language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
facelessuser__pymdown-extensions
tests/test_extensions/test_fancylists.py
{ "start": 52, "end": 21855 }
class ____(util.MdCase): """Test fancy lists.""" extension = ['pymdownx.fancylists', 'pymdownx.saneheaders'] extension_configs = {} def test_fail_case(self): """Test failed case.""" self.check_markdown( """ 1. foo . bar 1) foo ) bar """, """ <ol type="1"> <li>foo . bar</li> </ol> <ol type="1"> <li>foo ) bar</li> </ol> """, True ) def test_unordered(self): """Test unordered lists.""" self.check_markdown( R''' - item 1 * item 2 + item 3 ''', r''' <ul> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ul> ''', True ) def test_ordered(self): """Test ordered lists.""" self.check_markdown( R''' 1. item 1 2. item 2 3. item 3 ''', r''' <ol type="1"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_ordered_paren(self): """Test ordered lists with parenthesis.""" self.check_markdown( R''' 1) item 1 2) item 2 3) item 3 ''', r''' <ol type="1"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_ordered_generic(self): """Test generic ordered list.""" self.check_markdown( R''' #. item 1 #. item 2 #. item 3 ''', r''' <ol type="1"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_ordered_generic_paren(self): """Test generic ordered list with parenthesis.""" self.check_markdown( R''' #) item 1 #) item 2 #) item 3 ''', r''' <ol type="1"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_ordered_generic_switch(self): """Test generic ordered list switching over to other style.""" self.check_markdown( R''' #. item 1 #. item 2 #) item 1 #) item 2 ''', r''' <ol type="1"> <li>item 1</li> <li>item 2</li> </ol> <ol type="1"> <li>item 1</li> <li>item 2</li> </ol> ''', True ) def test_ordered_generic_inherit(self): """Test generic ordered list inheritance.""" self.check_markdown( R''' i. item i #. item ii #. item iii I. New list ''', r''' <ol type="i"> <li>item i</li> <li>item ii</li> <li>item iii</li> </ol> <ol type="I"> <li>New list</li> </ol> ''', True ) def test_ordered_generic_inherit_no_change(self): """Test generic ordered list inheritance no new list if same type.""" self.check_markdown( R''' i. item i #. item ii #. item iii iv. item iv ''', r''' <ol type="i"> <li>item i</li> <li>item ii</li> <li>item iii</li> <li>item iv</li> </ol> ''', True ) def test_roman(self): """Test Roman numeral lists.""" self.check_markdown( R''' i. item 1 ii. item 2 iii. item 3 iv. item 4 v. item 5 vi. item 6 ''', r''' <ol type="i"> <li>item 1</li> <li>item 2</li> <li>item 3</li> <li>item 4</li> <li>item 5</li> <li>item 6</li> </ol> ''', True ) def test_roman_paren(self): """Test Roman numeral lists with parenthesis.""" self.check_markdown( R''' i) item 1 ii) item 2 iii) item 3 ''', r''' <ol type="i"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_roman_upper(self): """Test Roman numeral uppercase lists.""" self.check_markdown( R''' I. item 1 II. item 2 III. item 3 ''', r''' <ol type="I"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_roman_upper_paren(self): """Test Roman numeral uppercase lists with parenthesis.""" self.check_markdown( R''' I) item 1 II) item 2 III) item 3 ''', r''' <ol type="I"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_alpha(self): """Test alphabetical lists.""" self.check_markdown( R''' a. item 1 b. item 2 c. item 3 ''', r''' <ol type="a"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_alpha_paren(self): """Test alphabetical lists with parenthesis.""" self.check_markdown( R''' a) item 1 b) item 2 c) item 3 ''', r''' <ol type="a"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_alpha_upper(self): """Test alphabetical uppercase lists.""" self.check_markdown( R''' A. item 1 B. item 2 C. item 3 ''', r''' <ol type="A"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_alpha_upper_paren(self): """Test alphabetical uppercase lists with parenthesis.""" self.check_markdown( R''' A) item 1 B) item 2 C) item 3 ''', r''' <ol type="A"> <li>item 1</li> <li>item 2</li> <li>item 3</li> </ol> ''', True ) def test_alpha_two_spaces(self): """Test alphabetical two space uppercase requirement.""" self.check_markdown( R''' A. item 1 A. item 2 ''', R''' <ol type="A"> <li>item 1 A. item 2</li> </ol> ''', True ) def test_roman_alpha(self): """Test behavior of alphabetical and Roman numeral.""" self.check_markdown( R''' v) item 1 a) item 2 i. item 1 a. item 1 b. item 2 ''', r''' <ol start="22" type="a"> <li>item 1</li> <li>item 2</li> </ol> <ol type="i"> <li>item 1</li> </ol> <ol type="a"> <li>item 1</li> <li>item 2</li> </ol> ''', True ) def test_bad_roman(self): """Test bad Roman numeral.""" self.check_markdown( R''' iviv. item 1 ''', R''' <p>iviv. item 1</p> ''', True ) def test_roman_start(self): """Test bad Roman numeral.""" self.check_markdown( R''' iv. item 1 v. item 2 ''', R''' <ol start="4" type="i"> <li>item 1</li> <li>item 2</li> </ol> ''', True ) def test_roman_two_spaces(self): """Test Roman numeral two space uppercase requirement.""" self.check_markdown( R''' I. item 1 I. item 2 ''', R''' <ol type="I"> <li>item 1 I. item 2</li> </ol> ''', True ) def test_roman_relaxed(self): """Test cases related to our less strict approach.""" self.check_markdown( R''' iiii. item 1 MCCCCCCVI. item 1 ''', R''' <ol start="4" type="i"> <li>item 1</li> </ol> <ol start="1606" type="I"> <li>item 1</li> </ol> ''', True ) def test_list_nested_same_line(self): """Test list nested on same line.""" self.check_markdown( R''' a) a) subitem1 b) subitem2 ''', R''' <ol type="a"> <li> <ol type="a"> <li>subitem1</li> <li>subitem2</li> </ol> </li> </ol> ''', True ) def test_indented_content(self): """Test indented content.""" self.check_markdown( R''' #. A paragraph that is short. Another paragraph. #. A sublist Another paragraph. #. A new list item. ''', R''' <ol type="1"> <li> <p>A paragraph that is short.</p> <p>Another paragraph.</p> <ol type="1"> <li>A sublist</li> </ol> <p>Another paragraph.</p> </li> <li> <p>A new list item.</p> </li> </ol> ''', True ) def test_unindented_content(self): """Test indented content with unindented lines.""" self.check_markdown( R''' #. A paragraph that is short. Another paragraph with unindented lines. #. A sublist with unindented lines. #. A new list item. ''', R''' <ol type="1"> <li> <p>A paragraph that is short.</p> <p>Another paragraph with unindented lines.</p> <ol type="1"> <li>A sublist with unindented lines.</li> </ol> </li> <li> <p>A new list item.</p> </li> </ol> ''', True ) def test_header_case(self): """Test case where list follows header.""" self.check_markdown( R''' Tight List: * # Header1 Line 1-2 - **not** a header *or* paragraph! * # Header2 Line 2-2 - not a header or paragraph! Loose List: * # Header1 Line 1-2 - *a* paragraph * # Header2 Line 2-2 - a paragraph ''', R''' <p>Tight List:</p> <ul> <li> <h1>Header1</h1> Line 1-2 - <strong>not</strong> a header <em>or</em> paragraph!</li> <li> <h1>Header2</h1> Line 2-2 - not a header or paragraph!</li> </ul> <p>Loose List:</p> <ul> <li> <h1>Header1</h1> <p>Line 1-2 - <em>a</em> paragraph</p> </li> <li> <h1>Header2</h1> <p>Line 2-2 - a paragraph</p> </li> </ul> ''', True ) def test_mixed_nesting_case(self): """Test mixed nesting case.""" self.check_markdown( R''' * item 1 * item 1-1 * item 1-2 * item 1-2-1 * item 2 * item 3 * item 4 * item 4-1 * item 4-2 * item 4-3 Paragraph under item 4-3 Paragraph under item 4 ''', R''' <ul> <li>item 1<ul> <li>item 1-1</li> <li>item 1-2<ul> <li>item 1-2-1</li> </ul> </li> </ul> </li> <li>item 2</li> <li>item 3</li> <li> <p>item 4</p> <ul> <li>item 4-1</li> <li>item 4-2</li> <li> <p>item 4-3</p> <p>Paragraph under item 4-3</p> </li> </ul> <p>Paragraph under item 4</p> </li> </ul> ''', True ) def test_tight_loose_mix(self): """Test inconsistent loose and tight list item spacing.""" self.check_markdown( R''' * item 1 * item 2 * item 3 * item 4 ''', R''' <ul> <li>item 1</li> <li> <p>item 2</p> </li> <li> <p>item 3</p> </li> <li>item 4</li> </ul> ''', True ) def test_roman_mitigation(self): """Test mitigation for conflict case with alphabetical lists.""" self.check_markdown( R''' IIIII. Roman numeral V --- VIIIII. Roman numeral X --- XXXXX. Roman numeral L --- LXXXXX. Roman numeral C --- CCCCC. Roman numeral D --- DCCCCC. Roman numeral M /// fancylists | start=5 type=I V. Alternate work around /// ''', R''' <ol start="5" type="I"> <li>Roman numeral V</li> </ol> <hr /> <ol start="10" type="I"> <li>Roman numeral X</li> </ol> <hr /> <ol start="50" type="I"> <li>Roman numeral L</li> </ol> <hr /> <ol start="100" type="I"> <li>Roman numeral C</li> </ol> <hr /> <ol start="500" type="I"> <li>Roman numeral D</li> </ol> <hr /> <ol start="1000" type="I"> <li>Roman numeral M</li> </ol> <ol start="5" type="I"> <li>Alternate work around</li> </ol> ''', True ) def test_alpha_mitigation_start(self): """Test mitigation for conflict case with Roman numeral lists with explicit start.""" self.check_markdown( R''' /// fancylists | start=3 type=a i. Workaround j. Workaround /// ''', R''' <ol start="3" type="a"> <li>Workaround</li> <li>Workaround</li> </ol> ''', True ) def test_alpha_mitigation(self): """Test mitigation for conflict case with Roman numeral lists with explicit start.""" self.check_markdown( R''' /// fancylists | type=a i. Workaround j. Workaround /// /// fancylists | type=a i) Workaround j) Workaround /// ''', R''' <ol start="9" type="a"> <li>Workaround</li> <li>Workaround</li> </ol> <ol start="9" type="a"> <li>Workaround</li> <li>Workaround</li> </ol> ''', True ) def test_alpha_mitigation_switch(self): """Test mitigation for conflict case with Roman numeral lists.""" self.check_markdown( R''' /// fancylists | type=a i. Workaround j) Workaround /// ''', R''' <ol start="9" type="a"> <li>Workaround</li> </ol> <ol start="10" type="a"> <li>Workaround</li> </ol> ''', True ) def test_alpha_mitigation_complex(self): """Test mitigation for complex conflict case with Roman numeral lists.""" self.check_markdown( R''' /// fancylists | type=a i. Workaround Workaround j. Workaround /// ''', R''' <ol start="9" type="a"> <li> <p>Workaround</p> <p>Workaround</p> </li> <li> <p>Workaround</p> </li> </ol> ''', True ) def test_alpha_mitigation_ul_ignored(self): """Test that mitigation won't target unordered lists.""" self.check_markdown( R''' /// fancylists | type=a - Workaround Workaround - Workaround /// ''', R''' <ul> <li> <p>Workaround</p> <p>Workaround</p> </li> <li> <p>Workaround</p> </li> </ul> ''', True ) def test_alpha_mitigation_generic(self): """Test that mitigation works on generic.""" self.check_markdown( R''' /// fancylists | start=9 type=a #. Workaround Workaround #. Workaround /// ''', R''' <ol start="9" type="a"> <li> <p>Workaround</p> <p>Workaround</p> </li> <li> <p>Workaround</p> </li> </ol> ''', True ) def test_alpha_mitigation_generic_no_start(self): """Test that mitigation works on generic with no start.""" self.check_markdown( R''' /// fancylists | type=a #. Workaround Workaround #. Workaround /// ''', R''' <ol type="a"> <li> <p>Workaround</p> <p>Workaround</p> </li> <li> <p>Workaround</p> </li> </ol> ''', True ) def test_mitigation_no_force_alpha(self): """Test case that can't be forced.""" self.check_markdown( R''' /// fancylists | type=a 1. Can't force /// ''', R''' <ol type="a"> <li>Can't force</li> </ol> ''', True ) def test_mitigation_bad_type(self): """Test bad type in mitigation.""" self.check_markdown( R''' /// fancylists | type=j 1. Can't force /// ''', R''' <p>/// fancylists | type=j</p> <ol type="1"> <li>Can't force ///</li> </ol> ''', True ) def test_mitigation_no_type(self): """Test no type in mitigation.""" self.check_markdown( R''' /// fancylists | a. Can't force /// ''', R''' <p>/// fancylists |</p> <ol type="a"> <li>Can't force ///</li> </ol> ''', True ) def test_mitigation_only_start(self): """Test no type in mitigation.""" self.check_markdown( R''' /// fancylists | start=5 a. item 5 /// ''', R''' <ol start="5" type="1"> <li>item 5</li> </ol> ''', True )
TestFancyLists
python
scipy__scipy
scipy/stats/_multivariate.py
{ "start": 86237, "end": 105822 }
class ____(multi_rv_generic): r"""A Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). These arguments must satisfy the relationship ``df > scale.ndim - 1``, but see notes on using the `rvs` method with ``df < scale.ndim``. Methods ------- pdf(x, df, scale) Probability density function. logpdf(x, df, scale) Log of the probability density function. rvs(df, scale, size=1, random_state=None) Draw random samples from a Wishart distribution. entropy() Compute the differential entropy of the Wishart distribution. Parameters ---------- %(_doc_default_callparams)s %(_doc_random_state)s Raises ------ scipy.linalg.LinAlgError If the scale matrix `scale` is not positive definite. See Also -------- invwishart, chi2 Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. Symmetry is not checked; only the lower triangular portion is used. The Wishart distribution is often denoted .. math:: W_p(\nu, \Sigma) where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the :math:`p \times p` scale matrix. The probability density function for `wishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} } |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )} \exp\left( -tr(\Sigma^{-1} S) / 2 \right) If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart). If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)` distribution. The algorithm [2]_ implemented by the `rvs` method may produce numerically singular matrices with :math:`p - 1 < \nu < p`; the user may wish to check for this condition and generate replacement samples as necessary. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate Generator", Applied Statistics, vol. 21, pp. 341-345, 1972. Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.stats import wishart, chi2 >>> x = np.linspace(1e-5, 8, 100) >>> w = wishart.pdf(x, df=3, scale=1); w[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> c = chi2.pdf(x, 3); c[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> plt.plot(x, w) >>> plt.show() The input quantiles can be any shape of array, as long as the last axis labels the components. Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Wishart random variable: >>> rv = wishart(df=1, scale=1) >>> # Frozen object with the same methods but holding the given >>> # degrees of freedom and scale fixed. """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """Create a frozen Wishart distribution. See `wishart_frozen` for more information. """ return wishart_frozen(df, scale, seed) def _process_parameters(self, df, scale): if scale is None: scale = 1.0 scale = np.asarray(scale, dtype=float) if scale.ndim == 0: scale = scale[np.newaxis, np.newaxis] elif scale.ndim == 1: scale = np.diag(scale) elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]: raise ValueError("Array 'scale' must be square if it is two dimensional," f" but scale.scale = {str(scale.shape)}.") elif scale.ndim > 2: raise ValueError(f"Array 'scale' must be at most two-dimensional, " f"but scale.ndim = {scale.ndim}") dim = scale.shape[0] if df is None: df = dim elif not np.isscalar(df): raise ValueError("Degrees of freedom must be a scalar.") elif df <= dim - 1: raise ValueError("Degrees of freedom must be greater than the " "dimension of scale matrix minus 1.") return dim, df, scale def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x * np.eye(dim)[:, :, np.newaxis] if x.ndim == 1: if dim == 1: x = x[np.newaxis, np.newaxis, :] else: x = np.diag(x)[:, :, np.newaxis] elif x.ndim == 2: if not x.shape[0] == x.shape[1]: raise ValueError( "Quantiles must be square if they are two dimensional," f" but x.shape = {str(x.shape)}.") x = x[:, :, np.newaxis] elif x.ndim == 3: if not x.shape[0] == x.shape[1]: raise ValueError( "Quantiles must be square in the first two dimensions " f"if they are three dimensional, but x.shape = {str(x.shape)}.") elif x.ndim > 3: raise ValueError(f"Quantiles must be at most two-dimensional with an " f"additional dimension for multiple components, " f"but x.ndim = {x.ndim}") # Now we have 3-dim array; should have shape [dim, dim, *] if not x.shape[0:2] == (dim, dim): raise ValueError('Quantiles have incompatible dimensions: should' f' be {(dim, dim)}, got {x.shape[0:2]}.') return x def _process_size(self, size): size = np.asarray(size) if size.ndim == 0: size = size[np.newaxis] elif size.ndim > 1: raise ValueError('Size must be an integer or tuple of integers;' ' thus must have dimension <= 1.' f' Got size.ndim = {str(tuple(size))}') n = size.prod() shape = tuple(size) return n, shape def _logpdf(self, x, dim, df, scale, log_det_scale, C): """Log of the Wishart probability density function. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triangular. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ # log determinant of x # Note: x has components along the last axis, so that x.T has # components alone the 0-th axis. Then since det(A) = det(A'), this # gives us a 1-dim vector of determinants # Retrieve tr(scale^{-1} x) log_det_x = np.empty(x.shape[-1]) scale_inv_x = np.empty(x.shape) tr_scale_inv_x = np.empty(x.shape[-1]) for i in range(x.shape[-1]): _, log_det_x[i] = self._cholesky_logdet(x[:, :, i]) scale_inv_x[:, :, i] = scipy.linalg.cho_solve((C, True), x[:, :, i]) tr_scale_inv_x[i] = scale_inv_x[:, :, i].trace() # Log PDF out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) - (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale + multigammaln(0.5*df, dim))) return out def logpdf(self, x, df, scale): """Log of the Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) # Cholesky decomposition of scale, get log(det(scale)) C, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale, C) return _squeeze_output(out) def pdf(self, x, df, scale): """Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """Mean of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ return df * scale def mean(self, df, scale): """Mean of the Wishart distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) def _mode(self, dim, df, scale): """Mode of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ if df >= dim + 1: out = (df-dim-1) * scale else: out = None return out def mode(self, df, scale): """Mode of the Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float or None The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) if out is not None else out def _var(self, dim, df, scale): """Variance of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ var = scale**2 diag = scale.diagonal() # 1 x dim array var += np.outer(diag, diag) var *= df return var def var(self, df, scale): """Variance of the Wishart distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) def _standard_rvs(self, n, shape, dim, df, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ # Random normal variates for off-diagonal elements n_tril = dim * (dim-1) // 2 covariances = random_state.normal( size=n*n_tril).reshape(shape+(n_tril,)) # Random chi-square variates for diagonal elements variances = (np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5 for i in range(dim)]].reshape((dim,) + shape[::-1]).T) # Create the A matri(ces) - lower triangular A = np.zeros(shape + (dim, dim)) # Input the covariances size_idx = tuple([slice(None, None, None)]*len(shape)) tril_idx = np.tril_indices(dim, k=-1) A[size_idx + tril_idx] = covariances # Input the variances diag_idx = np.diag_indices(dim) A[size_idx + diag_idx] = variances return A def _rvs(self, n, shape, dim, df, C, random_state): """Draw random samples from a Wishart distribution. Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triangular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Calculate the matrices A, which are actually lower triangular # Cholesky factorizations of a matrix B such that B ~ W(df, I) A = self._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = C A A' C', where SA ~ W(df, scale) # Note: this is the product of a (lower) (lower) (lower)' (lower)' # or, denoting B = AA', it is C B C' where C is the lower # triangular Cholesky factorization of the scale matrix. # this appears to conflict with the instructions in [1]_, which # suggest that it should be D' B D where D is the lower # triangular factorization of the scale matrix. However, it is # meant to refer to the Bartlett (1933) representation of a # Wishart random variate as L A A' L' where L is lower triangular # so it appears that understanding D' to be upper triangular # is either a typo in or misreading of [1]_. for index in np.ndindex(shape): CA = np.dot(C, A[index]) A[index] = np.dot(CA, CA.T) return A def rvs(self, df, scale, size=1, random_state=None): """Draw random samples from a Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (``dim``, ``dim``), where ``dim`` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Cholesky decomposition of scale C = scipy.linalg.cholesky(scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def _entropy(self, dim, df, log_det_scale): """Compute the differential entropy of the Wishart. Parameters ---------- dim : int Dimension of the scale matrix df : int Degrees of freedom log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'entropy' instead. """ return ( 0.5 * (dim+1) * log_det_scale + 0.5 * dim * (dim+1) * _LOG_2 + multigammaln(0.5*df, dim) - 0.5 * (df - dim - 1) * np.sum( [psi(0.5*(df + 1 - (i+1))) for i in range(dim)] ) + 0.5 * df * dim ) def entropy(self, df, scale): """Compute the differential entropy of the Wishart. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Wishart distribution Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) _, log_det_scale = self._cholesky_logdet(scale) return self._entropy(dim, df, log_det_scale) def _cholesky_logdet(self, scale): """Compute Cholesky decomposition and determine (log(det(scale)). Parameters ---------- scale : ndarray Scale matrix. Returns ------- c_decomp : ndarray The Cholesky decomposition of `scale`. logdet : scalar The log of the determinant of `scale`. Notes ----- This computation of ``logdet`` is equivalent to ``np.linalg.slogdet(scale)``. It is ~2x faster though. """ c_decomp = scipy.linalg.cholesky(scale, lower=True) logdet = 2 * np.sum(np.log(c_decomp.diagonal())) return c_decomp, logdet wishart = wishart_gen()
wishart_gen
python
mlflow__mlflow
mlflow/types/chat.py
{ "start": 3338, "end": 3424 }
class ____(BaseModel): type: AllowedType | list[AllowedType] | None = None
ParamType
python
kamyu104__LeetCode-Solutions
Python/design-skiplist.py
{ "start": 407, "end": 2897 }
class ____(object): P_NUMERATOR, P_DENOMINATOR = 1, 2 # P = 1/4 in redis implementation MAX_LEVEL = 32 # enough for 2^32 elements def __init__(self): self.__head = SkipNode() self.__len = 0 def search(self, target): """ :type target: int :rtype: bool """ return True if self.__find(target, self.__find_prev_nodes(target)) else False def add(self, num): """ :type num: int :rtype: None """ node = SkipNode(self.__random_level(), num) if len(self.__head.nexts) < len(node.nexts): self.__head.nexts.extend([None]*(len(node.nexts)-len(self.__head.nexts))) prevs = self.__find_prev_nodes(num) for i in xrange(len(node.nexts)): node.nexts[i] = prevs[i].nexts[i] prevs[i].nexts[i] = node self.__len += 1 def erase(self, num): """ :type num: int :rtype: bool """ prevs = self.__find_prev_nodes(num) curr = self.__find(num, prevs) if not curr: return False self.__len -= 1 for i in reversed(xrange(len(curr.nexts))): prevs[i].nexts[i] = curr.nexts[i] if not self.__head.nexts[i]: self.__head.nexts.pop() return True def __find(self, num, prevs): if prevs: candidate = prevs[0].nexts[0] if candidate and candidate.num == num: return candidate return None def __find_prev_nodes(self, num): prevs = [None]*len(self.__head.nexts) curr = self.__head for i in reversed(xrange(len(self.__head.nexts))): while curr.nexts[i] and curr.nexts[i].num < num: curr = curr.nexts[i] prevs[i] = curr return prevs def __random_level(self): level = 1 while random.randint(1, Skiplist.P_DENOMINATOR) <= Skiplist.P_NUMERATOR and \ level < Skiplist.MAX_LEVEL: level += 1 return level def __len__(self): return self.__len def __str__(self): result = [] for i in reversed(xrange(len(self.__head.nexts))): result.append([]) curr = self.__head.nexts[i] while curr: result[-1].append(str(curr.num)) curr = curr.nexts[i] return "\n".join(map(lambda x: "->".join(x), result))
Skiplist
python
pytorch__pytorch
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
{ "start": 992, "end": 1538 }
class ____(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU()) self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU()) self.net3 = nn.Sequential(nn.Linear(32, 64), nn.ReLU()) self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8)) def forward(self, x): return self.net4(self.net3(self.net2(self.net1(x)))) def get_input(self): return torch.rand(8, 8, device=device_type.type)
TestDummyModel
python
dagster-io__dagster
helm/dagster/schema/schema/charts/utils/kubernetes.py
{ "start": 2805, "end": 2986 }
class ____(BaseModel): model_config = { "extra": "allow", "json_schema_extra": {"$ref": create_definition_ref("io.k8s.api.core.v1.Container")}, }
InitContainer
python
google__pytype
pytype/tools/traces/traces_test.py
{ "start": 8401, "end": 9452 }
class ____(MatchAstTestCase): def test_num(self): matches = self._get_traces("v = 42", ast.Constant) self.assertTracesEqual(matches, [((1, 4), "LOAD_CONST", 42, ("int",))]) def test_str(self): matches = self._get_traces("v = 'hello'", ast.Constant) self.assertTracesEqual(matches, [((1, 4), "LOAD_CONST", "hello", ("str",))]) def test_unicode(self): matches = self._get_traces("v = u'hello'", ast.Constant) self.assertTracesEqual(matches, [((1, 4), "LOAD_CONST", "hello", ("str",))]) def test_bytes(self): matches = self._get_traces("v = b'hello'", ast.Constant) self.assertTracesEqual( matches, [((1, 4), "LOAD_CONST", b"hello", ("bytes",))]) def test_bool(self): matches = self._get_traces("v = True", ast.Constant) self.assertTracesEqual(matches, [((1, 4), "LOAD_CONST", True, ("bool",))]) def test_ellipsis(self): matches = self._get_traces("v = ...", ast.Constant) self.assertTracesEqual( matches, [((1, 4), "LOAD_CONST", Ellipsis, ("ellipsis",))])
MatchConstantTest
python
ray-project__ray
python/ray/train/v2/api/result.py
{ "start": 735, "end": 4859 }
class ____(ResultV1): checkpoint: Optional[Checkpoint] error: Optional[TrainingFailedError] best_checkpoints: Optional[List[Tuple[Checkpoint, Dict[str, Any]]]] = None @PublicAPI(stability="alpha") def get_best_checkpoint( self, metric: str, mode: str ) -> Optional["ray.train.Checkpoint"]: return super().get_best_checkpoint(metric, mode) @classmethod def from_path( cls, path: Union[str, os.PathLike], storage_filesystem: Optional[pyarrow.fs.FileSystem] = None, ) -> "Result": """Restore a training result from a previously saved training run path. Args: path: Path to the run output directory storage_filesystem: Optional filesystem to use for accessing the path Returns: Result object with restored checkpoints and metrics """ fs, fs_path = get_fs_and_path(str(path), storage_filesystem) # Validate that the experiment directory exists if not _exists_at_fs_path(fs, fs_path): raise RuntimeError(f"Experiment folder {fs_path} doesn't exist.") # Remove trailing slashes to handle paths correctly # os.path.basename() returns empty string for paths with trailing slashes fs_path = fs_path.rstrip("/") storage_path, experiment_dir_name = os.path.dirname(fs_path), os.path.basename( fs_path ) storage_context = StorageContext( storage_path=storage_path, experiment_dir_name=experiment_dir_name, storage_filesystem=fs, ) # Validate that the checkpoint manager snapshot file exists if not _exists_at_fs_path( storage_context.storage_filesystem, storage_context.checkpoint_manager_snapshot_path, ): raise RuntimeError( f"Failed to restore the Result object: " f"{CHECKPOINT_MANAGER_SNAPSHOT_FILENAME} doesn't exist in the " f"experiment folder. Make sure that this is an output directory created by a Ray Train run." ) checkpoint_manager = CheckpointManager( storage_context=storage_context, checkpoint_config=CheckpointConfig(), ) # When we build a Result object from checkpoints, the error is not loaded. return cls._from_checkpoint_manager( checkpoint_manager=checkpoint_manager, storage_context=storage_context, ) @classmethod def _from_checkpoint_manager( cls, checkpoint_manager: CheckpointManager, storage_context: StorageContext, error: Optional[TrainingFailedError] = None, ) -> "Result": """Create a Result object from a CheckpointManager.""" latest_checkpoint_result = checkpoint_manager.latest_checkpoint_result if latest_checkpoint_result: latest_metrics = latest_checkpoint_result.metrics latest_checkpoint = latest_checkpoint_result.checkpoint else: latest_metrics = None latest_checkpoint = None best_checkpoints = [ (r.checkpoint, r.metrics) for r in checkpoint_manager.best_checkpoint_results ] # Provide the history of metrics attached to checkpoints as a dataframe. metrics_dataframe = None if best_checkpoints: metrics_dataframe = pd.DataFrame([m for _, m in best_checkpoints]) return Result( metrics=latest_metrics, checkpoint=latest_checkpoint, error=error, path=storage_context.experiment_fs_path, best_checkpoints=best_checkpoints, metrics_dataframe=metrics_dataframe, _storage_filesystem=storage_context.storage_filesystem, ) @property @Deprecated def config(self) -> Optional[Dict[str, Any]]: raise DeprecationWarning( "The `config` property for a `ray.train.Result` is deprecated, " "since it is only relevant in the context of Ray Tune." )
Result
python
pytorch__pytorch
test/inductor/test_lookup_table.py
{ "start": 1547, "end": 2822 }
class ____(MMKernelInputs): """Mock MMKernelInputs that subclasses the real class and uses real tensors""" def __init__( self, tensors: list[torch.Tensor], scalars: Optional[dict[str, Union[float, int]]] = None, mat1_idx: int = -2, mat2_idx: int = -1, ): """Initialize with real tensors, creating mock nodes for the base class""" mock_nodes = [MockTensorNode(t) for t in tensors] super().__init__(mock_nodes, scalars, mat1_idx=mat1_idx, mat2_idx=mat2_idx) self.tensors = tensors # Keep reference to original tensors def shapes_hinted(self) -> tuple[tuple[int, ...], ...]: """Delegate to symbolic since real tensors already have int shapes""" return self.shapes_symbolic() def strides_hinted(self) -> tuple[tuple[int, ...], ...]: """Delegate to symbolic since real tensors already have int strides""" return self.strides_symbolic() # pyre-ignore def mnk_hinted(self) -> tuple[int, int, int]: """Delegate to symbolic since real tensors already have int dimensions""" return self.mnk_symbolic() # pyre-ignore @property def device_type(self) -> Optional[str]: return self.tensors[0].device.type
MockMMKernelInputs
python
apache__airflow
task-sdk/tests/task_sdk/definitions/test_callback.py
{ "start": 1548, "end": 6717 }
class ____: @pytest.mark.parametrize( ("subclass", "callable"), [ pytest.param(AsyncCallback, empty_async_callback_for_deadline_tests, id="async"), pytest.param(SyncCallback, empty_sync_callback_for_deadline_tests, id="sync"), ], ) def test_init_error_reserved_kwarg(self, subclass, callable): with pytest.raises(ValueError, match="context is a reserved kwarg for this class"): subclass(callable, {"context": None}) @pytest.mark.parametrize( ("callback_callable", "expected_path"), [ pytest.param( empty_sync_callback_for_deadline_tests, qualname(empty_sync_callback_for_deadline_tests), id="valid_sync_callable", ), pytest.param( empty_async_callback_for_deadline_tests, qualname(empty_async_callback_for_deadline_tests), id="valid_async_callable", ), pytest.param(TEST_CALLBACK_PATH, TEST_CALLBACK_PATH, id="valid_path_string"), pytest.param(lambda x: x, None, id="lambda_function"), pytest.param(TEST_CALLBACK_PATH + " ", TEST_CALLBACK_PATH, id="path_with_whitespace"), pytest.param(UNIMPORTABLE_DOT_PATH, UNIMPORTABLE_DOT_PATH, id="valid_format_not_importable"), ], ) def test_get_callback_path_happy_cases(self, callback_callable, expected_path): path = Callback.get_callback_path(callback_callable) if expected_path is None: assert path.endswith("<lambda>") else: assert path == expected_path @pytest.mark.parametrize( ("callback_callable", "error_type"), [ pytest.param(42, ImportError, id="not_a_string"), pytest.param("", ImportError, id="empty_string"), pytest.param("os.path", AttributeError, id="non_callable_module"), ], ) def test_get_callback_path_error_cases(self, callback_callable, error_type): expected_message = "" if error_type is ImportError: expected_message = "doesn't look like a valid dot path." elif error_type is AttributeError: expected_message = "is not callable." with pytest.raises(error_type, match=expected_message): Callback.get_callback_path(callback_callable) @pytest.mark.parametrize( ("callback1_args", "callback2_args", "should_equal"), [ pytest.param( (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), True, id="identical", ), pytest.param( (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (UNIMPORTABLE_DOT_PATH, TEST_CALLBACK_KWARGS), False, id="different_path", ), pytest.param( (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (TEST_CALLBACK_PATH, {"other": "kwargs"}), False, id="different_kwargs", ), pytest.param((TEST_CALLBACK_PATH, None), (TEST_CALLBACK_PATH, None), True, id="both_no_kwargs"), ], ) def test_callback_equality(self, callback1_args, callback2_args, should_equal): callback1 = AsyncCallback(*callback1_args) callback2 = AsyncCallback(*callback2_args) assert (callback1 == callback2) == should_equal @pytest.mark.parametrize( ("callback_class", "args1", "args2", "should_be_same_hash"), [ pytest.param( AsyncCallback, (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), True, id="async_identical", ), pytest.param( SyncCallback, (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), True, id="sync_identical", ), pytest.param( AsyncCallback, (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (UNIMPORTABLE_DOT_PATH, TEST_CALLBACK_KWARGS), False, id="async_different_path", ), pytest.param( SyncCallback, (TEST_CALLBACK_PATH, TEST_CALLBACK_KWARGS), (TEST_CALLBACK_PATH, {"other": "kwargs"}), False, id="sync_different_kwargs", ), pytest.param( AsyncCallback, (TEST_CALLBACK_PATH, None), (TEST_CALLBACK_PATH, None), True, id="async_no_kwargs", ), ], ) def test_callback_hash_and_set_behavior(self, callback_class, args1, args2, should_be_same_hash): callback1 = callback_class(*args1) callback2 = callback_class(*args2) assert (hash(callback1) == hash(callback2)) == should_be_same_hash
TestCallback
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocolModule2.py
{ "start": 413, "end": 545 }
class ____(Protocol): var_1: str # This should generate an error because var_1 has the # wrong type. v2: P2 = protocolModule1
P2
python
realpython__materials
python-import/namespace_package/third_party/serializers/json.py
{ "start": 49, "end": 391 }
class ____: def __init__(self): self._current_object = None def start_object(self, object_name, object_id): self._current_object = dict(id=object_id) def add_property(self, name, value): self._current_object[name] = value def __str__(self): return json.dumps(self._current_object)
JsonSerializer
python
scikit-image__scikit-image
src/skimage/transform/_thin_plate_splines.py
{ "start": 165, "end": 8124 }
class ____: """Thin-plate spline transformation. Given two matching sets of points, source and destination, this class estimates the thin-plate spline (TPS) transformation which transforms each point in source into its destination counterpart. Attributes ---------- src : (N, 2) array_like Coordinates of control points in source image. References ---------- .. [1] Bookstein, Fred L. "Principal warps: Thin-plate splines and the decomposition of deformations," IEEE Transactions on pattern analysis and machine intelligence 11.6 (1989): 567–585. DOI:`10.1109/34.24792` https://user.engineering.uiowa.edu/~aip/papers/bookstein-89.pdf Examples -------- >>> import skimage as ski Define source and destination control points such that they simulate rotating by 90 degrees and generate a meshgrid from them: >>> src = np.array([[0, 0], [0, 5], [5, 5], [5, 0]]) >>> dst = np.array([[5, 0], [0, 0], [0, 5], [5, 5]]) Estimate the transformation: >>> tps = ski.transform.ThinPlateSplineTransform.from_estimate(src, dst) Appyling the transformation to `src` approximates `dst`: >>> np.round(tps(src), 4) # doctest: +FLOAT_CMP array([[5., 0.], [0., 0.], [0., 5.], [5., 5.]]) Create a meshgrid to apply the transformation to: >>> grid = np.meshgrid(np.arange(5), np.arange(5)) >>> grid[1] array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]]) >>> coords = np.vstack([grid[0].ravel(), grid[1].ravel()]).T >>> transformed = tps(coords) >>> np.round(transformed[:, 1]).reshape(5, 5).astype(int) array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) The estimation can fail - for example, if all the input or output points are the same. If this happens, you will get a transform that is not "truthy" - meaning that ``bool(tform)`` is ``False``: >>> if tps: ... print("Estimation succeeded.") Estimation succeeded. Not so for a degenerate transform with identical points. >>> bad_src = np.ones((4, 2)) >>> bad_tps = ski.transform.ThinPlateSplineTransform.from_estimate( ... bad_src, dst) >>> if not bad_tps: ... print("Estimation failed.") Estimation failed. Trying to use this failed estimation transform result will give a suitable error: >>> bad_tps.params # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... FailedEstimationAccessError: No attribute "params" for failed estimation ... """ def __init__(self): self._estimated = False self._spline_mappings = None self.src = None def __call__(self, coords): """Estimate the transformation from a set of corresponding points. Parameters ---------- coords : (N, 2) array_like x, y coordinates to transform Returns ------- transformed_coords: (N, D) array Destination coordinates """ if self._spline_mappings is None: msg = ( "Transformation is undefined, define it by calling `estimate` " "before applying it" ) raise ValueError(msg) coords = np.array(coords) if coords.ndim != 2 or coords.shape[1] != 2: msg = "Input `coords` must have shape (N, 2)" raise ValueError(msg) radial_dist = self._radial_distance(coords) transformed_coords = self._spline_function(coords, radial_dist) return transformed_coords @property def inverse(self): raise NotImplementedError("Not supported") @classmethod def from_estimate(cls, src, dst) -> Self | FailedEstimation: """Estimate optimal spline mappings between source and destination points. Parameters ---------- src : (N, 2) array_like Control points at source coordinates. dst : (N, 2) array_like Control points at destination coordinates. Returns ------- tform : Self or ``FailedEstimation`` An instance of the transformation if the estimation succeeded. Otherwise, we return a special ``FailedEstimation`` object to signal a failed estimation. Testing the truth value of the failed estimation object will return ``False``. E.g. .. code-block:: python tform = ThinPlateSplineTransform.from_estimate(...) if not tform: raise RuntimeError(f"Failed estimation: {tf}") Notes ----- The number N of source and destination points must match. """ tf = cls() msg = tf._estimate(src, dst) return tf if msg is None else FailedEstimation(f'{cls.__name__}: {msg}') def _estimate(self, src, dst): """Try to estimate and return reason if estimation fails.""" check_nD(src, 2, arg_name="src") check_nD(dst, 2, arg_name="dst") if src.shape[0] < 3 or dst.shape[0] < 3: msg = "Need at least 3 points in in `src` and `dst`" raise ValueError(msg) if src.shape != dst.shape: msg = f"Shape of `src` and `dst` didn't match, {src.shape} != {dst.shape}" raise ValueError(msg) self.src = src n, d = src.shape dist = distance_matrix(src, src) K = self._radial_basis_kernel(dist) P = np.hstack([np.ones((n, 1)), src]) n_plus_3 = n + 3 L = np.zeros((n_plus_3, n_plus_3), dtype=np.float32) L[:n, :n] = K L[:n, -3:] = P L[-3:, :n] = P.T V = np.vstack([dst, np.zeros((d + 1, d))]) try: self._spline_mappings = np.linalg.solve(L, V) except np.linalg.LinAlgError: return 'Unable to solve for spline mappings' return None def _radial_distance(self, coords): """Compute the radial distance between input points and source points.""" dists = distance_matrix(coords, self.src) return self._radial_basis_kernel(dists) def _spline_function(self, coords, radial_dist): """Estimate the spline function in X and Y directions.""" n = self.src.shape[0] w = self._spline_mappings[:n] a = self._spline_mappings[n:] transformed_coords = a[0] + np.dot(coords, a[1:]) + np.dot(radial_dist, w) return transformed_coords @staticmethod def _radial_basis_kernel(r): """Compute the radial basis function for thin-plate splines. Parameters ---------- r : (4, N) ndarray Input array representing the Euclidean distance between each pair of two collections of control points. Returns ------- U : (4, N) ndarray Calculated kernel function U. """ _small = 1e-8 # Small value to avoid divide-by-zero r_sq = r**2 U = np.where(r == 0.0, 0.0, r_sq * np.log(r_sq + _small)) return U @_deprecate_estimate def estimate(self, src, dst): """Estimate optimal spline mappings between source and destination points. Parameters ---------- src : (N, 2) array_like Control points at source coordinates. dst : (N, 2) array_like Control points at destination coordinates. Returns ------- success: bool True indicates that the estimation was successful. Notes ----- The number N of source and destination points must match. """ return self._estimate(src, dst) is None
ThinPlateSplineTransform
python
walkccc__LeetCode
solutions/22. Generate Parentheses/22.py
{ "start": 0, "end": 368 }
class ____: def generateParenthesis(self, n): ans = [] def dfs(l: int, r: int, s: list[str]) -> None: if l == 0 and r == 0: ans.append(''.join(s)) if l > 0: s.append('(') dfs(l - 1, r, s) s.pop() if l < r: s.append(')') dfs(l, r - 1, s) s.pop() dfs(n, n, []) return ans
Solution
python
doocs__leetcode
solution/1700-1799/1762.Buildings With an Ocean View/Solution.py
{ "start": 0, "end": 279 }
class ____: def findBuildings(self, heights: List[int]) -> List[int]: ans = [] mx = 0 for i in range(len(heights) - 1, -1, -1): if heights[i] > mx: ans.append(i) mx = heights[i] return ans[::-1]
Solution
python
scrapy__scrapy
tests/mockserver/http_resources.py
{ "start": 4190, "end": 4651 }
class ____(LeafResource): def render_GET(self, request): request.startedWriting = 1 self.deferRequest(request, 0, self._delayedRender, request) return NOT_DONE_YET render_POST = render_GET def _delayedRender(self, request): raw = getarg(request, b"raw", b"HTTP 1.1 200 OK\n") request.startedWriting = 1 request.write(raw) request.channel.transport.loseConnection() request.finish()
Raw
python
gevent__gevent
src/greentest/3.14/test_urllib2.py
{ "start": 17172, "end": 17556 }
class ____(urllib.request.HTTPHandler): # Very simple mock HTTP handler with no special behavior other than using a mock HTTP connection def __init__(self, debuglevel=None): super(MockHTTPHandler, self).__init__(debuglevel=debuglevel) self.httpconn = MockHTTPClass() def http_open(self, req): return self.do_open(self.httpconn, req)
MockHTTPHandler
python
allegroai__clearml
clearml/backend_api/services/v2_13/tasks.py
{ "start": 336038, "end": 340277 }
class ____(Request): """ Publish tasks :param ids: Entities to move :type ids: Sequence[str] :param status_reason: Reason for status change :type status_reason: str :param status_message: Extra information regarding status change :type status_message: str :param force: If not true, call fails if the task status is not 'stopped' :type force: bool :param publish_model: Indicates that the task output model (if exists) should be published. Optional, the default value is True. :type publish_model: bool """ _service = "tasks" _action = "publish_many" _version = "2.13" _schema = { "definitions": {}, "properties": { "force": { "default": False, "description": "If not true, call fails if the task status is not 'stopped'", "type": "boolean", }, "ids": { "description": "Entities to move", "items": {"type": "string"}, "type": "array", }, "publish_model": { "description": "Indicates that the task output model (if exists) should be published. Optional, the default value is True.", "type": "boolean", }, "status_message": { "description": "Extra information regarding status change", "type": "string", }, "status_reason": { "description": "Reason for status change", "type": "string", }, }, "required": ["ids"], "type": "object", } def __init__( self, ids: List[str], status_reason: Optional[str] = None, status_message: Optional[str] = None, force: Optional[bool] = False, publish_model: Optional[bool] = None, **kwargs: Any ) -> None: super(PublishManyRequest, self).__init__(**kwargs) self.ids = ids self.status_reason = status_reason self.status_message = status_message self.force = force self.publish_model = publish_model @schema_property("ids") def ids(self) -> List[str]: return self._property_ids @ids.setter def ids(self, value: List[str]) -> None: if value is None: self._property_ids = None return self.assert_isinstance(value, "ids", (list, tuple)) self.assert_isinstance(value, "ids", six.string_types, is_array=True) self._property_ids = value @schema_property("status_reason") def status_reason(self) -> Optional[str]: return self._property_status_reason @status_reason.setter def status_reason(self, value: Optional[str]) -> None: if value is None: self._property_status_reason = None return self.assert_isinstance(value, "status_reason", six.string_types) self._property_status_reason = value @schema_property("status_message") def status_message(self) -> Optional[str]: return self._property_status_message @status_message.setter def status_message(self, value: Optional[str]) -> None: if value is None: self._property_status_message = None return self.assert_isinstance(value, "status_message", six.string_types) self._property_status_message = value @schema_property("force") def force(self) -> Optional[bool]: return self._property_force @force.setter def force(self, value: Optional[bool]) -> None: if value is None: self._property_force = None return self.assert_isinstance(value, "force", (bool,)) self._property_force = value @schema_property("publish_model") def publish_model(self) -> Optional[bool]: return self._property_publish_model @publish_model.setter def publish_model(self, value: Optional[bool]) -> None: if value is None: self._property_publish_model = None return self.assert_isinstance(value, "publish_model", (bool,)) self._property_publish_model = value
PublishManyRequest
python
apache__airflow
providers/opensearch/src/airflow/providers/opensearch/operators/opensearch.py
{ "start": 4389, "end": 5724 }
class ____(BaseOperator): """ Create a new index on an OpenSearch cluster with a given index name. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpenSearchCreateIndexOperator` :param index_name: The name of the index to be created. :param index_body: A dictionary that defines index settings :param opensearch_conn_id: opensearch connection to use """ def __init__( self, *, index_name: str, index_body: dict[str, Any], opensearch_conn_id: str = "opensearch_default", **kwargs, ) -> None: super().__init__(**kwargs) self.index_name = index_name self.index_body = index_body self.opensearch_conn_id = opensearch_conn_id @cached_property def hook(self) -> OpenSearchHook: """Get an instance of an OpenSearchHook.""" return OpenSearchHook(open_search_conn_id=self.opensearch_conn_id, log_query=False) def execute(self, context: Context) -> Any: """Create an index on an OpenSearch cluster.""" try: self.hook.client.indices.create(index=self.index_name, body=self.index_body) except OpenSearchException as e: raise AirflowException(e)
OpenSearchCreateIndexOperator
python
pyinstaller__pyinstaller
bootloader/waflib/Tools/cs.py
{ "start": 4175, "end": 4439 }
class ____(Task.Task): color = 'YELLOW' inst_to = None def runnable_status(self): return Task.SKIP_ME @conf def read_csshlib(self, name, paths=[]): return self(name=name, features='fake_lib', lib_paths=paths, lib_type='csshlib')
fake_csshlib
python
huggingface__transformers
src/transformers/models/modernbert/modeling_modernbert.py
{ "start": 22530, "end": 24600 }
class ____(GradientCheckpointingLayer): def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None): super().__init__() self.config = config if layer_id == 0: self.attn_norm = nn.Identity() else: self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) self.attn = ModernBertAttention(config=config, layer_id=layer_id) self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias) self.mlp = ModernBertMLP(config) self.attention_type = config.layer_types[layer_id] @torch.compile(dynamic=True) def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.mlp(self.mlp_norm(hidden_states)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, sliding_window_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None, position_embeddings: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: attn_outputs = self.attn( self.attn_norm(hidden_states), attention_mask=attention_mask, sliding_window_mask=sliding_window_mask, position_ids=position_ids, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = hidden_states + attn_outputs[0] mlp_output = ( self.compiled_mlp(hidden_states) if self.config.reference_compile else self.mlp(self.mlp_norm(hidden_states)) ) hidden_states = hidden_states + mlp_output return (hidden_states,) + attn_outputs[1:] # add attentions if outputted @auto_docstring
ModernBertEncoderLayer
python
astropy__astropy
astropy/modeling/projections.py
{ "start": 16099, "end": 16407 }
class ____(Sky2PixProjection, Zenithal): r""" Zenithal equidistant projection - sky to pixel. Corresponds to the ``ARC`` projection in FITS WCS. See `Zenithal` for a definition of the full transformation. .. math:: R_\theta = 90^\circ - \theta """
Sky2Pix_ZenithalEquidistant
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/math_ops/banded_triangular_solve_op_test.py
{ "start": 960, "end": 8924 }
class ____(test.TestCase): def _verifySolveAllWays(self, x, y, dtypes, batch_dims=None): for lower in (False,): for adjoint in (False, True): for use_placeholder in True, False: self._verifySolve( x, y, lower=lower, adjoint=adjoint, batch_dims=batch_dims, use_placeholder=use_placeholder, dtypes=dtypes) def _verifySolveAllWaysReal(self, x, y, batch_dims=None): self._verifySolveAllWays(x, y, (np.float32, np.float64), batch_dims) def _verifySolveAllWaysComplex(self, x, y, batch_dims=None): self._verifySolveAllWays(x, y, (np.complex64, np.complex128), batch_dims) def _verifySolve(self, x, y, lower=True, adjoint=False, batch_dims=None, use_placeholder=False, dtypes=(np.float32, np.float64)): for np_type in dtypes: a = x.astype(np_type) b = y.astype(np_type) # Now we need to convert a to a dense triangular matrix. def make_diags(diags, lower=True): n = len(diags[0]) a = np.zeros(n * n, dtype=diags.dtype) if lower: for i, diag in enumerate(diags): a[n * i:n * n:n + 1] = diag[i:] else: diags_flip = np.flip(diags, 0) for i, diag in enumerate(diags_flip): a[i:(n - i) * n:n + 1] = diag[:(n - i)] return a.reshape(n, n) # For numpy.solve we have to explicitly zero out the strictly # upper or lower triangle. if a.size > 0: a_np = make_diags(a, lower=lower) else: a_np = a if adjoint: a_np = np.conj(np.transpose(a_np)) if batch_dims is not None: a = np.tile(a, batch_dims + [1, 1]) a_np = np.tile(a_np, batch_dims + [1, 1]) b = np.tile(b, batch_dims + [1, 1]) with self.cached_session(): a_tf = a b_tf = b if use_placeholder: a_tf = array_ops.placeholder_with_default(a_tf, shape=None) b_tf = array_ops.placeholder_with_default(b_tf, shape=None) tf_ans = linalg_ops.banded_triangular_solve( a_tf, b_tf, lower=lower, adjoint=adjoint) tf_val = self.evaluate(tf_ans) np_ans = np.linalg.solve(a_np, b) self.assertEqual(np_ans.shape, tf_val.shape) self.assertAllClose(np_ans, tf_val) @test_util.run_deprecated_v1 def testSolve(self): # 1x1 matrix, single rhs. matrix = np.array([[0.1]]) rhs0 = np.array([[1.]]) self._verifySolveAllWaysReal(matrix, rhs0) # 2x2 matrix with 2 bands, single right-hand side. # Corresponds to the lower triangular # [[1., 0.], [3., 4.]] # and upper triangular # [[2., 1.], [0., 3.]] matrix = np.array([[1., 4.], [2., 3.]]) rhs0 = np.array([[1.], [1.]]) self._verifySolveAllWaysReal(matrix, rhs0) # 2x2 matrix with 2 bands, 3 right-hand sides. rhs1 = np.array([[1., 0., 1.], [0., 1., 1.]]) self._verifySolveAllWaysReal(matrix, rhs1) # 4 x 4 matrix with 2 bands, 3 right hand sides. # Corresponds to the lower triangular # [[1., 0., 0., 0.], # [-1., 2., 0., 0.], # [0., -2., 3., 0.], # [0., 0., -3., 4.]] # and upper triangular # [[1., 1., 0., 0.], # [0., -1., 2., 0.], # [0., 0., -2., 3.], # [0., 0., 0., -3.]] matrix = np.array([[1., 2., 3., 4.], [1., -1., -2., -3.]]) rhs0 = np.array([[1., 0., 1.], [0., 1., 1.], [-1., 2., 1.], [0., -1., -1.]]) self._verifySolveAllWaysReal(matrix, rhs0) def testSolveBandSizeSmaller(self): rhs0 = np.random.randn(6, 4) # 6 x 6 matrix with 2 bands. Ensure all non-zero entries. matrix = 2. * np.random.uniform(size=[3, 6]) + 1. self._verifySolveAllWaysReal(matrix, rhs0) # 6 x 6 matrix with 3 bands. Ensure all non-zero entries. matrix = 2. * np.random.uniform(size=[3, 6]) + 1. self._verifySolveAllWaysReal(matrix, rhs0) @test.disable_with_predicate( pred=test.is_built_with_rocm, skip_message="ROCm does not support BLAS operations for complex types") @test_util.run_deprecated_v1 def testSolveComplex(self): # 1x1 matrix, single rhs. matrix = np.array([[0.1 + 1j * 0.1]]) rhs0 = np.array([[1. + 1j]]) self._verifySolveAllWaysComplex(matrix, rhs0) # 2x2 matrix with 2 bands, single right-hand side. # Corresponds to # [[1. + 1j, 0.], [4 + 1j, 2 + 1j]] matrix = np.array([[1., 2.], [3., 4.]]).astype(np.complex64) matrix += 1j * matrix rhs0 = np.array([[1.], [1.]]).astype(np.complex64) rhs0 += 1j * rhs0 self._verifySolveAllWaysComplex(matrix, rhs0) # 2x2 matrix with 2 bands, 3 right-hand sides. rhs1 = np.array([[1., 0., 1.], [0., 1., 1.]]).astype(np.complex64) rhs1 += 1j * rhs1 self._verifySolveAllWaysComplex(matrix, rhs1) @test_util.run_deprecated_v1 def testSolveBatch(self): matrix = np.array([[1., 2.], [3., 4.]]) rhs = np.array([[1., 0., 1.], [0., 1., 1.]]) # Batch of 2x3x2x2 matrices, 2x3x2x3 right-hand sides. self._verifySolveAllWaysReal(matrix, rhs, batch_dims=[2, 3]) # Batch of 3x2x2x2 matrices, 3x2x2x3 right-hand sides. self._verifySolveAllWaysReal(matrix, rhs, batch_dims=[3, 2]) matrix = np.array([[1., 2., 3., 4.], [-1., -2., -3., -4.], [-1., 1., 2., 3.]]) rhs = np.array([[-1., 2.], [1., 1.], [0., 1.], [2., 3.]]) # Batch of 2x3x4x4 matrices with 3 bands, 2x3x4x2 right-hand sides. self._verifySolveAllWaysReal(matrix, rhs, batch_dims=[2, 3]) # Batch of 3x2x4x4 matrices with 3 bands, 3x2x4x2 right-hand sides. self._verifySolveAllWaysReal(matrix, rhs, batch_dims=[3, 2]) @test.disable_with_predicate( pred=test.is_built_with_rocm, skip_message="ROCm does not support BLAS operations for complex types") @test_util.run_deprecated_v1 def testSolveBatchComplex(self): matrix = np.array([[1., 2.], [3., 4.]]).astype(np.complex64) matrix += 1j * matrix rhs = np.array([[1., 0., 1.], [0., 1., 1.]]).astype(np.complex64) rhs += 1j * rhs # Batch of 2x3x2x2 matrices, 2x3x2x3 right-hand sides. self._verifySolveAllWaysComplex(matrix, rhs, batch_dims=[2, 3]) # Batch of 3x2x2x2 matrices, 3x2x2x3 right-hand sides. self._verifySolveAllWaysComplex(matrix, rhs, batch_dims=[3, 2]) @test_util.run_deprecated_v1 def testWrongDimensions(self): # The matrix should have the same number of rows as the # right-hand sides. matrix = np.array([[1., 1.], [1., 1.]]) rhs = np.array([[1., 0.]]) with self.cached_session(): with self.assertRaises(ValueError): self._verifySolve(matrix, rhs) with self.assertRaises(ValueError): self._verifySolve(matrix, rhs, batch_dims=[2, 3]) # Number of bands exceeds the dimension of the matrix. matrix = np.ones((6, 4)) rhs = np.ones((4, 2)) with self.cached_session(): with self.assertRaises(ValueError): self._verifySolve(matrix, rhs) with self.assertRaises(ValueError): self._verifySolve(matrix, rhs, batch_dims=[2, 3]) @test_util.run_deprecated_v1 @test_util.disable_xla("XLA cannot throw assertion errors during a kernel.") def testNotInvertible(self): # The input should be invertible. # The matrix is singular because it has a zero on the diagonal. # FIXME(rmlarsen): The GPU kernel does not check for singularity. singular_matrix = np.array([[1., 0., -1.], [-1., 0., 1.], [0., -1., 1.]]) with self.cached_session(): with self.assertRaisesOpError("Input matrix is not invertible."): self._verifySolve(singular_matrix, singular_matrix) with self.assertRaisesOpError("Input matrix is not invertible."): self._verifySolve(singular_matrix, singular_matrix, batch_dims=[2, 3]) if __name__ == "__main__": test.main()
BandedTriangularSolveOpTest
python
openai__openai-python
src/openai/types/evals/create_eval_completions_run_data_source.py
{ "start": 1746, "end": 1913 }
class ____(BaseModel): id: str """The identifier of the file.""" type: Literal["file_id"] """The type of jsonl source. Always `file_id`."""
SourceFileID
python
ansible__ansible
test/units/module_utils/datatag/test_datatag.py
{ "start": 30535, "end": 32713 }
class ____(AnsibleTaggedObject): """A surrogate test type that allows empty tags.""" __slots__ = ('_ansible_tags_mapping', '_value') _empty_tags_as_native: t.ClassVar[bool] = False _value: str def __init__(self, value: str): self._ansible_tags_mapping = _EMPTY_INTERNAL_TAGS_MAPPING def test_helper_untag(): """Validate the behavior of the `AnsibleTagHelper.untag` method.""" value = AnsibleTagHelper.tag("value", tags=[ExampleSingletonTag(), ExampleTagWithContent(content_str="blah")]) assert len(AnsibleTagHelper.tag_types(value)) == 2 less_est = AnsibleTagHelper.untag(value, ExampleSingletonTag) assert AnsibleTagHelper.tag_types(less_est) == {ExampleTagWithContent} no_tags_explicit = AnsibleTagHelper.untag(value, ExampleSingletonTag, ExampleTagWithContent) assert type(no_tags_explicit) is str # pylint: disable=unidiomatic-typecheck no_tags_implicit = AnsibleTagHelper.untag(value) assert type(no_tags_implicit) is str # pylint: disable=unidiomatic-typecheck untagged_value = "not a tagged value" assert AnsibleTagHelper.untag(untagged_value) is untagged_value tagged_empty_tags_ok_value = ExampleSingletonTag().tag(NonNativeTaggedType("blah")) untagged_empty_tags_ok_value = AnsibleTagHelper.untag(tagged_empty_tags_ok_value) assert type(untagged_empty_tags_ok_value) is NonNativeTaggedType # pylint: disable=unidiomatic-typecheck assert not AnsibleTagHelper.tags(untagged_empty_tags_ok_value) def test_serializable_dataclass_with_tuple() -> None: """Validate that dataclass deserialization converts inbound lists for tuple-typed fields.""" @dataclasses.dataclass(**_tag_dataclass_kwargs) class HasTuple(AnsibleSerializableDataclass): data: t.Tuple[str, ...] assert HasTuple._from_dict(dict(data=["abc", "def"])) == HasTuple(data=("abc", "def")) def test_tag_copy_non_propagation() -> None: value = ExampleTagThatPreventsPropagation().tag("hello") copied_value = AnsibleTagHelper.tag_copy(value, "copy") assert type(copied_value) is str # pylint: disable=unidiomatic-typecheck assert copied_value == "copy"
NonNativeTaggedType
python
doocs__leetcode
solution/0700-0799/0707.Design Linked List/Solution.py
{ "start": 0, "end": 1214 }
class ____: def __init__(self): self.dummy = ListNode() self.cnt = 0 def get(self, index: int) -> int: if index < 0 or index >= self.cnt: return -1 cur = self.dummy.next for _ in range(index): cur = cur.next return cur.val def addAtHead(self, val: int) -> None: self.addAtIndex(0, val) def addAtTail(self, val: int) -> None: self.addAtIndex(self.cnt, val) def addAtIndex(self, index: int, val: int) -> None: if index > self.cnt: return pre = self.dummy for _ in range(index): pre = pre.next pre.next = ListNode(val, pre.next) self.cnt += 1 def deleteAtIndex(self, index: int) -> None: if index >= self.cnt: return pre = self.dummy for _ in range(index): pre = pre.next t = pre.next pre.next = t.next t.next = None self.cnt -= 1 # Your MyLinkedList object will be instantiated and called as such: # obj = MyLinkedList() # param_1 = obj.get(index) # obj.addAtHead(val) # obj.addAtTail(val) # obj.addAtIndex(index,val) # obj.deleteAtIndex(index)
MyLinkedList
python
TheAlgorithms__Python
graphs/bidirectional_a_star.py
{ "start": 526, "end": 1661 }
class ____: """ >>> k = Node(0, 0, 4, 3, 0, None) >>> k.calculate_heuristic() 5.0 >>> n = Node(1, 4, 3, 4, 2, None) >>> n.calculate_heuristic() 2.0 >>> l = [k, n] >>> n == l[0] False >>> l.sort() >>> n == l[0] True """ def __init__( self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, g_cost: int, parent: Node | None, ) -> None: self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.g_cost = g_cost self.parent = parent self.h_cost = self.calculate_heuristic() self.f_cost = self.g_cost + self.h_cost def calculate_heuristic(self) -> float: """ Heuristic for the A* """ dy = self.pos_x - self.goal_x dx = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(dx) + abs(dy) else: return sqrt(dy**2 + dx**2) def __lt__(self, other: Node) -> bool: return self.f_cost < other.f_cost
Node
python
scrapy__scrapy
tests/AsyncCrawlerProcess/caching_hostname_resolver.py
{ "start": 75, "end": 920 }
class ____(scrapy.Spider): """ Finishes in a finite amount of time (does not hang indefinitely in the DNS resolution) """ name = "caching_hostname_resolver_spider" async def start(self): yield scrapy.Request(self.url) def parse(self, response): for _ in range(10): yield scrapy.Request( response.url, dont_filter=True, callback=self.ignore_response ) def ignore_response(self, response): self.logger.info(repr(response.ip_address)) if __name__ == "__main__": process = AsyncCrawlerProcess( settings={ "RETRY_ENABLED": False, "DNS_RESOLVER": "scrapy.resolver.CachingHostnameResolver", } ) process.crawl(CachingHostnameResolverSpider, url=sys.argv[1]) process.start()
CachingHostnameResolverSpider
python
pydantic__pydantic
tests/test_pickle.py
{ "start": 4773, "end": 5021 }
class ____: a: int b: float def dataclass_factory() -> type: @pydantic.dataclasses.dataclass class NonImportableDataclass: a: int b: float return NonImportableDataclass @dataclasses.dataclass
ImportableDataclass
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/pipelines/pipeline.py
{ "start": 7688, "end": 7961 }
class ____(graphene.Union): class Meta: types = ( GrapheneDefaultPartitionStatuses, GrapheneMultiPartitionStatuses, GrapheneTimePartitionStatuses, ) name = "AssetPartitionStatuses"
GrapheneAssetPartitionStatuses
python
tensorflow__tensorflow
tensorflow/compiler/tests/bucketize_op_test.py
{ "start": 1049, "end": 2955 }
class ____(xla_test.XLATestCase): def testInt(self): with self.session() as sess: p = array_ops.placeholder(dtypes.int32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 3, 8, 11]) expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4] self.assertAllEqual(expected_out, sess.run(op, {p: [-5, 0, 2, 3, 5, 8, 10, 11, 12]})) def testFloat(self): with self.session() as sess: p = array_ops.placeholder(dtypes.float32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0., 3., 8., 11.]) expected_out = [0, 1, 1, 2, 2, 3, 3, 4, 4] self.assertAllEqual( expected_out, sess.run(op, {p: [-5., 0., 2., 3., 5., 8., 10., 11., 12.]})) def test2DInput(self): with self.session() as sess: p = array_ops.placeholder(dtypes.float32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 3, 8, 11]) expected_out = [[0, 1, 1, 2, 2], [3, 3, 4, 4, 1]] self.assertAllEqual( expected_out, sess.run(op, {p: [[-5, 0, 2, 3, 5], [8, 10, 11, 12, 0]]})) @test_util.disable_mlir_bridge("Error handling") def testInvalidBoundariesOrder(self): with self.session() as sess: p = array_ops.placeholder(dtypes.int32) with self.test_scope(): op = math_ops._bucketize(p, boundaries=[0, 8, 3, 11]) with self.assertRaisesRegex(errors_impl.InvalidArgumentError, "Expected sorted boundaries"): sess.run(op, {p: [-5, 0]}) def testBoundariesNotList(self): with self.session(): with self.assertRaisesRegex(TypeError, "Expected list.*"): p = array_ops.placeholder(dtypes.int32) with self.test_scope(): math_ops._bucketize(p, boundaries=0) if __name__ == "__main__": test.main()
BucketizationOpTest
python
allegroai__clearml
clearml/backend_api/services/v2_13/events.py
{ "start": 112486, "end": 114714 }
class ____(Response): """ Response of events.vector_metrics_iter_histogram endpoint. :param images: :type images: Sequence[dict] """ _service = "events" _action = "vector_metrics_iter_histogram" _version = "2.13" _schema = { "definitions": {}, "properties": {"images": {"items": {"type": "object"}, "type": ["array", "null"]}}, "type": "object", } def __init__(self, images: Optional[List[dict]] = None, **kwargs: Any) -> None: super(VectorMetricsIterHistogramResponse, self).__init__(**kwargs) self.images = images @schema_property("images") def images(self) -> Optional[List[dict]]: return self._property_images @images.setter def images(self, value: Optional[List[dict]]) -> None: if value is None: self._property_images = None return self.assert_isinstance(value, "images", (list, tuple)) self.assert_isinstance(value, "images", (dict,), is_array=True) self._property_images = value response_mapping = { AddRequest: AddResponse, AddBatchRequest: AddBatchResponse, DeleteForTaskRequest: DeleteForTaskResponse, DebugImagesRequest: DebugImagesResponse, GetDebugImageSampleRequest: GetDebugImageSampleResponse, NextDebugImageSampleRequest: NextDebugImageSampleResponse, GetTaskMetricsRequest: GetTaskMetricsResponse, GetTaskLogRequest: GetTaskLogResponse, GetTaskEventsRequest: GetTaskEventsResponse, DownloadTaskLogRequest: DownloadTaskLogResponse, GetTaskPlotsRequest: GetTaskPlotsResponse, GetMultiTaskPlotsRequest: GetMultiTaskPlotsResponse, GetVectorMetricsAndVariantsRequest: GetVectorMetricsAndVariantsResponse, VectorMetricsIterHistogramRequest: VectorMetricsIterHistogramResponse, ScalarMetricsIterHistogramRequest: ScalarMetricsIterHistogramResponse, MultiTaskScalarMetricsIterHistogramRequest: MultiTaskScalarMetricsIterHistogramResponse, GetTaskLatestScalarValuesRequest: GetTaskLatestScalarValuesResponse, GetScalarMetricsAndVariantsRequest: GetScalarMetricsAndVariantsResponse, GetScalarMetricDataRequest: GetScalarMetricDataResponse, }
VectorMetricsIterHistogramResponse
python
numba__numba
numba/core/types/misc.py
{ "start": 7229, "end": 7962 }
class ____(Callable, Phantom): """ The type of exception classes (not instances). """ def __init__(self, exc_class): assert issubclass(exc_class, BaseException) name = "%s" % (exc_class.__name__) self.exc_class = exc_class super(ExceptionClass, self).__init__(name) def get_call_type(self, context, args, kws): return self.get_call_signatures()[0][0] def get_call_signatures(self): from numba.core import typing return_type = ExceptionInstance(self.exc_class) return [typing.signature(return_type)], False def get_impl_key(self, sig): return type(self) @property def key(self): return self.exc_class
ExceptionClass
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/auth_manager/avp/facade.py
{ "start": 2248, "end": 2495 }
class ____(TypedDict, total=False): """Represent the parameters of ``is_authorized`` method in AVP facade.""" method: ExtendedResourceMethod entity_type: AvpEntities entity_id: str | None context: dict | None
IsAuthorizedRequest
python
nedbat__coveragepy
coverage/types.py
{ "start": 1237, "end": 2231 }
class ____(Protocol): """A simple value type for recording what to do with a file.""" original_filename: str canonical_filename: str source_filename: str | None trace: bool reason: str file_tracer: FileTracer | None has_dynamic_filename: bool # When collecting data, we use a dictionary with a few possible shapes. The # keys are always file names. # - If measuring line coverage, the values are sets of line numbers. # - If measuring arcs in the Python tracer, the values are sets of arcs (pairs # of line numbers). # - If measuring arcs in the C tracer, the values are sets of packed arcs (two # line numbers combined into one integer). TTraceFileData = set[TLineNo] | set[TArc] | set[int] TTraceData = dict[str, TTraceFileData] # Functions passed into collectors. TShouldTraceFn = Callable[[str, FrameType], TFileDisposition] TCheckIncludeFn = Callable[[str, FrameType], bool] TShouldStartContextFn = Callable[[FrameType], str | None]
TFileDisposition
python
ray-project__ray
rllib/offline/output_writer.py
{ "start": 124, "end": 461 }
class ____: """Writer API for saving experiences from policy evaluation.""" @PublicAPI def write(self, sample_batch: SampleBatchType): """Saves a batch of experiences. Args: sample_batch: SampleBatch or MultiAgentBatch to save. """ raise NotImplementedError @PublicAPI
OutputWriter
python
coleifer__peewee
peewee.py
{ "start": 98006, "end": 98452 }
class ____(object): __slots__ = ('db',) def __init__(self, db): self.db = db def __enter__(self): if self.db.is_closed(): self.db.connect() def __exit__(self, exc_type, exc_val, exc_tb): self.db.close() def __call__(self, fn): @wraps(fn) def inner(*args, **kwargs): with ConnectionContext(self.db): return fn(*args, **kwargs) return inner
ConnectionContext
python
ray-project__ray
python/ray/data/_internal/logical/interfaces/source_operator.py
{ "start": 150, "end": 471 }
class ____(ABC): """Mixin for Logical operators that can be logical source nodes. Subclasses: Read, InputData, FromAbstract. """ @abstractmethod def output_data(self) -> Optional[List["RefBundle"]]: """The output data of this operator if already known, or ``None``.""" pass
SourceOperator
python
getsentry__sentry
tests/sentry/api/serializers/test_apitoken.py
{ "start": 2532, "end": 3018 }
class ____(TestApiTokenSerializer): def test_field_is_returned(self) -> None: attrs = self._serializer.get_attrs(item_list=[self._token], user=self._user) attrs["application"] = None serialized_object = self._serializer.serialize( obj=self._token, user=self._user, attrs=attrs ) assert "tokenLastCharacters" in serialized_object assert serialized_object["tokenLastCharacters"] == self._token.token[-4:]
TestLastTokenCharacters
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/overloadOverride1.py
{ "start": 198, "end": 264 }
class ____: def foo(self, x: int) -> int: return x
Base1
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/ruff/RUF023.py
{ "start": 5808, "end": 6131 }
class ____: # This should get flagged, *but* the fix is unsafe, # since the `__slots__` binding is used by the `__match_args__` definition __slots__ = ("foo", "bar") __match_args__ = __slots__ ################################### # These should all not get flagged: ###################################
VeryDRY
python
pytorch__pytorch
test/inductor/test_mmdecomp.py
{ "start": 3017, "end": 9775 }
class ____(NNTestCase): _do_cuda_memory_leak_check = GPU_TYPE == "cuda" _do_cuda_non_default_stream = GPU_TYPE == "cuda" @unittest.skipIf(not HAS_GPU, "GPU tests require triton") @parametrize("dtype", [torch.float, torch.bfloat16]) def test_simple_mm(self, device, dtype): fudge = 10 rtol = default_rtol[dtype] * fudge atol = default_atol[dtype] * fudge for t_size in ts_list: ((a1_0, a1_1, a2_0, a2_1)) = t_size t1 = rand_math_tensor((a1_0, a1_1), dtype=dtype, device=device) t2 = rand_math_tensor((a2_0, a2_1), dtype=dtype, device=device) tadd = rand_math_tensor((a1_0, a2_1), dtype=dtype, device=device) run_comp_nocomp(torch_mm, t1, t2, rtol=rtol, atol=atol) run_comp_nocomp(torch_addmm, tadd, t1, t2, rtol=rtol, atol=atol) @unittest.skipIf(not HAS_GPU, "GPU tests require triton") @parametrize( "dtype", [torch.float, torch.bfloat16] if SM80OrLater else [torch.float] ) @parametrize("bs", [1, 2, 4, 10]) def test_batched_mm(self, device, dtype, bs): fudge = 3 rtol = default_rtol[dtype] * fudge atol = default_atol[dtype] * fudge for t_size in ts_list: ((a1_0, a1_1, a2_0, a2_1)) = t_size t1 = rand_math_tensor((bs, a1_0, a1_1), dtype=dtype, device=device) t2 = rand_math_tensor((bs, a2_0, a2_1), dtype=dtype, device=device) tadd = rand_math_tensor((bs, a1_0, a2_1), dtype=dtype, device=device) run_comp_nocomp(torch_bmm, t1, t2, rtol=rtol, atol=atol) for alpha in (0, 1, -1, 0.5, -0.5): for beta in (0, 1, -1, 0.5, -0.5): run_comp_nocomp( torch_baddbmm, tadd, t1, t2, alpha, beta, rtol=rtol, atol=atol ) @unittest.skipIf(not HAS_GPU, "GPU tests require triton") @config.patch(coordinate_descent_tuning=True) def test_bmm_batch2_last_dim_size_is_one(self, device): fudge = 3 rtol = default_rtol[torch.float32] * fudge atol = default_atol[torch.float32] * fudge t1 = torch.randn(1, 32, 2, device=device) t2 = torch.randn(1, 2, 1, device=device) run_comp_nocomp(torch_bmm, t1, t2, rtol=rtol, atol=atol) @unittest.skipIf(not HAS_GPU, "GPU tests require triton") @parametrize("dtype", [torch.float, torch.bfloat16, torch.int]) def test_some(self, device, dtype): # this Pytorch data type is not fully supported on cuda today # - unfortunately we can't skipIf because we don't see the actual params in skipIf if device.startswith(GPU_TYPE) and dtype == torch.int: return run_comp_nocomp( torch_mm, init_tensor([[1], [2], [3], [4]], dtype=dtype, device=device), init_tensor([[1, 2, 3, 4]], dtype=dtype, device=device), ) run_comp_nocomp( torch_mm, init_tensor([[1, 2, 3, 4]], dtype=dtype, device=device), init_tensor([[1], [2], [3], [4]], dtype=dtype, device=device), ) @unittest.skipIf(not HAS_GPU, "GPU tests require triton") @parametrize("dtype", [torch.float, torch.bfloat16, torch.int]) @parametrize("bs", [1, 2, 4, 10]) def test_some_batched(self, device, dtype, bs): # this Pytorch data type is not fully supported on cuda today # - unfortunately we can't skipIf because we don't see the actual params in skipIf if device.startswith(GPU_TYPE) and dtype == torch.int: return run_comp_nocomp( torch_bmm, init_tensor([[[1], [2], [3], [4]]] * bs, dtype=dtype, device=device), init_tensor([[[1, 2, 3, 4]]] * bs, dtype=dtype, device=device), ) run_comp_nocomp( torch_bmm, init_tensor([[[1, 2, 3, 4]]] * bs, dtype=dtype, device=device), init_tensor([[[1], [2], [3], [4]]] * bs, dtype=dtype, device=device), ) @parametrize("dtype", [torch.float, torch.bfloat16]) def test_dynamic_shape_mm(self, device, dtype): # Test that the mm decomp does not evaluate expressions for dynamic shapes shape_env = ShapeEnv() fake_mode = FakeTensorMode(shape_env=shape_env) # Only test decomp for cpu to match fake tensors from dynamo if device != "cpu": return for t_size in ts_list: ((a1_0, a1_1, a2_0, a2_1)) = t_size # Create the fake tensors t1 = create_fake_tensor_with_dynamic_size( rand_math_tensor((a1_0, a1_1), dtype=dtype, device=device), fake_mode, ) t2 = create_fake_tensor_with_dynamic_size( rand_math_tensor((a2_0, a2_1), dtype=dtype, device=device), fake_mode, ) # Save the expression types to check if any symints are evaluated og_t1_expr_types = [ type(d.node.expr) if type(d) is torch.SymInt else int for d in t1.size() ] og_t2_expr_types = [ type(d.node.expr) if type(d) is torch.SymInt else int for d in t2.size() ] r = mm(t1, t2) # Make sure all symints are not evaluated new_t1_expr_types = [ type(d.node.expr) if type(d) is torch.SymInt else int for d in t1.size() ] new_t2_expr_types = [ type(d.node.expr) if type(d) is torch.SymInt else int for d in t2.size() ] self.assertTrue( all( og_t1_expr_types[i] == new_t1_expr_types[i] for i in range(len(og_t1_expr_types)) ) ) self.assertTrue( all( og_t2_expr_types[i] == new_t2_expr_types[i] for i in range(len(og_t2_expr_types)) ) ) if r is not NotImplemented: # Check that the output is well formed self.assertEqual(t1.size(0), r.size(0)) self.assertEqual(t2.size(1), r.size(1)) r_expr_types = [ type(d.node.expr) if type(d) is torch.SymInt else int for d in r.size() ] self.assertTrue(r_expr_types[0] == og_t1_expr_types[0]) self.assertTrue(r_expr_types[1] == og_t2_expr_types[1]) device_types = ("cpu", GPU_TYPE) instantiate_device_type_tests(TestDecomp, globals(), only_for=device_types) if __name__ == "__main__": # We don't support torch.compile() on Windows if not IS_WINDOWS: run_tests()
TestDecomp
python
huggingface__transformers
tests/models/mllama/test_modeling_mllama.py
{ "start": 3916, "end": 4492 }
class ____(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): """ Model tester for `MllamaForConditionalGeneration`. """ all_model_classes = (MllamaForCausalLM,) if is_torch_available() else () def setUp(self): self.model_tester = MllamaText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=MllamaTextConfig, has_text_modality=True) @unittest.skip("Mllama needs a different model prefix to loadd saved checkpoints") def test_model_base_model_prefix(self): pass
MllamaForCausalLMModelTest
python
plotly__plotly.py
tests/test_core/test_figure_messages/test_on_change.py
{ "start": 115, "end": 8442 }
class ____(TestCase): def setUp(self): # Construct initial scatter object self.figure = go.Figure( data=[ go.Scatter(y=[3, 2, 1], marker={"color": "green"}), go.Bar(y=[3, 2, 1, 0, -1], marker={"opacity": 0.5}), ], layout={"xaxis": {"range": [-1, 4]}, "width": 1000}, frames=[go.Frame(layout={"yaxis": {"title": "f1"}})], ) # on_change validation # -------------------- def test_raise_if_no_figure(self): scatt = go.Scatter() fn = MagicMock() with pytest.raises(ValueError): scatt.on_change(fn, "x") def test_raise_on_frame_hierarchy(self): fn = MagicMock() with pytest.raises(ValueError): self.figure.frames[0].layout.xaxis.on_change(fn, "range") def test_validate_property_path_nested_1(self): fn = MagicMock() with pytest.raises(ValueError): self.figure.layout.xaxis.on_change(fn, "bogus") def test_validate_property_path_nested_2(self): fn = MagicMock() with pytest.raises(ValueError): self.figure.layout.on_change(fn, "xaxis.title_font.bogus") # Python triggered changes # ------------------------ def test_single_prop_callback_on_assignment(self): # Install callbacks on 'x', and 'y' property of first trace fn_x = MagicMock() fn_y = MagicMock() self.figure.data[0].on_change(fn_x, "x") self.figure.data[0].on_change(fn_y, "y") # Setting x and y on second trace does not trigger callback self.figure.data[1].x = [1, 2, 3] self.figure.data[1].y = [1, 2, 3] self.assertFalse(fn_x.called) self.assertFalse(fn_y.called) # Set x on first trace self.figure.data[0].x = [10, 20, 30] fn_x.assert_called_once_with(self.figure.data[0], (10, 20, 30)) self.assertFalse(fn_y.called) # Set y on first trace self.figure.data[0].y = [11, 22, 33] fn_y.assert_called_once_with(self.figure.data[0], (11, 22, 33)) def test_multi_prop_callback_on_assignment_trace(self): # Register callback if either 'x' or 'y' changes on first trace fn = MagicMock() self.figure.data[0].on_change(fn, "x", "y") # Perform assignment on one of the properties self.figure.data[0].x = [11, 22, 33] # Check function called once with new value of x and old value of y fn.assert_called_once_with(self.figure.data[0], (11, 22, 33), (3, 2, 1)) def test_multi_prop_callback_on_assignment_layout(self): fn_range = MagicMock() # Register callback if either axis range is changed. Both tuple and # dot syntax are supported for nested properties self.figure.layout.on_change(fn_range, ("xaxis", "range"), "yaxis.range") self.figure.layout.xaxis.range = [-10, 10] fn_range.assert_called_once_with(self.figure.layout, (-10, 10), None) def test_multi_prop_callback_on_assignment_layout_nested(self): fn_title_font = MagicMock() fn_xaxis = MagicMock() fn_layout = MagicMock() # Register callback on change to family property under title_font self.figure.layout.xaxis.title.font.on_change(fn_title_font, "family") # Register callback on the range and title_font.family properties # under xaxis self.figure.layout.xaxis.on_change(fn_xaxis, "range", "title.font.family") # Register callback on xaxis object itself self.figure.layout.on_change(fn_layout, "xaxis") # Assign a new xaxis range and title.font.family self.figure.layout.xaxis.title.font.family = "courier" # Check that all callbacks were executed once fn_title_font.assert_called_once_with( self.figure.layout.xaxis.title.font, "courier" ) fn_xaxis.assert_called_once_with(self.figure.layout.xaxis, (-1, 4), "courier") fn_layout.assert_called_once_with( self.figure.layout, go.layout.XAxis(range=(-1, 4), title={"font": {"family": "courier"}}), ) def test_prop_callback_nested_arrays(self): # Initialize updatemenus and buttons self.figure.layout.updatemenus = [{}, {}, {}] self.figure.layout.updatemenus[2].buttons = [{}, {}] self.figure.layout.updatemenus[2].buttons[1].label = "button 1" self.figure.layout.updatemenus[2].buttons[1].method = "relayout" # Register method callback fn_button = MagicMock() fn_layout = MagicMock() self.figure.layout.updatemenus[2].buttons[1].on_change(fn_button, "method") self.figure.layout.on_change(fn_layout, "updatemenus[2].buttons[1].method") # Update button method self.figure.layout.updatemenus[2].buttons[1].method = "restyle" # Check that both callbacks are called once fn_button.assert_called_once_with( self.figure.layout.updatemenus[2].buttons[1], "restyle" ) fn_layout.assert_called_once_with(self.figure.layout, "restyle") def test_callback_on_update(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range") self.figure.update({"layout": {"yaxis": {"range": [11, 22]}}}) fn_range.assert_called_once_with(self.figure.layout, (-1, 4), (11, 22)) def test_callback_on_update_single_call(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range", "width") self.figure.update( {"layout": {"xaxis": {"range": [-10, 10]}, "yaxis": {"range": [11, 22]}}} ) # Even though both properties changed, callback should be called # only once with the new value of both properties fn_range.assert_called_once_with(self.figure.layout, (-10, 10), (11, 22), 1000) def test_callback_on_batch_update(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range", "width") with self.figure.batch_update(): self.figure.layout.xaxis.range = [-10, 10] self.figure.layout.width = 500 # Check fn not called before context exits self.assertFalse(fn_range.called) fn_range.assert_called_once_with(self.figure.layout, (-10, 10), None, 500) def test_callback_on_batch_animate(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range", "width") with self.figure.batch_animate(): self.figure["layout.xaxis.range"] = [-10, 10] self.figure[("layout", "yaxis", "range")] = (11, 22) # Check fn not called before context exits self.assertFalse(fn_range.called) fn_range.assert_called_once_with(self.figure.layout, (-10, 10), (11, 22), 1000) def test_callback_on_plotly_relayout(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range", "width") self.figure.plotly_relayout( relayout_data={"xaxis.range": [-10, 10], "yaxis.range": [11, 22]} ) fn_range.assert_called_once_with(self.figure.layout, (-10, 10), (11, 22), 1000) def test_callback_on_plotly_restyle(self): # Register callback if either 'x' or 'y' changes on first trace fn = MagicMock() self.figure.data[0].on_change(fn, "x", "y") # Perform assignment on one of pthe properties self.figure.plotly_restyle( {"x": [[11, 22, 33], [1, 11, 111]]}, trace_indexes=[0, 1] ) # Check function called once with new value of x and old value of y fn.assert_called_once_with(self.figure.data[0], (11, 22, 33), (3, 2, 1)) def test_callback_on_plotly_update(self): fn_range = MagicMock() self.figure.layout.on_change(fn_range, "xaxis.range", "yaxis.range", "width") self.figure.plotly_update( restyle_data={"marker.color": "blue"}, relayout_data={"xaxis.range": [-10, 10], "yaxis.range": [11, 22]}, ) fn_range.assert_called_once_with(self.figure.layout, (-10, 10), (11, 22), 1000)
TestOnChangeCallbacks
python
fluentpython__example-code
20-descriptor/descriptorkinds.py
{ "start": 4961, "end": 5231 }
class ____: # <1> """a.k.a. data descriptor or enforced descriptor""" def __get__(self, instance, owner): print_args('get', self, instance, owner) # <2> def __set__(self, instance, value): print_args('set', self, instance, value)
Overriding
python
mlflow__mlflow
mlflow/pyfunc/model.py
{ "start": 10712, "end": 12146 }
class ____: """ A collection of artifacts that a :class:`~PythonModel` can use when performing inference. :class:`~PythonModelContext` objects are created *implicitly* by the :func:`save_model() <mlflow.pyfunc.save_model>` and :func:`log_model() <mlflow.pyfunc.log_model>` persistence methods, using the contents specified by the ``artifacts`` parameter of these methods. """ def __init__(self, artifacts, model_config): """ Args: artifacts: A dictionary of ``<name, artifact_path>`` entries, where ``artifact_path`` is an absolute filesystem path to a given artifact. model_config: The model configuration to make available to the model at loading time. """ self._artifacts = artifacts self._model_config = model_config @property def artifacts(self): """ A dictionary containing ``<name, artifact_path>`` entries, where ``artifact_path`` is an absolute filesystem path to the artifact. """ return self._artifacts @property def model_config(self): """ A dictionary containing ``<config, value>`` entries, where ``config`` is the name of the model configuration keys and ``value`` is the value of the given configuration. """ return self._model_config @deprecated("ResponsesAgent", "3.0.0")
PythonModelContext
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/vertex_ai/test_generative_model.py
{ "start": 2025, "end": 3186 }
class ____: @mock.patch(VERTEX_AI_PATH.format("generative_model.GenerativeModelHook")) def test_execute(self, mock_hook): prompt = "In 10 words or less, what is Apache Airflow?" pretrained_model = "textembedding-gecko" with pytest.warns(AirflowProviderDeprecationWarning): op = TextEmbeddingModelGetEmbeddingsOperator( task_id=TASK_ID, project_id=GCP_PROJECT, location=GCP_LOCATION, prompt=prompt, pretrained_model=pretrained_model, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) op.execute(context={"ti": mock.MagicMock()}) mock_hook.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) mock_hook.return_value.text_embedding_model_get_embeddings.assert_called_once_with( project_id=GCP_PROJECT, location=GCP_LOCATION, prompt=prompt, pretrained_model=pretrained_model, )
TestVertexAITextEmbeddingModelGetEmbeddingsOperator
python
django-extensions__django-extensions
tests/testapp/jobs/weekly/test_weekly_job.py
{ "start": 122, "end": 229 }
class ____(WeeklyJob): help = "My sample weekly job." def execute(self): WEEKLY_JOB_MOCK()
Job
python
Lightning-AI__lightning
src/lightning/pytorch/loops/fit_loop.py
{ "start": 2370, "end": 24161 }
class ____(_Loop): """This loop is the top-level loop where training starts. It simply counts the epochs and iterates from one to the next by calling ``TrainingEpochLoop.run()`` in its ``advance()`` method. Example:: # FitLoop for epoch in range(max_epochs): # TrainingEpochLoop for batch_idx, batch in enumerate(train_dataloader): loss = lightning_module.training_step(batch, batch_idx) ... # ValidationEpochLoop for batch_idx, batch in enumerate(val_dataloader): lightning_module.validation_step(batch, batch_idx) ... ... ... Args: min_epochs: The minimum number of epochs max_epochs: The maximum number of epochs, can be set -1 to turn this limit off """ def __init__( self, trainer: "pl.Trainer", min_epochs: Optional[int] = 0, max_epochs: Optional[int] = None, ) -> None: super().__init__(trainer) if isinstance(max_epochs, int) and max_epochs < -1: # Allow max_epochs to be zero, since this will be handled by fit_loop.done raise MisconfigurationException( f"`max_epochs` must be a non-negative integer or -1. You passed in {max_epochs}." ) self.max_epochs = max_epochs self.min_epochs = min_epochs self.epoch_loop = _TrainingEpochLoop(trainer) self.epoch_progress = _Progress() self.max_batches: Union[int, float] = float("inf") self._data_source = _DataLoaderSource(None, "train_dataloader") self._combined_loader: Optional[CombinedLoader] = None self._combined_loader_states_to_load: list[dict[str, Any]] = [] self._data_fetcher: Optional[_DataFetcher] = None self._last_train_dl_reload_epoch = float("-inf") self._restart_stage = RestartStage.NONE @property def total_batch_idx(self) -> int: """Returns the current batch index (across epochs)""" return self.epoch_loop.total_batch_idx @property def batch_idx(self) -> int: """Returns the current batch index (within this epoch)""" return self.epoch_loop.batch_idx @property def min_steps(self) -> Optional[int]: """Returns the minimum number of steps to run.""" return self.epoch_loop.min_steps @property def max_steps(self) -> int: """Returns the maximum number of steps to run.""" return self.epoch_loop.max_steps @_Loop.restarting.setter @override def restarting(self, restarting: bool) -> None: # if the last epoch completely finished, we are not actually restarting values = self.epoch_progress.current.ready, self.epoch_progress.current.started epoch_unfinished = any(v != self.epoch_progress.current.processed for v in values) restarting = restarting and epoch_unfinished or self._iteration_based_training() _Loop.restarting.fset(self, restarting) # call the parent setter @property def _skip_backward(self) -> bool: """Determines whether the loop will skip backward during automatic optimization.""" return self.epoch_loop.automatic_optimization._skip_backward @_skip_backward.setter def _skip_backward(self, value: bool) -> None: """Determines whether the loop will skip backward during automatic optimization.""" self.epoch_loop.automatic_optimization._skip_backward = value @property def _results(self) -> _ResultCollection: if self.trainer.training: return self.epoch_loop._results if self.trainer.validating: return self.epoch_loop.val_loop._results raise RuntimeError("`FitLoop._results` property isn't defined. Accessed outside of scope") @property def _can_stop_early(self) -> bool: met_min_epochs = self.epoch_progress.current.processed >= self.min_epochs if self.min_epochs else True met_min_steps = self.epoch_loop.global_step >= self.min_steps if self.min_steps else True return met_min_epochs and met_min_steps @property def _should_reload_train_dl(self) -> bool: """Check if train dataloader should be reloaded.""" n_epochs = self.trainer.reload_dataloaders_every_n_epochs return n_epochs and self.trainer.current_epoch - self._last_train_dl_reload_epoch >= n_epochs @property def done(self) -> bool: """Evaluates when to leave the loop.""" if self.max_batches == 0: rank_zero_info("`Trainer.fit` stopped: No training batches.") return True # TODO: Move track steps inside training loop and move part of these condition inside training loop stop_steps = _is_max_limit_reached(self.epoch_loop.global_step, self.max_steps) if stop_steps: rank_zero_info(f"`Trainer.fit` stopped: `max_steps={self.max_steps!r}` reached.") return True # `processed` is increased before `on_train_epoch_end`, the hook where checkpoints are typically saved. # we use it here because the checkpoint data won't have `completed` increased yet assert isinstance(self.max_epochs, int) stop_epochs = _is_max_limit_reached(self.epoch_progress.current.processed, self.max_epochs) if stop_epochs: # in case they are not equal, override so `trainer.current_epoch` has the expected value self.epoch_progress.current.completed = self.epoch_progress.current.processed rank_zero_info(f"`Trainer.fit` stopped: `max_epochs={self.max_epochs!r}` reached.") return True if self.trainer.should_stop and self._can_stop_early: rank_zero_debug("`Trainer.fit` stopped: `trainer.should_stop` was set.") return True return False @property def skip(self) -> bool: """Whether we should skip the training and immediately return from the call to :meth:`run`.""" # if `limit_train_batches == 0` then `setup_data` won't set the `self.max_batches` attribute (checked in `done`) # so we cannot use it solely return self.done or self.trainer.limit_train_batches == 0 def run(self) -> None: self.setup_data() if self.skip: return self.reset() self.on_run_start() while not self.done: try: self.on_advance_start() self.advance() self.on_advance_end() except StopIteration: break finally: self.on_iteration_done() self._restarting = False self.on_run_end() def setup_data(self) -> None: if self._combined_loader is not None and not self._should_reload_train_dl: return trainer = self.trainer pl_module = trainer.lightning_module if trainer.limit_train_batches == 0 or not is_overridden("training_step", pl_module): return log.debug(f"{self.__class__.__name__}: resetting train dataloader") source = self._data_source train_dataloader = _request_dataloader(source) trainer.strategy.barrier("train_dataloader()") if not isinstance(train_dataloader, CombinedLoader): combined_loader = CombinedLoader(train_dataloader, "max_size_cycle") else: combined_loader = train_dataloader if trainer.overfit_batches > 0: _resolve_overfit_batches(combined_loader, mode=RunningStage.TRAINING) trainer_fn = TrainerFn.FITTING stage = RunningStage.TRAINING dataloaders = [] for dl in combined_loader.flattened: _check_dataloader_iterable(dl, source, trainer_fn) dl = _process_dataloader(trainer, trainer_fn, stage, dl) dataloaders.append(dl) combined_loader.flattened = dataloaders self._combined_loader = combined_loader allow_zero_length = pl_module.allow_zero_length_dataloader_with_multiple_devices if trainer.datamodule is not None: allow_zero_length |= trainer.datamodule.allow_zero_length_dataloader_with_multiple_devices limits = [] for dl in combined_loader.flattened: # determine number of batches length = len(dl) if has_len_all_ranks(dl, trainer.strategy, allow_zero_length) else float("inf") num_batches = _parse_num_batches(stage, length, trainer.limit_train_batches) limits.append(num_batches) combined_loader.limits = limits self._load_combined_loader_states() self._data_fetcher = _select_data_fetcher(trainer, RunningStage.TRAINING) self._data_fetcher.setup(combined_loader) iter(self._data_fetcher) # creates the iterator inside the fetcher max_batches = sized_len(combined_loader) self.max_batches = max_batches if max_batches is not None else float("inf") has_len_all_ranks_ = has_len_all_ranks(combined_loader, trainer.strategy, allow_zero_length) if self.max_batches == 0: return # store epoch of dataloader reset for reload_dataloaders_every_n_epochs self._last_train_dl_reload_epoch = trainer.current_epoch # If time-based validation is enabled, disable batch-based scheduling here. # Use None to clearly signal "no batch-based validation"; wall-time logic will run elsewhere. if getattr(trainer, "_val_check_time_interval", None) is not None: trainer.val_check_batch = None trainer._train_start_time = time.monotonic() trainer._last_val_time = trainer._train_start_time elif isinstance(trainer.val_check_interval, int): trainer.val_check_batch = trainer.val_check_interval if trainer.val_check_batch > self.max_batches and trainer.check_val_every_n_epoch is not None: raise ValueError( f" `val_check_interval` ({trainer.val_check_interval}) must be less than or equal" f" to the number of the training batches ({self.max_batches})." " If you want to disable validation set `limit_val_batches` to 0.0 instead." " If you want to validate based on the total training batches, set `check_val_every_n_epoch=None`." ) else: if not has_len_all_ranks_: if trainer.val_check_interval == 1.0: trainer.val_check_batch = float("inf") else: raise MisconfigurationException( "When using an IterableDataset for `train_dataloader`," " `Trainer(val_check_interval)` must be time based, `1.0` or an int. An int k specifies" " checking validation every k training batches." ) else: trainer.val_check_batch = int(self.max_batches * trainer.val_check_interval) trainer.val_check_batch = max(1, trainer.val_check_batch) if trainer.loggers and self.max_batches < trainer.log_every_n_steps and not trainer.fast_dev_run: rank_zero_warn( f"The number of training batches ({self.max_batches}) is smaller than the logging interval" f" Trainer(log_every_n_steps={trainer.log_every_n_steps}). Set a lower value for log_every_n_steps if" " you want to see logs for the training epoch.", category=PossibleUserWarning, ) @property def restarted_on_epoch_start(self) -> bool: return self._restart_stage == RestartStage.RESTARTED_ON_EPOCH_START @property def restarted_mid_epoch(self) -> bool: return self._restart_stage == RestartStage.RESTARTED_MID_EPOCH @property def restarted_on_epoch_end(self) -> bool: return self._restart_stage == RestartStage.RESTARTED_ON_EPOCH_END @property def resumed_on_epoch_end(self) -> bool: # This case happens when restarting from last without validation at # the end of epoch. In this case self.restarting is False. return self._restart_stage == RestartStage.RESUMED_ON_EPOCH_END def update_restart_stage(self) -> None: if ( self.restarting and self.epoch_progress.total.started == self.epoch_progress.total.ready - 1 and self.epoch_progress.total.processed == self.epoch_progress.total.started and self.epoch_progress.total.completed == self.epoch_progress.total.processed ): self._restart_stage = RestartStage.RESTARTED_ON_EPOCH_START elif ( self.restarting and self.epoch_progress.total.started == self.epoch_progress.total.ready and self.epoch_progress.total.processed == self.epoch_progress.total.started - 1 and self.epoch_progress.total.completed == self.epoch_progress.total.processed ): self._restart_stage = RestartStage.RESTARTED_MID_EPOCH elif ( self.restarting and self.epoch_progress.total.started == self.epoch_progress.total.ready and self.epoch_progress.total.processed == self.epoch_progress.total.started and self.epoch_progress.total.completed == self.epoch_progress.total.processed - 1 ): self._restart_stage = RestartStage.RESTARTED_ON_EPOCH_END elif ( self._loaded_from_state_dict and self.epoch_progress.total.started == self.epoch_progress.total.ready and self.epoch_progress.total.processed == self.epoch_progress.total.started and self.epoch_progress.total.completed == self.epoch_progress.total.processed - 1 ): self._restart_stage = RestartStage.RESUMED_ON_EPOCH_END else: self._restart_stage = RestartStage.NONE self.epoch_loop.update_restart_stage() def reset_restart_stage(self) -> None: self._restart_stage = RestartStage.NONE def reset(self) -> None: """Resets the internal state of this loop.""" assert self.trainer.model is not None torch.set_grad_enabled(True) self.update_restart_stage() if self.restarted_on_epoch_start: self.epoch_progress.reset_on_restart() if self.resumed_on_epoch_end: # when restarting from last without validation at end of epoch, # self.restarting is False but it's still resuming self.epoch_progress.increment_completed() if ( self.epoch_loop.restarted_on_train_batch_end and self.restarted_mid_epoch and self.epoch_loop.batch_progress.is_last_batch ): self.epoch_progress.increment_processed() self.epoch_progress.increment_completed() if ( self.epoch_loop.restarted_on_train_batch_end and self.epoch_loop.batch_progress.is_last_batch and not self.restarted_mid_epoch and not self.epoch_loop.val_loop.batch_progress.is_last_batch ): self.epoch_progress.increment_completed() def on_run_start(self) -> None: """Calls the ``on_train_start`` hook.""" # update the current_epoch in-case of checkpoint reload if not self._iteration_based_training(): self.epoch_progress.current.completed = self.epoch_progress.current.processed trainer = self.trainer # reload the evaluation dataloaders too for proper display in the progress bar if self.epoch_loop._should_check_val_epoch() and trainer.val_dataloaders is None: trainer.validating = True self.epoch_loop.val_loop.setup_data() trainer.training = True # Check for modules in eval mode at training start self._warn_if_modules_in_eval_mode() call._call_callback_hooks(trainer, "on_train_start") call._call_lightning_module_hook(trainer, "on_train_start") call._call_strategy_hook(trainer, "on_train_start") def on_advance_start(self) -> None: """Prepares the dataloader for training and calls the hook ``on_train_epoch_start``""" trainer = self.trainer # might need to setup data again depending on `trainer.reload_dataloaders_every_n_epochs` self.setup_data() # update the epoch value for all samplers assert self._combined_loader is not None for i, dl in enumerate(self._combined_loader.flattened): _set_sampler_epoch(dl, self.epoch_progress.current.processed) if not self.restarted_mid_epoch and not self.restarted_on_epoch_end: if not self.restarted_on_epoch_start: self.epoch_progress.increment_ready() call._call_callback_hooks(trainer, "on_train_epoch_start") call._call_lightning_module_hook(trainer, "on_train_epoch_start") self.epoch_progress.increment_started() def advance(self) -> None: """Runs one whole epoch.""" log.debug(f"{type(self).__name__}: advancing loop") combined_loader = self._combined_loader assert combined_loader is not None if combined_loader._mode == "sequential": raise ValueError( f'`{type(self).__name__}` does not support the `CombinedLoader(mode="sequential")` mode.' f" The available modes are: {[m for m in _SUPPORTED_MODES if m != 'sequential']}" ) with self.trainer.profiler.profile("run_training_epoch"): assert self._data_fetcher is not None self.epoch_loop.run(self._data_fetcher) def on_advance_end(self) -> None: trainer = self.trainer # inform logger the batch loop has finished trainer._logger_connector.epoch_end_reached() self.epoch_progress.increment_processed() # call train epoch end hooks # we always call callback hooks first, but here we need to make an exception for the callbacks that # monitor a metric, otherwise they wouldn't be able to monitor a key logged in # `LightningModule.on_train_epoch_end` call._call_callback_hooks(trainer, "on_train_epoch_end", monitoring_callbacks=False) call._call_lightning_module_hook(trainer, "on_train_epoch_end") call._call_callback_hooks(trainer, "on_train_epoch_end", monitoring_callbacks=True) trainer._logger_connector.on_epoch_end() if not self.restarting and self.epoch_loop._num_ready_batches_reached(): # since metric-based schedulers require access to metrics and those are not currently saved in the # checkpoint, the plateau schedulers shouldn't be updated self.epoch_loop.update_lr_schedulers("epoch", update_plateau_schedulers=not self.restarting) # we manually decrease here because loggers expect that the same step is used when logging epoch-end metrics # even when the batch loop has finished self.epoch_loop._batches_that_stepped -= 1 # log epoch metrics trainer._logger_connector.update_train_epoch_metrics() self.epoch_loop._batches_that_stepped += 1 self.epoch_progress.increment_completed() if trainer.received_sigterm: raise SIGTERMException def on_run_end(self) -> None: """Calls the ``on_train_end`` hook.""" log.debug(f"{self.__class__.__name__}: train run ended") trainer = self.trainer call._call_callback_hooks(trainer, "on_train_end") call._call_lightning_module_hook(trainer, "on_train_end") call._call_strategy_hook(trainer, "on_train_end") def teardown(self) -> None: if self._data_fetcher is not None: self._data_fetcher.teardown() self._data_fetcher = None self.epoch_loop.teardown() @override def on_save_checkpoint(self) -> dict: state_dict = super().on_save_checkpoint() if self._combined_loader is not None and (loader_states := self._combined_loader._state_dicts()): state_dict["combined_loader"] = loader_states return state_dict @override def on_load_checkpoint(self, state_dict: dict) -> None: self._combined_loader_states_to_load = state_dict.get("combined_loader", []) super().on_load_checkpoint(state_dict) def _warn_if_modules_in_eval_mode(self) -> None: """Warn if any modules are in eval mode at the start of training.""" model = self.trainer.lightning_module eval_modules = [name for name, module in model.named_modules() if not module.training] if eval_modules: rank_zero_warn( f"Found {len(eval_modules)} module(s) in eval mode at the start of training." " This may lead to unexpected behavior during training. If this is intentional," " you can ignore this warning.", category=PossibleUserWarning, ) def _should_accumulate(self) -> bool: """Whether the gradients should be accumulated.""" return self.epoch_loop._should_accumulate() def _iteration_based_training(self) -> bool: return self.trainer.max_steps != -1 def _load_combined_loader_states(self) -> None: if not self.restarting or not self._combined_loader_states_to_load or self._combined_loader is None: return self._combined_loader._load_state_dicts(self._combined_loader_states_to_load) self._combined_loader_states_to_load = [] # release memory
_FitLoop
python
pyca__cryptography
tests/hazmat/primitives/test_x25519.py
{ "start": 1402, "end": 14997 }
class ____: @pytest.mark.parametrize( "vector", load_vectors_from_file( os.path.join("asymmetric", "X25519", "rfc7748.txt"), load_nist_vectors, ), ) def test_rfc7748(self, vector, backend): private = binascii.unhexlify(vector["input_scalar"]) public = binascii.unhexlify(vector["input_u"]) shared_key = binascii.unhexlify(vector["output_u"]) private_key = X25519PrivateKey.from_private_bytes(private) public_key = X25519PublicKey.from_public_bytes(public) computed_shared_key = private_key.exchange(public_key) assert computed_shared_key == shared_key def test_rfc7748_1000_iteration(self, backend): old_private = private = public = binascii.unhexlify( b"0900000000000000000000000000000000000000000000000000000000000000" ) shared_key = binascii.unhexlify( b"684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51" ) private_key = X25519PrivateKey.from_private_bytes(private) public_key = X25519PublicKey.from_public_bytes(public) for _ in range(1000): computed_shared_key = private_key.exchange(public_key) private_key = X25519PrivateKey.from_private_bytes( computed_shared_key ) public_key = X25519PublicKey.from_public_bytes(old_private) old_private = computed_shared_key assert computed_shared_key == shared_key def test_null_shared_key_raises_error(self, backend): """ The vector used here is taken from wycheproof's x25519 test vectors """ public = binascii.unhexlify( "5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f1157" ) private = binascii.unhexlify( "78f1e8edf14481b389448dac8f59c70b038e7cf92ef2c7eff57a72466e115296" ) private_key = X25519PrivateKey.from_private_bytes(private) public_key = X25519PublicKey.from_public_bytes(public) with pytest.raises(ValueError): private_key.exchange(public_key) def test_public_bytes_bad_args(self, backend): key = X25519PrivateKey.generate().public_key() with pytest.raises(TypeError): key.public_bytes( None, # type: ignore[arg-type] serialization.PublicFormat.Raw, ) with pytest.raises(ValueError): key.public_bytes( serialization.Encoding.DER, serialization.PublicFormat.Raw ) with pytest.raises(TypeError): key.public_bytes( serialization.Encoding.DER, None, # type: ignore[arg-type] ) with pytest.raises(TypeError): key.public_bytes( serialization.Encoding.SMIME, serialization.PublicFormat.SubjectPublicKeyInfo, ) # These vectors are also from RFC 7748 # https://tools.ietf.org/html/rfc7748#section-6.1 @pytest.mark.parametrize( ("private_bytes", "public_bytes"), [ ( binascii.unhexlify( b"77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba" b"51db92c2a" ), binascii.unhexlify( b"8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98" b"eaa9b4e6a" ), ), ( binascii.unhexlify( b"5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b2" b"7ff88e0eb" ), binascii.unhexlify( b"de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e1" b"46f882b4f" ), ), ], ) def test_pub_priv_bytes_raw(self, private_bytes, public_bytes, backend): private_key = X25519PrivateKey.from_private_bytes(private_bytes) assert ( private_key.private_bytes( serialization.Encoding.Raw, serialization.PrivateFormat.Raw, serialization.NoEncryption(), ) == private_bytes ) assert private_key.private_bytes_raw() == private_bytes assert ( private_key.public_key().public_bytes( serialization.Encoding.Raw, serialization.PublicFormat.Raw ) == public_bytes ) assert private_key.public_key().public_bytes_raw() == public_bytes public_key = X25519PublicKey.from_public_bytes(public_bytes) assert ( public_key.public_bytes( serialization.Encoding.Raw, serialization.PublicFormat.Raw ) == public_bytes ) assert public_key.public_bytes_raw() == public_bytes def test_generate(self, backend): key = X25519PrivateKey.generate() assert key assert key.public_key() def test_invalid_type_exchange(self, backend): key = X25519PrivateKey.generate() with pytest.raises(TypeError): key.exchange(object()) # type: ignore[arg-type] def test_invalid_length_from_public_bytes(self, backend): with pytest.raises(ValueError): X25519PublicKey.from_public_bytes(b"a" * 31) with pytest.raises(ValueError): X25519PublicKey.from_public_bytes(b"a" * 33) def test_invalid_length_from_private_bytes(self, backend): with pytest.raises(ValueError): X25519PrivateKey.from_private_bytes(b"a" * 31) with pytest.raises(ValueError): X25519PrivateKey.from_private_bytes(b"a" * 33) def test_invalid_private_bytes(self, backend): key = X25519PrivateKey.generate() with pytest.raises(TypeError): key.private_bytes( serialization.Encoding.Raw, serialization.PrivateFormat.Raw, None, # type: ignore[arg-type] ) with pytest.raises(ValueError): key.private_bytes( serialization.Encoding.Raw, serialization.PrivateFormat.Raw, DummyKeySerializationEncryption(), ) with pytest.raises(ValueError): key.private_bytes( serialization.Encoding.Raw, serialization.PrivateFormat.PKCS8, DummyKeySerializationEncryption(), ) with pytest.raises(ValueError): key.private_bytes( serialization.Encoding.PEM, serialization.PrivateFormat.Raw, serialization.NoEncryption(), ) with pytest.raises(TypeError): key.private_bytes(None, None, None) # type: ignore[arg-type] with pytest.raises(TypeError): key.private_bytes( serialization.Encoding.Raw, None, # type: ignore[arg-type] None, # type: ignore[arg-type] ) with pytest.raises(TypeError): key.private_bytes( serialization.Encoding.PEM, serialization.PrivateFormat.PKCS8, object(), # type: ignore[arg-type] ) with pytest.raises(ValueError): key.private_bytes( serialization.Encoding.PEM, serialization.PrivateFormat.PKCS8, serialization.BestAvailableEncryption(b"a" * 1024), ) with pytest.raises(TypeError): key.private_bytes( serialization.Encoding.SMIME, serialization.PrivateFormat.PKCS8, serialization.NoEncryption(), ) with pytest.raises(ValueError): key.private_bytes( serialization.Encoding.PEM, serialization.PrivateFormat.TraditionalOpenSSL, serialization.NoEncryption(), ) def test_invalid_public_bytes(self, backend): key = X25519PrivateKey.generate().public_key() with pytest.raises(ValueError): key.public_bytes( serialization.Encoding.Raw, serialization.PublicFormat.SubjectPublicKeyInfo, ) with pytest.raises(ValueError): key.public_bytes( serialization.Encoding.PEM, serialization.PublicFormat.PKCS1 ) with pytest.raises(ValueError): key.public_bytes( serialization.Encoding.PEM, serialization.PublicFormat.Raw ) @pytest.mark.parametrize( ("encoding", "fmt", "encryption", "passwd", "load_func"), [ ( serialization.Encoding.PEM, serialization.PrivateFormat.PKCS8, serialization.BestAvailableEncryption(b"password"), b"password", serialization.load_pem_private_key, ), ( serialization.Encoding.DER, serialization.PrivateFormat.PKCS8, serialization.BestAvailableEncryption(b"password"), b"password", serialization.load_der_private_key, ), ( serialization.Encoding.PEM, serialization.PrivateFormat.PKCS8, serialization.NoEncryption(), None, serialization.load_pem_private_key, ), ( serialization.Encoding.DER, serialization.PrivateFormat.PKCS8, serialization.NoEncryption(), None, serialization.load_der_private_key, ), ], ) def test_round_trip_private_serialization( self, encoding, fmt, encryption, passwd, load_func, backend ): key = X25519PrivateKey.generate() serialized = key.private_bytes(encoding, fmt, encryption) loaded_key = load_func(serialized, passwd, backend) assert isinstance(loaded_key, X25519PrivateKey) def test_invalid_public_key_pem(self): with pytest.raises(ValueError): serialization.load_pem_public_key( textwrap.dedent(""" -----BEGIN PUBLIC KEY----- MCswBQYDK2VuAyIA//////////////////////////////////////////// -----END PUBLIC KEY-----""").encode() ) def test_buffer_protocol(self, backend): private_bytes = bytearray(os.urandom(32)) key = X25519PrivateKey.from_private_bytes(private_bytes) assert ( key.private_bytes( serialization.Encoding.Raw, serialization.PrivateFormat.Raw, serialization.NoEncryption(), ) == private_bytes ) @pytest.mark.supported( only_if=lambda backend: backend.x25519_supported(), skip_message="Requires OpenSSL with X25519 support", ) def test_public_key_equality(backend): key_bytes = load_vectors_from_file( os.path.join("asymmetric", "X25519", "x25519-pkcs8.der"), lambda derfile: derfile.read(), mode="rb", ) key1 = serialization.load_der_private_key(key_bytes, None).public_key() key2 = serialization.load_der_private_key(key_bytes, None).public_key() key3 = X25519PrivateKey.generate().public_key() assert key1 == key2 assert key1 != key3 assert key1 != object() with pytest.raises(TypeError): key1 < key2 # type: ignore[operator] @pytest.mark.supported( only_if=lambda backend: backend.x25519_supported(), skip_message="Requires OpenSSL with X25519 support", ) def test_public_key_copy(backend): key_bytes = load_vectors_from_file( os.path.join("asymmetric", "X25519", "x25519-pkcs8.der"), lambda derfile: derfile.read(), mode="rb", ) key1 = serialization.load_der_private_key(key_bytes, None).public_key() key2 = copy.copy(key1) assert key1 == key2 @pytest.mark.supported( only_if=lambda backend: backend.x25519_supported(), skip_message="Requires OpenSSL with X25519 support", ) def test_public_key_deepcopy(backend): key_bytes = load_vectors_from_file( os.path.join("asymmetric", "X25519", "x25519-pkcs8.der"), lambda derfile: derfile.read(), mode="rb", ) key1 = ( x25519.X25519PublicKey, serialization.load_der_private_key(key_bytes, None).public_key(), ) key2 = copy.deepcopy(key1) assert key1 == key2 @pytest.mark.supported( only_if=lambda backend: backend.x25519_supported(), skip_message="Requires OpenSSL with X25519 support", ) def test_private_key_copy(backend): key_bytes = load_vectors_from_file( os.path.join("asymmetric", "X25519", "x25519-pkcs8.der"), lambda derfile: derfile.read(), mode="rb", ) key1 = serialization.load_der_private_key(key_bytes, None) key2 = copy.copy(key1) assert key1 == key2 @pytest.mark.supported( only_if=lambda backend: backend.x25519_supported(), skip_message="Requires OpenSSL with X25519 support", ) def test_private_key_deepcopy(backend): key_bytes = load_vectors_from_file( os.path.join("asymmetric", "X25519", "x25519-pkcs8.der"), lambda derfile: derfile.read(), mode="rb", ) key1 = serialization.load_der_private_key(key_bytes, None) key2 = copy.deepcopy(key1) assert key1 == key2
TestX25519Exchange
python
protocolbuffers__protobuf
upb/cmake/staleness_test.py
{ "start": 2041, "end": 2317 }
class ____(unittest.TestCase): def testFilesMatch(self): errors = staleness_test_lib.CheckFilesMatch(config) self.assertFalse(errors, errors) if len(sys.argv) > 1 and sys.argv[1] == "--fix": staleness_test_lib.FixFiles(config) else: unittest.main()
TestFilesMatch
python
pytorch__pytorch
test/distributed/_composable/fsdp/test_fully_shard_compile.py
{ "start": 1971, "end": 3913 }
class ____(FSDPTest): @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch") @skip_if_lt_x_gpu(2) def test_disable_compiling_hooks(self): self.run_subtests( { "skip_fsdp_hooks": [False, True], }, self._test_disable_compiling_hooks, ) def _test_disable_compiling_hooks( self, skip_fsdp_hooks: bool, ): torch._dynamo.reset() trace_rules_check_count = 0 HOOKS_FILE_NAME = "torch/distributed/fsdp/_fully_shard/_fsdp_state.py" HOOK_WRAPPER_NAME = "fsdp_hook_wrapper" def patched_trace_rules_check(*args, **kwargs): nonlocal trace_rules_check_count f_code = args[0] if ( hasattr(f_code, "co_filename") and f_code.co_filename.endswith(HOOKS_FILE_NAME) and f_code.co_name != HOOK_WRAPPER_NAME ): trace_rules_check_count += 1 return orig_trace_rules_check(*args, **kwargs) original_skip_fsdp_hooks = torch._dynamo.config.skip_fsdp_hooks orig_trace_rules_check = torch._dynamo.trace_rules.check torch.distributed.barrier() torch._dynamo.config.skip_fsdp_hooks = skip_fsdp_hooks torch._dynamo.trace_rules.check = patched_trace_rules_check model = MLP(4).to(device_type) fully_shard(model) model.compile() model(torch.randn((4, 4), device=device_type)) torch.distributed.barrier() torch._dynamo.config.skip_fsdp_hooks = original_skip_fsdp_hooks torch._dynamo.trace_rules.check = orig_trace_rules_check if skip_fsdp_hooks: self.assertEqual(trace_rules_check_count, 0) else: self.assertTrue(trace_rules_check_count > 0) @unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
TestFullyShardCompileCompute
python
spack__spack
lib/spack/spack/vendor/macholib/mach_o.py
{ "start": 26096, "end": 26346 }
class ____(Structure): _fields_ = (("entryoff", p_uint64), ("stacksize", p_uint64)) def describe(self): s = {} s["entryoff"] = int(self.entryoff) s["stacksize"] = int(self.stacksize) return s
entry_point_command
python
Textualize__textual
src/textual/canvas.py
{ "start": 2248, "end": 3309 }
class ____(Primitive): """A vertical line.""" origin: Offset length: int color: Color line_type: CanvasLineType = "thin" def render(self, canvas: Canvas) -> None: x, y = self.origin if x < 0 or x >= canvas.width: return line_type_index = _LINE_TYPE_INDEX[self.line_type] box = canvas.box _combine_quads = combine_quads y_range = canvas.y_range(y, y + self.length) if y in y_range: box[y][x] = _combine_quads(box[y][x], (0, 0, line_type_index, 0)) bottom = y + self.length - 1 if bottom in y_range: box[bottom][x] = _combine_quads(box[bottom][x], (line_type_index, 0, 0, 0)) line_quad = (line_type_index, 0, line_type_index, 0) for box_y in canvas.y_range(y + 1, y + self.length - 1): box[box_y][x] = _combine_quads(box[box_y][x], line_quad) spans = canvas.spans span = _Span(x, x + 1, self.color) for y in y_range: spans[y].append(span) @dataclass
VerticalLine
python
apache__airflow
task-sdk/src/airflow/sdk/execution_time/context.py
{ "start": 17478, "end": 18488 }
class ____(_AssetRefResolutionMixin): """Wrapper to access an outlet asset event in template.""" key: BaseAssetUniqueKey extra: dict[str, JsonValue] = attrs.Factory(dict) asset_alias_events: list[AssetAliasEvent] = attrs.field(factory=list) def add(self, asset: Asset | AssetRef, extra: dict[str, JsonValue] | None = None) -> None: """Add an AssetEvent to an existing Asset.""" if not isinstance(self.key, AssetAliasUniqueKey): return if isinstance(asset, AssetRef): asset_key, asset_extra = self._resolve_asset_ref(asset) else: asset_key = AssetUniqueKey.from_asset(asset) asset_extra = asset.extra asset_alias_name = self.key.name event = AssetAliasEvent( source_alias_name=asset_alias_name, dest_asset_key=asset_key, dest_asset_extra=asset_extra, extra=extra or {}, ) self.asset_alias_events.append(event)
OutletEventAccessor
python
pytest-dev__pytest
src/_pytest/pytester.py
{ "start": 6015, "end": 6509 }
class ____: def __init__(self, request: FixtureRequest) -> None: self._request = request def gethookrecorder(self, hook) -> HookRecorder: hookrecorder = HookRecorder(hook._pm) self._request.addfinalizer(hookrecorder.finish_recording) return hookrecorder def get_public_names(values: Iterable[str]) -> list[str]: """Only return names from iterator values without a leading underscore.""" return [x for x in values if x[0] != "_"] @final
PytestArg
python
doocs__leetcode
solution/0100-0199/0144.Binary Tree Preorder Traversal/Solution.py
{ "start": 192, "end": 498 }
class ____: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: def dfs(root): if root is None: return ans.append(root.val) dfs(root.left) dfs(root.right) ans = [] dfs(root) return ans
Solution
python
Netflix__metaflow
metaflow/plugins/timeout_decorator.py
{ "start": 239, "end": 310 }
class ____(MetaflowException): headline = "@timeout"
TimeoutException
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 220523, "end": 220862 }
class ____(sgqlc.types.Type): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("count", "state") count = sgqlc.types.Field(sgqlc.types.non_null(Int), graphql_name="count") state = sgqlc.types.Field(sgqlc.types.non_null(CheckRunState), graphql_name="state")
CheckRunStateCount
python
cython__cython
Cython/Compiler/Nodes.py
{ "start": 16437, "end": 17798 }
class ____(StatNode): # include_file string or None # verbatim_include string or None # body StatListNode child_attrs = ["body"] def analyse_declarations(self, env): old_cinclude_flag = env.in_cinclude env.in_cinclude = 1 self.body.analyse_declarations(env) env.in_cinclude = old_cinclude_flag if self.include_file or self.verbatim_include: # Determine whether include should be late stats = self.body.stats if not env.directives['preliminary_late_includes_cy28']: late = False elif not stats: # Special case: empty 'cdef extern' blocks are early late = False else: late = all(isinstance(node, CVarDefNode) for node in stats) env.add_include_file(self.include_file, self.verbatim_include, late) def analyse_expressions(self, env): # Allow C properties, inline methods, etc. also in external types. self.body = self.body.analyse_expressions(env) return self def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code)
CDefExternNode
python
python-pillow__Pillow
setup.py
{ "start": 8117, "end": 41479 }
class ____(build_ext): class ext_feature: features = [ "zlib", "jpeg", "tiff", "freetype", "raqm", "lcms", "webp", "jpeg2000", "imagequant", "xcb", "avif", ] required = {"jpeg", "zlib"} vendor: set[str] = set() def __init__(self) -> None: self._settings: dict[str, str | bool | None] = {} for f in self.features: self.set(f, None) def require(self, feat: str) -> bool: return feat in self.required def get(self, feat: str) -> str | bool | None: return self._settings[feat] def set(self, feat: str, value: str | bool | None) -> None: self._settings[feat] = value def want(self, feat: str) -> bool: return self._settings[feat] is None def want_vendor(self, feat: str) -> bool: return feat in self.vendor def __iter__(self) -> Iterator[str]: yield from self.features feature = ext_feature() user_options = ( build_ext.user_options + [(f"disable-{x}", None, f"Disable support for {x}") for x in feature] + [(f"enable-{x}", None, f"Enable support for {x}") for x in feature] + [ (f"vendor-{x}", None, f"Use vendored version of {x}") for x in ("raqm", "fribidi") ] + [ ("disable-platform-guessing", None, "Disable platform guessing"), ("debug", None, "Debug logging"), ] + [("add-imaging-libs=", None, "Add libs to _imaging build")] ) @staticmethod def check_configuration(option: str, value: str) -> bool | None: return True if value in configuration.get(option, []) else None def initialize_options(self) -> None: self.disable_platform_guessing = self.check_configuration( "platform-guessing", "disable" ) self.add_imaging_libs = "" build_ext.initialize_options(self) for x in self.feature: setattr(self, f"disable_{x}", self.check_configuration(x, "disable")) setattr(self, f"enable_{x}", self.check_configuration(x, "enable")) for x in ("raqm", "fribidi"): setattr(self, f"vendor_{x}", self.check_configuration(x, "vendor")) if self.check_configuration("debug", "true"): self.debug = True self.parallel = configuration.get("parallel", [None])[-1] def finalize_options(self) -> None: build_ext.finalize_options(self) if self.debug: global DEBUG DEBUG = True if not self.parallel: # If --parallel (or -j) wasn't specified, we want to reproduce the same # behavior as before, that is, auto-detect the number of jobs. self.parallel = None cpu_count = os.cpu_count() if cpu_count is not None: try: self.parallel = int(os.environ.get("MAX_CONCURRENCY", cpu_count)) except TypeError: pass for x in self.feature: if getattr(self, f"disable_{x}"): self.feature.set(x, False) self.feature.required.discard(x) _dbg("Disabling %s", x) if getattr(self, f"enable_{x}"): msg = f"Conflicting options: '-C {x}=enable' and '-C {x}=disable'" raise ValueError(msg) if x == "freetype": _dbg("'-C freetype=disable' implies '-C raqm=disable'") if getattr(self, "enable_raqm"): msg = ( "Conflicting options: " "'-C raqm=enable' and '-C freetype=disable'" ) raise ValueError(msg) setattr(self, "disable_raqm", True) if getattr(self, f"enable_{x}"): _dbg("Requiring %s", x) self.feature.required.add(x) if x == "raqm": _dbg("'-C raqm=enable' implies '-C freetype=enable'") self.feature.required.add("freetype") for x in ("raqm", "fribidi"): if getattr(self, f"vendor_{x}"): if getattr(self, "disable_raqm"): msg = f"Conflicting options: '-C {x}=vendor' and '-C raqm=disable'" raise ValueError(msg) if x == "fribidi" and not getattr(self, "vendor_raqm"): msg = ( f"Conflicting options: '-C {x}=vendor' and not '-C raqm=vendor'" ) raise ValueError(msg) _dbg("Using vendored version of %s", x) self.feature.vendor.add(x) def _update_extension( self, name: str, libraries: list[str] | list[str | bool | None], define_macros: list[tuple[str, str | None]] | None = None, sources: list[str] | None = None, ) -> None: for extension in self.extensions: if extension.name == name: extension.libraries += libraries if define_macros is not None: extension.define_macros += define_macros if sources is not None: extension.sources += sources if FUZZING_BUILD: extension.language = "c++" extension.extra_link_args = ["--stdlib=libc++"] break def _remove_extension(self, name: str) -> None: for extension in self.extensions: if extension.name == name: self.extensions.remove(extension) break def get_macos_sdk_path(self) -> str | None: try: sdk_path = ( subprocess.check_output(["xcrun", "--show-sdk-path", "--sdk", "macosx"]) .strip() .decode("latin1") ) except Exception: sdk_path = None if ( not sdk_path or sdk_path == "/Applications/Xcode.app/Contents/Developer" "/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk" ): commandlinetools_sdk_path = ( "/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk" ) if os.path.exists(commandlinetools_sdk_path): sdk_path = commandlinetools_sdk_path return sdk_path def get_ios_sdk_path(self) -> str: try: sdk = sys.implementation._multiarch.split("-")[-1] _dbg("Using %s SDK", sdk) return ( subprocess.check_output(["xcrun", "--show-sdk-path", "--sdk", sdk]) .strip() .decode("latin1") ) except Exception: msg = "Unable to identify location of iOS SDK." raise ValueError(msg) def build_extensions(self) -> None: library_dirs: list[str] = [] include_dirs: list[str] = [] pkg_config = None if _cmd_exists(os.environ.get("PKG_CONFIG", "pkg-config")): pkg_config = _pkg_config # # add configured kits for root_name, lib_name in { "AVIF_ROOT": "avif", "JPEG_ROOT": "libjpeg", "JPEG2K_ROOT": "libopenjp2", "TIFF_ROOT": ("libtiff-5", "libtiff-4"), "ZLIB_ROOT": "zlib", "FREETYPE_ROOT": "freetype2", "HARFBUZZ_ROOT": "harfbuzz", "FRIBIDI_ROOT": "fribidi", "RAQM_ROOT": "raqm", "WEBP_ROOT": "libwebp", "LCMS_ROOT": "lcms2", "IMAGEQUANT_ROOT": "libimagequant", }.items(): root = globals()[root_name] if root is None and root_name in os.environ: root_prefix = os.environ[root_name] root = ( os.path.join(root_prefix, "lib"), os.path.join(root_prefix, "include"), ) if root is None and pkg_config: if isinstance(lib_name, str): _dbg("Looking for `%s` using pkg-config.", lib_name) root = pkg_config(lib_name) else: for lib_name2 in lib_name: _dbg("Looking for `%s` using pkg-config.", lib_name2) root = pkg_config(lib_name2) if root: break if isinstance(root, tuple): lib_root, include_root = root else: lib_root = include_root = root if lib_root is not None: if not isinstance(lib_root, (tuple, list)): lib_root = (lib_root,) for lib_dir in lib_root: _add_directory(library_dirs, lib_dir) if include_root is not None: if not isinstance(include_root, (tuple, list)): include_root = (include_root,) for include_dir in include_root: _add_directory(include_dirs, include_dir) # respect CFLAGS/CPPFLAGS/LDFLAGS for k in ("CFLAGS", "CPPFLAGS", "LDFLAGS"): if k in os.environ: for match in re.finditer(r"-I([^\s]+)", os.environ[k]): _add_directory(include_dirs, match.group(1)) for match in re.finditer(r"-L([^\s]+)", os.environ[k]): _add_directory(library_dirs, match.group(1)) # include, rpath, if set as environment variables: for k in ("C_INCLUDE_PATH", "CPATH", "INCLUDE"): if k in os.environ: for d in os.environ[k].split(os.path.pathsep): _add_directory(include_dirs, d) for k in ("LD_RUN_PATH", "LIBRARY_PATH", "LIB"): if k in os.environ: for d in os.environ[k].split(os.path.pathsep): _add_directory(library_dirs, d) _add_directory(library_dirs, os.path.join(sys.prefix, "lib")) _add_directory(include_dirs, os.path.join(sys.prefix, "include")) # # add platform directories if self.disable_platform_guessing: pass elif sys.platform == "cygwin": # pythonX.Y.dll.a is in the /usr/lib/pythonX.Y/config directory self.compiler.shared_lib_extension = ".dll.a" _add_directory( library_dirs, os.path.join( "/usr/lib", "python{}.{}".format(*sys.version_info), "config" ), ) elif sys.platform == "darwin": # attempt to make sure we pick freetype2 over other versions _add_directory(include_dirs, "/sw/include/freetype2") _add_directory(include_dirs, "/sw/lib/freetype2/include") # fink installation directories _add_directory(library_dirs, "/sw/lib") _add_directory(include_dirs, "/sw/include") # darwin ports installation directories _add_directory(library_dirs, "/opt/local/lib") _add_directory(include_dirs, "/opt/local/include") # if Homebrew is installed, use its lib and include directories try: prefix = ( subprocess.check_output(["brew", "--prefix"]) .strip() .decode("latin1") ) except Exception: # Homebrew not installed prefix = None ft_prefix = None if prefix: # add Homebrew's include and lib directories _add_directory(library_dirs, os.path.join(prefix, "lib")) _add_directory(include_dirs, os.path.join(prefix, "include")) _add_directory( include_dirs, os.path.join(prefix, "opt", "zlib", "include") ) ft_prefix = os.path.join(prefix, "opt", "freetype") if ft_prefix and os.path.isdir(ft_prefix): # freetype might not be linked into Homebrew's prefix _add_directory(library_dirs, os.path.join(ft_prefix, "lib")) _add_directory(include_dirs, os.path.join(ft_prefix, "include")) else: # fall back to freetype from XQuartz if # Homebrew's freetype is missing _add_directory(library_dirs, "/usr/X11/lib") _add_directory(include_dirs, "/usr/X11/include") # Add the macOS SDK path. sdk_path = self.get_macos_sdk_path() if sdk_path: _add_directory(library_dirs, os.path.join(sdk_path, "usr", "lib")) _add_directory(include_dirs, os.path.join(sdk_path, "usr", "include")) for extension in self.extensions: extension.extra_compile_args = ["-Wno-nullability-completeness"] elif sys.platform == "ios": # Add the iOS SDK path. sdk_path = self.get_ios_sdk_path() # Add the iOS SDK path. _add_directory(library_dirs, os.path.join(sdk_path, "usr", "lib")) _add_directory(include_dirs, os.path.join(sdk_path, "usr", "include")) for extension in self.extensions: extension.extra_compile_args = ["-Wno-nullability-completeness"] elif sys.platform.startswith(("linux", "gnu", "freebsd")): for dirname in _find_library_dirs_ldconfig(): _add_directory(library_dirs, dirname) if sys.platform.startswith("linux") and os.environ.get("ANDROID_ROOT"): # termux support for android. # system libraries (zlib) are installed in /system/lib # headers are at $PREFIX/include # user libs are at $PREFIX/lib _add_directory( library_dirs, os.path.join( os.environ["ANDROID_ROOT"], "lib" if struct.calcsize("l") == 4 else "lib64", ), ) elif sys.platform.startswith("netbsd"): _add_directory(library_dirs, "/usr/pkg/lib") _add_directory(include_dirs, "/usr/pkg/include") elif sys.platform.startswith("sunos5"): _add_directory(library_dirs, "/opt/local/lib") _add_directory(include_dirs, "/opt/local/include") # FIXME: check /opt/stuff directories here? # standard locations if not self.disable_platform_guessing: _add_directory(library_dirs, "/usr/local/lib") _add_directory(include_dirs, "/usr/local/include") _add_directory(library_dirs, "/usr/lib") _add_directory(include_dirs, "/usr/include") # alpine, at least _add_directory(library_dirs, "/lib") if sys.platform == "win32": # on Windows, look for the OpenJPEG libraries in the location that # the official installer puts them program_files = os.environ.get("ProgramFiles", "") best_version = (0, 0) best_path = None for name in os.listdir(program_files): if name.startswith("OpenJPEG "): version = tuple(int(x) for x in name[9:].strip().split(".")) if version > best_version: best_version = version best_path = os.path.join(program_files, name) if best_path: _dbg("Adding %s to search list", best_path) _add_directory(library_dirs, os.path.join(best_path, "lib")) _add_directory(include_dirs, os.path.join(best_path, "include")) # # insert new dirs *before* default libs, to avoid conflicts # between Python PYD stub libs and real libraries self.compiler.library_dirs = library_dirs + self.compiler.library_dirs self.compiler.include_dirs = include_dirs + self.compiler.include_dirs # # look for available libraries feature = self.feature if feature.want("zlib"): _dbg("Looking for zlib") if _find_include_file(self, "zlib.h"): if _find_library_file(self, "z"): feature.set("zlib", "z") elif sys.platform == "win32" and _find_library_file(self, "zlib"): feature.set("zlib", "zlib") # alternative name elif sys.platform == "win32" and _find_library_file(self, "zdll"): feature.set("zlib", "zdll") # dll import library if feature.want("jpeg"): _dbg("Looking for jpeg") if _find_include_file(self, "jpeglib.h"): if _find_library_file(self, "jpeg"): feature.set("jpeg", "jpeg") elif sys.platform == "win32" and _find_library_file(self, "libjpeg"): feature.set("jpeg", "libjpeg") # alternative name feature.set("openjpeg_version", None) if feature.want("jpeg2000"): _dbg("Looking for jpeg2000") best_version: tuple[int, ...] | None = None best_path = None # Find the best version for directory in self.compiler.include_dirs: _dbg("Checking for openjpeg-#.# in %s", directory) try: listdir = os.listdir(directory) except Exception: # OSError, FileNotFoundError continue for name in listdir: if name.startswith("openjpeg-") and os.path.isfile( os.path.join(directory, name, "openjpeg.h") ): _dbg("Found openjpeg.h in %s/%s", (directory, name)) version = tuple(int(x) for x in name[9:].split(".")) if best_version is None or version > best_version: best_version = version best_path = os.path.join(directory, name) _dbg( "Best openjpeg version %s so far in %s", (str(best_version), best_path), ) if best_version and _find_library_file(self, "openjp2"): # Add the directory to the include path so we can include # <openjpeg.h> rather than having to cope with the versioned # include path _add_directory(self.compiler.include_dirs, best_path, 0) feature.set("jpeg2000", "openjp2") feature.set("openjpeg_version", ".".join(str(x) for x in best_version)) if feature.want("imagequant"): _dbg("Looking for imagequant") if _find_include_file(self, "libimagequant.h"): if _find_library_file(self, "imagequant"): feature.set("imagequant", "imagequant") elif _find_library_file(self, "libimagequant"): feature.set("imagequant", "libimagequant") if feature.want("tiff"): _dbg("Looking for tiff") if _find_include_file(self, "tiff.h"): if sys.platform in ["win32", "darwin"] and _find_library_file( self, "libtiff" ): feature.set("tiff", "libtiff") elif _find_library_file(self, "tiff"): feature.set("tiff", "tiff") if feature.want("freetype"): _dbg("Looking for freetype") if _find_library_file(self, "freetype"): # look for freetype2 include files freetype_version = 0 for subdir in self.compiler.include_dirs: _dbg("Checking for include file %s in %s", ("ft2build.h", subdir)) if os.path.isfile(os.path.join(subdir, "ft2build.h")): _dbg("Found %s in %s", ("ft2build.h", subdir)) freetype_version = 21 subdir = os.path.join(subdir, "freetype2") break subdir = os.path.join(subdir, "freetype2") _dbg("Checking for include file %s in %s", ("ft2build.h", subdir)) if os.path.isfile(os.path.join(subdir, "ft2build.h")): _dbg("Found %s in %s", ("ft2build.h", subdir)) freetype_version = 21 break if freetype_version: feature.set("freetype", "freetype") if subdir: _add_directory(self.compiler.include_dirs, subdir, 0) if feature.get("freetype") and feature.want("raqm"): if not feature.want_vendor("raqm"): # want system Raqm _dbg("Looking for Raqm") if _find_include_file(self, "raqm.h"): if _find_library_file(self, "raqm"): feature.set("raqm", "raqm") elif _find_library_file(self, "libraqm"): feature.set("raqm", "libraqm") else: # want to build Raqm from src/thirdparty _dbg("Looking for HarfBuzz") feature.set("harfbuzz", None) hb_dir = _find_include_dir(self, "harfbuzz", "hb.h") if hb_dir: if isinstance(hb_dir, str): _add_directory(self.compiler.include_dirs, hb_dir, 0) if _find_library_file(self, "harfbuzz"): feature.set("harfbuzz", "harfbuzz") if feature.get("harfbuzz"): if not feature.want_vendor("fribidi"): # want system FriBiDi _dbg("Looking for FriBiDi") feature.set("fribidi", None) fribidi_dir = _find_include_dir(self, "fribidi", "fribidi.h") if fribidi_dir: if isinstance(fribidi_dir, str): _add_directory( self.compiler.include_dirs, fribidi_dir, 0 ) if _find_library_file(self, "fribidi"): feature.set("fribidi", "fribidi") feature.set("raqm", True) else: # want to build FriBiDi shim from src/thirdparty feature.set("raqm", True) if feature.want("lcms"): _dbg("Looking for lcms") if _find_include_file(self, "lcms2.h"): if _find_library_file(self, "lcms2"): feature.set("lcms", "lcms2") elif _find_library_file(self, "lcms2_static"): # alternate Windows name. feature.set("lcms", "lcms2_static") if feature.want("webp"): _dbg("Looking for webp") if all( _find_include_file(self, "webp/" + include) for include in ("encode.h", "decode.h", "mux.h", "demux.h") ): # In Google's precompiled zip it is called "libwebp" for prefix in ("", "lib"): if all( _find_library_file(self, prefix + library) for library in ("webp", "webpmux", "webpdemux") ): feature.set("webp", prefix + "webp") break if feature.want("xcb"): _dbg("Looking for xcb") if _find_include_file(self, "xcb/xcb.h"): if _find_library_file(self, "xcb"): feature.set("xcb", "xcb") if feature.want("avif"): _dbg("Looking for avif") if avif_h := _find_include_file(self, "avif/avif.h"): with open(avif_h, "rb") as fp: major_version = int( fp.read().split(b"#define AVIF_VERSION_MAJOR ")[1].split()[0] ) if major_version >= 1 and _find_library_file(self, "avif"): feature.set("avif", "avif") for f in feature: if not feature.get(f) and feature.require(f): if f in ("jpeg", "zlib"): raise RequiredDependencyException(f) raise DependencyException(f) # # core library libs: list[str | bool | None] = [] libs.extend(self.add_imaging_libs.split()) defs: list[tuple[str, str | None]] = [] if feature.get("tiff"): libs.append(feature.get("tiff")) defs.append(("HAVE_LIBTIFF", None)) if sys.platform == "win32": # This define needs to be defined if-and-only-if it was defined # when compiling LibTIFF. LibTIFF doesn't expose it in `tiffconf.h`, # so we have to guess; by default it is defined in all Windows builds. # See #4237, #5243, #5359 for more information. defs.append(("USE_WIN32_FILEIO", None)) elif sys.platform == "ios": # Ensure transitive dependencies are linked. libs.append("lzma") if feature.get("jpeg"): libs.append(feature.get("jpeg")) defs.append(("HAVE_LIBJPEG", None)) if feature.get("jpeg2000"): libs.append(feature.get("jpeg2000")) defs.append(("HAVE_OPENJPEG", None)) if sys.platform == "win32" and not PLATFORM_MINGW: defs.append(("OPJ_STATIC", None)) if feature.get("zlib"): libs.append(feature.get("zlib")) defs.append(("HAVE_LIBZ", None)) if feature.get("imagequant"): libs.append(feature.get("imagequant")) defs.append(("HAVE_LIBIMAGEQUANT", None)) if feature.get("xcb"): libs.append(feature.get("xcb")) if sys.platform == "ios": # Ensure transitive dependencies are linked. libs.append("Xau") defs.append(("HAVE_XCB", None)) if sys.platform == "win32": libs.extend(["kernel32", "user32", "gdi32"]) if struct.unpack("h", b"\0\1")[0] == 1: defs.append(("WORDS_BIGENDIAN", None)) defs.append(("PILLOW_VERSION", f'"{PILLOW_VERSION}"')) self._update_extension("PIL._imaging", libs, defs) # # additional libraries if feature.get("freetype"): srcs = [] libs = ["freetype"] defs = [] if feature.get("raqm"): if not feature.want_vendor("raqm"): # using system Raqm defs.append(("HAVE_RAQM", None)) defs.append(("HAVE_RAQM_SYSTEM", None)) libs.append(feature.get("raqm")) else: # building Raqm from src/thirdparty defs.append(("HAVE_RAQM", None)) srcs.append("src/thirdparty/raqm/raqm.c") libs.append(feature.get("harfbuzz")) if not feature.want_vendor("fribidi"): # using system FriBiDi defs.append(("HAVE_FRIBIDI_SYSTEM", None)) libs.append(feature.get("fribidi")) else: # building FriBiDi shim from src/thirdparty srcs.append("src/thirdparty/fribidi-shim/fribidi.c") if sys.platform == "ios": # Ensure transitive dependencies are linked. libs.extend(["z", "bz2", "brotlicommon", "brotlidec", "png"]) self._update_extension("PIL._imagingft", libs, defs, srcs) else: self._remove_extension("PIL._imagingft") if feature.get("lcms"): libs = [feature.get("lcms")] if sys.platform == "win32": libs.extend(["user32", "gdi32"]) self._update_extension("PIL._imagingcms", libs) else: self._remove_extension("PIL._imagingcms") webp = feature.get("webp") if isinstance(webp, str): libs = [webp, webp + "mux", webp + "demux"] if sys.platform == "ios": # Ensure transitive dependencies are linked. libs.append("sharpyuv") self._update_extension("PIL._webp", libs) else: self._remove_extension("PIL._webp") if feature.get("avif"): libs = [feature.get("avif")] if sys.platform == "win32": libs.extend(["ntdll", "userenv", "ws2_32", "bcrypt"]) self._update_extension("PIL._avif", libs) else: self._remove_extension("PIL._avif") tk_libs = ["psapi"] if sys.platform in ("win32", "cygwin") else [] self._update_extension("PIL._imagingtk", tk_libs) build_ext.build_extensions(self) # # sanity checks self.summary_report(feature) def summary_report(self, feature: ext_feature) -> None: print("-" * 68) print("PIL SETUP SUMMARY") print("-" * 68) print(f"version Pillow {PILLOW_VERSION}") version = sys.version.split("[") print(f"platform {sys.platform} {version[0].strip()}") for v in version[1:]: print(f" [{v.strip()}") print("-" * 68) raqm_extra_info = "" if feature.want_vendor("raqm"): raqm_extra_info += "bundled" if feature.want_vendor("fribidi"): raqm_extra_info += ", FriBiDi shim" options = [ (feature.get("jpeg"), "JPEG"), ( feature.get("jpeg2000"), "OPENJPEG (JPEG2000)", feature.get("openjpeg_version"), ), (feature.get("zlib"), "ZLIB (PNG/ZIP)"), (feature.get("imagequant"), "LIBIMAGEQUANT"), (feature.get("tiff"), "LIBTIFF"), (feature.get("freetype"), "FREETYPE2"), (feature.get("raqm"), "RAQM (Text shaping)", raqm_extra_info), (feature.get("lcms"), "LITTLECMS2"), (feature.get("webp"), "WEBP"), (feature.get("xcb"), "XCB (X protocol)"), (feature.get("avif"), "LIBAVIF"), ] all = 1 for option in options: if option[0]: extra_info = "" if len(option) >= 3 and option[2]: extra_info = f" ({option[2]})" print(f"--- {option[1]} support available{extra_info}") else: print(f"*** {option[1]} support not available") all = 0 print("-" * 68) if not all: print("To add a missing option, make sure you have the required") print("library and headers.") print( "See https://pillow.readthedocs.io/en/latest/installation." "html#building-from-source" ) print("") print("To check the build, run the selftest.py script.") print("") def debug_build() -> bool: return hasattr(sys, "gettotalrefcount") or FUZZING_BUILD libraries: list[tuple[str, _BuildInfo]] = [ ("pil_imaging_mode", {"sources": ["src/libImaging/Mode.c"]}), ] files: list[str | os.PathLike[str]] = ["src/_imaging.c"] for src_file in _IMAGING: files.append("src/" + src_file + ".c") for src_file in _LIB_IMAGING: files.append(os.path.join("src/libImaging", src_file + ".c")) ext_modules = [ Extension("PIL._imaging", files), Extension("PIL._imagingft", ["src/_imagingft.c"]), Extension("PIL._imagingcms", ["src/_imagingcms.c"]), Extension("PIL._webp", ["src/_webp.c"]), Extension("PIL._avif", ["src/_avif.c"]), Extension("PIL._imagingtk", ["src/_imagingtk.c", "src/Tk/tkImaging.c"]), Extension("PIL._imagingmath", ["src/_imagingmath.c"]), Extension("PIL._imagingmorph", ["src/_imagingmorph.c"]), ] try: setup( cmdclass={"build_ext": pil_build_ext}, ext_modules=ext_modules, libraries=libraries, zip_safe=not (debug_build() or PLATFORM_MINGW), ) except RequiredDependencyException as err: msg = f""" The headers or library files could not be found for {str(err)}, a required dependency when compiling Pillow from source. Please see the install instructions at: https://pillow.readthedocs.io/en/latest/installation/basic-installation.html """ sys.stderr.write(msg) raise RequiredDependencyException(msg) except DependencyException as err: msg = f""" The headers or library files could not be found for {str(err)}, which was requested by the option flag '-C {str(err)}=enable' """ sys.stderr.write(msg) raise DependencyException(msg)
pil_build_ext
python
xlwings__xlwings
xlwings/conversion/standard.py
{ "start": 2208, "end": 2964 }
class ____: def __init__(self, options): self.options = options def __call__(self, c): chunksize = self.options.get("chunksize") if c.range and chunksize: parts = [] for i in range(math.ceil(c.range.shape[0] / chunksize)): raw_value = c.range[ i * chunksize : (i * chunksize) + chunksize, : ].raw_value if isinstance(raw_value[0], (list, tuple)): parts.extend(raw_value) else: # Turn a single row list into a 2d list parts.extend([raw_value]) c.value = parts elif c.range: c.value = c.range.raw_value
ReadValueFromRangeStage
python
pypa__hatch
src/hatch/utils/fs.py
{ "start": 1028, "end": 4377 }
class ____(_PathBase): @cached_property def long_id(self) -> str: from base64 import urlsafe_b64encode from hashlib import sha256 path = str(self) if sys.platform == "win32" or sys.platform == "darwin": path = path.casefold() digest = sha256(path.encode("utf-8")).digest() return urlsafe_b64encode(digest).decode("utf-8") @cached_property def id(self) -> str: return self.long_id[:8] def ensure_dir_exists(self) -> None: self.mkdir(parents=True, exist_ok=True) def ensure_parent_dir_exists(self) -> None: self.parent.mkdir(parents=True, exist_ok=True) def expand(self) -> Path: return Path(os.path.expanduser(os.path.expandvars(self))) def remove(self) -> None: if self.is_file(): os.remove(self) elif self.is_dir(): import shutil shutil.rmtree(self, ignore_errors=False) def move(self, target): try: self.replace(target) except OSError: import shutil shutil.copy2(self, target) self.unlink() def wait_for_dir_removed(self, timeout: int = 5) -> None: import shutil import time for _ in range(timeout * 2): if self.is_dir(): shutil.rmtree(self, ignore_errors=True) time.sleep(0.5) else: return if self.is_dir(): shutil.rmtree(self, ignore_errors=False) def write_atomic(self, data: str | bytes, *args: Any, **kwargs: Any) -> None: from tempfile import mkstemp fd, path = mkstemp(dir=self.parent) with os.fdopen(fd, *args, **kwargs) as f: f.write(data) f.flush() disk_sync(fd) os.replace(path, self) @contextmanager def as_cwd(self, *args: Any, **kwargs: Any) -> Generator[Path, None, None]: origin = os.getcwd() os.chdir(self) try: if args or kwargs: with EnvVars(*args, **kwargs): yield self else: yield self finally: os.chdir(origin) @contextmanager def temp_hide(self) -> Generator[Path, None, None]: import shutil with temp_directory() as temp_dir: temp_path = Path(temp_dir, self.name) with suppress(FileNotFoundError): shutil.move(str(self), temp_dir / self.name) try: yield temp_path finally: with suppress(FileNotFoundError): shutil.move(str(temp_path), self) if sys.platform == "win32": @classmethod def from_uri(cls, path: str) -> Path: return cls(path.replace("file:///", "", 1)) else: @classmethod def from_uri(cls, path: str) -> Path: return cls(path.replace("file://", "", 1)) @contextmanager def temp_directory() -> Generator[Path, None, None]: from tempfile import TemporaryDirectory with TemporaryDirectory() as d: yield Path(d).resolve() @contextmanager def temp_chdir(env_vars: dict[str, str] | None = None) -> Generator[Path, None, None]: with temp_directory() as d, d.as_cwd(env_vars=env_vars): yield d
Path
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/memberAccess12.py
{ "start": 155, "end": 515 }
class ____(type): @overload def __get__(self: type[T], instance: None, owner: Any) -> type[T]: ... @overload def __get__(self: type[T], instance: object, owner: Any) -> T: ... def __get__(self: type[T], instance: object | None, owner: Any) -> type[T] | T: if instance is None: return self return self()
MetaClass
python
PyCQA__pylint
pylint/utils/linterstats.py
{ "start": 1233, "end": 1401 }
class ____(TypedDict): """TypedDict to store counts of undocumented node types.""" function: int klass: int method: int module: int
UndocumentedNodes
python
spack__spack
lib/spack/spack/database.py
{ "start": 13355, "end": 19267 }
class ____: """Tracks installation failures. Prefix failure marking takes the form of a byte range lock on the nth byte of a file for coordinating between concurrent parallel build processes and a persistent file, named with the full hash and containing the spec, in a subdirectory of the database to enable persistence across overlapping but separate related build processes. The failure lock file lives alongside the install DB. ``n`` is the sys.maxsize-bit prefix of the associated DAG hash to make the likelihood of collision very low with no cleanup required. """ #: root directory of the failure tracker dir: pathlib.Path #: File for locking particular concrete spec hashes locker: SpecLocker def __init__(self, root_dir: Union[str, pathlib.Path], default_timeout: Optional[float]): #: Ensure a persistent location for dealing with parallel installation #: failures (e.g., across near-concurrent processes). self.dir = pathlib.Path(root_dir) / _DB_DIRNAME / "failures" self.locker = SpecLocker(failures_lock_path(root_dir), default_timeout=default_timeout) def _ensure_parent_directories(self) -> None: """Ensure that parent directories of the FailureTracker exist. Accesses the filesystem only once, the first time it's called on a given FailureTracker. """ self.dir.mkdir(parents=True, exist_ok=True) def clear(self, spec: "spack.spec.Spec", force: bool = False) -> None: """Removes any persistent and cached failure tracking for the spec. see :meth:`mark`. Args: spec: the spec whose failure indicators are being removed force: True if the failure information should be cleared when a failure lock exists for the file, or False if the failure should not be cleared (e.g., it may be associated with a concurrent build) """ locked = self.lock_taken(spec) if locked and not force: tty.msg(f"Retaining failure marking for {spec.name} due to lock") return if locked: tty.warn(f"Removing failure marking despite lock for {spec.name}") succeeded, lock = self.locker.clear(spec) if succeeded and lock is not None: lock.release_write() if self.persistent_mark(spec): path = self._path(spec) tty.debug(f"Removing failure marking for {spec.name}") try: path.unlink() except OSError as err: tty.warn( f"Unable to remove failure marking for {spec.name} ({str(path)}): {str(err)}" ) def clear_all(self) -> None: """Force remove install failure tracking files.""" tty.debug("Releasing prefix failure locks") self.locker.clear_all( clear_fn=lambda x: x.release_write() if x.is_write_locked() else True ) tty.debug("Removing prefix failure tracking files") try: marks = os.listdir(str(self.dir)) except FileNotFoundError: return # directory doesn't exist yet except OSError as exc: tty.warn(f"Unable to remove failure marking files: {str(exc)}") return for fail_mark in marks: try: (self.dir / fail_mark).unlink() except OSError as exc: tty.warn(f"Unable to remove failure marking file {fail_mark}: {str(exc)}") def mark(self, spec: "spack.spec.Spec") -> lk.Lock: """Marks a spec as failing to install. Args: spec: spec that failed to install """ self._ensure_parent_directories() # Dump the spec to the failure file for (manual) debugging purposes path = self._path(spec) path.write_text(spec.to_json()) # Also ensure a failure lock is taken to prevent cleanup removal # of failure status information during a concurrent parallel build. if not self.locker.has_lock(spec): try: mark = self.locker.lock(spec) mark.acquire_write() except lk.LockTimeoutError: # Unlikely that another process failed to install at the same # time but log it anyway. tty.debug(f"PID {os.getpid()} failed to mark install failure for {spec.name}") tty.warn(f"Unable to mark {spec.name} as failed.") return self.locker.lock(spec) def has_failed(self, spec: "spack.spec.Spec") -> bool: """Return True if the spec is marked as failed.""" # The failure was detected in this process. if self.locker.has_lock(spec): return True # The failure was detected by a concurrent process (e.g., an srun), # which is expected to be holding a write lock if that is the case. if self.lock_taken(spec): return True # Determine if the spec may have been marked as failed by a separate # spack build process running concurrently. return self.persistent_mark(spec) def lock_taken(self, spec: "spack.spec.Spec") -> bool: """Return True if another process has a failure lock on the spec.""" check = self.locker.raw_lock(spec) return check.is_write_locked() def persistent_mark(self, spec: "spack.spec.Spec") -> bool: """Determine if the spec has a persistent failure marking.""" return self._path(spec).exists() def _path(self, spec: "spack.spec.Spec") -> pathlib.Path: """Return the path to the spec's failure file, which may not exist.""" assert spec.concrete, "concrete spec required for failure path" return self.dir / f"{spec.name}-{spec.dag_hash()}" SelectType = Callable[[InstallRecord], bool]
FailureTracker
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 991445, "end": 993569 }
class ____(Gradient): """ RadialGradient schema wrapper. Parameters ---------- gradient : Literal['radial'] The type of gradient. Use ``"radial"`` for a radial gradient. stops : Sequence[dict, :class:`GradientStop`] An array of gradient stops defining the gradient color sequence. id : str r1 : float The radius length, in normalized [0, 1] coordinates, of the inner circle for the gradient. **Default value:** ``0`` r2 : float The radius length, in normalized [0, 1] coordinates, of the outer circle for the gradient. **Default value:** ``0.5`` x1 : float The x-coordinate, in normalized [0, 1] coordinates, for the center of the inner circle for the gradient. **Default value:** ``0.5`` x2 : float The x-coordinate, in normalized [0, 1] coordinates, for the center of the outer circle for the gradient. **Default value:** ``0.5`` y1 : float The y-coordinate, in normalized [0, 1] coordinates, for the center of the inner circle for the gradient. **Default value:** ``0.5`` y2 : float The y-coordinate, in normalized [0, 1] coordinates, for the center of the outer circle for the gradient. **Default value:** ``0.5`` """ _schema = {"$ref": "#/definitions/RadialGradient"} def __init__( self, gradient: Optional[Literal["radial"]] = Undefined, stops: Optional[Sequence[SchemaBase | Map]] = Undefined, id: Optional[str] = Undefined, r1: Optional[float] = Undefined, r2: Optional[float] = Undefined, x1: Optional[float] = Undefined, x2: Optional[float] = Undefined, y1: Optional[float] = Undefined, y2: Optional[float] = Undefined, **kwds, ): super().__init__( gradient=gradient, stops=stops, id=id, r1=r1, r2=r2, x1=x1, x2=x2, y1=y1, y2=y2, **kwds, )
RadialGradient
python
huggingface__transformers
src/transformers/models/align/modeling_align.py
{ "start": 29487, "end": 31179 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([AlignTextLayer(config) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False @can_return_tuple def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, **kwargs, ) -> Union[tuple[torch.Tensor], BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> AlignText
AlignTextEncoder
python
walkccc__LeetCode
solutions/75. Sort Colors/75.py
{ "start": 0, "end": 415 }
class ____: def sortColors(self, nums: list[int]) -> None: zero = -1 one = -1 two = -1 for num in nums: if num == 0: two += 1 one += 1 zero += 1 nums[two] = 2 nums[one] = 1 nums[zero] = 0 elif num == 1: two += 1 one += 1 nums[two] = 2 nums[one] = 1 else: two += 1 nums[two] = 2
Solution
python
allegroai__clearml
clearml/backend_api/services/v2_9/tasks.py
{ "start": 253034, "end": 254168 }
class ____(Response): """ Response of tasks.make_private endpoint. :param updated: Number of tasks updated :type updated: int """ _service = "tasks" _action = "make_private" _version = "2.9" _schema = { "definitions": {}, "properties": { "updated": { "description": "Number of tasks updated", "type": ["integer", "null"], } }, "type": "object", } def __init__(self, updated: Optional[int] = None, **kwargs: Any) -> None: super(MakePrivateResponse, self).__init__(**kwargs) self.updated = updated @schema_property("updated") def updated(self) -> Optional[int]: return self._property_updated @updated.setter def updated(self, value: Optional[int]) -> None: if value is None: self._property_updated = None return if isinstance(value, float) and value.is_integer(): value = int(value) self.assert_isinstance(value, "updated", six.integer_types) self._property_updated = value
MakePrivateResponse
python
streamlit__streamlit
lib/streamlit/runtime/media_file_storage.py
{ "start": 892, "end": 1303 }
class ____(Exception): """Exception class for errors raised by MediaFileStorage. When running in "development mode", the full text of these errors is displayed in the frontend, so errors should be human-readable (and actionable). When running in "release mode", errors are redacted on the frontend; we instead show a generic "Something went wrong!" message. """
MediaFileStorageError
python
mlflow__mlflow
mlflow/data/schema.py
{ "start": 176, "end": 2650 }
class ____: """ Represents the schema of a dataset with tensor features and targets. """ def __init__(self, features: Schema, targets: Schema = None): if not isinstance(features, Schema): raise MlflowException( f"features must be mlflow.types.Schema, got '{type(features)}'", INVALID_PARAMETER_VALUE, ) if targets is not None and not isinstance(targets, Schema): raise MlflowException( f"targets must be either None or mlflow.types.Schema, got '{type(features)}'", INVALID_PARAMETER_VALUE, ) self.features = features self.targets = targets def to_dict(self) -> dict[str, Any]: """Serialize into a 'jsonable' dictionary. Returns: dictionary representation of the schema's features and targets (if defined). """ return { "mlflow_tensorspec": { "features": self.features.to_json(), "targets": self.targets.to_json() if self.targets is not None else None, }, } @classmethod def from_dict(cls, schema_dict: dict[str, Any]): """Deserialize from dictionary representation. Args: schema_dict: Dictionary representation of model signature. Expected dictionary format: `{'features': <json string>, 'targets': <json string>" }` Returns: TensorDatasetSchema populated with the data from the dictionary. """ if "mlflow_tensorspec" not in schema_dict: raise MlflowException( "TensorDatasetSchema dictionary is missing expected key 'mlflow_tensorspec'", INVALID_PARAMETER_VALUE, ) schema_dict = schema_dict["mlflow_tensorspec"] features = Schema.from_json(schema_dict["features"]) if "targets" in schema_dict and schema_dict["targets"] is not None: targets = Schema.from_json(schema_dict["targets"]) return cls(features, targets) else: return cls(features) def __eq__(self, other) -> bool: return ( isinstance(other, TensorDatasetSchema) and self.features == other.features and self.targets == other.targets ) def __repr__(self) -> str: return f"features:\n {self.features!r}\ntargets:\n {self.targets!r}\n"
TensorDatasetSchema
python
arrow-py__arrow
tests/test_locales.py
{ "start": 164485, "end": 167305 }
class ____: def test_describe(self): assert self.locale.describe("now", only_distance=True) == "հիմա" assert self.locale.describe("now", only_distance=False) == "հիմա" def test_meridians_hy(self): assert self.locale.meridian(7, "A") == "Ամ" assert self.locale.meridian(18, "A") == "պ.մ." assert self.locale.meridian(10, "a") == "Ամ" assert self.locale.meridian(22, "a") == "պ.մ." def test_format_timeframe(self): # Second(s) assert self.locale._format_timeframe("second", -1) == "վայրկյան" assert self.locale._format_timeframe("second", 1) == "վայրկյան" assert self.locale._format_timeframe("seconds", -3) == "3 վայրկյան" assert self.locale._format_timeframe("seconds", 3) == "3 վայրկյան" assert self.locale._format_timeframe("seconds", 30) == "30 վայրկյան" # Minute(s) assert self.locale._format_timeframe("minute", -1) == "րոպե" assert self.locale._format_timeframe("minute", 1) == "րոպե" assert self.locale._format_timeframe("minutes", -4) == "4 րոպե" assert self.locale._format_timeframe("minutes", 4) == "4 րոպե" assert self.locale._format_timeframe("minutes", 40) == "40 րոպե" # Hour(s) assert self.locale._format_timeframe("hour", -1) == "ժամ" assert self.locale._format_timeframe("hour", 1) == "ժամ" assert self.locale._format_timeframe("hours", -23) == "23 ժամ" assert self.locale._format_timeframe("hours", 23) == "23 ժամ" # Day(s) assert self.locale._format_timeframe("day", -1) == "օր" assert self.locale._format_timeframe("day", 1) == "օր" assert self.locale._format_timeframe("days", -12) == "12 օր" assert self.locale._format_timeframe("days", 12) == "12 օր" # Month(s) assert self.locale._format_timeframe("month", -1) == "ամիս" assert self.locale._format_timeframe("month", 1) == "ամիս" assert self.locale._format_timeframe("months", -2) == "2 ամիս" assert self.locale._format_timeframe("months", 2) == "2 ամիս" assert self.locale._format_timeframe("months", 11) == "11 ամիս" # Year(s) assert self.locale._format_timeframe("year", -1) == "տարին" assert self.locale._format_timeframe("year", 1) == "տարին" assert self.locale._format_timeframe("years", -2) == "2 տարին" assert self.locale._format_timeframe("years", 2) == "2 տարին" assert self.locale._format_timeframe("years", 12) == "12 տարին" def test_weekday(self): dt = arrow.Arrow(2015, 4, 11, 17, 30, 00) assert self.locale.day_name(dt.isoweekday()) == "շաբաթ" assert self.locale.day_abbreviation(dt.isoweekday()) == "շաբ." @pytest.mark.usefixtures("lang_locale")
TestArmenianLocale
python
ray-project__ray
python/ray/serve/handle.py
{ "start": 20286, "end": 25264 }
class ____(_DeploymentResponseBase): """A future-like object wrapping the result of a streaming deployment handle call. This is returned when using `handle.options(stream=True)` and calling a generator deployment method. `DeploymentResponseGenerator` is both a synchronous and asynchronous iterator. When iterating over results from inside a deployment, `async for` should be used to avoid blocking the asyncio event loop. When iterating over results from outside a deployment, use a standard `for` loop. Example: .. code-block:: python from typing import AsyncGenerator, Generator from ray import serve from ray.serve.handle import DeploymentHandle @serve.deployment class Streamer: def generate_numbers(self, limit: int) -> Generator[int]: for i in range(limit): yield i @serve.deployment class Caller: def __init__(self, handle: DeploymentHandle): # Set `stream=True` on the handle to enable streaming calls. self._streaming_handle = handle.options(stream=True) async def __call__(self, limit: int) -> AsyncIterator[int]: gen: DeploymentResponseGenerator = ( self._streaming_handle.generate_numbers.remote(limit) ) # Inside a deployment: use `async for` to enable concurrency. async for i in gen: yield i app = Caller.bind(Streamer.bind()) handle: DeploymentHandle = serve.run(app) # Outside a deployment: use a standard `for` loop. gen: DeploymentResponseGenerator = handle.options(stream=True).remote(10) assert [i for i in gen] == list(range(10)) A `DeploymentResponseGenerator` *cannot* currently be passed to another `DeploymentHandle` call. """ def __await__(self): raise TypeError( "`DeploymentResponseGenerator` cannot be awaited directly. Use `async for` " "or `await response.__anext__() instead`." ) def __aiter__(self) -> AsyncIterator[Any]: return self async def __anext__(self) -> Any: try: replica_result = await self._fetch_future_result_async() return await replica_result.__anext__() except asyncio.CancelledError: if self._cancelled: raise RequestCancelledError(self.request_id) from None else: raise asyncio.CancelledError from None def __iter__(self) -> Iterator[Any]: return self def __next__(self) -> Any: if is_running_in_asyncio_loop(): raise RuntimeError( "Sync methods should not be called from within an `asyncio` event " "loop. Use `async for` or `await response.__anext__()` instead." ) replica_result = self._fetch_future_result_sync() return replica_result.__next__() @DeveloperAPI async def _to_object_ref_gen(self) -> ObjectRefGenerator: """Advanced API to convert the generator to a Ray `ObjectRefGenerator`. This method is `async def` because it will block until the handle call has been assigned to a replica. If there are many requests in flight and all replicas' queues are full, this may be a slow operation. """ ServeUsageTag.DEPLOYMENT_HANDLE_TO_OBJECT_REF_API_USED.record("1") if not self._request_metadata._by_reference: raise OBJ_REF_NOT_SUPPORTED_ERROR replica_result = await self._fetch_future_result_async() return replica_result.to_object_ref_gen() @DeveloperAPI def _to_object_ref_gen_sync( self, _timeout_s: Optional[float] = None, _allow_running_in_asyncio_loop: bool = False, ) -> ObjectRefGenerator: """Advanced API to convert the generator to a Ray `ObjectRefGenerator`. This method is a *blocking* call because it will block until the handle call has been assigned to a replica. If there are many requests in flight and all replicas' queues are full, this may be a slow operation. From inside a deployment, `_to_object_ref_gen` should be used instead to avoid blocking the asyncio event loop. """ ServeUsageTag.DEPLOYMENT_HANDLE_TO_OBJECT_REF_API_USED.record("1") if not self._request_metadata._by_reference: raise OBJ_REF_NOT_SUPPORTED_ERROR if not _allow_running_in_asyncio_loop and is_running_in_asyncio_loop(): raise RuntimeError( "Sync methods should not be called from within an `asyncio` event " "loop. Use `await response._to_object_ref()` instead." ) replica_result = self._fetch_future_result_sync(_timeout_s) return replica_result.to_object_ref_gen() @PublicAPI(stability="stable")
DeploymentResponseGenerator
python
facelessuser__pymdown-extensions
tests/test_extensions/test_highlight.py
{ "start": 20373, "end": 21409 }
class ____(util.MdCase): """Test default block language cases.""" extension = ['pymdownx.highlight', 'pymdownx.superfences', 'pymdownx.inlinehilite'] extension_configs = { 'pymdownx.highlight': { 'default_lang': 'python' } } def test_default_block(self): """Test that default language affects block, but not inline code.""" self.check_markdown( ''' `import code` import code ``` import code ``` ''', ''' <p><code>import code</code></p> <div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">code</span> </code></pre></div> <div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">code</span> </code></pre></div> ''', # noqa: E501 True )
TestDefaultLang
python
kamyu104__LeetCode-Solutions
Python/unique-paths-iii.py
{ "start": 61, "end": 1341 }
class ____(object): def uniquePathsIII(self, grid): """ :type grid: List[List[int]] :rtype: int """ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] def index(grid, r, c): return 1 << (r*len(grid[0])+c) def dp(grid, src, dst, todo, lookup): if src == dst: return int(todo == 0) key = (src, todo) if key in lookup: return lookup[key] result = 0 for d in directions: r, c = src[0]+d[0], src[1]+d[1] if 0 <= r < len(grid) and 0 <= c < len(grid[0]) and \ grid[r][c] % 2 == 0 and \ todo & index(grid, r, c): result += dp(grid, (r, c), dst, todo ^ index(grid, r, c), lookup) lookup[key] = result return lookup[key] todo = 0 src, dst = None, None for r, row in enumerate(grid): for c, val in enumerate(row): if val % 2 == 0: todo |= index(grid, r, c) if val == 1: src = (r, c) elif val == 2: dst = (r, c) return dp(grid, src, dst, todo, {})
Solution
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/metaclass9.py
{ "start": 1407, "end": 1512 }
class ____(metaclass=Meta2): ... # This should generate an error because param4 is the wrong type.
Class2_4
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 1148018, "end": 1148275 }
class ____(VegaLiteSchema): """ScaleInvalidDataShowAstime schema wrapper.""" _schema = {"$ref": '#/definitions/ScaleInvalidDataShowAs<"time">'} def __init__(self, *args, **kwds): super().__init__(*args, **kwds)
ScaleInvalidDataShowAstime
python
automl__auto-sklearn
autosklearn/metrics/__init__.py
{ "start": 5977, "end": 23924 }
class ____(Scorer): def __call__( self, y_true: np.ndarray, y_pred: np.ndarray, *, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, sample_weight: Optional[List[float]] = None, ) -> float: """Evaluate decision function output for X relative to y_true. Parameters ---------- y_true : array-like Gold standard target values for X. These must be class labels, not probabilities. y_pred : array-like, [n_samples x n_classes] Model predictions X_data : array-like [n_samples x n_features] X data used to obtain the predictions: each row x_j corresponds to the input used to obtain predictions y_j sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y_true) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if y_type == "binary": if y_pred.ndim > 1: y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T scorer_kwargs = {} # type: Dict[str, Union[List[float], np.ndarray]] if sample_weight is not None: scorer_kwargs["sample_weight"] = sample_weight if self._needs_X is True: scorer_kwargs["X_data"] = X_data return self._sign * self._score_func( y_true, y_pred, **scorer_kwargs, **self._kwargs ) def make_scorer( name: str, score_func: Callable, *, optimum: float = 1.0, worst_possible_result: float = 0.0, greater_is_better: bool = True, needs_proba: bool = False, needs_threshold: bool = False, needs_X: bool = False, **kwargs: Any, ) -> Scorer: """Make a scorer from a performance metric or loss function. Factory inspired by scikit-learn which wraps scikit-learn scoring functions to be used in auto-sklearn. Parameters ---------- name: str Descriptive name of the metric score_func : callable Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. optimum : int or float, default=1 The best score achievable by the score function, i.e. maximum in case of scorer function and minimum in case of loss function. worst_possible_result : int of float, default=0 The worst score achievable by the score function, i.e. minimum in case of scorer function and maximum in case of loss function. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification. needs_X : boolean, default=False Whether score_func requires X in __call__ to compute a metric. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better or set greater_is_better to False. """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError( "Set either needs_proba or needs_threshold to True, but not both." ) cls = None # type: Any if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls( name, score_func, optimum, worst_possible_result, sign, kwargs, needs_X=needs_X ) # Standard regression scores mean_absolute_error = make_scorer( "mean_absolute_error", sklearn.metrics.mean_absolute_error, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, ) mean_squared_error = make_scorer( "mean_squared_error", sklearn.metrics.mean_squared_error, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, squared=True, ) root_mean_squared_error = make_scorer( "root_mean_squared_error", sklearn.metrics.mean_squared_error, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, squared=False, ) mean_squared_log_error = make_scorer( "mean_squared_log_error", sklearn.metrics.mean_squared_log_error, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, ) median_absolute_error = make_scorer( "median_absolute_error", sklearn.metrics.median_absolute_error, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, ) r2 = make_scorer("r2", sklearn.metrics.r2_score) # Standard Classification Scores accuracy = make_scorer("accuracy", sklearn.metrics.accuracy_score) balanced_accuracy = make_scorer( "balanced_accuracy", sklearn.metrics.balanced_accuracy_score ) # Score functions that need decision values roc_auc = make_scorer( "roc_auc", sklearn.metrics.roc_auc_score, greater_is_better=True, needs_threshold=True, ) average_precision = make_scorer( "average_precision", sklearn.metrics.average_precision_score, needs_threshold=True ) # NOTE: zero_division # # Specified as the explicit default, see sklearn docs: # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn-metrics-precision-score precision = make_scorer( "precision", partial(sklearn.metrics.precision_score, zero_division=0) ) recall = make_scorer("recall", partial(sklearn.metrics.recall_score, zero_division=0)) f1 = make_scorer("f1", partial(sklearn.metrics.f1_score, zero_division=0)) # Score function for probabilistic classification log_loss = make_scorer( "log_loss", sklearn.metrics.log_loss, optimum=0, worst_possible_result=MAXINT, greater_is_better=False, needs_proba=True, ) # TODO what about mathews correlation coefficient etc? REGRESSION_METRICS = { scorer.name: scorer for scorer in [ mean_absolute_error, mean_squared_error, root_mean_squared_error, mean_squared_log_error, median_absolute_error, r2, ] } CLASSIFICATION_METRICS = { scorer.name: scorer for scorer in [accuracy, balanced_accuracy, roc_auc, average_precision, log_loss] } # NOTE: zero_division # # Specified as the explicit default, see sklearn docs: # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn-metrics-precision-score for (base_name, sklearn_metric), average in product( [ ("precision", sklearn.metrics.precision_score), ("recall", sklearn.metrics.recall_score), ("f1", sklearn.metrics.f1_score), ], ["macro", "micro", "samples", "weighted"], ): name = f"{base_name}_{average}" scorer = make_scorer( name, partial(sklearn_metric, pos_label=None, average=average, zero_division=0) ) globals()[name] = scorer # Adds scorer to the module scope CLASSIFICATION_METRICS[name] = scorer def _validate_metrics( metrics: Sequence[Scorer], scoring_functions: Optional[List[Scorer]] = None, ) -> None: """ Validate metrics given to Auto-sklearn. Raises an Exception in case of a problem. metrics: Sequence[Scorer] A list of objects that hosts a function to calculate how good the prediction is according to the solution. scoring_functions: Optional[List[Scorer]] A list of metrics to calculate multiple losses """ to_score = list(metrics) if scoring_functions: to_score.extend(scoring_functions) if len(metrics) == 0: raise ValueError("Number of metrics to compute must be greater than zero.") metric_counter = collections.Counter(to_score) metric_names_counter = collections.Counter(metric.name for metric in to_score) if len(metric_counter) != len(metric_names_counter): raise ValueError( "Error in metrics passed to Auto-sklearn. A metric name was used " "multiple times for different metrics!" ) def calculate_scores( solution: np.ndarray, prediction: np.ndarray, task_type: int, metrics: Sequence[Scorer], *, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, scoring_functions: Optional[List[Scorer]] = None, ) -> Dict[str, float]: """ Returns the scores (a magnitude that allows casting the optimization problem as a maximization one) for the given Auto-Sklearn Scorer objects. Parameters ---------- solution: np.ndarray The ground truth of the targets prediction: np.ndarray The best estimate from the model, of the given targets task_type: int To understand if the problem task is classification or regression metrics: Sequence[Scorer] A list of objects that hosts a function to calculate how good the prediction is according to the solution. X_data : array-like [n_samples x n_features] X data used to obtain the predictions scoring_functions: List[Scorer] A list of metrics to calculate multiple losses Returns ------- Dict[str, float] """ if task_type not in TASK_TYPES: raise NotImplementedError(task_type) _validate_metrics(metrics=metrics, scoring_functions=scoring_functions) to_score = list(metrics) if scoring_functions: to_score.extend(scoring_functions) score_dict = dict() if task_type in REGRESSION_TASKS: for metric_ in to_score: try: score_dict[metric_.name] = _compute_single_scorer( metric=metric_, prediction=prediction, solution=solution, task_type=task_type, X_data=X_data, ) except ValueError as e: print(e, e.args[0]) if ( e.args[0] == "Mean Squared Logarithmic Error cannot be used when " "targets contain negative values." ): continue else: raise e else: for metric_ in to_score: # TODO maybe annotate metrics to define which cases they can # handle? try: score_dict[metric_.name] = _compute_single_scorer( metric=metric_, prediction=prediction, solution=solution, task_type=task_type, X_data=X_data, ) except ValueError as e: if e.args[0] == "multiclass format is not supported": continue elif ( e.args[0] == "Samplewise metrics are not available " "outside of multilabel classification." ): continue elif ( e.args[0] == "Target is multiclass but " "average='binary'. Please choose another average " "setting, one of [None, 'micro', 'macro', 'weighted']." ): continue else: raise e return score_dict def calculate_loss( solution: np.ndarray, prediction: np.ndarray, task_type: int, metric: Scorer, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, ) -> float: """Calculate the loss with a given metric Parameters ---------- solution: np.ndarray The solutions prediction: np.ndarray The predictions generated task_type: int The task type of the problem metric: Scorer The metric to use X_data: Optional[SUPPORTED_XDATA_TYPES] X data used to obtain the predictions """ losses = calculate_losses( solution=solution, prediction=prediction, task_type=task_type, metrics=[metric], X_data=X_data, ) return losses[metric.name] def calculate_losses( solution: np.ndarray, prediction: np.ndarray, task_type: int, metrics: Sequence[Scorer], *, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, scoring_functions: Optional[List[Scorer]] = None, ) -> Dict[str, float]: """ Returns the losses (a magnitude that allows casting the optimization problem as a minimization one) for the given Auto-Sklearn Scorer objects. Parameters ---------- solution: np.ndarray The ground truth of the targets prediction: np.ndarray The best estimate from the model, of the given targets task_type: int To understand if the problem task is classification or regression metrics: Sequence[Scorer] A list of objects that hosts a function to calculate how good the prediction is according to the solution. X_data: Optional[SUPPORTED_XDATA_TYPES] X data used to obtain the predictions scoring_functions: List[Scorer] A list of metrics to calculate multiple losses Returns ------- Dict[str, float] A loss function for each of the provided scorer objects """ score = calculate_scores( solution=solution, prediction=prediction, X_data=X_data, task_type=task_type, metrics=metrics, scoring_functions=scoring_functions, ) scoring_functions = scoring_functions if scoring_functions else [] # we expect a dict() object for which we should calculate the loss loss_dict = dict() for metric_ in scoring_functions + list(metrics): # maybe metric argument is not in scoring_functions # TODO: When metrics are annotated with type_of_target support # we can remove this check if metric_.name not in score: continue loss_dict[metric_.name] = metric_._optimum - score[metric_.name] return loss_dict def compute_single_metric( metric: Scorer, prediction: np.ndarray, solution: np.ndarray, task_type: int, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, ) -> float: """ Returns a metric for the given Auto-Sklearn Scorer object. It's direction is determined by the metric itself. Parameters ---------- solution: np.ndarray The ground truth of the targets prediction: np.ndarray The best estimate from the model, of the given targets task_type: int To understand if the problem task is classification or regression metric: Scorer Object that host a function to calculate how good the prediction is according to the solution. X_data : array-like [n_samples x n_features] X data used to obtain the predictions Returns ------- float """ score = _compute_single_scorer( solution=solution, prediction=prediction, metric=metric, X_data=X_data, task_type=task_type, ) return metric._sign * score def _compute_single_scorer( metric: Scorer, prediction: np.ndarray, solution: np.ndarray, task_type: int, X_data: Optional[SUPPORTED_XDATA_TYPES] = None, ) -> float: """ Returns a score (a magnitude that allows casting the optimization problem as a maximization one) for the given Auto-Sklearn Scorer object Parameters ---------- solution: np.ndarray The ground truth of the targets prediction: np.ndarray The best estimate from the model, of the given targets task_type: int To understand if the problem task is classification or regression metric: Scorer Object that host a function to calculate how good the prediction is according to the solution. X_data : array-like [n_samples x n_features] X data used to obtain the predictions Returns ------- float """ if metric._needs_X: if X_data is None: raise ValueError( f"Metric {metric.name} needs X_data, but X_data is {X_data}" ) elif X_data.shape[0] != solution.shape[0]: raise ValueError( f"X_data has wrong length. " f"Should be {solution.shape[0]}, but is {X_data.shape[0]}" ) if task_type in REGRESSION_TASKS: # TODO put this into the regression metric itself cprediction = sanitize_array(prediction) score = metric(solution, cprediction, X_data=X_data) else: score = metric(solution, prediction, X_data=X_data) return score if task_type in REGRESSION_TASKS: # TODO put this into the regression metric itself cprediction = sanitize_array(prediction) score = metric(solution, cprediction) else: score = metric(solution, prediction) return score # Must be at bottom so all metrics are defined default_metric_for_task: Dict[int, Scorer] = { BINARY_CLASSIFICATION: CLASSIFICATION_METRICS["accuracy"], MULTICLASS_CLASSIFICATION: CLASSIFICATION_METRICS["accuracy"], MULTILABEL_CLASSIFICATION: CLASSIFICATION_METRICS["f1_macro"], REGRESSION: REGRESSION_METRICS["r2"], MULTIOUTPUT_REGRESSION: REGRESSION_METRICS["r2"], }
_ThresholdScorer
python
wandb__wandb
wandb/vendor/pygments/lexers/rdf.py
{ "start": 505, "end": 6304 }
class ____(RegexLexer): """ Lexer for `SPARQL <http://www.w3.org/TR/rdf-sparql-query/>`_ query language. .. versionadded:: 2.0 """ name = 'SPARQL' aliases = ['sparql'] filenames = ['*.rq', '*.sparql'] mimetypes = ['application/sparql-query'] # character group definitions :: PN_CHARS_BASE_GRP = (u'a-zA-Z' u'\u00c0-\u00d6' u'\u00d8-\u00f6' u'\u00f8-\u02ff' u'\u0370-\u037d' u'\u037f-\u1fff' u'\u200c-\u200d' u'\u2070-\u218f' u'\u2c00-\u2fef' u'\u3001-\ud7ff' u'\uf900-\ufdcf' u'\ufdf0-\ufffd') PN_CHARS_U_GRP = (PN_CHARS_BASE_GRP + '_') PN_CHARS_GRP = (PN_CHARS_U_GRP + r'\-' + r'0-9' + u'\u00b7' + u'\u0300-\u036f' + u'\u203f-\u2040') HEX_GRP = '0-9A-Fa-f' PN_LOCAL_ESC_CHARS_GRP = r' _~.\-!$&"()*+,;=/?#@%' # terminal productions :: PN_CHARS_BASE = '[' + PN_CHARS_BASE_GRP + ']' PN_CHARS_U = '[' + PN_CHARS_U_GRP + ']' PN_CHARS = '[' + PN_CHARS_GRP + ']' HEX = '[' + HEX_GRP + ']' PN_LOCAL_ESC_CHARS = '[' + PN_LOCAL_ESC_CHARS_GRP + ']' IRIREF = r'<(?:[^<>"{}|^`\\\x00-\x20])*>' BLANK_NODE_LABEL = '_:[0-9' + PN_CHARS_U_GRP + '](?:[' + PN_CHARS_GRP + \ '.]*' + PN_CHARS + ')?' PN_PREFIX = PN_CHARS_BASE + '(?:[' + PN_CHARS_GRP + '.]*' + PN_CHARS + ')?' VARNAME = u'[0-9' + PN_CHARS_U_GRP + '][' + PN_CHARS_U_GRP + \ u'0-9\u00b7\u0300-\u036f\u203f-\u2040]*' PERCENT = '%' + HEX + HEX PN_LOCAL_ESC = r'\\' + PN_LOCAL_ESC_CHARS PLX = '(?:' + PERCENT + ')|(?:' + PN_LOCAL_ESC + ')' PN_LOCAL = ('(?:[' + PN_CHARS_U_GRP + ':0-9' + ']|' + PLX + ')' + '(?:(?:[' + PN_CHARS_GRP + '.:]|' + PLX + ')*(?:[' + PN_CHARS_GRP + ':]|' + PLX + '))?') EXPONENT = r'[eE][+-]?\d+' # Lexer token definitions :: tokens = { 'root': [ (r'\s+', Text), # keywords :: (r'((?i)select|construct|describe|ask|where|filter|group\s+by|minus|' r'distinct|reduced|from\s+named|from|order\s+by|desc|asc|limit|' r'offset|bindings|load|clear|drop|create|add|move|copy|' r'insert\s+data|delete\s+data|delete\s+where|delete|insert|' r'using\s+named|using|graph|default|named|all|optional|service|' r'silent|bind|union|not\s+in|in|as|having|to|prefix|base)\b', Keyword), (r'(a)\b', Keyword), # IRIs :: ('(' + IRIREF + ')', Name.Label), # blank nodes :: ('(' + BLANK_NODE_LABEL + ')', Name.Label), # # variables :: ('[?$]' + VARNAME, Name.Variable), # prefixed names :: (r'(' + PN_PREFIX + ')?(\:)(' + PN_LOCAL + ')?', bygroups(Name.Namespace, Punctuation, Name.Tag)), # function names :: (r'((?i)str|lang|langmatches|datatype|bound|iri|uri|bnode|rand|abs|' r'ceil|floor|round|concat|strlen|ucase|lcase|encode_for_uri|' r'contains|strstarts|strends|strbefore|strafter|year|month|day|' r'hours|minutes|seconds|timezone|tz|now|md5|sha1|sha256|sha384|' r'sha512|coalesce|if|strlang|strdt|sameterm|isiri|isuri|isblank|' r'isliteral|isnumeric|regex|substr|replace|exists|not\s+exists|' r'count|sum|min|max|avg|sample|group_concat|separator)\b', Name.Function), # boolean literals :: (r'(true|false)', Keyword.Constant), # double literals :: (r'[+\-]?(\d+\.\d*' + EXPONENT + '|\.?\d+' + EXPONENT + ')', Number.Float), # decimal literals :: (r'[+\-]?(\d+\.\d*|\.\d+)', Number.Float), # integer literals :: (r'[+\-]?\d+', Number.Integer), # operators :: (r'(\|\||&&|=|\*|\-|\+|/|!=|<=|>=|!|<|>)', Operator), # punctuation characters :: (r'[(){}.;,:^\[\]]', Punctuation), # line comments :: (r'#[^\n]*', Comment), # strings :: (r'"""', String, 'triple-double-quoted-string'), (r'"', String, 'single-double-quoted-string'), (r"'''", String, 'triple-single-quoted-string'), (r"'", String, 'single-single-quoted-string'), ], 'triple-double-quoted-string': [ (r'"""', String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String, 'string-escape'), ], 'single-double-quoted-string': [ (r'"', String, 'end-of-string'), (r'[^"\\\n]+', String), (r'\\', String, 'string-escape'), ], 'triple-single-quoted-string': [ (r"'''", String, 'end-of-string'), (r'[^\\]+', String), (r'\\', String.Escape, 'string-escape'), ], 'single-single-quoted-string': [ (r"'", String, 'end-of-string'), (r"[^'\\\n]+", String), (r'\\', String, 'string-escape'), ], 'string-escape': [ (r'u' + HEX + '{4}', String.Escape, '#pop'), (r'U' + HEX + '{8}', String.Escape, '#pop'), (r'.', String.Escape, '#pop'), ], 'end-of-string': [ (r'(@)([a-zA-Z]+(?:-[a-zA-Z0-9]+)*)', bygroups(Operator, Name.Function), '#pop:2'), (r'\^\^', Operator, '#pop:2'), default('#pop:2'), ], }
SparqlLexer
python
allegroai__clearml
clearml/backend_api/services/v2_20/projects.py
{ "start": 125167, "end": 128989 }
class ____(Request): """ Get user and system tags used for the tasks under the specified projects :param include_system: If set to 'true' then the list of the system tags is also returned. The default value is 'false' :type include_system: bool :param projects: The list of projects under which the tags are searched. If not passed or empty then all the projects are searched :type projects: Sequence[str] :param filter: Filter on entities to collect tags from :type filter: dict """ _service = "projects" _action = "get_task_tags" _version = "2.20" _schema = { "definitions": {}, "properties": { "filter": { "description": "Filter on entities to collect tags from", "properties": { "system_tags": { "description": "The list of system tag values to filter by. Use 'null' value to specify empty system tags. Use '__Snot' value to specify that the following value should be excluded", "items": {"type": "string"}, "type": "array", }, "tags": { "description": "The list of tag values to filter by. Use 'null' value to specify empty tags. Use '__Snot' value to specify that the following value should be excluded", "items": {"type": "string"}, "type": "array", }, }, "type": ["object", "null"], }, "include_system": { "default": False, "description": "If set to 'true' then the list of the system tags is also returned. The default value is 'false'", "type": ["boolean", "null"], }, "projects": { "description": "The list of projects under which the tags are searched. If not passed or empty then all the projects are searched", "items": {"type": "string"}, "type": ["array", "null"], }, }, "type": "object", } def __init__( self, include_system: Optional[bool] = False, projects: Optional[List[str]] = None, filter: Optional[dict] = None, **kwargs: Any ) -> None: super(GetTaskTagsRequest, self).__init__(**kwargs) self.include_system = include_system self.projects = projects self.filter = filter @schema_property("include_system") def include_system(self) -> Optional[bool]: return self._property_include_system @include_system.setter def include_system(self, value: Optional[bool]) -> None: if value is None: self._property_include_system = None return self.assert_isinstance(value, "include_system", (bool,)) self._property_include_system = value @schema_property("projects") def projects(self) -> Optional[List[str]]: return self._property_projects @projects.setter def projects(self, value: Optional[List[str]]) -> None: if value is None: self._property_projects = None return self.assert_isinstance(value, "projects", (list, tuple)) self.assert_isinstance(value, "projects", six.string_types, is_array=True) self._property_projects = value @schema_property("filter") def filter(self) -> Optional[dict]: return self._property_filter @filter.setter def filter(self, value: Optional[dict]) -> None: if value is None: self._property_filter = None return self.assert_isinstance(value, "filter", (dict,)) self._property_filter = value
GetTaskTagsRequest
python
catalyst-team__catalyst
catalyst/loggers/neptune.py
{ "start": 957, "end": 9880 }
class ____(ILogger): """Neptune logger for parameters, metrics, images and other artifacts (videos, audio, model checkpoints, etc.). Neptune documentation: https://docs.neptune.ai/integrations-and-supported-tools/model-training/catalyst When the logger is created, link to the run in Neptune will be printed to stdout. It looks like this: https://ui.neptune.ai/common/catalyst-integration/e/CATALYST-1379 To start with Neptune please check `Neptune getting-started docs <http://docs.neptune.ai/getting-started/installation>`_ because you will need ``api_token`` and project to log your Catalyst runs to. .. note:: You can use public api_token ``ANONYMOUS`` and set project to ``common/catalyst-integration`` for testing without registration. Args: base_namespace: Optional, ``str``, root namespace within Neptune's run. Default is "experiment". api_token: Optional, ``str``. Your Neptune API token. Read more about it in the `Neptune docs <http://docs.neptune.ai/getting-started/installation>`_. project: Optional, ``str``. Name of the project to log runs to. It looks like this: "my_workspace/my_project". run: Optional, pass Neptune run object if you want to continue logging to the existing run (resume run). Read more about it `here <https://docs.neptune.ai/how-to-guides/neptune-api/resume-run>`_. log_batch_metrics: boolean flag to log batch metrics (default: SETTINGS.log_batch_metrics or False). log_epoch_metrics: boolean flag to log epoch metrics (default: SETTINGS.log_epoch_metrics or True). neptune_run_kwargs: Optional, additional keyword arguments to be passed directly to the `neptune.init() <https://docs.neptune.ai/api-reference/neptune#init>`_ function. Python API examples: .. code-block:: python from catalyst import dl runner = dl.SupervisedRunner() runner.train( ... loggers={ "neptune": dl.NeptuneLogger( project="my_workspace/my_project", tags=["pretraining", "retina"], ) } ) .. code-block:: python from catalyst import dl class CustomRunner(dl.IRunner): # ... def get_loggers(self): return { "console": dl.ConsoleLogger(), "neptune": dl.NeptuneLogger( project="my_workspace/my_project" ) } # ... runner = CustomRunner().run() """ def __init__( self, base_namespace=None, api_token=None, project=None, run=None, log_batch_metrics: bool = SETTINGS.log_batch_metrics, log_epoch_metrics: bool = SETTINGS.log_epoch_metrics, **neptune_run_kwargs, ): super().__init__( log_batch_metrics=log_batch_metrics, log_epoch_metrics=log_epoch_metrics ) if base_namespace is None: self.base_namespace = "experiment" else: self.base_namespace = base_namespace self._api_token = api_token self._project = project self._neptune_run_kwargs = neptune_run_kwargs if run is None: self.run = neptune.init( project=self._project, api_token=self._api_token, **self._neptune_run_kwargs, ) else: self.run = run try: import catalyst.__version__ as version self.run["source_code/integrations/neptune-catalyst"] = version except (ImportError, NameError, AttributeError): pass @property def logger(self): """Internal logger/experiment/etc. from the monitoring system.""" return self.run def _log_metrics(self, metrics: Dict[str, float], neptune_path: str, step: int): for key, value in metrics.items(): self.run[f"{neptune_path}/{key}"].log(value=float(value), step=step) def _log_image(self, image: np.ndarray, neptune_path: str): self.run[neptune_path].log(neptune.types.File.as_image(image)) def _log_artifact(self, artifact: object, path_to_artifact: str, neptune_path: str): if artifact is not None: self.run[neptune_path].upload(neptune.types.File.as_pickle(artifact)) elif path_to_artifact is not None: self.run[neptune_path].upload(path_to_artifact) def log_artifact( self, tag: str, runner: "IRunner", artifact: object = None, path_to_artifact: str = None, scope: str = None, ) -> None: """Logs arbitrary file (audio, video, csv, etc.) to Neptune.""" if artifact is not None and path_to_artifact is not None: ValueError("artifact and path_to_artifact are mutually exclusive") if scope == "batch": neptune_path = "/".join( [ self.base_namespace, "_artifacts", f"epoch-{runner.epoch_step:04d}", f"loader-{runner.loader_key}", f"batch-{runner.batch_step:04d}", tag, ] ) elif scope == "loader": neptune_path = "/".join( [ self.base_namespace, "_artifacts", f"epoch-{runner.epoch_step:04d}", f"loader-{runner.loader_key}", tag, ] ) elif scope == "epoch": neptune_path = "/".join( [ self.base_namespace, "_artifacts", f"epoch-{runner.epoch_step:04d}", tag, ] ) elif scope == "experiment" or scope is None: neptune_path = "/".join([self.base_namespace, "_artifacts", tag]) self._log_artifact(artifact, path_to_artifact, neptune_path) def log_image( self, tag: str, image: np.ndarray, runner: "IRunner", scope: str = None, ) -> None: """Logs image to Neptune for current scope on current step.""" if scope == "batch" or scope == "loader": log_path = "/".join( [ self.base_namespace, "_images", f"epoch-{runner.epoch_step:04d}", f"loader-{runner.loader_key}", tag, ] ) elif scope == "epoch": log_path = "/".join( [self.base_namespace, "_images", f"epoch-{runner.epoch_step:04d}", tag] ) elif scope == "experiment" or scope is None: log_path = "/".join([self.base_namespace, "_images", tag]) self._log_image(image, log_path) def log_hparams(self, hparams: Dict, runner: "IRunner" = None) -> None: """Logs hyper-parameters to Neptune.""" self.run[f"{self.base_namespace}/hparams"] = hparams def log_metrics( self, metrics: Dict[str, float], scope: str, runner: "IRunner", ) -> None: """Logs batch, epoch and loader metrics to Neptune.""" if scope == "batch" and self.log_batch_metrics: neptune_path = "/".join([self.base_namespace, runner.loader_key, scope]) self._log_metrics( metrics=metrics, neptune_path=neptune_path, step=runner.sample_step ) elif scope == "loader" and self.log_epoch_metrics: neptune_path = "/".join([self.base_namespace, runner.loader_key, scope]) self._log_metrics( metrics=_prepare_metrics(metrics), neptune_path=neptune_path, step=runner.epoch_step, ) elif scope == "epoch" and self.log_epoch_metrics: loader_key = "_epoch_" prepared_metrics = _prepare_metrics(metrics[loader_key]) neptune_path = "/".join([self.base_namespace, scope]) if prepared_metrics: self._log_metrics( metrics=prepared_metrics, neptune_path=neptune_path, step=runner.epoch_step, ) elif scope == "experiment" or scope is None: self._log_metrics(metrics=metrics, neptune_path=self.base_namespace, step=0) def flush_log(self) -> None: """Flushes the loggers.""" pass def close_log(self, scope: str = None) -> None: """Closes the loggers.""" self.run.wait() __all__ = ["NeptuneLogger"]
NeptuneLogger
python
pypa__pipenv
pipenv/vendor/plette/models/base.py
{ "start": 2354, "end": 2972 }
class ____(DataModelCollection): """A sequence of data views. Each entry is an instance of `item_class`. """ @classmethod def validate(cls, data): for d in data: cls.item_class.validate(d) def __iter__(self): return (self.item_class(d) for d in self._data) def __getitem__(self, key): if isinstance(key, slice): return type(self)(self._data[key]) return super().__getitem__(key) def append(self, value): if isinstance(value, DataModel): value = value._data self._data.append(value)
DataModelSequence
python
getsentry__sentry
src/sentry/integrations/vercel/integration.py
{ "start": 7550, "end": 15338 }
class ____(IntegrationInstallation): @property def metadata(self): return self.model.metadata def get_dynamic_display_information(self): qs = urlencode({"category": "source code management"}) source_code_link = absolute_uri(f"/settings/{self.organization.slug}/integrations/?{qs}") return { "configure_integration": { "instructions": [ install_source_code_integration.format(source_code_link), ] } } def get_client(self): access_token = self.metadata["access_token"] if self.metadata["installation_type"] == "team": return VercelClient(access_token, self.model.external_id) return VercelClient(access_token) def get_configuration_id(self): # XXX(meredith): The "configurations" in the metadata is no longer # needed since Vercel restricted installation on their end to be # once per user/team. Eventually we should be able to just use # `self.metadata["installation_id"]` if not self.metadata.get("configurations"): return self.metadata["installation_id"] # note this could return a different integration if the user has multiple # installations with the same organization for configuration_id, data in self.metadata["configurations"].items(): if data["organization_id"] == self.organization_id: return configuration_id logger.error( "could not find matching org", extra={"organization_id": self.organization_id, "integration_id": self.model.id}, ) return None def get_slug(self): client = self.get_client() if self.metadata["installation_type"] == "team": team = client.get_team() return team["slug"] else: user = client.get_user() return user["username"] def get_organization_config(self): vercel_client = self.get_client() # TODO: add try/catch if we get API failure slug = self.get_slug() base_url = f"https://vercel.com/{slug}" vercel_projects = [ {"value": p["id"], "label": p["name"], "url": "{}/{}".format(base_url, p["name"])} for p in vercel_client.get_projects() ] sentry_projects = [ {"id": proj.id, "platform": proj.platform, "name": proj.name, "slug": proj.slug} for proj in sorted(self.organization.projects, key=(lambda proj: proj.slug)) if proj.status == ObjectStatus.ACTIVE ] fields = [ { "name": "project_mappings", "type": "project_mapper", "mappedDropdown": { "items": vercel_projects, "placeholder": _("Vercel project..."), }, "sentryProjects": sentry_projects, "nextButton": { "allowedDomain": "https://vercel.com", "description": _( "Link your Sentry projects to complete your installation on Vercel" ), "text": _("Complete on Vercel"), }, "iconType": "vercel", } ] return fields def update_organization_config(self, data): # data = {"project_mappings": [[sentry_project_id, vercel_project_id]]} vercel_client = self.get_client() config = self.org_integration.config try: new_mappings = data["project_mappings"] except KeyError: raise ValidationError("Failed to update configuration.") old_mappings = config.get("project_mappings") or [] sentry_projects = {proj.id: proj for proj in self.organization.projects} for mapping in new_mappings: # skip any mappings that already exist if mapping in old_mappings: continue [sentry_project_id, vercel_project_id] = mapping sentry_project = sentry_projects[sentry_project_id] project_key = project_key_service.get_default_project_key( organization_id=self.organization_id, project_id=sentry_project_id ) if not project_key: raise ValidationError( {"project_mappings": ["You must have an enabled DSN to continue!"]} ) vercel_project = vercel_client.get_project(vercel_project_id) sentry_auth_token = SentryAppInstallationToken.objects.get_token( sentry_project.organization_id, "vercel", ) env_var_map = ( VercelEnvVarMapBuilder() .with_organization(self.organization) .with_project(sentry_project) .with_project_key(project_key) .with_auth_token(sentry_auth_token) .with_framework(vercel_project.get("framework")) .build() ) for env_var, details in env_var_map.items(): # We are logging a message because we potentially have a weird bug where auth tokens disappear from vercel if env_var == "SENTRY_AUTH_TOKEN" and details["value"] is None: sentry_sdk.capture_message( "Setting SENTRY_AUTH_TOKEN env var with None value in Vercel integration" ) self.create_env_var( vercel_client, vercel_project_id, env_var, details["value"], details["type"], details["target"], ) config.update(data) org_integration = integration_service.update_organization_integration( org_integration_id=self.org_integration.id, config=config, ) if org_integration is not None: self.org_integration = org_integration def create_env_var(self, client, vercel_project_id, key, value, type, target): data = { "key": key, "value": value, "target": target, "type": type, } try: return client.create_env_variable(vercel_project_id, data) except ApiError as e: if e.json and e.json.get("error", {}).get("code") == "ENV_ALREADY_EXISTS": try: return self.update_env_variable(client, vercel_project_id, data) except ApiError as e: error_message = ( e.json.get("error", {}).get("message") if e.json else f"Could not update environment variable {key}." ) raise ValidationError({"project_mappings": [error_message]}) raise def update_env_variable(self, client, vercel_project_id, data): envs = client.get_env_vars(vercel_project_id)["envs"] env_var_ids = [env_var["id"] for env_var in envs if env_var["key"] == data["key"]] if env_var_ids: return client.update_env_variable(vercel_project_id, env_var_ids[0], data) key = data["key"] raise IntegrationError( f"Could not update environment variable {key} in Vercel project {vercel_project_id}." ) def uninstall(self): client = self.get_client() try: client.uninstall(self.get_configuration_id()) except ApiError as error: if error.code == 403: pass else: raise
VercelIntegration
python
apache__airflow
airflow-core/src/airflow/configuration.py
{ "start": 2432, "end": 6042 }
class ____: """ Holds modifications to be applied when writing out the config. :param rename: Mapping from (old_section, old_option) to (new_section, new_option) :param remove: Set of (section, option) to remove :param default_updates: Mapping from (section, option) to new default value """ def __init__(self) -> None: self.rename: dict[tuple[str, str], tuple[str, str]] = {} self.remove: set[tuple[str, str]] = set() self.default_updates: dict[tuple[str, str], str] = {} def add_rename(self, old_section: str, old_option: str, new_section: str, new_option: str) -> None: self.rename[(old_section, old_option)] = (new_section, new_option) def add_remove(self, section: str, option: str) -> None: self.remove.add((section, option)) def add_default_update(self, section: str, option: str, new_default: str) -> None: self.default_updates[(section, option)] = new_default def _parse_sqlite_version(s: str) -> tuple[int, ...]: match = _SQLITE3_VERSION_PATTERN.match(s) if match is None: return () return tuple(int(p) for p in match.group("version").split(".")) @overload def expand_env_var(env_var: None) -> None: ... @overload def expand_env_var(env_var: str) -> str: ... def expand_env_var(env_var: str | None) -> str | None: """ Expand (potentially nested) env vars. Repeat and apply `expandvars` and `expanduser` until interpolation stops having any effect. """ if not env_var or not isinstance(env_var, str): return env_var while True: interpolated = os.path.expanduser(os.path.expandvars(str(env_var))) if interpolated == env_var: return interpolated env_var = interpolated def run_command(command: str) -> str: """Run command and returns stdout.""" process = subprocess.Popen( shlex.split(command), stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True ) output, stderr = (stream.decode(sys.getdefaultencoding(), "ignore") for stream in process.communicate()) if process.returncode != 0: raise AirflowConfigException( f"Cannot execute {command}. Error code is: {process.returncode}. " f"Output: {output}, Stderr: {stderr}" ) return output def _default_config_file_path(file_name: str) -> str: templates_dir = os.path.join(os.path.dirname(__file__), "config_templates") return os.path.join(templates_dir, file_name) def retrieve_configuration_description( include_airflow: bool = True, include_providers: bool = True, selected_provider: str | None = None, ) -> dict[str, dict[str, Any]]: """ Read Airflow configuration description from YAML file. :param include_airflow: Include Airflow configs :param include_providers: Include provider configs :param selected_provider: If specified, include selected provider only :return: Python dictionary containing configs & their info """ base_configuration_description: dict[str, dict[str, Any]] = {} if include_airflow: with open(_default_config_file_path("config.yml")) as config_file: base_configuration_description.update(yaml.safe_load(config_file)) if include_providers: from airflow.providers_manager import ProvidersManager for provider, config in ProvidersManager().provider_configs: if not selected_provider or provider == selected_provider: base_configuration_description.update(config) return base_configuration_description
ConfigModifications
python
ray-project__ray
python/ray/_private/thirdparty/dacite/exceptions.py
{ "start": 2028, "end": 2275 }
class ____(DaciteError): def __init__(self, message: str) -> None: super().__init__() self.message = message def __str__(self) -> str: return f"can not resolve forward reference: {self.message}"
ForwardReferenceError
python
optuna__optuna
optuna/exceptions.py
{ "start": 1765, "end": 1943 }
class ____(OptunaError): """Exception for storage operation. This error is raised when an operation failed in backend DB of storage. """ pass
StorageInternalError
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/flake8_bugbear/B024.py
{ "start": 1338, "end": 1426 }
class ____(metaclass=abc.ABCMeta): # error def method(self): foo()
abc_Base_2
python
fluentpython__example-code-2e
15-more-types/cafeteria/cafeteria.py
{ "start": 436, "end": 476 }
class ____: """Any garbage."""
Garbage
python
MongoEngine__mongoengine
mongoengine/fields.py
{ "start": 79589, "end": 79972 }
class ____(GeoJsonBaseField): """A GeoJSON field storing a list of Points. The data is represented as: .. code-block:: js {'type' : 'MultiPoint' , 'coordinates' : [[x1, y1], [x2, y2]]} You can either pass a dict with the full information or a list to set the value. Requires mongodb >= 2.6 """ _type = "MultiPoint"
MultiPointField
python
huggingface__transformers
src/transformers/models/mask2former/modeling_mask2former.py
{ "start": 69140, "end": 75447 }
class ____(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, key_value_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None key_value_position_embeddings = ( key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # add key-value position embeddings to the key value states if key_value_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights += attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output).permute(1, 0, 2) return attn_output, attn_weights_reshaped
Mask2FormerAttention
python
airbytehq__airbyte
airbyte-integrations/connectors/source-s3/source_s3/v4/zip_reader.py
{ "start": 11282, "end": 15390 }
class ____: """ A custom reader class that provides buffered reading capabilities on a decompressed stream. Supports reading lines, reading chunks, and iterating over the content. """ def __init__(self, decompressed_stream: DecompressedStream, encoding: Optional[str] = None, buffer_size: int = BUFFER_SIZE_DEFAULT): """ Initialize a ZipContentReader. :param decompressed_stream: A DecompressedStream object. :param encoding: Encoding to decode the bytes. If None, bytes are returned. :param buffer_size: Size of the buffer for reading data. """ self.raw = decompressed_stream self.encoding = encoding self.buffer_size = buffer_size self.buffer = bytearray() self._closed = False def __iter__(self): """ Make the class iterable. """ return self def __next__(self) -> Union[str, bytes]: """ Iterate over the lines in the reader. """ line = self.readline() if not line: raise StopIteration return line def readline(self, limit: int = -1) -> Union[str, bytes]: """ Read a single line from the stream. """ if limit != -1: raise NotImplementedError("Limits other than -1 not implemented yet") line = "" while True: char = self.read(1) if not char: break line += char if char in ["\n", "\r"]: # Handling different types of newlines next_char = self.read(1) if char == "\r" and next_char == "\n": line += next_char else: self.buffer = next_char.encode(self.encoding) + self.buffer break return line def read(self, size: int = -1) -> Union[str, bytes]: """ Read a specified number of bytes/characters from the reader. """ while len(self.buffer) < size: chunk = self.raw.read(self.buffer_size) if not chunk: break self.buffer += chunk data = self.buffer[:size] self.buffer = self.buffer[size:] try: return data.decode(self.encoding) if self.encoding else bytes(data) except UnicodeDecodeError: if self.encoding == "utf_8_sig": # utf_8_sig considers `\xef\xbb\xbf` as a single character and therefore calling `bytearray(b'\xef').decode("utf_8_sig") will # cause an exception to be raised. number_of_bytes_to_add = size - 1 if data.endswith(bytearray(b"\xef")): number_of_bytes_to_add += 2 elif data.endswith(bytearray(b"\xbb")): number_of_bytes_to_add += 1 data = data + self.buffer[:number_of_bytes_to_add] self.buffer = self.buffer[number_of_bytes_to_add:] return data.decode(self.encoding) if self.encoding else bytes(data) raise def seek(self, offset: int, whence: int = io.SEEK_SET) -> int: """ Seek to a specific position in the decompressed stream. """ self.buffer = bytearray() return self.raw.seek(offset, whence) def close(self): """ Close the reader and underlying decompressed stream. """ self._closed = True self.raw.close() def tell(self) -> int: """ Return the current position in the decompressed stream. """ return self.raw.tell() @property def closed(self) -> bool: """ Check if the reader is closed. """ return self._closed def __enter__(self) -> "ZipContentReader": """Enter the runtime context for the reader.""" return self def __exit__(self, exc_type, exc_value, traceback) -> None: """Exit the runtime context for the reader and ensure resources are closed.""" self.close()
ZipContentReader
python
apache__airflow
airflow-core/tests/unit/utils/test_deprecation_tools.py
{ "start": 1692, "end": 10633 }
class ____: """Tests for the getattr_with_deprecation function.""" def test_getattr_with_deprecation_specific_class(self): """Test deprecated import for a specific class.""" imports = {"OldClass": "new.module.NewClass"} # Mock the new module and class mock_module = mock.MagicMock() mock_new_class = mock.MagicMock() mock_module.NewClass = mock_new_class with mock.patch("airflow.utils.deprecation_tools.importlib.import_module", return_value=mock_module): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") result = getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name="OldClass", ) assert result == mock_new_class assert len(w) == 1 assert issubclass(w[0].category, DeprecatedImportWarning) assert "old.module.OldClass" in str(w[0].message) assert "new.module.NewClass" in str(w[0].message) def test_getattr_with_deprecation_wildcard(self): """Test deprecated import using wildcard pattern.""" imports = {"*": "new.module"} # Mock the new module and attribute mock_module = mock.MagicMock() mock_attribute = mock.MagicMock() mock_module.SomeAttribute = mock_attribute with mock.patch("airflow.utils.deprecation_tools.importlib.import_module", return_value=mock_module): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") result = getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name="SomeAttribute", ) assert result == mock_attribute assert len(w) == 1 assert issubclass(w[0].category, DeprecatedImportWarning) assert "old.module.SomeAttribute" in str(w[0].message) assert "new.module.SomeAttribute" in str(w[0].message) def test_getattr_with_deprecation_wildcard_with_override(self): """Test wildcard pattern with override deprecated classes.""" imports = {"*": "new.module"} override_deprecated_classes = {"SomeAttribute": "override.module.OverrideClass"} # Mock the new module and attribute mock_module = mock.MagicMock() mock_attribute = mock.MagicMock() mock_module.SomeAttribute = mock_attribute with mock.patch("airflow.utils.deprecation_tools.importlib.import_module", return_value=mock_module): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") result = getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes=override_deprecated_classes, extra_message="", name="SomeAttribute", ) assert result == mock_attribute assert len(w) == 1 assert issubclass(w[0].category, DeprecatedImportWarning) assert "old.module.SomeAttribute" in str(w[0].message) assert "override.module.OverrideClass" in str(w[0].message) def test_getattr_with_deprecation_specific_class_priority(self): """Test that specific class mapping takes priority over wildcard.""" imports = {"SpecificClass": "specific.module.SpecificClass", "*": "wildcard.module"} # Mock the specific module and class mock_module = mock.MagicMock() mock_specific_class = mock.MagicMock() mock_module.SpecificClass = mock_specific_class with mock.patch("airflow.utils.deprecation_tools.importlib.import_module", return_value=mock_module): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") result = getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name="SpecificClass", ) assert result == mock_specific_class assert len(w) == 1 assert issubclass(w[0].category, DeprecatedImportWarning) assert "old.module.SpecificClass" in str(w[0].message) assert "specific.module.SpecificClass" in str(w[0].message) def test_getattr_with_deprecation_attribute_not_found(self): """Test AttributeError when attribute not found.""" imports = {"ExistingClass": "new.module.ExistingClass"} with pytest.raises(AttributeError, match=r"has no attribute.*NonExistentClass"): getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name="NonExistentClass", ) def test_getattr_with_deprecation_import_error(self): """Test ImportError when target module cannot be imported.""" imports = {"*": "nonexistent.module"} with mock.patch( "airflow.utils.deprecation_tools.importlib.import_module", side_effect=ImportError("Module not found"), ): with pytest.raises(ImportError, match="Could not import"): getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name="SomeAttribute", ) def test_getattr_with_deprecation_with_extra_message(self): """Test that extra message is included in warning.""" imports = {"*": "new.module"} extra_message = "This is an extra message" # Mock the new module and attribute mock_module = mock.MagicMock() mock_attribute = mock.MagicMock() mock_module.SomeAttribute = mock_attribute with mock.patch("airflow.utils.deprecation_tools.importlib.import_module", return_value=mock_module): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message=extra_message, name="SomeAttribute", ) assert len(w) == 1 assert extra_message in str(w[0].message) @pytest.mark.parametrize("dunder_attribute", ["__path__", "__file__"]) def test_getattr_with_deprecation_wildcard_skips_dunder_attributes(self, dunder_attribute): """Test that wildcard pattern skips Python special attributes.""" imports = {"*": "new.module"} # Special attributes should raise AttributeError, not be redirected with pytest.raises(AttributeError, match=rf"has no attribute.*{re.escape(dunder_attribute)}"): getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name=dunder_attribute, ) @pytest.mark.parametrize("non_dunder_attr", ["__version", "__author", "_private", "public"]) def test_getattr_with_deprecation_wildcard_allows_non_dunder_attributes(self, non_dunder_attr): """Test that wildcard pattern allows non-dunder attributes (including single underscore prefixed).""" imports = {"*": "unittest.mock"} # These should be redirected through wildcard pattern with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with contextlib.suppress(ImportError, AttributeError): # Expected - the target module might not have the attribute # The important thing is that it tried to redirect (didn't raise AttributeError immediately) getattr_with_deprecation( imports=imports, module="old.module", override_deprecated_classes={}, extra_message="", name=non_dunder_attr, ) # Should have generated a deprecation warning assert len(w) == 1 assert "deprecated" in str(w[0].message).lower()
TestGetAttrWithDeprecation
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/ext/asyncio/scoping.py
{ "start": 3323, "end": 54154 }
class ____(Generic[_AS]): """Provides scoped management of :class:`.AsyncSession` objects. See the section :ref:`asyncio_scoped_session` for usage details. .. versionadded:: 1.4.19 """ _support_async = True session_factory: async_sessionmaker[_AS] """The `session_factory` provided to `__init__` is stored in this attribute and may be accessed at a later time. This can be useful when a new non-scoped :class:`.AsyncSession` is needed.""" registry: ScopedRegistry[_AS] def __init__( self, session_factory: async_sessionmaker[_AS], scopefunc: Callable[[], Any], ): """Construct a new :class:`_asyncio.async_scoped_session`. :param session_factory: a factory to create new :class:`_asyncio.AsyncSession` instances. This is usually, but not necessarily, an instance of :class:`_asyncio.async_sessionmaker`. :param scopefunc: function which defines the current scope. A function such as ``asyncio.current_task`` may be useful here. """ # noqa: E501 self.session_factory = session_factory self.registry = ScopedRegistry(session_factory, scopefunc) @property def _proxied(self) -> _AS: return self.registry() def __call__(self, **kw: Any) -> _AS: r"""Return the current :class:`.AsyncSession`, creating it using the :attr:`.scoped_session.session_factory` if not present. :param \**kw: Keyword arguments will be passed to the :attr:`.scoped_session.session_factory` callable, if an existing :class:`.AsyncSession` is not present. If the :class:`.AsyncSession` is present and keyword arguments have been passed, :exc:`~sqlalchemy.exc.InvalidRequestError` is raised. """ if kw: if self.registry.has(): raise sa_exc.InvalidRequestError( "Scoped session is already present; " "no new arguments may be specified." ) else: sess = self.session_factory(**kw) self.registry.set(sess) else: sess = self.registry() if not self._support_async and sess._is_asyncio: warn_deprecated( "Using `scoped_session` with asyncio is deprecated and " "will raise an error in a future version. " "Please use `async_scoped_session` instead.", "1.4.23", ) return sess def configure(self, **kwargs: Any) -> None: """reconfigure the :class:`.sessionmaker` used by this :class:`.scoped_session`. See :meth:`.sessionmaker.configure`. """ if self.registry.has(): warn( "At least one scoped session is already present. " " configure() can not affect sessions that have " "already been created." ) self.session_factory.configure(**kwargs) async def remove(self) -> None: """Dispose of the current :class:`.AsyncSession`, if present. Different from scoped_session's remove method, this method would use await to wait for the close method of AsyncSession. """ if self.registry.has(): await self.registry().close() self.registry.clear() # START PROXY METHODS async_scoped_session # code within this block is **programmatically, # statically generated** by tools/generate_proxy_methods.py def __contains__(self, instance: object) -> bool: r"""Return True if the instance is associated with this session. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. The instance may be pending or persistent within the Session for a result of True. """ # noqa: E501 return self._proxied.__contains__(instance) def __iter__(self) -> Iterator[object]: r"""Iterate over all pending or persistent instances within this Session. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. """ # noqa: E501 return self._proxied.__iter__() async def aclose(self) -> None: r"""A synonym for :meth:`_asyncio.AsyncSession.close`. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. The :meth:`_asyncio.AsyncSession.aclose` name is specifically to support the Python standard library ``@contextlib.aclosing`` context manager function. .. versionadded:: 2.0.20 """ # noqa: E501 return await self._proxied.aclose() def add(self, instance: object, *, _warn: bool = True) -> None: r"""Place an object into this :class:`_orm.Session`. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. Objects that are in the :term:`transient` state when passed to the :meth:`_orm.Session.add` method will move to the :term:`pending` state, until the next flush, at which point they will move to the :term:`persistent` state. Objects that are in the :term:`detached` state when passed to the :meth:`_orm.Session.add` method will move to the :term:`persistent` state directly. If the transaction used by the :class:`_orm.Session` is rolled back, objects which were transient when they were passed to :meth:`_orm.Session.add` will be moved back to the :term:`transient` state, and will no longer be present within this :class:`_orm.Session`. .. seealso:: :meth:`_orm.Session.add_all` :ref:`session_adding` - at :ref:`session_basics` """ # noqa: E501 return self._proxied.add(instance, _warn=_warn) def add_all(self, instances: Iterable[object]) -> None: r"""Add the given collection of instances to this :class:`_orm.Session`. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. See the documentation for :meth:`_orm.Session.add` for a general behavioral description. .. seealso:: :meth:`_orm.Session.add` :ref:`session_adding` - at :ref:`session_basics` """ # noqa: E501 return self._proxied.add_all(instances) def begin(self) -> AsyncSessionTransaction: r"""Return an :class:`_asyncio.AsyncSessionTransaction` object. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. The underlying :class:`_orm.Session` will perform the "begin" action when the :class:`_asyncio.AsyncSessionTransaction` object is entered:: async with async_session.begin(): ... # ORM transaction is begun Note that database IO will not normally occur when the session-level transaction is begun, as database transactions begin on an on-demand basis. However, the begin block is async to accommodate for a :meth:`_orm.SessionEvents.after_transaction_create` event hook that may perform IO. For a general description of ORM begin, see :meth:`_orm.Session.begin`. """ # noqa: E501 return self._proxied.begin() def begin_nested(self) -> AsyncSessionTransaction: r"""Return an :class:`_asyncio.AsyncSessionTransaction` object which will begin a "nested" transaction, e.g. SAVEPOINT. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. Behavior is the same as that of :meth:`_asyncio.AsyncSession.begin`. For a general description of ORM begin nested, see :meth:`_orm.Session.begin_nested`. .. seealso:: :ref:`aiosqlite_serializable` - special workarounds required with the SQLite asyncio driver in order for SAVEPOINT to work correctly. """ # noqa: E501 return self._proxied.begin_nested() async def close(self) -> None: r"""Close out the transactional resources and ORM objects used by this :class:`_asyncio.AsyncSession`. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.close` - main documentation for "close" :ref:`session_closing` - detail on the semantics of :meth:`_asyncio.AsyncSession.close` and :meth:`_asyncio.AsyncSession.reset`. """ # noqa: E501 return await self._proxied.close() async def reset(self) -> None: r"""Close out the transactional resources and ORM objects used by this :class:`_orm.Session`, resetting the session to its initial state. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. versionadded:: 2.0.22 .. seealso:: :meth:`_orm.Session.reset` - main documentation for "reset" :ref:`session_closing` - detail on the semantics of :meth:`_asyncio.AsyncSession.close` and :meth:`_asyncio.AsyncSession.reset`. """ # noqa: E501 return await self._proxied.reset() async def commit(self) -> None: r"""Commit the current transaction in progress. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.commit` - main documentation for "commit" """ # noqa: E501 return await self._proxied.commit() async def connection( self, bind_arguments: Optional[_BindArguments] = None, execution_options: Optional[CoreExecuteOptionsParameter] = None, **kw: Any, ) -> AsyncConnection: r"""Return a :class:`_asyncio.AsyncConnection` object corresponding to this :class:`.Session` object's transactional state. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. This method may also be used to establish execution options for the database connection used by the current transaction. .. versionadded:: 1.4.24 Added \**kw arguments which are passed through to the underlying :meth:`_orm.Session.connection` method. .. seealso:: :meth:`_orm.Session.connection` - main documentation for "connection" """ # noqa: E501 return await self._proxied.connection( bind_arguments=bind_arguments, execution_options=execution_options, **kw, ) async def delete(self, instance: object) -> None: r"""Mark an instance as deleted. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. The database delete operation occurs upon ``flush()``. As this operation may need to cascade along unloaded relationships, it is awaitable to allow for those queries to take place. .. seealso:: :meth:`_orm.Session.delete` - main documentation for delete """ # noqa: E501 return await self._proxied.delete(instance) async def delete_all(self, instances: Iterable[object]) -> None: r"""Calls :meth:`.AsyncSession.delete` on multiple instances. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.delete_all` - main documentation for delete_all """ # noqa: E501 return await self._proxied.delete_all(instances) @overload async def execute( self, statement: TypedReturnsRows[Unpack[_Ts]], params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, _parent_execute_state: Optional[Any] = None, _add_event: Optional[Any] = None, ) -> Result[Unpack[_Ts]]: ... @overload async def execute( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, _parent_execute_state: Optional[Any] = None, _add_event: Optional[Any] = None, ) -> Result[Unpack[TupleAny]]: ... async def execute( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> Result[Unpack[TupleAny]]: r"""Execute a statement and return a buffered :class:`_engine.Result` object. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.execute` - main documentation for execute """ # noqa: E501 return await self._proxied.execute( statement, params=params, execution_options=execution_options, bind_arguments=bind_arguments, **kw, ) def expire( self, instance: object, attribute_names: Optional[Iterable[str]] = None ) -> None: r"""Expire the attributes on an instance. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. Marks the attributes of an instance as out of date. When an expired attribute is next accessed, a query will be issued to the :class:`.Session` object's current transactional context in order to load all expired attributes for the given instance. Note that a highly isolated transaction will return the same values as were previously read in that same transaction, regardless of changes in database state outside of that transaction. To expire all objects in the :class:`.Session` simultaneously, use :meth:`Session.expire_all`. The :class:`.Session` object's default behavior is to expire all state whenever the :meth:`Session.rollback` or :meth:`Session.commit` methods are called, so that new state can be loaded for the new transaction. For this reason, calling :meth:`Session.expire` only makes sense for the specific case that a non-ORM SQL statement was emitted in the current transaction. :param instance: The instance to be refreshed. :param attribute_names: optional list of string attribute names indicating a subset of attributes to be expired. .. seealso:: :ref:`session_expire` - introductory material :meth:`.Session.expire` :meth:`.Session.refresh` :meth:`_orm.Query.populate_existing` """ # noqa: E501 return self._proxied.expire(instance, attribute_names=attribute_names) def expire_all(self) -> None: r"""Expires all persistent instances within this Session. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. When any attributes on a persistent instance is next accessed, a query will be issued using the :class:`.Session` object's current transactional context in order to load all expired attributes for the given instance. Note that a highly isolated transaction will return the same values as were previously read in that same transaction, regardless of changes in database state outside of that transaction. To expire individual objects and individual attributes on those objects, use :meth:`Session.expire`. The :class:`.Session` object's default behavior is to expire all state whenever the :meth:`Session.rollback` or :meth:`Session.commit` methods are called, so that new state can be loaded for the new transaction. For this reason, calling :meth:`Session.expire_all` is not usually needed, assuming the transaction is isolated. .. seealso:: :ref:`session_expire` - introductory material :meth:`.Session.expire` :meth:`.Session.refresh` :meth:`_orm.Query.populate_existing` """ # noqa: E501 return self._proxied.expire_all() def expunge(self, instance: object) -> None: r"""Remove the `instance` from this ``Session``. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. This will free all internal references to the instance. Cascading will be applied according to the *expunge* cascade rule. """ # noqa: E501 return self._proxied.expunge(instance) def expunge_all(self) -> None: r"""Remove all object instances from this ``Session``. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. This is equivalent to calling ``expunge(obj)`` on all objects in this ``Session``. """ # noqa: E501 return self._proxied.expunge_all() async def flush(self, objects: Optional[Sequence[Any]] = None) -> None: r"""Flush all the object changes to the database. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.flush` - main documentation for flush """ # noqa: E501 return await self._proxied.flush(objects=objects) def get_bind( self, mapper: Optional[_EntityBindKey[_O]] = None, clause: Optional[ClauseElement] = None, bind: Optional[_SessionBind] = None, **kw: Any, ) -> Union[Engine, Connection]: r"""Return a "bind" to which the synchronous proxied :class:`_orm.Session` is bound. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. Unlike the :meth:`_orm.Session.get_bind` method, this method is currently **not** used by this :class:`.AsyncSession` in any way in order to resolve engines for requests. .. note:: This method proxies directly to the :meth:`_orm.Session.get_bind` method, however is currently **not** useful as an override target, in contrast to that of the :meth:`_orm.Session.get_bind` method. The example below illustrates how to implement custom :meth:`_orm.Session.get_bind` schemes that work with :class:`.AsyncSession` and :class:`.AsyncEngine`. The pattern introduced at :ref:`session_custom_partitioning` illustrates how to apply a custom bind-lookup scheme to a :class:`_orm.Session` given a set of :class:`_engine.Engine` objects. To apply a corresponding :meth:`_orm.Session.get_bind` implementation for use with a :class:`.AsyncSession` and :class:`.AsyncEngine` objects, continue to subclass :class:`_orm.Session` and apply it to :class:`.AsyncSession` using :paramref:`.AsyncSession.sync_session_class`. The inner method must continue to return :class:`_engine.Engine` instances, which can be acquired from a :class:`_asyncio.AsyncEngine` using the :attr:`_asyncio.AsyncEngine.sync_engine` attribute:: # using example from "Custom Vertical Partitioning" import random from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.ext.asyncio import create_async_engine from sqlalchemy.ext.asyncio import async_sessionmaker from sqlalchemy.orm import Session # construct async engines w/ async drivers engines = { "leader": create_async_engine("sqlite+aiosqlite:///leader.db"), "other": create_async_engine("sqlite+aiosqlite:///other.db"), "follower1": create_async_engine("sqlite+aiosqlite:///follower1.db"), "follower2": create_async_engine("sqlite+aiosqlite:///follower2.db"), } class RoutingSession(Session): def get_bind(self, mapper=None, clause=None, **kw): # within get_bind(), return sync engines if mapper and issubclass(mapper.class_, MyOtherClass): return engines["other"].sync_engine elif self._flushing or isinstance(clause, (Update, Delete)): return engines["leader"].sync_engine else: return engines[ random.choice(["follower1", "follower2"]) ].sync_engine # apply to AsyncSession using sync_session_class AsyncSessionMaker = async_sessionmaker(sync_session_class=RoutingSession) The :meth:`_orm.Session.get_bind` method is called in a non-asyncio, implicitly non-blocking context in the same manner as ORM event hooks and functions that are invoked via :meth:`.AsyncSession.run_sync`, so routines that wish to run SQL commands inside of :meth:`_orm.Session.get_bind` can continue to do so using blocking-style code, which will be translated to implicitly async calls at the point of invoking IO on the database drivers. """ # noqa: E501 return self._proxied.get_bind( mapper=mapper, clause=clause, bind=bind, **kw ) def is_modified( self, instance: object, include_collections: bool = True ) -> bool: r"""Return ``True`` if the given instance has locally modified attributes. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. This method retrieves the history for each instrumented attribute on the instance and performs a comparison of the current value to its previously flushed or committed value, if any. It is in effect a more expensive and accurate version of checking for the given instance in the :attr:`.Session.dirty` collection; a full test for each attribute's net "dirty" status is performed. E.g.:: return session.is_modified(someobject) A few caveats to this method apply: * Instances present in the :attr:`.Session.dirty` collection may report ``False`` when tested with this method. This is because the object may have received change events via attribute mutation, thus placing it in :attr:`.Session.dirty`, but ultimately the state is the same as that loaded from the database, resulting in no net change here. * Scalar attributes may not have recorded the previously set value when a new value was applied, if the attribute was not loaded, or was expired, at the time the new value was received - in these cases, the attribute is assumed to have a change, even if there is ultimately no net change against its database value. SQLAlchemy in most cases does not need the "old" value when a set event occurs, so it skips the expense of a SQL call if the old value isn't present, based on the assumption that an UPDATE of the scalar value is usually needed, and in those few cases where it isn't, is less expensive on average than issuing a defensive SELECT. The "old" value is fetched unconditionally upon set only if the attribute container has the ``active_history`` flag set to ``True``. This flag is set typically for primary key attributes and scalar object references that are not a simple many-to-one. To set this flag for any arbitrary mapped column, use the ``active_history`` argument with :func:`.column_property`. :param instance: mapped instance to be tested for pending changes. :param include_collections: Indicates if multivalued collections should be included in the operation. Setting this to ``False`` is a way to detect only local-column based properties (i.e. scalar columns or many-to-one foreign keys) that would result in an UPDATE for this instance upon flush. """ # noqa: E501 return self._proxied.is_modified( instance, include_collections=include_collections ) async def invalidate(self) -> None: r"""Close this Session, using connection invalidation. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. For a complete description, see :meth:`_orm.Session.invalidate`. """ # noqa: E501 return await self._proxied.invalidate() async def merge( self, instance: _O, *, load: bool = True, options: Optional[Sequence[ORMOption]] = None, ) -> _O: r"""Copy the state of a given instance into a corresponding instance within this :class:`_asyncio.AsyncSession`. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.merge` - main documentation for merge """ # noqa: E501 return await self._proxied.merge(instance, load=load, options=options) async def merge_all( self, instances: Iterable[_O], *, load: bool = True, options: Optional[Sequence[ORMOption]] = None, ) -> Sequence[_O]: r"""Calls :meth:`.AsyncSession.merge` on multiple instances. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.merge_all` - main documentation for merge_all """ # noqa: E501 return await self._proxied.merge_all( instances, load=load, options=options ) async def refresh( self, instance: object, attribute_names: Optional[Iterable[str]] = None, with_for_update: ForUpdateParameter = None, ) -> None: r"""Expire and refresh the attributes on the given instance. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. A query will be issued to the database and all attributes will be refreshed with their current database value. This is the async version of the :meth:`_orm.Session.refresh` method. See that method for a complete description of all options. .. seealso:: :meth:`_orm.Session.refresh` - main documentation for refresh """ # noqa: E501 return await self._proxied.refresh( instance, attribute_names=attribute_names, with_for_update=with_for_update, ) async def rollback(self) -> None: r"""Rollback the current transaction in progress. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.rollback` - main documentation for "rollback" """ # noqa: E501 return await self._proxied.rollback() @overload async def scalar( self, statement: TypedReturnsRows[_T], params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> Optional[_T]: ... @overload async def scalar( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> Any: ... async def scalar( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> Any: r"""Execute a statement and return a scalar result. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.scalar` - main documentation for scalar """ # noqa: E501 return await self._proxied.scalar( statement, params=params, execution_options=execution_options, bind_arguments=bind_arguments, **kw, ) @overload async def scalars( self, statement: TypedReturnsRows[_T], params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> ScalarResult[_T]: ... @overload async def scalars( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> ScalarResult[Any]: ... async def scalars( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> ScalarResult[Any]: r"""Execute a statement and return scalar results. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. :return: a :class:`_result.ScalarResult` object .. versionadded:: 1.4.24 Added :meth:`_asyncio.AsyncSession.scalars` .. versionadded:: 1.4.26 Added :meth:`_asyncio.async_scoped_session.scalars` .. seealso:: :meth:`_orm.Session.scalars` - main documentation for scalars :meth:`_asyncio.AsyncSession.stream_scalars` - streaming version """ # noqa: E501 return await self._proxied.scalars( statement, params=params, execution_options=execution_options, bind_arguments=bind_arguments, **kw, ) async def get( self, entity: _EntityBindKey[_O], ident: _PKIdentityArgument, *, options: Optional[Sequence[ORMOption]] = None, populate_existing: bool = False, with_for_update: ForUpdateParameter = None, identity_token: Optional[Any] = None, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, ) -> Union[_O, None]: r"""Return an instance based on the given primary key identifier, or ``None`` if not found. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. seealso:: :meth:`_orm.Session.get` - main documentation for get """ # noqa: E501 result = await self._proxied.get( entity, ident, options=options, populate_existing=populate_existing, with_for_update=with_for_update, identity_token=identity_token, execution_options=execution_options, ) return result async def get_one( self, entity: _EntityBindKey[_O], ident: _PKIdentityArgument, *, options: Optional[Sequence[ORMOption]] = None, populate_existing: bool = False, with_for_update: ForUpdateParameter = None, identity_token: Optional[Any] = None, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, ) -> _O: r"""Return an instance based on the given primary key identifier, or raise an exception if not found. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. Raises :class:`_exc.NoResultFound` if the query selects no rows. ..versionadded: 2.0.22 .. seealso:: :meth:`_orm.Session.get_one` - main documentation for get_one """ # noqa: E501 return await self._proxied.get_one( entity, ident, options=options, populate_existing=populate_existing, with_for_update=with_for_update, identity_token=identity_token, execution_options=execution_options, ) @overload async def stream( self, statement: TypedReturnsRows[Unpack[_Ts]], params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncResult[Unpack[_Ts]]: ... @overload async def stream( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncResult[Unpack[TupleAny]]: ... async def stream( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncResult[Unpack[TupleAny]]: r"""Execute a statement and return a streaming :class:`_asyncio.AsyncResult` object. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. """ # noqa: E501 return await self._proxied.stream( statement, params=params, execution_options=execution_options, bind_arguments=bind_arguments, **kw, ) @overload async def stream_scalars( self, statement: TypedReturnsRows[_T], params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncScalarResult[_T]: ... @overload async def stream_scalars( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncScalarResult[Any]: ... async def stream_scalars( self, statement: Executable, params: Optional[_CoreAnyExecuteParams] = None, *, execution_options: OrmExecuteOptionsParameter = util.EMPTY_DICT, bind_arguments: Optional[_BindArguments] = None, **kw: Any, ) -> AsyncScalarResult[Any]: r"""Execute a statement and return a stream of scalar results. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. :return: an :class:`_asyncio.AsyncScalarResult` object .. versionadded:: 1.4.24 .. seealso:: :meth:`_orm.Session.scalars` - main documentation for scalars :meth:`_asyncio.AsyncSession.scalars` - non streaming version """ # noqa: E501 return await self._proxied.stream_scalars( statement, params=params, execution_options=execution_options, bind_arguments=bind_arguments, **kw, ) @property def bind(self) -> Any: r"""Proxy for the :attr:`_asyncio.AsyncSession.bind` attribute on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. """ # noqa: E501 return self._proxied.bind @bind.setter def bind(self, attr: Any) -> None: self._proxied.bind = attr @property def dirty(self) -> Any: r"""The set of all persistent instances considered dirty. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. E.g.:: some_mapped_object in session.dirty Instances are considered dirty when they were modified but not deleted. Note that this 'dirty' calculation is 'optimistic'; most attribute-setting or collection modification operations will mark an instance as 'dirty' and place it in this set, even if there is no net change to the attribute's value. At flush time, the value of each attribute is compared to its previously saved value, and if there's no net change, no SQL operation will occur (this is a more expensive operation so it's only done at flush time). To check if an instance has actionable net changes to its attributes, use the :meth:`.Session.is_modified` method. """ # noqa: E501 return self._proxied.dirty @property def deleted(self) -> Any: r"""The set of all instances marked as 'deleted' within this ``Session`` .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. """ # noqa: E501 return self._proxied.deleted @property def new(self) -> Any: r"""The set of all instances marked as 'new' within this ``Session``. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. """ # noqa: E501 return self._proxied.new @property def identity_map(self) -> Any: r"""Proxy for the :attr:`_orm.Session.identity_map` attribute on behalf of the :class:`_asyncio.AsyncSession` class. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. """ # noqa: E501 return self._proxied.identity_map @identity_map.setter def identity_map(self, attr: Any) -> None: self._proxied.identity_map = attr @property def is_active(self) -> Any: r"""True if this :class:`.Session` not in "partial rollback" state. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. .. versionchanged:: 1.4 The :class:`_orm.Session` no longer begins a new transaction immediately, so this attribute will be False when the :class:`_orm.Session` is first instantiated. "partial rollback" state typically indicates that the flush process of the :class:`_orm.Session` has failed, and that the :meth:`_orm.Session.rollback` method must be emitted in order to fully roll back the transaction. If this :class:`_orm.Session` is not in a transaction at all, the :class:`_orm.Session` will autobegin when it is first used, so in this case :attr:`_orm.Session.is_active` will return True. Otherwise, if this :class:`_orm.Session` is within a transaction, and that transaction has not been rolled back internally, the :attr:`_orm.Session.is_active` will also return True. .. seealso:: :ref:`faq_session_rollback` :meth:`_orm.Session.in_transaction` """ # noqa: E501 return self._proxied.is_active @property def autoflush(self) -> Any: r"""Proxy for the :attr:`_orm.Session.autoflush` attribute on behalf of the :class:`_asyncio.AsyncSession` class. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. """ # noqa: E501 return self._proxied.autoflush @autoflush.setter def autoflush(self, attr: Any) -> None: self._proxied.autoflush = attr @property def no_autoflush(self) -> Any: r"""Return a context manager that disables autoflush. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. e.g.:: with session.no_autoflush: some_object = SomeClass() session.add(some_object) # won't autoflush some_object.related_thing = session.query(SomeRelated).first() Operations that proceed within the ``with:`` block will not be subject to flushes occurring upon query access. This is useful when initializing a series of objects which involve existing database queries, where the uncompleted object should not yet be flushed. """ # noqa: E501 return self._proxied.no_autoflush @property def info(self) -> Any: r"""A user-modifiable dictionary. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. The initial value of this dictionary can be populated using the ``info`` argument to the :class:`.Session` constructor or :class:`.sessionmaker` constructor or factory methods. The dictionary here is always local to this :class:`.Session` and can be modified independently of all other :class:`.Session` objects. """ # noqa: E501 return self._proxied.info @property def execution_options(self) -> Any: r"""Proxy for the :attr:`_orm.Session.execution_options` attribute on behalf of the :class:`_asyncio.AsyncSession` class. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. """ # noqa: E501 return self._proxied.execution_options @execution_options.setter def execution_options(self, attr: Any) -> None: self._proxied.execution_options = attr @classmethod async def close_all(cls) -> None: r"""Close all :class:`_asyncio.AsyncSession` sessions. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. deprecated:: 2.0 The :meth:`.AsyncSession.close_all` method is deprecated and will be removed in a future release. Please refer to :func:`_asyncio.close_all_sessions`. """ # noqa: E501 return await AsyncSession.close_all() @classmethod def object_session(cls, instance: object) -> Optional[Session]: r"""Return the :class:`.Session` to which an object belongs. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. This is an alias of :func:`.object_session`. """ # noqa: E501 return AsyncSession.object_session(instance) @classmethod def identity_key( cls, class_: Optional[Type[Any]] = None, ident: Union[Any, Tuple[Any, ...]] = None, *, instance: Optional[Any] = None, row: Optional[Union[Row[Unpack[TupleAny]], RowMapping]] = None, identity_token: Optional[Any] = None, ) -> _IdentityKeyType[Any]: r"""Return an identity key. .. container:: class_bases Proxied for the :class:`_asyncio.AsyncSession` class on behalf of the :class:`_asyncio.scoping.async_scoped_session` class. .. container:: class_bases Proxied for the :class:`_orm.Session` class on behalf of the :class:`_asyncio.AsyncSession` class. This is an alias of :func:`.util.identity_key`. """ # noqa: E501 return AsyncSession.identity_key( class_=class_, ident=ident, instance=instance, row=row, identity_token=identity_token, ) # END PROXY METHODS async_scoped_session
async_scoped_session
python
ray-project__ray
python/ray/train/_checkpoint.py
{ "start": 738, "end": 1518 }
class ____(type): def __getattr__(self, item): try: return super().__getattribute__(item) except AttributeError as exc: if item in { "from_dict", "to_dict", "from_bytes", "to_bytes", "get_internal_representation", }: raise _get_migration_error(item) from exc elif item in { "from_uri", "to_uri", "uri", }: raise _get_uri_error(item) from exc elif item in {"get_preprocessor", "set_preprocessor"}: raise _get_preprocessor_error(item) from exc raise exc @PublicAPI(stability="beta")
_CheckpointMetaClass
python
apache__airflow
providers/apache/livy/tests/unit/apache/livy/triggers/test_livy.py
{ "start": 1142, "end": 9508 }
class ____: def test_livy_trigger_serialization(self): """ Asserts that the TaskStateTrigger correctly serializes its arguments and classpath. """ trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=0 ) classpath, kwargs = trigger.serialize() assert classpath == "airflow.providers.apache.livy.triggers.livy.LivyTrigger" assert kwargs == { "batch_id": 1, "spark_params": {}, "livy_conn_id": LivyHook.default_conn_name, "polling_interval": 0, "extra_options": None, "extra_headers": None, "livy_hook_async": None, "execution_timeout": None, } @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.triggers.livy.LivyTrigger.poll_for_termination") async def test_livy_trigger_run_with_no_poll_interval(self, mock_poll_for_termination): """ Test if the task ran in the triggerer successfully with poll interval=0. In the case when polling_interval=0, it should return the batch_id """ mock_poll_for_termination.return_value = {"status": "success"} trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=0 ) generator = trigger.run() actual = await generator.asend(None) assert ( TriggerEvent( {"status": "success", "batch_id": 1, "response": "Batch 1 succeeded", "log_lines": None} ) == actual ) @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.triggers.livy.LivyTrigger.poll_for_termination") async def test_livy_trigger_run_with_poll_interval_success(self, mock_poll_for_termination): """ Test if the task ran in the triggerer successfully with poll interval>0. In the case when polling_interval > 0, it should return a success or failure status. """ mock_poll_for_termination.return_value = {"status": "success"} trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) generator = trigger.run() actual = await generator.asend(None) assert TriggerEvent({"status": "success"}) == actual @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.triggers.livy.LivyTrigger.poll_for_termination") async def test_livy_trigger_run_with_poll_interval_error(self, mock_poll_for_termination): """Test if the task in the trigger returned an error when poll_for_termination returned error.""" mock_poll_for_termination.return_value = {"status": "error"} trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) task = [i async for i in trigger.run()] assert len(task) == 2 assert TriggerEvent({"status": "error"}) in task @pytest.mark.db_test @pytest.mark.asyncio async def test_livy_trigger_run_with_exception(self): """Test if the task in the trigger failed with a connection error when no connection is mocked.""" trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) task = [i async for i in trigger.run()] assert len(task) == 1 event = task[0] assert isinstance(event, TriggerEvent) assert event.payload.get("status") == "error" assert event.payload.get("batch_id") == 1 assert "Cannot connect to host livy:8998 ssl:default" in event.payload.get("response") @pytest.mark.db_test @pytest.mark.asyncio async def test_livy_trigger_poll_for_termination_with_client_error(self): """ Test if the poll_for_termination() in the trigger failed with a ClientConnectionError when no connection is mocked. """ trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) with pytest.raises(ClientConnectionError): await trigger.poll_for_termination(1) @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.get_batch_state") @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.dump_batch_logs") async def test_livy_trigger_poll_for_termination_success( self, mock_dump_batch_logs, mock_get_batch_state ): """ Test if the poll_for_termination() in the triggerer returned success response when get_batch_state() runs successfully. """ mock_get_batch_state.return_value = {"batch_state": BatchState.SUCCESS} mock_dump_batch_logs.return_value = ["mock_log"] trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) task = await trigger.poll_for_termination(1) assert task == { "status": "success", "batch_id": 1, "response": "Batch 1 succeeded", "log_lines": ["mock_log"], } @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.get_batch_state") @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.dump_batch_logs") async def test_livy_trigger_poll_for_termination_error(self, mock_dump_batch_logs, mock_get_batch_state): """ Test if the poll_for_termination() in the trigger returned error response when get_batch_state() failed. """ mock_get_batch_state.return_value = {"batch_state": BatchState.ERROR} mock_dump_batch_logs.return_value = ["mock_log"] trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) task = await trigger.poll_for_termination(1) assert task == { "status": "error", "batch_id": 1, "response": "Batch 1 did not succeed", "log_lines": ["mock_log"], } @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.get_batch_state") @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.dump_batch_logs") async def test_livy_trigger_poll_for_termination_state(self, mock_dump_batch_logs, mock_get_batch_state): """ Test if the poll_for_termination() in the trigger is still polling when get_batch_state() returned NOT_STARTED. """ mock_get_batch_state.return_value = {"batch_state": BatchState.NOT_STARTED} mock_dump_batch_logs.return_value = ["mock_log"] trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=30 ) task = asyncio.create_task(trigger.poll_for_termination(1)) await asyncio.sleep(0.5) # TriggerEvent was not returned assert task.done() is False asyncio.get_event_loop().stop() @pytest.mark.asyncio @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.get_batch_state") @mock.patch("airflow.providers.apache.livy.hooks.livy.LivyAsyncHook.dump_batch_logs") async def test_livy_trigger_poll_for_termination_timeout( self, mock_dump_batch_logs, mock_get_batch_state ): """ Test if poll_for_termination() returns timeout response when execution times out. """ mock_get_batch_state.return_value = {"batch_state": BatchState.RUNNING} mock_dump_batch_logs.return_value = ["mock_log"] trigger = LivyTrigger( batch_id=1, spark_params={}, livy_conn_id=LivyHook.default_conn_name, polling_interval=1, execution_timeout=timedelta(seconds=0), ) task = await trigger.poll_for_termination(1) assert task == { "status": "timeout", "batch_id": 1, "response": "Batch 1 timed out", "log_lines": ["mock_log"], }
TestLivyTrigger
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte_tests/beta/test_translator.py
{ "start": 2514, "end": 3634 }
class ____(DagsterAirbyteTranslator): def get_asset_spec(self, props: AirbyteConnectionTableProps) -> AssetSpec: default_spec = super().get_asset_spec(props) return default_spec.replace_attributes( key=default_spec.key.with_prefix("test_connection"), ).merge_attributes(metadata={"custom": "metadata"}) def test_custom_translator( fetch_workspace_data_api_mocks: responses.RequestsMock, resource: Union[AirbyteCloudWorkspace, AirbyteWorkspace], ) -> None: table_props_data = ( resource.fetch_airbyte_workspace_data().to_airbyte_connection_table_props_data() ) assert len(table_props_data) == 2 first_table_props = next(iter(table_props_data)) translator = MyCustomTranslator() asset_spec = translator.get_asset_spec(first_table_props) assert "custom" in asset_spec.metadata assert asset_spec.metadata["custom"] == "metadata" assert asset_spec.key.path == ["test_connection", "test_prefix_test_stream"] assert has_kind(asset_spec.tags, "airbyte") assert has_kind(asset_spec.tags, TEST_DESTINATION_TYPE)
MyCustomTranslator
python
walkccc__LeetCode
solutions/1883. Minimum Skips to Arrive at Meeting On Time/1883.py
{ "start": 0, "end": 684 }
class ____: def minSkips(self, dist: list[int], speed: int, hoursBefore: int) -> int: INF = 10**7 EPS = 1e-9 n = len(dist) # dp[i][j] := the minimum time, where i is the number of roads we traversed # so far and j is the number of skips we did dp = [[INF] * (n + 1) for _ in range(n + 1)] dp[0][0] = 0 for i, d in enumerate(dist, 1): dp[i][0] = math.ceil(dp[i - 1][0] + d / speed - EPS) for j in range(1, i + 1): dp[i][j] = min(dp[i - 1][j - 1] + d / speed, math.ceil(dp[i - 1][j] + d / speed - EPS)) for j, time in enumerate(dp[-1]): if time <= hoursBefore: return j return -1
Solution
python
tornadoweb__tornado
tornado/test/iostream_test.py
{ "start": 47291, "end": 48313 }
class ____(TestReadWriteMixin, AsyncTestCase): @gen.coroutine def make_iostream_pair(self, **kwargs): r, w = os.pipe() return PipeIOStream(r, **kwargs), PipeIOStream(w, **kwargs) @gen_test def test_pipe_iostream(self): rs, ws = yield self.make_iostream_pair() ws.write(b"hel") ws.write(b"lo world") data = yield rs.read_until(b" ") self.assertEqual(data, b"hello ") data = yield rs.read_bytes(3) self.assertEqual(data, b"wor") ws.close() data = yield rs.read_until_close() self.assertEqual(data, b"ld") rs.close() @gen_test def test_pipe_iostream_big_write(self): rs, ws = yield self.make_iostream_pair() NUM_BYTES = 1048576 # Write 1MB of data, which should fill the buffer ws.write(b"1" * NUM_BYTES) data = yield rs.read_bytes(NUM_BYTES) self.assertEqual(data, b"1" * NUM_BYTES) ws.close() rs.close()
TestPipeIOStream
python
facelessuser__soupsieve
tests/test_bs4_cases.py
{ "start": 194, "end": 4810 }
class ____(unittest.TestCase): """ Original Beautiful soup test html document. http://bazaar.launchpad.net/~leonardr/beautifulsoup/bs4/view/head:/bs4/tests/test_tree.py, line 1627. """ HTML = """ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>The title</title> <link rel="stylesheet" href="blah.css" type="text/css" id="l1"> </head> <body> <custom-dashed-tag class="dashed" id="dash1">Hello there.</custom-dashed-tag> <div id="main" class="fancy"> <div id="inner"> <h1 id="header1">An H1</h1> <p>Some text</p> <p class="onep" id="p1">Some more text</p> <h2 id="header2">An H2</h2> <p class="class1 class2 class3" id="pmulti">Another</p> <a href="http://bob.example.org/" rel="friend met" id="bob">Bob</a> <h2 id="header3">Another H2</h2> <a id="me" href="http://simonwillison.net/" rel="me">me</a> <span class="s1"> <a href="#" id="s1a1">span1a1</a> <a href="#" id="s1a2">span1a2 <span id="s1a2s1">test</span></a> <span class="span2"> <a href="#" id="s2a1">span2a1</a> </span> <span class="span3"></span> <custom-dashed-tag class="dashed" id="dash2"/> <div data-tag="dashedvalue" id="data1"/> </span> </div> <x id="xid"> <z id="zida"/> <z id="zidab"/> <z id="zidac"/> </x> <y id="yid"> <z id="zidb"/> </y> <p lang="en" id="lang-en">English</p> <p lang="en-gb" id="lang-en-gb">English UK</p> <p lang="en-us" id="lang-en-us">English US</p> <p lang="fr" id="lang-fr">French</p> </div> <div id="footer"> </div> """ def setUp(self): """Setup.""" self.soup = BeautifulSoup(self.HTML, 'html.parser') def test_parent_nth_of_type_preconditions(self): """Test `nth` type preconditions.""" els = sv.select('div > h1', self.soup) # check that there is a unique selection self.assertEqual(len(els), 1) self.assertEqual(els[0].string, 'An H1') # Show that the `h1`'s parent `div#inner` is the first child of type `div` of the grandparent `div#main`. # so that the selector `div:nth-of-type(1) > h1` should also give `h1`. h1 = els[0] div_inner = h1.parent div_main = div_inner.parent div_main_children = list(div_main.children) self.assertEqual(div_main_children[0], '\n') self.assertEqual(div_main_children[1], div_inner) def test_parent_nth_of_type(self): """Test parent of `nth` of type.""" els = sv.select('div:nth-of-type(1) > h1', self.soup) self.assertEqual(len(els), 1) self.assertEqual(els[0].string, 'An H1') SIMPLE_XML = """<Envelope><Header>...</Header></Envelope>""" NAMESPACE_XML = """ <?xml version="1.0"?> <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <a:Action s:mustUnderstand="1">http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue</a:Action> <o:UsernameToken u:Id="uuid-00000043-0000-4000-0000-000000000000"> </s:Envelope> """.strip() NAMESPACES = { 'x': "http://www.w3.org/2003/05/soap-envelope", 'y': "http://www.w3.org/2005/08/addressing", 'z': "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" } @util.requires_lxml def test_simple_xml(): """Test basic XML.""" xml = BeautifulSoup(SIMPLE_XML, "xml") assert xml.select_one("Envelope") assert xml.select_one("Envelope Header") assert xml.select_one("Header") assert not xml.select_one("envelope") assert not xml.select_one("envelope header") assert not xml.select_one("header") @util.requires_lxml def test_namespace_xml(): """Test namespace XML.""" xml = BeautifulSoup(NAMESPACE_XML, "xml") assert xml.select_one("Envelope") assert xml.select_one("Envelope Action") assert xml.select_one("Action") assert not xml.select_one("envelope") assert not xml.select_one("envelope action") assert not xml.select_one("action") @util.requires_lxml def test_namespace_xml_with_namespace(): """Test namespace selectors with XML.""" xml = BeautifulSoup(NAMESPACE_XML, "xml") assert xml.select_one("x|Envelope", namespaces=NAMESPACES) assert xml.select_one("x|Envelope y|Action", namespaces=NAMESPACES) assert xml.select_one("y|Action", namespaces=NAMESPACES) assert not xml.select_one("x|envelope", namespaces=NAMESPACES) assert not xml.select_one("x|envelope y|action", namespaces=NAMESPACES) assert not xml.select_one("y|action", namespaces=NAMESPACES)
SelectorNthOfTypeBugTest