, sharey, reset to mpl defaults: sharex = False sharey = False g = FacetGrid( data=data, col=col, row=row, col_wrap=col_wrap, sharex=sharex, sharey=sharey, figsize=figsize, aspect=aspect, size=size, subplot_kws=subplot_kws, ) if kind == "line": return g.map_dataarray_line(plotfunc, x, y, **kwargs) if kind == "dataarray": return g.map_dataarray(plotfunc, x, y, **kwargs) if kind == "plot1d": return g.map_plot1d(plotfunc, x, y, **kwargs) if kind == "dataset": return g.map_dataset(plotfunc, x, y, **kwargs) raise ValueError( f"kind must be one of `line`, `dataarray`, `dataset` or `plot1d`, got {kind}" )
FacetGrid
python
huggingface__transformers
tests/models/chinese_clip/test_modeling_chinese_clip.py
{ "start": 14334, "end": 17120 }
class ____(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CHINESE_CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ChineseCLIPVisionModel,) if is_torch_available() else () test_resize_embeddings = False def setUp(self): self.model_tester = ChineseCLIPVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=ChineseCLIPVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="CHINESE_CLIP does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip def test_training(self): pass @unittest.skip def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): model_name = "OFA-Sys/chinese-clip-vit-base-patch16" model = ChineseCLIPVisionModel.from_pretrained(model_name) self.assertIsNotNone(model)
ChineseCLIPVisionModelTest
python
HypothesisWorks__hypothesis
hypothesis-python/src/hypothesis/strategies/_internal/misc.py
{ "start": 985, "end": 3187 }
class ____(SampledFromStrategy[Ex]): """A strategy which always returns a single fixed value. It's implemented as a length-one SampledFromStrategy so that all our special-case logic for filtering and sets applies also to just(x). The important difference from a SampledFromStrategy with only one element to choose is that JustStrategy *never* touches the underlying choice sequence, i.e. drawing neither reads from nor writes to `data`. This is a reasonably important optimisation (or semantic distinction!) for both JustStrategy and SampledFromStrategy. """ @property def value(self) -> Ex: return self.elements[0] def __repr__(self) -> str: suffix = "".join( f".{name}({get_pretty_function_description(f)})" for name, f in self._transformations ) if self.value is None: return "none()" + suffix return f"just({get_pretty_function_description(self.value)}){suffix}" def calc_is_cacheable(self, recur: RecurT) -> bool: return is_hashable(self.value) def do_filtered_draw(self, data: ConjectureData) -> Ex | UniqueIdentifier: # The parent class's `do_draw` implementation delegates directly to # `do_filtered_draw`, which we can greatly simplify in this case since # we have exactly one value. (This also avoids drawing any data.) return self._transform(self.value) @defines_strategy(eager=True) def just(value: T) -> SearchStrategy[T]: """Return a strategy which only generates ``value``. Note: ``value`` is not copied. Be wary of using mutable values. If ``value`` is the result of a callable, you can use :func:`builds(callable) <hypothesis.strategies.builds>` instead of ``just(callable())`` to get a fresh value each time. Examples from this strategy do not shrink (because there is only one). """ return JustStrategy([value]) @defines_strategy(force_reusable_values=True) def none() -> SearchStrategy[None]: """Return a strategy which only generates None. Examples from this strategy do not shrink (because there is only one). """ return just(None)
JustStrategy
python
huggingface__transformers
src/transformers/training_args.py
{ "start": 143292, "end": 143554 }
class ____(Enum): NOT_PARALLEL = "not_parallel" NOT_DISTRIBUTED = "not_distributed" DISTRIBUTED = "distributed" SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel" SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel" TPU = "tpu"
ParallelMode
python
pytorch__pytorch
torch/_subclasses/fake_tensor.py
{ "start": 2960, "end": 3188 }
class ____: def __init__(self) -> None: global RECURSION_COUNT RECURSION_COUNT += 1 def __del__(self) -> None: global RECURSION_COUNT RECURSION_COUNT -= 1 @dataclass
IncrementRecursionCount
python
numpy__numpy
numpy/_core/tests/test_dtype.py
{ "start": 37600, "end": 39273 }
class ____: """Test deeply nested subtypes.""" def test1(self): simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['Red pixel', 'Blue pixel']}) a = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((int, (3, 2))))]) b = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((int, (3, 2))))]) assert_dtype_equal(a, b) c = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((a, (3, 2))))]) d = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((a, (3, 2))))]) assert_dtype_equal(c, d) @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") def test_list_recursion(self): l = [] l.append(('f', l)) with pytest.raises(RecursionError): np.dtype(l) @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") def test_tuple_recursion(self): d = np.int32 for i in range(100000): d = (d, (1,)) with pytest.raises(RecursionError): np.dtype(d) @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") def test_dict_recursion(self): d = {"names": ['self'], "formats": [None], "offsets": [0]} d['formats'][0] = d with pytest.raises(RecursionError): np.dtype(d)
TestMonsterType
python
aimacode__aima-python
deep_learning4e.py
{ "start": 5973, "end": 12998 }
class ____(Layer): """Batch normalization layer.""" def __init__(self, size, eps=0.001): super().__init__(size) self.eps = eps # self.weights = [beta, gamma] self.weights = [0, 0] self.inputs = None def forward(self, inputs): # mean value of inputs mu = sum(inputs) / len(inputs) # standard error of inputs stderr = statistics.stdev(inputs) self.inputs = inputs res = [] # get normalized value of each input for i in range(len(self.nodes)): val = [(inputs[i] - mu) * self.weights[0] / np.sqrt(self.eps + stderr ** 2) + self.weights[1]] res.append(val) self.nodes[i].value = val return res def init_examples(examples, idx_i, idx_t, o_units): """Init examples from dataset.examples.""" inputs, targets = {}, {} for i, e in enumerate(examples): # input values of e inputs[i] = [e[i] for i in idx_i] if o_units > 1: # one-hot representation of e's target t = [0 for i in range(o_units)] t[e[idx_t]] = 1 targets[i] = t else: # target value of e targets[i] = [e[idx_t]] return inputs, targets def stochastic_gradient_descent(dataset, net, loss, epochs=1000, l_rate=0.01, batch_size=1, verbose=False): """ Gradient descent algorithm to update the learnable parameters of a network. :return: the updated network """ examples = dataset.examples # init data for e in range(epochs): total_loss = 0 random.shuffle(examples) weights = [[node.weights for node in layer.nodes] for layer in net] for batch in get_batch(examples, batch_size): inputs, targets = init_examples(batch, dataset.inputs, dataset.target, len(net[-1].nodes)) # compute gradients of weights gs, batch_loss = BackPropagation(inputs, targets, weights, net, loss) # update weights with gradient descent weights = [x + y for x, y in zip(weights, [np.array(tg) * -l_rate for tg in gs])] total_loss += batch_loss # update the weights of network each batch for i in range(len(net)): if weights[i].size != 0: for j in range(len(weights[i])): net[i].nodes[j].weights = weights[i][j] if verbose: print("epoch:{}, total_loss:{}".format(e + 1, total_loss)) return net def adam(dataset, net, loss, epochs=1000, rho=(0.9, 0.999), delta=1 / 10 ** 8, l_rate=0.001, batch_size=1, verbose=False): """ [Figure 19.6] Adam optimizer to update the learnable parameters of a network. Required parameters are similar to gradient descent. :return the updated network """ examples = dataset.examples # init s,r and t s = [[[0] * len(node.weights) for node in layer.nodes] for layer in net] r = [[[0] * len(node.weights) for node in layer.nodes] for layer in net] t = 0 # repeat util converge for e in range(epochs): # total loss of each epoch total_loss = 0 random.shuffle(examples) weights = [[node.weights for node in layer.nodes] for layer in net] for batch in get_batch(examples, batch_size): t += 1 inputs, targets = init_examples(batch, dataset.inputs, dataset.target, len(net[-1].nodes)) # compute gradients of weights gs, batch_loss = BackPropagation(inputs, targets, weights, net, loss) # update s,r,s_hat and r_gat s = vector_add(scalar_vector_product(rho[0], s), scalar_vector_product((1 - rho[0]), gs)) r = vector_add(scalar_vector_product(rho[1], r), scalar_vector_product((1 - rho[1]), element_wise_product(gs, gs))) s_hat = scalar_vector_product(1 / (1 - rho[0] ** t), s) r_hat = scalar_vector_product(1 / (1 - rho[1] ** t), r) # rescale r_hat r_hat = map_vector(lambda x: 1 / (np.sqrt(x) + delta), r_hat) # delta weights delta_theta = scalar_vector_product(-l_rate, element_wise_product(s_hat, r_hat)) weights = vector_add(weights, delta_theta) total_loss += batch_loss # update the weights of network each batch for i in range(len(net)): if weights[i]: for j in range(len(weights[i])): net[i].nodes[j].weights = weights[i][j] if verbose: print("epoch:{}, total_loss:{}".format(e + 1, total_loss)) return net def BackPropagation(inputs, targets, theta, net, loss): """ The back-propagation algorithm for multilayer networks in only one epoch, to calculate gradients of theta. :param inputs: a batch of inputs in an array. Each input is an iterable object :param targets: a batch of targets in an array. Each target is an iterable object :param theta: parameters to be updated :param net: a list of predefined layer objects representing their linear sequence :param loss: a predefined loss function taking array of inputs and targets :return: gradients of theta, loss of the input batch """ assert len(inputs) == len(targets) o_units = len(net[-1].nodes) n_layers = len(net) batch_size = len(inputs) gradients = [[[] for _ in layer.nodes] for layer in net] total_gradients = [[[0] * len(node.weights) for node in layer.nodes] for layer in net] batch_loss = 0 # iterate over each example in batch for e in range(batch_size): i_val = inputs[e] t_val = targets[e] # forward pass and compute batch loss for i in range(1, n_layers): layer_out = net[i].forward(i_val) i_val = layer_out batch_loss += loss(t_val, layer_out) # initialize delta delta = [[] for _ in range(n_layers)] previous = np.array([layer_out[i] - t_val[i] for i in range(o_units)]) h_layers = n_layers - 1 # backward pass for i in range(h_layers, 0, -1): layer = net[i] derivative = np.array([layer.activation.derivative(node.value) for node in layer.nodes]) delta[i] = previous * derivative # pass to layer i-1 in the next iteration previous = np.matmul([delta[i]], theta[i])[0] # compute gradient of layer i gradients[i] = [scalar_vector_product(d, net[i].inputs) for d in delta[i]] # add gradient of current example to batch gradient total_gradients = vector_add(total_gradients, gradients) return total_gradients, batch_loss def get_batch(examples, batch_size=1): """Split examples into multiple batches""" for i in range(0, len(examples), batch_size): yield examples[i: i + batch_size]
BatchNormalizationLayer
python
huggingface__transformers
tests/models/glm4v/test_processor_glm4v.py
{ "start": 1038, "end": 10848 }
class ____(ProcessorTesterMixin, unittest.TestCase): processor_class = Glm4vProcessor model_id = "THUDM/GLM-4.1V-9B-Thinking" @classmethod def _setup_test_attributes(cls, processor): cls.image_token = processor.image_token @classmethod def _setup_from_pretrained(cls, model_id, **kwargs): return super()._setup_from_pretrained( model_id, do_sample_frames=False, patch_size=4, size={"shortest_edge": 12 * 12, "longest_edge": 18 * 18}, **kwargs, ) @require_torch @require_av def _test_apply_chat_template( self, modality: str, batch_size: int, return_tensors: str, input_name: str, processor_name: str, input_data: list[str], ): processor = self.get_processor() if processor.chat_template is None: self.skipTest("Processor has no chat template") if processor_name not in self.processor_class.get_attributes(): self.skipTest(f"{processor_name} attribute not present in {self.processor_class}") batch_messages = [ [ { "role": "user", "content": [{"type": "text", "text": "Describe this."}], }, ] ] * batch_size # Test that jinja can be applied formatted_prompt = processor.apply_chat_template(batch_messages, add_generation_prompt=True, tokenize=False) self.assertEqual(len(formatted_prompt), batch_size) # Test that tokenizing with template and directly with `self.tokenizer` gives same output formatted_prompt_tokenized = processor.apply_chat_template( batch_messages, add_generation_prompt=True, tokenize=True, return_tensors=return_tensors ) add_special_tokens = True if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token): add_special_tokens = False tok_output = processor.tokenizer( formatted_prompt, return_tensors=return_tensors, add_special_tokens=add_special_tokens ) expected_output = tok_output.input_ids self.assertListEqual(expected_output.tolist(), formatted_prompt_tokenized.tolist()) # Test that kwargs passed to processor's `__call__` are actually used tokenized_prompt_100 = processor.apply_chat_template( batch_messages, add_generation_prompt=True, tokenize=True, padding="max_length", truncation=True, return_tensors=return_tensors, max_length=100, ) self.assertEqual(len(tokenized_prompt_100[0]), 100) # Test that `return_dict=True` returns text related inputs in the dict out_dict_text = processor.apply_chat_template( batch_messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors=return_tensors, ) self.assertTrue(all(key in out_dict_text for key in ["input_ids", "attention_mask"])) self.assertEqual(len(out_dict_text["input_ids"]), batch_size) self.assertEqual(len(out_dict_text["attention_mask"]), batch_size) # Test that with modality URLs and `return_dict=True`, we get modality inputs in the dict for idx, url in enumerate(input_data[:batch_size]): batch_messages[idx][0]["content"] = [batch_messages[idx][0]["content"][0], {"type": modality, "url": url}] out_dict = processor.apply_chat_template( batch_messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors=return_tensors, fps=2 if isinstance(input_data[0], str) else None, # by default no more than 2 frames per second, otherwise too slow do_sample_frames=bool(isinstance(input_data[0], str)), # don't sample frames if decoded video is used ) input_name = getattr(self, input_name) self.assertTrue(input_name in out_dict) self.assertEqual(len(out_dict["input_ids"]), batch_size) self.assertEqual(len(out_dict["attention_mask"]), batch_size) if modality == "video": # qwen pixels don't scale with bs same way as other models, calculate expected video token count based on video_grid_thw expected_video_token_count = 0 for thw in out_dict["video_grid_thw"]: expected_video_token_count += thw[0] * thw[1] * thw[2] mm_len = expected_video_token_count else: mm_len = batch_size * 4 self.assertEqual(len(out_dict[input_name]), mm_len) return_tensor_to_type = {"pt": torch.Tensor, "np": np.ndarray, None: list} for k in out_dict: self.assertIsInstance(out_dict[k], return_tensor_to_type[return_tensors]) @require_av def test_apply_chat_template_video_frame_sampling(self): processor = self.get_processor() if processor.chat_template is None: self.skipTest("Processor has no chat template") signature = inspect.signature(processor.__call__) if "videos" not in {*signature.parameters.keys()} or ( signature.parameters.get("videos") is not None and signature.parameters["videos"].annotation == inspect._empty ): self.skipTest("Processor doesn't accept videos at input") messages = [ [ { "role": "user", "content": [ {"type": "video"}, {"type": "text", "text": "What is shown in this video?"}, ], }, ] ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) self.assertEqual(len(formatted_prompt), 1) formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True) expected_output = processor.tokenizer(formatted_prompt, return_tensors=None).input_ids self.assertListEqual(expected_output, formatted_prompt_tokenized) out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True) self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"]) # Add video URL for return dict and load with `num_frames` arg messages[0][0]["content"][0] = { "type": "video", "url": url_to_local_path( "https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/tiny_video.mp4" ), } # Load with `video_fps` arg video_fps = 10 out_dict_with_video = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, fps=video_fps, ) self.assertTrue(self.videos_input_name in out_dict_with_video) self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 8) # Load the whole video out_dict_with_video = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, do_sample_frames=False, ) self.assertTrue(self.videos_input_name in out_dict_with_video) self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 24) # Load video as a list of frames (i.e. images). NOTE: each frame should have same size # because we assume they come from one video messages[0][0]["content"][0] = { "type": "video", "url": [ url_to_local_path( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" ), url_to_local_path( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" ), ], } out_dict_with_video = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, do_sample_frames=False, ) self.assertTrue(self.videos_input_name in out_dict_with_video) self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 4) # When the inputs are frame URLs/paths we expect that those are already # sampled and will raise an error is asked to sample again. with self.assertRaisesRegex( ValueError, "Sampling frames from a list of images is not supported! Set `do_sample_frames=False`" ): out_dict_with_video = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, do_sample_frames=True, ) # def test_model_input_names(self): # processor = self.get_processor() # text = self.prepare_text_inputs(modalities=["image", "video"]) # image_input = self.prepare_image_inputs() # video_inputs = self.prepare_video_inputs() # inputs_dict = {"text": text, "images": image_input, "videos": video_inputs} # inputs = processor(**inputs_dict, return_tensors="pt", do_sample_frames=False) # self.assertSetEqual(set(inputs.keys()), set(processor.model_input_names))
Glm4vProcessorTest
python
huggingface__transformers
src/transformers/models/speecht5/number_normalizer.py
{ "start": 728, "end": 6948 }
class ____: def __init__(self): self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] self.teens = [ "", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] self.tens = ["", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] self.thousands = [ "", "thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion", ] # Define a dictionary to map currency symbols to their names # Top most traded currencies according to # https://en.wikipedia.org/wiki/Template:Most_traded_currencies self.currency_symbols = { "$": " dollars", "€": " euros", "£": " pounds", "¢": " cents", "¥": " japanese yen", "﷼": " saudi riyal", "₹": " indian rupees", "₽": " russian rubles", "฿": " thai baht", "₺": " turkish liras", "₴": " ukrainian hryvnia", "₣": " swiss francs", "₡": " costa rican colon", "₱": " philippine peso", "₪": " israeli shekels", "₮": " mongolian tögrög", "₩": " south korean won", "₦": " nigerian naira", "₫": " vietnamese Đồng", } def spell_number(self, num): if num == 0: return "zero" parts = [] for i in range(0, len(self.thousands)): if num % 1000 != 0: part = "" hundreds = num % 1000 // 100 tens_units = num % 100 if hundreds > 0: part += self.ones[hundreds] + " hundred" if tens_units > 0: part += " and " if tens_units > 10 and tens_units < 20: part += self.teens[tens_units - 10] else: tens_digit = self.tens[tens_units // 10] ones_digit = self.ones[tens_units % 10] if tens_digit: part += tens_digit if ones_digit: if tens_digit: part += " " part += ones_digit parts.append(part) num //= 1000 return " ".join(reversed(parts)) def convert(self, number): """ Converts an individual number passed in string form to spelt-out form """ if "." in number: integer_part, decimal_part = number.split(".") else: integer_part, decimal_part = number, "00" # Extract currency symbol if present currency_symbol = "" for symbol, name in self.currency_symbols.items(): if integer_part.startswith(symbol): currency_symbol = name integer_part = integer_part[len(symbol) :] break if integer_part.startswith("-"): if integer_part[1:].startswith(symbol): currency_symbol = name integer_part = "-" + integer_part[len(symbol) + 1 :] break # Extract 'minus' prefix for negative numbers minus_prefix = "" if integer_part.startswith("-"): minus_prefix = "minus " integer_part = integer_part[1:] elif integer_part.startswith("minus"): minus_prefix = "minus " integer_part = integer_part[len("minus") :] percent_suffix = "" if "%" in integer_part or "%" in decimal_part: percent_suffix = " percent" integer_part = integer_part.replace("%", "") decimal_part = decimal_part.replace("%", "") integer_part = integer_part.zfill(3 * ((len(integer_part) - 1) // 3 + 1)) parts = [] for i in range(0, len(integer_part), 3): chunk = int(integer_part[i : i + 3]) if chunk > 0: part = self.spell_number(chunk) unit = self.thousands[len(integer_part[i:]) // 3 - 1] if unit: part += " " + unit parts.append(part) spelled_integer = " ".join(parts) # Format the spelt-out number based on conditions, such as: # If it has decimal parts, currency symbol, minus prefix, etc if decimal_part == "00": return ( f"{minus_prefix}{spelled_integer}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{spelled_integer}{percent_suffix}" ) else: spelled_decimal = " ".join([self.spell_number(int(digit)) for digit in decimal_part]) return ( f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}" ) def __call__(self, text): """ Convert numbers / number-like quantities in a string to their spelt-out counterparts """ # Form part of the pattern for all currency symbols pattern = r"(?<!\w)(-?\$?\€?\£?\¢?\¥?\₹?\₽?\฿?\₺?\₴?\₣?\₡?\₱?\₪?\₮?\₩?\₦?\₫?\﷼?\d+(?:\.\d{1,2})?%?)(?!\w)" # Find and replace commas in numbers (15,000 -> 15000, etc) text = re.sub(r"(\d+,\d+)", lambda match: match.group(1).replace(",", ""), text) # Use regex to find and replace numbers in the text converted_text = re.sub(pattern, lambda match: self.convert(match.group(1)), text) converted_text = re.sub(" +", " ", converted_text) return converted_text
EnglishNumberNormalizer
python
apache__airflow
airflow-core/src/airflow/executors/workloads.py
{ "start": 3370, "end": 4603 }
class ____(BaseDagBundleWorkload): """Execute the given Task.""" ti: TaskInstance sentry_integration: str = "" type: Literal["ExecuteTask"] = Field(init=False, default="ExecuteTask") @classmethod def make( cls, ti: TIModel, dag_rel_path: Path | None = None, generator: JWTGenerator | None = None, bundle_info: BundleInfo | None = None, sentry_integration: str = "", ) -> ExecuteTask: from airflow.utils.helpers import log_filename_template_renderer ser_ti = TaskInstance.model_validate(ti, from_attributes=True) ser_ti.parent_context_carrier = ti.dag_run.context_carrier if not bundle_info: bundle_info = BundleInfo( name=ti.dag_model.bundle_name, version=ti.dag_run.bundle_version, ) fname = log_filename_template_renderer()(ti=ti) return cls( ti=ser_ti, dag_rel_path=dag_rel_path or Path(ti.dag_model.relative_fileloc or ""), token=cls.generate_token(str(ti.id), generator), log_path=fname, bundle_info=bundle_info, sentry_integration=sentry_integration, )
ExecuteTask
python
pytorch__pytorch
torch/_inductor/codegen/wrapper.py
{ "start": 21876, "end": 22660 }
class ____(WrapperLine): wrapper: PythonWrapperCodegen def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine: """First pass to find reuse""" return self def codegen(self, code: IndentedBuffer) -> None: """Second pass to output code""" def __str__(self) -> str: """ Emits a string representation that fits on one line. """ args: list[str] = [] for field in dataclasses.fields(self): if field.name == "wrapper": continue val = getattr(self, field.name) args.append( f"{field.name}={val.get_name() if field.type is ir.Buffer else val}" ) return f"{type(self).__name__}({', '.join(args)})"
MemoryPlanningLine