language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
pytorch__pytorch
torch/distributed/checkpoint/_async_thread_executor.py
{ "start": 1333, "end": 2476 }
class ____(_AsyncCheckpointExecutor): def __init__(self) -> None: self._executor = ThreadPoolExecutor( max_workers=1, thread_name_prefix="AsyncCheckpointExecutor" ) def execute_save( self, staging_future_or_state_dict: Union[Future[STATE_DICT_TYPE], STATE_DICT_TYPE], *, checkpoint_id: Union[str, os.PathLike, None] = None, storage_writer: Optional[StorageWriter] = None, planner: Optional[SavePlanner] = None, process_group: Optional[dist.ProcessGroup] = None, no_dist: bool = False, use_collectives: bool = True, ) -> Future: f: Future = self._executor.submit( save_wrapper, staging_future_or_state_dict=staging_future_or_state_dict, checkpoint_id=checkpoint_id, storage_writer=storage_writer, planner=planner, process_group=process_group, no_dist=no_dist, use_collectives=use_collectives, ) f.add_done_callback(lambda f: self._executor.shutdown(wait=False)) return f
_ThreadBasedAsyncCheckpointExecutor
python
tornadoweb__tornado
tornado/httputil.py
{ "start": 23387, "end": 23518 }
class ____(Exception): """Exception class for errors in HTTP output. .. versionadded:: 4.0 """ pass
HTTPOutputError
python
tensorflow__tensorflow
tensorflow/python/distribute/mirrored_variable_test.py
{ "start": 3166, "end": 26313 }
class ____(test.TestCase): """Base class that tests mirrored variable creator. Currently it assumes all strategy objects have two replicas. """ @classmethod def setUpClass(cls): _mimic_two_cpus() def assertAllDifferent(self, objs): for i in range(len(objs)): for j in range(len(objs)): if i == j: continue self.assertIsNot(objs[i], objs[j]) # TODO(priyag): Modify more tests to use this helper and check more # properties. def _test_mv_properties(self, var, name, strategy): self.assertTrue(distribute_utils.is_mirrored(var)) self.assertEqual(name, var.name) self.assertIs(strategy, var.distribute_strategy) for i, d in enumerate(var._devices): self.assertEqual(d, strategy.experimental_local_results(var)[i].device) self.assertIs( strategy, strategy.experimental_local_results(var)[i]._distribute_strategy) # pylint: disable=protected-access def testVariableInFuncGraph(self, distribution): def model_fn(): v = variable_v1.VariableV1(2.0, name="bar") distribute_lib.get_replica_context().merge_call(lambda _: _) return v with func_graph.FuncGraph("fg").as_default(), distribution.scope(): v1 = variable_v1.VariableV1(1.0, name="foo") v2 = distribution.extended.call_for_each_replica(model_fn) self._test_mv_properties(v1, "foo:0", distribution) self._test_mv_properties(v2, "bar:0", distribution) def testVariableWithTensorInitialValueInFunction(self, distribution): if not context.executing_eagerly(): self.skipTest("`tf.function` is an eager-only feature") v = [None] def model_fn(): if v[0] is None: init_val = array_ops.zeros([]) v[0] = variables.Variable(init_val) distribute_lib.get_replica_context().merge_call(lambda _: _) return v[0] @def_function.function(autograph=False) def make_v1(): return distribution.experimental_local_results( distribution.extended.call_for_each_replica(model_fn)) self.assertAllEqual([0, 0], make_v1()) def testVariableWithTensorInitialValueInFunctionXLA(self, distribution): if not context.executing_eagerly(): self.skipTest("`tf.function` is an eager-only feature") v = [None] def model_fn(): if v[0] is None: init_val = array_ops.zeros([]) v[0] = variables.Variable(init_val) distribute_lib.get_replica_context().merge_call(lambda _: _) return v[0] @def_function.function(autograph=False, jit_compile=True) def make_v1(): return distribution.experimental_local_results( distribution.extended.call_for_each_replica(model_fn)) with self.assertRaisesRegex( errors.UnimplementedError, "We failed to lift variable creations out of this tf.function, " "so this tf.function cannot be run on XLA."): _ = make_v1() def testSingleVariable(self, distribution): def model_fn(): # This variable should be created only once across the threads because of # special variable_creator functions used by # `distribution.extended.call_for_each_replica`. v = variable_v1.VariableV1(1.0, name="foo") distribute_lib.get_replica_context().merge_call(lambda _: _) return v with distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) self._test_mv_properties(result, "foo:0", distribution) def testUnnamedVariable(self, distribution): def model_fn(): v = variable_v1.VariableV1(1.0) distribute_lib.get_replica_context().merge_call(lambda _: _) return v with distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) self._test_mv_properties(result, "Variable:0", distribution) def testMultipleVariables(self, distribution): def model_fn(): vs = [] for i in range(5): vs.append(variable_v1.VariableV1(1.0, name="foo" + str(i))) distribute_lib.get_replica_context().merge_call(lambda _: _) return vs with distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) for i, v in enumerate(result): self._test_mv_properties(v, "foo" + str(i) + ":0", distribution) def testMultipleVariablesWithSameCanonicalName(self, distribution): def model_fn(): vs = [] vs.append(variable_v1.VariableV1(1.0, name="foo/bar")) vs.append(variable_v1.VariableV1(1.0, name="foo_1/bar")) vs.append(variable_v1.VariableV1(1.0, name="foo_1/bar_1")) vs.append(variable_v1.VariableV1(1.0, name="foo/bar_1")) distribute_lib.get_replica_context().merge_call(lambda _: _) return vs with distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) for v in result: self.assertTrue(distribute_utils.is_mirrored(v)) self.assertEqual(4, len(result)) self.assertEqual("foo/bar:0", result[0].name) self.assertEqual("foo_1/bar:0", result[1].name) self.assertEqual("foo_1/bar_1:0", result[2].name) self.assertEqual("foo/bar_1:0", result[3].name) def testVariableWithSameCanonicalNameAcrossThreads(self, distribution): def model_fn(): replica_id = self.evaluate(_replica_id()) v = variable_v1.VariableV1(1.0, name="foo_" + str(replica_id)) distribute_lib.get_replica_context().merge_call(lambda _: _) return v with distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) self.assertTrue(distribute_utils.is_mirrored(result)) # The resulting mirrored variable will use the name from the first device. self.assertEqual("foo_0:0", result.name) def testWithVariableAndVariableScope(self, distribution): def model_fn(): v0 = variable_v1.VariableV1(1.0, name="var0", aggregation=None) with variable_scope.variable_scope("common"): v1 = variable_v1.VariableV1(1.0, name="var1") # This will pause the current thread, and execute the other thread. distribute_lib.get_replica_context().merge_call(lambda _: _) v2 = variable_v1.VariableV1( 1.0, name="var2", synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.SUM) v3 = variable_v1.VariableV1( 1.0, name="var3", synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation=variable_scope.VariableAggregation.MEAN) return v0, v1, v2, v3 with distribution.scope(): v = variable_v1.VariableV1(1.0, name="var-main0") self.assertEqual("var-main0:0", v.name) result = distribution.extended.call_for_each_replica(model_fn) self.assertEqual(4, len(result)) v0, v1, v2, v3 = result self.assertTrue(distribute_utils.is_mirrored(v0)) self.assertEqual("var0:0", v0.name) self.assertTrue(distribute_utils.is_mirrored(v1)) self.assertEqual("common/var1:0", v1.name) self.assertTrue(distribute_utils.is_sync_on_read(v2)) self.assertEqual("common/var2:0", v2.name) self.assertEqual(variable_scope.VariableAggregation.SUM, v2.aggregation) self.assertTrue(distribute_utils.is_mirrored(v3)) self.assertEqual("common/var3:0", v3.name) self.assertEqual(variable_scope.VariableAggregation.MEAN, v3.aggregation) def testWithGetVariableAndVariableScope(self, distribution): def model_fn(): v0 = variable_scope.get_variable("var0", [1]) with variable_scope.variable_scope("common"): v1 = variable_scope.get_variable("var1", [1]) # This will pause the current thread, and execute the other thread. distribute_lib.get_replica_context().merge_call(lambda _: _) v2 = variable_scope.get_variable( "var2", [1], synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.SUM) v3 = variable_scope.get_variable( "var3", [1], synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation=variable_scope.VariableAggregation.MEAN) return v0, v1, v2, v3 with distribution.scope(): with variable_scope.variable_scope("main"): v = variable_scope.get_variable("var-main0", [1]) self.assertEqual("main/var-main0:0", v.name) result = distribution.extended.call_for_each_replica(model_fn) self.assertEqual(4, len(result)) v0, v1, v2, v3 = result self.assertTrue(distribute_utils.is_mirrored(v0)) self.assertEqual("main/var0:0", v0.name) self.assertTrue(distribute_utils.is_mirrored(v1)) self.assertEqual("main/common/var1:0", v1.name) self.assertTrue(distribute_utils.is_sync_on_read(v2)) self.assertEqual("main/common/var2:0", v2.name) self.assertEqual(variable_scope.VariableAggregation.SUM, v2.aggregation) self.assertTrue(distribute_utils.is_mirrored(v3)) self.assertEqual("main/common/var3:0", v3.name) self.assertEqual(variable_scope.VariableAggregation.MEAN, v3.aggregation) def testOnlyFirstReplicaUpdatesVariables(self, distribution): def create_fn(): aggregation = variable_scope.VariableAggregation.ONLY_FIRST_REPLICA v0 = variable_v1.VariableV1( 2.0, name="on_read", synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=aggregation) v1 = variable_v1.VariableV1( 3.0, name="on_write", synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation=aggregation) return v0, v1 with distribution.scope(): v0, v1 = distribution.extended.call_for_each_replica(create_fn) self.evaluate(v0.initializer) self.assertEqual( 2.0, self.evaluate(distribution.experimental_local_results(v0)[0])) self.assertEqual( 2.0, self.evaluate(distribution.experimental_local_results(v0)[1])) self.assertEqual(2.0, self.evaluate(distribution.extended.read_var(v0))) self.evaluate(v1.initializer) self.assertEqual( 3.0, self.evaluate(distribution.experimental_local_results(v1)[0])) self.assertEqual( 3.0, self.evaluate(distribution.experimental_local_results(v1)[1])) self.assertEqual(3.0, self.evaluate(distribution.extended.read_var(v1))) def replica_id_plus_one(): return math_ops.cast(_replica_id() + 1, dtype=dtypes.float32) # Update using the assign_add member function. def update_member_fn(): update0 = v0.assign_add(5.0 * replica_id_plus_one()) update1 = v1.assign_add(7.0 * replica_id_plus_one()) return update0, update1 update0a, update1a = distribution.extended.call_for_each_replica( update_member_fn) # Update "sync on read" variable. self.evaluate(distribution.group(update0a)) local_results = self.evaluate(distribution.experimental_local_results(v0)) self.assertEqual(2.0 + 5.0, local_results[0]) # Writes are not synchronized for "sync on read" variables, # so device[1] can end up with a different value. self.assertEqual(2.0 + 2 * 5.0, local_results[1]) # Always reads from device 0. self.assertEqual(2.0 + 5.0, self.evaluate(distribution.extended.read_var(v0))) # Update "sync on write" variable. self.evaluate(distribution.group(update1a)) local_results1 = self.evaluate( distribution.experimental_local_results(v1)) self.assertEqual(3.0 + 7.0, local_results1[0]) # Writes are synchronized for v1, only the argument to assign_add on # device[0] is used. self.assertEqual(3.0 + 7.0, local_results1[1]) self.assertEqual(3.0 + 7.0, self.evaluate(distribution.extended.read_var(v1))) # Update using state_ops.assign_add global function. def update_state_ops_fn(): update0 = state_ops.assign_add(v0, 11.0 * replica_id_plus_one()) update1 = state_ops.assign_add(v1, 13.0 * replica_id_plus_one()) return update0, update1 update0b, update1b = distribution.extended.call_for_each_replica( update_state_ops_fn) self.evaluate(distribution.group(update0b)) # Update "sync on read" variable. local_results = self.evaluate(distribution.experimental_local_results(v0)) self.assertEqual(2.0 + 5.0 + 11.0, local_results[0]) self.assertEqual(2.0 + 2 * 5.0 + 2 * 11.0, local_results[1]) self.assertEqual(2.0 + 5.0 + 11.0, self.evaluate(distribution.extended.read_var(v0))) # Update "sync on write" variable. self.evaluate(distribution.group(update1b)) local_results1 = self.evaluate( distribution.experimental_local_results(v1)) self.assertEqual(3.0 + 7.0 + 13.0, local_results1[0]) self.assertEqual(3.0 + 7.0 + 13.0, local_results1[1]) self.assertEqual(3.0 + 7.0 + 13.0, self.evaluate(distribution.extended.read_var(v1))) def testNoneSynchronizationWithGetVariable(self, distribution): with distribution.scope(): with self.assertRaisesRegex( ValueError, "`NONE` variable synchronization mode is not " "supported with "): variable_scope.get_variable( "v", [1], synchronization=variable_scope.VariableSynchronization.NONE) def testNoneSynchronizationWithVariable(self, distribution): with distribution.scope(): with self.assertRaisesRegex( ValueError, "`NONE` variable synchronization mode is not " "supported with "): variable_v1.VariableV1( 1.0, name="v", synchronization=variable_scope.VariableSynchronization.NONE) def testInvalidSynchronizationWithVariable(self, distribution): with distribution.scope(): with self.assertRaisesRegex( ValueError, "Invalid variable synchronization mode: Invalid for " "variable: v"): variable_v1.VariableV1(1.0, name="v", synchronization="Invalid") def testInvalidAggregationWithGetVariable(self, distribution): with distribution.scope(): with self.assertRaisesRegex( ValueError, "Invalid variable aggregation mode: invalid for " "variable: v"): variable_scope.get_variable( "v", [1], synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation="invalid") def testInvalidAggregationWithVariable(self, distribution): with distribution.scope(): with self.assertRaisesRegex( ValueError, "Invalid variable aggregation mode: invalid for " "variable: v"): variable_v1.VariableV1( 1.0, name="v", synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation="invalid") def testNonMatchingVariableCreation(self, distribution): def model_fn(name): v = variable_v1.VariableV1(1.0, name=name) distribute_lib.get_replica_context().merge_call(lambda _: _) return v with distribution.scope(): names = values.PerReplica(("foo", "bar")) with self.assertRaises(RuntimeError): _ = distribution.extended.call_for_each_replica(model_fn, args=(names,)) def testSyncOnReadVariable(self, distribution): all_v_sum = {} all_v_mean = {} components_sum = {} components_mean = {} def model_fn(): replica_id = self.evaluate(_replica_id()) v_sum = variable_v1.VariableV1( 1.0, synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.SUM) v_mean = variable_v1.VariableV1( 4.0, synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.MEAN) self.assertTrue(distribute_utils.is_sync_on_read(v_sum)) self.assertTrue(distribute_utils.is_sync_on_read(v_mean)) updates = [ v_sum.assign_add(2.0 + replica_id), v_mean.assign(6.0 * replica_id) ] all_v_sum[replica_id] = v_sum all_v_mean[replica_id] = v_mean c_sum = v_sum._get() c_mean = v_mean._get() components_sum[replica_id] = c_sum components_mean[replica_id] = c_mean self.assertIsNot(v_sum, c_sum) self.assertIsNot(v_mean, c_mean) return updates, v_sum, v_mean, c_sum, c_mean with distribution.scope(): # Create "sum" and "mean" versions of SyncOnReadVariables. ret_ops, ret_v_sum, ret_v_mean, regrouped_sum, regrouped_mean = ( distribution.extended.call_for_each_replica(model_fn)) # Should see the same wrapping instance in all replicas. self.assertIs(all_v_sum[0], ret_v_sum) self.assertIs(all_v_mean[0], ret_v_mean) self.assertIs(all_v_sum[0], all_v_sum[1]) self.assertIs(all_v_mean[0], all_v_mean[1]) # Regroup should recover the same wrapper. self.assertIs(ret_v_sum, regrouped_sum) self.assertIs(ret_v_mean, regrouped_mean) self.assertIsNot(components_sum[0], components_sum[1]) self.assertIsNot(components_mean[0], components_mean[1]) # Apply updates self.evaluate(variables.global_variables_initializer()) self.evaluate([ y for x in ret_ops # pylint: disable=g-complex-comprehension for y in distribution.experimental_local_results(x) ]) expected_sum = 0.0 expected_mean = 0.0 for i, _ in enumerate(distribution.extended.worker_devices): # Should see different values on different devices. v_sum_value = self.evaluate( distribution.experimental_local_results(ret_v_sum)[i].read_value()) v_mean_value = self.evaluate( distribution.experimental_local_results(ret_v_mean)[i].read_value()) expected = i + 3.0 self.assertEqual(expected, v_sum_value) expected_sum += expected expected = i * 6.0 self.assertEqual(expected, v_mean_value) expected_mean += expected expected_mean /= len(distribution.extended.worker_devices) # Without get(device), should return the value you get by # applying the reduction across all replicas (whether you use # read_var(), get(), or nothing). self.assertEqual(expected_sum, self.evaluate( distribution.extended.read_var(ret_v_sum))) self.assertEqual(expected_mean, self.evaluate( distribution.extended.read_var(ret_v_mean))) self.assertEqual(expected_sum, self.evaluate(ret_v_sum._get())) self.assertEqual(expected_mean, self.evaluate(ret_v_mean._get())) self.assertEqual(expected_sum, self.evaluate(ret_v_sum)) self.assertEqual(expected_mean, self.evaluate(ret_v_mean)) # TODO(priyag): Update this test to work in eager mode as well. def testDynamicRnnVariables(self, distribution): def model_fn(): inputs = constant_op.constant(2 * [2 * [[0.0, 1.0, 2.0, 3.0, 4.0]]]) cell_fw = rnn_cell_impl.LSTMCell(300) cell_bw = rnn_cell_impl.LSTMCell(300) (outputs, _) = rnn.bidirectional_dynamic_rnn( cell_fw, cell_bw, inputs, dtype=dtypes.float32) return outputs with context.graph_mode(), distribution.scope(): result = distribution.extended.call_for_each_replica(model_fn) # Two variables are created by the RNN layer. self.assertEqual(2, len(result)) for v in result: self.assertIsInstance(v, values.DistributedValues) _, v1 = distribution.experimental_local_results(v) self.assertStartsWith(v1._op.name, "replica_1/") def testSyncOnReadVariableUpdate(self, distribution): def model_fn(): v_sum = variable_v1.VariableV1( 1.0, synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.SUM) self.assertTrue(distribute_utils.is_sync_on_read(v_sum)) return v_sum def update(var, value): return var.assign(value) with distribution.scope(): ret_v_sum = distribution.extended.call_for_each_replica(model_fn) # Initialize variables. self.evaluate(variables.global_variables_initializer()) # Assert that the aggregated value of the sync on read var is the sum # of the individual values before running the update ops. self.assertEqual( 1.0, self.evaluate( distribution.experimental_local_results(ret_v_sum) [0].read_value())) self.assertEqual(2.0, self.evaluate(ret_v_sum)) # Apply updates. update_ops = distribution.extended.update( ret_v_sum, update, args=(5.0,), group=False) self.evaluate(update_ops) # Assert that the aggregated value of the sync on read vars is the sum # of the individual values after running the update ops. self.assertEqual( 5.0, self.evaluate( distribution.experimental_local_results(ret_v_sum) [0].read_value())) self.assertEqual(10.0, self.evaluate(ret_v_sum)) def testVarDistributeStrategy(self, distribution): with distribution.scope(): mirrored = variable_v1.VariableV1(1.0) sync_on_read = variable_v1.VariableV1( 1.0, synchronization=variable_scope.VariableSynchronization.ON_READ) self.assertIs(distribution, mirrored.distribute_strategy) self.assertIs(distribution, sync_on_read.distribute_strategy) def testInitializer(self, distribution, mode): if mode == "graph": self.skipTest("Skip graph mode") temp_dir = self.get_temp_dir() class Model(tracking_util.Checkpoint): def __init__(self): self._v = variables.Variable(1.0) with distribution.scope(): m = Model() save.save(m, temp_dir) g = ops.Graph() with g.as_default(): with distribution.scope(): load.load(temp_dir) for v in ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES): self.assertIsNotNone(v.initializer) def testCustomGradient(self, distribution): class CustomModel: def __init__(self): self._v = variables.Variable(1.0) def __call__(self): @custom_gradient.recompute_grad def _call(): return self._v + 1 return _call() with distribution.scope(): model = CustomModel() @def_function.function def train_step(): def replica_step(): with backprop.GradientTape() as tape: result = model() return tape.gradient(result, [model._v]) return distribution.run(replica_step) grads = distribution.experimental_local_results(train_step()) self.assertLen(grads, distribution.num_replicas_in_sync) if __name__ == "__main__": test.main()
MirroredVariableCreationTest
python
google__pytype
pytype/tools/xref/indexer.py
{ "start": 14411, "end": 28600 }
class ____(ScopedVisitor, traces.MatchAstVisitor): """Visitor that generates indexes.""" def __init__(self, ast, src, module_name): super().__init__(ast=ast, src_code=src, module_name=module_name) self.defs = {} self.locs = collections.defaultdict(list) self.refs = [] self.modules = {} self.aliases = {} self.source = src self.traces = src.traces self.typemap = {} self.classmap = {} self.calls = [] self.function_params = [] # Record childof relationships for nested functions/classes self.childof = [] self.scope_defn = {} def _get_location(self, node, args): """Get a more accurate node location.""" loc = None if isinstance(node, self._ast.ClassDef): # For class and function definitions, search for the string # (class|def) <name> # between the start of the AST node and the start of the body. Handles the # offset for decorated functions/classes. body_start = node.body[0].lineno text = f"class {args['name']}" loc = self.source.find_first_text(node.lineno, body_start, text) elif isinstance(node, self._ast.FunctionDef): body_start = node.body[0].lineno text = f"def {args['name']}" loc = self.source.find_first_text(node.lineno, body_start, text) if loc is None: loc = get_location(node) return loc def _get_node_name(self, node): if isinstance(node, str): # We replace nodes with their names after visiting them. return node return super()._get_node_name(node) def make_def(self, node, **kwargs): """Make a definition from a node.""" if isinstance(node, self._ast.Name): t = node_utils.typename(node.ctx) elif isinstance(node, self._ast.arg): t = "Param" else: t = node_utils.typename(node) args = { "name": node_utils.get_name(node, self._ast), "scope": self.scope_id(), "typ": t, "data": None, "target": None, "doc": None, } args.update(kwargs) defn = Definition(**args) line, col = self._get_location(node, args) assert line is not None defloc = DefLocation(defn.id, source.Location(line, col)) return (defn, defloc) def make_ref(self, node, **kwargs): """Make a reference from a node.""" assert "data" in kwargs # required kwarg args = { "name": node_utils.get_name(node, self._ast), "scope": self.scope_id(), "ref_scope": None, "typ": node_utils.typename(node), "location": get_location(node), "target": None, } args.update(kwargs) return Reference(**args) def add_local_def(self, node, **kwargs): defn, defloc = self.make_def(node, **kwargs) if defn.id not in self.defs: self.defs[defn.id] = defn self.locs[defn.id].append(defloc) self.envs[defn.scope][defn.name] = defn return defn def add_global_def(self, node, **kwargs): kwargs.update({"scope": "module"}) return self.add_local_def(node, **kwargs) def add_local_ref(self, node, **kwargs): kwargs.update({"ref_scope": self.scope_id()}) ref = self.make_ref(node, **kwargs) self.refs.append(ref) return ref def add_closure_ref(self, node, **kwargs): """Look for node.name up the chain of scopes.""" name = node_utils.get_name(node, self._ast) env, _ = self.current_env.lookup(name) if env: kwargs.update({"ref_scope": env.scope}) else: # This should never happen! If python has generated a LOAD_DEREF bytecode # then we do have the name defined in a parent scope. However, in the # interests of not crashing the indexer, fall back to the current scope. # TODO(mdemello): We need error logs. pass ref = self.make_ref(node, **kwargs) self.refs.append(ref) return ref def add_global_ref(self, node, **kwargs): kwargs.update({"ref_scope": "module"}) return self.add_local_ref(node, **kwargs) def add_call(self, node, name, func, arg_varnames, return_type): start = get_location(node) end = get_end_location(node) self.calls.append( Funcall(name, self.scope_id(), func, start, end, arg_varnames, return_type)) def add_attr(self, node): defn, _ = self.make_def(node) self.defs[defn.id] = defn env = self.envs[self.scope_id()] if env.is_self_attr(node): self.envs[self.scope_id()].setattr(node.attr, defn) def _has_decorator(self, f, decorator): for d in f.decorator_list: if isinstance(d, self._ast.Name) and d.id == decorator: return True return False def _record_childof(self, node, defn): """Record a childof relationship for nested definitions.""" parent = self.scope_defn.get(self.scope_id()) if parent: self.childof.append((defn, parent)) def enter_ClassDef(self, node): class_name = node_utils.get_name(node, self._ast) last_line = max(node.lineno, node.body[0].lineno - 1) ops = match_opcodes_multiline(self.traces, node.lineno, last_line, [ ("LOAD_BUILD_CLASS", None), ("STORE_NAME", class_name), # Classes defined within a function generate a STORE_FAST or # STORE_DEREF op. ("STORE_FAST", class_name), ("STORE_DEREF", class_name), # A class being declared global anywhere generates a STORE_GLOBAL op. ("STORE_GLOBAL", class_name), ]) # pytype sometimes analyses this twice, leading to duplicate opcode # traces. We only want the first two in the list. d = data = None if (len(ops) >= 2 and ops[0][0] == "LOAD_BUILD_CLASS" and ops[1][0] in ( "STORE_NAME", "STORE_FAST", "STORE_DEREF", "STORE_GLOBAL")): _, _, data = ops[1] d = _unwrap(data) assert d, "Did not get pytype data for class %s at line %d" % ( class_name, node.lineno) defn = self.add_local_def(node, data=data, doc=DocString.from_node(self._ast, node)) self._record_childof(node, defn) self.classmap[d[0]] = defn super().enter_ClassDef(node) self.scope_defn[self.scope_id()] = defn def enter_FunctionDef(self, node): last_line = max(node.lineno, node.body[0].lineno - 1) ops = match_opcodes_multiline(self.traces, node.lineno, last_line, [ ("MAKE_FUNCTION", None), # py2 has no symbol, py3 has node.name ("LOAD_CLOSURE", None) # Nested functions ]) if ops: _, _, data = ops[0] else: # TODO(mdemello): Add an assert; this should not happen but I would rather # not break grok indexing if it does. data = None fn_def = self.add_local_def(node, data=data, doc=DocString.from_node(self._ast, node)) self._record_childof(node, fn_def) env = self.add_scope(node) self.scope_defn[self.scope_id()] = fn_def # TODO(mdemello): Get pytype data for params args = node.args posonlyargs = getattr(args, "posonlyargs", []) vararg = [args.vararg] if getattr(args, "vararg", None) else [] kwarg = [args.kwarg] if getattr(args, "kwarg", None) else [] all_args = posonlyargs + args.args + vararg + args.kwonlyargs + kwarg params = [self.add_local_def(v) for v in all_args] for i, param in enumerate(params): self.function_params.append(FunctionParam( def_id=fn_def.id, param_id=param.id, position=i)) if env.cls: if (not self._has_decorator(node, "classmethod") and not self._has_decorator(node, "staticmethod")): # Don't crash if we have buggy code like # class A(): def f(): ... if params: env.self_var = params[0] def visit_Name(self, node): # We ignore the location returned by match() because we'll recompute the # same location anyways. # We use pytype trace data to distinguish between local and global # variables. for unused_loc, trace in self.match(node): op = trace.op symbol = trace.symbol data = trace.types d = _unwrap(data) ref = None if op == "LOAD_GLOBAL": ref = self.add_global_ref(node, name=symbol, data=data) self.typemap[ref.id] = d elif op in ["LOAD_FAST", "LOAD_NAME"]: ref = self.add_local_ref(node, name=symbol, data=data) self.typemap[ref.id] = d elif op in ["LOAD_DEREF"]: ref = self.add_closure_ref(node, name=symbol, data=data) self.typemap[ref.id] = d elif op == "STORE_GLOBAL": defn = self.add_global_def(node, name=symbol, data=data) self.typemap[defn.id] = d elif op in ["STORE_FAST", "STORE_NAME", "STORE_DEREF"]: defn = self.add_local_def(node, name=symbol, data=data) self.typemap[defn.id] = d if ref and self.current_env.ret == _RETURNING_NAME: self.current_env.ret = ref return node.id def visit_Call(self, node): name = self._get_node_name(node) # We have replaced Name() in args with the corresponding string arg_varnames = [x for x in node.args if isinstance(x, str)] seen = set() for _, trace in self.match(node): call, return_type = trace.types if call is None: continue for d in call: for f in qualified_method(d): if f not in seen: self.add_call(node, name, f, arg_varnames, return_type) seen.add(f) return name def visit_Assign(self, node): for v in node.targets: if isinstance(v, self._ast.Attribute): self.add_attr(v) def visit_AnnAssign(self, node): parent = self.scope_defn.get(self.scope_id()) if parent and parent.typ == "ClassDef": self.add_local_def(node, name=node.target) def _add_attr_ref(self, node, node_str, trace): ref = self.add_local_ref( node, target=node.value, name=node_str, data=trace.types) if len(trace.types) == 2: _, rhs = trace.types self.typemap[ref.id] = rhs def visit_Attribute(self, node): node_str = self._get_node_name(node) # match() returns the location of the attribute, whereas the indexer needs # the location of the value on which the attribute is accessed, in order to # link function calls. We'll manually adjust the location later. for unused_loc, trace in self.match(node): if trace.op in ("LOAD_ATTR", "LOAD_METHOD"): self._add_attr_ref(node, node_str, trace) elif trace.op == "STORE_ATTR": env = self.envs[self.scope_id()] if env.is_self_attr(node): # Add a new definition for `self.x = ...` defn = self.add_local_def(node) if self.current_class: # We only support attr definitions within a class definition. self.current_env.setattr(node.attr, defn) else: # Otherwise just add a reference self._add_attr_ref(node, node_str, trace) return node_str def visit_Subscript(self, node): return node.value def visit_DictComp(self, _node): return "<expr>" def visit_ListComp(self, _node): return "<expr>" def process_import(self, node): """Common code for Import and ImportFrom.""" for alias, (loc, trace) in zip(node.names, self.match(node)): # If an import is aliased, match() returns only the symbol/loc of # the alias, whereas the indexer also needs access to the unaliased # name in order to reference the imported module. op = trace.op symbol = trace.symbol data = trace.types defn: Definition | None = None if alias.asname: defn = self.add_local_def( node, name=symbol, target=alias.name, data=data) defloc = self.locs[defn.id].pop() self.locs[defn.id].append(DefLocation(defloc.def_id, loc)) # Shift symbol/loc back to the unaliased name. symbol = alias.name m = re.search("[ ,]" + symbol + r"\b", self.source.line(loc.line)) if m is None: # TODO(slebedev): Support multi-line from-imports. continue c, _ = m.span() loc = source.Location(loc.line, c + 1) imported = None try: [imported] = _unwrap(data) except (TypeError, ValueError): resolved = False else: resolved = not isinstance(imported, abstract.Unsolvable) if not resolved: continue if op == "STORE_NAME": # for |import x.y as z| or |from x import y as z| we want {z: x.y} self.add_local_ref(node, name=symbol, data=data, location=loc) if not isinstance(imported, abstract.Module): # Make the from-imported symbol available in the current namespace. remote = Remote(imported.module, name=symbol, resolved=True) if defn: self.aliases[defn.id] = remote self.current_env[symbol] = remote self.typemap[remote.id] = [imported] continue if defn: remote = Remote(imported.full_name, IMPORT_FILE_MARKER, resolved=True) self.aliases[defn.id] = remote self.modules[defn.id] = imported.full_name else: self.modules[self.scope_id() + "." + symbol] = imported.full_name elif op == "IMPORT_NAME": # |import x.y| puts both {x: x} and {x.y: x.y} in modules self.add_local_ref(node, name=symbol, data=data, location=loc) # TODO(slebedev): Reference every import path component. # For example here # # from foo.bar import boo # import foo.bar.boo # # we should reference both foo and foo.bar (in addition to foo.bar.boo). for mod in module_utils.get_all_prefixes(symbol): self.modules[self.scope_id() + "." + mod] = mod def visit_Import(self, node): self.process_import(node) def visit_ImportFrom(self, node): self.process_import(node) def enter_Return(self, node): if isinstance(node.value, self._ast.Name): self.current_env.ret = _RETURNING_NAME def leave_Return(self, node): if self.current_env.ret == _RETURNING_NAME: self.current_env.ret = None # pylint: enable=invalid-name # pylint: enable=missing-docstring
IndexVisitor
python
django__django
django/core/exceptions.py
{ "start": 1936, "end": 2037 }
class ____(Exception): """The user did not have permission to do that""" pass
PermissionDenied
python
tensorflow__tensorflow
tensorflow/python/ops/sparse_bincount_ops_test.py
{ "start": 24240, "end": 27303 }
class ____(test_util.TensorFlowTestCase): def test_dense_input_sparse_weights_fails(self): x = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32) weights = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) with self.assertRaisesRegex(ValueError, "must be a tf.Tensor"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) def test_dense_input_wrong_shape_fails(self): x = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32) weights = np.array([[3, 2], [5, 4], [4, 3]]) # Note: Eager mode and graph mode throw different errors here. Graph mode # will fail with a ValueError from the shape checking logic, while Eager # will fail with an InvalidArgumentError from the kernel itself. if context.executing_eagerly(): with self.assertRaisesRegex(errors.InvalidArgumentError, "must have the same shape"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) else: with self.assertRaisesRegex(ValueError, "both shapes must be equal"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) def test_sparse_input_dense_weights_fails(self): x = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) weights = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32) with self.assertRaisesRegex(ValueError, "must be a SparseTensor"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) def test_sparse_input_wrong_indices_fails(self): x = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) weights = sparse_ops.from_dense( np.array([[3, 1, 0, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) with self.assertRaisesRegex(errors.InvalidArgumentError, "must have the same indices"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) def test_sparse_input_too_many_indices_fails(self): x = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) weights = sparse_ops.from_dense( np.array([[3, 1, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) with self.assertRaisesIncompatibleShapesError(): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) def test_sparse_input_wrong_shape_fails(self): x = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32)) weights = sparse_ops.from_dense( np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4], [0, 0, 0, 0]], dtype=np.int32)) with self.assertRaisesRegex(errors.InvalidArgumentError, "must have the same dense shape"): self.evaluate(sparse_ops.sparse_bincount(x, weights=weights, axis=-1)) if __name__ == "__main__": v2_compat.enable_v2_behavior() test.main()
TestSparseCountFailureModes
python
patrick-kidger__equinox
equinox/_vmap_pmap.py
{ "start": 1538, "end": 3423 }
class ____: """Returns a callable that returns the specified integer if evaluated on an array. Otherwise, it returns `None`. !!! Example ```python fn = if_array(1) # Evaluate on an array, return the integer. fn(jax.numpy.array([0, 1, 2])) # 1 # Evaluate on not-an-array, return None. fn(True) # None ``` """ axis: int def __call__(self, x: Any) -> int | None: return self.axis if is_array(x) else None def _moveaxis(array, axis): return jnp.moveaxis(array, 0, axis) def _named_in_axes(fun, in_axes, args): if isinstance(in_axes, dict): in_axes = dict(in_axes) new_in_axes = [] default = if_array(0) params = inspect.signature(fun).parameters # We may have that len(args) < len(params) due to default arguments. # Truncate to considering just the arguments that have been passed. # # (If len(args) > len(params) then we'll get the usual error later when # attempting to call with the wrong number of arguments.) for _, param_name in zip(args, params): new_in_axes.append(in_axes.pop(param_name, default)) if len(in_axes) != 0: raise ValueError( "The following `in_axes` did not correspond to any argument: " f"{tuple(in_axes.keys())}" ) # Note that this requires all named arguments to be passed; they cannot take # default values. That is, we deliberately don't allow something like # ```python # @eqx.filter_vmap(in_axes=dict(foo=0)) # def fn(foo=default_value): # ... # # fn() # ``` # This is because it is ambiguous whether the default value is vectorised or # not. in_axes = tuple(new_in_axes) return in_axes
if_array
python
numpy__numpy
numpy/_core/tests/test_umath.py
{ "start": 55876, "end": 58751 }
class ____: def test_log_values(self): x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g']: log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) * log2_ assert_almost_equal(np.log(xf), yf) # test aliasing(issue #17761) x = np.array([2, 0.937500, 3, 0.947500, 1.054697]) xf = np.log(x) assert_almost_equal(np.log(x, out=x), xf) def test_log_values_maxofdtype(self): # test log() of max for dtype does not raise dtypes = [np.float32, np.float64] # This is failing at least on linux aarch64 (see gh-25460), and on most # other non x86-64 platforms checking `longdouble` isn't too useful as # it's an alias for float64. if platform.machine() == 'x86_64': dtypes += [np.longdouble] for dt in dtypes: with np.errstate(all='raise'): x = np.finfo(dt).max np.log(x) def test_log_strides(self): np.random.seed(42) strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4]) sizes = np.arange(2, 100) for ii in sizes: x_f64 = np.float64(np.random.uniform(low=0.01, high=100.0, size=ii)) x_special = x_f64.copy() x_special[3:-1:4] = 1.0 y_true = np.log(x_f64) y_special = np.log(x_special) for jj in strides: assert_array_almost_equal_nulp(np.log(x_f64[::jj]), y_true[::jj], nulp=2) assert_array_almost_equal_nulp(np.log(x_special[::jj]), y_special[::jj], nulp=2) # Reference values were computed with mpmath, with mp.dps = 200. @pytest.mark.parametrize( 'z, wref', [(1 + 1e-12j, 5e-25 + 1e-12j), (1.000000000000001 + 3e-08j, 1.5602230246251546e-15 + 2.999999999999996e-08j), (0.9999995000000417 + 0.0009999998333333417j, 7.831475869017683e-18 + 0.001j), (0.9999999999999996 + 2.999999999999999e-08j, 5.9107901499372034e-18 + 3e-08j), (0.99995000042 - 0.009999833j, -7.015159763822903e-15 - 0.009999999665816696j)], ) def test_log_precision_float64(self, z, wref): w = np.log(z) assert_allclose(w, wref, rtol=1e-15) # Reference values were computed with mpmath, with mp.dps = 200. @pytest.mark.parametrize( 'z, wref', [(np.complex64(1.0 + 3e-6j), np.complex64(4.5e-12 + 3e-06j)), (np.complex64(1.0 - 2e-5j), np.complex64(1.9999999e-10 - 2e-5j)), (np.complex64(0.9999999 + 1e-06j), np.complex64(-1.192088e-07 + 1.0000001e-06j))], ) def test_log_precision_float32(self, z, wref): w = np.log(z) assert_allclose(w, wref, rtol=1e-6)
TestLog
python
great-expectations__great_expectations
tests/execution_engine/test_sqlalchemy_execution_engine.py
{ "start": 47399, "end": 59826 }
class ____: """Tests for SQLAlchemy condition_to_filter_clause methods.""" @pytest.mark.sqlite @pytest.mark.parametrize( "condition,expected_sql", [ pytest.param( ComparisonCondition(column=Column("age"), operator=Operator.EQUAL, parameter=5), "age = 5", id="equal_int", ), pytest.param( ComparisonCondition( column=Column("age"), operator=Operator.NOT_EQUAL, parameter=10 ), "age != 10", id="not_equal_int", ), pytest.param( ComparisonCondition( column=Column("age"), operator=Operator.LESS_THAN, parameter=18 ), "age < 18", id="less_than", ), pytest.param( ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN, parameter=65 ), "age > 65", id="greater_than", ), pytest.param( ComparisonCondition( column=Column("age"), operator=Operator.LESS_THAN_OR_EQUAL, parameter=100 ), "age <= 100", id="less_than_or_equal", ), pytest.param( ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN_OR_EQUAL, parameter=0 ), "age >= 0", id="greater_than_or_equal", ), pytest.param( ComparisonCondition( column=Column("name"), operator=Operator.EQUAL, parameter="John" ), "name = 'John'", id="equal_string", ), ], ) def test_comparison_conditions( self, sa, condition: ComparisonCondition, expected_sql: str ) -> None: """Test that comparison conditions compile to correct SQL.""" engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") result = engine.condition_to_filter_clause(condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == expected_sql @pytest.mark.sqlite @pytest.mark.parametrize( "condition,expected_sql", [ pytest.param( ComparisonCondition( column=Column("status"), operator=Operator.IN, parameter=[1, 2, 3] ), "status IN (1, 2, 3)", id="in_integers", ), pytest.param( ComparisonCondition( column=Column("status"), operator=Operator.NOT_IN, parameter=[1, 2, 3] ), "(status NOT IN (1, 2, 3))", id="not_in_integers", ), ], ) def test_in_conditions(self, sa, condition: ComparisonCondition, expected_sql: str) -> None: """Test that IN/NOT IN conditions compile to correct SQL.""" engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") result = engine.condition_to_filter_clause(condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == expected_sql @pytest.mark.sqlite @pytest.mark.parametrize( "condition,expected_sql", [ pytest.param( NullityCondition(column=Column("email"), is_null=True), "email IS NULL", id="is_null", ), pytest.param( NullityCondition(column=Column("email"), is_null=False), "email IS NOT NULL", id="is_not_null", ), ], ) def test_nullity_conditions(self, sa, condition: NullityCondition, expected_sql: str) -> None: """Test that nullity conditions compile to correct SQL.""" engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") result = engine.condition_to_filter_clause(condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == expected_sql @pytest.mark.sqlite def test_and_condition_simple(self, sa) -> None: engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") and_condition = AndCondition( conditions=[ ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN, parameter=18 ), ComparisonCondition( column=Column("age"), operator=Operator.LESS_THAN, parameter=65 ), ] ) result = engine.condition_to_filter_clause(and_condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == "age > 18 AND age < 65" @pytest.mark.sqlite def test_or_condition_simple(self, sa) -> None: engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") or_condition = OrCondition( conditions=[ ComparisonCondition( column=Column("status"), operator=Operator.EQUAL, parameter="active" ), ComparisonCondition( column=Column("status"), operator=Operator.EQUAL, parameter="pending" ), ] ) result = engine.condition_to_filter_clause(or_condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == "status = 'active' OR status = 'pending'" @pytest.mark.sqlite def test_nested_conditions(self, sa) -> None: engine = SqlAlchemyExecutionEngine(connection_string="sqlite://") or_condition = OrCondition( conditions=[ AndCondition( conditions=[ ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN_OR_EQUAL, parameter=18, ), ComparisonCondition( column=Column("age"), operator=Operator.LESS_THAN_OR_EQUAL, parameter=65, ), ] ), ComparisonCondition( column=Column("status"), operator=Operator.EQUAL, parameter="exempt" ), ] ) result = engine.condition_to_filter_clause(or_condition) compiled = str(result.compile(compile_kwargs={"literal_binds": True})) assert compiled == "age >= 18 AND age <= 65 OR status = 'exempt'" @pytest.mark.sqlite def test_comparison_filter_clause_filters_query(self, sa, test_db_connection_string) -> None: """Test that comparison conditions work with actual SQL queries.""" engine = SqlAlchemyExecutionEngine(connection_string=test_db_connection_string) # Create test table df = pd.DataFrame({"age": [15, 25, 35, 45, 55], "name": ["A", "B", "C", "D", "E"]}) with engine.get_connection() as conn: add_dataframe_to_db(df=df, name="test_table", con=conn, index=False) # Create condition condition = ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN, parameter=30 ) filter_clause = engine.condition_to_filter_clause(condition) # Build and execute query query = sa.select(sa.text("*")).select_from(sa.text("test_table")).where(filter_clause) with engine.get_connection() as conn: result = conn.execute(query).fetchall() assert len(result) == 3 ages = [row[0] for row in result] assert ages == [35, 45, 55] @pytest.mark.sqlite def test_in_filter_clause_filters_query(self, sa, test_db_connection_string) -> None: """Test that IN operator works with actual SQL queries.""" engine = SqlAlchemyExecutionEngine(connection_string=test_db_connection_string) # Create test table df = pd.DataFrame( { "status": ["active", "pending", "inactive", "active", "deleted"], "id": [1, 2, 3, 4, 5], } ) with engine.get_connection() as conn: add_dataframe_to_db(df=df, name="test_status_table", con=conn, index=False) # Create condition condition = ComparisonCondition( column=Column("status"), operator=Operator.IN, parameter=["active", "pending"] ) filter_clause = engine.condition_to_filter_clause(condition) # Build and execute query query = ( sa.select(sa.text("*")).select_from(sa.text("test_status_table")).where(filter_clause) ) with engine.get_connection() as conn: result = conn.execute(query).fetchall() assert len(result) == 3 ids = sorted([row[1] for row in result]) assert ids == [1, 2, 4] @pytest.mark.sqlite def test_nullity_filter_clause_filters_query(self, sa, test_db_connection_string) -> None: """Test that nullity conditions work with actual SQL queries.""" engine = SqlAlchemyExecutionEngine(connection_string=test_db_connection_string) # Create test table df = pd.DataFrame( { "email": ["a@example.com", None, "c@example.com", None, "e@example.com"], "id": [1, 2, 3, 4, 5], } ) with engine.get_connection() as conn: add_dataframe_to_db(df=df, name="test_email_table", con=conn, index=False) # Create condition condition = NullityCondition(column=Column("email"), is_null=False) filter_clause = engine.condition_to_filter_clause(condition) # Build and execute query query = ( sa.select(sa.text("*")).select_from(sa.text("test_email_table")).where(filter_clause) ) with engine.get_connection() as conn: result = conn.execute(query).fetchall() assert len(result) == 3 ids = sorted([row[1] for row in result]) assert ids == [1, 3, 5] @pytest.mark.sqlite def test_nested_condition_filters_query(self, sa, test_db_connection_string) -> None: """Test that nested conditions work with actual SQL queries.""" engine = SqlAlchemyExecutionEngine(connection_string=test_db_connection_string) # Create test table df = pd.DataFrame( { "age": [15, 25, 35, 45, 75], "status": ["active", "active", "active", "active", "exempt"], "id": [1, 2, 3, 4, 5], } ) with engine.get_connection() as conn: add_dataframe_to_db(df=df, name="test_nested_table", con=conn, index=False) # Create nested condition or_condition = OrCondition( conditions=[ AndCondition( conditions=[ ComparisonCondition( column=Column("age"), operator=Operator.GREATER_THAN_OR_EQUAL, parameter=18, ), ComparisonCondition( column=Column("age"), operator=Operator.LESS_THAN_OR_EQUAL, parameter=65, ), ] ), ComparisonCondition( column=Column("status"), operator=Operator.EQUAL, parameter="exempt" ), ] ) filter_clause = engine.condition_to_filter_clause(or_condition) # Build and execute query query = ( sa.select(sa.text("*")).select_from(sa.text("test_nested_table")).where(filter_clause) ) with engine.get_connection() as conn: result = conn.execute(query).fetchall() assert len(result) == 4 ids = sorted([row[2] for row in result]) assert ids == [2, 3, 4, 5]
TestConditionToFilterClauseSqlAlchemy
python
pytest-dev__pytest
testing/test_reports.py
{ "start": 20076, "end": 22651 }
class ____: """Test that the hooks are working correctly for plugins""" def test_test_report(self, pytester: Pytester, pytestconfig: Config) -> None: pytester.makepyfile( """ def test_a(): assert False def test_b(): pass """ ) reprec = pytester.inline_run() reports = reprec.getreports("pytest_runtest_logreport") assert len(reports) == 6 for rep in reports: data = pytestconfig.hook.pytest_report_to_serializable( config=pytestconfig, report=rep ) assert data["$report_type"] == "TestReport" new_rep = pytestconfig.hook.pytest_report_from_serializable( config=pytestconfig, data=data ) assert new_rep.nodeid == rep.nodeid assert new_rep.when == rep.when assert new_rep.outcome == rep.outcome def test_collect_report(self, pytester: Pytester, pytestconfig: Config) -> None: pytester.makepyfile( """ def test_a(): assert False def test_b(): pass """ ) reprec = pytester.inline_run() reports = reprec.getreports("pytest_collectreport") assert len(reports) == 3 for rep in reports: data = pytestconfig.hook.pytest_report_to_serializable( config=pytestconfig, report=rep ) assert data["$report_type"] == "CollectReport" new_rep = pytestconfig.hook.pytest_report_from_serializable( config=pytestconfig, data=data ) assert new_rep.nodeid == rep.nodeid assert new_rep.when == "collect" assert new_rep.outcome == rep.outcome @pytest.mark.parametrize( "hook_name", ["pytest_runtest_logreport", "pytest_collectreport"] ) def test_invalid_report_types( self, pytester: Pytester, pytestconfig: Config, hook_name: str ) -> None: pytester.makepyfile( """ def test_a(): pass """ ) reprec = pytester.inline_run() reports = reprec.getreports(hook_name) assert reports rep = reports[0] data = pytestconfig.hook.pytest_report_to_serializable( config=pytestconfig, report=rep ) data["$report_type"] = "Unknown" with pytest.raises(AssertionError): _ = pytestconfig.hook.pytest_report_from_serializable( config=pytestconfig, data=data )
TestHooks
python
tensorflow__tensorflow
tensorflow/python/tpu/tests/tpu_embedding_v2_correctness_dense_lookup_test.py
{ "start": 1078, "end": 3789 }
class ____( tpu_embedding_v2_correctness_base_test.TPUEmbeddingCorrectnessBaseTest): @parameterized.parameters([True, False]) def test_dense_lookup(self, is_high_dimensional): strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') if is_high_dimensional: dataset = self._create_high_dimensional_dense_dataset(strategy) else: dataset = self._create_dense_dataset(strategy) dist = strategy.experimental_distribute_dataset( dataset, options=distribute_lib.InputOptions(experimental_fetch_to_device=False)) dist_iter = iter(dist) @def_function.function def test_fn(): def step(): return mid_level_api.dequeue() mid_level_api.enqueue(next(dist_iter), training=False) return strategy.run(step) # Run model. shard_out_val = test_fn() shard0 = (self._unpack(strategy, shard_out_val[0]), self._unpack(strategy, shard_out_val[1]), self._unpack(strategy, shard_out_val[2])) # embedding_values is a linear list, so we reshape to match the correct # shape of the corresponding table before performing the lookup. numpy_videos = np.reshape(self.embedding_values, (8, 4)) numpy_users = np.reshape(self.embedding_values, (16, 2)) repeat_batch_num = strategy.num_replicas_in_sync // 2 golden = ( (numpy_videos[self.feature_watched_values[:self.data_batch_size] * repeat_batch_num], numpy_videos[self.feature_favorited_values[:self.data_batch_size] * repeat_batch_num], numpy_users[self.feature_friends_values[:self.data_batch_size] * repeat_batch_num])) if is_high_dimensional: dense_size = self.data_batch_size * self.data_batch_size golden = (( numpy_videos[self.feature_watched_values_high_dimensional[:dense_size] * repeat_batch_num].reshape( self.data_batch_size * repeat_batch_num, self.data_batch_size, -1), numpy_videos[ self.feature_favorited_values_high_dimensional[:dense_size] * repeat_batch_num].reshape(self.data_batch_size * repeat_batch_num, self.data_batch_size, -1), numpy_users[self.feature_friends_values_high_dimensional[:dense_size] * repeat_batch_num].reshape( self.data_batch_size * repeat_batch_num, self.data_batch_size, -1))) self.assertAllClose(shard0, golden) if __name__ == '__main__': v2_compat.enable_v2_behavior() test.main()
TPUEmbeddingCorrectnessTest
python
huggingface__transformers
src/transformers/models/megatron_bert/modeling_megatron_bert.py
{ "start": 21558, "end": 21984 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert
MegatronBertOnlyMLMHead
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_textbox32.py
{ "start": 315, "end": 972 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("textbox32.xlsx") self.ignore_elements = {"xl/drawings/drawing1.xml": ["<a:fld"]} def test_create_file(self): """Test the creation of a simple XlsxWriter file with textbox(s).""" workbook = Workbook(self.got_filename) worksheet1 = workbook.add_worksheet() worksheet2 = workbook.add_worksheet() worksheet1.insert_textbox("E9", "", {"textlink": "=Sheet2!A1"}) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
langchain-ai__langchain
libs/standard-tests/tests/unit_tests/test_basic_retriever.py
{ "start": 198, "end": 475 }
class ____(BaseRetriever): parrot_name: str k: int = 3 def _get_relevant_documents(self, query: str, **kwargs: Any) -> list[Document]: k = kwargs.get("k", self.k) return [Document(page_content=f"{self.parrot_name} says: {query}")] * k
ParrotRetriever
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/ddl.py
{ "start": 34159, "end": 34289 }
class ____(_DropBase["Sequence"]): """Represent a DROP SEQUENCE statement.""" __visit_name__ = "drop_sequence"
DropSequence
python
airbytehq__airbyte
airbyte-integrations/connectors/destination-google-sheets/destination_google_sheets/spreadsheet.py
{ "start": 250, "end": 3521 }
class ____: def __init__(self, client: pygsheets_client, spreadsheet_id: str): self.client = client self.spreadsheet_id = spreadsheet_id @property def spreadsheet(self) -> Spreadsheet: """ Returns pygsheets.Spreadsheet with opened target spreadsheet by key. """ return self.client.open_by_key(self.spreadsheet_id) def open_worksheet(self, stream_name: str) -> Worksheet: """ Opens the connection to target worksheet, if exists. Otherwise, creates one. """ try: stream = self.spreadsheet.worksheet_by_title(stream_name) except WorksheetNotFound: stream = self.spreadsheet.add_worksheet(stream_name) return stream def clean_worksheet(self, stream_name: str): """ Cleans up the existing records inside the worksheet or creates one, if doesn't exist. """ try: stream = self.open_worksheet(stream_name) stream.clear() except WorksheetNotFound: self.spreadsheet.add_worksheet(stream_name) def set_headers(self, stream_name: str, headers_list: List[str]): """ Sets headers belonging to the input stream """ stream: Worksheet = self.open_worksheet(stream_name) if headers_list: stream.update_row(1, headers_list) def index_cols(self, stream: Worksheet) -> Mapping[str, int]: """ Helps to find the index of every colums exists in worksheet. Returns: Mapping with column name and it's index. {"id": 1, "name": 2, ..., "other": 99} """ header = stream[1] # get the first row col_index = {} for i, col in enumerate(header): col_index[col] = i + 1 return col_index def find_duplicates(self, stream: Worksheet, primary_key: str): """ Finds the duplicated records inside of target worksheet. Returns: List of indexes of rows to remove from target worksheet. [1, 4, 5, ..., 99] """ rows_unique_values, rows_to_delete = {}, [] pk_col_index = self.index_cols(stream)[primary_key] # get all values except 0, because it's a header value pk_col_values = stream.get_col(pk_col_index, include_tailing_empty=False)[1:] for i, row_value in enumerate(pk_col_values, 2): if row_value not in rows_unique_values: rows_unique_values[row_value] = None else: rows_to_delete.append(i) # reverse the order of the list rows_to_delete.reverse() return rows_to_delete def remove_duplicates(self, stream: Worksheet, rows_list: list): """ Removes duplicated rows, provided by `rows_list` as list of indexes. We are working with delete operation in offline mode, to decrease the number of API calls. 1) Unlink the spreadsheet (make it for offline use) 2) Perform delete operation and update the actual row index 3) Link the spreadsheet (sync with online version) using batch_update method. """ stream.unlink() [stream.delete_rows(row, 1) for row in rows_list] stream.link()
GoogleSheets
python
apache__airflow
helm-tests/tests/helm_tests/other/test_keda.py
{ "start": 914, "end": 14377 }
class ____: """Tests keda.""" def test_keda_disabled_by_default(self): """Disabled by default.""" docs = render_chart( values={}, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) assert docs == [] @pytest.mark.parametrize( ("executor", "is_created"), [ ("CeleryExecutor", True), ("CeleryKubernetesExecutor", True), ("CeleryExecutor,KubernetesExecutor", True), ], ) def test_keda_enabled(self, executor, is_created): """ScaledObject should only be created when enabled and executor is Celery or CeleryKubernetes.""" docs = render_chart( values={ "workers": {"keda": {"enabled": True}, "persistence": {"enabled": False}}, "executor": executor, }, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) if is_created: assert jmespath.search("metadata.name", docs[0]) == "release-name-worker" else: assert docs == [] @pytest.mark.parametrize( "executor", ["CeleryExecutor", "CeleryKubernetesExecutor", "CeleryExecutor,KubernetesExecutor"] ) def test_include_event_source_container_name_in_scaled_object(self, executor): docs = render_chart( values={ "workers": {"keda": {"enabled": True}, "persistence": {"enabled": False}}, "executor": executor, }, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) assert jmespath.search("spec.scaleTargetRef.envSourceContainerName", docs[0]) == "worker" @pytest.mark.parametrize( "executor", ["CeleryExecutor", "CeleryKubernetesExecutor", "CeleryExecutor,KubernetesExecutor"] ) def test_keda_advanced(self, executor): """Verify keda advanced config.""" expected_advanced = { "horizontalPodAutoscalerConfig": { "behavior": { "scaleDown": { "stabilizationWindowSeconds": 300, "policies": [{"type": "Percent", "value": 100, "periodSeconds": 15}], } } } } docs = render_chart( values={ "workers": { "keda": { "enabled": True, "advanced": expected_advanced, }, }, "executor": executor, }, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) assert jmespath.search("spec.advanced", docs[0]) == expected_advanced @staticmethod def build_query(executor, concurrency=16, queue=None): """Build the query used by KEDA autoscaler to determine how many workers there should be.""" query = ( f"SELECT ceil(COUNT(*)::decimal / {concurrency}) " "FROM task_instance WHERE (state='running' OR state='queued')" ) if "CeleryKubernetesExecutor" in executor: queue_value = queue or "kubernetes" query += f" AND queue != '{queue_value}'" elif "KubernetesExecutor" in executor: query += " AND executor IS DISTINCT FROM 'KubernetesExecutor'" elif "airflow.providers.edge3.executors.EdgeExecutor" in executor: query += " AND executor IS DISTINCT FROM 'EdgeExecutor'" return query @pytest.mark.parametrize( ("executor", "concurrency"), [ ("CeleryExecutor", 8), ("CeleryExecutor", 16), ("CeleryKubernetesExecutor", 8), ("CeleryKubernetesExecutor", 16), ("CeleryExecutor,KubernetesExecutor", 8), ("CeleryExecutor,KubernetesExecutor", 16), ("CeleryExecutor,airflow.providers.edge3.executors.EdgeExecutor", 8), ("CeleryExecutor,airflow.providers.edge3.executors.EdgeExecutor", 16), ], ) def test_keda_concurrency(self, executor, concurrency): """Verify keda sql query uses configured concurrency.""" docs = render_chart( values={ "workers": {"keda": {"enabled": True}, "persistence": {"enabled": False}}, "executor": executor, "config": {"celery": {"worker_concurrency": concurrency}}, }, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) expected_query = self.build_query(executor=executor, concurrency=concurrency) assert jmespath.search("spec.triggers[0].metadata.query", docs[0]) == expected_query @pytest.mark.parametrize( ("executor", "queue", "should_filter"), [ ("CeleryExecutor", None, False), ("CeleryExecutor", "my_queue", False), ("CeleryKubernetesExecutor", None, True), ("CeleryKubernetesExecutor", "my_queue", True), ("CeleryExecutor,KubernetesExecutor", "None", False), ("CeleryExecutor,KubernetesExecutor", "my_queue", True), ], ) def test_keda_query_kubernetes_queue(self, executor, queue, should_filter): """ Verify keda sql query ignores kubernetes queue when CKE is used. Sometimes a user might want to use a different queue name for k8s executor tasks, and we also verify here that we use the configured queue name in that case. """ values = { "workers": {"keda": {"enabled": True}, "persistence": {"enabled": False}}, "executor": executor, } if queue: values.update({"config": {"celery_kubernetes_executor": {"kubernetes_queue": queue}}}) docs = render_chart( values=values, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) expected_query = self.build_query(executor=executor, queue=queue) assert jmespath.search("spec.triggers[0].metadata.query", docs[0]) == expected_query @pytest.mark.parametrize( ("enabled", "kind"), [ ("enabled", "StatefulSet"), ("not_enabled", "Deployment"), ], ) def test_persistence(self, enabled, kind): """If worker persistence is enabled, scaleTargetRef should be StatefulSet else Deployment.""" is_enabled = enabled == "enabled" docs = render_chart( values={ "workers": {"keda": {"enabled": True}, "persistence": {"enabled": is_enabled}}, "executor": "CeleryExecutor", }, show_only=["templates/workers/worker-kedaautoscaler.yaml"], ) assert jmespath.search("spec.scaleTargetRef.kind", docs[0]) == kind def test_default_keda_db_connection(self): """Verify default keda db connection.""" import base64 docs = render_chart( values={ "workers": {"keda": {"enabled": True}}, "executor": "CeleryExecutor", }, show_only=[ "templates/workers/worker-deployment.yaml", "templates/workers/worker-kedaautoscaler.yaml", "templates/secrets/metadata-connection-secret.yaml", ], ) worker_deployment = docs[0] keda_autoscaler = docs[1] metadata_connection_secret = docs[2] worker_container_env_vars = jmespath.search( "spec.template.spec.containers[?name=='worker'].env[].name", worker_deployment ) assert "AIRFLOW_CONN_AIRFLOW_DB" in worker_container_env_vars assert "KEDA_DB_CONN" not in worker_container_env_vars secret_data = jmespath.search("data", metadata_connection_secret) assert "connection" in secret_data.keys() assert "@release-name-postgresql" in base64.b64decode(secret_data["connection"]).decode() assert "kedaConnection" not in secret_data.keys() autoscaler_connection_env_var = jmespath.search( "spec.triggers[0].metadata.connectionFromEnv", keda_autoscaler ) assert autoscaler_connection_env_var == "AIRFLOW_CONN_AIRFLOW_DB" def test_default_keda_db_connection_pgbouncer_enabled(self): """Verify keda db connection when pgbouncer is enabled.""" import base64 docs = render_chart( values={ "workers": {"keda": {"enabled": True}}, "executor": "CeleryExecutor", "pgbouncer": {"enabled": True}, }, show_only=[ "templates/workers/worker-deployment.yaml", "templates/workers/worker-kedaautoscaler.yaml", "templates/secrets/metadata-connection-secret.yaml", ], ) worker_deployment = docs[0] keda_autoscaler = docs[1] metadata_connection_secret = docs[2] worker_container_env_vars = jmespath.search( "spec.template.spec.containers[?name=='worker'].env[].name", worker_deployment ) assert "AIRFLOW_CONN_AIRFLOW_DB" in worker_container_env_vars assert "KEDA_DB_CONN" not in worker_container_env_vars secret_data = jmespath.search("data", metadata_connection_secret) assert "connection" in secret_data.keys() assert "@release-name-pgbouncer" in base64.b64decode(secret_data["connection"]).decode() assert "kedaConnection" not in secret_data.keys() autoscaler_connection_env_var = jmespath.search( "spec.triggers[0].metadata.connectionFromEnv", keda_autoscaler ) assert autoscaler_connection_env_var == "AIRFLOW_CONN_AIRFLOW_DB" def test_default_keda_db_connection_pgbouncer_enabled_usePgbouncer_false(self): """Verify keda db connection when pgbouncer is enabled and usePgbouncer is false.""" import base64 docs = render_chart( values={ "workers": {"keda": {"enabled": True, "usePgbouncer": False}}, "executor": "CeleryExecutor", "pgbouncer": {"enabled": True}, }, show_only=[ "templates/workers/worker-deployment.yaml", "templates/workers/worker-kedaautoscaler.yaml", "templates/secrets/metadata-connection-secret.yaml", ], ) worker_deployment = docs[0] keda_autoscaler = docs[1] metadata_connection_secret = docs[2] worker_container_env_vars = jmespath.search( "spec.template.spec.containers[?name=='worker'].env[].name", worker_deployment ) assert "AIRFLOW_CONN_AIRFLOW_DB" in worker_container_env_vars assert "KEDA_DB_CONN" in worker_container_env_vars secret_data = jmespath.search("data", metadata_connection_secret) connection_secret = base64.b64decode(secret_data["connection"]).decode() keda_connection_secret = base64.b64decode(secret_data["kedaConnection"]).decode() assert "connection" in secret_data.keys() assert "@release-name-pgbouncer" in connection_secret assert ":6543" in connection_secret assert "/release-name-metadata" in connection_secret assert "kedaConnection" in secret_data.keys() assert "@release-name-postgresql" in keda_connection_secret assert ":5432" in keda_connection_secret assert "/postgres" in keda_connection_secret autoscaler_connection_env_var = jmespath.search( "spec.triggers[0].metadata.connectionFromEnv", keda_autoscaler ) assert autoscaler_connection_env_var == "KEDA_DB_CONN" def test_mysql_keda_db_connection(self): """Verify keda db connection when pgbouncer is enabled.""" import base64 docs = render_chart( values={ "data": {"metadataConnection": {"protocol": "mysql", "port": 3306}}, "workers": {"keda": {"enabled": True}}, "executor": "CeleryExecutor", }, show_only=[ "templates/workers/worker-deployment.yaml", "templates/workers/worker-kedaautoscaler.yaml", "templates/secrets/metadata-connection-secret.yaml", ], ) worker_deployment = docs[0] keda_autoscaler = docs[1] metadata_connection_secret = docs[2] worker_container_env_vars = jmespath.search( "spec.template.spec.containers[?name=='worker'].env[].name", worker_deployment ) assert "AIRFLOW_CONN_AIRFLOW_DB" in worker_container_env_vars assert "KEDA_DB_CONN" in worker_container_env_vars keda_autoscaler_metadata = jmespath.search("spec.triggers[0].metadata", keda_autoscaler) assert "queryValue" in keda_autoscaler_metadata secret_data = jmespath.search("data", metadata_connection_secret) keda_connection_secret = base64.b64decode(secret_data["kedaConnection"]).decode() assert "connection" in secret_data.keys() assert "kedaConnection" in secret_data.keys() assert not keda_connection_secret.startswith("//") autoscaler_connection_env_var = jmespath.search( "spec.triggers[0].metadata.connectionStringFromEnv", keda_autoscaler ) assert autoscaler_connection_env_var == "KEDA_DB_CONN"
TestKeda
python
pypa__warehouse
warehouse/filters.py
{ "start": 491, "end": 5409 }
class ____(enum.Enum): bdist_dmg = "OSX Disk Image" bdist_dumb = "Dumb Binary" bdist_egg = "Egg" bdist_msi = "Windows MSI Installer" bdist_rpm = "RPM" bdist_wheel = "Wheel" bdist_wininst = "Windows Installer" sdist = "Source" def format_package_type(value): try: return PackageType[value].value except KeyError: return value def _camo_url(request, url): camo_url = request.registry.settings["camo.url"].format(request=request) camo_key = request.registry.settings["camo.key"].encode("utf8") url = url.encode("utf8") path = "/".join( [ hmac.new(camo_key, url, digestmod="sha1").hexdigest(), binascii.hexlify(url).decode("utf8"), ] ) return urllib.parse.urljoin(camo_url, path) @jinja2.pass_context def camoify(ctx, value): request = ctx.get("request") or get_current_request() # Parse the rendered output and replace any inline images that don't point # to HTTPS with camouflaged images. tree_builder = html5lib.treebuilders.getTreeBuilder("dom") parser = html5lib.html5parser.HTMLParser(tree=tree_builder) dom = parser.parse(value) for element in dom.getElementsByTagName("img"): src = element.getAttribute("src") if src: element.setAttribute("src", request.camo_url(src)) tree_walker = html5lib.treewalkers.getTreeWalker("dom") html_serializer = html5lib.serializer.HTMLSerializer() camoed = "".join(html_serializer.serialize(tree_walker(dom))) return camoed _SI_SYMBOLS = ["k", "M", "G", "T", "P", "E", "Z", "Y"] def shorten_number(value): for i, symbol in enumerate(_SI_SYMBOLS): magnitude = value / (1000 ** (i + 1)) if magnitude >= 1 and magnitude < 1000: return f"{magnitude:.3g}{symbol}" return str(value) def tojson(value): return json.dumps(value, sort_keys=True, separators=(",", ":")) def urlparse(value): return parse_url(value) def format_tags(tags): # split tags if re.search(r",", tags): split_tags = re.split(r"\s*,\s*", tags) elif re.search(r";", tags): split_tags = re.split(r"\s*;\s*", tags) else: split_tags = re.split(r"\s+", tags) # strip whitespace, quotes, double quotes stripped_tags = [re.sub(r'^["\'\s]+|["\'\s]+$', "", t) for t in split_tags] # remove any empty tags formatted_tags = [t for t in stripped_tags if t] return formatted_tags def format_classifiers(classifiers): structured: collections.OrderedDict[str, list[str]] = collections.OrderedDict() # Split up our classifiers into our data structure for classifier in classifiers: key, *value = classifier.split(" :: ", 1) if value: if key not in structured: structured[key] = [] structured[key].append(value[0]) # Sort all the values in our data structure for key, value in structured.items(): structured[key] = natsorted(value) return structured def classifier_id(classifier): return classifier.replace(" ", "_").replace("::", ".") def contains_valid_uris(items): """Returns boolean representing whether the input list contains any valid URIs """ return any(is_valid_uri(i) for i in items) def parse_version(version_str): return packaging_legacy.version.parse(version_str) def localize_datetime(timestamp): return pytz.utc.localize(timestamp) def ctime(timestamp): return datetime.datetime.fromtimestamp(timestamp) def is_recent(timestamp): if timestamp: return timestamp + datetime.timedelta(days=30) > datetime.datetime.now() return False def parse_isoformat(datestring): return datetime.datetime.fromisoformat(datestring) def format_email(metadata_email: str) -> tuple[str, str]: """ Return the name and email address from a metadata RFC-822 string. Use Jinja's `first` and `last` to access each part in a template. TODO: Support more than one email address, per RFC-822. """ emails = [] for name, email in getaddresses([metadata_email]): if "@" not in email: return name, "" emails.append((name, email)) return emails[0][0], emails[0][1] def remove_invalid_xml_unicode(value: str | None) -> str | None: """ Remove invalid unicode characters from a string. Useful for XML Templates. Ref: https://www.w3.org/TR/REC-xml/#NT-Char """ return "".join(c for c in value if ord(c) >= 32) if value else value def _canonical_url(request, **kwargs): if request.matched_route: try: return request.route_url(request.matched_route.name, **kwargs) except KeyError: pass def includeme(config): config.add_request_method(_camo_url, name="camo_url") config.add_request_method(_canonical_url, name="canonical_url")
PackageType
python
bokeh__bokeh
src/bokeh/models/glyph.py
{ "start": 3317, "end": 3553 }
class ____(HasProps): ''' Glyphs with line properties ''' # explicit __init__ to support Init signatures def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) @abstract
LineGlyph
python
tensorflow__tensorflow
tensorflow/python/data/experimental/kernel_tests/optimization/optimization_test.py
{ "start": 3569, "end": 12095 }
class ____(test_base.DatasetTestBase, parameterized.TestCase): @combinations.generate(test_base.default_test_combinations()) def testOptimizationStatefulFunction(self): dataset = dataset_ops.Dataset.range( 10).map(lambda _: random_ops.random_uniform([])).batch(10) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False dataset = dataset.with_options(options) get_next = self.getNext(dataset) self.evaluate(get_next()) # TODO(b/123354468) @combinations.generate(test_base.graph_only_combinations()) def testOptimizationLargeInputFromTensor(self): input_t = array_ops.placeholder(dtypes.int32, (None, None, None)) dataset = dataset_ops.Dataset.from_tensors(input_t) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False dataset = dataset.with_options(options) iterator = dataset_ops.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op, {input_t: np.ones([512, 1024, 1025], np.int32)}) self.evaluate(get_next) # TODO(b/123354468) @combinations.generate(test_base.graph_only_combinations()) def testOptimizationLargeInputFromTensorSlices(self): input_t = array_ops.placeholder(dtypes.int32, (None, None, None, None)) dataset = dataset_ops.Dataset.from_tensor_slices(input_t) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False dataset = dataset.with_options(options) iterator = dataset_ops.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.cached_session() as sess: sess.run(init_op, {input_t: np.ones([1, 512, 1024, 1025], np.int32)}) self.evaluate(get_next) @combinations.generate(test_base.default_test_combinations()) def testOptimizationNestedDataset(self): def flat_map_fn(_): dataset = dataset_ops.Dataset.from_tensors(0) dataset = dataset.apply(testing.assert_next(["MemoryCacheImpl"])) dataset = dataset.skip(0) # Should be removed by noop elimination dataset = dataset.cache() return dataset dataset = dataset_ops.Dataset.range(1) dataset = dataset.flat_map(flat_map_fn) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.noop_elimination = True dataset = dataset.with_options(options) self.assertDatasetProduces(dataset, expected_output=[0]) @combinations.generate(test_base.default_test_combinations()) def testOptimizationNestedDatasetWithModifiedRetval(self): def flat_map_fn(_): dataset = dataset_ops.Dataset.from_tensors(0) dataset = dataset.apply(testing.assert_next(["MapAndBatch"])) # Should be fused by map and batch fusion dataset = dataset.map(lambda x: x) dataset = dataset.batch(1) return dataset dataset = dataset_ops.Dataset.range(1) dataset = dataset.flat_map(flat_map_fn) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.map_and_batch_fusion = True dataset = dataset.with_options(options) self.assertDatasetProduces(dataset, expected_output=[[0]]) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine(autotune=[True, False, None]), combinations.combine(map_parallelization=[True, False, None]))) def testOptimizationMapParallelization(self, autotune, map_parallelization): dataset = dataset_ops.Dataset.range(5) if autotune is not False and map_parallelization is not False: # pylint: disable=g-bool-id-comparison dataset = dataset.apply(testing.assert_next(["ParallelMap"])) else: dataset = dataset.apply(testing.assert_next(["Map"])) dataset = dataset.map(lambda x: x + 1) options = options_lib.Options() if autotune is not None: options.autotune.enabled = autotune if map_parallelization is not None: options.experimental_optimization.map_parallelization = ( map_parallelization) dataset = dataset.with_options(options) self.assertDatasetProduces(dataset, expected_output=list(range(1, 6))) @combinations.generate( combinations.times(test_base.default_test_combinations(), combinations.combine(existing_prefetch=[True, False]), combinations.combine(autotune=[True, False]), combinations.combine(inject_prefetch=[True, False]))) def testOptimizationInjectPrefetch(self, existing_prefetch, autotune, inject_prefetch): dataset = dataset_ops.Dataset.range(5) dataset = dataset.map( lambda x: x + 1, num_parallel_calls=dataset_ops.AUTOTUNE) dataset = dataset.batch(1) if existing_prefetch: dataset = dataset.prefetch(1) if autotune and inject_prefetch and not existing_prefetch: dataset = dataset.apply(testing.assert_next(["Prefetch", "Root"])) else: dataset = dataset.apply(testing.assert_next(["Root"])) options = options_lib.Options() options.autotune.enabled = autotune options.experimental_optimization.map_and_batch_fusion = False if not inject_prefetch: options.experimental_optimization.inject_prefetch = False dataset = dataset.with_options(options) self.assertDatasetProduces(dataset, expected_output=[np.array([x]) for x in range(1, 6)]) # Reference variables are not supported in eager mode. @combinations.generate( combinations.times(test_base.graph_only_combinations(), _captured_refvar_test_combinations())) def testOptimizationWithCapturedRefVar(self, dataset_fn): """Tests that default optimizations are disabled with ref variables.""" variable = variable_scope.get_variable( "v", initializer=0, use_resource=False) assign_op = variable.assign_add(1) unoptimized_dataset = dataset_fn(variable) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.noop_elimination = True options.experimental_optimization.map_and_batch_fusion = True options.experimental_warm_start = False optimized_dataset = unoptimized_dataset.with_options(options) optimized_it = dataset_ops.make_initializable_iterator(optimized_dataset) # Check that outputs are the same in the optimized and unoptimized cases, # when the variable value is changing. unoptimized_it = dataset_ops.make_initializable_iterator( unoptimized_dataset) with ops.control_dependencies([assign_op]): unoptimized_output = unoptimized_it.get_next() optimized_output = optimized_it.get_next() self.evaluate(variable.initializer) self.evaluate((unoptimized_it.initializer, optimized_it.initializer)) while True: try: unoptimized, optimized = self.evaluate((unoptimized_output, optimized_output)) self.assertEqual(unoptimized, optimized) except errors.OutOfRangeError: break @combinations.generate( combinations.times( test_base.eager_only_combinations(), combinations.combine(warm_start=[True, False]), ) ) def testOptimizationWarmStart(self, warm_start): dataset = dataset_ops.Dataset.range(10) counter = variables.Variable(0) def update_counter(x): counter.assign_add(1) return x options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False if warm_start: options.experimental_warm_start = True else: options.experimental_warm_start = False dataset = dataset.with_options(options) dataset = dataset.map(update_counter).prefetch(10) unused_iter = iter(dataset) if warm_start: for sleep_time_secs in [0.1, 0.2, 0.5, 2, 5, 10]: if counter.numpy() == 0: time.sleep(sleep_time_secs) else: break self.assertGreater(counter.numpy(), 0) else: self.assertEqual(counter.numpy(), 0) if __name__ == "__main__": test.main()
OptimizationTest
python
scipy__scipy
scipy/spatial/tests/test_kdtree.py
{ "start": 12368, "end": 12516 }
class ____(_Test_random_ball): def setup_method(self): super().setup_method() self.eps = 0.1 @KDTreeTest
_Test_random_ball_approx
python
getsentry__sentry
tests/snuba/api/endpoints/test_organization_events_trends.py
{ "start": 30325, "end": 34192 }
class ____(APITestCase, SnubaTestCase): def setUp(self) -> None: super().setUp() self.login_as(user=self.user) self.url = reverse( "sentry-api-0-organization-events-trends-stats", kwargs={"organization_id_or_slug": self.project.organization.slug}, ) self.day_ago = before_now(days=1).replace(hour=10, minute=0, second=0, microsecond=0) self.prototype = load_data("transaction") self.features = {"organizations:performance-view": True} # Make 10 transactions for paging for i in range(10): for j in range(2): data = self.prototype.copy() data["user"] = {"email": "foo@example.com"} data["start_timestamp"] = (self.day_ago + timedelta(minutes=30)).isoformat() data["timestamp"] = ( self.day_ago + timedelta(hours=j, minutes=30, seconds=2) ).isoformat() if i < 5: data["transaction"] = f"transaction_1{i}" else: data["transaction"] = f"transaction_2{i}" self.store_event(data, project_id=self.project.id) def _parse_links(self, header): # links come in {url: {...attrs}}, but we need {rel: {...attrs}} links = {} for url, attrs in parse_link_header(header).items(): links[attrs["rel"]] = attrs attrs["href"] = url return links def test_pagination(self) -> None: with self.feature(self.features): response = self.client.get( self.url, format="json", data={ # Set the timeframe to where the second range has no transactions so all the counts/percentile are 0 "end": (self.day_ago + timedelta(hours=2)).isoformat(), "start": (self.day_ago - timedelta(hours=2)).isoformat(), "field": ["project", "transaction"], "query": "event.type:transaction", "project": [self.project.id], }, ) assert response.status_code == 200, response.content links = self._parse_links(response["Link"]) assert links["previous"]["results"] == "false" assert links["next"]["results"] == "true" assert len(response.data["events"]["data"]) == 5 response = self.client.get(links["next"]["href"], format="json") assert response.status_code == 200, response.content links = self._parse_links(response["Link"]) assert links["previous"]["results"] == "true" assert links["next"]["results"] == "false" assert len(response.data["events"]["data"]) == 5 def test_pagination_with_query(self) -> None: with self.feature(self.features): response = self.client.get( self.url, format="json", data={ # Set the timeframe to where the second range has no transactions so all the counts/percentile are 0 "end": (self.day_ago + timedelta(hours=2)).isoformat(), "start": (self.day_ago - timedelta(hours=2)).isoformat(), "field": ["project", "transaction"], "query": "event.type:transaction transaction:transaction_1*", "project": [self.project.id], }, ) assert response.status_code == 200, response.content links = self._parse_links(response["Link"]) assert links["previous"]["results"] == "false" assert links["next"]["results"] == "false" assert len(response.data["events"]["data"]) == 5
OrganizationEventsTrendsPagingTest
python
keras-team__keras
keras/src/optimizers/schedules/learning_rate_schedule_test.py
{ "start": 1358, "end": 2999 }
class ____(testing.TestCase): def test_config(self): self.run_class_serialization_test( schedules.ExponentialDecay( initial_learning_rate=0.05, decay_steps=10, decay_rate=0.96, staircase=True, name="my_ed", ) ) def test_continuous(self): step = 5 decayed_lr = schedules.ExponentialDecay(0.05, 10, 0.96) expected = 0.05 * 0.96 ** (5.0 / 10.0) self.assertAllClose(decayed_lr(step), expected, 1e-6) def test_staircase(self): step = backend.Variable(1.0) decayed_lr = schedules.ExponentialDecay(0.1, 3, 0.96, staircase=True) # No change to learning rate due to staircase expected = 0.1 self.assertAllClose(decayed_lr(step), expected, 1e-6) expected = 0.1 step.assign(2) self.assertAllClose(decayed_lr(step), expected, 1e-6) # Decayed learning rate expected = 0.1 * 0.96 ** (100 // 3) step.assign(100) self.assertAllClose(decayed_lr(step), expected, 1e-6) def test_variables(self): step = backend.Variable(1.0) decayed_lr = schedules.ExponentialDecay(0.1, 3, 0.96, staircase=True) # No change to learning rate step.assign(1) self.assertAllClose(decayed_lr(step), 0.1, 1e-6) step.assign(2) self.assertAllClose(decayed_lr(step), 0.1, 1e-6) # Decayed learning rate step.assign(100) expected = 0.1 * 0.96 ** (100 // 3) self.assertAllClose(decayed_lr(step), expected, 1e-6)
ExponentialDecayTest
python
qdrant__qdrant-client
qdrant_client/http/models/models.py
{ "start": 43036, "end": 43151 }
class ____(BaseModel, extra="forbid"): geo_distance: "GeoDistanceParams" = Field(..., description="")
GeoDistance
python
dask__dask
dask/dataframe/dask_expr/_groupby.py
{ "start": 42327, "end": 42461 }
class ____(GroupByCumulative): chunk = M.cumcount aggregate = staticmethod(_cumcount_aggregate) initial = -1
GroupByCumcount
python
jmcnamara__XlsxWriter
xlsxwriter/test/worksheet/test_write_row_breaks.py
{ "start": 301, "end": 1327 }
class ____(unittest.TestCase): """ Test the Worksheet _write_row_breaks() method. """ def setUp(self): self.fh = StringIO() self.worksheet = Worksheet() self.worksheet._set_filehandle(self.fh) def test_write_row_breaks_1(self): """Test the _write_row_breaks() method""" self.worksheet.hbreaks = [1] self.worksheet._write_row_breaks() exp = """<rowBreaks count="1" manualBreakCount="1"><brk id="1" max="16383" man="1"/></rowBreaks>""" got = self.fh.getvalue() self.assertEqual(exp, got) def test_write_row_breaks_2(self): """Test the _write_row_breaks() method""" self.worksheet.hbreaks = [15, 7, 3, 0] self.worksheet._write_row_breaks() exp = """<rowBreaks count="3" manualBreakCount="3"><brk id="3" max="16383" man="1"/><brk id="7" max="16383" man="1"/><brk id="15" max="16383" man="1"/></rowBreaks>""" got = self.fh.getvalue() self.assertEqual(exp, got)
TestWriteRowBreaks
python
pypa__hatch
src/hatch/project/env.py
{ "start": 16072, "end": 17790 }
class ____: def __init__(self, data_dir: Path, project_path: Path): self.__data_dir = data_dir self.__project_path = project_path def dependency_hash(self, environment: EnvironmentInterface) -> str: return self._read(environment).get("dependency_hash", "") def update_dependency_hash(self, environment: EnvironmentInterface, dependency_hash: str) -> None: metadata = self._read(environment) metadata["dependency_hash"] = dependency_hash self._write(environment, metadata) def reset(self, environment: EnvironmentInterface) -> None: self._metadata_file(environment).unlink(missing_ok=True) def _read(self, environment: EnvironmentInterface) -> dict[str, Any]: import json metadata_file = self._metadata_file(environment) if not metadata_file.is_file(): return {} return json.loads(metadata_file.read_text()) def _write(self, environment: EnvironmentInterface, metadata: dict[str, Any]) -> None: import json metadata_file = self._metadata_file(environment) metadata_file.parent.ensure_dir_exists() metadata_file.write_text(json.dumps(metadata)) def _metadata_file(self, environment: EnvironmentInterface) -> Path: from hatch.env.internal import is_isolated_environment if is_isolated_environment(environment.name, environment.config): return self.__data_dir / ".internal" / f"{environment.name}.json" return self._storage_dir / environment.config["type"] / f"{environment.name}.json" @cached_property def _storage_dir(self) -> Path: return self.__data_dir / self.__project_path.id
EnvironmentMetadata
python
qdrant__qdrant-client
qdrant_client/http/models/models.py
{ "start": 118441, "end": 118561 }
class ____(BaseModel, extra="forbid"): searches: List["SearchRequest"] = Field(..., description="")
SearchRequestBatch
python
ray-project__ray
python/ray/tune/search/search_generator.py
{ "start": 914, "end": 8185 }
class ____(SearchAlgorithm): """Generates trials to be passed to the TrialRunner. Uses the provided ``searcher`` object to generate trials. This class transparently handles repeating trials with score aggregation without embedding logic into the Searcher. Args: searcher: Search object that subclasses the Searcher base class. This is then used for generating new hyperparameter samples. """ CKPT_FILE_TMPL = "search_gen_state-{}.json" def __init__(self, searcher: Searcher): assert issubclass( type(searcher), Searcher ), "Searcher should be subclassing Searcher." self.searcher = searcher self._parser = _make_parser() self._experiment = None self._counter = 0 # Keeps track of number of trials created. self._total_samples = 0 # int: total samples to evaluate. self._finished = False @property def metric(self): return self.searcher.metric def set_search_properties( self, metric: Optional[str], mode: Optional[str], config: Dict, **spec ) -> bool: return _set_search_properties_backwards_compatible( self.searcher.set_search_properties, metric, mode, config, **spec ) @property def total_samples(self): return self._total_samples def add_configurations( self, experiments: Union[Experiment, List[Experiment], Dict[str, Dict]] ): """Registers experiment specifications. Arguments: experiments: Experiments to run. """ assert not self._experiment logger.debug("added configurations") experiment_list = _convert_to_experiment_list(experiments) assert ( len(experiment_list) == 1 ), "SearchAlgorithms can only support 1 experiment at a time." self._experiment = experiment_list[0] experiment_spec = self._experiment.spec self._total_samples = self._experiment.spec.get("num_samples", 1) _warn_on_repeater(self.searcher, self._total_samples) if "run" not in experiment_spec: raise TuneError("Must specify `run` in {}".format(experiment_spec)) def next_trial(self): """Provides one Trial object to be queued into the TrialRunner. Returns: Trial: Returns a single trial. """ if not self.is_finished(): return self.create_trial_if_possible(self._experiment.spec) return None def create_trial_if_possible(self, experiment_spec: Dict) -> Optional[Trial]: logger.debug("creating trial") trial_id = Trial.generate_id() suggested_config = self.searcher.suggest(trial_id) if suggested_config == Searcher.FINISHED: self._finished = True logger.debug("Searcher has finished.") return if suggested_config is None: return spec = copy.deepcopy(experiment_spec) spec["config"] = merge_dicts(spec["config"], copy.deepcopy(suggested_config)) # Create a new trial_id if duplicate trial is created flattened_config = _resolve_nested_dict(spec["config"]) self._counter += 1 tag = "{0}_{1}".format(str(self._counter), format_vars(flattened_config)) trial = _create_trial_from_spec( spec, self._parser, evaluated_params=flatten_dict(suggested_config), experiment_tag=tag, trial_id=trial_id, ) return trial def on_trial_result(self, trial_id: str, result: Dict): """Notifies the underlying searcher.""" self.searcher.on_trial_result(trial_id, result) def on_trial_complete( self, trial_id: str, result: Optional[Dict] = None, error: bool = False ): self.searcher.on_trial_complete(trial_id=trial_id, result=result, error=error) def is_finished(self) -> bool: return self._counter >= self._total_samples or self._finished def get_state(self) -> Dict: return { "counter": self._counter, "total_samples": self._total_samples, "finished": self._finished, "experiment": self._experiment, } def set_state(self, state: Dict): self._counter = state["counter"] self._total_samples = state["total_samples"] self._finished = state["finished"] self._experiment = state["experiment"] def has_checkpoint(self, dirpath: str): return bool(_load_newest_checkpoint(dirpath, self.CKPT_FILE_TMPL.format("*"))) def save_to_dir(self, dirpath: str, session_str: str): """Saves self + searcher to dir. Separates the "searcher" from its wrappers (concurrency, repeating). This allows the user to easily restore a given searcher. The save operation is atomic (write/swap). Args: dirpath: Filepath to experiment dir. session_str: Unique identifier of the current run session. """ searcher = self.searcher search_alg_state = self.get_state() while hasattr(searcher, "searcher"): searcher_name = type(searcher).__name__ if searcher_name in search_alg_state: logger.warning( "There was a duplicate when saving {}. " "Restore may not work properly.".format(searcher_name) ) else: search_alg_state["name:" + searcher_name] = searcher.get_state() searcher = searcher.searcher base_searcher = searcher # We save the base searcher separately for users to easily # separate the searcher. base_searcher.save_to_dir(dirpath, session_str) _atomic_save( state=search_alg_state, checkpoint_dir=dirpath, file_name=self.CKPT_FILE_TMPL.format(session_str), tmp_file_name=".tmp_search_generator_ckpt", ) def restore_from_dir(self, dirpath: str): """Restores self + searcher + search wrappers from dirpath.""" searcher = self.searcher search_alg_state = _load_newest_checkpoint( dirpath, self.CKPT_FILE_TMPL.format("*") ) if not search_alg_state: raise RuntimeError("Unable to find checkpoint in {}.".format(dirpath)) while hasattr(searcher, "searcher"): searcher_name = "name:" + type(searcher).__name__ if searcher_name not in search_alg_state: names = [ key.split("name:")[1] for key in search_alg_state if key.startswith("name:") ] logger.warning( "{} was not found in the experiment " "state when restoring. Found {}.".format(searcher_name, names) ) else: searcher.set_state(search_alg_state.pop(searcher_name)) searcher = searcher.searcher base_searcher = searcher logger.debug(f"searching base {base_searcher}") base_searcher.restore_from_dir(dirpath) self.set_state(search_alg_state)
SearchGenerator
python
psf__black
tests/test_black.py
{ "start": 85333, "end": 100819 }
class ____: def test_get_cache_dir( self, tmp_path: Path, monkeypatch: pytest.MonkeyPatch, ) -> None: # Create multiple cache directories workspace1 = tmp_path / "ws1" workspace1.mkdir() workspace2 = tmp_path / "ws2" workspace2.mkdir() # Force user_cache_dir to use the temporary directory for easier assertions patch_user_cache_dir = patch( target="black.cache.user_cache_dir", autospec=True, return_value=str(workspace1), ) # If BLACK_CACHE_DIR is not set, use user_cache_dir monkeypatch.delenv("BLACK_CACHE_DIR", raising=False) with patch_user_cache_dir: assert get_cache_dir().parent == workspace1 # If it is set, use the path provided in the env var. monkeypatch.setenv("BLACK_CACHE_DIR", str(workspace2)) assert get_cache_dir().parent == workspace2 def test_cache_file_length(self) -> None: cases = [ DEFAULT_MODE, # all of the target versions Mode(target_versions=set(TargetVersion)), # all of the features Mode(enabled_features=set(Preview)), # all of the magics Mode(python_cell_magics={f"magic{i}" for i in range(500)}), # all of the things Mode( target_versions=set(TargetVersion), enabled_features=set(Preview), python_cell_magics={f"magic{i}" for i in range(500)}, ), ] for case in cases: cache_file = get_cache_file(case) # Some common file systems enforce a maximum path length # of 143 (issue #4174). We can't do anything if the directory # path is too long, but ensure the name of the cache file itself # doesn't get too crazy. assert len(cache_file.name) <= 96 def test_cache_broken_file(self) -> None: mode = DEFAULT_MODE with cache_dir() as workspace: cache_file = get_cache_file(mode) cache_file.write_text("this is not a pickle", encoding="utf-8") assert black.Cache.read(mode).file_data == {} src = (workspace / "test.py").resolve() src.write_text("print('hello')", encoding="utf-8") invokeBlack([str(src)]) cache = black.Cache.read(mode) assert not cache.is_changed(src) def test_cache_single_file_already_cached(self) -> None: mode = DEFAULT_MODE with cache_dir() as workspace: src = (workspace / "test.py").resolve() src.write_text("print('hello')", encoding="utf-8") cache = black.Cache.read(mode) cache.write([src]) invokeBlack([str(src)]) assert src.read_text(encoding="utf-8") == "print('hello')" @event_loop() def test_cache_multiple_files(self) -> None: mode = DEFAULT_MODE with ( cache_dir() as workspace, patch("concurrent.futures.ProcessPoolExecutor", new=ThreadPoolExecutor), ): one = (workspace / "one.py").resolve() one.write_text("print('hello')", encoding="utf-8") two = (workspace / "two.py").resolve() two.write_text("print('hello')", encoding="utf-8") cache = black.Cache.read(mode) cache.write([one]) invokeBlack([str(workspace)]) assert one.read_text(encoding="utf-8") == "print('hello')" assert two.read_text(encoding="utf-8") == 'print("hello")\n' cache = black.Cache.read(mode) assert not cache.is_changed(one) assert not cache.is_changed(two) @pytest.mark.incompatible_with_mypyc @pytest.mark.parametrize("color", [False, True], ids=["no-color", "with-color"]) def test_no_cache_when_writeback_diff(self, color: bool) -> None: mode = DEFAULT_MODE with cache_dir() as workspace: src = (workspace / "test.py").resolve() src.write_text("print('hello')", encoding="utf-8") with ( patch.object(black.Cache, "read") as read_cache, patch.object(black.Cache, "write") as write_cache, ): cmd = [str(src), "--diff"] if color: cmd.append("--color") invokeBlack(cmd) cache_file = get_cache_file(mode) assert cache_file.exists() is False read_cache.assert_called_once() write_cache.assert_not_called() @pytest.mark.parametrize("color", [False, True], ids=["no-color", "with-color"]) @event_loop() def test_output_locking_when_writeback_diff(self, color: bool) -> None: with cache_dir() as workspace: for tag in range(0, 4): src = (workspace / f"test{tag}.py").resolve() src.write_text("print('hello')", encoding="utf-8") with patch( "black.concurrency.Manager", wraps=multiprocessing.Manager ) as mgr: cmd = ["--diff", str(workspace)] if color: cmd.append("--color") invokeBlack(cmd, exit_code=0) # this isn't quite doing what we want, but if it _isn't_ # called then we cannot be using the lock it provides mgr.assert_called() def test_no_cache_when_stdin(self) -> None: mode = DEFAULT_MODE with cache_dir(): result = CliRunner().invoke( black.main, ["-"], input=BytesIO(b"print('hello')") ) assert not result.exit_code cache_file = get_cache_file(mode) assert not cache_file.exists() def test_no_cache_flag_prevents_writes(self) -> None: """--no-cache should neither read nor write the cache""" mode = DEFAULT_MODE with cache_dir() as workspace: src = (workspace / "test.py").resolve() src.write_text("print('hello')", encoding="utf-8") cache = black.Cache.read(mode) # Pre-populate cache so the file is considered cached cache.write([src]) with ( patch.object(black.Cache, "read") as read_cache, patch.object(black.Cache, "write") as write_cache, ): # Pass --no-cache; it should neither read nor write invokeBlack([str(src), "--no-cache"]) read_cache.assert_not_called() write_cache.assert_not_called() def test_no_cache_with_multiple_files(self) -> None: """Formatting multiple files with --no-cache should not read or write cache and should format files normally.""" mode = DEFAULT_MODE with (cache_dir() as workspace,): one = (workspace / "one.py").resolve() one.write_text("print('hello')", encoding="utf-8") two = (workspace / "two.py").resolve() two.write_text("print('hello')", encoding="utf-8") # Pre-populate cache for `one` so it would normally be skipped cache = black.Cache.read(mode) cache.write([one]) with ( patch.object(black.Cache, "read") as read_cache, patch.object(black.Cache, "write") as write_cache, ): # Run Black over the directory with --no-cache invokeBlack([str(workspace), "--no-cache"]) # Cache should not be consulted or updated read_cache.assert_not_called() write_cache.assert_not_called() # Both files should have been formatted (double quotes + newline) assert one.read_text(encoding="utf-8") == 'print("hello")\n' assert two.read_text(encoding="utf-8") == 'print("hello")\n' def test_read_cache_no_cachefile(self) -> None: mode = DEFAULT_MODE with cache_dir(): assert black.Cache.read(mode).file_data == {} def test_write_cache_read_cache(self) -> None: mode = DEFAULT_MODE with cache_dir() as workspace: src = (workspace / "test.py").resolve() src.touch() write_cache = black.Cache.read(mode) write_cache.write([src]) read_cache = black.Cache.read(mode) assert not read_cache.is_changed(src) @pytest.mark.incompatible_with_mypyc def test_filter_cached(self) -> None: with TemporaryDirectory() as workspace: path = Path(workspace) uncached = (path / "uncached").resolve() cached = (path / "cached").resolve() cached_but_changed = (path / "changed").resolve() uncached.touch() cached.touch() cached_but_changed.touch() cache = black.Cache.read(DEFAULT_MODE) orig_func = black.Cache.get_file_data def wrapped_func(path: Path) -> FileData: if path == cached: return orig_func(path) if path == cached_but_changed: return FileData(0.0, 0, "") raise AssertionError with patch.object(black.Cache, "get_file_data", side_effect=wrapped_func): cache.write([cached, cached_but_changed]) todo, done = cache.filtered_cached({uncached, cached, cached_but_changed}) assert todo == {uncached, cached_but_changed} assert done == {cached} def test_filter_cached_hash(self) -> None: with TemporaryDirectory() as workspace: path = Path(workspace) src = (path / "test.py").resolve() src.write_text("print('hello')", encoding="utf-8") st = src.stat() cache = black.Cache.read(DEFAULT_MODE) cache.write([src]) cached_file_data = cache.file_data[str(src)] todo, done = cache.filtered_cached([src]) assert todo == set() assert done == {src} assert cached_file_data.st_mtime == st.st_mtime # Modify st_mtime cached_file_data = cache.file_data[str(src)] = FileData( cached_file_data.st_mtime - 1, cached_file_data.st_size, cached_file_data.hash, ) todo, done = cache.filtered_cached([src]) assert todo == set() assert done == {src} assert cached_file_data.st_mtime < st.st_mtime assert cached_file_data.st_size == st.st_size assert cached_file_data.hash == black.Cache.hash_digest(src) # Modify contents src.write_text("print('hello world')", encoding="utf-8") new_st = src.stat() todo, done = cache.filtered_cached([src]) assert todo == {src} assert done == set() assert cached_file_data.st_mtime < new_st.st_mtime assert cached_file_data.st_size != new_st.st_size assert cached_file_data.hash != black.Cache.hash_digest(src) def test_write_cache_creates_directory_if_needed(self) -> None: mode = DEFAULT_MODE with cache_dir(exists=False) as workspace: assert not workspace.exists() cache = black.Cache.read(mode) cache.write([]) assert workspace.exists() @event_loop() def test_failed_formatting_does_not_get_cached(self) -> None: mode = DEFAULT_MODE with ( cache_dir() as workspace, patch("concurrent.futures.ProcessPoolExecutor", new=ThreadPoolExecutor), ): failing = (workspace / "failing.py").resolve() failing.write_text("not actually python", encoding="utf-8") clean = (workspace / "clean.py").resolve() clean.write_text('print("hello")\n', encoding="utf-8") invokeBlack([str(workspace)], exit_code=123) cache = black.Cache.read(mode) assert cache.is_changed(failing) assert not cache.is_changed(clean) def test_write_cache_write_fail(self) -> None: mode = DEFAULT_MODE with cache_dir(): cache = black.Cache.read(mode) with patch.object(Path, "open") as mock: mock.side_effect = OSError cache.write([]) def test_read_cache_line_lengths(self) -> None: mode = DEFAULT_MODE short_mode = replace(DEFAULT_MODE, line_length=1) with cache_dir() as workspace: path = (workspace / "file.py").resolve() path.touch() cache = black.Cache.read(mode) cache.write([path]) one = black.Cache.read(mode) assert not one.is_changed(path) two = black.Cache.read(short_mode) assert two.is_changed(path) def test_cache_key(self) -> None: # Test that all members of the mode enum affect the cache key. for field in fields(Mode): values: list[Any] if field.name == "target_versions": values = [ {TargetVersion.PY312}, {TargetVersion.PY313}, ] elif field.name == "python_cell_magics": values = [{"magic1"}, {"magic2"}] elif field.name == "enabled_features": # If you are looking to remove one of these features, just # replace it with any other feature. values = [ {Preview.multiline_string_handling}, {Preview.string_processing}, ] elif field.type is bool: values = [True, False] elif field.type is int: values = [1, 2] else: raise AssertionError( f"Unhandled field type: {field.type} for field {field.name}" ) modes = [replace(DEFAULT_MODE, **{field.name: value}) for value in values] keys = [mode.get_cache_key() for mode in modes] assert len(set(keys)) == len(modes) def assert_collected_sources( src: Sequence[str | Path], expected: Sequence[str | Path], *, root: Path | None = None, exclude: str | None = None, include: str | None = None, extend_exclude: str | None = None, force_exclude: str | None = None, stdin_filename: str | None = None, ) -> None: gs_src = tuple(str(Path(s)) for s in src) gs_expected = [Path(s) for s in expected] gs_exclude = None if exclude is None else compile_pattern(exclude) gs_include = DEFAULT_INCLUDE if include is None else compile_pattern(include) gs_extend_exclude = ( None if extend_exclude is None else compile_pattern(extend_exclude) ) gs_force_exclude = None if force_exclude is None else compile_pattern(force_exclude) collected = black.get_sources( root=root or THIS_DIR, src=gs_src, quiet=False, verbose=False, include=gs_include, exclude=gs_exclude, extend_exclude=gs_extend_exclude, force_exclude=gs_force_exclude, report=black.Report(), stdin_filename=stdin_filename, ) assert sorted(collected) == sorted(gs_expected)
TestCaching
python
allegroai__clearml
clearml/backend_api/services/v2_23/projects.py
{ "start": 89575, "end": 93926 }
class ____(Request): """ Get a list of distinct values for the chosen hyperparameter :param projects: Project IDs :type projects: Sequence[str] :param section: Hyperparameter section name :type section: str :param name: Hyperparameter name :type name: str :param allow_public: If set to 'true' then collect values from both company and public tasks otherwise company tasks only. The default is 'true' :type allow_public: bool :param include_subprojects: If set to 'true' and the project field is set then the result includes hyper parameters values from the subproject tasks :type include_subprojects: bool """ _service = "projects" _action = "get_hyperparam_values" _version = "2.23" _schema = { "definitions": {}, "properties": { "allow_public": { "description": "If set to 'true' then collect values from both company and public tasks otherwise company tasks only. The default is 'true'", "type": "boolean", }, "include_subprojects": { "default": True, "description": "If set to 'true' and the project field is set then the result includes hyper parameters values from the subproject tasks", "type": "boolean", }, "name": {"description": "Hyperparameter name", "type": "string"}, "projects": { "description": "Project IDs", "items": {"type": "string"}, "type": ["array", "null"], }, "section": {"description": "Hyperparameter section name", "type": "string"}, }, "required": ["section", "name"], "type": "object", } def __init__( self, section: str, name: str, projects: Optional[List[str]] = None, allow_public: Optional[bool] = None, include_subprojects: Optional[bool] = True, **kwargs: Any ) -> None: super(GetHyperparamValuesRequest, self).__init__(**kwargs) self.projects = projects self.section = section self.name = name self.allow_public = allow_public self.include_subprojects = include_subprojects @schema_property("projects") def projects(self) -> Optional[List[str]]: return self._property_projects @projects.setter def projects(self, value: Optional[List[str]]) -> None: if value is None: self._property_projects = None return self.assert_isinstance(value, "projects", (list, tuple)) self.assert_isinstance(value, "projects", six.string_types, is_array=True) self._property_projects = value @schema_property("section") def section(self) -> str: return self._property_section @section.setter def section(self, value: str) -> None: if value is None: self._property_section = None return self.assert_isinstance(value, "section", six.string_types) self._property_section = value @schema_property("name") def name(self) -> str: return self._property_name @name.setter def name(self, value: str) -> None: if value is None: self._property_name = None return self.assert_isinstance(value, "name", six.string_types) self._property_name = value @schema_property("allow_public") def allow_public(self) -> Optional[bool]: return self._property_allow_public @allow_public.setter def allow_public(self, value: Optional[bool]) -> None: if value is None: self._property_allow_public = None return self.assert_isinstance(value, "allow_public", (bool,)) self._property_allow_public = value @schema_property("include_subprojects") def include_subprojects(self) -> Optional[bool]: return self._property_include_subprojects @include_subprojects.setter def include_subprojects(self, value: Optional[bool]) -> None: if value is None: self._property_include_subprojects = None return self.assert_isinstance(value, "include_subprojects", (bool,)) self._property_include_subprojects = value
GetHyperparamValuesRequest
python
getsentry__sentry
src/sentry/models/organizationonboardingtask.py
{ "start": 3344, "end": 4636 }
class ____(Model): """ An abstract onboarding task that can be subclassed. This abstract model exists so that the Sandbox can create a subclass which allows for the creation of tasks that are unique to users instead of organizations. """ __relocation_scope__ = RelocationScope.Excluded STATUS_CHOICES = ( (OnboardingTaskStatus.COMPLETE, "complete"), (OnboardingTaskStatus.SKIPPED, "skipped"), ) STATUS_KEY_MAP = dict(STATUS_CHOICES) STATUS_LOOKUP_BY_KEY = {v: k for k, v in STATUS_CHOICES} organization = FlexibleForeignKey("sentry.Organization") user_id = HybridCloudForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete="SET_NULL") status = BoundedPositiveIntegerField(choices=[(k, str(v)) for k, v in STATUS_CHOICES]) completion_seen = models.DateTimeField(null=True) date_completed = models.DateTimeField(default=timezone.now) project = FlexibleForeignKey( "sentry.Project", db_constraint=False, null=True, on_delete=SET_NULL ) # INVITE_MEMBER { invited_member: user.id } data = LegacyTextJSONField(default=dict) # abstract TASK_LOOKUP_BY_KEY: dict[str, int] SKIPPABLE_TASKS: frozenset[int] class Meta: abstract = True @region_silo_model
AbstractOnboardingTask
python
scrapy__scrapy
tests/test_downloadermiddleware_retry.py
{ "start": 793, "end": 4934 }
class ____: def setup_method(self): self.crawler = get_crawler(DefaultSpider) self.crawler.spider = self.crawler._create_spider() self.mw = RetryMiddleware.from_crawler(self.crawler) self.mw.max_retry_times = 2 def test_priority_adjust(self): req = Request("http://www.scrapytest.org/503") rsp = Response("http://www.scrapytest.org/503", body=b"", status=503) req2 = self.mw.process_response(req, rsp) assert req2.priority < req.priority def test_404(self): req = Request("http://www.scrapytest.org/404") rsp = Response("http://www.scrapytest.org/404", body=b"", status=404) # dont retry 404s assert self.mw.process_response(req, rsp) is rsp def test_dont_retry(self): req = Request("http://www.scrapytest.org/503", meta={"dont_retry": True}) rsp = Response("http://www.scrapytest.org/503", body=b"", status=503) # first retry r = self.mw.process_response(req, rsp) assert r is rsp # Test retry when dont_retry set to False req = Request("http://www.scrapytest.org/503", meta={"dont_retry": False}) rsp = Response("http://www.scrapytest.org/503") # first retry r = self.mw.process_response(req, rsp) assert r is rsp def test_dont_retry_exc(self): req = Request("http://www.scrapytest.org/503", meta={"dont_retry": True}) r = self.mw.process_exception(req, DNSLookupError()) assert r is None def test_503(self): req = Request("http://www.scrapytest.org/503") rsp = Response("http://www.scrapytest.org/503", body=b"", status=503) # first retry req = self.mw.process_response(req, rsp) assert isinstance(req, Request) assert req.meta["retry_times"] == 1 # second retry req = self.mw.process_response(req, rsp) assert isinstance(req, Request) assert req.meta["retry_times"] == 2 # discard it assert self.mw.process_response(req, rsp) is rsp assert self.crawler.stats.get_value("retry/max_reached") == 1 assert ( self.crawler.stats.get_value("retry/reason_count/503 Service Unavailable") == 2 ) assert self.crawler.stats.get_value("retry/count") == 2 def test_twistederrors(self): exceptions = [ ConnectError, ConnectionDone, ConnectionLost, TxConnectionRefusedError, defer.TimeoutError, DNSLookupError, ResponseFailed, TCPTimedOutError, TxTimeoutError, ] for exc in exceptions: req = Request(f"http://www.scrapytest.org/{exc.__name__}") self._test_retry_exception(req, exc("foo")) stats = self.crawler.stats assert stats.get_value("retry/max_reached") == len(exceptions) assert stats.get_value("retry/count") == len(exceptions) * 2 assert ( stats.get_value("retry/reason_count/twisted.internet.defer.TimeoutError") == 2 ) def test_exception_to_retry_added(self): exc = ValueError settings_dict = { "RETRY_EXCEPTIONS": [*RETRY_EXCEPTIONS, exc], } crawler = get_crawler(DefaultSpider, settings_dict=settings_dict) crawler.spider = crawler._create_spider() mw = RetryMiddleware.from_crawler(crawler) req = Request(f"http://www.scrapytest.org/{exc.__name__}") self._test_retry_exception(req, exc("foo"), mw) def _test_retry_exception(self, req, exception, mw=None): if mw is None: mw = self.mw # first retry req = mw.process_exception(req, exception) assert isinstance(req, Request) assert req.meta["retry_times"] == 1 # second retry req = mw.process_exception(req, exception) assert isinstance(req, Request) assert req.meta["retry_times"] == 2 # discard it req = mw.process_exception(req, exception) assert req is None
TestRetry
python
pytorch__pytorch
torch/distributed/_tools/fsdp2_mem_tracker.py
{ "start": 1027, "end": 2360 }
class ____(_RefType): """ Enumerates categories of memory usage in FSDP modules, including parameters, gradients, activations, and optimizer states. Attributes: SHARDED_PARAM (str): Memory usage of sharded parameters. UNSHARDED_PARAM (str): Memory usage of unsharded parameters. SHARDED_GRAD (str): Memory usage of sharded gradients corresponding to the sharded parameters. UNSHARDED_GRAD (str): Memory usage of unsharded gradients corresponding to the unsharded parameters. ACT (str): Memory usage of activations and tensors from forward and AC recomputation. TEMP (str): Memory usage of temporary tensors during the backward pass including gradients of activations. ALL_GATHER (str): Memory usage of all_gather output tensor. REDUCE_SCATTER (str): Memory usage of reduce_scatter input tensor. OPT (str): Memory usage of tensors storing optimizer states. INP (str): Memory usage of input tensors. """ SHARDED_PARAM = "Sharded Param" UNSHARDED_PARAM = "Unsharded Param" BUFFER = "Buffer" SHARDED_GRAD = "Sharded Grad" UNSHARDED_GRAD = "Unsharded Grad" ACT = "Activation" TEMP = "Temp" ALL_GATHER = "All Gather" REDUCE_SCATTER = "Reduce Scatter" OPT = "OptState" INP = "Inputs"
_FSDPRefType
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/test_cloud_memorystore.py
{ "start": 14135, "end": 15891 }
class ____: @mock.patch("airflow.providers.google.cloud.operators.cloud_memorystore.CloudMemorystoreHook") def test_assert_valid_hook_call(self, mock_hook): task = CloudMemorystoreCreateInstanceAndImportOperator( task_id=TEST_TASK_ID, location=TEST_LOCATION, instance_id=TEST_INSTANCE_ID, instance=TEST_INSTANCE, input_config=TEST_INPUT_CONFIG, project_id=TEST_PROJECT_ID, retry=TEST_RETRY, timeout=TEST_TIMEOUT, metadata=TEST_METADATA, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ) task.execute(mock.MagicMock()) mock_hook.assert_has_calls( [ mock.call( gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ), mock.call().create_instance( location=TEST_LOCATION, instance_id=TEST_INSTANCE_ID, instance=TEST_INSTANCE, project_id=TEST_PROJECT_ID, retry=TEST_RETRY, timeout=TEST_TIMEOUT, metadata=TEST_METADATA, ), mock.call().import_instance( input_config=TEST_INPUT_CONFIG, instance=TEST_INSTANCE_ID, location=TEST_LOCATION, metadata=TEST_METADATA, project_id=TEST_PROJECT_ID, retry=TEST_RETRY, timeout=TEST_TIMEOUT, ), ] )
TestCloudMemorystoreCreateInstanceAndImportOperatorOperator
python
dagster-io__dagster
python_modules/libraries/dagster-airlift/dagster_airlift/in_airflow/materialize_assets_operator.py
{ "start": 261, "end": 2040 }
class ____(BaseDagsterAssetsOperator): """An operator base class that proxies execution to a user-provided list of Dagster assets. Will throw an error at runtime if not all assets can be found on the corresponding Dagster instance. Args: asset_key_paths (Sequence[Union[str, Sequence[str]]]): A sequence of asset key paths to materialize. Each path in the sequence can be a string, which is treated as an asset key path with a single component per "/" key, or a sequence of strings representing a path with multiple components. For more, see the docs on asset keys: https://docs.dagster.io/guides/build/assets#multi-part-asset-keys """ def __init__(self, asset_key_paths: Sequence[Union[str, Sequence[str]]], *args, **kwargs): self.asset_key_paths = [ _get_path_from_str(path) if isinstance(path, str) else tuple(path) for path in asset_key_paths ] super().__init__(*args, **kwargs) def filter_asset_nodes( self, context: Context, asset_nodes: Sequence[Mapping[str, Any]] ) -> Iterable[Mapping[str, Any]]: hashable_path_to_node = {tuple(node["assetKey"]["path"]): node for node in asset_nodes} if not all(path in hashable_path_to_node for path in self.asset_key_paths): raise ValueError( f"Could not find all asset key paths {self.asset_key_paths} in the asset nodes. Found: {list(hashable_path_to_node.keys())}" ) yield from [hashable_path_to_node[path] for path in self.asset_key_paths] def _get_path_from_str(path_str: str) -> tuple: parts = re.split(UNESCAPED_SLASH_RE, path_str) return tuple(part.replace(ESCAPED_SLASH, "/") for part in parts)
BaseMaterializeAssetsOperator
python
doocs__leetcode
solution/0400-0499/0404.Sum of Left Leaves/Solution.py
{ "start": 192, "end": 566 }
class ____: def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int: if root is None: return 0 ans = self.sumOfLeftLeaves(root.right) if root.left: if root.left.left == root.left.right: ans += root.left.val else: ans += self.sumOfLeftLeaves(root.left) return ans
Solution
python
pytorch__pytorch
torch/utils/data/datapipes/_typing.py
{ "start": 12268, "end": 16437 }
class ____(_DataPipeMeta): r""" Metaclass for `IterDataPipe` and inherits from `_DataPipeMeta`. Add various functions for behaviors specific to `IterDataPipe`. """ def __new__(cls, name, bases, namespace, **kwargs): if "reset" in namespace: reset_func = namespace["reset"] @functools.wraps(reset_func) def conditional_reset(*args, **kwargs) -> None: r""" Only execute DataPipe's `reset()` method if `_SnapshotState` is `Iterating` or `NotStarted`. This allows recently restored DataPipe to preserve its restored state during the initial `__iter__` call. """ datapipe = args[0] if datapipe._snapshot_state in ( _SnapshotState.Iterating, _SnapshotState.NotStarted, ): # Reset `NotStarted` is necessary because the `source_datapipe` of a DataPipe might have # already begun iterating. datapipe._number_of_samples_yielded = 0 datapipe._fast_forward_iterator = None reset_func(*args, **kwargs) datapipe._snapshot_state = _SnapshotState.Iterating namespace["reset"] = conditional_reset if "__iter__" in namespace: hook_iterator(namespace) return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload] def _dp_init_subclass(sub_cls, *args, **kwargs) -> None: # Add function for datapipe instance to reinforce the type sub_cls.reinforce_type = reinforce_type # TODO: # - add global switch for type checking at compile-time # Ignore internal type class if getattr(sub_cls, "__type_class__", False): return # Check if the string type is valid if isinstance(sub_cls.type.param, ForwardRef): base_globals = sys.modules[sub_cls.__module__].__dict__ try: param = _eval_type(sub_cls.type.param, base_globals, locals()) sub_cls.type.param = param except TypeError as e: raise TypeError( f"{sub_cls.type.param.__forward_arg__} is not supported by Python typing" ) from e if "__iter__" in sub_cls.__dict__: iter_fn = sub_cls.__dict__["__iter__"] hints = get_type_hints(iter_fn) if "return" in hints: return_hint = hints["return"] # Plain Return Hint for Python 3.6 if return_hint == Iterator: return if not ( hasattr(return_hint, "__origin__") and ( return_hint.__origin__ == Iterator or return_hint.__origin__ == collections.abc.Iterator ) ): raise TypeError( "Expected 'Iterator' as the return annotation for `__iter__` of {}" ", but found {}".format( sub_cls.__name__, _type_repr(hints["return"]) ) ) data_type = return_hint.__args__[0] if not issubtype(data_type, sub_cls.type.param): raise TypeError( f"Expected return type of '__iter__' as a subtype of {sub_cls.type}," f" but found {_type_repr(data_type)} for {sub_cls.__name__}" ) def reinforce_type(self, expected_type): r""" Reinforce the type for DataPipe instance. And the 'expected_type' is required to be a subtype of the original type hint to restrict the type requirement of DataPipe instance. """ if isinstance(expected_type, tuple): expected_type = tuple[expected_type] # type: ignore[valid-type] _type_check(expected_type, msg="'expected_type' must be a type") if not issubtype(expected_type, self.type.param): raise TypeError( f"Expected 'expected_type' as subtype of {self.type}, but found {_type_repr(expected_type)}" ) self.type = _DataPipeType(expected_type) return self
_IterDataPipeMeta
python
jd__tenacity
tenacity/retry.py
{ "start": 8440, "end": 8738 }
class ____(retry_base): """Retries if any of the retries condition is valid.""" def __init__(self, *retries: retry_base) -> None: self.retries = retries def __call__(self, retry_state: "RetryCallState") -> bool: return any(r(retry_state) for r in self.retries)
retry_any
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/array_ops/constant_op_eager_test.py
{ "start": 20083, "end": 22114 }
class ____(test.TestCase): def _compare(self, dims, val, np_ans, use_gpu): ctx = context.context() device = "GPU:0" if (use_gpu and ctx.num_gpus()) else "CPU:0" with ops.device(device): tf_ans = array_ops.fill(dims, val, name="fill") out = tf_ans.numpy() self.assertAllClose(np_ans, out) def _compareAll(self, dims, val, np_ans): self._compare(dims, val, np_ans, False) self._compare(dims, val, np_ans, True) def testFillFloat(self): np_ans = np.array([[3.1415] * 3] * 2).astype(np.float32) self._compareAll([2, 3], np_ans[0][0], np_ans) def testFillDouble(self): np_ans = np.array([[3.1415] * 3] * 2).astype(np.float64) self._compareAll([2, 3], np_ans[0][0], np_ans) def testFillInt32(self): np_ans = np.array([[42] * 3] * 2).astype(np.int32) self._compareAll([2, 3], np_ans[0][0], np_ans) def testFillInt64(self): np_ans = np.array([[-42] * 3] * 2).astype(np.int64) self._compareAll([2, 3], np_ans[0][0], np_ans) def testFillComplex64(self): np_ans = np.array([[0.15] * 3] * 2).astype(np.complex64) self._compare([2, 3], np_ans[0][0], np_ans, use_gpu=False) def testFillComplex128(self): np_ans = np.array([[0.15] * 3] * 2).astype(np.complex128) self._compare([2, 3], np_ans[0][0], np_ans, use_gpu=False) def testFillString(self): np_ans = np.array([[b"yolo"] * 3] * 2) tf_ans = array_ops.fill([2, 3], np_ans[0][0], name="fill").numpy() self.assertAllEqual(np_ans, tf_ans) def testFillNegative(self): for shape in (-1,), (2, -1), (-1, 2), (-2), (-3): with self.assertRaises(errors_impl.InvalidArgumentError): array_ops.fill(shape, 7) def testShapeFunctionEdgeCases(self): # Non-vector dimensions. with self.assertRaises(errors_impl.InvalidArgumentError): array_ops.fill([[0, 1], [2, 3]], 1.0) # Non-scalar value. with self.assertRaises(errors_impl.InvalidArgumentError): array_ops.fill([3, 2], [1.0, 2.0]) if __name__ == "__main__": test.main()
FillTest
python
pytorch__pytorch
torch/multiprocessing/spawn.py
{ "start": 973, "end": 1274 }
class ____(ProcessException): """Exception raised when a process failed due to an exception raised by the code.""" def __init__( self, msg: str, error_index: int, error_pid: int, ): super().__init__(msg, error_index, error_pid)
ProcessRaisedException
python
tensorflow__tensorflow
tensorflow/python/tools/api/generator2/shared/exported_api.py
{ "start": 848, "end": 1244 }
class ____(NamedTuple): """Information about a single tf_export instance.""" file_name: str line_no: int symbol_name: str v1_apis: tuple[str, ...] v2_apis: tuple[str, ...] @classmethod def create( cls, *, v1_apis: Sequence[str], v2_apis: Sequence[str], **kwargs ) -> "ExportedSymbol": return cls(v1_apis=tuple(v1_apis), v2_apis=tuple(v2_apis), **kwargs)
ExportedSymbol
python
urllib3__urllib3
test/contrib/test_pyopenssl_dependencies.py
{ "start": 611, "end": 1988 }
class ____: """ Tests for error handling in pyopenssl's 'inject_into urllib3' """ def test_inject_validate_fail_cryptography(self) -> None: """ Injection should not be supported if cryptography is too old. """ try: with patch("cryptography.x509.extensions.Extensions") as mock: del mock.get_extension_for_class with pytest.raises(ImportError): inject_into_urllib3() finally: # `inject_into_urllib3` is not supposed to succeed. # If it does, this test should fail, but we need to # clean up so that subsequent tests are unaffected. extract_from_urllib3() def test_inject_validate_fail_pyopenssl(self) -> None: """ Injection should not be supported if pyOpenSSL is too old. """ try: return_val = Mock() del return_val._x509 with patch("OpenSSL.crypto.X509", return_value=return_val): with pytest.raises(ImportError): inject_into_urllib3() finally: # `inject_into_urllib3` is not supposed to succeed. # If it does, this test should fail, but we need to # clean up so that subsequent tests are unaffected. extract_from_urllib3()
TestPyOpenSSLInjection
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/orm/path_registry.py
{ "start": 24423, "end": 24580 }
class ____(_AbstractEntityRegistry): # for aliased class, return lightweight, no-cycles created # version inherit_cache = True
_SlotsEntityRegistry
python
sqlalchemy__sqlalchemy
test/orm/test_naturalpks.py
{ "start": 50349, "end": 52468 }
class ____(fixtures.MappedTest): """Test integration with TypeEngine.sort_key_function""" class HashableDict(dict): def __hash__(self): return hash((self["x"], self["y"])) @classmethod def define_tables(cls, metadata): class MyUnsortable(TypeDecorator): impl = String(10) cache_ok = True def process_bind_param(self, value, dialect): return "%s,%s" % (value["x"], value["y"]) def process_result_value(self, value, dialect): rec = value.split(",") return cls.HashableDict({"x": rec[0], "y": rec[1]}) def sort_key_function(self, value): return (value["x"], value["y"]) Table( "data", metadata, Column("info", MyUnsortable(), primary_key=True), Column("int_value", Integer), ) @classmethod def setup_classes(cls): class Data(cls.Comparable): pass @classmethod def setup_mappers(cls): cls.mapper_registry.map_imperatively(cls.classes.Data, cls.tables.data) def test_updates_sorted(self): Data = self.classes.Data s = fixture_session() s.add_all( [ Data(info=self.HashableDict(x="a", y="b")), Data(info=self.HashableDict(x="a", y="a")), Data(info=self.HashableDict(x="b", y="b")), Data(info=self.HashableDict(x="b", y="a")), ] ) s.commit() aa, ab, ba, bb = s.query(Data).order_by(Data.info).all() counter = itertools.count() ab.int_value = bindparam(key=None, callable_=lambda: next(counter)) ba.int_value = bindparam(key=None, callable_=lambda: next(counter)) bb.int_value = bindparam(key=None, callable_=lambda: next(counter)) aa.int_value = bindparam(key=None, callable_=lambda: next(counter)) s.commit() eq_( s.query(Data.int_value).order_by(Data.info).all(), [(0,), (1,), (2,), (3,)], )
UnsortablePKTest
python
getsentry__sentry
tests/sentry/data_export/processors/test_discover.py
{ "start": 5832, "end": 6590 }
class ____(TestCase, PerformanceIssueTestCase): def test_handle_dataset(self) -> None: query = { "statsPeriod": "14d", "project": [self.project.id], "field": ["count(id)", "fake(field)", "issue"], "query": "", } query["field"] = ["title", "count()"] query["dataset"] = "issuePlatform" self.create_performance_issue() processor = DiscoverProcessor(organization=self.organization, discover_query=query) assert processor.header_fields == [ "title", "count", ] result = processor.data_fn(0, 1) assert len(result["data"]) == 1 assert result["data"][0]["title"] == "N+1 Query"
DiscoverIssuesProcessorTest
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/operators/sagemaker.py
{ "start": 80520, "end": 85391 }
class ____(AwsBaseOperator[SageMakerHook]): """ Create a SageMaker notebook. More information regarding parameters of this operator can be found here https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_notebook_instance.html. .. seealso: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SageMakerCreateNotebookOperator` :param instance_name: The name of the notebook instance. :param instance_type: The type of instance to create. :param role_arn: The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access :param volume_size_in_gb: Size in GB of the EBS root device volume of the notebook instance. :param volume_kms_key_id: The KMS key ID for the EBS root device volume. :param lifecycle_config_name: The name of the lifecycle configuration to associate with the notebook :param direct_internet_access: Whether to enable direct internet access for the notebook instance. :param root_access: Whether to give the notebook instance root access to the Amazon S3 bucket. :param wait_for_completion: Whether or not to wait for the notebook to be InService before returning :param create_instance_kwargs: Additional configuration options for the create call. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :return: The ARN of the created notebook. """ aws_hook_class = SageMakerHook template_fields: Sequence[str] = aws_template_fields( "instance_name", "instance_type", "role_arn", "volume_size_in_gb", "volume_kms_key_id", "lifecycle_config_name", "direct_internet_access", "root_access", "wait_for_completion", "create_instance_kwargs", ) ui_color = "#ff7300" def __init__( self, *, instance_name: str, instance_type: str, role_arn: str, volume_size_in_gb: int | None = None, volume_kms_key_id: str | None = None, lifecycle_config_name: str | None = None, direct_internet_access: str | None = None, root_access: str | None = None, create_instance_kwargs: dict[str, Any] | None = None, wait_for_completion: bool = True, **kwargs, ): super().__init__(**kwargs) self.instance_name = instance_name self.instance_type = instance_type self.role_arn = role_arn self.volume_size_in_gb = volume_size_in_gb self.volume_kms_key_id = volume_kms_key_id self.lifecycle_config_name = lifecycle_config_name self.direct_internet_access = direct_internet_access self.root_access = root_access self.wait_for_completion = wait_for_completion self.create_instance_kwargs = create_instance_kwargs or {} if self.create_instance_kwargs.get("tags") is not None: self.create_instance_kwargs["tags"] = format_tags(self.create_instance_kwargs["tags"]) def execute(self, context: Context): create_notebook_instance_kwargs = { "NotebookInstanceName": self.instance_name, "InstanceType": self.instance_type, "RoleArn": self.role_arn, "VolumeSizeInGB": self.volume_size_in_gb, "KmsKeyId": self.volume_kms_key_id, "LifecycleConfigName": self.lifecycle_config_name, "DirectInternetAccess": self.direct_internet_access, "RootAccess": self.root_access, } if self.create_instance_kwargs: create_notebook_instance_kwargs.update(self.create_instance_kwargs) self.log.info("Creating SageMaker notebook %s.", self.instance_name) response = self.hook.conn.create_notebook_instance(**prune_dict(create_notebook_instance_kwargs)) self.log.info("SageMaker notebook created: %s", response["NotebookInstanceArn"]) if self.wait_for_completion: self.log.info("Waiting for SageMaker notebook %s to be in service", self.instance_name) waiter = self.hook.conn.get_waiter("notebook_instance_in_service") waiter.wait(NotebookInstanceName=self.instance_name) return response["NotebookInstanceArn"]
SageMakerCreateNotebookOperator
python
ray-project__ray
rllib/models/torch/misc.py
{ "start": 10924, "end": 11397 }
class ____(nn.Module): """Simple bias appending layer for free_log_std.""" def __init__(self, num_bias_vars: int): super().__init__() self.log_std = torch.nn.Parameter(torch.as_tensor([0.0] * num_bias_vars)) self.register_parameter("log_std", self.log_std) def forward(self, x: TensorType) -> TensorType: out = torch.cat([x, self.log_std.unsqueeze(0).repeat([len(x), 1])], axis=1) return out @DeveloperAPI
AppendBiasLayer
python
doocs__leetcode
solution/0600-0699/0639.Decode Ways II/Solution.py
{ "start": 0, "end": 1182 }
class ____: def numDecodings(self, s: str) -> int: mod = int(1e9 + 7) n = len(s) # dp[i - 2], dp[i - 1], dp[i] a, b, c = 0, 1, 0 for i in range(1, n + 1): # 1 digit if s[i - 1] == "*": c = 9 * b % mod elif s[i - 1] != "0": c = b else: c = 0 # 2 digits if i > 1: if s[i - 2] == "*" and s[i - 1] == "*": c = (c + 15 * a) % mod elif s[i - 2] == "*": if s[i - 1] > "6": c = (c + a) % mod else: c = (c + 2 * a) % mod elif s[i - 1] == "*": if s[i - 2] == "1": c = (c + 9 * a) % mod elif s[i - 2] == "2": c = (c + 6 * a) % mod elif ( s[i - 2] != "0" and (ord(s[i - 2]) - ord("0")) * 10 + ord(s[i - 1]) - ord("0") <= 26 ): c = (c + a) % mod a, b = b, c return c
Solution
python
ray-project__ray
python/ray/util/scheduling_strategies.py
{ "start": 4768, "end": 4944 }
class ____: def __init__(self, *values): _validate_label_match_operator_values(values, "NotIn") self.values = list(values) @PublicAPI(stability="alpha")
NotIn
python
davidhalter__jedi
test/completion/pep0484_typing.py
{ "start": 5903, "end": 8684 }
class ____(typing.Generic[TYPE_VARX]): def lala(self) -> TYPE_VARX: ... def maaan(p: WithTypeVar[int]): #? int() p.lala() def in_out1(x: TYPE_VARX) -> TYPE_VARX: ... #? int() in_out1(1) #? str() in_out1("") #? str() in_out1(str()) #? in_out1() def type_in_out1(x: typing.Type[TYPE_VARX]) -> TYPE_VARX: ... #? int() type_in_out1(int) #? str() type_in_out1(str) #? float() type_in_out1(float) #? type_in_out1() def in_out2(x: TYPE_VAR_CONSTRAINTSX) -> TYPE_VAR_CONSTRAINTSX: ... #? int() in_out2(1) #? str() in_out2("") #? str() in_out2(str()) #? str() int() in_out2() # TODO this should actually be str() int(), because of the constraints. #? float() in_out2(1.0) def type_in_out2(x: typing.Type[TYPE_VAR_CONSTRAINTSX]) -> TYPE_VAR_CONSTRAINTSX: ... #? int() type_in_out2(int) #? str() type_in_out2(str) #? str() int() type_in_out2() # TODO this should actually be str() int(), because of the constraints. #? float() type_in_out2(float) def ma(a: typing.Callable[[str], TYPE_VARX]) -> typing.Callable[[str], TYPE_VARX]: #? typing.Callable() return a def mf(s: str) -> int: return int(s) #? int() ma(mf)('2') def xxx(x: typing.Iterable[TYPE_VARX]) -> typing.Tuple[str, TYPE_VARX]: ... #? str() xxx([0])[0] #? int() xxx([0])[1] #? xxx([0])[2] def call_pls() -> typing.Callable[[TYPE_VARX], TYPE_VARX]: ... #? int() call_pls()(1) def call2_pls() -> typing.Callable[[str, typing.Callable[[int], TYPE_VARX]], TYPE_VARX]: ... #? float() call2_pls('')(1, lambda x: 3.0) def call3_pls() -> typing.Callable[[typing.Callable[[int], TYPE_VARX]], typing.List[TYPE_VARX]]: ... def the_callable() -> float: ... #? float() call3_pls()(the_callable)[0] def call4_pls(fn: typing.Callable[..., TYPE_VARX]) -> typing.Callable[..., TYPE_VARX]: return "" #? int() call4_pls(lambda x: 1)() # ------------------------- # TYPE_CHECKING # ------------------------- if typing.TYPE_CHECKING: with_type_checking = 1 else: without_type_checking = 1.0 #? int() with_type_checking #? without_type_checking def foo(a: typing.List, b: typing.Dict, c: typing.MutableMapping) -> typing.Type[int]: #? ['append'] a.appen #? list() a #? a[0] #? ['setdefault'] b.setd #? ['setdefault'] c.setd #? typing.MutableMapping() c #? c['asdf'] #? int foo() # ------------------------- # cast # ------------------------- def cast_tests(): x = 3.0 y = typing.cast(int, x) #? int() y return typing.cast(str, x) #? str() cast_tests() # ------------------------- # dynamic # ------------------------- def dynamic_annotation(x: int): #? int() return x #? int() dynamic_annotation('') # ------------------------- # TypeDict # ------------------------- # python >= 3.8
WithTypeVar
python
dask__distributed
distributed/tests/test_core.py
{ "start": 40230, "end": 43644 }
class ____(TCPBackend): _listener_class = AsyncStopTCPListener @gen_test() async def test_async_listener_stop(monkeypatch): monkeypatch.setitem(backends, "tcp", TCPAsyncListenerBackend()) with pytest.warns(DeprecationWarning): async with Server({}) as s: await s.listen(0) assert s.listeners @gen_test() async def test_messages_are_ordered_bsend(): ledger = [] async def async_handler(val): await asyncio.sleep(0.01 * random.random()) ledger.append(val) def sync_handler(val): ledger.append(val) async with Server( {}, stream_handlers={ "sync_handler": sync_handler, "async_handler": async_handler, }, ) as s: await s.listen() comm = await connect(s.address) try: b = BatchedSend(interval=10) try: await comm.write({"op": "connection_stream"}) b.start(comm) n = 100 for ix in range(n): if ix % 2: b.send({"op": "sync_handler", "val": ix}) else: b.send({"op": "async_handler", "val": ix}) while not len(ledger) == n: await asyncio.sleep(0.01) assert ledger == list(range(n)) finally: await b.close() finally: await comm.close() @gen_test() async def test_messages_are_ordered_raw(): ledger = [] async def async_handler(val): await asyncio.sleep(0.01 * random.random()) ledger.append(val) def sync_handler(val): ledger.append(val) async with Server( {}, stream_handlers={ "sync_handler": sync_handler, "async_handler": async_handler, }, ) as s: await s.listen() comm = await connect(s.address) try: await comm.write({"op": "connection_stream"}) n = 100 for ix in range(n): if ix % 2: await comm.write({"op": "sync_handler", "val": ix}) else: await comm.write({"op": "async_handler", "val": ix}) while not len(ledger) == n: await asyncio.sleep(0.01) assert ledger == list(range(n)) finally: await comm.close() @pytest.mark.slow @gen_test(timeout=180) async def test_large_payload(caplog): """See also: protocol/tests/test_protocol.py::test_large_payload""" critical_size = 2**31 + 1 # >2 GiB data = b"0" * critical_size async with Server({"echo": echo_serialize}) as server: await server.listen(0) comm = await connect(server.address) # FIXME https://github.com/dask/distributed/issues/8465 # At debug level, messages are dumped into the log. By default, pytest captures # all logs, which would make this test extremely expensive to run. with caplog.at_level(logging.INFO, logger="distributed.core"): # Note: if we wrap data in to_serialize, it will be sent as a buffer, which # is not encoded by msgpack. await comm.write({"op": "echo", "x": data}) response = await comm.read() assert response["result"] == data await comm.close()
TCPAsyncListenerBackend
python
rapidsai__cudf
python/cudf/cudf/tests/general_functions/test_register_accessor.py
{ "start": 1597, "end": 2247 }
class ____: def __init__(self, obj): self._obj = obj def __getitem__(self, i): return self._obj[2 * i - 1] @pytest.mark.parametrize("klass", [cudf.Index, cudf.Series]) def test_index_series_accessor(klass): obj = klass([1, 2, 3]) pobj = obj.to_pandas() assert_eq(obj.odd[1], pobj.odd[1]) def test_accessor_space_separate(): data = [1, 2, 3] gdf = cudf.DataFrame(data) gidx = cudf.Index(data) gs = cudf.Series(data) assert not id(gdf._accessors) == id(gidx._accessors) assert not id(gidx._accessors) == id(gs._accessors) assert not id(gdf._accessors) == id(gs._accessors)
OddRowAccessor
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 1060760, "end": 1060986 }
class ____(sgqlc.types.Union): """ See source code for more info. """ __schema__ = graphql_schema __types__ = (ProjectV2Field, ProjectV2IterationField, ProjectV2SingleSelectField)
ProjectV2FieldConfiguration
python
numpy__numpy
numpy/_core/tests/test_numeric.py
{ "start": 59046, "end": 63222 }
class ____: def makegen(self): return (x**2 for x in range(24)) def test_types(self): ai32 = np.fromiter(self.makegen(), np.int32) ai64 = np.fromiter(self.makegen(), np.int64) af = np.fromiter(self.makegen(), float) assert_(ai32.dtype == np.dtype(np.int32)) assert_(ai64.dtype == np.dtype(np.int64)) assert_(af.dtype == np.dtype(float)) def test_lengths(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) assert_(len(a) == len(expected)) assert_(len(a20) == 20) assert_raises(ValueError, np.fromiter, self.makegen(), int, len(expected) + 10) def test_values(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) assert_(np.all(a == expected, axis=0)) assert_(np.all(a20 == expected[:20], axis=0)) def load_data(self, n, eindex): # Utility method for the issue 2592 tests. # Raise an exception at the desired index in the iterator. for e in range(n): if e == eindex: raise NIterError(f'error at index {eindex}') yield e @pytest.mark.parametrize("dtype", [int, object]) @pytest.mark.parametrize(["count", "error_index"], [(10, 5), (10, 9)]) def test_2592(self, count, error_index, dtype): # Test iteration exceptions are correctly raised. The data/generator # has `count` elements but errors at `error_index` iterable = self.load_data(count, error_index) with pytest.raises(NIterError): np.fromiter(iterable, dtype=dtype, count=count) @pytest.mark.parametrize("dtype", ["S", "S0", "V0", "U0"]) def test_empty_not_structured(self, dtype): # Note, "S0" could be allowed at some point, so long "S" (without # any length) is rejected. with pytest.raises(ValueError, match="Must specify length"): np.fromiter([], dtype=dtype) @pytest.mark.parametrize(["dtype", "data"], [("d", [1, 2, 3, 4, 5, 6, 7, 8, 9]), ("O", [1, 2, 3, 4, 5, 6, 7, 8, 9]), ("i,O", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]), # subarray dtypes (important because their dimensions end up # in the result arrays dimension: ("2i", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]), (np.dtype(("O", (2, 3))), [((1, 2, 3), (3, 4, 5)), ((3, 2, 1), (5, 4, 3))])]) @pytest.mark.parametrize("length_hint", [0, 1]) def test_growth_and_complicated_dtypes(self, dtype, data, length_hint): dtype = np.dtype(dtype) data = data * 100 # make sure we realloc a bit class MyIter: # Class/example from gh-15789 def __length_hint__(self): # only required to be an estimate, this is legal return length_hint # 0 or 1 def __iter__(self): return iter(data) res = np.fromiter(MyIter(), dtype=dtype) expected = np.array(data, dtype=dtype) assert_array_equal(res, expected) def test_empty_result(self): class MyIter: def __length_hint__(self): return 10 def __iter__(self): return iter([]) # actual iterator is empty. res = np.fromiter(MyIter(), dtype="d") assert res.shape == (0,) assert res.dtype == "d" def test_too_few_items(self): msg = "iterator too short: Expected 10 but iterator had only 3 items." with pytest.raises(ValueError, match=msg): np.fromiter([1, 2, 3], count=10, dtype=int) def test_failed_itemsetting(self): with pytest.raises(TypeError): np.fromiter([1, None, 3], dtype=int) # The following manages to hit somewhat trickier code paths: iterable = ((2, 3, 4) for i in range(5)) with pytest.raises(ValueError): np.fromiter(iterable, dtype=np.dtype((int, 2)))
TestFromiter
python
facelessuser__pymdown-extensions
pymdownx/smartsymbols.py
{ "start": 3960, "end": 5427 }
class ____(Extension): """Smart Symbols extension.""" def __init__(self, *args, **kwargs): """Setup config of which symbols are enabled.""" self.config = { 'trademark': [True, 'Trademark'], 'copyright': [True, 'Copyright'], 'registered': [True, 'Registered'], 'plusminus': [True, 'Plus/Minus'], 'arrows': [True, 'Arrows'], 'notequal': [True, 'Not Equal'], 'fractions': [True, 'Fractions'], 'ordinal_numbers': [True, 'Ordinal Numbers'], 'care_of': [True, 'Care/of'] } super().__init__(*args, **kwargs) def add_pattern(self, patterns, md): """Construct the inline symbol pattern.""" self.patterns.register(SmartSymbolsPattern(patterns[1], patterns[2], md), patterns[0], 30) def extendMarkdown(self, md): """Create a dict of inline replace patterns and add to the tree processor.""" configs = self.getConfigs() self.patterns = Registry() for k, v in REPL.items(): if configs[k]: self.add_pattern(v, md) inline_processor = treeprocessors.InlineProcessor(md) inline_processor.inlinePatterns = self.patterns md.treeprocessors.register(inline_processor, "smart-symbols", 6.1) def makeExtension(*args, **kwargs): """Return extension.""" return SmartSymbolsExtension(*args, **kwargs)
SmartSymbolsExtension
python
getsentry__sentry
src/sentry/issues/endpoints/project_user_issue.py
{ "start": 2477, "end": 5253 }
class ____(BaseUserIssueFormatter): def get_issue_type(self) -> type[GroupType]: return WebVitalsGroup def get_issue_title(self) -> str: vital = self.data.get("vital", "") return f"{vital.upper()} score needs improvement" def get_issue_subtitle(self) -> str: vital = self.data.get("vital", "") transaction = self.data.get("transaction", "") a_or_an = "an" if vital in ["lcp", "fcp", "inp"] else "a" return f"{transaction} has {a_or_an} {vital.upper()} score of {self.data.get("score")}" def create_fingerprint(self) -> list[str]: vital = self.data.get("vital", "") transaction = self.data.get("transaction", "") # We add a uuid to force uniqueness on the fingerprint # This is because we do not want historic autofix runs to be connected to new issue events uuid = uuid4().hex return [f"insights-web-vitals-{vital}-{transaction}-{uuid}"] def get_tags(self) -> dict: vital = self.data.get("vital", "") transaction = self.data.get("transaction", "") return { "transaction": transaction, "web_vital": vital, "score": str(self.data.get("score")), vital: str(self.data.get("value", "")), } def get_evidence(self) -> tuple[dict, list[IssueEvidence]]: vital = self.data.get("vital", "") score = self.data.get("score") transaction = self.data.get("transaction", "") trace_id = self.data.get("traceId") vital_value = self.data.get("value") evidence_data = { "transaction": transaction, "vital": vital, "score": score, vital: vital_value, } evidence_display = [ IssueEvidence( name="Transaction", value=transaction, important=False, ), IssueEvidence( name="Web Vital", value=vital.upper(), important=True, ), IssueEvidence( name="Score", value=str(score), important=True, ), IssueEvidence( name=vital.upper(), value=str(vital_value), important=True, ), ] if trace_id: evidence_data["trace_id"] = trace_id evidence_display.append( IssueEvidence( name="Trace ID", value=trace_id, important=False, ) ) return (evidence_data, evidence_display) ISSUE_TYPE_CHOICES = [ WebVitalsGroup.slug, ]
WebVitalsUserIssueFormatter
python
getsentry__sentry
tests/tools/test_flake8_plugin.py
{ "start": 1683, "end": 5145 }
class ____(unittest.TestCase): def test(self) -> None: with self.assertRaises(ValueError): func() """ errors = _run(S004_py) assert errors == [ "t.py:7:13: S004 Use `pytest.raises` instead for better debuggability.", ] def test_S005() -> None: S005_py = """\ from sentry.models import User """ errors = _run(S005_py) assert errors == [ "t.py:1:0: S005 Do not import models from sentry.models but the actual module", ] def test_S006() -> None: src = """\ from django.utils.encoding import force_bytes from django.utils.encoding import force_str """ # only error in tests until we can fix the rest assert _run(src, filename="src/sentry/whatever.py") == [] errors = _run(src, filename="tests/test_foo.py") assert errors == [ "t.py:1:0: S006 Do not use force_bytes / force_str -- test the types directly", "t.py:2:0: S006 Do not use force_bytes / force_str -- test the types directly", ] def test_S007() -> None: src = """\ from sentry.testutils.outbox import outbox_runner """ # no errors in tests/ assert _run(src, filename="tests/test_foo.py") == [] # no errors in src/sentry/testutils/ assert _run(src, filename="src/sentry/testutils/silo.py") == [] # errors in other paths errors = _run(src, filename="src/sentry/api/endpoints/organization_details.py") assert errors == [ "t.py:1:0: S007 Do not import sentry.testutils into production code.", ] # Module imports should have errors too. src = """\ import sentry.testutils.outbox as outbox_utils """ assert _run(src, filename="tests/test_foo.py") == [] errors = _run(src, filename="src/sentry/api/endpoints/organization_details.py") assert errors == [ "t.py:1:0: S007 Do not import sentry.testutils into production code.", ] def test_s008() -> None: src = """\ from dateutil.parser import parse """ # no errors in source assert _run(src, filename="src/sentry/example.py") == [] # errors in tests tests1 = _run(src, filename="tests/test_example.py") tests2 = _run(src, filename="src/sentry/testutils/example.py") assert ( tests1 == tests2 == ["t.py:1:0: S008 Use datetime.fromisoformat rather than guessing at date formats"] ) def test_S009() -> None: src = """\ try: ... except OSError: raise # ok: what we want people to do! except TypeError as e: raise RuntimeError() # ok: reraising a different exception except ValueError as e: raise e # bad! """ expected = ["t.py:8:4: S009 Use `raise` with no arguments to reraise exceptions"] assert _run(src) == expected def test_S010() -> None: src = """\ try: ... except ValueError: ... # ok: not a reraise body except Exception: raise # bad! try: ... except Exception: ... raise # ok: non just a reraise body """ expected = ["t.py:5:0: S010 Except handler does nothing and should be removed"] assert _run(src) == expected def test_S011() -> None: src = """\ from sentry.testutils.cases import APITestCase from django.test import override_settings def test() -> None: with override_settings(SENTRY_OPTIONS={"foo": "bar"}): # bad ... with override_settings( SENTRY_OPTIONS={"foo": "bar"}, # bad OTHER_SETTING=2, # ok ): ... with override_settings(OTHER_SETTING=2): # ok ...
Test
python
getsentry__sentry
src/sentry/dynamic_sampling/rules/biases/boost_low_volume_transactions_bias.py
{ "start": 320, "end": 3916 }
class ____(Bias): def generate_rules(self, project: Project, base_sample_rate: float) -> list[PolymorphicRule]: proj_id = project.id org_id = project.organization.id transaction_map, base_implicit_rate = get_transactions_resampling_rates( org_id=org_id, proj_id=proj_id, default_rate=base_sample_rate ) ret_val: list[Rule] = [] if len(transaction_map) == 0: return ret_val # no point returning any rules the project rule should take over if base_sample_rate == 0: return ret_val # we can't deal without a base_sample_rate if base_implicit_rate == 0.0: base_implicit_rate = 1.0 # The implicit rate that we compute is transformed to a factor, so that when the rate is multiplied by the last # sample rate rule, the value will be `base_implicit_rate`. implicit_rate = base_implicit_rate / base_sample_rate idx = 0 for name, base_transaction_rate in transaction_map.items(): # Here we apply a similar logic to above and since we expect that the resulting multiplication on the Relay # end will multiply transaction_rate * implicit_rate * base_sample_rate and the resulting value that we want # is the actual base_transaction_rate. # # This operation has been designed to be minimal since through some math we can reduce the number of # operations. Given: # s = base_sample_rate # i = base_implicit_rate # t = base_transaction_rate # we start with the base case for the implicit_rate, which will result in the following expression being # computed by Relay -> s * (i / s) = i. Now we want to extend this expression to perform a similar logic # but with an added term t. This would result in ((s * (i / s)) * (t / ((i / s) * s))) which can be # simplified to ((s * (i / s)) * (t / i))). transaction_rate = base_transaction_rate / base_implicit_rate if transaction_rate != 1.0: ret_val.append( { "samplingValue": { "type": "factor", "value": transaction_rate, }, "type": "trace", "condition": { "op": "or", "inner": [ { "op": "eq", "name": "trace.transaction", "value": [name], "options": {"ignoreCase": True}, } ], }, "id": RESERVED_IDS[RuleType.BOOST_LOW_VOLUME_TRANSACTIONS_RULE] + idx, } ) idx += 1 if implicit_rate != 1.0: ret_val.append( { "samplingValue": { "type": "factor", "value": implicit_rate, }, "type": "trace", "condition": { "op": "and", "inner": [], }, "id": RESERVED_IDS[RuleType.BOOST_LOW_VOLUME_TRANSACTIONS_RULE] + idx, } ) return ret_val
BoostLowVolumeTransactionsBias
python
pytest-dev__pytest
src/_pytest/fixtures.py
{ "start": 36293, "end": 43827 }
class ____(Generic[FixtureValue]): """A container for a fixture definition. Note: At this time, only explicitly documented fields and methods are considered public stable API. """ def __init__( self, config: Config, baseid: str | None, argname: str, func: _FixtureFunc[FixtureValue], scope: Scope | _ScopeName | Callable[[str, Config], _ScopeName] | None, params: Sequence[object] | None, ids: tuple[object | None, ...] | Callable[[Any], object | None] | None = None, *, _ispytest: bool = False, # only used in a deprecationwarning msg, can be removed in pytest9 _autouse: bool = False, ) -> None: check_ispytest(_ispytest) # The "base" node ID for the fixture. # # This is a node ID prefix. A fixture is only available to a node (e.g. # a `Function` item) if the fixture's baseid is a nodeid of a parent of # node. # # For a fixture found in a Collector's object (e.g. a `Module`s module, # a `Class`'s class), the baseid is the Collector's nodeid. # # For a fixture found in a conftest plugin, the baseid is the conftest's # directory path relative to the rootdir. # # For other plugins, the baseid is the empty string (always matches). self.baseid: Final = baseid or "" # Whether the fixture was found from a node or a conftest in the # collection tree. Will be false for fixtures defined in non-conftest # plugins. self.has_location: Final = baseid is not None # The fixture factory function. self.func: Final = func # The name by which the fixture may be requested. self.argname: Final = argname if scope is None: scope = Scope.Function elif callable(scope): scope = _eval_scope_callable(scope, argname, config) if isinstance(scope, str): scope = Scope.from_user( scope, descr=f"Fixture '{func.__name__}'", where=baseid ) self._scope: Final = scope # If the fixture is directly parametrized, the parameter values. self.params: Final = params # If the fixture is directly parametrized, a tuple of explicit IDs to # assign to the parameter values, or a callable to generate an ID given # a parameter value. self.ids: Final = ids # The names requested by the fixtures. self.argnames: Final = getfuncargnames(func, name=argname) # If the fixture was executed, the current value of the fixture. # Can change if the fixture is executed with different parameters. self.cached_result: _FixtureCachedResult[FixtureValue] | None = None self._finalizers: Final[list[Callable[[], object]]] = [] # only used to emit a deprecationwarning, can be removed in pytest9 self._autouse = _autouse @property def scope(self) -> _ScopeName: """Scope string, one of "function", "class", "module", "package", "session".""" return self._scope.value def addfinalizer(self, finalizer: Callable[[], object]) -> None: self._finalizers.append(finalizer) def finish(self, request: SubRequest) -> None: exceptions: list[BaseException] = [] while self._finalizers: fin = self._finalizers.pop() try: fin() except BaseException as e: exceptions.append(e) node = request.node node.ihook.pytest_fixture_post_finalizer(fixturedef=self, request=request) # Even if finalization fails, we invalidate the cached fixture # value and remove all finalizers because they may be bound methods # which will keep instances alive. self.cached_result = None self._finalizers.clear() if len(exceptions) == 1: raise exceptions[0] elif len(exceptions) > 1: msg = f'errors while tearing down fixture "{self.argname}" of {node}' raise BaseExceptionGroup(msg, exceptions[::-1]) def execute(self, request: SubRequest) -> FixtureValue: """Return the value of this fixture, executing it if not cached.""" # Ensure that the dependent fixtures requested by this fixture are loaded. # This needs to be done before checking if we have a cached value, since # if a dependent fixture has their cache invalidated, e.g. due to # parametrization, they finalize themselves and fixtures depending on it # (which will likely include this fixture) setting `self.cached_result = None`. # See #4871 requested_fixtures_that_should_finalize_us = [] for argname in self.argnames: fixturedef = request._get_active_fixturedef(argname) # Saves requested fixtures in a list so we later can add our finalizer # to them, ensuring that if a requested fixture gets torn down we get torn # down first. This is generally handled by SetupState, but still currently # needed when this fixture is not parametrized but depends on a parametrized # fixture. requested_fixtures_that_should_finalize_us.append(fixturedef) # Check for (and return) cached value/exception. if self.cached_result is not None: request_cache_key = self.cache_key(request) cache_key = self.cached_result[1] try: # Attempt to make a normal == check: this might fail for objects # which do not implement the standard comparison (like numpy arrays -- #6497). cache_hit = bool(request_cache_key == cache_key) except (ValueError, RuntimeError): # If the comparison raises, use 'is' as fallback. cache_hit = request_cache_key is cache_key if cache_hit: if self.cached_result[2] is not None: exc, exc_tb = self.cached_result[2] raise exc.with_traceback(exc_tb) else: return self.cached_result[0] # We have a previous but differently parametrized fixture instance # so we need to tear it down before creating a new one. self.finish(request) assert self.cached_result is None # Add finalizer to requested fixtures we saved previously. # We make sure to do this after checking for cached value to avoid # adding our finalizer multiple times. (#12135) finalizer = functools.partial(self.finish, request=request) for parent_fixture in requested_fixtures_that_should_finalize_us: parent_fixture.addfinalizer(finalizer) ihook = request.node.ihook try: # Setup the fixture, run the code in it, and cache the value # in self.cached_result. result: FixtureValue = ihook.pytest_fixture_setup( fixturedef=self, request=request ) finally: # Schedule our finalizer, even if the setup failed. request.node.addfinalizer(finalizer) return result def cache_key(self, request: SubRequest) -> object: return getattr(request, "param", None) def __repr__(self) -> str: return f"<FixtureDef argname={self.argname!r} scope={self.scope!r} baseid={self.baseid!r}>"
FixtureDef
python
PrefectHQ__prefect
src/integrations/prefect-aws/prefect_aws/credentials.py
{ "start": 494, "end": 1437 }
class ____(Enum): """The supported boto3 clients.""" S3 = "s3" ECS = "ecs" BATCH = "batch" SECRETS_MANAGER = "secretsmanager" @lru_cache(maxsize=8, typed=True) def _get_client_cached(ctx, client_type: Union[str, ClientType]) -> Any: """ Helper method to cache and dynamically get a client type. Args: client_type: The client's service name. Returns: An authenticated client. Raises: ValueError: if the client is not supported. """ with _LOCK: if isinstance(client_type, ClientType): client_type = client_type.value params_override = ctx.aws_client_parameters.get_params_override() if ctx.region_name is not None: params_override["region_name"] = ctx.region_name client = ctx.get_boto3_session().client( service_name=client_type, **params_override, ) return client
ClientType
python
doocs__leetcode
solution/2100-2199/2106.Maximum Fruits Harvested After at Most K Steps/Solution.py
{ "start": 0, "end": 511 }
class ____: def maxTotalFruits(self, fruits: List[List[int]], startPos: int, k: int) -> int: ans = i = s = 0 for j, (pj, fj) in enumerate(fruits): s += fj while ( i <= j and pj - fruits[i][0] + min(abs(startPos - fruits[i][0]), abs(startPos - fruits[j][0])) > k ): s -= fruits[i][1] i += 1 ans = max(ans, s) return ans
Solution
python
patrick-kidger__equinox
equinox/_tree.py
{ "start": 407, "end": 685 }
class ____: def __init__(self, value: Any): self.value = value def _remove_leaf_wrapper(x: _LeafWrapper) -> Any: if not isinstance(x, _LeafWrapper): raise TypeError(f"Operation undefined, {x} is not a leaf of the pytree.") return x.value
_LeafWrapper
python
django__django
tests/model_fields/test_autofield.py
{ "start": 602, "end": 1359 }
class ____(SimpleTestCase): def test_isinstance_of_autofield(self): for field in (models.BigAutoField, models.SmallAutoField): with self.subTest(field.__name__): self.assertIsInstance(field(), models.AutoField) def test_issubclass_of_autofield(self): class MyBigAutoField(models.BigAutoField): pass class MySmallAutoField(models.SmallAutoField): pass tests = [ MyBigAutoField, MySmallAutoField, models.BigAutoField, models.SmallAutoField, ] for field in tests: with self.subTest(field.__name__): self.assertTrue(issubclass(field, models.AutoField))
AutoFieldInheritanceTests
python
ray-project__ray
python/ray/serve/tests/test_target_capacity.py
{ "start": 30955, "end": 31688 }
class ____: async def __call__(self, *args): await asyncio.sleep(10000) def create_hang_app(config: Dict) -> Application: name: str = config["name"] min_replicas: int = config["min_replicas"] initial_replicas: int = config["initial_replicas"] max_replicas: int = config["max_replicas"] return HangDeployment.options( name=name, autoscaling_config={ "min_replicas": min_replicas, "initial_replicas": initial_replicas, "max_replicas": max_replicas, "target_ongoing_requests": 1, "metrics_interval_s": 0.01, "downscale_delay_s": 0.01, }, graceful_shutdown_timeout_s=0.01, ).bind()
HangDeployment
python
mkdocs__mkdocs
mkdocs/tests/config/config_options_legacy_tests.py
{ "start": 3788, "end": 5647 }
class ____(TestCase): def test_required(self): class Schema: option = c.Choice(('python', 'node'), required=True) conf = self.get_config(Schema, {'option': 'python'}) self.assertEqual(conf['option'], 'python') def test_optional(self): class Schema: option = c.Choice(('python', 'node')) conf = self.get_config(Schema, {'option': 'python'}) self.assertEqual(conf['option'], 'python') conf = self.get_config(Schema, {}) self.assertEqual(conf['option'], None) conf = self.get_config(Schema, {'option': None}) self.assertEqual(conf['option'], None) def test_default(self): class Schema: option = c.Choice(('a', 'b', 'c'), default='b') conf = self.get_config(Schema, {}) self.assertEqual(conf['option'], 'b') conf = self.get_config(Schema, {'option': None}) self.assertEqual(conf['option'], 'b') with self.expect_error(option="Expected one of: ('a', 'b', 'c') but received: 'go'"): self.get_config(Schema, {'option': 'go'}) def test_invalid_default(self): with self.assertRaises(ValueError): c.Choice(('a', 'b'), default='c') with self.assertRaises(ValueError): c.Choice(('a', 'b'), default='c', required=True) def test_invalid_choice(self): class Schema: option = c.Choice(('python', 'node')) with self.expect_error(option="Expected one of: ('python', 'node') but received: 'go'"): self.get_config(Schema, {'option': 'go'}) def test_invalid_choices(self): with self.assertRaises(ValueError): c.Choice('') with self.assertRaises(ValueError): c.Choice([]) with self.assertRaises(ValueError): c.Choice(5)
ChoiceTest
python
pypa__pipenv
pipenv/patched/pip/_internal/index/collector.py
{ "start": 12821, "end": 12953 }
class ____(NamedTuple): find_links: Sequence[Optional[LinkSource]] index_urls: Sequence[Optional[LinkSource]]
CollectedSources
python
huggingface__transformers
src/transformers/models/mt5/modeling_mt5.py
{ "start": 23058, "end": 23882 }
class ____(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config: MT5Config): super().__init__() self.dense = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(p=config.classifier_dropout) self.out_proj = nn.Linear(config.d_model, config.num_labels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @auto_docstring # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel with T5->MT5, t5->mt5
MT5ClassificationHead
python
sympy__sympy
sympy/tensor/array/dense_ndim_array.py
{ "start": 390, "end": 3658 }
class ____(NDimArray): _array: List[Basic] def __new__(self, *args, **kwargs): return ImmutableDenseNDimArray(*args, **kwargs) @property def kind(self) -> ArrayKind: return ArrayKind._union(self._array) def __getitem__(self, index): """ Allows to get items from N-dim array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2)) >>> a [[0, 1], [2, 3]] >>> a[0, 0] 0 >>> a[1, 1] 3 >>> a[0] [0, 1] >>> a[1] [2, 3] Symbolic index: >>> from sympy.abc import i, j >>> a[i, j] [[0, 1], [2, 3]][i, j] Replace `i` and `j` to get element `(1, 1)`: >>> a[i, j].subs({i: 1, j: 1}) 3 """ syindex = self._check_symbolic_index(index) if syindex is not None: return syindex index = self._check_index_for_getitem(index) if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): sl_factors, eindices = self._get_slice_data_for_array_access(index) array = [self._array[self._parse_index(i)] for i in eindices] nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)] return type(self)(array, nshape) else: index = self._parse_index(index) return self._array[index] @classmethod def zeros(cls, *shape): list_length = functools.reduce(lambda x, y: x*y, shape, S.One) return cls._new(([0]*list_length,), shape) def tomatrix(self): """ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3)) >>> b = a.tomatrix() >>> b Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ from sympy.matrices import Matrix if self.rank() != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self.shape[0], self.shape[1], self._array) def reshape(self, *newshape): """ Returns MutableDenseNDimArray instance with new shape. Elements number must be suitable to new shape. The only argument of method sets new shape. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a.shape (2, 3) >>> a [[1, 2, 3], [4, 5, 6]] >>> b = a.reshape(3, 2) >>> b.shape (3, 2) >>> b [[1, 2], [3, 4], [5, 6]] """ new_total_size = functools.reduce(lambda x,y: x*y, newshape) if new_total_size != self._loop_size: raise ValueError(f"Expecting reshape size to {self._loop_size} but got prod({newshape}) = {new_total_size}") # there is no `.func` as this class does not subtype `Basic`: return type(self)(self._array, newshape)
DenseNDimArray
python
uqfoundation__dill
dill/_dill.py
{ "start": 12208, "end": 12261 }
class ____(Warning, PickleError): pass
PickleWarning
python
huggingface__transformers
src/transformers/pipelines/base.py
{ "start": 21636, "end": 23212 }
class ____(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (`dict`): The data to store. """ print(data) def save_binary(self, data: dict | list[dict]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data)
PipedPipelineDataFormat
python
mwaskom__seaborn
tests/_stats/test_aggregation.py
{ "start": 194, "end": 661 }
class ____: @pytest.fixture def df(self, rng): n = 30 return pd.DataFrame(dict( x=rng.uniform(0, 7, n).round(), y=rng.normal(size=n), color=rng.choice(["a", "b", "c"], n), group=rng.choice(["x", "y"], n), )) def get_groupby(self, df, orient): other = {"x": "y", "y": "x"}[orient] cols = [c for c in df if c != other] return GroupBy(cols)
AggregationFixtures
python
miyuchina__mistletoe
test/test_contrib/test_toc_renderer.py
{ "start": 173, "end": 2520 }
class ____(TestCase): def test_parse_rendered_heading(self): rendered_heading = '<h3>some <em>text</em></h3>' content = TocRenderer.parse_rendered_heading(rendered_heading) self.assertEqual(content, 'some text') def test_render_heading(self): renderer = TocRenderer() Heading.start('### some *text*\n') token = Heading(Heading.read(iter(['foo']))) renderer.render_heading(token) self.assertEqual(renderer._headings[0], (3, 'some text')) def test_depth(self): renderer = TocRenderer(depth=3) token = Document(['# title\n', '## heading\n', '#### heading\n']) renderer.render(token) self.assertEqual(renderer._headings, [(2, 'heading')]) def test_omit_title(self): renderer = TocRenderer(omit_title=True) token = Document(['# title\n', '\n', '## heading\n']) renderer.render(token) self.assertEqual(renderer._headings, [(2, 'heading')]) def test_filter_conditions(self): import re filter_conds = [lambda x: re.match(r'heading', x), lambda x: re.match(r'foo', x)] renderer = TocRenderer(filter_conds=filter_conds) token = Document(['# title\n', '\n', '## heading\n', '\n', '#### not heading\n']) renderer.render(token) self.assertEqual(renderer._headings, [(4, 'not heading')]) def test_get_toc(self): headings = [(1, 'heading 1'), (2, 'subheading 1'), (2, 'subheading 2'), (3, 'subsubheading 1'), (2, 'subheading 3'), (1, 'heading 2')] renderer = TocRenderer(omit_title=False) renderer._headings = headings toc = renderer.toc self.assertIsInstance(toc, block_token.List) # for now, we check at least the most nested heading # (hierarchy: `List -> ListItem -> {Paragraph -> RawText.content | List -> ...}`): heading_item = toc.children[0].children[1].children[1].children[1].children[0] self.assertIsInstance(heading_item, block_token.ListItem) self.assertEqual(heading_item.children[0].children[0].content, 'subsubheading 1')
TestTocRenderer
python
PyCQA__pylint
tests/functional/a/attribute_defined_outside_init.py
{ "start": 774, "end": 1014 }
class ____: def test_mixin(self): """Don't emit attribute-defined-outside-init for mixin classes.""" if self.defined_already: # pylint: disable=access-member-before-definition self.defined_already = None
Mixin
python
walkccc__LeetCode
solutions/2808. Minimum Seconds to Equalize a Circular Array/2808.py
{ "start": 0, "end": 622 }
class ____: def minimumSeconds(self, nums: list[int]) -> int: n = len(nums) ans = n numToIndices = collections.defaultdict(list) for i, num in enumerate(nums): numToIndices[num].append(i) def getSeconds(i: int, j: int) -> int: """Returns the number of seconds required to make nums[i..j] the same.""" return (i - j) // 2 for indices in numToIndices.values(): seconds = getSeconds(indices[0] + n, indices[-1]) for i in range(1, len(indices)): seconds = max(seconds, getSeconds(indices[i], indices[i - 1])) ans = min(ans, seconds) return ans
Solution
python
lepture__authlib
authlib/oauth1/client.py
{ "start": 300, "end": 6737 }
class ____: auth_class = ClientAuth def __init__( self, session, client_id, client_secret=None, token=None, token_secret=None, redirect_uri=None, rsa_key=None, verifier=None, signature_method=SIGNATURE_HMAC_SHA1, signature_type=SIGNATURE_TYPE_HEADER, force_include_body=False, realm=None, **kwargs, ): if not client_id: raise ValueError('Missing "client_id"') self.session = session self.auth = self.auth_class( client_id, client_secret=client_secret, token=token, token_secret=token_secret, redirect_uri=redirect_uri, signature_method=signature_method, signature_type=signature_type, rsa_key=rsa_key, verifier=verifier, realm=realm, force_include_body=force_include_body, ) self._kwargs = kwargs @property def redirect_uri(self): return self.auth.redirect_uri @redirect_uri.setter def redirect_uri(self, uri): self.auth.redirect_uri = uri @property def token(self): return dict( oauth_token=self.auth.token, oauth_token_secret=self.auth.token_secret, oauth_verifier=self.auth.verifier, ) @token.setter def token(self, token): """This token setter is designed for an easy integration for OAuthClient. Make sure both OAuth1Session and OAuth2Session have token setters. """ if token is None: self.auth.token = None self.auth.token_secret = None self.auth.verifier = None elif "oauth_token" in token: self.auth.token = token["oauth_token"] if "oauth_token_secret" in token: self.auth.token_secret = token["oauth_token_secret"] if "oauth_verifier" in token: self.auth.verifier = token["oauth_verifier"] else: message = f"oauth_token is missing: {token!r}" self.handle_error("missing_token", message) def create_authorization_url(self, url, request_token=None, **kwargs): """Create an authorization URL by appending request_token and optional kwargs to url. This is the second step in the OAuth 1 workflow. The user should be redirected to this authorization URL, grant access to you, and then be redirected back to you. The redirection back can either be specified during client registration or by supplying a callback URI per request. :param url: The authorization endpoint URL. :param request_token: The previously obtained request token. :param kwargs: Optional parameters to append to the URL. :returns: The authorization URL with new parameters embedded. """ kwargs["oauth_token"] = request_token or self.auth.token if self.auth.redirect_uri: kwargs["oauth_callback"] = self.auth.redirect_uri return add_params_to_uri(url, kwargs.items()) def fetch_request_token(self, url, **kwargs): """Method for fetching an access token from the token endpoint. This is the first step in the OAuth 1 workflow. A request token is obtained by making a signed post request to url. The token is then parsed from the application/x-www-form-urlencoded response and ready to be used to construct an authorization url. :param url: Request Token endpoint. :param kwargs: Extra parameters to include for fetching token. :return: A Request Token dict. """ return self._fetch_token(url, **kwargs) def fetch_access_token(self, url, verifier=None, **kwargs): """Method for fetching an access token from the token endpoint. This is the final step in the OAuth 1 workflow. An access token is obtained using all previously obtained credentials, including the verifier from the authorization step. :param url: Access Token endpoint. :param verifier: A verifier string to prove authorization was granted. :param kwargs: Extra parameters to include for fetching access token. :return: A token dict. """ if verifier: self.auth.verifier = verifier if not self.auth.verifier: self.handle_error("missing_verifier", 'Missing "verifier" value') return self._fetch_token(url, **kwargs) def parse_authorization_response(self, url): """Extract parameters from the post authorization redirect response URL. :param url: The full URL that resulted from the user being redirected back from the OAuth provider to you, the client. :returns: A dict of parameters extracted from the URL. """ token = dict(url_decode(urlparse.urlparse(url).query)) self.token = token return token def _fetch_token(self, url, **kwargs): resp = self.session.post(url, auth=self.auth, **kwargs) token = self.parse_response_token(resp.status_code, resp.text) self.token = token self.auth.verifier = None return token def parse_response_token(self, status_code, text): if status_code >= 400: message = ( f"Token request failed with code {status_code}, response was '{text}'." ) self.handle_error("fetch_token_denied", message) try: text = text.strip() if text.startswith("{"): token = json_loads(text) else: token = dict(url_decode(text)) except (TypeError, ValueError) as e: error = ( "Unable to decode token from token response. " "This is commonly caused by an unsuccessful request where" " a non urlencoded error message is returned. " f"The decoding error was {e}" ) raise ValueError(error) from e return token @staticmethod def handle_error(error_type, error_description): raise ValueError(f"{error_type}: {error_description}") def __del__(self): try: del self.session except AttributeError: pass
OAuth1Client
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/elements.py
{ "start": 126755, "end": 130128 }
class ____(UnaryExpression[_T]): """Forms the basis for right-hand collection operator modifiers ANY and ALL. The ANY and ALL keywords are available in different ways on different backends. On PostgreSQL, they only work for an ARRAY type. On MySQL, they only work for subqueries. """ inherit_cache = True _is_collection_aggregate = True @classmethod def _create_any( cls, expr: _ColumnExpressionArgument[_T] ) -> CollectionAggregate[bool]: """create CollectionAggregate for the legacy ARRAY.Comparator.any() method""" col_expr: ColumnElement[_T] = coercions.expect( roles.ExpressionElementRole, expr, ) col_expr = col_expr.self_group() return CollectionAggregate( col_expr, operator=operators.any_op, type_=type_api.BOOLEANTYPE, ) @classmethod def _create_all( cls, expr: _ColumnExpressionArgument[_T] ) -> CollectionAggregate[bool]: """create CollectionAggregate for the legacy ARRAY.Comparator.all() method""" col_expr: ColumnElement[_T] = coercions.expect( roles.ExpressionElementRole, expr, ) col_expr = col_expr.self_group() return CollectionAggregate( col_expr, operator=operators.all_op, type_=type_api.BOOLEANTYPE, ) @util.preload_module("sqlalchemy.sql.sqltypes") def _bind_param( self, operator: operators.OperatorType, obj: Any, type_: Optional[TypeEngine[_T]] = None, expanding: bool = False, ) -> BindParameter[_T]: """For new style any_(), all_(), ensure compared literal value receives appropriate bound parameter type.""" # a CollectionAggregate is specific to ARRAY or int # only. So for ARRAY case, make sure we use correct element type sqltypes = util.preloaded.sql_sqltypes if self.element.type._type_affinity is sqltypes.ARRAY: compared_to_type = cast( sqltypes.ARRAY[Any], self.element.type ).item_type else: compared_to_type = self.element.type return BindParameter( None, obj, _compared_to_operator=operator, type_=type_, _compared_to_type=compared_to_type, unique=True, expanding=expanding, ) # operate and reverse_operate are hardwired to # dispatch onto the type comparator directly, so that we can # ensure "reversed" behavior. def operate( self, op: OperatorType, *other: Any, **kwargs: Any ) -> ColumnElement[_T]: if not operators.is_comparison(op): raise exc.ArgumentError( "Only comparison operators may be used with ANY/ALL" ) kwargs["reverse"] = True return self.comparator.operate(operators.mirror(op), *other, **kwargs) def reverse_operate( self, op: OperatorType, other: Any, **kwargs: Any ) -> ColumnElement[_T]: # comparison operators should never call reverse_operate assert not operators.is_comparison(op) raise exc.ArgumentError( "Only comparison operators may be used with ANY/ALL" )
CollectionAggregate
python
arrow-py__arrow
tests/test_locales.py
{ "start": 96057, "end": 97220 }
class ____: def test_format_timeframe(self): assert self.locale._format_timeframe("now", 0) == "nunc" assert self.locale._format_timeframe("second", 1) == "secundum" assert self.locale._format_timeframe("seconds", 3) == "3 secundis" assert self.locale._format_timeframe("minute", 1) == "minutam" assert self.locale._format_timeframe("minutes", 4) == "4 minutis" assert self.locale._format_timeframe("hour", 1) == "horam" assert self.locale._format_timeframe("hours", 23) == "23 horas" assert self.locale._format_timeframe("day", 1) == "diem" assert self.locale._format_timeframe("days", 12) == "12 dies" assert self.locale._format_timeframe("month", 1) == "mensem" assert self.locale._format_timeframe("months", 11) == "11 mensis" assert self.locale._format_timeframe("year", 1) == "annum" assert self.locale._format_timeframe("years", 2) == "2 annos" def test_weekday(self): dt = arrow.Arrow(2015, 4, 11, 17, 30, 00) assert self.locale.day_name(dt.isoweekday()) == "dies Saturni" @pytest.mark.usefixtures("lang_locale")
TestLatinLocale
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 857902, "end": 858098 }
class ____(VegaLiteSchema): """Padding schema wrapper.""" _schema = {"$ref": "#/definitions/Padding"} def __init__(self, *args, **kwds): super().__init__(*args, **kwds)
Padding
python
kamyu104__LeetCode-Solutions
Python/find-the-maximum-sequence-value-of-array.py
{ "start": 66, "end": 1244 }
class ____(object): def maxValue(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ INF = float("inf") MAX_MASK = 127 def is_submask(a, b): return (a|b) == b def dp(direction, npos): result = [npos]*(MAX_MASK+1) dp = [INF]*(MAX_MASK+1) cnt = [0]*(MAX_MASK+1) for i in direction(xrange(len(nums))): dp[nums[i]] = 1 for mask in xrange(MAX_MASK+1): if is_submask(nums[i], mask): cnt[mask] += 1 dp[mask|nums[i]] = min(dp[mask|nums[i]], dp[mask]+1) for mask in xrange(MAX_MASK+1): if cnt[mask] >= k and dp[mask] <= k and result[mask] == npos: result[mask] = i return result left = dp(lambda x: x, len(nums)) right = dp(reversed, -1) return next(result for result in reversed(xrange(MAX_MASK+1)) for l in xrange(1, MAX_MASK+1) if left[l] < right[result^l]) # Time: O(n * k * r + n * r^2) # Space: O(n * k * r) # prefix sum, dp
Solution
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_types04.py
{ "start": 315, "end": 1892 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("types04.xlsx") def test_write_url_default(self): """Test writing hyperlinks with strings_to_urls on.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() red = workbook.add_format({"font_color": "red"}) worksheet.write(0, 0, "http://www.google.com/", red) worksheet.write_string(1, 0, "http://www.google.com/", red) workbook.close() self.assertExcelEqual() def test_write_url_implicit(self): """Test writing hyperlinks with strings_to_urls on.""" workbook = Workbook(self.got_filename, {"strings_to_urls": True}) worksheet = workbook.add_worksheet() red = workbook.add_format({"font_color": "red"}) worksheet.write(0, 0, "http://www.google.com/", red) worksheet.write_string(1, 0, "http://www.google.com/", red) workbook.close() self.assertExcelEqual() def test_write_url_explicit(self): """Test writing hyperlinks with strings_to_urls off.""" workbook = Workbook(self.got_filename, {"strings_to_urls": False}) worksheet = workbook.add_worksheet() red = workbook.add_format({"font_color": "red"}) worksheet.write_url(0, 0, "http://www.google.com/", red) worksheet.write(1, 0, "http://www.google.com/", red) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
django__django
tests/admin_docs/test_views.py
{ "start": 23893, "end": 24907 }
class ____(unittest.TestCase): def test_field_name(self): with self.assertRaises(AttributeError): views.get_readable_field_data_type("NotAField") def test_builtin_fields(self): self.assertEqual( views.get_readable_field_data_type(fields.BooleanField()), "Boolean (Either True or False)", ) def test_char_fields(self): self.assertEqual( views.get_readable_field_data_type(fields.CharField(max_length=255)), "String (up to 255)", ) self.assertEqual( views.get_readable_field_data_type(fields.CharField()), "String (unlimited)", ) def test_custom_fields(self): self.assertEqual( views.get_readable_field_data_type(CustomField()), "A custom field type" ) self.assertEqual( views.get_readable_field_data_type(DescriptionLackingField()), "Field of type: DescriptionLackingField", )
TestFieldType
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/test_vertex_ai.py
{ "start": 91551, "end": 92576 }
class ____: @mock.patch(VERTEX_AI_PATH.format("batch_prediction_job.BatchPredictionJobHook")) def test_execute(self, mock_hook): op = DeleteBatchPredictionJobOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, region=GCP_LOCATION, project_id=GCP_PROJECT, batch_prediction_job_id=TEST_BATCH_PREDICTION_JOB_ID, retry=RETRY, timeout=TIMEOUT, metadata=METADATA, ) op.execute(context={}) mock_hook.assert_called_once_with(gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN) mock_hook.return_value.delete_batch_prediction_job.assert_called_once_with( region=GCP_LOCATION, project_id=GCP_PROJECT, batch_prediction_job=TEST_BATCH_PREDICTION_JOB_ID, retry=RETRY, timeout=TIMEOUT, metadata=METADATA, )
TestVertexAIDeleteBatchPredictionJobOperator
python
encode__starlette
tests/test_formparsers.py
{ "start": 747, "end": 11142 }
class ____(dict[Any, Any]): def __bool__(self) -> bool: return True # FORCE_MULTIPART is an empty dict that boolean-evaluates as `True`. FORCE_MULTIPART = ForceMultipartDict() async def app(scope: Scope, receive: Receive, send: Send) -> None: request = Request(scope, receive) data = await request.form() output: dict[str, Any] = {} for key, value in data.items(): if isinstance(value, UploadFile): content = await value.read() output[key] = { "filename": value.filename, "size": value.size, "content": content.decode(), "content_type": value.content_type, } else: output[key] = value await request.close() response = JSONResponse(output) await response(scope, receive, send) async def multi_items_app(scope: Scope, receive: Receive, send: Send) -> None: request = Request(scope, receive) data = await request.form() output: dict[str, list[Any]] = {} for key, value in data.multi_items(): if key not in output: output[key] = [] if isinstance(value, UploadFile): content = await value.read() output[key].append( { "filename": value.filename, "size": value.size, "content": content.decode(), "content_type": value.content_type, } ) else: output[key].append(value) await request.close() response = JSONResponse(output) await response(scope, receive, send) async def app_with_headers(scope: Scope, receive: Receive, send: Send) -> None: request = Request(scope, receive) data = await request.form() output: dict[str, Any] = {} for key, value in data.items(): if isinstance(value, UploadFile): content = await value.read() output[key] = { "filename": value.filename, "size": value.size, "content": content.decode(), "content_type": value.content_type, "headers": list(value.headers.items()), } else: output[key] = value await request.close() response = JSONResponse(output) await response(scope, receive, send) async def app_read_body(scope: Scope, receive: Receive, send: Send) -> None: request = Request(scope, receive) # Read bytes, to force request.stream() to return the already parsed body await request.body() data = await request.form() output = {} for key, value in data.items(): output[key] = value await request.close() response = JSONResponse(output) await response(scope, receive, send) async def app_monitor_thread(scope: Scope, receive: Receive, send: Send) -> None: """Helper app to monitor what thread the app was called on. This can later be used to validate thread/event loop operations. """ request = Request(scope, receive) # Make sure we parse the form await request.form() await request.close() # Send back the current thread id response = JSONResponse({"thread_ident": threading.current_thread().ident}) await response(scope, receive, send) def make_app_max_parts(max_files: int = 1000, max_fields: int = 1000, max_part_size: int = 1024 * 1024) -> ASGIApp: async def app(scope: Scope, receive: Receive, send: Send) -> None: request = Request(scope, receive) data = await request.form(max_files=max_files, max_fields=max_fields, max_part_size=max_part_size) output: dict[str, Any] = {} for key, value in data.items(): if isinstance(value, UploadFile): content = await value.read() output[key] = { "filename": value.filename, "size": value.size, "content": content.decode(), "content_type": value.content_type, } else: output[key] = value await request.close() response = JSONResponse(output) await response(scope, receive, send) return app def test_multipart_request_data(tmpdir: Path, test_client_factory: TestClientFactory) -> None: client = test_client_factory(app) response = client.post("/", data={"some": "data"}, files=FORCE_MULTIPART) assert response.json() == {"some": "data"} def test_multipart_request_files(tmpdir: Path, test_client_factory: TestClientFactory) -> None: path = os.path.join(tmpdir, "test.txt") with open(path, "wb") as file: file.write(b"<file content>") client = test_client_factory(app) with open(path, "rb") as f: response = client.post("/", files={"test": f}) assert response.json() == { "test": { "filename": "test.txt", "size": 14, "content": "<file content>", "content_type": "text/plain", } } def test_multipart_request_files_with_content_type(tmpdir: Path, test_client_factory: TestClientFactory) -> None: path = os.path.join(tmpdir, "test.txt") with open(path, "wb") as file: file.write(b"<file content>") client = test_client_factory(app) with open(path, "rb") as f: response = client.post("/", files={"test": ("test.txt", f, "text/plain")}) assert response.json() == { "test": { "filename": "test.txt", "size": 14, "content": "<file content>", "content_type": "text/plain", } } def test_multipart_request_multiple_files(tmpdir: Path, test_client_factory: TestClientFactory) -> None: path1 = os.path.join(tmpdir, "test1.txt") with open(path1, "wb") as file: file.write(b"<file1 content>") path2 = os.path.join(tmpdir, "test2.txt") with open(path2, "wb") as file: file.write(b"<file2 content>") client = test_client_factory(app) with open(path1, "rb") as f1, open(path2, "rb") as f2: response = client.post("/", files={"test1": f1, "test2": ("test2.txt", f2, "text/plain")}) assert response.json() == { "test1": { "filename": "test1.txt", "size": 15, "content": "<file1 content>", "content_type": "text/plain", }, "test2": { "filename": "test2.txt", "size": 15, "content": "<file2 content>", "content_type": "text/plain", }, } def test_multipart_request_multiple_files_with_headers(tmpdir: Path, test_client_factory: TestClientFactory) -> None: path1 = os.path.join(tmpdir, "test1.txt") with open(path1, "wb") as file: file.write(b"<file1 content>") path2 = os.path.join(tmpdir, "test2.txt") with open(path2, "wb") as file: file.write(b"<file2 content>") client = test_client_factory(app_with_headers) with open(path1, "rb") as f1, open(path2, "rb") as f2: response = client.post( "/", files=[ ("test1", (None, f1)), ("test2", ("test2.txt", f2, "text/plain", {"x-custom": "f2"})), ], ) assert response.json() == { "test1": "<file1 content>", "test2": { "filename": "test2.txt", "size": 15, "content": "<file2 content>", "content_type": "text/plain", "headers": [ [ "content-disposition", 'form-data; name="test2"; filename="test2.txt"', ], ["x-custom", "f2"], ["content-type", "text/plain"], ], }, } def test_multi_items(tmpdir: Path, test_client_factory: TestClientFactory) -> None: path1 = os.path.join(tmpdir, "test1.txt") with open(path1, "wb") as file: file.write(b"<file1 content>") path2 = os.path.join(tmpdir, "test2.txt") with open(path2, "wb") as file: file.write(b"<file2 content>") client = test_client_factory(multi_items_app) with open(path1, "rb") as f1, open(path2, "rb") as f2: response = client.post( "/", data={"test1": "abc"}, files=[("test1", f1), ("test1", ("test2.txt", f2, "text/plain"))], ) assert response.json() == { "test1": [ "abc", { "filename": "test1.txt", "size": 15, "content": "<file1 content>", "content_type": "text/plain", }, { "filename": "test2.txt", "size": 15, "content": "<file2 content>", "content_type": "text/plain", }, ] } def test_multipart_request_mixed_files_and_data(tmpdir: Path, test_client_factory: TestClientFactory) -> None: client = test_client_factory(app) response = client.post( "/", data=( # data b"--a7f7ac8d4e2e437c877bb7b8d7cc549c\r\n" # type: ignore b'Content-Disposition: form-data; name="field0"\r\n\r\n' b"value0\r\n" # file b"--a7f7ac8d4e2e437c877bb7b8d7cc549c\r\n" b'Content-Disposition: form-data; name="file"; filename="file.txt"\r\n' b"Content-Type: text/plain\r\n\r\n" b"<file content>\r\n" # data b"--a7f7ac8d4e2e437c877bb7b8d7cc549c\r\n" b'Content-Disposition: form-data; name="field1"\r\n\r\n' b"value1\r\n" b"--a7f7ac8d4e2e437c877bb7b8d7cc549c--\r\n" ), headers={"Content-Type": ("multipart/form-data; boundary=a7f7ac8d4e2e437c877bb7b8d7cc549c")}, ) assert response.json() == { "file": { "filename": "file.txt", "size": 14, "content": "<file content>", "content_type": "text/plain", }, "field0": "value0", "field1": "value1", }
ForceMultipartDict
python
pytorch__pytorch
torch/_inductor/codegen/rocm/rocm_kernel.py
{ "start": 1028, "end": 1166 }
class ____(Kernel): """ Baseclass for ROCm based Kernels """ overrides = OpOverrides # type: ignore[assignment]
ROCmKernel
python
tensorflow__tensorflow
tensorflow/python/keras/distribute/worker_training_state.py
{ "start": 1463, "end": 6091 }
class ____(object): """Training state management class. This class provides apis for backing up and restoring the training state. This allows model and epoch information to be saved periodically and restore for fault-tolerance, also known as preemption-recovery purpose. """ def __init__(self, model, checkpoint_dir): self._model = model # The epoch at which the checkpoint is saved. Used for fault-tolerance. # GPU device only has int64 dtype registered VarHandleOp. self._ckpt_saved_epoch = variables.Variable( initial_value=constant_op.constant( CKPT_SAVED_EPOCH_UNUSED_VALUE, dtype=dtypes.int64), name='ckpt_saved_epoch') # Variable initialization. backend.set_value(self._ckpt_saved_epoch, CKPT_SAVED_EPOCH_UNUSED_VALUE) # _ckpt_saved_epoch gets tracked and is included in the checkpoint file # when backing up. checkpoint = trackable_util.Checkpoint( model=self._model, ckpt_saved_epoch=self._ckpt_saved_epoch) # If this is single-worker training, checkpoint_dir are the same for # write_checkpoint_manager and read_checkpoint_manager. # # If this is multi-worker training, and this worker should not # save checkpoint, we replace the write_checkpoint_manager's checkpoint_dir # with a temp filepath, so it writes to a file that will be removed at the # end of back_up() call. This is necessary because the SyncOnReadVariable # needs to be synced across all the workers in order to be read, and all # workers need to perform `save()`. # But all workers should restore from the same checkpoint_dir as passed in # read_checkpoint_manager. self.read_checkpoint_manager = checkpoint_management.CheckpointManager( checkpoint, directory=os.path.join(checkpoint_dir, 'chief'), max_to_keep=1) write_checkpoint_dir = distributed_file_utils.write_dirpath( checkpoint_dir, self._model.distribute_strategy) if self._model.distribute_strategy.extended.should_checkpoint: self.write_checkpoint_manager = self.read_checkpoint_manager else: self.write_checkpoint_manager = checkpoint_management.CheckpointManager( checkpoint, directory=write_checkpoint_dir, max_to_keep=1) def back_up(self, epoch): """Back up the current state of training into a checkpoint file. Args: epoch: The current epoch information to be saved. """ backend.set_value(self._ckpt_saved_epoch, epoch) # Save the model plus CKPT_SAVED_EPOCH variable. if self.write_checkpoint_manager.save(): distributed_file_utils.remove_temp_dirpath( self.write_checkpoint_manager.directory, self._model.distribute_strategy) def restore(self): """Restore the training state from the backed up checkpoint file. Returns: True if the training state is successfully restored. False if the training state doesn't need to be restored, or error occurred so it can't. """ self.read_checkpoint_manager.restore_or_initialize() def delete_backup(self): """Delete the backup directories. Delete the backup directories which should not exist after `fit()` successfully finishes. """ if self.write_checkpoint_manager is self.read_checkpoint_manager: try: file_io.delete_recursively_v2(self.write_checkpoint_manager.directory) except errors.NotFoundError: pass def maybe_load_initial_epoch_from_ckpt(self, initial_epoch, mode): """Maybe load initial epoch from ckpt considering possible worker recovery. When `_ckpt_saved_epoch` attribute exists and is not `CKPT_SAVED_EPOCH_UNUSED_VALUE`, this is under multi-worker training setting and indicates the worker is recovering from previous failure. In this case, infer `initial_epoch` from `self._ckpt_saved_epoch` to continue previous unfinished training from certain epoch. Args: initial_epoch: The original initial_epoch user passes in in `fit()`. mode: The mode for running `model.fit()`. Returns: If the training is recovering from previous failure under multi-worker training setting, return the epoch the training is supposed to continue at. Otherwise, return the `initial_epoch` the user passes in. """ epoch = backend.eval(self._ckpt_saved_epoch) if mode == mode_keys.ModeKeys.TRAIN and epoch >= 0: # The most recently saved epoch is one epoch prior to the epoch it # failed at, so return the value of 'self._ckpt_saved_epoch' plus one. return epoch + 1 return initial_epoch
WorkerTrainingState
python
huggingface__transformers
tests/models/m2m_100/test_modeling_m2m_100.py
{ "start": 8735, "end": 13251 }
class ____(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": M2M100Model, "summarization": M2M100ForConditionalGeneration, "text2text-generation": M2M100ForConditionalGeneration, "translation": M2M100ForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], set()) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @unittest.skip( reason="This architecture has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245" ) def test_load_save_without_tied_weights(self): pass def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow
M2M100ModelTest
python
ray-project__ray
release/train_tests/benchmark/config.py
{ "start": 428, "end": 497 }
class ____(BaseModel): TASK_NAME: ClassVar[str] = "base"
TaskConfig
python
django__django
django/views/generic/dates.py
{ "start": 20423, "end": 20594 }
class ____(MultipleObjectTemplateResponseMixin, BaseTodayArchiveView): """List of objects published today.""" template_name_suffix = "_archive_day"
TodayArchiveView
python
scrapy__scrapy
tests/test_command_parse.py
{ "start": 2130, "end": 2432 }
class ____(BaseSpider): name = "asyncdef_asyncio_gen_exc" async def parse(self, response): for i in range(10): await asyncio.sleep(0.1) yield {{'foo': i}} if i > 5: raise ValueError("Stopping the processing")
AsyncDefAsyncioGenExcSpider
python
pandas-dev__pandas
asv_bench/benchmarks/sparse.py
{ "start": 2626, "end": 2962 }
class ____: def setup(self): N = 10000 k = 10 arr = np.zeros((N, k), dtype=float) arr[0, 0] = 3.0 arr[12, 7] = -1.0 arr[0, 9] = 11.2 self.df = pd.DataFrame(arr, dtype=pd.SparseDtype("float", fill_value=0.0)) def time_to_coo(self): self.df.sparse.to_coo()
ToCooFrame
python
kubernetes-client__python
kubernetes/client/api/apis_api.py
{ "start": 543, "end": 5205 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_api_versions(self, **kwargs): # noqa: E501 """get_api_versions # noqa: E501 get available API versions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_versions(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1APIGroupList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_api_versions_with_http_info(**kwargs) # noqa: E501 def get_api_versions_with_http_info(self, **kwargs): # noqa: E501 """get_api_versions # noqa: E501 get available API versions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_api_versions_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1APIGroupList, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_api_versions" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/yaml', 'application/vnd.kubernetes.protobuf']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/apis/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1APIGroupList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
ApisApi
python
jina-ai__jina
tests/unit/serve/runtimes/worker/test_worker_request_handler.py
{ "start": 309, "end": 455 }
class ____(Executor): @requests def foo(self, docs, **kwargs): return DocumentArray([Document(text='new document')])
NewDocsExecutor
python
PyCQA__pylint
pylint/config/callback_actions.py
{ "start": 8731, "end": 9767 }
class ____(_CallbackAction): """Action that has access to the Linter object.""" def __init__( self, option_strings: Sequence[str], dest: str, nargs: None = None, const: None = None, default: None = None, type: None = None, choices: None = None, required: bool = False, help: str = "", metavar: str = "", **kwargs: PyLinter, ) -> None: self.linter = kwargs["linter"] super().__init__( option_strings, dest, 1, const, default, type, choices, required, help, metavar, ) @abc.abstractmethod def __call__( self, parser: argparse.ArgumentParser, namespace: argparse.Namespace, values: str | Sequence[Any] | None, option_string: str | None = None, ) -> None: raise NotImplementedError # pragma: no cover
_AccessLinterObjectAction
python
getsentry__sentry
src/sentry/migrations/0992_latestrepoerelease_indexes.py
{ "start": 186, "end": 1987 }
class ____(CheckedMigration): # This flag is used to mark that a migration shouldn't be automatically run in production. # This should only be used for operations where it's safe to run the migration after your # code has deployed. So this should not be used for most operations that alter the schema # of a table. # Here are some things that make sense to mark as post deployment: # - Large data migrations. Typically we want these to be run manually so that they can be # monitored and not block the deploy for a long period of time while they run. # - Adding indexes to large tables. Since this can take a long time, we'd generally prefer to # run this outside deployments so that we don't block them. Note that while adding an index # is a schema change, it's completely safe to run the operation after the code has deployed. # Once deployed, run these manually via: https://develop.sentry.dev/database-migrations/#migration-deployment is_post_deployment = True dependencies = [ ("sentry", "0991_projectownership_json_field"), ] operations = [ migrations.AlterField( model_name="latestreporeleaseenvironment", name="commit_id", field=sentry.db.models.fields.bounded.BoundedBigIntegerField(db_index=True, null=True), ), migrations.AlterField( model_name="latestreporeleaseenvironment", name="environment_id", field=sentry.db.models.fields.bounded.BoundedBigIntegerField(db_index=True), ), migrations.AlterField( model_name="latestreporeleaseenvironment", name="release_id", field=sentry.db.models.fields.bounded.BoundedBigIntegerField(db_index=True), ), ]
Migration
python
django-haystack__django-haystack
test_haystack/elasticsearch5_tests/test_backend.py
{ "start": 26547, "end": 28777 }
class ____(TestCase): fixtures = ["base_data.json"] def setUp(self): super().setUp() # Wipe it clean. clear_elasticsearch_index() # Stow. self.old_ui = connections["elasticsearch"].get_unified_index() self.ui = UnifiedIndex() self.smmi = Elasticsearch5MockSearchIndex() self.ui.build(indexes=[self.smmi]) connections["elasticsearch"]._index = self.ui self.sb = connections["elasticsearch"].get_backend() self.sq = connections["elasticsearch"].get_query() # Force indexing of the content. self.smmi.update(using="elasticsearch") def tearDown(self): connections["elasticsearch"]._index = self.old_ui super().tearDown() def test_log_query(self): reset_search_queries() self.assertEqual(len(connections["elasticsearch"].queries), 0) with self.settings(DEBUG=False): len(self.sq.get_results()) self.assertEqual(len(connections["elasticsearch"].queries), 0) with self.settings(DEBUG=True): # Redefine it to clear out the cached results. self.sq = connections["elasticsearch"].query(using="elasticsearch") self.sq.add_filter(SQ(name="bar")) len(self.sq.get_results()) self.assertEqual(len(connections["elasticsearch"].queries), 1) self.assertEqual( connections["elasticsearch"].queries[0]["query_string"], "name:(bar)" ) # And again, for good measure. self.sq = connections["elasticsearch"].query("elasticsearch") self.sq.add_filter(SQ(name="bar")) self.sq.add_filter(SQ(text="moof")) len(self.sq.get_results()) self.assertEqual(len(connections["elasticsearch"].queries), 2) self.assertEqual( connections["elasticsearch"].queries[0]["query_string"], "name:(bar)" ) self.assertEqual( connections["elasticsearch"].queries[1]["query_string"], "(name:(bar) AND text:(moof))", ) lssqstc_all_loaded = None @override_settings(DEBUG=True)
LiveElasticsearch5SearchQueryTestCase
python
ray-project__ray
python/ray/util/client/server/proxier.py
{ "start": 1894, "end": 3749 }
class ____: port: int process_handle_future: futures.Future channel: "grpc._channel.Channel" def is_ready(self) -> bool: """Check if the server is ready or not (doesn't block).""" return self.process_handle_future.done() def wait_ready(self, timeout: Optional[float] = None) -> None: """ Wait for the server to actually start up. """ res = self.process_handle_future.result(timeout=timeout) if res is None: # This is only set to none when server creation specifically fails. raise RuntimeError("Server startup failed.") def poll(self) -> Optional[int]: """Check if the process has exited.""" try: proc = self.process_handle_future.result(timeout=0.1) if proc is not None: return proc.process.poll() except futures.TimeoutError: return def kill(self) -> None: """Try to send a KILL signal to the process.""" try: proc = self.process_handle_future.result(timeout=0.1) if proc is not None: proc.process.kill() except futures.TimeoutError: # Server has not been started yet. pass def set_result(self, proc: Optional[ProcessInfo]) -> None: """Set the result of the internal future if it is currently unset.""" if not self.is_ready(): self.process_handle_future.set_result(proc) def _match_running_client_server(command: List[str]) -> bool: """ Detects if the main process in the given command is the RayClient Server. This works by ensuring that the command is of the form: <py_executable> -m ray.util.client.server <args> """ flattened = " ".join(command) return "-m ray.util.client.server" in flattened
SpecificServer
python
PrefectHQ__prefect
tests/runner/test_runner.py
{ "start": 3435, "end": 3765 }
class ____: @flow(on_cancellation=[instance_on_cancellation], log_prints=True) def cancellable_flow(self, sleep_time: int = 100): sleep(sleep_time) def instance_on_crashed(flow, flow_run, state): logger = flow_run_logger(flow_run, flow) logger.info("Instance method flow crashed!")
ClassWithCancellableFlow
python
huggingface__transformers
src/transformers/models/emu3/modular_emu3.py
{ "start": 1504, "end": 1612 }
class ____(LlamaAttention): pass # Has extra dropout which no other model in the library has
Emu3Attention
python
facebookresearch__faiss
tests/test_rowwise_minmax.py
{ "start": 277, "end": 1545 }
class ____(unittest.TestCase): def compare_train_vs_train_inplace(self, factory_key): d = 96 nb = 1000 nq = 0 nt = 2000 xt, x, _ = get_dataset_2(d, nt, nb, nq) assert x.size > 0 codec = faiss.index_factory(d, factory_key) # use the regular .train() codec.train(xt) codes_train = codec.sa_encode(x) decoded = codec.sa_decode(codes_train) # use .train_inplace() xt_cloned = np.copy(xt) codec.train_inplace(xt_cloned) codes_train_inplace = codec.sa_encode(x) # compare .train and .train_inplace codes n_diff = (codes_train != codes_train_inplace).sum() self.assertEqual(n_diff, 0) # make sure that the array used for .train_inplace got affected n_diff_xt = (xt_cloned != xt).sum() self.assertNotEqual(n_diff_xt, 0) # make sure that the reconstruction error is not crazy reconstruction_err = ((x - decoded) ** 2).sum() self.assertLess(reconstruction_err, 0.6) def test_fp32(self) -> None: self.compare_train_vs_train_inplace("MinMax,SQ8") def test_fp16(self) -> None: self.compare_train_vs_train_inplace("MinMaxFP16,SQ8")
TestIndexRowwiseMinmax