language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
numba__numba
numba/tests/test_parallel_backend.py
{ "start": 4658, "end": 5593 }
class ____(object): def __init__(self, method): self._method = method def __call__(self, *args, **kwargs): ctx = multiprocessing.get_context(self._method) return ctx.Process(*args, **kwargs) def _get_mp_classes(method): if method == 'default': method = None ctx = multiprocessing.get_context(method) proc = _proc_class_impl(method) queue = ctx.Queue return proc, queue thread_impl = compile_factory(_thread_class, t_queue.Queue) spawn_proc_impl = compile_factory(*_get_mp_classes('spawn')) if not _windows: fork_proc_impl = compile_factory(*_get_mp_classes('fork')) forkserver_proc_impl = compile_factory(*_get_mp_classes('forkserver')) # this is duplication as Py27, linux uses fork, windows uses spawn, it however # is kept like this so that when tests fail it's less confusing! default_proc_impl = compile_factory(*_get_mp_classes('default'))
_proc_class_impl
python
allegroai__clearml
clearml/debugging/log.py
{ "start": 12473, "end": 12551 }
class ____(logging.NullHandler, ClearmlLoggerHandler): pass
ClearmlNullHandler
python
pytorch__pytorch
torch/_library/autograd.py
{ "start": 261, "end": 395 }
class ____(Protocol): _backward_fn: Optional[Callable] _setup_context_fn: Optional[Callable] @dataclasses.dataclass
InfoProtocol
python
sympy__sympy
sympy/stats/rv.py
{ "start": 3494, "end": 4343 }
class ____(RandomDomain): """ A RandomDomain with an attached condition. See Also ======== sympy.stats.crv.ConditionalContinuousDomain sympy.stats.frv.ConditionalFiniteDomain """ def __new__(cls, fulldomain, condition): condition = condition.xreplace({rs: rs.symbol for rs in random_symbols(condition)}) return Basic.__new__(cls, fulldomain, condition) @property def symbols(self): return self.fulldomain.symbols @property def fulldomain(self): return self.args[0] @property def condition(self): return self.args[1] @property def set(self): raise NotImplementedError("Set of Conditional Domain not Implemented") def as_boolean(self): return And(self.fulldomain.as_boolean(), self.condition)
ConditionalDomain
python
python-openxml__python-docx
src/docx/oxml/simpletypes.py
{ "start": 4251, "end": 4295 }
class ____(BaseStringType): pass
XsdString
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/elements.py
{ "start": 138022, "end": 140146 }
class ____(GroupedElement, ColumnElement[_T]): """Represent a grouping within a column expression""" _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement), ("type", InternalTraversal.dp_type), ] _cache_key_traversal = [ ("element", InternalTraversal.dp_clauseelement), ] element: Union[ TextClause, ClauseList, ColumnElement[_T], CompilerColumnElement ] def __init__( self, element: Union[ TextClause, ClauseList, ColumnElement[_T], CompilerColumnElement ], ): self.element = element # nulltype assignment issue self.type = getattr(element, "type", type_api.NULLTYPE) # type: ignore self._propagate_attrs = element._propagate_attrs def _with_binary_element_type(self, type_): return self.__class__(self.element._with_binary_element_type(type_)) def _ungroup(self) -> ColumnElement[_T]: assert isinstance(self.element, ColumnElement) return self.element._ungroup() @util.memoized_property def _is_implicitly_boolean(self): return self.element._is_implicitly_boolean @util.non_memoized_property def _tq_label(self) -> Optional[str]: return ( getattr(self.element, "_tq_label", None) or self._anon_name_label ) @util.non_memoized_property def _proxies(self) -> List[ColumnElement[Any]]: if isinstance(self.element, ColumnElement): return [self.element] else: return [] @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return self.element._from_objects def __getattr__(self, attr): return getattr(self.element, attr) def __getstate__(self): return {"element": self.element, "type": self.type} def __setstate__(self, state): self.element = state["element"] self.type = state["type"] if TYPE_CHECKING: def self_group( self, against: Optional[OperatorType] = None ) -> Self: ...
Grouping
python
networkx__networkx
networkx/algorithms/centrality/tests/test_current_flow_betweenness_centrality.py
{ "start": 8144, "end": 10072 }
class ____: def test_K4(self): """Edge flow betweenness centrality: K4""" G = nx.complete_graph(4) b = edge_current_flow(G, normalized=True) b_answer = dict.fromkeys(G.edges(), 0.25) for (s, t), v1 in b_answer.items(): v2 = b.get((s, t), b.get((t, s))) assert v1 == pytest.approx(v2, abs=1e-7) def test_K4_normalized(self): """Edge flow betweenness centrality: K4""" G = nx.complete_graph(4) b = edge_current_flow(G, normalized=False) b_answer = dict.fromkeys(G.edges(), 0.75) for (s, t), v1 in b_answer.items(): v2 = b.get((s, t), b.get((t, s))) assert v1 == pytest.approx(v2, abs=1e-7) def test_C4(self): """Edge flow betweenness centrality: C4""" G = nx.cycle_graph(4) b = edge_current_flow(G, normalized=False) b_answer = {(0, 1): 1.25, (0, 3): 1.25, (1, 2): 1.25, (2, 3): 1.25} for (s, t), v1 in b_answer.items(): v2 = b.get((s, t), b.get((t, s))) assert v1 == pytest.approx(v2, abs=1e-7) def test_P4(self): """Edge betweenness centrality: P4""" G = nx.path_graph(4) b = edge_current_flow(G, normalized=False) b_answer = {(0, 1): 1.5, (1, 2): 2.0, (2, 3): 1.5} for (s, t), v1 in b_answer.items(): v2 = b.get((s, t), b.get((t, s))) assert v1 == pytest.approx(v2, abs=1e-7) @pytest.mark.parametrize( "centrality_func", ( nx.current_flow_betweenness_centrality, nx.edge_current_flow_betweenness_centrality, nx.approximate_current_flow_betweenness_centrality, ), ) def test_unconnected_graphs_betweenness_centrality(centrality_func): G = nx.Graph([(1, 2), (3, 4)]) G.add_node(5) with pytest.raises(nx.NetworkXError, match="Graph not connected"): centrality_func(G)
TestEdgeFlowBetweennessCentrality
python
scipy__scipy
scipy/signal/tests/test_windows.py
{ "start": 3650, "end": 4825 }
class ____: def test_basic(self, xp): xp_assert_close(windows.blackmanharris(6, False, xp=xp), xp.asarray([6.0e-05, 0.055645, 0.520575, 1.0, 0.520575, 0.055645], dtype=xp.float64)) xp_assert_close(windows.blackmanharris(7, sym=False, xp=xp), xp.asarray([6.0e-05, 0.03339172347815117, 0.332833504298565, 0.8893697722232837, 0.8893697722232838, 0.3328335042985652, 0.03339172347815122], dtype=xp.float64)) xp_assert_close(windows.blackmanharris(6, xp=xp), xp.asarray([6.0e-05, 0.1030114893456638, 0.7938335106543362, 0.7938335106543364, 0.1030114893456638, 6.0e-05], dtype=xp.float64)) xp_assert_close(windows.blackmanharris(7, sym=True, xp=xp), xp.asarray([6.0e-05, 0.055645, 0.520575, 1.0, 0.520575, 0.055645, 6.0e-05], dtype=xp.float64)) @make_xp_test_case(windows.taylor)
TestBlackmanHarris
python
spyder-ide__spyder
spyder/api/plugins/new_api.py
{ "start": 1412, "end": 32327 }
class ____(QObject, SpyderActionMixin, SpyderConfigurationObserver, SpyderPluginObserver): """ A Spyder plugin to extend functionality without a dockable widget. If you want to create a plugin that adds a new pane, please use SpyderDockablePlugin. """ # --- API: Mandatory attributes ------------------------------------------ # ------------------------------------------------------------------------ # Name of the plugin that will be used to refer to it. # This name must be unique and will only be loaded once. NAME = None # --- API: Optional attributes ------------------------------------------ # ------------------------------------------------------------------------ # List of required plugin dependencies. # Example: [Plugins.Plots, Plugins.IPythonConsole, ...]. # These values are defined in the `Plugins` class present in this file. # If a plugin is using a widget from another plugin, that other # must be declared as a required dependency. REQUIRES = [] # List of optional plugin dependencies. # Example: [Plugins.Plots, Plugins.IPythonConsole, ...]. # These values are defined in the `Plugins` class present in this file. # A plugin might be performing actions when connectiong to other plugins, # but the main functionality of the plugin does not depend on other # plugins. For example, the Help plugin might render information from # the Editor or from the Console or from another source, but it does not # depend on either of those plugins. # Methods in the plugin that make use of optional plugins must check # existence before using those methods or applying signal connections. OPTIONAL = [] # This must subclass a `PluginMainContainer` for non dockable plugins that # create a widget, like a status bar widget, a toolbar, a menu, etc. # For non dockable plugins that do not define widgets of any kind this can # be `None`, for example a plugin that only exposes a configuration page. CONTAINER_CLASS = None # Name of the configuration section that's going to be # used to record the plugin's permanent data in Spyder # config system (i.e. in spyder.ini) CONF_SECTION = None # Use a separate configuration file for the plugin. CONF_FILE = True # Define configuration defaults if using a separate file. # List of tuples, with the first item in the tuple being the section # name and the second item being the default options dictionary. # # CONF_DEFAULTS_EXAMPLE = [ # ('section-name', {'option-1': 'some-value', # 'option-2': True,}), # ('another-section-name', {'option-3': 'some-other-value', # 'option-4': [1, 2, 3],}), # ] CONF_DEFAULTS = None # Define configuration version if using a separate file # # IMPORTANT NOTES: # 1. If you want to *change* the default value of a current option, you # need to do a MINOR update in config version, e.g. from 3.0.0 to 3.1.0 # 2. If you want to *remove* options that are no longer needed or if you # want to *rename* options, then you need to do a MAJOR update in # version, e.g. from 3.0.0 to 4.0.0 # 3. You don't need to touch this value if you're just adding a new option CONF_VERSION = None # Widget to be used as entry in Spyder Preferences dialog. CONF_WIDGET_CLASS = None # Some plugins may add configuration options for other plugins. # Example: # ADDITIONAL_CONF_OPTIONS = {'section': <new value to add>} ADDITIONAL_CONF_OPTIONS = None # Define additional configurable options (via a tab) to # another's plugin configuration page. All configuration tabs should # inherit from `SpyderPreferencesTab`. # Example: # ADDITIONAL_CONF_TABS = {'plugin_name': [<SpyderPreferencesTab classes>]} ADDITIONAL_CONF_TABS = None # Define custom layout classes that the plugin wantes to be registered. # THe custom classes should extend from # `spyder.pluginsl.layout.api::BaseGridLayoutType` CUSTOM_LAYOUTS = [] # Path for images relative to the plugin path # A Python package can include one or several Spyder plugins. In this case # the package may be using images from a global folder outside the plugin # folder IMG_PATH = None # Control the font size relative to the global fonts defined in Spyder MONOSPACE_FONT_SIZE_DELTA = 0 INTERFACE_FONT_SIZE_DELTA = 0 # Define context to store actions, toolbars, toolbuttons and menus. CONTEXT_NAME = None # Define if a plugin can be disabled in preferences. # If False, the plugin is considered "core" and therefore it cannot be # disabled. Default: True CAN_BE_DISABLED = True # Qt Web Widgets may be a heavy dependency for many packagers # (e.g. conda-forge) # We thus ask plugins to declare whether or not they need # web widgets to enhance the distribution of Spyder to users # https://github.com/spyder-ide/spyder/pull/22196#issuecomment-2189377043 REQUIRE_WEB_WIDGETS = False # --- API: Signals ------------------------------------------------------- # ------------------------------------------------------------------------ # Signals here are automatically connected by the Spyder main window and # connected to the the respective global actions defined on it. sig_free_memory_requested = Signal() """ This signal can be emitted to request the main application to garbage collect deleted objects. """ sig_plugin_ready = Signal() """ This signal can be emitted to reflect that the plugin was initialized. """ sig_quit_requested = Signal() """ This signal can be emitted to request the main application to quit. """ sig_restart_requested = Signal() """ This signal can be emitted to request the main application to restart. """ sig_status_message_requested = Signal(str, int) """ This signal can be emitted to request the main application to display a message in the status bar. Parameters ---------- message: str The actual message to display. timeout: int The timeout before the message disappears. """ sig_redirect_stdio_requested = Signal(bool) """ This signal can be emitted to request the main application to redirect standard output/error when using Open/Save/Browse dialogs within widgets. Parameters ---------- enable: bool Enable/Disable standard input/output redirection. """ sig_exception_occurred = Signal(dict) """ This signal can be emitted to report an exception from any plugin. Parameters ---------- error_data: dict The dictionary containing error data. The expected keys are: .. code-block:: python error_data = { "text": str, "is_traceback": bool, "repo": str, "title": str, "label": str, "steps": str, } Notes ----- The `is_traceback` key indicates if `text` contains plain text or a Python error traceback. The `title` and `repo` keys indicate how the error data should customize the report dialog and Github error submission. The `label` and `steps` keys allow customizing the content of the error dialog. This signal is automatically connected to the main container/widget. """ sig_mainwindow_resized = Signal("QResizeEvent") """ This signal is emitted when the main window is resized. Parameters ---------- resize_event: QResizeEvent The event triggered on main window resize. Notes ----- To be used by plugins tracking main window size changes. """ sig_mainwindow_moved = Signal("QMoveEvent") """ This signal is emitted when the main window is moved. Parameters ---------- move_event: QMoveEvent The event triggered on main window move. Notes ----- To be used by plugins tracking main window position changes. """ sig_unmaximize_plugin_requested = Signal((), (object,)) """ This signal is emitted to inform the main window that it needs to unmaximize the currently maximized plugin, if any. Parameters ---------- plugin_instance: SpyderDockablePlugin Unmaximize plugin only if it is not `plugin_instance`. """ sig_mainwindow_state_changed = Signal(object) """ This signal is emitted when the main window state has changed (for instance, between maximized and minimized states). Parameters ---------- window_state: Qt.WindowStates The window state. """ sig_focused_plugin_changed = Signal(object) """ This signal is emitted when the plugin with keyboard focus changes. Parameters ---------- plugin: Optional[SpyderDockablePlugin] The plugin that currently has keyboard focus, or None if no dockable plugin has focus. """ # ---- Private attributes # ------------------------------------------------------------------------- # Define configuration name map for plugin to split configuration # among several files. See spyder/config/main.py _CONF_NAME_MAP = None def __init__(self, parent, configuration=None): super().__init__(parent) # This is required since the MRO of this class does not go up until to # SpyderPluginObserver and SpyderConfigurationObserver when using # super(), see https://fuhm.net/super-harmful/ SpyderPluginObserver.__init__(self) SpyderConfigurationObserver.__init__(self) self._main = parent self._widget = None self._conf = configuration self._plugin_path = os.path.dirname(inspect.getfile(self.__class__)) self._container = None self._added_toolbars = OrderedDict() self._actions = {} self.is_compatible = None self.is_registered = None self.main: QMainWindow = parent # Attribute used to access the action, toolbar, toolbutton and menu # registries self.PLUGIN_NAME = self.NAME if self.CONTAINER_CLASS is not None: self._container = container = self.CONTAINER_CLASS( name=self.NAME, plugin=self, parent=parent ) if hasattr(container, '_setup'): container._setup() if isinstance(container, SpyderWidgetMixin): container.setup() container.update_actions() # Default signals to connect in main container or main widget. container.sig_free_memory_requested.connect( self.sig_free_memory_requested) container.sig_quit_requested.connect(self.sig_quit_requested) container.sig_restart_requested.connect(self.sig_restart_requested) container.sig_redirect_stdio_requested.connect( self.sig_redirect_stdio_requested) container.sig_exception_occurred.connect( self.sig_exception_occurred) container.sig_unmaximize_plugin_requested.connect( self.sig_unmaximize_plugin_requested) self.after_container_creation() # Load the custom images of the plugin if self.IMG_PATH: plugin_path = osp.join(self.get_path(), self.IMG_PATH) IMAGE_PATH_MANAGER.add_image_path(plugin_path) # ---- Private methods # ------------------------------------------------------------------------- def _register(self, omit_conf=False): """ Setup and register plugin in Spyder's main window and connect it to other plugins. """ # Checks # -------------------------------------------------------------------- if self.NAME is None: raise SpyderAPIError('A Spyder Plugin must define a `NAME`!') # Setup configuration # -------------------------------------------------------------------- if self._conf is not None and not omit_conf: self._conf.register_plugin(self) # Signals # -------------------------------------------------------------------- self.is_registered = True self.update_font() def _unregister(self): """ Disconnect signals and clean up the plugin to be able to stop it while Spyder is running. """ if self._conf is not None: self._conf.unregister_plugin(self) self._container = None self.is_compatible = None self.is_registered = False # ---- API: available methods # ------------------------------------------------------------------------- def get_path(self): """ Return the plugin's system path. """ return self._plugin_path def get_container(self): """ Return the plugin main container. """ return self._container def get_configuration(self): """ Return the Spyder configuration object. """ return self._conf def get_main(self): """ Return the Spyder main window.. """ return self._main def get_plugin(self, plugin_name, error=True) -> SpyderPluginV2: """ Get a plugin instance by providing its name. Parameters ---------- plugin_name: str Name of the plugin from which its instance will be returned. error: bool Whether to raise errors when trying to return the plugin's instance. """ # Ensure that this plugin has the plugin corresponding to # `plugin_name` listed as required or optional. requires = set(self.REQUIRES or []) optional = set(self.OPTIONAL or []) full_set = requires | optional if plugin_name in full_set or Plugins.All in full_set: try: return self._main.get_plugin(plugin_name, error=error) except SpyderAPIError as e: if plugin_name in optional: return None else: raise e else: raise SpyderAPIError( 'Plugin "{}" not part of REQUIRES or ' 'OPTIONAL requirements!'.format(plugin_name) ) def is_plugin_enabled(self, plugin_name): """Determine if a given plugin is going to be loaded.""" return self._main.is_plugin_enabled(plugin_name) def is_plugin_available(self, plugin_name): """Determine if a given plugin is available.""" return self._main.is_plugin_available(plugin_name) def get_dockable_plugins(self): """ Return a list of the required plugin instances. Only required plugins that extend SpyderDockablePlugin are returned. """ requires = set(self.REQUIRES or []) dockable_plugins_required = [] for name, plugin_instance in self._main.get_dockable_plugins(): if (name in requires or Plugins.All in requires) and isinstance( plugin_instance, SpyderDockablePlugin ): dockable_plugins_required.append(plugin_instance) return dockable_plugins_required def get_conf(self, option, default=NoDefault, section=None, secure=False): """ Get an option from Spyder configuration system. Parameters ---------- option: str Name of the option to get its value from. default: bool, int, str, tuple, list, dict, NoDefault Value to get from the configuration system, passed as a Python object. section: str Section in the configuration system, e.g. `shortcuts`. secure: bool If True, the option will be retrieved securely using the `keyring` Python package. Returns ------- bool, int, str, tuple, list, dict Value associated with `option`. """ if self._conf is not None: section = self.CONF_SECTION if section is None else section if section is None: raise SpyderAPIError( 'A spyder plugin must define a `CONF_SECTION` class ' 'attribute!' ) return self._conf.get(section, option, default, secure=secure) @Slot(str, object) @Slot(str, object, str) def set_conf( self, option, value, section=None, recursive_notification=True, secure=False, ): """ Set an option in Spyder configuration system. Parameters ---------- option: str Name of the option (e.g. 'case_sensitive') value: bool, int, str, tuple, list, dict Value to save in the configuration system, passed as a Python object. section: str Section in the configuration system, e.g. `shortcuts`. recursive_notification: bool If True, all objects that observe all changes on the configuration section and objects that observe partial tuple paths are notified. For example if the option `opt` of section `sec` changes, then the observers for section `sec` are notified. Likewise, if the option `(a, b, c)` changes, then observers for `(a, b, c)`, `(a, b)` and a are notified as well. secure: bool If True, the option will be saved securely using the `keyring` Python package. """ if self._conf is not None: section = self.CONF_SECTION if section is None else section if section is None: raise SpyderAPIError( 'A spyder plugin must define a `CONF_SECTION` class ' 'attribute!' ) self._conf.set( section, option, value, recursive_notification=recursive_notification, secure=secure, ) self.apply_conf({option}, False) def remove_conf(self, option, section=None, secure=False): """ Delete an option in the Spyder configuration system. Parameters ---------- option: Union[str, Tuple[str, ...]] Name of the option, either a string or a tuple of strings. section: str Section in the configuration system. secure: bool If True, the option will be removed securely using the `keyring` Python package. """ if self._conf is not None: section = self.CONF_SECTION if section is None else section if section is None: raise SpyderAPIError( 'A spyder plugin must define a `CONF_SECTION` class ' 'attribute!' ) self._conf.remove_option(section, option, secure=secure) self.apply_conf({option}, False) def apply_conf(self, options_set, notify=True): """ Apply `options_set` to this plugin's widget. """ if self._conf is not None and options_set: if notify: self.after_configuration_update(list(options_set)) def disable_conf(self, option, section=None): """ Disable notifications for an option in the Spyder configuration system. Parameters ---------- option: Union[str, Tuple[str, ...]] Name of the option, either a string or a tuple of strings. section: str Section in the configuration system. """ if self._conf is not None: section = self.CONF_SECTION if section is None else section if section is None: raise SpyderAPIError( 'A spyder plugin must define a `CONF_SECTION` class ' 'attribute!' ) self._conf.disable_notifications(section, option) def restore_conf(self, option, section=None): """ Restore notifications for an option in the Spyder configuration system. Parameters ---------- option: Union[str, Tuple[str, ...]] Name of the option, either a string or a tuple of strings. section: str Section in the configuration system. """ if self._conf is not None: section = self.CONF_SECTION if section is None else section if section is None: raise SpyderAPIError( 'A spyder plugin must define a `CONF_SECTION` class ' 'attribute!' ) self._conf.restore_notifications(section, option) @Slot(str) @Slot(str, int) def show_status_message(self, message, timeout=0): """ Show message in status bar. Parameters ---------- message: str Message to display in the status bar. timeout: int Amount of time to display the message. """ self.sig_status_message_requested.emit(message, timeout) def before_long_process(self, message): """ Show a message in main window's status bar and change the mouse pointer to Qt.WaitCursor when starting a long process. Parameters ---------- message: str Message to show in the status bar when the long process starts. """ if message: self.show_status_message(message) QApplication.setOverrideCursor(QCursor(Qt.WaitCursor)) QApplication.processEvents() def after_long_process(self, message=""): """ Clear main window's status bar after a long process and restore mouse pointer to the OS deault. Parameters ---------- message: str Message to show in the status bar when the long process finishes. """ QApplication.restoreOverrideCursor() self.show_status_message(message, timeout=2000) QApplication.processEvents() def get_color_scheme(self): """ Get the current color scheme. Returns ------- dict Dictionary with properties and colors of the color scheme used in the Editor. Notes ----- This is useful to set the color scheme of all instances of CodeEditor used by the plugin. """ if self._conf is not None: return get_color_scheme(self._conf.get('appearance', 'selected')) def initialize(self): """ Initialize a plugin instance. Notes ----- This method should be called to initialize the plugin, but it should not be overridden, since it internally calls `on_initialize` and emits the `sig_plugin_ready` signal. """ self.on_initialize() self.sig_plugin_ready.emit() @staticmethod def create_icon(name): """ Provide icons from the theme and icon manager. """ return ima.icon(name) @classmethod def get_font(cls, font_type): """ Return one of font types used in Spyder. Parameters ---------- font_type: str There are three types of font types in Spyder: SpyderFontType.Monospace, used in the Editor, IPython console, and History; SpyderFontType.Interface, used by the entire Spyder app; and SpyderFontType.MonospaceInterface, used by the Variable Explorer, Find, Debugger and others. Returns ------- QFont QFont object to be passed to other Qt widgets. Notes ----- All plugins in Spyder use the same, global fonts. In case some a plugin wants to use a delta font size based on the default one, they can set the MONOSPACE_FONT_SIZE_DELTA or INTERFACE_FONT_SIZE_DELTA class constants. """ if font_type == SpyderFontType.Monospace: font_size_delta = cls.MONOSPACE_FONT_SIZE_DELTA elif font_type in [SpyderFontType.Interface, SpyderFontType.MonospaceInterface]: font_size_delta = cls.INTERFACE_FONT_SIZE_DELTA else: raise SpyderAPIError("Unrecognized font type") return get_font(option=font_type, font_size_delta=font_size_delta) def get_command_line_options(self): """ Get command line options passed by the user when they started Spyder in a system terminal. See app/cli_options.py for the option names. """ if self._main is not None: return self._main._cli_options else: # This is necessary when the plugin has no parent. sys_argv = [sys.argv[0]] # Avoid options passed to pytest return get_options(sys_argv)[0] # ---- API: Mandatory methods to define # ------------------------------------------------------------------------- @staticmethod def get_name(): """ Return the plugin localized name. Returns ------- str Localized name of the plugin. Notes ----- This method needs to be decorated with `staticmethod`. """ raise NotImplementedError('A plugin name must be defined!') @staticmethod def get_description(): """ Return the plugin localized description. Returns ------- str Localized description of the plugin. Notes ----- This method needs to be decorated with `staticmethod`. """ raise NotImplementedError('A plugin description must be defined!') @classmethod def get_icon(cls): """ Return the plugin associated icon. Returns ------- QIcon QIcon instance Notes ----- This method needs to be decorated with `classmethod` or `staticmethod`. """ raise NotImplementedError('A plugin icon must be defined!') def on_initialize(self): """ Setup the plugin. Notes ----- All calls performed on this method should not call other plugins. """ if hasattr(self, 'register'): raise SpyderAPIError( 'register was replaced by on_initialize, please check the ' 'Spyder 5.1.0 migration guide to get more information') raise NotImplementedError( f'The plugin {type(self)} is missing an implementation of ' 'on_initialize') # ---- API: Optional methods to override # ------------------------------------------------------------------------- @staticmethod def check_compatibility(): """ This method can be reimplemented to check compatibility of a plugin with the user's current environment. Returns ------- (bool, str) The first value tells Spyder if the plugin has passed the compatibility test defined in this method. The second value is a message that must explain users why the plugin was found to be incompatible (e.g. 'This plugin does not work with PyQt4'). It will be shown at startup in a QMessageBox. """ valid = True message = '' # Note: Remember to use _('') to localize the string return valid, message def on_first_registration(self): """ Actions to be performed the first time the plugin is started. It can also be used to perform actions that are needed only the first time this is loaded after installation. This method is called after the main window is visible. """ pass def before_mainwindow_visible(self): """ Actions to be performed after setup but before the main window's has been shown. """ pass def on_mainwindow_visible(self): """ Actions to be performed after the main window's has been shown. """ pass def on_close(self, cancelable=False): """ Perform actions before the plugin is closed. This method **must** only operate on local attributes and not other plugins. """ if hasattr(self, 'unregister'): warnings.warn('The unregister method was deprecated and it ' 'was replaced by `on_close`. Please see the ' 'Spyder 5.2.0 migration guide to get more ' 'information.') def can_close(self) -> bool: """ Determine if a plugin can be closed. Returns ------- close: bool True if the plugin can be closed, False otherwise. """ return True def update_font(self): """ This must be reimplemented by plugins that need to adjust their fonts. The following plugins illustrate the usage of this method: * spyder/plugins/help/plugin.py * spyder/plugins/onlinehelp/plugin.py """ pass def update_style(self): """ This must be reimplemented by plugins that need to adjust their style. Changing from the dark to the light interface theme might require specific styles or stylesheets to be applied. When the theme is changed by the user through our Preferences, this method will be called for all plugins. """ pass def after_container_creation(self): """ Perform necessary operations before setting up the container. This must be reimplemented by plugins whose containers emit signals in on_option_update that need to be connected before applying those options to our config system. """ pass def after_configuration_update(self, options: List[Union[str, tuple]]): """ Perform additional operations after updating the plugin configuration values. This can be implemented by plugins that do not have a container and need to act on configuration updates. Parameters ---------- options: List[Union[str, tuple]] A list that contains the options that were updated. """ pass
SpyderPluginV2
python
doocs__leetcode
solution/2500-2599/2547.Minimum Cost to Split an Array/Solution.py
{ "start": 0, "end": 561 }
class ____: def minCost(self, nums: List[int], k: int) -> int: @cache def dfs(i): if i >= n: return 0 cnt = Counter() one = 0 ans = inf for j in range(i, n): cnt[nums[j]] += 1 if cnt[nums[j]] == 1: one += 1 elif cnt[nums[j]] == 2: one -= 1 ans = min(ans, k + j - i + 1 - one + dfs(j + 1)) return ans n = len(nums) return dfs(0)
Solution
python
run-llama__llama_index
llama-index-integrations/readers/llama-index-readers-wordlift/llama_index/readers/wordlift/base.py
{ "start": 389, "end": 596 }
class ____(WordLiftLoaderError): """Exception raised for errors in API calls.""" def __init__(self, message) -> None: self.message = message super().__init__(self.message)
APICallError
python
Lightning-AI__lightning
tests/tests_pytorch/callbacks/test_early_stopping.py
{ "start": 19680, "end": 20012 }
class ____(BoringModel): def __init__(self): super().__init__() self.epoch_losses = [1.0, 2.0, 5.0, 10.0] def on_validation_epoch_end(self): loss = self.epoch_losses[self.current_epoch] if self.current_epoch < len(self.epoch_losses) else 15.0 self.log("val_loss", loss)
ModelWithIncreasingLoss
python
bokeh__bokeh
src/bokeh/models/filters.py
{ "start": 1811, "end": 2640 }
class ____(Model): ''' A Filter model represents a filtering operation that returns a row-wise subset of data when applied to a ``ColumnDataSource``. ''' # explicit __init__ to support Init signatures def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def __invert__(self) -> Filter: return InversionFilter(operand=self) def __and__(self, other: Filter) -> Filter: return IntersectionFilter(operands=[self, other]) def __or__(self, other: Filter) -> Filter: return UnionFilter(operands=[self, other]) def __sub__(self, other: Filter) -> Filter: return DifferenceFilter(operands=[self, other]) def __xor__(self, other: Filter) -> Filter: return SymmetricDifferenceFilter(operands=[self, other])
Filter
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 263050, "end": 263776 }
class ____(sgqlc.types.relay.Connection): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("edges", "nodes", "page_info", "total_count") edges = sgqlc.types.Field( sgqlc.types.list_of("CreatedPullRequestReviewContributionEdge"), graphql_name="edges", ) nodes = sgqlc.types.Field( sgqlc.types.list_of("CreatedPullRequestReviewContribution"), graphql_name="nodes", ) page_info = sgqlc.types.Field( sgqlc.types.non_null("PageInfo"), graphql_name="pageInfo" ) total_count = sgqlc.types.Field( sgqlc.types.non_null(Int), graphql_name="totalCount" )
CreatedPullRequestReviewContributionConnection
python
tensorflow__tensorflow
tensorflow/python/framework/device_spec.py
{ "start": 13870, "end": 15863 }
class ____(DeviceSpecV2): __doc__ = DeviceSpecV2.__doc__ __slots__ = DeviceSpecV2.__slots__ @DeviceSpecV2.job.setter def job(self, job): self._job = _as_str_or_none(job) self._as_string, self._hash = None, None @DeviceSpecV2.replica.setter def replica(self, replica): self._replica = _as_int_or_none(replica) self._as_string, self._hash = None, None @DeviceSpecV2.task.setter def task(self, task): self._task = _as_int_or_none(task) self._as_string, self._hash = None, None @DeviceSpecV2.device_type.setter def device_type(self, device_type): self._device_type = _as_device_str_or_none(device_type) self._as_string, self._hash = None, None @DeviceSpecV2.device_index.setter def device_index(self, device_index): self._device_index = _as_int_or_none(device_index) self._as_string, self._hash = None, None def __hash__(self): if self._hash is None: self._hash = hash(self.to_string()) return self._hash def to_string(self): if self._as_string is None: self._as_string = self._components_to_string( job=self.job, replica=self.replica, task=self.task, device_type=self.device_type, device_index=self.device_index) return self._as_string def parse_from_string(self, spec): (self.job, self.replica, self.task, self.device_type, self.device_index) = self._string_to_components(spec) return self def merge_from(self, dev): """Merge the properties of "dev" into this `DeviceSpec`. Note: Will be removed in TensorFlow 2.x since DeviceSpecs will become immutable. Args: dev: a `DeviceSpec`. """ (self.job, self.replica, self.task, self.device_type, self.device_index) = self._get_combined_properties(dev) # Use parent class docstrings for public methods. to_string.__doc__ = DeviceSpecV2.to_string.__doc__ parse_from_string.__doc__ = DeviceSpecV2.parse_from_string.__doc__
DeviceSpecV1
python
catalyst-team__catalyst
catalyst/callbacks/metrics/confusion_matrix.py
{ "start": 429, "end": 5284 }
class ____(Callback): """Callback to plot your confusion matrix to the loggers. Args: input_key: key to use from ``runner.batch``, specifies our ``y_pred`` target_key: key to use from ``runner.batch``, specifies our ``y_true`` prefix: plot name for monitoring tools class_names: list with class names num_classes: number of classes normalize: boolean flag for confusion matrix normalization plot_params: extra params for plt.figure rendering .. note:: catalyst[ml] required for this callback Examples: .. code-block:: python import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), dl.ConfusionMatrixCallback( input_key="logits", target_key="targets", num_classes=num_classes ), ], ) .. note:: Please follow the `minimal examples`_ sections for more use cases. .. _`minimal examples`: https://github.com/catalyst-team/catalyst#minimal-examples # noqa: E501, W505 """ def __init__( self, input_key: str, target_key: str, prefix: str = None, class_names: List[str] = None, num_classes: int = None, normalize: bool = False, plot_params: Dict = None, ): """Callback initialisation.""" super().__init__(CallbackOrder.metric) assert num_classes is not None or class_names is not None self.prefix = prefix or "confusion_matrix" self.input_key = input_key self.target_key = target_key self._plot_params = plot_params or {} self.class_names = class_names or [f"class_{i:02d}" for i in range(num_classes)] self.num_classes = num_classes if class_names is None else len(class_names) self.normalize = normalize assert self.num_classes is not None self.confusion_matrix = ConfusionMatrixMetric( num_classes=self.num_classes, normalize=self.normalize ) def on_loader_start(self, runner: "IRunner"): """Loader start hook. Args: runner: current runner """ self.confusion_matrix.reset() def on_batch_end(self, runner: "IRunner"): """Batch end hook. Args: runner: current runner """ inputs, targets = ( runner.batch[self.input_key].detach(), runner.batch[self.target_key].detach(), ) self.confusion_matrix.update(predictions=inputs, targets=targets) def on_loader_end(self, runner: "IRunner"): """Loader end hook. Args: runner: current runner """ confusion_matrix = self.confusion_matrix.compute() fig = plot_confusion_matrix( confusion_matrix, class_names=self.class_names, normalize=self.normalize, show=False, **self._plot_params, ) image = render_figure_to_array(fig) runner.log_image(tag=self.prefix, image=image, scope="loader") __all__ = ["ConfusionMatrixCallback"]
ConfusionMatrixCallback
python
pydata__xarray
xarray/core/dataarray.py
{ "start": 8159, "end": 292484 }
class ____( AbstractArray, DataWithCoords, DataArrayArithmetic, DataArrayAggregations, ): """N-dimensional array with labeled coordinates and dimensions. DataArray provides a wrapper around numpy ndarrays that uses labeled dimensions and coordinates to support metadata aware operations. The API is similar to that for the pandas Series or DataFrame, but DataArray objects can have any number of dimensions, and their contents have fixed data types. Additional features over raw numpy arrays: - Apply operations over dimensions by name: ``x.sum('time')``. - Select or assign values by integer location (like numpy): ``x[:10]`` or by label (like pandas): ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``. - Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (known in numpy as "broadcasting") based on dimension names, regardless of their original order. - Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs`` - Convert to a pandas Series: ``x.to_series()``. Getting items from or doing mathematical operations with a DataArray always returns another DataArray. Parameters ---------- data : array_like Values for this array. Must be an ``numpy.ndarray``, ndarray like, or castable to an ``ndarray``. If a self-described xarray or pandas object, attempts are made to use this array's metadata to fill in other unspecified arguments. A view of the array's data is used instead of a copy if possible. coords : sequence or dict of array_like or :py:class:`~xarray.Coordinates`, optional Coordinates (tick labels) to use for indexing along each dimension. The following notations are accepted: - mapping {dimension name: array-like} - sequence of tuples that are valid arguments for ``xarray.Variable()`` - (dims, data) - (dims, data, attrs) - (dims, data, attrs, encoding) Additionally, it is possible to define a coord whose name does not match the dimension name, or a coord based on multiple dimensions, with one of the following notations: - mapping {coord name: DataArray} - mapping {coord name: Variable} - mapping {coord name: (dimension name, array-like)} - mapping {coord name: (tuple of dimension names, array-like)} Alternatively, a :py:class:`~xarray.Coordinates` object may be used in order to explicitly pass indexes (e.g., a multi-index or any custom Xarray index) or to bypass the creation of a default index for any :term:`Dimension coordinate` included in that object. dims : Hashable or sequence of Hashable, optional Name(s) of the data dimension(s). Must be either a Hashable (only for 1D data) or a sequence of Hashables with length equal to the number of dimensions. If this argument is omitted, dimension names are taken from ``coords`` (if possible) and otherwise default to ``['dim_0', ... 'dim_n']``. name : str or None, optional Name of this array. attrs : dict_like or None, optional Attributes to assign to the new instance. By default, an empty attribute dictionary is initialized. (see FAQ, :ref:`approach to metadata`) indexes : :py:class:`~xarray.Indexes` or dict-like, optional For internal use only. For passing indexes objects to the new DataArray, use the ``coords`` argument instead with a :py:class:`~xarray.Coordinate` object (both coordinate variables and indexes will be extracted from the latter). Examples -------- Create data: >>> np.random.seed(0) >>> temperature = 15 + 8 * np.random.randn(2, 2, 3) >>> lon = [[-99.83, -99.32], [-99.79, -99.23]] >>> lat = [[42.25, 42.21], [42.63, 42.59]] >>> time = pd.date_range("2014-09-06", periods=3) >>> reference_time = pd.Timestamp("2014-09-05") Initialize a dataarray with multiple dimensions: >>> da = xr.DataArray( ... data=temperature, ... dims=["x", "y", "time"], ... coords=dict( ... lon=(["x", "y"], lon), ... lat=(["x", "y"], lat), ... time=time, ... reference_time=reference_time, ... ), ... attrs=dict( ... description="Ambient temperature.", ... units="degC", ... ), ... ) >>> da <xarray.DataArray (x: 2, y: 2, time: 3)> Size: 96B array([[[29.11241877, 18.20125767, 22.82990387], [32.92714559, 29.94046392, 7.18177696]], <BLANKLINE> [[22.60070734, 13.78914233, 14.17424919], [18.28478802, 16.15234857, 26.63418806]]]) Coordinates: * time (time) datetime64[ns] 24B 2014-09-06 2014-09-07 2014-09-08 lon (x, y) float64 32B -99.83 -99.32 -99.79 -99.23 lat (x, y) float64 32B 42.25 42.21 42.63 42.59 reference_time datetime64[ns] 8B 2014-09-05 Dimensions without coordinates: x, y Attributes: description: Ambient temperature. units: degC Find out where the coldest temperature was: >>> da.isel(da.argmin(...)) <xarray.DataArray ()> Size: 8B array(7.18177696) Coordinates: lon float64 8B -99.32 lat float64 8B 42.21 time datetime64[ns] 8B 2014-09-08 reference_time datetime64[ns] 8B 2014-09-05 Attributes: description: Ambient temperature. units: degC """ _cache: dict[str, Any] _coords: dict[Any, Variable] _close: Callable[[], None] | None _indexes: dict[Hashable, Index] _name: Hashable | None _variable: Variable __slots__ = ( "__weakref__", "_cache", "_close", "_coords", "_indexes", "_name", "_variable", ) dt = utils.UncachedAccessor(CombinedDatetimelikeAccessor["DataArray"]) def __init__( self, data: Any = dtypes.NA, coords: ( Sequence[Sequence | pd.Index | DataArray | Variable | np.ndarray] | Mapping | None ) = None, dims: str | Iterable[Hashable] | None = None, name: Hashable | None = None, attrs: Mapping | None = None, # internal parameters indexes: Mapping[Hashable, Index] | None = None, fastpath: bool = False, ) -> None: if fastpath: variable = data assert dims is None assert attrs is None assert indexes is not None else: if indexes is not None: raise ValueError( "Explicitly passing indexes via the `indexes` argument is not supported " "when `fastpath=False`. Use the `coords` argument instead." ) # try to fill in arguments from data if they weren't supplied if coords is None: if isinstance(data, DataArray): coords = data.coords elif isinstance(data, pd.Series): coords = [data.index] elif isinstance(data, pd.DataFrame): coords = [data.index, data.columns] elif isinstance(data, pd.Index | IndexVariable): coords = [data] if dims is None: dims = getattr(data, "dims", getattr(coords, "dims", None)) if name is None: name = getattr(data, "name", None) if attrs is None and not isinstance(data, PANDAS_TYPES): attrs = getattr(data, "attrs", None) data = _check_data_shape(data, coords, dims) data = as_compatible_data(data) coords, dims = _infer_coords_and_dims(data.shape, coords, dims) variable = Variable(dims, data, attrs, fastpath=True) if not isinstance(coords, Coordinates): coords = create_coords_with_default_indexes(coords) indexes = dict(coords.xindexes) coords = {k: v.copy() for k, v in coords.variables.items()} # These fully describe a DataArray self._variable = variable assert isinstance(coords, dict) self._coords = coords self._name = name self._indexes = dict(indexes) self._close = None @classmethod def _construct_direct( cls, variable: Variable, coords: dict[Any, Variable], name: Hashable, indexes: dict[Hashable, Index], ) -> Self: """Shortcut around __init__ for internal use when we want to skip costly validation """ obj = object.__new__(cls) obj._variable = variable obj._coords = coords obj._name = name obj._indexes = indexes obj._close = None return obj def _replace( self, variable: Variable | None = None, coords=None, name: Hashable | Default | None = _default, attrs=_default, indexes=None, ) -> Self: if variable is None: variable = self.variable if coords is None: coords = self._coords if indexes is None: indexes = self._indexes if name is _default: name = self.name if attrs is _default: attrs = copy.copy(self.attrs) else: variable = variable.copy() variable.attrs = attrs return type(self)(variable, coords, name=name, indexes=indexes, fastpath=True) def _replace_maybe_drop_dims( self, variable: Variable, name: Hashable | Default | None = _default, ) -> Self: if self.sizes == variable.sizes: coords = self._coords.copy() indexes = self._indexes elif set(self.dims) == set(variable.dims): # Shape has changed (e.g. from reduce(..., keepdims=True) new_sizes = dict(zip(self.dims, variable.shape, strict=True)) coords = { k: v for k, v in self._coords.items() if v.shape == tuple(new_sizes[d] for d in v.dims) } indexes = filter_indexes_from_coords(self._indexes, set(coords)) else: allowed_dims = set(variable.dims) coords = { k: v for k, v in self._coords.items() if set(v.dims) <= allowed_dims } indexes = filter_indexes_from_coords(self._indexes, set(coords)) return self._replace(variable, coords, name, indexes=indexes) def _overwrite_indexes( self, indexes: Mapping[Any, Index], variables: Mapping[Any, Variable] | None = None, drop_coords: list[Hashable] | None = None, rename_dims: Mapping[Any, Any] | None = None, ) -> Self: """Maybe replace indexes and their corresponding coordinates.""" if not indexes: return self if variables is None: variables = {} if drop_coords is None: drop_coords = [] new_variable = self.variable.copy() new_coords = self._coords.copy() new_indexes = dict(self._indexes) for name in indexes: new_coords[name] = variables[name] new_indexes[name] = indexes[name] for name in drop_coords: new_coords.pop(name) new_indexes.pop(name) if rename_dims: new_variable.dims = tuple(rename_dims.get(d, d) for d in new_variable.dims) return self._replace( variable=new_variable, coords=new_coords, indexes=new_indexes ) def _to_temp_dataset(self) -> Dataset: return self._to_dataset_whole(name=_THIS_ARRAY, shallow_copy=False) def _from_temp_dataset( self, dataset: Dataset, name: Hashable | Default | None = _default ) -> Self: variable = dataset._variables.pop(_THIS_ARRAY) coords = dataset._variables indexes = dataset._indexes return self._replace(variable, coords, name, indexes=indexes) def _to_dataset_split(self, dim: Hashable) -> Dataset: """splits dataarray along dimension 'dim'""" def subset(dim, label): array = self.loc[{dim: label}] array.attrs = {} return as_variable(array) variables_from_split = { label: subset(dim, label) for label in self.get_index(dim) } coord_names = set(self._coords) - {dim} ambiguous_vars = set(variables_from_split) & coord_names if ambiguous_vars: rename_msg_fmt = ", ".join([f"{v}=..." for v in sorted(ambiguous_vars)]) raise ValueError( f"Splitting along the dimension {dim!r} would produce the variables " f"{tuple(sorted(ambiguous_vars))} which are also existing coordinate " f"variables. Use DataArray.rename({rename_msg_fmt}) or " f"DataArray.assign_coords({dim}=...) to resolve this ambiguity." ) variables = variables_from_split | { k: v for k, v in self._coords.items() if k != dim } indexes = filter_indexes_from_coords(self._indexes, coord_names) dataset = Dataset._construct_direct( variables, coord_names, indexes=indexes, attrs=self.attrs ) return dataset def _to_dataset_whole( self, name: Hashable = None, shallow_copy: bool = True ) -> Dataset: if name is None: name = self.name if name is None: raise ValueError( "unable to convert unnamed DataArray to a " "Dataset without providing an explicit name" ) if name in self.coords: raise ValueError( "cannot create a Dataset from a DataArray with " "the same name as one of its coordinates" ) # use private APIs for speed: this is called by _to_temp_dataset(), # which is used in the guts of a lot of operations (e.g., reindex) variables = self._coords.copy() variables[name] = self.variable if shallow_copy: for k in variables: variables[k] = variables[k].copy(deep=False) indexes = self._indexes coord_names = set(self._coords) return Dataset._construct_direct(variables, coord_names, indexes=indexes) def to_dataset( self, dim: Hashable = None, *, name: Hashable = None, promote_attrs: bool = False, ) -> Dataset: """Convert a DataArray to a Dataset. Parameters ---------- dim : Hashable, optional Name of the dimension on this array along which to split this array into separate variables. If not provided, this array is converted into a Dataset of one variable. name : Hashable, optional Name to substitute for this array's name. Only valid if ``dim`` is not provided. promote_attrs : bool, default: False Set to True to shallow copy attrs of DataArray to returned Dataset. Returns ------- dataset : Dataset """ if dim is not None and dim not in self.dims: raise TypeError( f"{dim} is not a dim. If supplying a ``name``, pass as a kwarg." ) if dim is not None: if name is not None: raise TypeError("cannot supply both dim and name arguments") result = self._to_dataset_split(dim) else: result = self._to_dataset_whole(name) if promote_attrs: result.attrs = dict(self.attrs) return result @property def name(self) -> Hashable | None: """The name of this array.""" return self._name @name.setter def name(self, value: Hashable | None) -> None: self._name = value @property def variable(self) -> Variable: """Low level interface to the Variable object for this DataArray.""" return self._variable @property def dtype(self) -> np.dtype: """ Data-type of the array’s elements. See Also -------- ndarray.dtype numpy.dtype """ return self.variable.dtype @property def shape(self) -> tuple[int, ...]: """ Tuple of array dimensions. See Also -------- numpy.ndarray.shape """ return self.variable.shape @property def size(self) -> int: """ Number of elements in the array. Equal to ``np.prod(a.shape)``, i.e., the product of the array’s dimensions. See Also -------- numpy.ndarray.size """ return self.variable.size @property def nbytes(self) -> int: """ Total bytes consumed by the elements of this DataArray's data. If the underlying data array does not include ``nbytes``, estimates the bytes consumed based on the ``size`` and ``dtype``. """ return self.variable.nbytes @property def ndim(self) -> int: """ Number of array dimensions. See Also -------- numpy.ndarray.ndim """ return self.variable.ndim def __len__(self) -> int: return len(self.variable) @property def data(self) -> Any: """ The DataArray's data as an array. The underlying array type (e.g. dask, sparse, pint) is preserved. See Also -------- DataArray.to_numpy DataArray.as_numpy DataArray.values """ return self.variable.data @data.setter def data(self, value: Any) -> None: self.variable.data = value @property def values(self) -> np.ndarray: """ The array's data converted to numpy.ndarray. This will attempt to convert the array naively using np.array(), which will raise an error if the array type does not support coercion like this (e.g. cupy). Note that this array is not copied; operations on it follow numpy's rules of what generates a view vs. a copy, and changes to this array may be reflected in the DataArray as well. """ return self.variable.values @values.setter def values(self, value: Any) -> None: self.variable.values = value def to_numpy(self) -> np.ndarray: """ Coerces wrapped data to numpy and returns a numpy.ndarray. See Also -------- DataArray.as_numpy : Same but returns the surrounding DataArray instead. Dataset.as_numpy DataArray.values DataArray.data """ return self.variable.to_numpy() def as_numpy(self) -> Self: """ Coerces wrapped data and coordinates into numpy arrays, returning a DataArray. See Also -------- DataArray.to_numpy : Same but returns only the data as a numpy.ndarray object. Dataset.as_numpy : Converts all variables in a Dataset. DataArray.values DataArray.data """ coords = {k: v.as_numpy() for k, v in self._coords.items()} return self._replace(self.variable.as_numpy(), coords, indexes=self._indexes) @property def _in_memory(self) -> bool: return self.variable._in_memory def _to_index(self) -> pd.Index: return self.variable._to_index() def to_index(self) -> pd.Index: """Convert this variable to a pandas.Index. Only possible for 1D arrays. """ return self.variable.to_index() @property def dims(self) -> tuple[Hashable, ...]: """Tuple of dimension names associated with this array. Note that the type of this property is inconsistent with `Dataset.dims`. See `Dataset.sizes` and `DataArray.sizes` for consistently named properties. See Also -------- DataArray.sizes Dataset.dims """ return self.variable.dims @dims.setter def dims(self, value: Any) -> NoReturn: raise AttributeError( "you cannot assign dims on a DataArray. Use " ".rename() or .swap_dims() instead." ) def _item_key_to_dict(self, key: Any) -> Mapping[Hashable, Any]: if utils.is_dict_like(key): return key key = indexing.expanded_indexer(key, self.ndim) return dict(zip(self.dims, key, strict=True)) def _getitem_coord(self, key: Any) -> Self: from xarray.core.dataset_utils import _get_virtual_variable try: var = self._coords[key] except KeyError: dim_sizes = dict(zip(self.dims, self.shape, strict=True)) _, key, var = _get_virtual_variable(self._coords, key, dim_sizes) return self._replace_maybe_drop_dims(var, name=key) def __getitem__(self, key: Any) -> Self: if isinstance(key, str): return self._getitem_coord(key) else: # xarray-style array indexing return self.isel(indexers=self._item_key_to_dict(key)) def __setitem__(self, key: Any, value: Any) -> None: if isinstance(key, str): self.coords[key] = value else: # Coordinates in key, value and self[key] should be consistent. # TODO Coordinate consistency in key is checked here, but it # causes unnecessary indexing. It should be optimized. obj = self[key] if isinstance(value, DataArray): assert_coordinate_consistent(value, obj.coords.variables) value = value.variable # DataArray key -> Variable key key = { k: v.variable if isinstance(v, DataArray) else v for k, v in self._item_key_to_dict(key).items() } self.variable[key] = value def __delitem__(self, key: Any) -> None: del self.coords[key] @property def _attr_sources(self) -> Iterable[Mapping[Hashable, Any]]: """Places to look-up items for attribute-style access""" yield from self._item_sources yield self.attrs @property def _item_sources(self) -> Iterable[Mapping[Hashable, Any]]: """Places to look-up items for key-completion""" yield FilteredMapping(keys=self._coords, mapping=self.coords) # virtual coordinates yield FilteredMapping(keys=self.dims, mapping=self.coords) def __contains__(self, key: Any) -> bool: return key in self.data @property def loc(self) -> _LocIndexer: """Attribute for location based indexing like pandas.""" return _LocIndexer(self) @property def attrs(self) -> dict[Any, Any]: """Dictionary storing arbitrary metadata with this array.""" return self.variable.attrs @attrs.setter def attrs(self, value: Mapping[Any, Any]) -> None: self.variable.attrs = dict(value) @property def encoding(self) -> dict[Any, Any]: """Dictionary of format-specific settings for how this array should be serialized.""" return self.variable.encoding @encoding.setter def encoding(self, value: Mapping[Any, Any]) -> None: self.variable.encoding = dict(value) def reset_encoding(self) -> Self: warnings.warn( "reset_encoding is deprecated since 2023.11, use `drop_encoding` instead", stacklevel=2, ) return self.drop_encoding() def drop_encoding(self) -> Self: """Return a new DataArray without encoding on the array or any attached coords.""" ds = self._to_temp_dataset().drop_encoding() return self._from_temp_dataset(ds) @property def indexes(self) -> Indexes: """Mapping of pandas.Index objects used for label based indexing. Raises an error if this Dataset has indexes that cannot be coerced to pandas.Index objects. See Also -------- DataArray.xindexes """ return self.xindexes.to_pandas_indexes() @property def xindexes(self) -> Indexes[Index]: """Mapping of :py:class:`~xarray.indexes.Index` objects used for label based indexing. """ return Indexes(self._indexes, {k: self._coords[k] for k in self._indexes}) @property def coords(self) -> DataArrayCoordinates: """Mapping of :py:class:`~xarray.DataArray` objects corresponding to coordinate variables. See Also -------- Coordinates """ return DataArrayCoordinates(self) @overload def reset_coords( self, names: Dims = None, *, drop: Literal[False] = False, ) -> Dataset: ... @overload def reset_coords( self, names: Dims = None, *, drop: Literal[True], ) -> Self: ... def reset_coords( self, names: Dims = None, *, drop: bool = False, ) -> Self | Dataset: """Given names of coordinates, reset them to become variables. Parameters ---------- names : str, Iterable of Hashable or None, optional Name(s) of non-index coordinates in this dataset to reset into variables. By default, all non-index coordinates are reset. drop : bool, default: False If True, remove coordinates instead of converting them into variables. Returns ------- Dataset, or DataArray if ``drop == True`` Examples -------- >>> temperature = np.arange(25).reshape(5, 5) >>> pressure = np.arange(50, 75).reshape(5, 5) >>> da = xr.DataArray( ... data=temperature, ... dims=["x", "y"], ... coords=dict( ... lon=("x", np.arange(10, 15)), ... lat=("y", np.arange(20, 25)), ... Pressure=(["x", "y"], pressure), ... ), ... name="Temperature", ... ) >>> da <xarray.DataArray 'Temperature' (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: lon (x) int64 40B 10 11 12 13 14 lat (y) int64 40B 20 21 22 23 24 Pressure (x, y) int64 200B 50 51 52 53 54 55 56 57 ... 68 69 70 71 72 73 74 Dimensions without coordinates: x, y Return Dataset with target coordinate as a data variable rather than a coordinate variable: >>> da.reset_coords(names="Pressure") <xarray.Dataset> Size: 480B Dimensions: (x: 5, y: 5) Coordinates: lon (x) int64 40B 10 11 12 13 14 lat (y) int64 40B 20 21 22 23 24 Dimensions without coordinates: x, y Data variables: Pressure (x, y) int64 200B 50 51 52 53 54 55 56 ... 68 69 70 71 72 73 74 Temperature (x, y) int64 200B 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21 22 23 24 Return DataArray without targeted coordinate: >>> da.reset_coords(names="Pressure", drop=True) <xarray.DataArray 'Temperature' (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: lon (x) int64 40B 10 11 12 13 14 lat (y) int64 40B 20 21 22 23 24 Dimensions without coordinates: x, y """ if names is None: names = set(self.coords) - set(self._indexes) dataset = self.coords.to_dataset().reset_coords(names, drop) if drop: return self._replace(coords=dataset._variables) if self.name is None: raise ValueError( "cannot reset_coords with drop=False on an unnamed DataArray" ) dataset[self.name] = self.variable return dataset def __dask_tokenize__(self) -> object: from dask.base import normalize_token return normalize_token((type(self), self._variable, self._coords, self._name)) def __dask_graph__(self): return self._to_temp_dataset().__dask_graph__() def __dask_keys__(self): return self._to_temp_dataset().__dask_keys__() def __dask_layers__(self): return self._to_temp_dataset().__dask_layers__() @property def __dask_optimize__(self): return self._to_temp_dataset().__dask_optimize__ @property def __dask_scheduler__(self): return self._to_temp_dataset().__dask_scheduler__ def __dask_postcompute__(self): func, args = self._to_temp_dataset().__dask_postcompute__() return self._dask_finalize, (self.name, func) + args def __dask_postpersist__(self): func, args = self._to_temp_dataset().__dask_postpersist__() return self._dask_finalize, (self.name, func) + args @classmethod def _dask_finalize(cls, results, name, func, *args, **kwargs) -> Self: ds = func(results, *args, **kwargs) variable = ds._variables.pop(_THIS_ARRAY) coords = ds._variables indexes = ds._indexes return cls(variable, coords, name=name, indexes=indexes, fastpath=True) def load(self, **kwargs) -> Self: """Trigger loading data into memory and return this dataarray. Data will be computed and/or loaded from disk or a remote source. Unlike ``.compute``, the original dataarray is modified and returned. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.compute``. Returns ------- object : DataArray Same object but with lazy data and coordinates as in-memory arrays. See Also -------- dask.compute DataArray.load_async DataArray.compute Dataset.load Variable.load """ ds = self._to_temp_dataset().load(**kwargs) new = self._from_temp_dataset(ds) self._variable = new._variable self._coords = new._coords return self async def load_async(self, **kwargs) -> Self: """Trigger and await asynchronous loading of data into memory and return this dataarray. Data will be computed and/or loaded from disk or a remote source. Unlike ``.compute``, the original dataarray is modified and returned. Only works when opening data lazily from IO storage backends which support lazy asynchronous loading. Otherwise will raise a NotImplementedError. Note users are expected to limit concurrency themselves - xarray does not internally limit concurrency in any way. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.compute``. Returns ------- object : Dataarray Same object but with lazy data and coordinates as in-memory arrays. See Also -------- dask.compute DataArray.compute DataArray.load Dataset.load_async Variable.load_async """ temp_ds = self._to_temp_dataset() ds = await temp_ds.load_async(**kwargs) new = self._from_temp_dataset(ds) self._variable = new._variable self._coords = new._coords return self def compute(self, **kwargs) -> Self: """Trigger loading data into memory and return a new dataarray. Data will be computed and/or loaded from disk or a remote source. Unlike ``.load``, the original dataarray is left unaltered. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. However, this method can be necessary when working with many file objects on disk. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.compute``. Returns ------- object : DataArray New object with the data and all coordinates as in-memory arrays. See Also -------- dask.compute DataArray.load DataArray.load_async Dataset.compute Variable.compute """ new = self.copy(deep=False) return new.load(**kwargs) def persist(self, **kwargs) -> Self: """Trigger computation in constituent dask arrays This keeps them as dask arrays but encourages them to keep data in memory. This is particularly useful when on a distributed machine. When on a single machine consider using ``.compute()`` instead. Like compute (but unlike load), the original dataset is left unaltered. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.persist``. Returns ------- object : DataArray New object with all dask-backed data and coordinates as persisted dask arrays. See Also -------- dask.persist """ ds = self._to_temp_dataset().persist(**kwargs) return self._from_temp_dataset(ds) def copy(self, deep: bool = True, data: Any = None) -> Self: """Returns a copy of this array. If `deep=True`, a deep copy is made of the data array. Otherwise, a shallow copy is made, and the returned data array's values are a new view of this data array's values. Use `data` to create a new object with the same structure as original but entirely new data. Parameters ---------- deep : bool, optional Whether the data array and its coordinates are loaded into memory and copied onto the new object. Default is True. data : array_like, optional Data to use in the new object. Must have same shape as original. When `data` is used, `deep` is ignored for all data variables, and only used for coords. Returns ------- copy : DataArray New object with dimensions, attributes, coordinates, name, encoding, and optionally data copied from original. Examples -------- Shallow versus deep copy >>> array = xr.DataArray([1, 2, 3], dims="x", coords={"x": ["a", "b", "c"]}) >>> array.copy() <xarray.DataArray (x: 3)> Size: 24B array([1, 2, 3]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' >>> array_0 = array.copy(deep=False) >>> array_0[0] = 7 >>> array_0 <xarray.DataArray (x: 3)> Size: 24B array([7, 2, 3]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' >>> array <xarray.DataArray (x: 3)> Size: 24B array([7, 2, 3]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' Changing the data using the ``data`` argument maintains the structure of the original object, but with the new data. Original object is unaffected. >>> array.copy(data=[0.1, 0.2, 0.3]) <xarray.DataArray (x: 3)> Size: 24B array([0.1, 0.2, 0.3]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' >>> array <xarray.DataArray (x: 3)> Size: 24B array([7, 2, 3]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' See Also -------- pandas.DataFrame.copy """ return self._copy(deep=deep, data=data) def _copy( self, deep: bool = True, data: Any = None, memo: dict[int, Any] | None = None, ) -> Self: variable = self.variable._copy(deep=deep, data=data, memo=memo) indexes, index_vars = self.xindexes.copy_indexes(deep=deep) coords = {} for k, v in self._coords.items(): if k in index_vars: coords[k] = index_vars[k] else: coords[k] = v._copy(deep=deep, memo=memo) return self._replace(variable, coords, indexes=indexes) def __copy__(self) -> Self: return self._copy(deep=False) def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self: return self._copy(deep=True, memo=memo) # mutable objects should not be Hashable # https://github.com/python/mypy/issues/4266 __hash__ = None # type: ignore[assignment] @property def chunks(self) -> tuple[tuple[int, ...], ...] | None: """ Tuple of block lengths for this dataarray's data, in order of dimensions, or None if the underlying data is not a dask array. See Also -------- DataArray.chunk DataArray.chunksizes xarray.unify_chunks """ return self.variable.chunks @property def chunksizes(self) -> Mapping[Any, tuple[int, ...]]: """ Mapping from dimension names to block lengths for this dataarray's data. If this dataarray does not contain chunked arrays, the mapping will be empty. Cannot be modified directly, but can be modified by calling .chunk(). Differs from DataArray.chunks because it returns a mapping of dimensions to chunk shapes instead of a tuple of chunk shapes. See Also -------- DataArray.chunk DataArray.chunks xarray.unify_chunks """ all_variables = [self.variable] + [c.variable for c in self.coords.values()] return get_chunksizes(all_variables) def chunk( self, chunks: T_ChunksFreq = {}, # noqa: B006 # {} even though it's technically unsafe, is being used intentionally here (#4667) *, name_prefix: str = "xarray-", token: str | None = None, lock: bool = False, inline_array: bool = False, chunked_array_type: str | ChunkManagerEntrypoint | None = None, from_array_kwargs=None, **chunks_kwargs: T_ChunkDimFreq, ) -> Self: """Coerce this array's data into a dask arrays with the given chunks. If this variable is a non-dask array, it will be converted to dask array. If it's a dask array, it will be rechunked to the given chunk sizes. If neither chunks is not provided for one or more dimensions, chunk sizes along that dimension will not be updated; non-dask arrays will be converted into dask arrays with a single block. Along datetime-like dimensions, a pandas frequency string is also accepted. Parameters ---------- chunks : int, "auto", tuple of int or mapping of hashable to int or a pandas frequency string, optional Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, ``(5, 5)`` or ``{"x": 5, "y": 5}`` or ``{"x": 5, "time": "YE"}``. name_prefix : str, optional Prefix for the name of the new dask array. token : str, optional Token uniquely identifying this array. lock : bool, default: False Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. inline_array: bool, default: False Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. chunked_array_type: str, optional Which chunked array type to coerce the underlying data array to. Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system. Experimental API that should not be relied upon. from_array_kwargs: dict, optional Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg. For example, with dask as the default chunked array type, this method would pass additional kwargs to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon. **chunks_kwargs : {dim: chunks, ...}, optional The keyword arguments form of ``chunks``. One of chunks or chunks_kwargs must be provided. Returns ------- chunked : xarray.DataArray See Also -------- DataArray.chunks DataArray.chunksizes xarray.unify_chunks dask.array.from_array """ chunk_mapping: T_ChunksFreq if chunks is None: warnings.warn( "None value for 'chunks' is deprecated. " "It will raise an error in the future. Use instead '{}'", category=FutureWarning, stacklevel=2, ) chunk_mapping = {} if isinstance(chunks, float | str | int): # ignoring type; unclear why it won't accept a Literal into the value. chunk_mapping = dict.fromkeys(self.dims, chunks) elif isinstance(chunks, tuple | list): utils.emit_user_level_warning( "Supplying chunks as dimension-order tuples is deprecated. " "It will raise an error in the future. Instead use a dict with dimension names as keys.", category=DeprecationWarning, ) if len(chunks) != len(self.dims): raise ValueError( f"chunks must have the same number of elements as dimensions. " f"Expected {len(self.dims)} elements, got {len(chunks)}." ) chunk_mapping = dict(zip(self.dims, chunks, strict=True)) else: chunk_mapping = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk") ds = self._to_temp_dataset().chunk( chunk_mapping, name_prefix=name_prefix, token=token, lock=lock, inline_array=inline_array, chunked_array_type=chunked_array_type, from_array_kwargs=from_array_kwargs, ) return self._from_temp_dataset(ds) def isel( self, indexers: Mapping[Any, Any] | None = None, drop: bool = False, missing_dims: ErrorOptionsWithWarn = "raise", **indexers_kwargs: Any, ) -> Self: """Return a new DataArray whose data is given by selecting indexes along the specified dimension(s). Parameters ---------- indexers : dict, optional A dict with keys matching dimensions and values given by integers, slice objects or arrays. indexer can be a integer, slice, array-like or DataArray. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See :ref:`indexing` for the details. One of indexers or indexers_kwargs must be provided. drop : bool, default: False If ``drop=True``, drop coordinates variables indexed by integers instead of making them scalar. missing_dims : {"raise", "warn", "ignore"}, default: "raise" What to do if dimensions that should be selected from are not present in the DataArray: - "raise": raise an exception - "warn": raise a warning, and ignore the missing dimensions - "ignore": ignore the missing dimensions **indexers_kwargs : {dim: indexer, ...}, optional The keyword arguments form of ``indexers``. Returns ------- indexed : xarray.DataArray See Also -------- :func:`Dataset.isel <Dataset.isel>` :func:`DataArray.sel <DataArray.sel>` :doc:`xarray-tutorial:intermediate/indexing/indexing` Tutorial material on indexing with Xarray objects :doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic` Tutorial material on basics of indexing Examples -------- >>> da = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y")) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: x, y >>> tgt_x = xr.DataArray(np.arange(0, 5), dims="points") >>> tgt_y = xr.DataArray(np.arange(0, 5), dims="points") >>> da = da.isel(x=tgt_x, y=tgt_y) >>> da <xarray.DataArray (points: 5)> Size: 40B array([ 0, 6, 12, 18, 24]) Dimensions without coordinates: points """ indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel") if any(is_fancy_indexer(idx) for idx in indexers.values()): ds = self._to_temp_dataset()._isel_fancy( indexers, drop=drop, missing_dims=missing_dims ) return self._from_temp_dataset(ds) # Much faster algorithm for when all indexers are ints, slices, one-dimensional # lists, or zero or one-dimensional np.ndarray's variable = self._variable.isel(indexers, missing_dims=missing_dims) indexes, index_variables = isel_indexes(self.xindexes, indexers) coords = {} for coord_name, coord_value in self._coords.items(): if coord_name in index_variables: coord_value = index_variables[coord_name] else: coord_indexers = { k: v for k, v in indexers.items() if k in coord_value.dims } if coord_indexers: coord_value = coord_value.isel(coord_indexers) if drop and coord_value.ndim == 0: continue coords[coord_name] = coord_value return self._replace(variable=variable, coords=coords, indexes=indexes) def sel( self, indexers: Mapping[Any, Any] | None = None, method: str | None = None, tolerance=None, drop: bool = False, **indexers_kwargs: Any, ) -> Self: """Return a new DataArray whose data is given by selecting index labels along the specified dimension(s). In contrast to `DataArray.isel`, indexers for this method should use labels instead of integers. Under the hood, this method is powered by using pandas's powerful Index objects. This makes label based indexing essentially just as fast as using integer indexing. It also means this method uses pandas's (well documented) logic for indexing. This means you can use string shortcuts for datetime indexes (e.g., '2000-01' to select all values in January 2000). It also means that slices are treated as inclusive of both the start and stop values, unlike normal Python indexing. .. warning:: Do not try to assign values when using any of the indexing methods ``isel`` or ``sel``:: da = xr.DataArray([0, 1, 2, 3], dims=["x"]) # DO NOT do this da.isel(x=[0, 1, 2])[1] = -1 Assigning values with the chained indexing using ``.sel`` or ``.isel`` fails silently. Parameters ---------- indexers : dict, optional A dict with keys matching dimensions and values given by scalars, slices or arrays of tick labels. For dimensions with multi-index, the indexer may also be a dict-like object with keys matching index level names. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See :ref:`indexing` for the details. One of indexers or indexers_kwargs must be provided. method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional Method to use for inexact matches: - None (default): only exact matches - pad / ffill: propagate last valid index value forward - backfill / bfill: propagate next valid index value backward - nearest: use nearest valid index value tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation ``abs(index[indexer] - target) <= tolerance``. drop : bool, optional If ``drop=True``, drop coordinates variables in `indexers` instead of making them scalar. **indexers_kwargs : {dim: indexer, ...}, optional The keyword arguments form of ``indexers``. One of indexers or indexers_kwargs must be provided. Returns ------- obj : DataArray A new DataArray with the same contents as this DataArray, except the data and each dimension is indexed by the appropriate indexers. If indexer DataArrays have coordinates that do not conflict with this object, then these coordinates will be attached. In general, each array's data will be a view of the array's data in this DataArray, unless vectorized indexing was triggered by using an array indexer, in which case the data will be a copy. See Also -------- :func:`Dataset.sel <Dataset.sel>` :func:`DataArray.isel <DataArray.isel>` :doc:`xarray-tutorial:intermediate/indexing/indexing` Tutorial material on indexing with Xarray objects :doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic` Tutorial material on basics of indexing Examples -------- >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... coords={"x": np.arange(5), "y": np.arange(5)}, ... dims=("x", "y"), ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 40B 0 1 2 3 4 * y (y) int64 40B 0 1 2 3 4 >>> tgt_x = xr.DataArray(np.linspace(0, 4, num=5), dims="points") >>> tgt_y = xr.DataArray(np.linspace(0, 4, num=5), dims="points") >>> da = da.sel(x=tgt_x, y=tgt_y, method="nearest") >>> da <xarray.DataArray (points: 5)> Size: 40B array([ 0, 6, 12, 18, 24]) Coordinates: x (points) int64 40B 0 1 2 3 4 y (points) int64 40B 0 1 2 3 4 Dimensions without coordinates: points """ ds = self._to_temp_dataset().sel( indexers=indexers, drop=drop, method=method, tolerance=tolerance, **indexers_kwargs, ) return self._from_temp_dataset(ds) def _shuffle( self, dim: Hashable, *, indices: GroupIndices, chunks: T_Chunks ) -> Self: ds = self._to_temp_dataset()._shuffle(dim=dim, indices=indices, chunks=chunks) return self._from_temp_dataset(ds) def head( self, indexers: Mapping[Any, int] | int | None = None, **indexers_kwargs: Any, ) -> Self: """Return a new DataArray whose data is given by the the first `n` values along the specified dimension(s). Default `n` = 5 See Also -------- Dataset.head DataArray.tail DataArray.thin Examples -------- >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... dims=("x", "y"), ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: x, y >>> da.head(x=1) <xarray.DataArray (x: 1, y: 5)> Size: 40B array([[0, 1, 2, 3, 4]]) Dimensions without coordinates: x, y >>> da.head({"x": 2, "y": 2}) <xarray.DataArray (x: 2, y: 2)> Size: 32B array([[0, 1], [5, 6]]) Dimensions without coordinates: x, y """ ds = self._to_temp_dataset().head(indexers, **indexers_kwargs) return self._from_temp_dataset(ds) def tail( self, indexers: Mapping[Any, int] | int | None = None, **indexers_kwargs: Any, ) -> Self: """Return a new DataArray whose data is given by the the last `n` values along the specified dimension(s). Default `n` = 5 See Also -------- Dataset.tail DataArray.head DataArray.thin Examples -------- >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... dims=("x", "y"), ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: x, y >>> da.tail(y=1) <xarray.DataArray (x: 5, y: 1)> Size: 40B array([[ 4], [ 9], [14], [19], [24]]) Dimensions without coordinates: x, y >>> da.tail({"x": 2, "y": 2}) <xarray.DataArray (x: 2, y: 2)> Size: 32B array([[18, 19], [23, 24]]) Dimensions without coordinates: x, y """ ds = self._to_temp_dataset().tail(indexers, **indexers_kwargs) return self._from_temp_dataset(ds) def thin( self, indexers: Mapping[Any, int] | int | None = None, **indexers_kwargs: Any, ) -> Self: """Return a new DataArray whose data is given by each `n` value along the specified dimension(s). Examples -------- >>> x_arr = np.arange(0, 26) >>> x_arr array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]) >>> x = xr.DataArray( ... np.reshape(x_arr, (2, 13)), ... dims=("x", "y"), ... coords={"x": [0, 1], "y": np.arange(0, 13)}, ... ) >>> x <xarray.DataArray (x: 2, y: 13)> Size: 208B array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]]) Coordinates: * x (x) int64 16B 0 1 * y (y) int64 104B 0 1 2 3 4 5 6 7 8 9 10 11 12 >>> >>> x.thin(3) <xarray.DataArray (x: 1, y: 5)> Size: 40B array([[ 0, 3, 6, 9, 12]]) Coordinates: * x (x) int64 8B 0 * y (y) int64 40B 0 3 6 9 12 >>> x.thin({"x": 2, "y": 5}) <xarray.DataArray (x: 1, y: 3)> Size: 24B array([[ 0, 5, 10]]) Coordinates: * x (x) int64 8B 0 * y (y) int64 24B 0 5 10 See Also -------- Dataset.thin DataArray.head DataArray.tail """ ds = self._to_temp_dataset().thin(indexers, **indexers_kwargs) return self._from_temp_dataset(ds) def broadcast_like( self, other: T_DataArrayOrSet, *, exclude: Iterable[Hashable] | None = None, ) -> Self: """Broadcast this DataArray against another Dataset or DataArray. This is equivalent to xr.broadcast(other, self)[1] xarray objects are broadcast against each other in arithmetic operations, so this method is not be necessary for most uses. If no change is needed, the input data is returned to the output without being copied. If new coords are added by the broadcast, their values are NaN filled. Parameters ---------- other : Dataset or DataArray Object against which to broadcast this array. exclude : iterable of Hashable, optional Dimensions that must not be broadcasted Returns ------- new_da : DataArray The caller broadcasted against ``other``. Examples -------- >>> arr1 = xr.DataArray( ... np.random.randn(2, 3), ... dims=("x", "y"), ... coords={"x": ["a", "b"], "y": ["a", "b", "c"]}, ... ) >>> arr2 = xr.DataArray( ... np.random.randn(3, 2), ... dims=("x", "y"), ... coords={"x": ["a", "b", "c"], "y": ["a", "b"]}, ... ) >>> arr1 <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788]]) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) <U1 12B 'a' 'b' 'c' >>> arr2 <xarray.DataArray (x: 3, y: 2)> Size: 48B array([[ 0.95008842, -0.15135721], [-0.10321885, 0.4105985 ], [ 0.14404357, 1.45427351]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 8B 'a' 'b' >>> arr1.broadcast_like(arr2) <xarray.DataArray (x: 3, y: 3)> Size: 72B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788], [ nan, nan, nan]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 12B 'a' 'b' 'c' """ if exclude is None: exclude = set() else: exclude = set(exclude) args = align(other, self, join="outer", copy=False, exclude=exclude) dims_map, common_coords = _get_broadcast_dims_map_common_coords(args, exclude) return _broadcast_helper(args[1], exclude, dims_map, common_coords) def _reindex_callback( self, aligner: alignment.Aligner, dim_pos_indexers: dict[Hashable, Any], variables: dict[Hashable, Variable], indexes: dict[Hashable, Index], fill_value: Any, exclude_dims: frozenset[Hashable], exclude_vars: frozenset[Hashable], ) -> Self: """Callback called from ``Aligner`` to create a new reindexed DataArray.""" if isinstance(fill_value, dict): fill_value = fill_value.copy() sentinel = object() value = fill_value.pop(self.name, sentinel) if value is not sentinel: fill_value[_THIS_ARRAY] = value ds = self._to_temp_dataset() reindexed = ds._reindex_callback( aligner, dim_pos_indexers, variables, indexes, fill_value, exclude_dims, exclude_vars, ) da = self._from_temp_dataset(reindexed) da.encoding = self.encoding return da def reindex_like( self, other: T_DataArrayOrSet, *, method: ReindexMethodOptions = None, tolerance: float | Iterable[float] | str | None = None, copy: bool = True, fill_value=dtypes.NA, ) -> Self: """ Conform this object onto the indexes of another object, for indexes which the objects share. Missing values are filled with ``fill_value``. The default fill value is NaN. Parameters ---------- other : Dataset or DataArray Object with an 'indexes' attribute giving a mapping from dimension names to pandas.Index objects, which provides coordinates upon which to index the variables in this dataset. The indexes on this other object need not be the same as the indexes on this dataset. Any mismatched index values will be filled in with NaN, and any mismatched dimension names will simply be ignored. method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional Method to use for filling index values from other not found on this data array: - None (default): don't fill gaps - pad / ffill: propagate last valid index value forward - backfill / bfill: propagate next valid index value backward - nearest: use nearest valid index value tolerance : float | Iterable[float] | str | None, default: None Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like must be the same size as the index and its dtype must exactly match the index’s type. copy : bool, default: True If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names (including coordinates) to fill values. Use this data array's name to refer to the data array's values. Returns ------- reindexed : DataArray Another dataset array, with this array's data but coordinates from the other object. Examples -------- >>> data = np.arange(12).reshape(4, 3) >>> da1 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 30, 40], "y": [70, 80, 90]}, ... ) >>> da1 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 >>> da2 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [40, 30, 20, 10], "y": [90, 80, 70]}, ... ) >>> da2 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 40 30 20 10 * y (y) int64 24B 90 80 70 Reindexing with both DataArrays having the same coordinates set, but in different order: >>> da1.reindex_like(da2) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[11, 10, 9], [ 8, 7, 6], [ 5, 4, 3], [ 2, 1, 0]]) Coordinates: * x (x) int64 32B 40 30 20 10 * y (y) int64 24B 90 80 70 Reindexing with the other array having additional coordinates: >>> da3 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [20, 10, 29, 39], "y": [70, 80, 90]}, ... ) >>> da1.reindex_like(da3) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 3., 4., 5.], [ 0., 1., 2.], [nan, nan, nan], [nan, nan, nan]]) Coordinates: * x (x) int64 32B 20 10 29 39 * y (y) int64 24B 70 80 90 Filling missing values with the previous valid index with respect to the coordinates' value: >>> da1.reindex_like(da3, method="ffill") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[3, 4, 5], [0, 1, 2], [3, 4, 5], [6, 7, 8]]) Coordinates: * x (x) int64 32B 20 10 29 39 * y (y) int64 24B 70 80 90 Filling missing values while tolerating specified error for inexact matches: >>> da1.reindex_like(da3, method="ffill", tolerance=5) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 3., 4., 5.], [ 0., 1., 2.], [nan, nan, nan], [nan, nan, nan]]) Coordinates: * x (x) int64 32B 20 10 29 39 * y (y) int64 24B 70 80 90 Filling missing values with manually specified values: >>> da1.reindex_like(da3, fill_value=19) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 3, 4, 5], [ 0, 1, 2], [19, 19, 19], [19, 19, 19]]) Coordinates: * x (x) int64 32B 20 10 29 39 * y (y) int64 24B 70 80 90 Note that unlike ``broadcast_like``, ``reindex_like`` doesn't create new dimensions: >>> da1.sel(x=20) <xarray.DataArray (y: 3)> Size: 24B array([3, 4, 5]) Coordinates: * y (y) int64 24B 70 80 90 x int64 8B 20 ...so ``b`` in not added here: >>> da1.sel(x=20).reindex_like(da1) <xarray.DataArray (y: 3)> Size: 24B array([3, 4, 5]) Coordinates: * y (y) int64 24B 70 80 90 x int64 8B 20 See Also -------- DataArray.reindex DataArray.broadcast_like align """ return alignment.reindex_like( self, other=other, method=method, tolerance=tolerance, copy=copy, fill_value=fill_value, ) def reindex( self, indexers: Mapping[Any, Any] | None = None, *, method: ReindexMethodOptions = None, tolerance: float | Iterable[float] | str | None = None, copy: bool = True, fill_value=dtypes.NA, **indexers_kwargs: Any, ) -> Self: """Conform this object onto the indexes of another object, filling in missing values with ``fill_value``. The default fill value is NaN. Parameters ---------- indexers : dict, optional Dictionary with keys given by dimension names and values given by arrays of coordinates tick labels. Any mismatched coordinate values will be filled in with NaN, and any mismatched dimension names will simply be ignored. One of indexers or indexers_kwargs must be provided. copy : bool, optional If ``copy=True``, data in the return value is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, a new xarray object is always returned. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values in ``indexers`` not found on this data array: - None (default): don't fill gaps - pad / ffill: propagate last valid index value forward - backfill / bfill: propagate next valid index value backward - nearest: use nearest valid index value tolerance : float | Iterable[float] | str | None, default: None Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like must be the same size as the index and its dtype must exactly match the index’s type. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names (including coordinates) to fill values. Use this data array's name to refer to the data array's values. **indexers_kwargs : {dim: indexer, ...}, optional The keyword arguments form of ``indexers``. One of indexers or indexers_kwargs must be provided. Returns ------- reindexed : DataArray Another dataset array, with this array's data but replaced coordinates. Examples -------- Reverse latitude: >>> da = xr.DataArray( ... np.arange(4), ... coords=[np.array([90, 89, 88, 87])], ... dims="lat", ... ) >>> da <xarray.DataArray (lat: 4)> Size: 32B array([0, 1, 2, 3]) Coordinates: * lat (lat) int64 32B 90 89 88 87 >>> da.reindex(lat=da.lat[::-1]) <xarray.DataArray (lat: 4)> Size: 32B array([3, 2, 1, 0]) Coordinates: * lat (lat) int64 32B 87 88 89 90 See Also -------- DataArray.reindex_like align """ indexers = utils.either_dict_or_kwargs(indexers, indexers_kwargs, "reindex") return alignment.reindex( self, indexers=indexers, method=method, tolerance=tolerance, copy=copy, fill_value=fill_value, ) def interp( self, coords: Mapping[Any, Any] | None = None, method: InterpOptions = "linear", assume_sorted: bool = False, kwargs: Mapping[str, Any] | None = None, **coords_kwargs: Any, ) -> Self: """ Interpolate a DataArray onto new coordinates. Performs univariate or multivariate interpolation of a Dataset onto new coordinates, utilizing either NumPy or SciPy interpolation routines. Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant. Parameters ---------- coords : dict, optional Mapping from dimension names to the new coordinates. New coordinate can be a scalar, array-like or DataArray. If DataArrays are passed as new coordinates, their dimensions are used for the broadcasting. Missing values are skipped. method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \ "quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" } Interpolation method to use (see descriptions above). assume_sorted : bool, default: False If False, values of x can be in any order and they are sorted first. If True, x has to be an array of monotonically increasing values. kwargs : dict-like or None, default: None Additional keyword arguments passed to scipy's interpolator. Valid options and their behavior depend whether ``interp1d`` or ``interpn`` is used. **coords_kwargs : {dim: coordinate, ...}, optional The keyword arguments form of ``coords``. One of coords or coords_kwargs must be provided. Returns ------- interpolated : DataArray New dataarray on the new coordinates. Notes ----- - SciPy is required for certain interpolation methods. - When interpolating along multiple dimensions with methods `linear` and `nearest`, the process attempts to decompose the interpolation into independent interpolations along one dimension at a time. - The specific interpolation method and dimensionality determine which interpolant is used: 1. **Interpolation along one dimension of 1D data (`method='linear'`)** - Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`. 2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)** - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"} use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp` (as in the case of `method='linear'` for 1D data). - If `method='polynomial'`, the `order` keyword argument must also be provided. 3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)** - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used: - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator` - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator` - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator` - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator` (`makima` is handled by passing the `makima` flag). 4. **Interpolation along multiple dimensions of multi-dimensional data** - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear", "cubic", "quintic", "pchip"}. See Also -------- :mod:`scipy.interpolate` :doc:`xarray-tutorial:fundamentals/02.2_manipulating_dimensions` Tutorial material on manipulating data resolution using :py:func:`~xarray.DataArray.interp` Examples -------- >>> da = xr.DataArray( ... data=[[1, 4, 2, 9], [2, 7, 6, np.nan], [6, np.nan, 5, 8]], ... dims=("x", "y"), ... coords={"x": [0, 1, 2], "y": [10, 12, 14, 16]}, ... ) >>> da <xarray.DataArray (x: 3, y: 4)> Size: 96B array([[ 1., 4., 2., 9.], [ 2., 7., 6., nan], [ 6., nan, 5., 8.]]) Coordinates: * x (x) int64 24B 0 1 2 * y (y) int64 32B 10 12 14 16 1D linear interpolation (the default): >>> da.interp(x=[0, 0.75, 1.25, 1.75]) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[1. , 4. , 2. , nan], [1.75, 6.25, 5. , nan], [3. , nan, 5.75, nan], [5. , nan, 5.25, nan]]) Coordinates: * x (x) float64 32B 0.0 0.75 1.25 1.75 * y (y) int64 32B 10 12 14 16 1D nearest interpolation: >>> da.interp(x=[0, 0.75, 1.25, 1.75], method="nearest") <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[ 1., 4., 2., 9.], [ 2., 7., 6., nan], [ 2., 7., 6., nan], [ 6., nan, 5., 8.]]) Coordinates: * x (x) float64 32B 0.0 0.75 1.25 1.75 * y (y) int64 32B 10 12 14 16 1D linear extrapolation: >>> da.interp( ... x=[1, 1.5, 2.5, 3.5], ... method="linear", ... kwargs={"fill_value": "extrapolate"}, ... ) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[ 2. , 7. , 6. , nan], [ 4. , nan, 5.5, nan], [ 8. , nan, 4.5, nan], [12. , nan, 3.5, nan]]) Coordinates: * x (x) float64 32B 1.0 1.5 2.5 3.5 * y (y) int64 32B 10 12 14 16 2D linear interpolation: >>> da.interp(x=[0, 0.75, 1.25, 1.75], y=[11, 13, 15], method="linear") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[2.5 , 3. , nan], [4. , 5.625, nan], [ nan, nan, nan], [ nan, nan, nan]]) Coordinates: * x (x) float64 32B 0.0 0.75 1.25 1.75 * y (y) int64 24B 11 13 15 """ if self.dtype.kind not in "uifc": raise TypeError( f"interp only works for a numeric type array. Given {self.dtype}." ) ds = self._to_temp_dataset().interp( coords, method=method, kwargs=kwargs, assume_sorted=assume_sorted, **coords_kwargs, ) return self._from_temp_dataset(ds) def interp_like( self, other: T_Xarray, method: InterpOptions = "linear", assume_sorted: bool = False, kwargs: Mapping[str, Any] | None = None, ) -> Self: """Interpolate this object onto the coordinates of another object, filling out of range values with NaN. Parameters ---------- other : Dataset or DataArray Object with an 'indexes' attribute giving a mapping from dimension names to an 1d array-like, which provides coordinates upon which to index the variables in this dataset. Missing values are skipped. method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \ "quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" } Interpolation method to use (see descriptions above). assume_sorted : bool, default: False If False, values of coordinates that are interpolated over can be in any order and they are sorted first. If True, interpolated coordinates are assumed to be an array of monotonically increasing values. kwargs : dict, optional Additional keyword arguments passed to the interpolant. Returns ------- interpolated : DataArray Another dataarray by interpolating this dataarray's data along the coordinates of the other object. Notes ----- - scipy is required. - If the dataarray has object-type coordinates, reindex is used for these coordinates instead of the interpolation. - When interpolating along multiple dimensions with methods `linear` and `nearest`, the process attempts to decompose the interpolation into independent interpolations along one dimension at a time. - The specific interpolation method and dimensionality determine which interpolant is used: 1. **Interpolation along one dimension of 1D data (`method='linear'`)** - Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`. 2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)** - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"} use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp` (as in the case of `method='linear'` for 1D data). - If `method='polynomial'`, the `order` keyword argument must also be provided. 3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)** - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used: - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator` - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator` - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator` - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator` (`makima` is handled by passing the `makima` flag). 4. **Interpolation along multiple dimensions of multi-dimensional data** - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear", "cubic", "quintic", "pchip"}. See Also -------- :func:`DataArray.interp` :func:`DataArray.reindex_like` :mod:`scipy.interpolate` Examples -------- >>> data = np.arange(12).reshape(4, 3) >>> da1 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 30, 40], "y": [70, 80, 90]}, ... ) >>> da1 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 >>> da2 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 29, 39], "y": [70, 80, 90]}, ... ) >>> da2 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 29 39 * y (y) int64 24B 70 80 90 Interpolate the values in the coordinates of the other DataArray with respect to the source's values: >>> da2.interp_like(da1) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[0. , 1. , 2. ], [3. , 4. , 5. ], [6.3, 7.3, 8.3], [nan, nan, nan]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 Could also extrapolate missing values: >>> da2.interp_like(da1, kwargs={"fill_value": "extrapolate"}) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0. , 1. , 2. ], [ 3. , 4. , 5. ], [ 6.3, 7.3, 8.3], [ 9.3, 10.3, 11.3]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 """ if self.dtype.kind not in "uifc": raise TypeError( f"interp only works for a numeric type array. Given {self.dtype}." ) ds = self._to_temp_dataset().interp_like( other, method=method, kwargs=kwargs, assume_sorted=assume_sorted ) return self._from_temp_dataset(ds) def rename( self, new_name_or_name_dict: Hashable | Mapping[Any, Hashable] | None = None, **names: Hashable, ) -> Self: """Returns a new DataArray with renamed coordinates, dimensions or a new name. Parameters ---------- new_name_or_name_dict : str or dict-like, optional If the argument is dict-like, it used as a mapping from old names to new names for coordinates or dimensions. Otherwise, use the argument as the new name for this array. **names : Hashable, optional The keyword arguments form of a mapping from old names to new names for coordinates or dimensions. One of new_name_or_name_dict or names must be provided. Returns ------- renamed : DataArray Renamed array or array with renamed coordinates. See Also -------- Dataset.rename DataArray.swap_dims """ if new_name_or_name_dict is None and not names: # change name to None? return self._replace(name=None) if utils.is_dict_like(new_name_or_name_dict) or new_name_or_name_dict is None: # change dims/coords name_dict = either_dict_or_kwargs(new_name_or_name_dict, names, "rename") dataset = self._to_temp_dataset()._rename(name_dict) return self._from_temp_dataset(dataset) if utils.hashable(new_name_or_name_dict) and names: # change name + dims/coords dataset = self._to_temp_dataset()._rename(names) dataarray = self._from_temp_dataset(dataset) return dataarray._replace(name=new_name_or_name_dict) # only change name return self._replace(name=new_name_or_name_dict) def swap_dims( self, dims_dict: Mapping[Any, Hashable] | None = None, **dims_kwargs, ) -> Self: """Returns a new DataArray with swapped dimensions. Parameters ---------- dims_dict : dict-like Dictionary whose keys are current dimension names and whose values are new names. **dims_kwargs : {existing_dim: new_dim, ...}, optional The keyword arguments form of ``dims_dict``. One of dims_dict or dims_kwargs must be provided. Returns ------- swapped : DataArray DataArray with swapped dimensions. Examples -------- >>> arr = xr.DataArray( ... data=[0, 1], ... dims="x", ... coords={"x": ["a", "b"], "y": ("x", [0, 1])}, ... ) >>> arr <xarray.DataArray (x: 2)> Size: 16B array([0, 1]) Coordinates: * x (x) <U1 8B 'a' 'b' y (x) int64 16B 0 1 >>> arr.swap_dims({"x": "y"}) <xarray.DataArray (y: 2)> Size: 16B array([0, 1]) Coordinates: * y (y) int64 16B 0 1 x (y) <U1 8B 'a' 'b' >>> arr.swap_dims({"x": "z"}) <xarray.DataArray (z: 2)> Size: 16B array([0, 1]) Coordinates: x (z) <U1 8B 'a' 'b' y (z) int64 16B 0 1 Dimensions without coordinates: z See Also -------- DataArray.rename Dataset.swap_dims """ dims_dict = either_dict_or_kwargs(dims_dict, dims_kwargs, "swap_dims") ds = self._to_temp_dataset().swap_dims(dims_dict) return self._from_temp_dataset(ds) def expand_dims( self, dim: Hashable | Sequence[Hashable] | Mapping[Any, Any] | None = None, axis: int | Sequence[int] | None = None, create_index_for_new_dim: bool = True, **dim_kwargs: Any, ) -> Self: """Return a new object with an additional axis (or axes) inserted at the corresponding position in the array shape. The new object is a view into the underlying array, not a copy. If dim is already a scalar coordinate, it will be promoted to a 1D coordinate consisting of a single value. The automatic creation of indexes to back new 1D coordinate variables controlled by the create_index_for_new_dim kwarg. Parameters ---------- dim : Hashable, sequence of Hashable, dict, or None, optional Dimensions to include on the new variable. If provided as str or sequence of str, then dimensions are inserted with length 1. If provided as a dict, then the keys are the new dimensions and the values are either integers (giving the length of the new dimensions) or sequence/ndarray (giving the coordinates of the new dimensions). axis : int, sequence of int, or None, default: None Axis position(s) where new axis is to be inserted (position(s) on the result array). If a sequence of integers is passed, multiple axes are inserted. In this case, dim arguments should be same length list. If axis=None is passed, all the axes will be inserted to the start of the result array. create_index_for_new_dim : bool, default: True Whether to create new ``PandasIndex`` objects when the object being expanded contains scalar variables with names in ``dim``. **dim_kwargs : int or sequence or ndarray The keywords are arbitrary dimensions being inserted and the values are either the lengths of the new dims (if int is given), or their coordinates. Note, this is an alternative to passing a dict to the dim kwarg and will only be used if dim is None. Returns ------- expanded : DataArray This object, but with additional dimension(s). See Also -------- Dataset.expand_dims Examples -------- >>> da = xr.DataArray(np.arange(5), dims=("x")) >>> da <xarray.DataArray (x: 5)> Size: 40B array([0, 1, 2, 3, 4]) Dimensions without coordinates: x Add new dimension of length 2: >>> da.expand_dims(dim={"y": 2}) <xarray.DataArray (y: 2, x: 5)> Size: 80B array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Dimensions without coordinates: y, x >>> da.expand_dims(dim={"y": 2}, axis=1) <xarray.DataArray (x: 5, y: 2)> Size: 80B array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]]) Dimensions without coordinates: x, y Add a new dimension with coordinates from array: >>> da.expand_dims(dim={"y": np.arange(5)}, axis=0) <xarray.DataArray (y: 5, x: 5)> Size: 200B array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Coordinates: * y (y) int64 40B 0 1 2 3 4 Dimensions without coordinates: x """ if isinstance(dim, int): raise TypeError("dim should be Hashable or sequence/mapping of Hashables") elif isinstance(dim, Sequence) and not isinstance(dim, str): if len(dim) != len(set(dim)): raise ValueError("dims should not contain duplicate values.") dim = dict.fromkeys(dim, 1) elif dim is not None and not isinstance(dim, Mapping): dim = {dim: 1} dim = either_dict_or_kwargs(dim, dim_kwargs, "expand_dims") ds = self._to_temp_dataset().expand_dims( dim, axis, create_index_for_new_dim=create_index_for_new_dim ) return self._from_temp_dataset(ds) def set_index( self, indexes: Mapping[Any, Hashable | Sequence[Hashable]] | None = None, append: bool = False, **indexes_kwargs: Hashable | Sequence[Hashable], ) -> Self: """Set DataArray (multi-)indexes using one or more existing coordinates. This legacy method is limited to pandas (multi-)indexes and 1-dimensional "dimension" coordinates. See :py:meth:`~DataArray.set_xindex` for setting a pandas or a custom Xarray-compatible index from one or more arbitrary coordinates. Parameters ---------- indexes : {dim: index, ...} Mapping from names matching dimensions and values given by (lists of) the names of existing coordinates or variables to set as new (multi-)index. append : bool, default: False If True, append the supplied index(es) to the existing index(es). Otherwise replace the existing index(es). **indexes_kwargs : optional The keyword arguments form of ``indexes``. One of indexes or indexes_kwargs must be provided. Returns ------- obj : DataArray Another DataArray, with this data but replaced coordinates. Examples -------- >>> arr = xr.DataArray( ... data=np.ones((2, 3)), ... dims=["x", "y"], ... coords={"x": range(2), "y": range(3), "a": ("x", [3, 4])}, ... ) >>> arr <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[1., 1., 1.], [1., 1., 1.]]) Coordinates: * x (x) int64 16B 0 1 * y (y) int64 24B 0 1 2 a (x) int64 16B 3 4 >>> arr.set_index(x="a") <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[1., 1., 1.], [1., 1., 1.]]) Coordinates: * x (x) int64 16B 3 4 * y (y) int64 24B 0 1 2 See Also -------- DataArray.reset_index DataArray.set_xindex """ ds = self._to_temp_dataset().set_index(indexes, append=append, **indexes_kwargs) return self._from_temp_dataset(ds) def reset_index( self, dims_or_levels: Hashable | Sequence[Hashable], drop: bool = False, ) -> Self: """Reset the specified index(es) or multi-index level(s). This legacy method is specific to pandas (multi-)indexes and 1-dimensional "dimension" coordinates. See the more generic :py:meth:`~DataArray.drop_indexes` and :py:meth:`~DataArray.set_xindex` method to respectively drop and set pandas or custom indexes for arbitrary coordinates. Parameters ---------- dims_or_levels : Hashable or sequence of Hashable Name(s) of the dimension(s) and/or multi-index level(s) that will be reset. drop : bool, default: False If True, remove the specified indexes and/or multi-index levels instead of extracting them as new coordinates (default: False). Returns ------- obj : DataArray Another dataarray, with this dataarray's data but replaced coordinates. See Also -------- DataArray.set_index DataArray.set_xindex DataArray.drop_indexes """ ds = self._to_temp_dataset().reset_index(dims_or_levels, drop=drop) return self._from_temp_dataset(ds) def set_xindex( self, coord_names: str | Sequence[Hashable], index_cls: type[Index] | None = None, **options, ) -> Self: """Set a new, Xarray-compatible index from one or more existing coordinate(s). Parameters ---------- coord_names : str or list Name(s) of the coordinate(s) used to build the index. If several names are given, their order matters. index_cls : subclass of :class:`~xarray.indexes.Index` The type of index to create. By default, try setting a pandas (multi-)index from the supplied coordinates. **options Options passed to the index constructor. Returns ------- obj : DataArray Another dataarray, with this dataarray's data and with a new index. """ ds = self._to_temp_dataset().set_xindex(coord_names, index_cls, **options) return self._from_temp_dataset(ds) def reorder_levels( self, dim_order: Mapping[Any, Sequence[int | Hashable]] | None = None, **dim_order_kwargs: Sequence[int | Hashable], ) -> Self: """Rearrange index levels using input order. Parameters ---------- dim_order dict-like of Hashable to int or Hashable: optional Mapping from names matching dimensions and values given by lists representing new level orders. Every given dimension must have a multi-index. **dim_order_kwargs : optional The keyword arguments form of ``dim_order``. One of dim_order or dim_order_kwargs must be provided. Returns ------- obj : DataArray Another dataarray, with this dataarray's data but replaced coordinates. """ ds = self._to_temp_dataset().reorder_levels(dim_order, **dim_order_kwargs) return self._from_temp_dataset(ds) @partial(deprecate_dims, old_name="dimensions") def stack( self, dim: Mapping[Any, Sequence[Hashable]] | None = None, create_index: bool | None = True, index_cls: type[Index] = PandasMultiIndex, **dim_kwargs: Sequence[Hashable | EllipsisType], ) -> Self: """ Stack any number of existing dimensions into a single new dimension. New dimensions will be added at the end, and the corresponding coordinate variables will be combined into a MultiIndex. Parameters ---------- dim : mapping of Hashable to sequence of Hashable Mapping of the form `new_name=(dim1, dim2, ...)`. Names of new dimensions, and the existing dimensions that they replace. An ellipsis (`...`) will be replaced by all unlisted dimensions. Passing a list containing an ellipsis (`stacked_dim=[...]`) will stack over all dimensions. create_index : bool or None, default: True If True, create a multi-index for each of the stacked dimensions. If False, don't create any index. If None, create a multi-index only if exactly one single (1-d) coordinate index is found for every dimension to stack. index_cls: class, optional Can be used to pass a custom multi-index type. Must be an Xarray index that implements `.stack()`. By default, a pandas multi-index wrapper is used. **dim_kwargs The keyword arguments form of ``dim``. One of dim or dim_kwargs must be provided. Returns ------- stacked : DataArray DataArray with stacked data. Examples -------- >>> arr = xr.DataArray( ... np.arange(6).reshape(2, 3), ... coords=[("x", ["a", "b"]), ("y", [0, 1, 2])], ... ) >>> arr <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[0, 1, 2], [3, 4, 5]]) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) int64 24B 0 1 2 >>> stacked = arr.stack(z=("x", "y")) >>> stacked.indexes["z"] MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', 0), ('b', 1), ('b', 2)], name='z') See Also -------- DataArray.unstack """ ds = self._to_temp_dataset().stack( dim, create_index=create_index, index_cls=index_cls, **dim_kwargs, ) return self._from_temp_dataset(ds) def unstack( self, dim: Dims = None, *, fill_value: Any = dtypes.NA, sparse: bool = False, ) -> Self: """ Unstack existing dimensions corresponding to MultiIndexes into multiple new dimensions. New dimensions will be added at the end. Parameters ---------- dim : str, Iterable of Hashable or None, optional Dimension(s) over which to unstack. By default unstacks all MultiIndexes. fill_value : scalar or dict-like, default: nan Value to be filled. If a dict-like, maps variable names to fill values. Use the data array's name to refer to its name. If not provided or if the dict-like does not contain all variables, the dtype's NA value will be used. sparse : bool, default: False Use sparse-array if True Returns ------- unstacked : DataArray Array with unstacked data. Examples -------- >>> arr = xr.DataArray( ... np.arange(6).reshape(2, 3), ... coords=[("x", ["a", "b"]), ("y", [0, 1, 2])], ... ) >>> arr <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[0, 1, 2], [3, 4, 5]]) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) int64 24B 0 1 2 >>> stacked = arr.stack(z=("x", "y")) >>> stacked.indexes["z"] MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', 0), ('b', 1), ('b', 2)], name='z') >>> roundtripped = stacked.unstack() >>> arr.identical(roundtripped) True See Also -------- DataArray.stack """ ds = self._to_temp_dataset().unstack(dim, fill_value=fill_value, sparse=sparse) return self._from_temp_dataset(ds) def to_unstacked_dataset(self, dim: Hashable, level: int | Hashable = 0) -> Dataset: """Unstack DataArray expanding to Dataset along a given level of a stacked coordinate. This is the inverse operation of Dataset.to_stacked_array. Parameters ---------- dim : Hashable Name of existing dimension to unstack level : int or Hashable, default: 0 The MultiIndex level to expand to a dataset along. Can either be the integer index of the level or its name. Returns ------- unstacked: Dataset Examples -------- >>> arr = xr.DataArray( ... np.arange(6).reshape(2, 3), ... coords=[("x", ["a", "b"]), ("y", [0, 1, 2])], ... ) >>> data = xr.Dataset({"a": arr, "b": arr.isel(y=0)}) >>> data <xarray.Dataset> Size: 96B Dimensions: (x: 2, y: 3) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) int64 24B 0 1 2 Data variables: a (x, y) int64 48B 0 1 2 3 4 5 b (x) int64 16B 0 3 >>> stacked = data.to_stacked_array("z", ["x"]) >>> stacked.indexes["z"] MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', nan)], name='z') >>> roundtripped = stacked.to_unstacked_dataset(dim="z") >>> data.identical(roundtripped) True See Also -------- Dataset.to_stacked_array """ idx = self._indexes[dim].to_pandas_index() if not isinstance(idx, pd.MultiIndex): raise ValueError(f"'{dim}' is not a stacked coordinate") level_number = idx._get_level_number(level) # type: ignore[attr-defined] variables = idx.levels[level_number] variable_dim = idx.names[level_number] # pull variables out of datarray data_dict = {} for k in variables: data_dict[k] = self.sel({variable_dim: k}, drop=True).squeeze(drop=True) # unstacked dataset return Dataset(data_dict) @deprecate_dims def transpose( self, *dim: Hashable, transpose_coords: bool = True, missing_dims: ErrorOptionsWithWarn = "raise", ) -> Self: """Return a new DataArray object with transposed dimensions. Parameters ---------- *dim : Hashable, optional By default, reverse the dimensions. Otherwise, reorder the dimensions to this order. transpose_coords : bool, default: True If True, also transpose the coordinates of this DataArray. missing_dims : {"raise", "warn", "ignore"}, default: "raise" What to do if dimensions that should be selected from are not present in the DataArray: - "raise": raise an exception - "warn": raise a warning, and ignore the missing dimensions - "ignore": ignore the missing dimensions Returns ------- transposed : DataArray The returned DataArray's array is transposed. Notes ----- This operation returns a view of this array's data. It is lazy for dask-backed DataArrays but not for numpy-backed DataArrays -- the data will be fully loaded. See Also -------- numpy.transpose Dataset.transpose """ if dim: dim = tuple(infix_dims(dim, self.dims, missing_dims)) variable = self.variable.transpose(*dim) if transpose_coords: coords: dict[Hashable, Variable] = {} for name, coord in self.coords.items(): coord_dims = tuple(d for d in dim if d in coord.dims) coords[name] = coord.variable.transpose(*coord_dims) return self._replace(variable, coords) else: return self._replace(variable) @property def T(self) -> Self: return self.transpose() def drop_vars( self, names: str | Iterable[Hashable] | Callable[[Self], str | Iterable[Hashable]], *, errors: ErrorOptions = "raise", ) -> Self: """Returns an array with dropped variables. Parameters ---------- names : Hashable or iterable of Hashable or Callable Name(s) of variables to drop. If a Callable, this object is passed as its only argument and its result is used. errors : {"raise", "ignore"}, default: "raise" If 'raise', raises a ValueError error if any of the variable passed are not in the dataset. If 'ignore', any given names that are in the DataArray are dropped and no error is raised. Returns ------- dropped : Dataset New Dataset copied from `self` with variables removed. Examples ------- >>> data = np.arange(12).reshape(4, 3) >>> da = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 30, 40], "y": [70, 80, 90]}, ... ) >>> da <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 Removing a single variable: >>> da.drop_vars("x") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * y (y) int64 24B 70 80 90 Dimensions without coordinates: x Removing a list of variables: >>> da.drop_vars(["x", "y"]) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Dimensions without coordinates: x, y >>> da.drop_vars(lambda x: x.coords) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Dimensions without coordinates: x, y """ if callable(names): names = names(self) ds = self._to_temp_dataset().drop_vars(names, errors=errors) return self._from_temp_dataset(ds) def drop_indexes( self, coord_names: Hashable | Iterable[Hashable], *, errors: ErrorOptions = "raise", ) -> Self: """Drop the indexes assigned to the given coordinates. Parameters ---------- coord_names : hashable or iterable of hashable Name(s) of the coordinate(s) for which to drop the index. errors : {"raise", "ignore"}, default: "raise" If 'raise', raises a ValueError error if any of the coordinates passed have no index or are not in the dataset. If 'ignore', no error is raised. Returns ------- dropped : DataArray A new dataarray with dropped indexes. """ ds = self._to_temp_dataset().drop_indexes(coord_names, errors=errors) return self._from_temp_dataset(ds) def drop( self, labels: Mapping[Any, Any] | None = None, dim: Hashable | None = None, *, errors: ErrorOptions = "raise", **labels_kwargs, ) -> Self: """Backward compatible method based on `drop_vars` and `drop_sel` Using either `drop_vars` or `drop_sel` is encouraged See Also -------- DataArray.drop_vars DataArray.drop_sel """ ds = self._to_temp_dataset().drop(labels, dim, errors=errors, **labels_kwargs) return self._from_temp_dataset(ds) def drop_sel( self, labels: Mapping[Any, Any] | None = None, *, errors: ErrorOptions = "raise", **labels_kwargs, ) -> Self: """Drop index labels from this DataArray. Parameters ---------- labels : mapping of Hashable to Any Index labels to drop errors : {"raise", "ignore"}, default: "raise" If 'raise', raises a ValueError error if any of the index labels passed are not in the dataset. If 'ignore', any given labels that are in the dataset are dropped and no error is raised. **labels_kwargs : {dim: label, ...}, optional The keyword arguments form of ``dim`` and ``labels`` Returns ------- dropped : DataArray Examples -------- >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... coords={"x": np.arange(0, 9, 2), "y": np.arange(0, 13, 3)}, ... dims=("x", "y"), ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 40B 0 2 4 6 8 * y (y) int64 40B 0 3 6 9 12 >>> da.drop_sel(x=[0, 2], y=9) <xarray.DataArray (x: 3, y: 4)> Size: 96B array([[10, 11, 12, 14], [15, 16, 17, 19], [20, 21, 22, 24]]) Coordinates: * x (x) int64 24B 4 6 8 * y (y) int64 32B 0 3 6 12 >>> da.drop_sel({"x": 6, "y": [0, 3]}) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 2, 3, 4], [ 7, 8, 9], [12, 13, 14], [22, 23, 24]]) Coordinates: * x (x) int64 32B 0 2 4 8 * y (y) int64 24B 6 9 12 """ if labels_kwargs or isinstance(labels, dict): labels = either_dict_or_kwargs(labels, labels_kwargs, "drop") ds = self._to_temp_dataset().drop_sel(labels, errors=errors) return self._from_temp_dataset(ds) def drop_isel( self, indexers: Mapping[Any, Any] | None = None, **indexers_kwargs ) -> Self: """Drop index positions from this DataArray. Parameters ---------- indexers : mapping of Hashable to Any or None, default: None Index locations to drop **indexers_kwargs : {dim: position, ...}, optional The keyword arguments form of ``dim`` and ``positions`` Returns ------- dropped : DataArray Raises ------ IndexError Examples -------- >>> da = xr.DataArray(np.arange(25).reshape(5, 5), dims=("X", "Y")) >>> da <xarray.DataArray (X: 5, Y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: X, Y >>> da.drop_isel(X=[0, 4], Y=2) <xarray.DataArray (X: 3, Y: 4)> Size: 96B array([[ 5, 6, 8, 9], [10, 11, 13, 14], [15, 16, 18, 19]]) Dimensions without coordinates: X, Y >>> da.drop_isel({"X": 3, "Y": 3}) <xarray.DataArray (X: 4, Y: 4)> Size: 128B array([[ 0, 1, 2, 4], [ 5, 6, 7, 9], [10, 11, 12, 14], [20, 21, 22, 24]]) Dimensions without coordinates: X, Y """ dataset = self._to_temp_dataset() dataset = dataset.drop_isel(indexers=indexers, **indexers_kwargs) return self._from_temp_dataset(dataset) def dropna( self, dim: Hashable, *, how: Literal["any", "all"] = "any", thresh: int | None = None, ) -> Self: """Returns a new array with dropped labels for missing values along the provided dimension. Parameters ---------- dim : Hashable Dimension along which to drop missing values. Dropping along multiple dimensions simultaneously is not yet supported. how : {"any", "all"}, default: "any" - any : if any NA values are present, drop that label - all : if all values are NA, drop that label thresh : int or None, default: None If supplied, require this many non-NA values. Returns ------- dropped : DataArray Examples -------- >>> temperature = [ ... [0, 4, 2, 9], ... [np.nan, np.nan, np.nan, np.nan], ... [np.nan, 4, 2, 0], ... [3, 1, 0, 0], ... ] >>> da = xr.DataArray( ... data=temperature, ... dims=["Y", "X"], ... coords=dict( ... lat=("Y", np.array([-20.0, -20.25, -20.50, -20.75])), ... lon=("X", np.array([10.0, 10.25, 10.5, 10.75])), ... ), ... ) >>> da <xarray.DataArray (Y: 4, X: 4)> Size: 128B array([[ 0., 4., 2., 9.], [nan, nan, nan, nan], [nan, 4., 2., 0.], [ 3., 1., 0., 0.]]) Coordinates: lat (Y) float64 32B -20.0 -20.25 -20.5 -20.75 lon (X) float64 32B 10.0 10.25 10.5 10.75 Dimensions without coordinates: Y, X >>> da.dropna(dim="Y", how="any") <xarray.DataArray (Y: 2, X: 4)> Size: 64B array([[0., 4., 2., 9.], [3., 1., 0., 0.]]) Coordinates: lat (Y) float64 16B -20.0 -20.75 lon (X) float64 32B 10.0 10.25 10.5 10.75 Dimensions without coordinates: Y, X Drop values only if all values along the dimension are NaN: >>> da.dropna(dim="Y", how="all") <xarray.DataArray (Y: 3, X: 4)> Size: 96B array([[ 0., 4., 2., 9.], [nan, 4., 2., 0.], [ 3., 1., 0., 0.]]) Coordinates: lat (Y) float64 24B -20.0 -20.5 -20.75 lon (X) float64 32B 10.0 10.25 10.5 10.75 Dimensions without coordinates: Y, X """ ds = self._to_temp_dataset().dropna(dim, how=how, thresh=thresh) return self._from_temp_dataset(ds) def fillna(self, value: Any) -> Self: """Fill missing values in this object. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : scalar, ndarray or DataArray Used to fill all matching missing values in this array. If the argument is a DataArray, it is first aligned with (reindexed to) this array. Returns ------- filled : DataArray Examples -------- >>> da = xr.DataArray( ... np.array([1, 4, np.nan, 0, 3, np.nan]), ... dims="Z", ... coords=dict( ... Z=("Z", np.arange(6)), ... height=("Z", np.array([0, 10, 20, 30, 40, 50])), ... ), ... ) >>> da <xarray.DataArray (Z: 6)> Size: 48B array([ 1., 4., nan, 0., 3., nan]) Coordinates: * Z (Z) int64 48B 0 1 2 3 4 5 height (Z) int64 48B 0 10 20 30 40 50 Fill all NaN values with 0: >>> da.fillna(0) <xarray.DataArray (Z: 6)> Size: 48B array([1., 4., 0., 0., 3., 0.]) Coordinates: * Z (Z) int64 48B 0 1 2 3 4 5 height (Z) int64 48B 0 10 20 30 40 50 Fill NaN values with corresponding values in array: >>> da.fillna(np.array([2, 9, 4, 2, 8, 9])) <xarray.DataArray (Z: 6)> Size: 48B array([1., 4., 4., 0., 3., 9.]) Coordinates: * Z (Z) int64 48B 0 1 2 3 4 5 height (Z) int64 48B 0 10 20 30 40 50 """ if utils.is_dict_like(value): raise TypeError( "cannot provide fill value as a dictionary with fillna on a DataArray" ) out = ops.fillna(self, value) return out def interpolate_na( self, dim: Hashable | None = None, method: InterpOptions = "linear", limit: int | None = None, use_coordinate: bool | str = True, max_gap: ( None | int | float | str | pd.Timedelta | np.timedelta64 | datetime.timedelta ) = None, keep_attrs: bool | None = None, **kwargs: Any, ) -> Self: """Fill in NaNs by interpolating according to different methods. Parameters ---------- dim : Hashable or None, optional Specifies the dimension along which to interpolate. method : {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", \ "barycentric", "krogh", "pchip", "spline", "akima"}, default: "linear" String indicating which method to use for interpolation: - 'linear': linear interpolation. Additional keyword arguments are passed to :py:func:`numpy.interp` - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial': are passed to :py:func:`scipy.interpolate.interp1d`. If ``method='polynomial'``, the ``order`` keyword argument must also be provided. - 'barycentric', 'krogh', 'pchip', 'spline', 'akima': use their respective :py:class:`scipy.interpolate` classes. use_coordinate : bool or str, default: True Specifies which index to use as the x values in the interpolation formulated as `y = f(x)`. If False, values are treated as if equally-spaced along ``dim``. If True, the IndexVariable `dim` is used. If ``use_coordinate`` is a string, it specifies the name of a coordinate variable to use as the index. limit : int or None, default: None Maximum number of consecutive NaNs to fill. Must be greater than 0 or None for no limit. This filling is done regardless of the size of the gap in the data. To only interpolate over gaps less than a given length, see ``max_gap``. max_gap : int, float, str, pandas.Timedelta, numpy.timedelta64, datetime.timedelta, default: None Maximum size of gap, a continuous sequence of NaNs, that will be filled. Use None for no limit. When interpolating along a datetime64 dimension and ``use_coordinate=True``, ``max_gap`` can be one of the following: - a string that is valid input for pandas.to_timedelta - a :py:class:`numpy.timedelta64` object - a :py:class:`pandas.Timedelta` object - a :py:class:`datetime.timedelta` object Otherwise, ``max_gap`` must be an int or a float. Use of ``max_gap`` with unlabeled dimensions has not been implemented yet. Gap length is defined as the difference between coordinate values at the first data point after a gap and the last value before a gap. For gaps at the beginning (end), gap length is defined as the difference between coordinate values at the first (last) valid data point and the first (last) NaN. For example, consider:: <xarray.DataArray (x: 9)> array([nan, nan, nan, 1., nan, nan, 4., nan, nan]) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 The gap lengths are 3-0 = 3; 6-3 = 3; and 8-6 = 2 respectively keep_attrs : bool or None, default: None If True, the dataarray's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. **kwargs : dict, optional parameters passed verbatim to the underlying interpolation function Returns ------- interpolated: DataArray Filled in DataArray. See Also -------- numpy.interp scipy.interpolate Examples -------- >>> da = xr.DataArray( ... [np.nan, 2, 3, np.nan, 0], dims="x", coords={"x": [0, 1, 2, 3, 4]} ... ) >>> da <xarray.DataArray (x: 5)> Size: 40B array([nan, 2., 3., nan, 0.]) Coordinates: * x (x) int64 40B 0 1 2 3 4 >>> da.interpolate_na(dim="x", method="linear") <xarray.DataArray (x: 5)> Size: 40B array([nan, 2. , 3. , 1.5, 0. ]) Coordinates: * x (x) int64 40B 0 1 2 3 4 >>> da.interpolate_na(dim="x", method="linear", fill_value="extrapolate") <xarray.DataArray (x: 5)> Size: 40B array([1. , 2. , 3. , 1.5, 0. ]) Coordinates: * x (x) int64 40B 0 1 2 3 4 """ from xarray.core.missing import interp_na return interp_na( self, dim=dim, method=method, limit=limit, use_coordinate=use_coordinate, max_gap=max_gap, keep_attrs=keep_attrs, **kwargs, ) def ffill(self, dim: Hashable, limit: int | None = None) -> Self: """Fill NaN values by propagating values forward *Requires bottleneck.* Parameters ---------- dim : Hashable Specifies the dimension along which to propagate values when filling. limit : int or None, default: None The maximum number of consecutive NaN values to forward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Must be None or greater than or equal to axis length if filling along chunked axes (dimensions). Returns ------- filled : DataArray Examples -------- >>> temperature = np.array( ... [ ... [np.nan, 1, 3], ... [0, np.nan, 5], ... [5, np.nan, np.nan], ... [3, np.nan, np.nan], ... [0, 2, 0], ... ] ... ) >>> da = xr.DataArray( ... data=temperature, ... dims=["Y", "X"], ... coords=dict( ... lat=("Y", np.array([-20.0, -20.25, -20.50, -20.75, -21.0])), ... lon=("X", np.array([10.0, 10.25, 10.5])), ... ), ... ) >>> da <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[nan, 1., 3.], [ 0., nan, 5.], [ 5., nan, nan], [ 3., nan, nan], [ 0., 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X Fill all NaN values: >>> da.ffill(dim="Y", limit=None) <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[nan, 1., 3.], [ 0., 1., 5.], [ 5., 1., 5.], [ 3., 1., 5.], [ 0., 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X Fill only the first of consecutive NaN values: >>> da.ffill(dim="Y", limit=1) <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[nan, 1., 3.], [ 0., 1., 5.], [ 5., nan, 5.], [ 3., nan, nan], [ 0., 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X """ from xarray.core.missing import ffill return ffill(self, dim, limit=limit) def bfill(self, dim: Hashable, limit: int | None = None) -> Self: """Fill NaN values by propagating values backward *Requires bottleneck.* Parameters ---------- dim : str Specifies the dimension along which to propagate values when filling. limit : int or None, default: None The maximum number of consecutive NaN values to backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. Must be greater than 0 or None for no limit. Must be None or greater than or equal to axis length if filling along chunked axes (dimensions). Returns ------- filled : DataArray Examples -------- >>> temperature = np.array( ... [ ... [0, 1, 3], ... [0, np.nan, 5], ... [5, np.nan, np.nan], ... [3, np.nan, np.nan], ... [np.nan, 2, 0], ... ] ... ) >>> da = xr.DataArray( ... data=temperature, ... dims=["Y", "X"], ... coords=dict( ... lat=("Y", np.array([-20.0, -20.25, -20.50, -20.75, -21.0])), ... lon=("X", np.array([10.0, 10.25, 10.5])), ... ), ... ) >>> da <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[ 0., 1., 3.], [ 0., nan, 5.], [ 5., nan, nan], [ 3., nan, nan], [nan, 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X Fill all NaN values: >>> da.bfill(dim="Y", limit=None) <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[ 0., 1., 3.], [ 0., 2., 5.], [ 5., 2., 0.], [ 3., 2., 0.], [nan, 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X Fill only the first of consecutive NaN values: >>> da.bfill(dim="Y", limit=1) <xarray.DataArray (Y: 5, X: 3)> Size: 120B array([[ 0., 1., 3.], [ 0., nan, 5.], [ 5., nan, nan], [ 3., 2., 0.], [nan, 2., 0.]]) Coordinates: lat (Y) float64 40B -20.0 -20.25 -20.5 -20.75 -21.0 lon (X) float64 24B 10.0 10.25 10.5 Dimensions without coordinates: Y, X """ from xarray.core.missing import bfill return bfill(self, dim, limit=limit) def combine_first(self, other: Self) -> Self: """Combine two DataArray objects, with union of coordinates. This operation follows the normal broadcasting and alignment rules of ``join='outer'``. Default to non-null values of array calling the method. Use np.nan to fill in vacant cells after alignment. Parameters ---------- other : DataArray Used to fill all matching missing values in this array. Returns ------- DataArray """ return ops.fillna(self, other, join="outer") def reduce( self, func: Callable[..., Any], dim: Dims = None, *, axis: int | Sequence[int] | None = None, keep_attrs: bool | None = None, keepdims: bool = False, **kwargs: Any, ) -> Self: """Reduce this array by applying `func` along some dimension(s). Parameters ---------- func : callable Function which can be called in the form `f(x, axis=axis, **kwargs)` to return the result of reducing an np.ndarray over an integer valued axis. dim : "...", str, Iterable of Hashable or None, optional Dimension(s) over which to apply `func`. By default `func` is applied over all dimensions. axis : int or sequence of int, optional Axis(es) over which to repeatedly apply `func`. Only one of the 'dim' and 'axis' arguments can be supplied. If neither are supplied, then the reduction is calculated over the flattened array (by calling `f(x)` without an axis argument). keep_attrs : bool or None, optional If True (default), the variable's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. keepdims : bool, default: False If True, the dimensions which are reduced are left in the result as dimensions of size one. Coordinates that use these dimensions are removed. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : DataArray DataArray with this object's array replaced with an array with summarized data and the indicated dimension(s) removed. """ var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, **kwargs) return self._replace_maybe_drop_dims(var) def to_pandas(self) -> Self | pd.Series | pd.DataFrame: """Convert this array into a pandas object with the same shape. The type of the returned object depends on the number of DataArray dimensions: * 0D -> `xarray.DataArray` * 1D -> `pandas.Series` * 2D -> `pandas.DataFrame` Only works for arrays with 2 or fewer dimensions. The DataArray constructor performs the inverse transformation. Returns ------- result : DataArray | Series | DataFrame DataArray, pandas Series or pandas DataFrame. """ # TODO: consolidate the info about pandas constructors and the # attributes that correspond to their indexes into a separate module? constructors: dict[int, Callable] = { 0: lambda x: x, 1: pd.Series, 2: pd.DataFrame, } try: constructor = constructors[self.ndim] except KeyError as err: raise ValueError( f"Cannot convert arrays with {self.ndim} dimensions into " "pandas objects. Requires 2 or fewer dimensions." ) from err indexes = [self.get_index(dim) for dim in self.dims] if isinstance(self._variable._data, PandasExtensionArray): values = self._variable._data.array else: values = self.values pandas_object = constructor(values, *indexes) if isinstance(pandas_object, pd.Series): pandas_object.name = self.name return pandas_object def to_dataframe( self, name: Hashable | None = None, dim_order: Sequence[Hashable] | None = None ) -> pd.DataFrame: """Convert this array and its coordinates into a tidy pandas.DataFrame. The DataFrame is indexed by the Cartesian product of index coordinates (in the form of a :py:class:`pandas.MultiIndex`). Other coordinates are included as columns in the DataFrame. For 1D and 2D DataArrays, see also :py:func:`DataArray.to_pandas` which doesn't rely on a MultiIndex to build the DataFrame. Parameters ---------- name: Hashable or None, optional Name to give to this array (required if unnamed). dim_order: Sequence of Hashable or None, optional Hierarchical dimension order for the resulting dataframe. Array content is transposed to this order and then written out as flat vectors in contiguous order, so the last dimension in this list will be contiguous in the resulting DataFrame. This has a major influence on which operations are efficient on the resulting dataframe. If provided, must include all dimensions of this DataArray. By default, dimensions are sorted according to the DataArray dimensions order. Returns ------- result: DataFrame DataArray as a pandas DataFrame. See also -------- DataArray.to_pandas DataArray.to_series """ if name is None: name = self.name if name is None: raise ValueError( "cannot convert an unnamed DataArray to a " "DataFrame: use the ``name`` parameter" ) if self.ndim == 0: raise ValueError("cannot convert a scalar to a DataFrame") # By using a unique name, we can convert a DataArray into a DataFrame # even if it shares a name with one of its coordinates. # I would normally use unique_name = object() but that results in a # dataframe with columns in the wrong order, for reasons I have not # been able to debug (possibly a pandas bug?). unique_name = "__unique_name_identifier_z98xfz98xugfg73ho__" ds = self._to_dataset_whole(name=unique_name) if dim_order is None: ordered_dims = dict(zip(self.dims, self.shape, strict=True)) else: ordered_dims = ds._normalize_dim_order(dim_order=dim_order) df = ds._to_dataframe(ordered_dims) df.columns = [name if c == unique_name else c for c in df.columns] return df def to_series(self) -> pd.Series: """Convert this array into a pandas.Series. The Series is indexed by the Cartesian product of index coordinates (in the form of a :py:class:`pandas.MultiIndex`). Returns ------- result : Series DataArray as a pandas Series. See also -------- DataArray.to_pandas DataArray.to_dataframe """ index = self.coords.to_index() return pd.Series(self.values.reshape(-1), index=index, name=self.name) def to_masked_array(self, copy: bool = True) -> np.ma.MaskedArray: """Convert this array into a numpy.ma.MaskedArray Parameters ---------- copy : bool, default: True If True make a copy of the array in the result. If False, a MaskedArray view of DataArray.values is returned. Returns ------- result : MaskedArray Masked where invalid values (nan or inf) occur. """ values = self.to_numpy() # only compute lazy arrays once isnull = pd.isnull(values) return np.ma.MaskedArray(data=values, mask=isnull, copy=copy) # path=None writes to bytes @overload def to_netcdf( self, path: None = None, mode: NetcdfWriteModes = "w", format: T_NetcdfTypes | None = None, group: str | None = None, engine: T_NetcdfEngine | None = None, encoding: Mapping[Hashable, Mapping[str, Any]] | None = None, unlimited_dims: Iterable[Hashable] | None = None, compute: bool = True, invalid_netcdf: bool = False, auto_complex: bool | None = None, ) -> memoryview: ... # compute=False returns dask.Delayed @overload def to_netcdf( self, path: str | PathLike, mode: NetcdfWriteModes = "w", format: T_NetcdfTypes | None = None, group: str | None = None, engine: T_NetcdfEngine | None = None, encoding: Mapping[Hashable, Mapping[str, Any]] | None = None, unlimited_dims: Iterable[Hashable] | None = None, *, compute: Literal[False], invalid_netcdf: bool = False, auto_complex: bool | None = None, ) -> Delayed: ... # default return None @overload def to_netcdf( self, path: str | PathLike, mode: NetcdfWriteModes = "w", format: T_NetcdfTypes | None = None, group: str | None = None, engine: T_NetcdfEngine | None = None, encoding: Mapping[Hashable, Mapping[str, Any]] | None = None, unlimited_dims: Iterable[Hashable] | None = None, compute: Literal[True] = True, invalid_netcdf: bool = False, auto_complex: bool | None = None, ) -> None: ... # if compute cannot be evaluated at type check time # we may get back either Delayed or None @overload def to_netcdf( self, path: str | PathLike, mode: NetcdfWriteModes = "w", format: T_NetcdfTypes | None = None, group: str | None = None, engine: T_NetcdfEngine | None = None, encoding: Mapping[Hashable, Mapping[str, Any]] | None = None, unlimited_dims: Iterable[Hashable] | None = None, compute: bool = True, invalid_netcdf: bool = False, auto_complex: bool | None = None, ) -> Delayed | None: ... def to_netcdf( self, path: str | PathLike | None = None, mode: NetcdfWriteModes = "w", format: T_NetcdfTypes | None = None, group: str | None = None, engine: T_NetcdfEngine | None = None, encoding: Mapping[Hashable, Mapping[str, Any]] | None = None, unlimited_dims: Iterable[Hashable] | None = None, compute: bool = True, invalid_netcdf: bool = False, auto_complex: bool | None = None, ) -> memoryview | Delayed | None: """Write DataArray contents to a netCDF file. Parameters ---------- path : str, path-like, file-like or None, optional Path to which to save this datatree, or a file-like object to write it to (which must support read and write and be seekable) or None (default) to return in-memory bytes as a memoryview. mode : {"w", "a"}, default: "w" Write ('w') or append ('a') mode. If mode='w', any existing file at this location will be overwritten. If mode='a', existing variables will be overwritten. format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \ "NETCDF3_CLASSIC"}, optional File format for the resulting netCDF file: * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features. * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features. * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later. * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well. All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats. The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4). group : str, optional Path to the netCDF4 group in the given file to open (only works for format='NETCDF4'). The group(s) will be created if necessary. engine : {"netcdf4", "h5netcdf", "scipy"}, optional Engine to use when writing netCDF files. If not provided, the default engine is chosen based on available dependencies, by default preferring "netcdf4" over "h5netcdf" over "scipy" (customizable via ``netcdf_engine_order`` in ``xarray.set_options()``). encoding : dict, optional Nested dictionary with variable names as keys and dictionaries of variable specific encodings as values, e.g., ``{"my_variable": {"dtype": "int16", "scale_factor": 0.1, "zlib": True}, ...}`` The `h5netcdf` engine supports both the NetCDF4-style compression encoding parameters ``{"zlib": True, "complevel": 9}`` and the h5py ones ``{"compression": "gzip", "compression_opts": 9}``. This allows using any compression plugin installed in the HDF5 library, e.g. LZF. unlimited_dims : iterable of Hashable, optional Dimension(s) that should be serialized as unlimited dimensions. By default, no dimensions are treated as unlimited dimensions. Note that unlimited_dims may also be set via ``dataset.encoding["unlimited_dims"]``. compute: bool, default: True If true compute immediately, otherwise return a ``dask.delayed.Delayed`` object that can be computed later. invalid_netcdf: bool, default: False Only valid along with ``engine="h5netcdf"``. If True, allow writing hdf5 files which are invalid netcdf as described in https://github.com/h5netcdf/h5netcdf. Returns ------- * ``memoryview`` if path is None * ``dask.delayed.Delayed`` if compute is False * None otherwise Notes ----- Only xarray.Dataset objects can be written to netCDF files, so the xarray.DataArray is converted to a xarray.Dataset object containing a single variable. If the DataArray has no name, or if the name is the same as a coordinate name, then it is given the name ``"__xarray_dataarray_variable__"``. [netCDF4 backend only] netCDF4 enums are decoded into the dataarray dtype metadata. See Also -------- Dataset.to_netcdf """ from xarray.backends.api import DATAARRAY_NAME, DATAARRAY_VARIABLE from xarray.backends.writers import to_netcdf if self.name is None: # If no name is set then use a generic xarray name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) elif self.name in self.coords or self.name in self.dims: # The name is the same as one of the coords names, which netCDF # doesn't support, so rename it but keep track of the old name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) dataset.attrs[DATAARRAY_NAME] = self.name else: # No problems with the name - so we're fine! dataset = self.to_dataset() return to_netcdf( # type: ignore[return-value] # mypy cannot resolve the overloads:( dataset, path, mode=mode, format=format, group=group, engine=engine, encoding=encoding, unlimited_dims=unlimited_dims, compute=compute, multifile=False, invalid_netcdf=invalid_netcdf, auto_complex=auto_complex, ) # compute=True (default) returns ZarrStore @overload def to_zarr( self, store: ZarrStoreLike | None = None, chunk_store: MutableMapping | str | PathLike | None = None, mode: ZarrWriteModes | None = None, synchronizer=None, group: str | None = None, *, encoding: Mapping | None = None, compute: Literal[True] = True, consolidated: bool | None = None, append_dim: Hashable | None = None, region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None, safe_chunks: bool = True, align_chunks: bool = False, storage_options: dict[str, str] | None = None, zarr_version: int | None = None, zarr_format: int | None = None, write_empty_chunks: bool | None = None, chunkmanager_store_kwargs: dict[str, Any] | None = None, ) -> ZarrStore: ... # compute=False returns dask.Delayed @overload def to_zarr( self, store: ZarrStoreLike | None = None, chunk_store: MutableMapping | str | PathLike | None = None, mode: ZarrWriteModes | None = None, synchronizer=None, group: str | None = None, encoding: Mapping | None = None, *, compute: Literal[False], consolidated: bool | None = None, append_dim: Hashable | None = None, region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None, safe_chunks: bool = True, align_chunks: bool = False, storage_options: dict[str, str] | None = None, zarr_version: int | None = None, zarr_format: int | None = None, write_empty_chunks: bool | None = None, chunkmanager_store_kwargs: dict[str, Any] | None = None, ) -> Delayed: ... def to_zarr( self, store: ZarrStoreLike | None = None, chunk_store: MutableMapping | str | PathLike | None = None, mode: ZarrWriteModes | None = None, synchronizer=None, group: str | None = None, encoding: Mapping | None = None, *, compute: bool = True, consolidated: bool | None = None, append_dim: Hashable | None = None, region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None, safe_chunks: bool = True, align_chunks: bool = False, storage_options: dict[str, str] | None = None, zarr_version: int | None = None, zarr_format: int | None = None, write_empty_chunks: bool | None = None, chunkmanager_store_kwargs: dict[str, Any] | None = None, ) -> ZarrStore | Delayed: """Write DataArray contents to a Zarr store Zarr chunks are determined in the following way: - From the ``chunks`` attribute in each variable's ``encoding`` (can be set via `DataArray.chunk`). - If the variable is a Dask array, from the dask chunks - If neither Dask chunks nor encoding chunks are present, chunks will be determined automatically by Zarr - If both Dask chunks and encoding chunks are present, encoding chunks will be used, provided that there is a many-to-one relationship between encoding chunks and dask chunks (i.e. Dask chunks are bigger than and evenly divide encoding chunks); otherwise raise a ``ValueError``. This restriction ensures that no synchronization / locks are required when writing. To disable this restriction, use ``safe_chunks=False``. Parameters ---------- store : zarr.storage.StoreLike, optional Store or path to directory in local or remote file system. chunk_store : MutableMapping, str or path-like, optional Store or path to directory in local or remote file system only for Zarr array chunks. Requires zarr-python v2.4.0 or later. mode : {"w", "w-", "a", "a-", r+", None}, optional Persistence mode: "w" means create (overwrite if exists); "w-" means create (fail if exists); "a" means override all existing variables including dimension coordinates (create if does not exist); "a-" means only append those variables that have ``append_dim``. "r+" means modify existing array *values* only (raise an error if any metadata or shapes would change). The default mode is "a" if ``append_dim`` is set. Otherwise, it is "r+" if ``region`` is set and ``w-`` otherwise. synchronizer : object, optional Zarr array synchronizer. group : str, optional Group path. (a.k.a. `path` in zarr terminology.) encoding : dict, optional Nested dictionary with variable names as keys and dictionaries of variable specific encodings as values, e.g., ``{"my_variable": {"dtype": "int16", "scale_factor": 0.1,}, ...}`` compute : bool, default: True If True write array data immediately, otherwise return a ``dask.delayed.Delayed`` object that can be computed to write array data later. Metadata is always updated eagerly. consolidated : bool, optional If True, apply zarr's `consolidate_metadata` function to the store after writing metadata and read existing stores with consolidated metadata; if False, do not. The default (`consolidated=None`) means write consolidated metadata and attempt to read consolidated metadata for existing stores (falling back to non-consolidated). When the experimental ``zarr_version=3``, ``consolidated`` must be either be ``None`` or ``False``. append_dim : hashable, optional If set, the dimension along which the data will be appended. All other dimensions on overridden variables must remain the same size. region : dict, optional Optional mapping from dimension names to integer slices along dataarray dimensions to indicate the region of existing zarr array(s) in which to write this datarray's data. For example, ``{'x': slice(0, 1000), 'y': slice(10000, 11000)}`` would indicate that values should be written to the region ``0:1000`` along ``x`` and ``10000:11000`` along ``y``. Two restrictions apply to the use of ``region``: - If ``region`` is set, _all_ variables in a dataarray must have at least one dimension in common with the region. Other variables should be written in a separate call to ``to_zarr()``. - Dimensions cannot be included in both ``region`` and ``append_dim`` at the same time. To create empty arrays to fill in with ``region``, use a separate call to ``to_zarr()`` with ``compute=False``. See "Modifying existing Zarr stores" in the reference documentation for full details. Users are expected to ensure that the specified region aligns with Zarr chunk boundaries, and that dask chunks are also aligned. Xarray makes limited checks that these multiple chunk boundaries line up. It is possible to write incomplete chunks and corrupt the data with this option if you are not careful. safe_chunks : bool, default: True If True, only allow writes to when there is a many-to-one relationship between Zarr chunks (specified in encoding) and Dask chunks. Set False to override this restriction; however, data may become corrupted if Zarr arrays are written in parallel. This option may be useful in combination with ``compute=False`` to initialize a Zarr store from an existing DataArray with arbitrary chunk structure. In addition to the many-to-one relationship validation, it also detects partial chunks writes when using the region parameter, these partial chunks are considered unsafe in the mode "r+" but safe in the mode "a". Note: Even with these validations it can still be unsafe to write two or more chunked arrays in the same location in parallel if they are not writing in independent regions, for those cases it is better to use a synchronizer. align_chunks: bool, default False If True, rechunks the Dask array to align with Zarr chunks before writing. This ensures each Dask chunk maps to one or more contiguous Zarr chunks, which avoids race conditions. Internally, the process sets safe_chunks=False and tries to preserve the original Dask chunking as much as possible. Note: While this alignment avoids write conflicts stemming from chunk boundary misalignment, it does not protect against race conditions if multiple uncoordinated processes write to the same Zarr array concurrently. storage_options : dict, optional Any additional parameters for the storage backend (ignored for local paths). zarr_version : int or None, optional .. deprecated:: 2024.9.1 Use ``zarr_format`` instead. zarr_format : int or None, optional The desired zarr format to target (currently 2 or 3). The default of None will attempt to determine the zarr version from ``store`` when possible, otherwise defaulting to the default version used by the zarr-python library installed. write_empty_chunks : bool or None, optional If True, all chunks will be stored regardless of their contents. If False, each chunk is compared to the array's fill value prior to storing. If a chunk is uniformly equal to the fill value, then that chunk is not be stored, and the store entry for that chunk's key is deleted. This setting enables sparser storage, as only chunks with non-fill-value data are stored, at the expense of overhead associated with checking the data of each chunk. If None (default) fall back to specification(s) in ``encoding`` or Zarr defaults. A ``ValueError`` will be raised if the value of this (if not None) differs with ``encoding``. chunkmanager_store_kwargs : dict, optional Additional keyword arguments passed on to the `ChunkManager.store` method used to store chunked arrays. For example for a dask array additional kwargs will be passed eventually to :py:func:`dask.array.store()`. Experimental API that should not be relied upon. Returns ------- * ``dask.delayed.Delayed`` if compute is False * ZarrStore otherwise References ---------- https://zarr.readthedocs.io/ Notes ----- Zarr chunking behavior: If chunks are found in the encoding argument or attribute corresponding to any DataArray, those chunks are used. If a DataArray is a dask array, it is written with those chunks. If not other chunks are found, Zarr uses its own heuristics to choose automatic chunk sizes. encoding: The encoding attribute (if exists) of the DataArray(s) will be used. Override any existing encodings by providing the ``encoding`` kwarg. ``fill_value`` handling: There exists a subtlety in interpreting zarr's ``fill_value`` property. For zarr v2 format arrays, ``fill_value`` is *always* interpreted as an invalid value similar to the ``_FillValue`` attribute in CF/netCDF. For Zarr v3 format arrays, only an explicit ``_FillValue`` attribute will be used to mask the data if requested using ``mask_and_scale=True``. See this `Github issue <https://github.com/pydata/xarray/issues/5475>`_ for more. See Also -------- Dataset.to_zarr :ref:`io.zarr` The I/O user guide, with more details and examples. """ from xarray.backends.api import DATAARRAY_NAME, DATAARRAY_VARIABLE from xarray.backends.writers import to_zarr if self.name is None: # If no name is set then use a generic xarray name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) elif self.name in self.coords or self.name in self.dims: # The name is the same as one of the coords names, which the netCDF data model # does not support, so rename it but keep track of the old name dataset = self.to_dataset(name=DATAARRAY_VARIABLE) dataset.attrs[DATAARRAY_NAME] = self.name else: # No problems with the name - so we're fine! dataset = self.to_dataset() return to_zarr( # type: ignore[call-overload,misc] dataset, store=store, chunk_store=chunk_store, mode=mode, synchronizer=synchronizer, group=group, encoding=encoding, compute=compute, consolidated=consolidated, append_dim=append_dim, region=region, safe_chunks=safe_chunks, align_chunks=align_chunks, storage_options=storage_options, zarr_version=zarr_version, zarr_format=zarr_format, write_empty_chunks=write_empty_chunks, chunkmanager_store_kwargs=chunkmanager_store_kwargs, ) def to_dict( self, data: bool | Literal["list", "array"] = "list", encoding: bool = False ) -> dict[str, Any]: """ Convert this xarray.DataArray into a dictionary following xarray naming conventions. Converts all variables and attributes to native Python objects. Useful for converting to json. To avoid datetime incompatibility use decode_times=False kwarg in xarray.open_dataset. Parameters ---------- data : bool or {"list", "array"}, default: "list" Whether to include the actual data in the dictionary. When set to False, returns just the schema. If set to "array", returns data as underlying array type. If set to "list" (or True for backwards compatibility), returns data in lists of Python data types. Note that for obtaining the "list" output efficiently, use `da.compute().to_dict(data="list")`. encoding : bool, default: False Whether to include the Dataset's encoding in the dictionary. Returns ------- dict: dict See Also -------- DataArray.from_dict Dataset.to_dict """ d = self.variable.to_dict(data=data) d.update({"coords": {}, "name": self.name}) for k, coord in self.coords.items(): d["coords"][k] = coord.variable.to_dict(data=data) if encoding: d["encoding"] = dict(self.encoding) return d @classmethod def from_dict(cls, d: Mapping[str, Any]) -> Self: """Convert a dictionary into an xarray.DataArray Parameters ---------- d : dict Mapping with a minimum structure of {"dims": [...], "data": [...]} Returns ------- obj : xarray.DataArray See Also -------- DataArray.to_dict Dataset.from_dict Examples -------- >>> d = {"dims": "t", "data": [1, 2, 3]} >>> da = xr.DataArray.from_dict(d) >>> da <xarray.DataArray (t: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: t >>> d = { ... "coords": { ... "t": {"dims": "t", "data": [0, 1, 2], "attrs": {"units": "s"}} ... }, ... "attrs": {"title": "air temperature"}, ... "dims": "t", ... "data": [10, 20, 30], ... "name": "a", ... } >>> da = xr.DataArray.from_dict(d) >>> da <xarray.DataArray 'a' (t: 3)> Size: 24B array([10, 20, 30]) Coordinates: * t (t) int64 24B 0 1 2 Attributes: title: air temperature """ coords = None if "coords" in d: try: coords = { k: (v["dims"], v["data"], v.get("attrs")) for k, v in d["coords"].items() } except KeyError as e: raise ValueError( f"cannot convert dict when coords are missing the key '{e.args[0]}'" ) from e try: data = d["data"] except KeyError as err: raise ValueError("cannot convert dict without the key 'data''") from err else: obj = cls(data, coords, d.get("dims"), d.get("name"), d.get("attrs")) obj.encoding.update(d.get("encoding", {})) return obj @classmethod def from_series(cls, series: pd.Series, sparse: bool = False) -> DataArray: """Convert a pandas.Series into an xarray.DataArray. If the series's index is a MultiIndex, it will be expanded into a tensor product of one-dimensional coordinates (filling in missing values with NaN). Thus this operation should be the inverse of the `to_series` method. Parameters ---------- series : Series Pandas Series object to convert. sparse : bool, default: False If sparse=True, creates a sparse array instead of a dense NumPy array. Requires the pydata/sparse package. See Also -------- DataArray.to_series Dataset.from_dataframe """ temp_name = "__temporary_name" df = pd.DataFrame({temp_name: series}) ds = Dataset.from_dataframe(df, sparse=sparse) result = ds[temp_name] result.name = series.name return result def to_iris(self) -> iris_Cube: """Convert this array into a iris.cube.Cube""" from xarray.convert import to_iris return to_iris(self) @classmethod def from_iris(cls, cube: iris_Cube) -> Self: """Convert a iris.cube.Cube into an xarray.DataArray""" from xarray.convert import from_iris return from_iris(cube) def _all_compat(self, other: Self, compat_str: str) -> bool: """Helper function for equals, broadcast_equals, and identical""" def compat(x, y): return getattr(x.variable, compat_str)(y.variable) return utils.dict_equiv(self.coords, other.coords, compat=compat) and compat( self, other ) def broadcast_equals(self, other: Self) -> bool: """Two DataArrays are broadcast equal if they are equal after broadcasting them against each other such that they have the same dimensions. Parameters ---------- other : DataArray DataArray to compare to. Returns ---------- equal : bool True if the two DataArrays are broadcast equal. See Also -------- DataArray.equals DataArray.identical Examples -------- >>> a = xr.DataArray([1, 2], dims="X") >>> b = xr.DataArray([[1, 1], [2, 2]], dims=["X", "Y"]) >>> a <xarray.DataArray (X: 2)> Size: 16B array([1, 2]) Dimensions without coordinates: X >>> b <xarray.DataArray (X: 2, Y: 2)> Size: 32B array([[1, 1], [2, 2]]) Dimensions without coordinates: X, Y .equals returns True if two DataArrays have the same values, dimensions, and coordinates. .broadcast_equals returns True if the results of broadcasting two DataArrays against each other have the same values, dimensions, and coordinates. >>> a.equals(b) False >>> a2, b2 = xr.broadcast(a, b) >>> a2.equals(b2) True >>> a.broadcast_equals(b) True """ try: return self._all_compat(other, "broadcast_equals") except (TypeError, AttributeError): return False def equals(self, other: Self) -> bool: """True if two DataArrays have the same dimensions, coordinates and values; otherwise False. DataArrays can still be equal (like pandas objects) if they have NaN values in the same locations. This method is necessary because `v1 == v2` for ``DataArray`` does element-wise comparisons (like numpy.ndarrays). Parameters ---------- other : DataArray DataArray to compare to. Returns ---------- equal : bool True if the two DataArrays are equal. See Also -------- DataArray.broadcast_equals DataArray.identical Examples -------- >>> a = xr.DataArray([1, 2, 3], dims="X") >>> b = xr.DataArray([1, 2, 3], dims="X", attrs=dict(units="m")) >>> c = xr.DataArray([1, 2, 3], dims="Y") >>> d = xr.DataArray([3, 2, 1], dims="X") >>> a <xarray.DataArray (X: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: X >>> b <xarray.DataArray (X: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: X Attributes: units: m >>> c <xarray.DataArray (Y: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: Y >>> d <xarray.DataArray (X: 3)> Size: 24B array([3, 2, 1]) Dimensions without coordinates: X >>> a.equals(b) True >>> a.equals(c) False >>> a.equals(d) False """ try: return self._all_compat(other, "equals") except (TypeError, AttributeError): return False def identical(self, other: Self) -> bool: """Like equals, but also checks the array name and attributes, and attributes on all coordinates. Parameters ---------- other : DataArray DataArray to compare to. Returns ---------- equal : bool True if the two DataArrays are identical. See Also -------- DataArray.broadcast_equals DataArray.equals Examples -------- >>> a = xr.DataArray([1, 2, 3], dims="X", attrs=dict(units="m"), name="Width") >>> b = xr.DataArray([1, 2, 3], dims="X", attrs=dict(units="m"), name="Width") >>> c = xr.DataArray([1, 2, 3], dims="X", attrs=dict(units="ft"), name="Width") >>> a <xarray.DataArray 'Width' (X: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: X Attributes: units: m >>> b <xarray.DataArray 'Width' (X: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: X Attributes: units: m >>> c <xarray.DataArray 'Width' (X: 3)> Size: 24B array([1, 2, 3]) Dimensions without coordinates: X Attributes: units: ft >>> a.equals(b) True >>> a.identical(b) True >>> a.equals(c) True >>> a.identical(c) False """ try: return self.name == other.name and self._all_compat(other, "identical") except (TypeError, AttributeError): return False def __array_wrap__(self, obj, context=None, return_scalar=False) -> Self: new_var = self.variable.__array_wrap__(obj, context, return_scalar) return self._replace(new_var) def __matmul__(self, obj: T_Xarray) -> T_Xarray: return self.dot(obj) def __rmatmul__(self, other: T_Xarray) -> T_Xarray: # currently somewhat duplicative, as only other DataArrays are # compatible with matmul return computation.dot(other, self) def _unary_op(self, f: Callable, *args, **kwargs) -> Self: keep_attrs = kwargs.pop("keep_attrs", None) if keep_attrs is None: keep_attrs = _get_keep_attrs(default=True) with warnings.catch_warnings(): warnings.filterwarnings("ignore", r"All-NaN (slice|axis) encountered") warnings.filterwarnings( "ignore", r"Mean of empty slice", category=RuntimeWarning ) with np.errstate(all="ignore"): da = self.__array_wrap__(f(self.variable.data, *args, **kwargs)) if keep_attrs: da.attrs = self.attrs return da def _binary_op( self, other: DaCompatible, f: Callable, reflexive: bool = False ) -> Self: from xarray.core.datatree import DataTree from xarray.core.groupby import GroupBy if isinstance(other, DataTree | Dataset | GroupBy): return NotImplemented if isinstance(other, DataArray): align_type = OPTIONS["arithmetic_join"] self, other = align(self, other, join=align_type, copy=False) other_variable_or_arraylike: DaCompatible = getattr(other, "variable", other) other_coords = getattr(other, "coords", None) variable = ( f(self.variable, other_variable_or_arraylike) if not reflexive else f(other_variable_or_arraylike, self.variable) ) coords, indexes = self.coords._merge_raw(other_coords, reflexive) name = result_name([self, other]) return self._replace(variable, coords, name, indexes=indexes) def _inplace_binary_op(self, other: DaCompatible, f: Callable) -> Self: from xarray.core.groupby import GroupBy if isinstance(other, GroupBy): raise TypeError( "in-place operations between a DataArray and " "a grouped object are not permitted" ) # n.b. we can't align other to self (with other.reindex_like(self)) # because `other` may be converted into floats, which would cause # in-place arithmetic to fail unpredictably. Instead, we simply # don't support automatic alignment with in-place arithmetic. other_coords = getattr(other, "coords", None) other_variable = getattr(other, "variable", other) try: with self.coords._merge_inplace(other_coords): f(self.variable, other_variable) except MergeError as exc: raise MergeError( "Automatic alignment is not supported for in-place operations.\n" "Consider aligning the indices manually or using a not-in-place operation.\n" "See https://github.com/pydata/xarray/issues/3910 for more explanations." ) from exc return self def _copy_attrs_from(self, other: DataArray | Dataset | Variable) -> None: self.attrs = other.attrs plot = utils.UncachedAccessor(DataArrayPlotAccessor) def _title_for_slice(self, truncate: int = 50) -> str: """ If the dataarray has 1 dimensional coordinates or comes from a slice we can show that info in the title Parameters ---------- truncate : int, default: 50 maximum number of characters for title Returns ------- title : string Can be used for plot titles """ one_dims = [] for dim, coord in self.coords.items(): if coord.size == 1: one_dims.append( f"{dim} = {format_item(coord.values)}{_get_units_from_attrs(coord)}" ) title = ", ".join(one_dims) if len(title) > truncate: title = title[: (truncate - 3)] + "..." return title def diff( self, dim: Hashable, n: int = 1, *, label: Literal["upper", "lower"] = "upper", ) -> Self: """Calculate the n-th order discrete difference along given axis. Parameters ---------- dim : Hashable Dimension over which to calculate the finite difference. n : int, default: 1 The number of times values are differenced. label : {"upper", "lower"}, default: "upper" The new coordinate in dimension ``dim`` will have the values of either the minuend's or subtrahend's coordinate for values 'upper' and 'lower', respectively. Returns ------- difference : DataArray The n-th order finite difference of this object. Notes ----- `n` matches numpy's behavior and is different from pandas' first argument named `periods`. Examples -------- >>> arr = xr.DataArray([5, 5, 6, 6], [[1, 2, 3, 4]], ["x"]) >>> arr.diff("x") <xarray.DataArray (x: 3)> Size: 24B array([0, 1, 0]) Coordinates: * x (x) int64 24B 2 3 4 >>> arr.diff("x", 2) <xarray.DataArray (x: 2)> Size: 16B array([ 1, -1]) Coordinates: * x (x) int64 16B 3 4 See Also -------- DataArray.differentiate """ ds = self._to_temp_dataset().diff(n=n, dim=dim, label=label) return self._from_temp_dataset(ds) def shift( self, shifts: Mapping[Any, int] | None = None, fill_value: Any = dtypes.NA, **shifts_kwargs: int, ) -> Self: """Shift this DataArray by an offset along one or more dimensions. Only the data is moved; coordinates stay in place. This is consistent with the behavior of ``shift`` in pandas. Values shifted from beyond array bounds will appear at one end of each dimension, which are filled according to `fill_value`. For periodic offsets instead see `roll`. Parameters ---------- shifts : mapping of Hashable to int or None, optional Integer offset to shift along each of the given dimensions. Positive offsets shift to the right; negative offsets shift to the left. fill_value : scalar, optional Value to use for newly missing values **shifts_kwargs The keyword arguments form of ``shifts``. One of shifts or shifts_kwargs must be provided. Returns ------- shifted : DataArray DataArray with the same coordinates and attributes but shifted data. See Also -------- roll Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims="x") >>> arr.shift(x=1) <xarray.DataArray (x: 3)> Size: 24B array([nan, 5., 6.]) Dimensions without coordinates: x """ variable = self.variable.shift( shifts=shifts, fill_value=fill_value, **shifts_kwargs ) return self._replace(variable=variable) def roll( self, shifts: Mapping[Hashable, int] | None = None, roll_coords: bool = False, **shifts_kwargs: int, ) -> Self: """Roll this array by an offset along one or more dimensions. Unlike shift, roll treats the given dimensions as periodic, so will not create any missing values to be filled. Unlike shift, roll may rotate all variables, including coordinates if specified. The direction of rotation is consistent with :py:func:`numpy.roll`. Parameters ---------- shifts : mapping of Hashable to int, optional Integer offset to rotate each of the given dimensions. Positive offsets roll to the right; negative offsets roll to the left. roll_coords : bool, default: False Indicates whether to roll the coordinates by the offset too. **shifts_kwargs : {dim: offset, ...}, optional The keyword arguments form of ``shifts``. One of shifts or shifts_kwargs must be provided. Returns ------- rolled : DataArray DataArray with the same attributes but rolled data and coordinates. See Also -------- shift Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims="x") >>> arr.roll(x=1) <xarray.DataArray (x: 3)> Size: 24B array([7, 5, 6]) Dimensions without coordinates: x """ ds = self._to_temp_dataset().roll( shifts=shifts, roll_coords=roll_coords, **shifts_kwargs ) return self._from_temp_dataset(ds) @property def real(self) -> Self: """ The real part of the array. See Also -------- numpy.ndarray.real """ return self._replace(self.variable.real) @property def imag(self) -> Self: """ The imaginary part of the array. See Also -------- numpy.ndarray.imag """ return self._replace(self.variable.imag) @deprecate_dims def dot( self, other: T_Xarray, dim: Dims = None, ) -> T_Xarray: """Perform dot product of two DataArrays along their shared dims. Equivalent to taking taking tensordot over all shared dims. Parameters ---------- other : DataArray The other array with which the dot product is performed. dim : ..., str, Iterable of Hashable or None, optional Which dimensions to sum over. Ellipsis (`...`) sums over all dimensions. If not specified, then all the common dimensions are summed over. Returns ------- result : DataArray Array resulting from the dot product over all shared dimensions. See Also -------- dot numpy.tensordot Examples -------- >>> da_vals = np.arange(6 * 5 * 4).reshape((6, 5, 4)) >>> da = xr.DataArray(da_vals, dims=["x", "y", "z"]) >>> dm_vals = np.arange(4) >>> dm = xr.DataArray(dm_vals, dims=["z"]) >>> dm.dims ('z',) >>> da.dims ('x', 'y', 'z') >>> dot_result = da.dot(dm) >>> dot_result.dims ('x', 'y') """ if isinstance(other, Dataset): raise NotImplementedError( "dot products are not yet supported with Dataset objects." ) if not isinstance(other, DataArray): raise TypeError("dot only operates on DataArrays.") return computation.dot(self, other, dim=dim) def sortby( self, variables: ( Hashable | DataArray | Sequence[Hashable | DataArray] | Callable[[Self], Hashable | DataArray | Sequence[Hashable | DataArray]] ), ascending: bool = True, ) -> Self: """Sort object by labels or values (along an axis). Sorts the dataarray, either along specified dimensions, or according to values of 1-D dataarrays that share dimension with calling object. If the input variables are dataarrays, then the dataarrays are aligned (via left-join) to the calling object prior to sorting by cell values. NaNs are sorted to the end, following Numpy convention. If multiple sorts along the same dimension is given, numpy's lexsort is performed along that dimension: https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html and the FIRST key in the sequence is used as the primary sort key, followed by the 2nd key, etc. Parameters ---------- variables : Hashable, DataArray, sequence of Hashable or DataArray, or Callable 1D DataArray objects or name(s) of 1D variable(s) in coords whose values are used to sort this array. If a callable, the callable is passed this object, and the result is used as the value for cond. ascending : bool, default: True Whether to sort by ascending or descending order. Returns ------- sorted : DataArray A new dataarray where all the specified dims are sorted by dim labels. See Also -------- Dataset.sortby numpy.sort pandas.sort_values pandas.sort_index Examples -------- >>> da = xr.DataArray( ... np.arange(5, 0, -1), ... coords=[pd.date_range("1/1/2000", periods=5)], ... dims="time", ... ) >>> da <xarray.DataArray (time: 5)> Size: 40B array([5, 4, 3, 2, 1]) Coordinates: * time (time) datetime64[ns] 40B 2000-01-01 2000-01-02 ... 2000-01-05 >>> da.sortby(da) <xarray.DataArray (time: 5)> Size: 40B array([1, 2, 3, 4, 5]) Coordinates: * time (time) datetime64[ns] 40B 2000-01-05 2000-01-04 ... 2000-01-01 >>> da.sortby(lambda x: x) <xarray.DataArray (time: 5)> Size: 40B array([1, 2, 3, 4, 5]) Coordinates: * time (time) datetime64[ns] 40B 2000-01-05 2000-01-04 ... 2000-01-01 """ # We need to convert the callable here rather than pass it through to the # dataset method, since otherwise the dataset method would try to call the # callable with the dataset as the object if callable(variables): variables = variables(self) ds = self._to_temp_dataset().sortby(variables, ascending=ascending) return self._from_temp_dataset(ds) def quantile( self, q: ArrayLike, dim: Dims = None, *, method: QuantileMethods = "linear", keep_attrs: bool | None = None, skipna: bool | None = None, interpolation: QuantileMethods | None = None, ) -> Self: """Compute the qth quantile of the data along the specified dimension. Returns the qth quantiles(s) of the array elements. Parameters ---------- q : float or array-like of float Quantile to compute, which must be between 0 and 1 inclusive. dim : str or Iterable of Hashable, optional Dimension(s) over which to apply quantile. method : str, default: "linear" This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points. The options sorted by their R type as summarized in the H&F paper [1]_ are: 1. "inverted_cdf" 2. "averaged_inverted_cdf" 3. "closest_observation" 4. "interpolated_inverted_cdf" 5. "hazen" 6. "weibull" 7. "linear" (default) 8. "median_unbiased" 9. "normal_unbiased" The first three methods are discontiuous. The following discontinuous variations of the default "linear" (7.) option are also available: * "lower" * "higher" * "midpoint" * "nearest" See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument was previously called "interpolation", renamed in accordance with numpy version 1.22.0. keep_attrs : bool or None, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. skipna : bool or None, optional If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64). Returns ------- quantiles : DataArray If `q` is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile Examples -------- >>> da = xr.DataArray( ... data=[[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]], ... coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]}, ... dims=("x", "y"), ... ) >>> da.quantile(0) # or da.quantile(0, dim=...) <xarray.DataArray ()> Size: 8B array(0.7) Coordinates: quantile float64 8B 0.0 >>> da.quantile(0, dim="x") <xarray.DataArray (y: 4)> Size: 32B array([0.7, 4.2, 2.6, 1.5]) Coordinates: * y (y) float64 32B 1.0 1.5 2.0 2.5 quantile float64 8B 0.0 >>> da.quantile([0, 0.5, 1]) <xarray.DataArray (quantile: 3)> Size: 24B array([0.7, 3.4, 9.4]) Coordinates: * quantile (quantile) float64 24B 0.0 0.5 1.0 >>> da.quantile([0, 0.5, 1], dim="x") <xarray.DataArray (quantile: 3, y: 4)> Size: 96B array([[0.7 , 4.2 , 2.6 , 1.5 ], [3.6 , 5.75, 6. , 1.7 ], [6.5 , 7.3 , 9.4 , 1.9 ]]) Coordinates: * quantile (quantile) float64 24B 0.0 0.5 1.0 * y (y) float64 32B 1.0 1.5 2.0 2.5 References ---------- .. [1] R. J. Hyndman and Y. Fan, "Sample quantiles in statistical packages," The American Statistician, 50(4), pp. 361-365, 1996 """ ds = self._to_temp_dataset().quantile( q, dim=dim, keep_attrs=keep_attrs, method=method, skipna=skipna, interpolation=interpolation, ) return self._from_temp_dataset(ds) def rank( self, dim: Hashable, *, pct: bool = False, keep_attrs: bool | None = None, ) -> Self: """Ranks the data. Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all of the values within that set. Ranks begin at 1, not 0. If pct, computes percentage ranks. NaNs in the input array are returned as NaNs. The `bottleneck` library is required. Parameters ---------- dim : Hashable Dimension over which to compute rank. pct : bool, default: False If True, compute percentage ranks, otherwise compute integer ranks. keep_attrs : bool or None, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. Returns ------- ranked : DataArray DataArray with the same coordinates and dtype 'float64'. Examples -------- >>> arr = xr.DataArray([5, 6, 7], dims="x") >>> arr.rank("x") <xarray.DataArray (x: 3)> Size: 24B array([1., 2., 3.]) Dimensions without coordinates: x """ ds = self._to_temp_dataset().rank(dim, pct=pct, keep_attrs=keep_attrs) return self._from_temp_dataset(ds) def differentiate( self, coord: Hashable, edge_order: Literal[1, 2] = 1, datetime_unit: DatetimeUnitOptions = None, ) -> Self: """Differentiate the array with the second order accurate central differences. .. note:: This feature is limited to simple cartesian geometry, i.e. coord must be one dimensional. Parameters ---------- coord : Hashable The coordinate to be used to compute the gradient. edge_order : {1, 2}, default: 1 N-th order accurate differences at the boundaries. datetime_unit : {"W", "D", "h", "m", "s", "ms", \ "us", "ns", "ps", "fs", "as", None}, optional Unit to compute gradient. Only valid for datetime coordinate. "Y" and "M" are not available as datetime_unit. Returns ------- differentiated: DataArray See also -------- numpy.gradient: corresponding numpy function Examples -------- >>> da = xr.DataArray( ... np.arange(12).reshape(4, 3), ... dims=["x", "y"], ... coords={"x": [0, 0.1, 1.1, 1.2]}, ... ) >>> da <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y >>> >>> da.differentiate("x") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[30. , 30. , 30. ], [27.54545455, 27.54545455, 27.54545455], [27.54545455, 27.54545455, 27.54545455], [30. , 30. , 30. ]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y """ ds = self._to_temp_dataset().differentiate(coord, edge_order, datetime_unit) return self._from_temp_dataset(ds) def integrate( self, coord: Hashable | Sequence[Hashable] = None, datetime_unit: DatetimeUnitOptions = None, ) -> Self: """Integrate along the given coordinate using the trapezoidal rule. .. note:: This feature is limited to simple cartesian geometry, i.e. coord must be one dimensional. Parameters ---------- coord : Hashable, or sequence of Hashable Coordinate(s) used for the integration. datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \ 'ps', 'fs', 'as', None}, optional Specify the unit if a datetime coordinate is used. Returns ------- integrated : DataArray See also -------- Dataset.integrate numpy.trapz : corresponding numpy function Examples -------- >>> da = xr.DataArray( ... np.arange(12).reshape(4, 3), ... dims=["x", "y"], ... coords={"x": [0, 0.1, 1.1, 1.2]}, ... ) >>> da <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y >>> >>> da.integrate("x") <xarray.DataArray (y: 3)> Size: 24B array([5.4, 6.6, 7.8]) Dimensions without coordinates: y """ ds = self._to_temp_dataset().integrate(coord, datetime_unit) return self._from_temp_dataset(ds) def cumulative_integrate( self, coord: Hashable | Sequence[Hashable] = None, datetime_unit: DatetimeUnitOptions = None, ) -> Self: """Integrate cumulatively along the given coordinate using the trapezoidal rule. .. note:: This feature is limited to simple cartesian geometry, i.e. coord must be one dimensional. The first entry of the cumulative integral is always 0, in order to keep the length of the dimension unchanged between input and output. Parameters ---------- coord : Hashable, or sequence of Hashable Coordinate(s) used for the integration. datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \ 'ps', 'fs', 'as', None}, optional Specify the unit if a datetime coordinate is used. Returns ------- integrated : DataArray See also -------- Dataset.cumulative_integrate scipy.integrate.cumulative_trapezoid : corresponding scipy function Examples -------- >>> da = xr.DataArray( ... np.arange(12).reshape(4, 3), ... dims=["x", "y"], ... coords={"x": [0, 0.1, 1.1, 1.2]}, ... ) >>> da <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y >>> >>> da.cumulative_integrate("x") <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[0. , 0. , 0. ], [0.15, 0.25, 0.35], [4.65, 5.75, 6.85], [5.4 , 6.6 , 7.8 ]]) Coordinates: * x (x) float64 32B 0.0 0.1 1.1 1.2 Dimensions without coordinates: y """ ds = self._to_temp_dataset().cumulative_integrate(coord, datetime_unit) return self._from_temp_dataset(ds) def unify_chunks(self) -> Self: """Unify chunk size along all chunked dimensions of this DataArray. Returns ------- DataArray with consistent chunk sizes for all dask-array variables See Also -------- dask.array.core.unify_chunks """ return unify_chunks(self)[0] def map_blocks( self, func: Callable[..., T_Xarray], args: Sequence[Any] = (), kwargs: Mapping[str, Any] | None = None, template: DataArray | Dataset | None = None, ) -> T_Xarray: """ Apply a function to each block of this DataArray. .. warning:: This method is experimental and its signature may change. Parameters ---------- func : callable User-provided function that accepts a DataArray as its first parameter. The function will receive a subset or 'block' of this DataArray (see below), corresponding to one chunk along each chunked dimension. ``func`` will be executed as ``func(subset_dataarray, *subset_args, **kwargs)``. This function must return either a single DataArray or a single Dataset. This function cannot add a new chunked dimension. args : sequence Passed to func after unpacking and subsetting any xarray objects by blocks. xarray objects in args must be aligned with this object, otherwise an error is raised. kwargs : mapping Passed verbatim to func after unpacking. xarray objects, if any, will not be subset to blocks. Passing dask collections in kwargs is not allowed. template : DataArray or Dataset, optional xarray object representing the final result after compute is called. If not provided, the function will be first run on mocked-up data, that looks like this object but has sizes 0, to determine properties of the returned object such as dtype, variable names, attributes, new dimensions and new indexes (if any). ``template`` must be provided if the function changes the size of existing dimensions. When provided, ``attrs`` on variables in `template` are copied over to the result. Any ``attrs`` set by ``func`` will be ignored. Returns ------- A single DataArray or Dataset with dask backend, reassembled from the outputs of the function. Notes ----- This function is designed for when ``func`` needs to manipulate a whole xarray object subset to each block. Each block is loaded into memory. In the more common case where ``func`` can work on numpy arrays, it is recommended to use ``apply_ufunc``. If none of the variables in this object is backed by dask arrays, calling this function is equivalent to calling ``func(obj, *args, **kwargs)``. See Also -------- :func:`dask.array.map_blocks <dask.array.map_blocks>` :func:`xarray.apply_ufunc <xarray.apply_ufunc>` :func:`xarray.Dataset.map_blocks <xarray.Dataset.map_blocks>` :doc:`xarray-tutorial:advanced/map_blocks/map_blocks` Advanced Tutorial on map_blocks with dask Examples -------- Calculate an anomaly from climatology using ``.groupby()``. Using ``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``, its indices, and its methods like ``.groupby()``. >>> def calculate_anomaly(da, groupby_type="time.month"): ... gb = da.groupby(groupby_type) ... clim = gb.mean(dim="time") ... return gb - clim ... >>> time = xr.date_range("1990-01", "1992-01", freq="ME", use_cftime=True) >>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"]) >>> np.random.seed(123) >>> array = xr.DataArray( ... np.random.rand(len(time)), ... dims=["time"], ... coords={"time": time, "month": month}, ... ).chunk() >>> array.map_blocks(calculate_anomaly, template=array).compute() <xarray.DataArray (time: 24)> Size: 192B array([ 0.12894847, 0.11323072, -0.0855964 , -0.09334032, 0.26848862, 0.12382735, 0.22460641, 0.07650108, -0.07673453, -0.22865714, -0.19063865, 0.0590131 , -0.12894847, -0.11323072, 0.0855964 , 0.09334032, -0.26848862, -0.12382735, -0.22460641, -0.07650108, 0.07673453, 0.22865714, 0.19063865, -0.0590131 ]) Coordinates: * time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00 month (time) int64 192B 1 2 3 4 5 6 7 8 9 10 ... 3 4 5 6 7 8 9 10 11 12 Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments to the function being applied in ``xr.map_blocks()``: >>> array.map_blocks( ... calculate_anomaly, kwargs={"groupby_type": "time.year"}, template=array ... ) # doctest: +ELLIPSIS <xarray.DataArray (time: 24)> Size: 192B dask.array<<this-array>-calculate_anomaly, shape=(24,), dtype=float64, chunksize=(24,), chunktype=numpy.ndarray> Coordinates: * time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00 month (time) int64 192B dask.array<chunksize=(24,), meta=np.ndarray> """ from xarray.core.parallel import map_blocks return map_blocks(func, self, args, kwargs, template) def polyfit( self, dim: Hashable, deg: int, skipna: bool | None = None, rcond: float | None = None, w: Hashable | Any | None = None, full: bool = False, cov: bool | Literal["unscaled"] = False, ) -> Dataset: """ Least squares polynomial fit. This replicates the behaviour of `numpy.polyfit` but differs by skipping invalid values when `skipna = True`. Parameters ---------- dim : Hashable Coordinate along which to fit the polynomials. deg : int Degree of the fitting polynomial. skipna : bool or None, optional If True, removes all invalid values before fitting each 1D slices of the array. Default is True if data is stored in a dask.array or if there is any invalid values, False otherwise. rcond : float or None, optional Relative condition number to the fit. w : Hashable, array-like or None, optional Weights to apply to the y-coordinate of the sample points. Can be an array-like object or the name of a coordinate in the dataset. full : bool, default: False Whether to return the residuals, matrix rank and singular values in addition to the coefficients. cov : bool or "unscaled", default: False Whether to return to the covariance matrix in addition to the coefficients. The matrix is not scaled if `cov='unscaled'`. Returns ------- polyfit_results : Dataset A single dataset which contains: polyfit_coefficients The coefficients of the best fit. polyfit_residuals The residuals of the least-square computation (only included if `full=True`). When the matrix rank is deficient, np.nan is returned. [dim]_matrix_rank The effective rank of the scaled Vandermonde coefficient matrix (only included if `full=True`) [dim]_singular_value The singular values of the scaled Vandermonde coefficient matrix (only included if `full=True`) polyfit_covariance The covariance matrix of the polynomial coefficient estimates (only included if `full=False` and `cov=True`) See Also -------- numpy.polyfit numpy.polyval xarray.polyval DataArray.curvefit """ # For DataArray, use the original implementation by converting to a dataset return self._to_temp_dataset().polyfit( dim, deg, skipna=skipna, rcond=rcond, w=w, full=full, cov=cov ) def pad( self, pad_width: Mapping[Any, int | tuple[int, int]] | None = None, mode: PadModeOptions = "constant", stat_length: ( int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None ) = None, constant_values: ( float | tuple[float, float] | Mapping[Any, tuple[float, float]] | None ) = None, end_values: int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None = None, reflect_type: PadReflectOptions = None, keep_attrs: bool | None = None, **pad_width_kwargs: Any, ) -> Self: """Pad this array along one or more dimensions. .. warning:: This function is experimental and its behaviour is likely to change especially regarding padding of dimension coordinates (or IndexVariables). When using one of the modes ("edge", "reflect", "symmetric", "wrap"), coordinates will be padded with the same mode, otherwise coordinates are padded using the "constant" mode with fill_value dtypes.NA. Parameters ---------- pad_width : mapping of Hashable to tuple of int Mapping with the form of {dim: (pad_before, pad_after)} describing the number of values padded along each dimension. {dim: pad} is a shortcut for pad_before = pad_after = pad mode : {"constant", "edge", "linear_ramp", "maximum", "mean", "median", \ "minimum", "reflect", "symmetric", "wrap"}, default: "constant" How to pad the DataArray (taken from numpy docs): - "constant": Pads with a constant value. - "edge": Pads with the edge values of array. - "linear_ramp": Pads with the linear ramp between end_value and the array edge value. - "maximum": Pads with the maximum value of all or part of the vector along each axis. - "mean": Pads with the mean value of all or part of the vector along each axis. - "median": Pads with the median value of all or part of the vector along each axis. - "minimum": Pads with the minimum value of all or part of the vector along each axis. - "reflect": Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - "symmetric": Pads with the reflection of the vector mirrored along the edge of the array. - "wrap": Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. stat_length : int, tuple or mapping of Hashable to tuple, default: None Used in 'maximum', 'mean', 'median', and 'minimum'. Number of values at edge of each axis used to calculate the statistic value. {dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)} unique statistic lengths along each dimension. ((before, after),) yields same before and after statistic lengths for each dimension. (stat_length,) or int is a shortcut for before = after = statistic length for all axes. Default is ``None``, to use the entire axis. constant_values : scalar, tuple or mapping of Hashable to tuple, default: 0 Used in 'constant'. The values to set the padded values for each axis. ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique pad constants along each dimension. ``((before, after),)`` yields same before and after constants for each dimension. ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for all dimensions. Default is 0. end_values : scalar, tuple or mapping of Hashable to tuple, default: 0 Used in 'linear_ramp'. The values used for the ending value of the linear_ramp and that will form the edge of the padded array. ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique end values along each dimension. ``((before, after),)`` yields same before and after end values for each axis. ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for all axes. Default is 0. reflect_type : {"even", "odd", None}, optional Used in "reflect", and "symmetric". The "even" style is the default with an unaltered reflection around the edge value. For the "odd" style, the extended part of the array is created by subtracting the reflected values from two times the edge value. keep_attrs : bool or None, optional If True, the attributes (``attrs``) will be copied from the original object to the new one. If False, the new object will be returned without attributes. **pad_width_kwargs The keyword arguments form of ``pad_width``. One of ``pad_width`` or ``pad_width_kwargs`` must be provided. Returns ------- padded : DataArray DataArray with the padded coordinates and data. See Also -------- DataArray.shift, DataArray.roll, DataArray.bfill, DataArray.ffill, numpy.pad, dask.array.pad Notes ----- For ``mode="constant"`` and ``constant_values=None``, integer types will be promoted to ``float`` and padded with ``np.nan``. Padding coordinates will drop their corresponding index (if any) and will reset default indexes for dimension coordinates. Examples -------- >>> arr = xr.DataArray([5, 6, 7], coords=[("x", [0, 1, 2])]) >>> arr.pad(x=(1, 2), constant_values=0) <xarray.DataArray (x: 6)> Size: 48B array([0, 5, 6, 7, 0, 0]) Coordinates: * x (x) float64 48B nan 0.0 1.0 2.0 nan nan >>> da = xr.DataArray( ... [[0, 1, 2, 3], [10, 11, 12, 13]], ... dims=["x", "y"], ... coords={"x": [0, 1], "y": [10, 20, 30, 40], "z": ("x", [100, 200])}, ... ) >>> da.pad(x=1) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[nan, nan, nan, nan], [ 0., 1., 2., 3.], [10., 11., 12., 13.], [nan, nan, nan, nan]]) Coordinates: * x (x) float64 32B nan 0.0 1.0 nan * y (y) int64 32B 10 20 30 40 z (x) float64 32B nan 100.0 200.0 nan Careful, ``constant_values`` are coerced to the data type of the array which may lead to a loss of precision: >>> da.pad(x=1, constant_values=1.23456789) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[ 1, 1, 1, 1], [ 0, 1, 2, 3], [10, 11, 12, 13], [ 1, 1, 1, 1]]) Coordinates: * x (x) float64 32B nan 0.0 1.0 nan * y (y) int64 32B 10 20 30 40 z (x) float64 32B nan 100.0 200.0 nan """ ds = self._to_temp_dataset().pad( pad_width=pad_width, mode=mode, stat_length=stat_length, constant_values=constant_values, end_values=end_values, reflect_type=reflect_type, keep_attrs=keep_attrs, **pad_width_kwargs, ) return self._from_temp_dataset(ds) def idxmin( self, dim: Hashable | None = None, *, skipna: bool | None = None, fill_value: Any = dtypes.NA, keep_attrs: bool | None = None, ) -> Self: """Return the coordinate label of the minimum value along a dimension. Returns a new `DataArray` named after the dimension with the values of the coordinate labels along that dimension corresponding to minimum values along that dimension. In comparison to :py:meth:`~DataArray.argmin`, this returns the coordinate label while :py:meth:`~DataArray.argmin` returns the index. Parameters ---------- dim : str, optional Dimension over which to apply `idxmin`. This is optional for 1D arrays, but required for arrays with 2 or more dimensions. skipna : bool or None, default: None If True, skip missing values (as marked by NaN). By default, only skips missing values for ``float``, ``complex``, and ``object`` dtypes; other dtypes either do not have a sentinel missing value (``int``) or ``skipna=True`` has not been implemented (``datetime64`` or ``timedelta64``). fill_value : Any, default: NaN Value to be filled in case all of the values along a dimension are null. By default this is NaN. The fill value and result are automatically converted to a compatible dtype if possible. Ignored if ``skipna`` is False. keep_attrs : bool or None, optional If True, the attributes (``attrs``) will be copied from the original object to the new one. If False, the new object will be returned without attributes. Returns ------- reduced : DataArray New `DataArray` object with `idxmin` applied to its data and the indicated dimension removed. See Also -------- Dataset.idxmin, DataArray.idxmax, DataArray.min, DataArray.argmin Examples -------- >>> array = xr.DataArray( ... [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]} ... ) >>> array.min() <xarray.DataArray ()> Size: 8B array(-2) >>> array.argmin(...) {'x': <xarray.DataArray ()> Size: 8B array(4)} >>> array.idxmin() <xarray.DataArray 'x' ()> Size: 4B array('e', dtype='<U1') >>> array = xr.DataArray( ... [ ... [2.0, 1.0, 2.0, 0.0, -2.0], ... [-4.0, np.nan, 2.0, np.nan, -2.0], ... [np.nan, np.nan, 1.0, np.nan, np.nan], ... ], ... dims=["y", "x"], ... coords={"y": [-1, 0, 1], "x": np.arange(5.0) ** 2}, ... ) >>> array.min(dim="x") <xarray.DataArray (y: 3)> Size: 24B array([-2., -4., 1.]) Coordinates: * y (y) int64 24B -1 0 1 >>> array.argmin(dim="x") <xarray.DataArray (y: 3)> Size: 24B array([4, 0, 2]) Coordinates: * y (y) int64 24B -1 0 1 >>> array.idxmin(dim="x") <xarray.DataArray 'x' (y: 3)> Size: 24B array([16., 0., 4.]) Coordinates: * y (y) int64 24B -1 0 1 """ return computation._calc_idxminmax( array=self, func=lambda x, *args, **kwargs: x.argmin(*args, **kwargs), dim=dim, skipna=skipna, fill_value=fill_value, keep_attrs=keep_attrs, ) def idxmax( self, dim: Hashable = None, *, skipna: bool | None = None, fill_value: Any = dtypes.NA, keep_attrs: bool | None = None, ) -> Self: """Return the coordinate label of the maximum value along a dimension. Returns a new `DataArray` named after the dimension with the values of the coordinate labels along that dimension corresponding to maximum values along that dimension. In comparison to :py:meth:`~DataArray.argmax`, this returns the coordinate label while :py:meth:`~DataArray.argmax` returns the index. Parameters ---------- dim : Hashable, optional Dimension over which to apply `idxmax`. This is optional for 1D arrays, but required for arrays with 2 or more dimensions. skipna : bool or None, default: None If True, skip missing values (as marked by NaN). By default, only skips missing values for ``float``, ``complex``, and ``object`` dtypes; other dtypes either do not have a sentinel missing value (``int``) or ``skipna=True`` has not been implemented (``datetime64`` or ``timedelta64``). fill_value : Any, default: NaN Value to be filled in case all of the values along a dimension are null. By default this is NaN. The fill value and result are automatically converted to a compatible dtype if possible. Ignored if ``skipna`` is False. keep_attrs : bool or None, optional If True, the attributes (``attrs``) will be copied from the original object to the new one. If False, the new object will be returned without attributes. Returns ------- reduced : DataArray New `DataArray` object with `idxmax` applied to its data and the indicated dimension removed. See Also -------- Dataset.idxmax, DataArray.idxmin, DataArray.max, DataArray.argmax Examples -------- >>> array = xr.DataArray( ... [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]} ... ) >>> array.max() <xarray.DataArray ()> Size: 8B array(2) >>> array.argmax(...) {'x': <xarray.DataArray ()> Size: 8B array(1)} >>> array.idxmax() <xarray.DataArray 'x' ()> Size: 4B array('b', dtype='<U1') >>> array = xr.DataArray( ... [ ... [2.0, 1.0, 2.0, 0.0, -2.0], ... [-4.0, np.nan, 2.0, np.nan, -2.0], ... [np.nan, np.nan, 1.0, np.nan, np.nan], ... ], ... dims=["y", "x"], ... coords={"y": [-1, 0, 1], "x": np.arange(5.0) ** 2}, ... ) >>> array.max(dim="x") <xarray.DataArray (y: 3)> Size: 24B array([2., 2., 1.]) Coordinates: * y (y) int64 24B -1 0 1 >>> array.argmax(dim="x") <xarray.DataArray (y: 3)> Size: 24B array([0, 2, 2]) Coordinates: * y (y) int64 24B -1 0 1 >>> array.idxmax(dim="x") <xarray.DataArray 'x' (y: 3)> Size: 24B array([0., 4., 4.]) Coordinates: * y (y) int64 24B -1 0 1 """ return computation._calc_idxminmax( array=self, func=lambda x, *args, **kwargs: x.argmax(*args, **kwargs), dim=dim, skipna=skipna, fill_value=fill_value, keep_attrs=keep_attrs, ) def argmin( self, dim: Dims = None, *, axis: int | None = None, keep_attrs: bool | None = None, skipna: bool | None = None, ) -> Self | dict[Hashable, Self]: """Index or indices of the minimum of the DataArray over one or more dimensions. If a sequence is passed to 'dim', then result returned as dict of DataArrays, which can be passed directly to isel(). If a single str is passed to 'dim' then returns a DataArray with dtype int. If there are multiple minima, the indices of the first one found will be returned. Parameters ---------- dim : "...", str, Iterable of Hashable or None, optional The dimensions over which to find the minimum. By default, finds minimum over all dimensions - for now returning an int for backward compatibility, but this is deprecated, in future will return a dict with indices for all dimensions; to return a dict with all dimensions now, pass '...'. axis : int or None, optional Axis over which to apply `argmin`. Only one of the 'dim' and 'axis' arguments can be supplied. keep_attrs : bool or None, optional If True, the attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. skipna : bool or None, optional If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64). Returns ------- result : DataArray or dict of DataArray See Also -------- Variable.argmin, DataArray.idxmin Examples -------- >>> array = xr.DataArray([0, 2, -1, 3], dims="x") >>> array.min() <xarray.DataArray ()> Size: 8B array(-1) >>> array.argmin(...) {'x': <xarray.DataArray ()> Size: 8B array(2)} >>> array.isel(array.argmin(...)) <xarray.DataArray ()> Size: 8B array(-1) >>> array = xr.DataArray( ... [[[3, 2, 1], [3, 1, 2], [2, 1, 3]], [[1, 3, 2], [2, -5, 1], [2, 3, 1]]], ... dims=("x", "y", "z"), ... ) >>> array.min(dim="x") <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[ 1, 2, 1], [ 2, -5, 1], [ 2, 1, 1]]) Dimensions without coordinates: y, z >>> array.argmin(dim="x") <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[1, 0, 0], [1, 1, 1], [0, 0, 1]]) Dimensions without coordinates: y, z >>> array.argmin(dim=["x"]) {'x': <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[1, 0, 0], [1, 1, 1], [0, 0, 1]]) Dimensions without coordinates: y, z} >>> array.min(dim=("x", "z")) <xarray.DataArray (y: 3)> Size: 24B array([ 1, -5, 1]) Dimensions without coordinates: y >>> array.argmin(dim=["x", "z"]) {'x': <xarray.DataArray (y: 3)> Size: 24B array([0, 1, 0]) Dimensions without coordinates: y, 'z': <xarray.DataArray (y: 3)> Size: 24B array([2, 1, 1]) Dimensions without coordinates: y} >>> array.isel(array.argmin(dim=["x", "z"])) <xarray.DataArray (y: 3)> Size: 24B array([ 1, -5, 1]) Dimensions without coordinates: y """ result = self.variable.argmin(dim, axis, keep_attrs, skipna) if isinstance(result, dict): return {k: self._replace_maybe_drop_dims(v) for k, v in result.items()} else: return self._replace_maybe_drop_dims(result) def argmax( self, dim: Dims = None, *, axis: int | None = None, keep_attrs: bool | None = None, skipna: bool | None = None, ) -> Self | dict[Hashable, Self]: """Index or indices of the maximum of the DataArray over one or more dimensions. If a sequence is passed to 'dim', then result returned as dict of DataArrays, which can be passed directly to isel(). If a single str is passed to 'dim' then returns a DataArray with dtype int. If there are multiple maxima, the indices of the first one found will be returned. Parameters ---------- dim : "...", str, Iterable of Hashable or None, optional The dimensions over which to find the maximum. By default, finds maximum over all dimensions - for now returning an int for backward compatibility, but this is deprecated, in future will return a dict with indices for all dimensions; to return a dict with all dimensions now, pass '...'. axis : int or None, optional Axis over which to apply `argmax`. Only one of the 'dim' and 'axis' arguments can be supplied. keep_attrs : bool or None, optional If True, the attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. skipna : bool or None, optional If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64). Returns ------- result : DataArray or dict of DataArray See Also -------- Variable.argmax, DataArray.idxmax Examples -------- >>> array = xr.DataArray([0, 2, -1, 3], dims="x") >>> array.max() <xarray.DataArray ()> Size: 8B array(3) >>> array.argmax(...) {'x': <xarray.DataArray ()> Size: 8B array(3)} >>> array.isel(array.argmax(...)) <xarray.DataArray ()> Size: 8B array(3) >>> array = xr.DataArray( ... [[[3, 2, 1], [3, 1, 2], [2, 1, 3]], [[1, 3, 2], [2, 5, 1], [2, 3, 1]]], ... dims=("x", "y", "z"), ... ) >>> array.max(dim="x") <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[3, 3, 2], [3, 5, 2], [2, 3, 3]]) Dimensions without coordinates: y, z >>> array.argmax(dim="x") <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[0, 1, 1], [0, 1, 0], [0, 1, 0]]) Dimensions without coordinates: y, z >>> array.argmax(dim=["x"]) {'x': <xarray.DataArray (y: 3, z: 3)> Size: 72B array([[0, 1, 1], [0, 1, 0], [0, 1, 0]]) Dimensions without coordinates: y, z} >>> array.max(dim=("x", "z")) <xarray.DataArray (y: 3)> Size: 24B array([3, 5, 3]) Dimensions without coordinates: y >>> array.argmax(dim=["x", "z"]) {'x': <xarray.DataArray (y: 3)> Size: 24B array([0, 1, 0]) Dimensions without coordinates: y, 'z': <xarray.DataArray (y: 3)> Size: 24B array([0, 1, 2]) Dimensions without coordinates: y} >>> array.isel(array.argmax(dim=["x", "z"])) <xarray.DataArray (y: 3)> Size: 24B array([3, 5, 3]) Dimensions without coordinates: y """ result = self.variable.argmax(dim, axis, keep_attrs, skipna) if isinstance(result, dict): return {k: self._replace_maybe_drop_dims(v) for k, v in result.items()} else: return self._replace_maybe_drop_dims(result) def query( self, queries: Mapping[Any, Any] | None = None, parser: QueryParserOptions = "pandas", engine: QueryEngineOptions = None, missing_dims: ErrorOptionsWithWarn = "raise", **queries_kwargs: Any, ) -> DataArray: """Return a new data array indexed along the specified dimension(s), where the indexers are given as strings containing Python expressions to be evaluated against the values in the array. Parameters ---------- queries : dict-like or None, optional A dict-like with keys matching dimensions and values given by strings containing Python expressions to be evaluated against the data variables in the dataset. The expressions will be evaluated using the pandas eval() function, and can contain any valid Python expressions but cannot contain any Python statements. parser : {"pandas", "python"}, default: "pandas" The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. engine : {"python", "numexpr", None}, default: None The engine used to evaluate the expression. Supported engines are: - None: tries to use numexpr, falls back to python - "numexpr": evaluates expressions using numexpr - "python": performs operations as if you had eval’d in top level python missing_dims : {"raise", "warn", "ignore"}, default: "raise" What to do if dimensions that should be selected from are not present in the DataArray: - "raise": raise an exception - "warn": raise a warning, and ignore the missing dimensions - "ignore": ignore the missing dimensions **queries_kwargs : {dim: query, ...}, optional The keyword arguments form of ``queries``. One of queries or queries_kwargs must be provided. Returns ------- obj : DataArray A new DataArray with the same contents as this dataset, indexed by the results of the appropriate queries. See Also -------- DataArray.isel Dataset.query pandas.eval Examples -------- >>> da = xr.DataArray(np.arange(0, 5, 1), dims="x", name="a") >>> da <xarray.DataArray 'a' (x: 5)> Size: 40B array([0, 1, 2, 3, 4]) Dimensions without coordinates: x >>> da.query(x="a > 2") <xarray.DataArray 'a' (x: 2)> Size: 16B array([3, 4]) Dimensions without coordinates: x """ ds = self._to_dataset_whole(shallow_copy=True) ds = ds.query( queries=queries, parser=parser, engine=engine, missing_dims=missing_dims, **queries_kwargs, ) return ds[self.name] def curvefit( self, coords: str | DataArray | Iterable[str | DataArray], func: Callable[..., Any], reduce_dims: Dims = None, skipna: bool = True, p0: Mapping[str, float | DataArray] | None = None, bounds: Mapping[str, tuple[float | DataArray, float | DataArray]] | None = None, param_names: Sequence[str] | None = None, errors: ErrorOptions = "raise", kwargs: dict[str, Any] | None = None, ) -> Dataset: """ Curve fitting optimization for arbitrary functions. Wraps :py:func:`scipy.optimize.curve_fit` with :py:func:`~xarray.apply_ufunc`. Parameters ---------- coords : Hashable, DataArray, or sequence of DataArray or Hashable Independent coordinate(s) over which to perform the curve fitting. Must share at least one dimension with the calling object. When fitting multi-dimensional functions, supply `coords` as a sequence in the same order as arguments in `func`. To fit along existing dimensions of the calling object, `coords` can also be specified as a str or sequence of strs. func : callable User specified function in the form `f(x, *params)` which returns a numpy array of length `len(x)`. `params` are the fittable parameters which are optimized by scipy curve_fit. `x` can also be specified as a sequence containing multiple coordinates, e.g. `f((x0, x1), *params)`. reduce_dims : str, Iterable of Hashable or None, optional Additional dimension(s) over which to aggregate while fitting. For example, calling `ds.curvefit(coords='time', reduce_dims=['lat', 'lon'], ...)` will aggregate all lat and lon points and fit the specified function along the time dimension. skipna : bool, default: True Whether to skip missing values when fitting. Default is True. p0 : dict-like or None, optional Optional dictionary of parameter names to initial guesses passed to the `curve_fit` `p0` arg. If the values are DataArrays, they will be appropriately broadcast to the coordinates of the array. If none or only some parameters are passed, the rest will be assigned initial values following the default scipy behavior. bounds : dict-like, optional Optional dictionary of parameter names to tuples of bounding values passed to the `curve_fit` `bounds` arg. If any of the bounds are DataArrays, they will be appropriately broadcast to the coordinates of the array. If none or only some parameters are passed, the rest will be unbounded following the default scipy behavior. param_names : sequence of Hashable or None, optional Sequence of names for the fittable parameters of `func`. If not supplied, this will be automatically determined by arguments of `func`. `param_names` should be manually supplied when fitting a function that takes a variable number of parameters. errors : {"raise", "ignore"}, default: "raise" If 'raise', any errors from the `scipy.optimize_curve_fit` optimization will raise an exception. If 'ignore', the coefficients and covariances for the coordinates where the fitting failed will be NaN. **kwargs : optional Additional keyword arguments to passed to scipy curve_fit. Returns ------- curvefit_results : Dataset A single dataset which contains: [var]_curvefit_coefficients The coefficients of the best fit. [var]_curvefit_covariance The covariance matrix of the coefficient estimates. Examples -------- Generate some exponentially decaying data, where the decay constant and amplitude are different for different values of the coordinate ``x``: >>> rng = np.random.default_rng(seed=0) >>> def exp_decay(t, time_constant, amplitude): ... return np.exp(-t / time_constant) * amplitude ... >>> t = np.arange(11) >>> da = xr.DataArray( ... np.stack( ... [ ... exp_decay(t, 1, 0.1), ... exp_decay(t, 2, 0.2), ... exp_decay(t, 3, 0.3), ... ] ... ) ... + rng.normal(size=(3, t.size)) * 0.01, ... coords={"x": [0, 1, 2], "time": t}, ... ) >>> da <xarray.DataArray (x: 3, time: 11)> Size: 264B array([[ 0.1012573 , 0.0354669 , 0.01993775, 0.00602771, -0.00352513, 0.00428975, 0.01328788, 0.009562 , -0.00700381, -0.01264187, -0.0062282 ], [ 0.20041326, 0.09805582, 0.07138797, 0.03216692, 0.01974438, 0.01097441, 0.00679441, 0.01015578, 0.01408826, 0.00093645, 0.01501222], [ 0.29334805, 0.21847449, 0.16305984, 0.11130396, 0.07164415, 0.04744543, 0.03602333, 0.03129354, 0.01074885, 0.01284436, 0.00910995]]) Coordinates: * x (x) int64 24B 0 1 2 * time (time) int64 88B 0 1 2 3 4 5 6 7 8 9 10 Fit the exponential decay function to the data along the ``time`` dimension: >>> fit_result = da.curvefit("time", exp_decay) >>> fit_result["curvefit_coefficients"].sel( ... param="time_constant" ... ) # doctest: +NUMBER <xarray.DataArray 'curvefit_coefficients' (x: 3)> Size: 24B array([1.05692036, 1.73549638, 2.94215771]) Coordinates: * x (x) int64 24B 0 1 2 param <U13 52B 'time_constant' >>> fit_result["curvefit_coefficients"].sel(param="amplitude") <xarray.DataArray 'curvefit_coefficients' (x: 3)> Size: 24B array([0.1005489 , 0.19631423, 0.30003579]) Coordinates: * x (x) int64 24B 0 1 2 param <U13 52B 'amplitude' An initial guess can also be given with the ``p0`` arg (although it does not make much of a difference in this simple example). To have a different guess for different coordinate points, the guess can be a DataArray. Here we use the same initial guess for the amplitude but different guesses for the time constant: >>> fit_result = da.curvefit( ... "time", ... exp_decay, ... p0={ ... "amplitude": 0.2, ... "time_constant": xr.DataArray([1, 2, 3], coords=[da.x]), ... }, ... ) >>> fit_result["curvefit_coefficients"].sel(param="time_constant") <xarray.DataArray 'curvefit_coefficients' (x: 3)> Size: 24B array([1.0569213 , 1.73550052, 2.94215733]) Coordinates: * x (x) int64 24B 0 1 2 param <U13 52B 'time_constant' >>> fit_result["curvefit_coefficients"].sel(param="amplitude") <xarray.DataArray 'curvefit_coefficients' (x: 3)> Size: 24B array([0.10054889, 0.1963141 , 0.3000358 ]) Coordinates: * x (x) int64 24B 0 1 2 param <U13 52B 'amplitude' See Also -------- DataArray.polyfit scipy.optimize.curve_fit xarray.DataArray.xlm.modelfit External method from `xarray-lmfit <https://xarray-lmfit.readthedocs.io/>`_ with more curve fitting functionality. """ # For DataArray, use the original implementation by converting to a dataset first return self._to_temp_dataset().curvefit( coords, func, reduce_dims=reduce_dims, skipna=skipna, p0=p0, bounds=bounds, param_names=param_names, errors=errors, kwargs=kwargs, ) def drop_duplicates( self, dim: Hashable | Iterable[Hashable], *, keep: Literal["first", "last", False] = "first", ) -> Self: """Returns a new DataArray with duplicate dimension values removed. Parameters ---------- dim : dimension label or labels Pass `...` to drop duplicates along all dimensions. keep : {"first", "last", False}, default: "first" Determines which duplicates (if any) to keep. - ``"first"`` : Drop duplicates except for the first occurrence. - ``"last"`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. Returns ------- DataArray See Also -------- Dataset.drop_duplicates Examples -------- >>> da = xr.DataArray( ... np.arange(25).reshape(5, 5), ... dims=("x", "y"), ... coords={"x": np.array([0, 0, 1, 2, 3]), "y": np.array([0, 1, 2, 3, 3])}, ... ) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 40B 0 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 >>> da.drop_duplicates(dim="x") <xarray.DataArray (x: 4, y: 5)> Size: 160B array([[ 0, 1, 2, 3, 4], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 >>> da.drop_duplicates(dim="x", keep="last") <xarray.DataArray (x: 4, y: 5)> Size: 160B array([[ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 40B 0 1 2 3 3 Drop all duplicate dimension values: >>> da.drop_duplicates(dim=...) <xarray.DataArray (x: 4, y: 4)> Size: 128B array([[ 0, 1, 2, 3], [10, 11, 12, 13], [15, 16, 17, 18], [20, 21, 22, 23]]) Coordinates: * x (x) int64 32B 0 1 2 3 * y (y) int64 32B 0 1 2 3 """ deduplicated = self._to_temp_dataset().drop_duplicates(dim, keep=keep) return self._from_temp_dataset(deduplicated) def convert_calendar( self, calendar: str, dim: str = "time", align_on: str | None = None, missing: Any | None = None, use_cftime: bool | None = None, ) -> Self: """Convert the DataArray to another calendar. Only converts the individual timestamps, does not modify any data except in dropping invalid/surplus dates or inserting missing dates. If the source and target calendars are either no_leap, all_leap or a standard type, only the type of the time array is modified. When converting to a leap year from a non-leap year, the 29th of February is removed from the array. In the other direction the 29th of February will be missing in the output, unless `missing` is specified, in which case that value is inserted. For conversions involving `360_day` calendars, see Notes. This method is safe to use with sub-daily data as it doesn't touch the time part of the timestamps. Parameters --------- calendar : str The target calendar name. dim : str Name of the time coordinate. align_on : {None, 'date', 'year'} Must be specified when either source or target is a `360_day` calendar, ignored otherwise. See Notes. missing : Optional[any] By default, i.e. if the value is None, this method will simply attempt to convert the dates in the source calendar to the same dates in the target calendar, and drop any of those that are not possible to represent. If a value is provided, a new time coordinate will be created in the target calendar with the same frequency as the original time coordinate; for any dates that are not present in the source, the data will be filled with this value. Note that using this mode requires that the source data have an inferable frequency; for more information see :py:func:`xarray.infer_freq`. For certain frequency, source, and target calendar combinations, this could result in many missing values, see notes. use_cftime : boolean, optional Whether to use cftime objects in the output, only used if `calendar` is one of {"proleptic_gregorian", "gregorian" or "standard"}. If True, the new time axis uses cftime objects. If None (default), it uses :py:class:`numpy.datetime64` values if the date range permits it, and :py:class:`cftime.datetime` objects if not. If False, it uses :py:class:`numpy.datetime64` or fails. Returns ------- DataArray Copy of the dataarray with the time coordinate converted to the target calendar. If 'missing' was None (default), invalid dates in the new calendar are dropped, but missing dates are not inserted. If `missing` was given, the new data is reindexed to have a time axis with the same frequency as the source, but in the new calendar; any missing datapoints are filled with `missing`. Notes ----- Passing a value to `missing` is only usable if the source's time coordinate as an inferable frequencies (see :py:func:`~xarray.infer_freq`) and is only appropriate if the target coordinate, generated from this frequency, has dates equivalent to the source. It is usually **not** appropriate to use this mode with: - Period-end frequencies : 'A', 'Y', 'Q' or 'M', in opposition to 'AS' 'YS', 'QS' and 'MS' - Sub-monthly frequencies that do not divide a day evenly : 'W', 'nD' where `N != 1` or 'mH' where 24 % m != 0). If one of the source or target calendars is `"360_day"`, `align_on` must be specified and two options are offered. - "year" The dates are translated according to their relative position in the year, ignoring their original month and day information, meaning that the missing/surplus days are added/removed at regular intervals. From a `360_day` to a standard calendar, the output will be missing the following dates (day of year in parentheses): To a leap year: January 31st (31), March 31st (91), June 1st (153), July 31st (213), September 31st (275) and November 30th (335). To a non-leap year: February 6th (36), April 19th (109), July 2nd (183), September 12th (255), November 25th (329). From a standard calendar to a `"360_day"`, the following dates in the source array will be dropped: From a leap year: January 31st (31), April 1st (92), June 1st (153), August 1st (214), September 31st (275), December 1st (336) From a non-leap year: February 6th (37), April 20th (110), July 2nd (183), September 13th (256), November 25th (329) This option is best used on daily and subdaily data. - "date" The month/day information is conserved and invalid dates are dropped from the output. This means that when converting from a `"360_day"` to a standard calendar, all 31st (Jan, March, May, July, August, October and December) will be missing as there is no equivalent dates in the `"360_day"` calendar and the 29th (on non-leap years) and 30th of February will be dropped as there are no equivalent dates in a standard calendar. This option is best used with data on a frequency coarser than daily. """ return convert_calendar( self, calendar, dim=dim, align_on=align_on, missing=missing, use_cftime=use_cftime, ) def interp_calendar( self, target: pd.DatetimeIndex | CFTimeIndex | DataArray, dim: str = "time", ) -> Self: """Interpolates the DataArray to another calendar based on decimal year measure. Each timestamp in `source` and `target` are first converted to their decimal year equivalent then `source` is interpolated on the target coordinate. The decimal year of a timestamp is its year plus its sub-year component converted to the fraction of its year. For example "2000-03-01 12:00" is 2000.1653 in a standard calendar or 2000.16301 in a `"noleap"` calendar. This method should only be used when the time (HH:MM:SS) information of time coordinate is not important. Parameters ---------- target: DataArray or DatetimeIndex or CFTimeIndex The target time coordinate of a valid dtype (np.datetime64 or cftime objects) dim : str The time coordinate name. Return ------ DataArray The source interpolated on the decimal years of target, """ return interp_calendar(self, target, dim=dim) @_deprecate_positional_args("v2024.07.0") def groupby( self, group: GroupInput = None, *, squeeze: Literal[False] = False, restore_coord_dims: bool = False, eagerly_compute_group: Literal[False] | None = None, **groupers: Grouper, ) -> DataArrayGroupBy: """Returns a DataArrayGroupBy object for performing grouped operations. Parameters ---------- group : str or DataArray or IndexVariable or sequence of hashable or mapping of hashable to Grouper Array whose unique values should be used to group this array. If a Hashable, must be the name of a coordinate contained in this dataarray. If a dictionary, must map an existing variable name to a :py:class:`Grouper` instance. squeeze : False This argument is deprecated. restore_coord_dims : bool, default: False If True, also restore the dimension order of multi-dimensional coordinates. eagerly_compute_group: bool, optional This argument is deprecated. **groupers : Mapping of str to Grouper or Resampler Mapping of variable name to group by to :py:class:`Grouper` or :py:class:`Resampler` object. One of ``group`` or ``groupers`` must be provided. Only a single ``grouper`` is allowed at present. Returns ------- grouped : DataArrayGroupBy A `DataArrayGroupBy` object patterned after `pandas.GroupBy` that can be iterated over in the form of `(unique_value, grouped_array)` pairs. Examples -------- Calculate daily anomalies for daily data: >>> da = xr.DataArray( ... np.linspace(0, 1826, num=1827), ... coords=[pd.date_range("2000-01-01", "2004-12-31", freq="D")], ... dims="time", ... ) >>> da <xarray.DataArray (time: 1827)> Size: 15kB array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.824e+03, 1.825e+03, 1.826e+03], shape=(1827,)) Coordinates: * time (time) datetime64[ns] 15kB 2000-01-01 2000-01-02 ... 2004-12-31 >>> da.groupby("time.dayofyear") - da.groupby("time.dayofyear").mean("time") <xarray.DataArray (time: 1827)> Size: 15kB array([-730.8, -730.8, -730.8, ..., 730.2, 730.2, 730.5], shape=(1827,)) Coordinates: * time (time) datetime64[ns] 15kB 2000-01-01 2000-01-02 ... 2004-12-31 dayofyear (time) int64 15kB 1 2 3 4 5 6 7 8 ... 360 361 362 363 364 365 366 Use a ``Grouper`` object to be more explicit >>> da.coords["dayofyear"] = da.time.dt.dayofyear >>> da.groupby(dayofyear=xr.groupers.UniqueGrouper()).mean() <xarray.DataArray (dayofyear: 366)> Size: 3kB array([ 730.8, 731.8, 732.8, ..., 1093.8, 1094.8, 1095.5]) Coordinates: * dayofyear (dayofyear) int64 3kB 1 2 3 4 5 6 7 ... 361 362 363 364 365 366 >>> da = xr.DataArray( ... data=np.arange(12).reshape((4, 3)), ... dims=("x", "y"), ... coords={"x": [10, 20, 30, 40], "letters": ("x", list("abba"))}, ... ) Grouping by a single variable is easy >>> da.groupby("letters") <DataArrayGroupBy, grouped over 1 grouper(s), 2 groups in total: 'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b'> Execute a reduction >>> da.groupby("letters").sum() <xarray.DataArray (letters: 2, y: 3)> Size: 48B array([[ 9, 11, 13], [ 9, 11, 13]]) Coordinates: * letters (letters) object 16B 'a' 'b' Dimensions without coordinates: y Grouping by multiple variables >>> da.groupby(["letters", "x"]) <DataArrayGroupBy, grouped over 2 grouper(s), 8 groups in total: 'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b' 'x': UniqueGrouper('x'), 4/4 groups with labels 10, 20, 30, 40> Use Grouper objects to express more complicated GroupBy operations >>> from xarray.groupers import BinGrouper, UniqueGrouper >>> >>> da.groupby(x=BinGrouper(bins=[5, 15, 25]), letters=UniqueGrouper()).sum() <xarray.DataArray (x_bins: 2, letters: 2, y: 3)> Size: 96B array([[[ 0., 1., 2.], [nan, nan, nan]], <BLANKLINE> [[nan, nan, nan], [ 3., 4., 5.]]]) Coordinates: * x_bins (x_bins) interval[int64, right] 32B (5, 15] (15, 25] * letters (letters) object 16B 'a' 'b' Dimensions without coordinates: y See Also -------- :ref:`groupby` Users guide explanation of how to group and bin data. :doc:`xarray-tutorial:intermediate/computation/01-high-level-computation-patterns` Tutorial on :py:func:`~xarray.DataArray.Groupby` for windowed computation :doc:`xarray-tutorial:fundamentals/03.2_groupby_with_xarray` Tutorial on :py:func:`~xarray.DataArray.Groupby` demonstrating reductions, transformation and comparison with :py:func:`~xarray.DataArray.resample` :external:py:meth:`pandas.DataFrame.groupby <pandas.DataFrame.groupby>` :func:`DataArray.groupby_bins <DataArray.groupby_bins>` :func:`Dataset.groupby <Dataset.groupby>` :func:`core.groupby.DataArrayGroupBy <core.groupby.DataArrayGroupBy>` :func:`DataArray.coarsen <DataArray.coarsen>` :func:`Dataset.resample <Dataset.resample>` :func:`DataArray.resample <DataArray.resample>` """ from xarray.core.groupby import ( DataArrayGroupBy, _parse_group_and_groupers, _validate_groupby_squeeze, ) _validate_groupby_squeeze(squeeze) rgroupers = _parse_group_and_groupers( self, group, groupers, eagerly_compute_group=eagerly_compute_group ) return DataArrayGroupBy(self, rgroupers, restore_coord_dims=restore_coord_dims) @_deprecate_positional_args("v2024.07.0") def groupby_bins( self, group: Hashable | DataArray | IndexVariable, bins: Bins, right: bool = True, labels: ArrayLike | Literal[False] | None = None, precision: int = 3, include_lowest: bool = False, squeeze: Literal[False] = False, restore_coord_dims: bool = False, duplicates: Literal["raise", "drop"] = "raise", eagerly_compute_group: Literal[False] | None = None, ) -> DataArrayGroupBy: """Returns a DataArrayGroupBy object for performing grouped operations. Rather than using all unique values of `group`, the values are discretized first by applying `pandas.cut` [1]_ to `group`. Parameters ---------- group : Hashable, DataArray or IndexVariable Array whose binned values should be used to group this array. If a Hashable, must be the name of a coordinate contained in this dataarray. bins : int or array-like If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case. right : bool, default: True Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4]. labels : array-like, False or None, default: None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, string bin labels are assigned by `pandas.cut`. precision : int, default: 3 The precision at which to store and display the bins labels. include_lowest : bool, default: False Whether the first interval should be left-inclusive or not. squeeze : False This argument is deprecated. restore_coord_dims : bool, default: False If True, also restore the dimension order of multi-dimensional coordinates. duplicates : {"raise", "drop"}, default: "raise" If bin edges are not unique, raise ValueError or drop non-uniques. eagerly_compute_group: bool, optional This argument is deprecated. Returns ------- grouped : DataArrayGroupBy A `DataArrayGroupBy` object patterned after `pandas.GroupBy` that can be iterated over in the form of `(unique_value, grouped_array)` pairs. The name of the group has the added suffix `_bins` in order to distinguish it from the original variable. See Also -------- :ref:`groupby` Users guide explanation of how to group and bin data. DataArray.groupby Dataset.groupby_bins core.groupby.DataArrayGroupBy pandas.DataFrame.groupby References ---------- .. [1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html """ from xarray.core.groupby import ( DataArrayGroupBy, ResolvedGrouper, _validate_groupby_squeeze, ) from xarray.groupers import BinGrouper _validate_groupby_squeeze(squeeze) grouper = BinGrouper( bins=bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, ) rgrouper = ResolvedGrouper( grouper, group, self, eagerly_compute_group=eagerly_compute_group ) return DataArrayGroupBy( self, (rgrouper,), restore_coord_dims=restore_coord_dims, ) def weighted(self, weights: DataArray) -> DataArrayWeighted: """ Weighted DataArray operations. Parameters ---------- weights : DataArray An array of weights associated with the values in this Dataset. Each value in the data contributes to the reduction operation according to its associated weight. Notes ----- ``weights`` must be a DataArray and cannot contain missing values. Missing values can be replaced by ``weights.fillna(0)``. Returns ------- computation.weighted.DataArrayWeighted See Also -------- :func:`Dataset.weighted <Dataset.weighted>` :ref:`compute.weighted` User guide on weighted array reduction using :py:func:`~xarray.DataArray.weighted` :doc:`xarray-tutorial:fundamentals/03.4_weighted` Tutorial on Weighted Reduction using :py:func:`~xarray.DataArray.weighted` """ from xarray.computation.weighted import DataArrayWeighted return DataArrayWeighted(self, weights) def rolling( self, dim: Mapping[Any, int] | None = None, min_periods: int | None = None, center: bool | Mapping[Any, bool] = False, **window_kwargs: int, ) -> DataArrayRolling: """ Rolling window object for DataArrays. Parameters ---------- dim : dict, optional Mapping from the dimension name to create the rolling iterator along (e.g. `time`) to its moving window size. min_periods : int or None, default: None Minimum number of observations in window required to have a value (otherwise result is NA). The default, None, is equivalent to setting min_periods equal to the size of the window. center : bool or Mapping to int, default: False Set the labels at the center of the window. The default, False, sets the labels at the right edge of the window. **window_kwargs : optional The keyword arguments form of ``dim``. One of dim or window_kwargs must be provided. Returns ------- computation.rolling.DataArrayRolling Examples -------- Create rolling seasonal average of monthly data e.g. DJF, JFM, ..., SON: >>> da = xr.DataArray( ... np.linspace(0, 11, num=12), ... coords=[ ... pd.date_range( ... "1999-12-15", ... periods=12, ... freq=pd.DateOffset(months=1), ... ) ... ], ... dims="time", ... ) >>> da <xarray.DataArray (time: 12)> Size: 96B array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]) Coordinates: * time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15 >>> da.rolling(time=3, center=True).mean() <xarray.DataArray (time: 12)> Size: 96B array([nan, 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., nan]) Coordinates: * time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15 Remove the NaNs using ``dropna()``: >>> da.rolling(time=3, center=True).mean().dropna("time") <xarray.DataArray (time: 10)> Size: 80B array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) Coordinates: * time (time) datetime64[ns] 80B 2000-01-15 2000-02-15 ... 2000-10-15 See Also -------- DataArray.cumulative Dataset.rolling computation.rolling.DataArrayRolling """ from xarray.computation.rolling import DataArrayRolling dim = either_dict_or_kwargs(dim, window_kwargs, "rolling") return DataArrayRolling(self, dim, min_periods=min_periods, center=center) def cumulative( self, dim: str | Iterable[Hashable], min_periods: int = 1, ) -> DataArrayRolling: """ Accumulating object for DataArrays. Parameters ---------- dims : iterable of hashable The name(s) of the dimensions to create the cumulative window along min_periods : int, default: 1 Minimum number of observations in window required to have a value (otherwise result is NA). The default is 1 (note this is different from ``Rolling``, whose default is the size of the window). Returns ------- computation.rolling.DataArrayRolling Examples -------- Create rolling seasonal average of monthly data e.g. DJF, JFM, ..., SON: >>> da = xr.DataArray( ... np.linspace(0, 11, num=12), ... coords=[ ... pd.date_range( ... "1999-12-15", ... periods=12, ... freq=pd.DateOffset(months=1), ... ) ... ], ... dims="time", ... ) >>> da <xarray.DataArray (time: 12)> Size: 96B array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]) Coordinates: * time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15 >>> da.cumulative("time").sum() <xarray.DataArray (time: 12)> Size: 96B array([ 0., 1., 3., 6., 10., 15., 21., 28., 36., 45., 55., 66.]) Coordinates: * time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15 See Also -------- DataArray.rolling Dataset.cumulative computation.rolling.DataArrayRolling """ from xarray.computation.rolling import DataArrayRolling # Could we abstract this "normalize and check 'dim'" logic? It's currently shared # with the same method in Dataset. if isinstance(dim, str): if dim not in self.dims: raise ValueError( f"Dimension {dim} not found in data dimensions: {self.dims}" ) dim = {dim: self.sizes[dim]} else: missing_dims = set(dim) - set(self.dims) if missing_dims: raise ValueError( f"Dimensions {missing_dims} not found in data dimensions: {self.dims}" ) dim = {d: self.sizes[d] for d in dim} return DataArrayRolling(self, dim, min_periods=min_periods, center=False) def coarsen( self, dim: Mapping[Any, int] | None = None, boundary: CoarsenBoundaryOptions = "exact", side: SideOptions | Mapping[Any, SideOptions] = "left", coord_func: str | Callable | Mapping[Any, str | Callable] = "mean", **window_kwargs: int, ) -> DataArrayCoarsen: """ Coarsen object for DataArrays. Parameters ---------- dim : mapping of hashable to int, optional Mapping from the dimension name to the window size. boundary : {"exact", "trim", "pad"}, default: "exact" If 'exact', a ValueError will be raised if dimension size is not a multiple of the window size. If 'trim', the excess entries are dropped. If 'pad', NA will be padded. side : {"left", "right"} or mapping of str to {"left", "right"}, default: "left" coord_func : str or mapping of hashable to str, default: "mean" function (name) that is applied to the coordinates, or a mapping from coordinate name to function (name). Returns ------- computation.rolling.DataArrayCoarsen Examples -------- Coarsen the long time series by averaging over every three days. >>> da = xr.DataArray( ... np.linspace(0, 364, num=364), ... dims="time", ... coords={"time": pd.date_range("1999-12-15", periods=364)}, ... ) >>> da # +doctest: ELLIPSIS <xarray.DataArray (time: 364)> Size: 3kB array([ 0. , 1.00275482, 2.00550964, 3.00826446, 4.01101928, 5.0137741 , 6.01652893, 7.01928375, 8.02203857, 9.02479339, 10.02754821, 11.03030303, 12.03305785, 13.03581267, 14.03856749, 15.04132231, 16.04407713, 17.04683196, 18.04958678, 19.0523416 , 20.05509642, 21.05785124, 22.06060606, 23.06336088, 24.0661157 , 25.06887052, 26.07162534, 27.07438017, 28.07713499, 29.07988981, 30.08264463, 31.08539945, 32.08815427, 33.09090909, 34.09366391, 35.09641873, 36.09917355, 37.10192837, 38.1046832 , 39.10743802, 40.11019284, 41.11294766, 42.11570248, 43.1184573 , 44.12121212, 45.12396694, 46.12672176, 47.12947658, 48.1322314 , 49.13498623, 50.13774105, 51.14049587, 52.14325069, 53.14600551, 54.14876033, 55.15151515, 56.15426997, 57.15702479, 58.15977961, 59.16253444, 60.16528926, 61.16804408, 62.1707989 , 63.17355372, 64.17630854, 65.17906336, 66.18181818, 67.184573 , 68.18732782, 69.19008264, 70.19283747, 71.19559229, 72.19834711, 73.20110193, 74.20385675, 75.20661157, 76.20936639, 77.21212121, 78.21487603, 79.21763085, ... 284.78236915, 285.78512397, 286.78787879, 287.79063361, 288.79338843, 289.79614325, 290.79889807, 291.80165289, 292.80440771, 293.80716253, 294.80991736, 295.81267218, 296.815427 , 297.81818182, 298.82093664, 299.82369146, 300.82644628, 301.8292011 , 302.83195592, 303.83471074, 304.83746556, 305.84022039, 306.84297521, 307.84573003, 308.84848485, 309.85123967, 310.85399449, 311.85674931, 312.85950413, 313.86225895, 314.86501377, 315.8677686 , 316.87052342, 317.87327824, 318.87603306, 319.87878788, 320.8815427 , 321.88429752, 322.88705234, 323.88980716, 324.89256198, 325.8953168 , 326.89807163, 327.90082645, 328.90358127, 329.90633609, 330.90909091, 331.91184573, 332.91460055, 333.91735537, 334.92011019, 335.92286501, 336.92561983, 337.92837466, 338.93112948, 339.9338843 , 340.93663912, 341.93939394, 342.94214876, 343.94490358, 344.9476584 , 345.95041322, 346.95316804, 347.95592287, 348.95867769, 349.96143251, 350.96418733, 351.96694215, 352.96969697, 353.97245179, 354.97520661, 355.97796143, 356.98071625, 357.98347107, 358.9862259 , 359.98898072, 360.99173554, 361.99449036, 362.99724518, 364. ]) Coordinates: * time (time) datetime64[ns] 3kB 1999-12-15 1999-12-16 ... 2000-12-12 >>> da.coarsen(time=3, boundary="trim").mean() # +doctest: ELLIPSIS <xarray.DataArray (time: 121)> Size: 968B array([ 1.00275482, 4.01101928, 7.01928375, 10.02754821, 13.03581267, 16.04407713, 19.0523416 , 22.06060606, 25.06887052, 28.07713499, 31.08539945, 34.09366391, 37.10192837, 40.11019284, 43.1184573 , 46.12672176, 49.13498623, 52.14325069, 55.15151515, 58.15977961, 61.16804408, 64.17630854, 67.184573 , 70.19283747, 73.20110193, 76.20936639, 79.21763085, 82.22589532, 85.23415978, 88.24242424, 91.25068871, 94.25895317, 97.26721763, 100.27548209, 103.28374656, 106.29201102, 109.30027548, 112.30853994, 115.31680441, 118.32506887, 121.33333333, 124.3415978 , 127.34986226, 130.35812672, 133.36639118, 136.37465565, 139.38292011, 142.39118457, 145.39944904, 148.4077135 , 151.41597796, 154.42424242, 157.43250689, 160.44077135, 163.44903581, 166.45730028, 169.46556474, 172.4738292 , 175.48209366, 178.49035813, 181.49862259, 184.50688705, 187.51515152, 190.52341598, 193.53168044, 196.5399449 , 199.54820937, 202.55647383, 205.56473829, 208.57300275, 211.58126722, 214.58953168, 217.59779614, 220.60606061, 223.61432507, 226.62258953, 229.63085399, 232.63911846, 235.64738292, 238.65564738, 241.66391185, 244.67217631, 247.68044077, 250.68870523, 253.6969697 , 256.70523416, 259.71349862, 262.72176309, 265.73002755, 268.73829201, 271.74655647, 274.75482094, 277.7630854 , 280.77134986, 283.77961433, 286.78787879, 289.79614325, 292.80440771, 295.81267218, 298.82093664, 301.8292011 , 304.83746556, 307.84573003, 310.85399449, 313.86225895, 316.87052342, 319.87878788, 322.88705234, 325.8953168 , 328.90358127, 331.91184573, 334.92011019, 337.92837466, 340.93663912, 343.94490358, 346.95316804, 349.96143251, 352.96969697, 355.97796143, 358.9862259 , 361.99449036]) Coordinates: * time (time) datetime64[ns] 968B 1999-12-16 1999-12-19 ... 2000-12-10 >>> See Also -------- :class:`computation.rolling.DataArrayCoarsen <computation.rolling.DataArrayCoarsen>` :func:`Dataset.coarsen <Dataset.coarsen>` :ref:`reshape.coarsen` User guide describing :py:func:`~xarray.DataArray.coarsen` :ref:`compute.coarsen` User guide on block aggregation :py:func:`~xarray.DataArray.coarsen` :doc:`xarray-tutorial:fundamentals/03.3_windowed` Tutorial on windowed computation using :py:func:`~xarray.DataArray.coarsen` """ from xarray.computation.rolling import DataArrayCoarsen dim = either_dict_or_kwargs(dim, window_kwargs, "coarsen") return DataArrayCoarsen( self, dim, boundary=boundary, side=side, coord_func=coord_func, ) @_deprecate_positional_args("v2024.07.0") def resample( self, indexer: Mapping[Hashable, ResampleCompatible | Resampler] | None = None, *, skipna: bool | None = None, closed: SideOptions | None = None, label: SideOptions | None = None, offset: pd.Timedelta | datetime.timedelta | str | None = None, origin: str | DatetimeLike = "start_day", restore_coord_dims: bool | None = None, **indexer_kwargs: ResampleCompatible | Resampler, ) -> DataArrayResample: """Returns a Resample object for performing resampling operations. Handles both downsampling and upsampling. The resampled dimension must be a datetime-like coordinate. If any intervals contain no values from the original object, they will be given the value ``NaN``. Parameters ---------- indexer : Mapping of Hashable to str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler, optional Mapping from the dimension name to resample frequency [1]_. The dimension must be datetime-like. skipna : bool, optional Whether to skip missing values when aggregating in downsampling. closed : {"left", "right"}, optional Side of each interval to treat as closed. label : {"left", "right"}, optional Side of each interval to use for labeling. origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pd.Timestamp, datetime.datetime, np.datetime64, or cftime.datetime, default 'start_day' The datetime on which to adjust the grouping. The timezone of origin must match the timezone of the index. If a datetime is not used, these values are also supported: - 'epoch': `origin` is 1970-01-01 - 'start': `origin` is the first value of the timeseries - 'start_day': `origin` is the first day at midnight of the timeseries - 'end': `origin` is the last value of the timeseries - 'end_day': `origin` is the ceiling midnight of the last day offset : pd.Timedelta, datetime.timedelta, or str, default is None An offset timedelta added to the origin. restore_coord_dims : bool, optional If True, also restore the dimension order of multi-dimensional coordinates. **indexer_kwargs : str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler The keyword arguments form of ``indexer``. One of indexer or indexer_kwargs must be provided. Returns ------- resampled : core.resample.DataArrayResample This object resampled. Examples -------- Downsample monthly time-series data to seasonal data: >>> da = xr.DataArray( ... np.linspace(0, 11, num=12), ... coords=[ ... pd.date_range( ... "1999-12-15", ... periods=12, ... freq=pd.DateOffset(months=1), ... ) ... ], ... dims="time", ... ) >>> da <xarray.DataArray (time: 12)> Size: 96B array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]) Coordinates: * time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15 >>> da.resample(time="QS-DEC").mean() <xarray.DataArray (time: 4)> Size: 32B array([ 1., 4., 7., 10.]) Coordinates: * time (time) datetime64[ns] 32B 1999-12-01 2000-03-01 ... 2000-09-01 Upsample monthly time-series data to daily data: >>> da.resample(time="1D").interpolate("linear") # +doctest: ELLIPSIS <xarray.DataArray (time: 337)> Size: 3kB array([ 0. , 0.03225806, 0.06451613, 0.09677419, 0.12903226, 0.16129032, 0.19354839, 0.22580645, 0.25806452, 0.29032258, 0.32258065, 0.35483871, 0.38709677, 0.41935484, 0.4516129 , 0.48387097, 0.51612903, 0.5483871 , 0.58064516, 0.61290323, 0.64516129, 0.67741935, 0.70967742, 0.74193548, 0.77419355, 0.80645161, 0.83870968, 0.87096774, 0.90322581, 0.93548387, 0.96774194, 1. , ..., 9. , 9.03333333, 9.06666667, 9.1 , 9.13333333, 9.16666667, 9.2 , 9.23333333, 9.26666667, 9.3 , 9.33333333, 9.36666667, 9.4 , 9.43333333, 9.46666667, 9.5 , 9.53333333, 9.56666667, 9.6 , 9.63333333, 9.66666667, 9.7 , 9.73333333, 9.76666667, 9.8 , 9.83333333, 9.86666667, 9.9 , 9.93333333, 9.96666667, 10. , 10.03225806, 10.06451613, 10.09677419, 10.12903226, 10.16129032, 10.19354839, 10.22580645, 10.25806452, 10.29032258, 10.32258065, 10.35483871, 10.38709677, 10.41935484, 10.4516129 , 10.48387097, 10.51612903, 10.5483871 , 10.58064516, 10.61290323, 10.64516129, 10.67741935, 10.70967742, 10.74193548, 10.77419355, 10.80645161, 10.83870968, 10.87096774, 10.90322581, 10.93548387, 10.96774194, 11. ]) Coordinates: * time (time) datetime64[ns] 3kB 1999-12-15 1999-12-16 ... 2000-11-15 Limit scope of upsampling method >>> da.resample(time="1D").nearest(tolerance="1D") <xarray.DataArray (time: 337)> Size: 3kB array([ 0., 0., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 1., 1., 1., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 2., 2., 2., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 3., 3., 3., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 4., 4., 4., nan, nan, nan, nan, nan, ..., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 10., 10., 10., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 11., 11.]) Coordinates: * time (time) datetime64[ns] 3kB 1999-12-15 1999-12-16 ... 2000-11-15 See Also -------- Dataset.resample pandas.Series.resample pandas.DataFrame.resample References ---------- .. [1] https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases """ from xarray.core.resample import DataArrayResample return self._resample( resample_cls=DataArrayResample, indexer=indexer, skipna=skipna, closed=closed, label=label, offset=offset, origin=origin, restore_coord_dims=restore_coord_dims, **indexer_kwargs, ) def to_dask_dataframe( self, dim_order: Sequence[Hashable] | None = None, set_index: bool = False, ) -> DaskDataFrame: """Convert this array into a dask.dataframe.DataFrame. Parameters ---------- dim_order : Sequence of Hashable or None , optional Hierarchical dimension order for the resulting dataframe. Array content is transposed to this order and then written out as flat vectors in contiguous order, so the last dimension in this list will be contiguous in the resulting DataFrame. This has a major influence on which operations are efficient on the resulting dask dataframe. set_index : bool, default: False If set_index=True, the dask DataFrame is indexed by this dataset's coordinate. Since dask DataFrames do not support multi-indexes, set_index only works if the dataset only contains one dimension. Returns ------- dask.dataframe.DataFrame Examples -------- >>> da = xr.DataArray( ... np.arange(4 * 2 * 2).reshape(4, 2, 2), ... dims=("time", "lat", "lon"), ... coords={ ... "time": np.arange(4), ... "lat": [-30, -20], ... "lon": [120, 130], ... }, ... name="eg_dataarray", ... attrs={"units": "Celsius", "description": "Random temperature data"}, ... ) >>> da.to_dask_dataframe(["lat", "lon", "time"]).compute() lat lon time eg_dataarray 0 -30 120 0 0 1 -30 120 1 4 2 -30 120 2 8 3 -30 120 3 12 4 -30 130 0 1 5 -30 130 1 5 6 -30 130 2 9 7 -30 130 3 13 8 -20 120 0 2 9 -20 120 1 6 10 -20 120 2 10 11 -20 120 3 14 12 -20 130 0 3 13 -20 130 1 7 14 -20 130 2 11 15 -20 130 3 15 """ if self.name is None: raise ValueError( "Cannot convert an unnamed DataArray to a " "dask dataframe : use the ``.rename`` method to assign a name." ) name = self.name ds = self._to_dataset_whole(name, shallow_copy=False) return ds.to_dask_dataframe(dim_order, set_index) # this needs to be at the end, or mypy will confuse with `str` # https://mypy.readthedocs.io/en/latest/common_issues.html#dealing-with-conflicting-names str = utils.UncachedAccessor(StringAccessor["DataArray"]) def drop_attrs(self, *, deep: bool = True) -> Self: """ Removes all attributes from the DataArray. Parameters ---------- deep : bool, default True Removes attributes from coordinates. Returns ------- DataArray """ if not deep: return self._replace(attrs={}) else: return ( self._to_temp_dataset() .drop_attrs(deep=deep) .pipe(self._from_temp_dataset) )
DataArray
python
dask__dask
dask/array/_array_expr/_rechunk.py
{ "start": 442, "end": 2605 }
class ____(ArrayExpr): _parameters = [ "array", "_chunks", "threshold", "block_size_limit", "balance", "method", ] _defaults = { "_chunks": "auto", "threshold": None, "block_size_limit": None, "balance": None, "method": None, } @property def _meta(self): return self.array._meta @property def _name(self): return "rechunk-merge-" + tokenize(*self.operands) @cached_property def chunks(self): x = self.array chunks = self.operand("_chunks") # don't rechunk if array is empty if x.ndim > 0 and all(s == 0 for s in x.shape): return x.chunks if isinstance(chunks, dict): chunks = {validate_axis(c, x.ndim): v for c, v in chunks.items()} for i in range(x.ndim): if i not in chunks: chunks[i] = x.chunks[i] elif chunks[i] is None: chunks[i] = x.chunks[i] if isinstance(chunks, (tuple, list)): chunks = tuple( lc if lc is not None else rc for lc, rc in zip(chunks, x.chunks) ) chunks = normalize_chunks( chunks, x.shape, limit=self.block_size_limit, dtype=x.dtype, previous_chunks=x.chunks, ) if not len(chunks) == x.ndim: raise ValueError("Provided chunks are not consistent with shape") if self.balance: chunks = tuple(_balance_chunksizes(chunk) for chunk in chunks) _validate_rechunk(x.chunks, chunks) return chunks def _lower(self): if not self.balance and (self.chunks == self.array.chunks): return self.array method = self.method or _choose_rechunk_method( self.array.chunks, self.chunks, threshold=self.threshold ) if method == "p2p": raise NotImplementedError else: return TasksRechunk( self.array, self.chunks, self.threshold, self.block_size_limit )
Rechunk
python
psf__black
gallery/gallery.py
{ "start": 781, "end": 9065 }
class ____(NamedTuple): version: str config: str | None = None def get_pypi_download_url(package: str, version: str | None) -> str: with urlopen(PYPI_INSTANCE + f"/{package}/json") as page: metadata = json.load(page) if version is None: sources = metadata["urls"] else: if version in metadata["releases"]: sources = metadata["releases"][version] else: raise ValueError( f"No releases found with version ('{version}') tag. " f"Found releases: {metadata['releases'].keys()}" ) for source in sources: if source["python_version"] == "source": break else: raise ValueError(f"Couldn't find any sources for {package}") return cast(str, source["url"]) def get_top_packages() -> list[str]: with urlopen(PYPI_TOP_PACKAGES) as page: result = json.load(page) return [package["project"] for package in result["rows"]] def get_package_source(package: str, version: str | None) -> str: if package == "cpython": if version is None: version = "main" return f"https://github.com/python/cpython/archive/{version}.zip" elif package == "pypy": if version is None: version = "branch/default" return ( f"https://foss.heptapod.net/pypy/pypy/repository/{version}/archive.tar.bz2" ) else: return get_pypi_download_url(package, version) def get_archive_manager(local_file: str) -> ArchiveKind: if tarfile.is_tarfile(local_file): return tarfile.open(local_file) elif zipfile.is_zipfile(local_file): return zipfile.ZipFile(local_file) else: raise ValueError("Unknown archive kind.") def get_first_archive_member(archive: ArchiveKind) -> str: if isinstance(archive, tarfile.TarFile): return archive.getnames()[0] elif isinstance(archive, zipfile.ZipFile): return archive.namelist()[0] def download_and_extract(package: str, version: str | None, directory: Path) -> Path: source = get_package_source(package, version) local_file, _ = urlretrieve(source, directory / f"{package}-src") with get_archive_manager(local_file) as archive: archive.extractall(path=directory) result_dir = get_first_archive_member(archive) return directory / result_dir def get_package(package: str, version: str | None, directory: Path) -> Path | None: try: return download_and_extract(package, version, directory) except Exception: print(f"Caught an exception while downloading {package}.") traceback.print_exc() return None DEFAULT_SLICE = slice(None) # for flake8 def download_and_extract_top_packages( directory: Path, workers: int = 8, limit: slice = DEFAULT_SLICE, ) -> Generator[Path, None, None]: with ThreadPoolExecutor(max_workers=workers) as executor: bound_downloader = partial(get_package, version=None, directory=directory) for package in executor.map(bound_downloader, get_top_packages()[limit]): if package is not None: yield package def git_create_repository(repo: Path) -> None: subprocess.run(["git", "init"], cwd=repo) git_add_and_commit(msg="Initial commit", repo=repo) def git_add_and_commit(msg: str, repo: Path) -> None: subprocess.run(["git", "add", "."], cwd=repo) subprocess.run(["git", "commit", "-m", msg, "--allow-empty"], cwd=repo) def git_switch_branch( branch: str, repo: Path, new: bool = False, from_branch: str | None = None ) -> None: args = ["git", "checkout"] if new: args.append("-b") args.append(branch) if from_branch: args.append(from_branch) subprocess.run(args, cwd=repo) def init_repos(options: Namespace) -> tuple[Path, ...]: options.output.mkdir(exist_ok=True) if options.top_packages: source_directories = tuple( download_and_extract_top_packages( directory=options.output, workers=options.workers, limit=slice(None, options.top_packages), ) ) else: source_directories = ( download_and_extract( package=options.pypi_package, version=options.version, directory=options.output, ), ) for source_directory in source_directories: git_create_repository(source_directory) if options.black_repo is None: subprocess.run( ["git", "clone", "https://github.com/psf/black.git", INTERNAL_BLACK_REPO], cwd=options.output, ) options.black_repo = options.output / INTERNAL_BLACK_REPO return source_directories @lru_cache(8) def black_runner(version: str, black_repo: Path) -> Path: directory = tempfile.TemporaryDirectory() venv.create(directory.name, with_pip=True) python = Path(directory.name) / "bin" / "python" subprocess.run([python, "-m", "pip", "install", "-e", black_repo]) atexit.register(directory.cleanup) return python def format_repo_with_version( repo: Path, from_branch: str | None, black_repo: Path, black_version: BlackVersion, input_directory: Path, ) -> str: current_branch = f"black-{black_version.version}" git_switch_branch(black_version.version, repo=black_repo) git_switch_branch(current_branch, repo=repo, new=True, from_branch=from_branch) format_cmd: list[Path | str] = [ black_runner(black_version.version, black_repo), (black_repo / "black.py").resolve(), ".", ] if black_version.config: format_cmd.extend(["--config", input_directory / black_version.config]) subprocess.run(format_cmd, cwd=repo, check=False) # ensure the process # continuess to run even it can't format some files. Reporting those # should be enough git_add_and_commit(f"Format with black:{black_version.version}", repo=repo) return current_branch def format_repos(repos: tuple[Path, ...], options: Namespace) -> None: black_versions = tuple( BlackVersion(*version.split(":")) for version in options.versions ) for repo in repos: from_branch = None for black_version in black_versions: from_branch = format_repo_with_version( repo=repo, from_branch=from_branch, black_repo=options.black_repo, black_version=black_version, input_directory=options.input, ) git_switch_branch("main", repo=repo) git_switch_branch("main", repo=options.black_repo) def main() -> None: parser = ArgumentParser(description="""Black Gallery is a script that automates the process of applying different Black versions to a selected PyPI package and seeing the results between versions.""") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-p", "--pypi-package", help="PyPI package to download.") group.add_argument( "-t", "--top-packages", help="Top n PyPI packages to download.", type=int ) parser.add_argument("-b", "--black-repo", help="Black's Git repository.", type=Path) parser.add_argument( "-v", "--version", help=( "Version for given PyPI package. Will be discarded if used with -t option." ), ) parser.add_argument( "-w", "--workers", help=( "Maximum number of threads to download with at the same time. " "Will be discarded if used with -p option." ), ) parser.add_argument( "-i", "--input", default=Path("/input"), type=Path, help="Input directory to read configuration.", ) parser.add_argument( "-o", "--output", default=Path("/output"), type=Path, help="Output directory to download and put result artifacts.", ) parser.add_argument("versions", nargs="*", default=("main",), help="") options = parser.parse_args() repos = init_repos(options) format_repos(repos, options) if __name__ == "__main__": main()
BlackVersion
python
PrefectHQ__prefect
src/prefect/server/events/schemas/events.py
{ "start": 11561, "end": 12137 }
class ____(PrefectBaseModel): """The count of events with the given filter value""" value: str = Field(..., description="The value to use for filtering") label: str = Field(..., description="The value to display for this count") count: int = Field(..., description="The count of matching events") start_time: prefect.types._datetime.DateTime = Field( ..., description="The start time of this group of events" ) end_time: prefect.types._datetime.DateTime = Field( ..., description="The end time of this group of events" )
EventCount
python
django__django
tests/forms_tests/tests/test_forms.py
{ "start": 232853, "end": 233051 }
class ____(DjangoTemplates): bound_field_class = BoundFieldWithoutColon @override_settings( FORM_RENDERER="forms_tests.tests.test_forms.BoundFieldOverrideRenderer" )
BoundFieldOverrideRenderer
python
getsentry__sentry
tests/sentry/integrations/slack/webhooks/commands/test_link_team.py
{ "start": 5161, "end": 8118 }
class ____(SlackCommandsLinkTeamTestBase): def setUp(self) -> None: super().setUp() self.link_team() @responses.activate @patch("sentry.integrations.utils.metrics.EventLifecycle.record_event") def test_unlink_team(self, mock_record: MagicMock) -> None: data = self.send_slack_message( "unlink team", channel_name=self.channel_name, channel_id=self.channel_id, ) assert "Click here to unlink your team from this channel" in get_response_text(data) assert_slo_metric(mock_record, EventLifecycleOutcome.SUCCESS) @responses.activate @patch("sentry.integrations.utils.metrics.EventLifecycle.record_event") def test_unlink_team_as_team_admin(self, mock_record: MagicMock) -> None: """ Test that when a user who is a team admin attempts to unlink a team we allow it. """ self.login_as(self.team_admin_user) link_user(self.team_admin_user, self.idp, slack_id=OTHER_SLACK_ID) data = self.send_slack_message( "unlink team", channel_name=self.channel_name, channel_id=self.channel_id, ) assert "Click here to unlink your team from this channel" in get_response_text(data) assert_slo_metric(mock_record, EventLifecycleOutcome.SUCCESS) @responses.activate @patch("sentry.integrations.utils.metrics.EventLifecycle.record_event") def test_unlink_no_team(self, mock_record: MagicMock) -> None: """ Test for when a user attempts to remove a link between a Slack channel and a Sentry team that does not exist. """ data = self.send_slack_message( "unlink team", channel_name="specific", channel_id=OTHER_SLACK_ID, ) assert TEAM_NOT_LINKED_MESSAGE in get_response_text(data) assert_slo_metric(mock_record, EventLifecycleOutcome.HALTED) @responses.activate @patch("sentry.integrations.utils.metrics.EventLifecycle.record_event") def test_unlink_multiple_orgs(self, mock_record: MagicMock) -> None: # Create another organization and team for this user that is linked through `self.integration`. organization2 = self.create_organization(owner=self.user) team2 = self.create_team(organization=organization2, members=[self.user]) with assume_test_silo_mode(SiloMode.CONTROL): self.create_organization_integration( organization_id=organization2.id, integration=self.integration ) self.link_team(team2) data = self.send_slack_message( "unlink team", channel_name=self.channel_name, channel_id=self.channel_id, ) assert "Click here to unlink your team from this channel" in get_response_text(data) assert_slo_metric(mock_record, EventLifecycleOutcome.SUCCESS)
SlackCommandsUnlinkTeamTest
python
davidhalter__jedi
jedi/api/completion.py
{ "start": 1003, "end": 4385 }
class ____(ParamNameWrapper): def get_public_name(self): return self.string_name + '=' def _get_signature_param_names(signatures, positional_count, used_kwargs): # Add named params for call_sig in signatures: for i, p in enumerate(call_sig.params): kind = p.kind if i < positional_count and kind == Parameter.POSITIONAL_OR_KEYWORD: continue if kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY) \ and p.name not in used_kwargs: yield ParamNameWithEquals(p._name) def _must_be_kwarg(signatures, positional_count, used_kwargs): if used_kwargs: return True must_be_kwarg = True for signature in signatures: for i, p in enumerate(signature.params): kind = p.kind if kind is Parameter.VAR_POSITIONAL: # In case there were not already kwargs, the next param can # always be a normal argument. return False if i >= positional_count and kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.POSITIONAL_ONLY): must_be_kwarg = False break if not must_be_kwarg: break return must_be_kwarg def filter_names(inference_state, completion_names, stack, like_name, fuzzy, imported_names, cached_name): comp_dct = set() if settings.case_insensitive_completion: like_name = like_name.lower() for name in completion_names: string = name.string_name if string in imported_names and string != like_name: continue if settings.case_insensitive_completion: string = string.lower() if helpers.match(string, like_name, fuzzy=fuzzy): new = classes.Completion( inference_state, name, stack, len(like_name), is_fuzzy=fuzzy, cached_name=cached_name, ) k = (new.name, new.complete) # key if k not in comp_dct: comp_dct.add(k) tree_name = name.tree_name if tree_name is not None: definition = tree_name.get_definition() if definition is not None and definition.type == 'del_stmt': continue yield new def _remove_duplicates(completions, other_completions): names = {d.name for d in other_completions} return [c for c in completions if c.name not in names] def get_user_context(module_context, position): """ Returns the scope in which the user resides. This includes flows. """ leaf = module_context.tree_node.get_leaf_for_position(position, include_prefixes=True) return module_context.create_context(leaf) def get_flow_scope_node(module_node, position): node = module_node.get_leaf_for_position(position, include_prefixes=True) while not isinstance(node, (tree.Scope, tree.Flow)): node = node.parent return node @plugin_manager.decorate() def complete_param_names(context, function_name, decorator_nodes): # Basically there's no way to do param completion. The plugins are # responsible for this. return []
ParamNameWithEquals
python
ansible__ansible
test/lib/ansible_test/_internal/host_profiles.py
{ "start": 7536, "end": 13858 }
class ____[THostConfig: HostConfig](HostProfile[THostConfig], DebuggerProfile, metaclass=abc.ABCMeta): """Base class for profiles remote debugging.""" __DEBUGGING_PORT_KEY = 'debugging_port' __DEBUGGING_FORWARDER_KEY = 'debugging_forwarder' @property def debugger(self) -> DebuggerSettings | None: """The debugger settings for this host if present and enabled, otherwise None.""" return self.args.metadata.debugger_settings @property def debugging_enabled(self) -> bool: """Returns `True` if debugging is enabled for this profile, otherwise `False`.""" if self.controller: return self.args.metadata.debugger_flags.enable return self.args.metadata.debugger_flags.ansiballz @property def debugger_host(self) -> str: """The debugger host to use.""" return 'localhost' @property def debugger_port(self) -> int: """The debugger port to use.""" return self.state.get(self.__DEBUGGING_PORT_KEY) or self.origin_debugger_port @property def debugging_forwarder(self) -> SshProcess | None: """The SSH forwarding process, if enabled.""" return self.cache.get(self.__DEBUGGING_FORWARDER_KEY) @debugging_forwarder.setter def debugging_forwarder(self, value: SshProcess) -> None: """The SSH forwarding process, if enabled.""" self.cache[self.__DEBUGGING_FORWARDER_KEY] = value @property def origin_debugger_port(self) -> int: """The debugger port on the origin.""" return self.debugger.port def enable_debugger_forwarding(self, ssh: SshConnectionDetail) -> None: """Enable debugger port forwarding from the origin.""" if not self.debugging_enabled: return endpoint = ('localhost', self.origin_debugger_port) forwards = [endpoint] self.debugging_forwarder = create_ssh_port_forwards(self.args, ssh, forwards) port_forwards = self.debugging_forwarder.collect_port_forwards() self.state[self.__DEBUGGING_PORT_KEY] = port = port_forwards[endpoint] display.info(f'Remote debugging of {self.name!r} is available on port {port}.', verbosity=1) def deprovision(self) -> None: """Deprovision the host after delegation has completed.""" super().deprovision() if not self.debugging_forwarder: return # forwarding not in use self.debugging_forwarder.terminate() display.info(f'Waiting for the {self.name!r} remote debugging SSH port forwarding process to terminate.', verbosity=1) self.debugging_forwarder.wait() def get_source_mapping(self) -> dict[str, str]: """Get the source mapping from the given metadata.""" from . import data_context if collection := data_context().content.collection: source_mapping = { f"{self.args.metadata.ansible_test_root}/": f'{ANSIBLE_TEST_ROOT}/', f"{self.args.metadata.ansible_lib_root}/": f'{ANSIBLE_LIB_ROOT}/', f'{self.args.metadata.collection_root}/ansible_collections/': f'{collection.root}/ansible_collections/', } else: ansible_source_root = pathlib.Path(self.args.metadata.ansible_lib_root).parent.parent source_mapping = { f"{ansible_source_root}/": f'{ANSIBLE_SOURCE_ROOT}/', } source_mapping = {key: value for key, value in source_mapping.items() if key != value} return source_mapping def activate_debugger(self) -> None: """Activate the debugger after delegation.""" if not self.args.metadata.loaded or not self.args.metadata.debugger_flags.self: return display.info('Activating remote debugging of ansible-test.', verbosity=1) os.environ.update(self.debugger.get_environment_variables(self)) self.debugger.activate_debugger(self) pass # pylint: disable=unnecessary-pass # when suspend is True, execution pauses here -- it's also a convenient place to put a breakpoint def get_ansiballz_inventory_variables(self) -> dict[str, t.Any]: """ Return inventory variables for remote debugging of AnsiballZ modules. When delegating, this function must be called after delegation. """ if not self.args.metadata.debugger_flags.ansiballz: return {} debug_type = self.debugger.get_debug_type() return { f"_ansible_ansiballz_{debug_type}_config": json.dumps(self.get_ansiballz_debugger_config()), } def get_ansiballz_environment_variables(self) -> dict[str, t.Any]: """ Return environment variables for remote debugging of AnsiballZ modules. When delegating, this function must be called after delegation. """ if not self.args.metadata.debugger_flags.ansiballz: return {} debug_type = self.debugger.get_debug_type().upper() return { f"_ANSIBLE_ANSIBALLZ_{debug_type}_CONFIG": json.dumps(self.get_ansiballz_debugger_config()), } def get_ansiballz_debugger_config(self) -> dict[str, t.Any]: """ Return config for remote debugging of AnsiballZ modules. When delegating, this function must be called after delegation. """ debugger_config = self.debugger.get_ansiballz_config(self) display.info(f'>>> Debugger Config ({self.name} AnsiballZ)\n{json.dumps(debugger_config, indent=4)}', verbosity=3) return debugger_config def get_ansible_cli_environment_variables(self) -> dict[str, t.Any]: """ Return environment variables for remote debugging of the Ansible CLI. When delegating, this function must be called after delegation. """ if not self.args.metadata.debugger_flags.cli: return {} debugger_config = dict( args=self.debugger.get_cli_arguments(self), env=self.debugger.get_environment_variables(self), ) display.info(f'>>> Debugger Config ({self.name} Ansible CLI)\n{json.dumps(debugger_config, indent=4)}', verbosity=3) return dict( ANSIBLE_TEST_DEBUGGER_CONFIG=json.dumps(debugger_config), )
DebuggableProfile
python
gevent__gevent
src/greentest/3.13/test_queue.py
{ "start": 22138, "end": 22224 }
class ____(QueueTest, unittest.TestCase): queue = py_queue @need_c_queue
PyQueueTest
python
Pylons__pyramid
tests/test_view.py
{ "start": 16218, "end": 25523 }
class ____(unittest.TestCase): def setUp(self): testing.setUp() def tearDown(self): testing.tearDown() def _getTargetClass(self): from pyramid.view import view_config return view_config def _makeOne(self, *arg, **kw): return self._getTargetClass()(*arg, **kw) def test_create_defaults(self): decorator = self._makeOne() self.assertEqual(list(decorator.__dict__.keys()), ['_info']) def test_create_info(self): target = self._getTargetClass() decorator = target() info = decorator._info self.assertEqual(info[2], 'test_create_info') self.assertEqual(info[3], 'decorator = target()') def test_create_info_depth(self): target = self._getTargetClass() def make(): return target(_depth=1) decorator = make() info = decorator._info self.assertEqual(info[2], 'test_create_info_depth') self.assertEqual(info[3], 'decorator = make()') def test_create_context_trumps_for(self): decorator = self._makeOne(context='123', for_='456') self.assertEqual(decorator.context, '123') def test_create_for_trumps_context_None(self): decorator = self._makeOne(context=None, for_='456') self.assertEqual(decorator.context, '456') def test_create_nondefaults(self): decorator = self._makeOne( name=None, request_type=None, for_=None, permission='foo', mapper='mapper', decorator='decorator', match_param='match_param', ) self.assertEqual(decorator.name, None) self.assertEqual(decorator.request_type, None) self.assertEqual(decorator.context, None) self.assertEqual(decorator.permission, 'foo') self.assertEqual(decorator.mapper, 'mapper') self.assertEqual(decorator.decorator, 'decorator') self.assertEqual(decorator.match_param, 'match_param') def test_create_with_other_predicates(self): decorator = self._makeOne(foo=1) self.assertEqual(decorator.foo, 1) def test_create_decorator_tuple(self): decorator = self._makeOne(decorator=('decorator1', 'decorator2')) self.assertEqual(decorator.decorator, ('decorator1', 'decorator2')) def test_call_function(self): decorator = self._makeOne() venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 1) self.assertEqual(len(settings), 1) self.assertEqual(len(settings[0]), 3) self.assertEqual(settings[0]['venusian'], venusian) self.assertEqual(settings[0]['view'], None) # comes from call_venusian def test_call_class(self): decorator = self._makeOne() venusian = DummyVenusian() decorator.venusian = venusian decorator.venusian.info.scope = 'class' class foo: pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 1) self.assertEqual(len(settings[0]), 4) self.assertEqual(settings[0]['venusian'], venusian) self.assertEqual(settings[0]['view'], None) # comes from call_venusian self.assertEqual(settings[0]['attr'], 'foo') def test_call_class_attr_already_set(self): decorator = self._makeOne(attr='abc') venusian = DummyVenusian() decorator.venusian = venusian decorator.venusian.info.scope = 'class' class foo: pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 1) self.assertEqual(len(settings[0]), 4) self.assertEqual(settings[0]['venusian'], venusian) self.assertEqual(settings[0]['view'], None) # comes from call_venusian self.assertEqual(settings[0]['attr'], 'abc') def test_stacking(self): decorator1 = self._makeOne(name='1') venusian1 = DummyVenusian() decorator1.venusian = venusian1 venusian2 = DummyVenusian() decorator2 = self._makeOne(name='2') decorator2.venusian = venusian2 def foo(): # pragma: no cover pass wrapped1 = decorator1(foo) wrapped2 = decorator2(wrapped1) self.assertTrue(wrapped1 is foo) self.assertTrue(wrapped2 is foo) config1 = call_venusian(venusian1) self.assertEqual(len(config1.settings), 1) self.assertEqual(config1.settings[0]['name'], '1') config2 = call_venusian(venusian2) self.assertEqual(len(config2.settings), 1) self.assertEqual(config2.settings[0]['name'], '2') def test_call_as_method(self): decorator = self._makeOne() venusian = DummyVenusian() decorator.venusian = venusian decorator.venusian.info.scope = 'class' def foo(self): # pragma: no cover pass def bar(self): # pragma: no cover pass class foo: foomethod = decorator(foo) barmethod = decorator(bar) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 2) self.assertEqual(settings[0]['attr'], 'foo') self.assertEqual(settings[1]['attr'], 'bar') def test_with_custom_predicates(self): decorator = self._makeOne(custom_predicates=(1,)) venusian = DummyVenusian() decorator.venusian = venusian def foo(context, request): # pragma: no cover pass decorated = decorator(foo) self.assertTrue(decorated is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(settings[0]['custom_predicates'], (1,)) def test_call_with_renderer_string(self): import tests decorator = self._makeOne(renderer='fixtures/minimal.pt') venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 1) renderer = settings[0]['renderer'] self.assertEqual(renderer, 'fixtures/minimal.pt') self.assertEqual(config.pkg, tests) def test_call_with_renderer_dict(self): import tests decorator = self._makeOne(renderer={'a': 1}) venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) config = call_venusian(venusian) settings = config.settings self.assertEqual(len(settings), 1) self.assertEqual(settings[0]['renderer'], {'a': 1}) self.assertEqual(config.pkg, tests) def test_call_with_renderer_IRendererInfo(self): from pyramid.interfaces import IRendererInfo import tests @implementer(IRendererInfo) class DummyRendererHelper: pass renderer_helper = DummyRendererHelper() decorator = self._makeOne(renderer=renderer_helper) venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass wrapped = decorator(foo) self.assertTrue(wrapped is foo) context = DummyVenusianContext() config = call_venusian(venusian, context) settings = config.settings self.assertEqual(len(settings), 1) renderer = settings[0]['renderer'] self.assertTrue(renderer is renderer_helper) self.assertEqual(config.pkg, tests) def test_call_withdepth(self): decorator = self._makeOne(_depth=1) venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass decorator(foo) attachments = venusian.attachments depth = attachments[0][3] self.assertEqual(depth, 2) def test_call_withoutcategory(self): decorator = self._makeOne() venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass decorator(foo) attachments = venusian.attachments category = attachments[0][2] self.assertEqual(category, 'pyramid') def test_call_withcategory(self): decorator = self._makeOne(_category='not_pyramid') venusian = DummyVenusian() decorator.venusian = venusian def foo(): # pragma: no cover pass decorator(foo) attachments = venusian.attachments category = attachments[0][2] self.assertEqual(category, 'not_pyramid')
TestViewConfigDecorator
python
davidhalter__jedi
jedi/inference/value/iterable.py
{ "start": 8521, "end": 8597 }
class ____(_BaseComprehension, GeneratorBase): pass
GeneratorComprehension
python
numba__numba
numba/core/codegen.py
{ "start": 2393, "end": 22372 }
class ____(object): """ Wraps the CFG graph for different display method. Instance of the class can be stringified (``__repr__`` is defined) to get the graph in DOT format. The ``.display()`` method plots the graph in PDF. If in IPython notebook, the returned image can be inlined. """ def __init__(self, cres, name, py_func, **kwargs): self.cres = cres self.name = name self.py_func = py_func fn = cres.get_function(name) self.dot = ll.get_function_cfg(fn) self.kwargs = kwargs def pretty_printer(self, filename=None, view=None, render_format=None, highlight=True, interleave=False, strip_ir=False, show_key=True, fontsize=10): """ "Pretty" prints the DOT graph of the CFG. For explanation of the parameters see the docstring for numba.core.dispatcher::inspect_cfg. """ import graphviz as gv import re import json import inspect from llvmlite import binding as ll from numba.typed import List from types import SimpleNamespace from collections import defaultdict _default = False _highlight = SimpleNamespace(incref=_default, decref=_default, returns=_default, raises=_default, meminfo=_default, branches=_default, llvm_intrin_calls=_default, function_calls=_default,) _interleave = SimpleNamespace(python=_default, lineinfo=_default) def parse_config(_config, kwarg): """ Parses the kwarg into a consistent format for use in configuring the Digraph rendering. _config is the configuration instance to update, kwarg is the kwarg on which to base the updates. """ if isinstance(kwarg, bool): for attr in _config.__dict__: setattr(_config, attr, kwarg) elif isinstance(kwarg, dict): for k, v in kwarg.items(): if k not in _config.__dict__: raise ValueError("Unexpected key in kwarg: %s" % k) if isinstance(v, bool): setattr(_config, k, v) else: msg = "Unexpected value for key: %s, got:%s" raise ValueError(msg % (k, v)) elif isinstance(kwarg, set): for item in kwarg: if item not in _config.__dict__: raise ValueError("Unexpected key in kwarg: %s" % item) else: setattr(_config, item, True) else: msg = "Unhandled configuration type for kwarg %s" raise ValueError(msg % type(kwarg)) parse_config(_highlight, highlight) parse_config(_interleave, interleave) # This is the colour scheme. The graphviz HTML label renderer only takes # names for colours: https://www.graphviz.org/doc/info/shapes.html#html cs = defaultdict(lambda: 'white') # default bg colour is white cs['marker'] = 'orange' cs['python'] = 'yellow' cs['truebr'] = 'green' cs['falsebr'] = 'red' cs['incref'] = 'cyan' cs['decref'] = 'turquoise' cs['raise'] = 'lightpink' cs['meminfo'] = 'lightseagreen' cs['return'] = 'purple' cs['llvm_intrin_calls'] = 'rosybrown' cs['function_calls'] = 'tomato' # Get the raw dot format information from LLVM and the LLVM IR fn = self.cres.get_function(self.name) #raw_dot = ll.get_function_cfg(fn).replace('\\l...', '') llvm_str = self.cres.get_llvm_str() def get_metadata(llvm_str): """ Gets the metadata entries from the LLVM IR, these look something like '!123 = INFORMATION'. Returns a map of metadata key to metadata value, i.e. from the example {'!123': INFORMATION}""" md = {} metadata_entry = re.compile(r'(^[!][0-9]+)(\s+=\s+.*)') for x in llvm_str.splitlines(): match = metadata_entry.match(x) if match is not None: g = match.groups() if g is not None: assert len(g) == 2 md[g[0]] = g[1] return md md = get_metadata(llvm_str) # setup digraph with initial properties def init_digraph(name, fname, fontsize): # name and fname are arbitrary graph and file names, they appear in # some rendering formats, the fontsize determines the output # fontsize. # truncate massive mangled names as file names as it causes OSError # when trying to render to pdf cmax = 200 if len(fname) > cmax: wstr = (f'CFG output filename "{fname}" exceeds maximum ' f'supported length, it will be truncated.') warnings.warn(wstr, NumbaInvalidConfigWarning) fname = fname[:cmax] f = gv.Digraph(name, filename=fname) f.attr(rankdir='TB') f.attr('node', shape='none', fontsize='%s' % str(fontsize)) return f f = init_digraph(self.name, self.name, fontsize) # A lot of regex is needed to parse the raw dot output. This output # contains a mix of LLVM IR in the labels, and also DOT markup. # DOT syntax, matches a "port" (where the tail of an edge starts) port_match = re.compile('.*{(.*)}.*') # DOT syntax, matches the "port" value from a found "port_match" port_jmp_match = re.compile('.*<(.*)>(.*)') # LLVM syntax, matches a LLVM debug marker metadata_marker = re.compile(r'.*!dbg\s+(![0-9]+).*') # LLVM syntax, matches a location entry location_expr = (r'.*!DILocation\(line:\s+([0-9]+),' r'\s+column:\s+([0-9]),.*') location_entry = re.compile(location_expr) # LLVM syntax, matches LLVMs internal debug value calls dbg_value = re.compile(r'.*call void @llvm.dbg.value.*') # LLVM syntax, matches tokens for highlighting nrt_incref = re.compile(r"@NRT_incref\b") nrt_decref = re.compile(r"@NRT_decref\b") nrt_meminfo = re.compile("@NRT_MemInfo") ll_intrin_calls = re.compile(r".*call.*@llvm\..*") ll_function_call = re.compile(r".*call.*@.*") ll_raise = re.compile(r"store .*\!numba_exception_output.*") ll_return = re.compile("ret i32 [^1],?.*") # wrapper function for line wrapping LLVM lines def wrap(s): return textwrap.wrap(s, width=120, subsequent_indent='... ') # function to fix (sometimes escaped for DOT!) LLVM IR etc that needs to # be HTML escaped def clean(s): # Grab first 300 chars only, 1. this should be enough to identify # the token and it keeps names short. 2. graphviz/dot has a maximum # buffer size near 585?!, with additional transforms it's hard to # know if this would be exceeded. 3. hash of the token string is # written into the rendering to permit exact identification against # e.g. LLVM IR dump if necessary. n = 300 if len(s) > n: hs = str(hash(s)) s = '{}...<hash={}>'.format(s[:n], hs) s = html.escape(s) # deals with &, < and > s = s.replace('\\{', "&#123;") s = s.replace('\\}', "&#125;") s = s.replace('\\', "&#92;") s = s.replace('%', "&#37;") s = s.replace('!', "&#33;") return s # These hold the node and edge ids from the raw dot information. They # are used later to wire up a new DiGraph that has the same structure # as the raw dot but with new nodes. node_ids = {} edge_ids = {} # Python source lines, used if python source interleave is requested if _interleave.python: src_code, firstlineno = inspect.getsourcelines(self.py_func) # This is the dot info from LLVM, it's in DOT form and has continuation # lines, strip them and then re-parse into `dot_json` form for use in # producing a formatted output. raw_dot = ll.get_function_cfg(fn).replace('\\l...', '') json_bytes = gv.Source(raw_dot).pipe(format='dot_json') jzon = json.loads(json_bytes.decode('utf-8')) idc = 0 # Walk the "objects" (nodes) in the DOT output for obj in jzon['objects']: # These are used to keep tabs on the current line and column numbers # as per the markers. They are tracked so as to make sure a marker # is only emitted if there's a change in the marker. cur_line, cur_col = -1, -1 label = obj['label'] name = obj['name'] gvid = obj['_gvid'] node_ids[gvid] = name # Label is DOT format, it needs the head and tail removing and then # splitting for walking. label = label[1:-1] lines = label.split('\\l') # Holds the new lines new_lines = [] # Aim is to produce an HTML table a bit like this: # # |------------| # | HEADER | <-- this is the block header # |------------| # | LLVM SRC | <-- # | Marker? | < this is the label/block body # | Python src?| <-- # |------------| # | T | F | <-- this is the "ports", also determines col_span # -------------- # # This is HTML syntax, its the column span. If there's a switch or a # branch at the bottom of the node this is rendered as multiple # columns in a table. First job is to go and render that and work # out how many columns are needed as that dictates how many columns # the rest of the source lines must span. In DOT syntax the places # that edges join nodes are referred to as "ports". Syntax in DOT # is like `node:port`. col_span = 1 # First see if there is a port entry for this node port_line = '' matched = port_match.match(lines[-1]) sliced_lines = lines if matched is not None: # There is a port ports = matched.groups()[0] ports_tokens = ports.split('|') col_span = len(ports_tokens) # Generate HTML table data cells, one for each port. If the # ports correspond to a branch then they can optionally # highlighted based on T/F. tdfmt = ('<td BGCOLOR="{}" BORDER="1" ALIGN="center" ' 'PORT="{}">{}</td>') tbl_data = [] if _highlight.branches: colors = {'T': cs['truebr'], 'F': cs['falsebr']} else: colors = {} for tok in ports_tokens: target, value = port_jmp_match.match(tok).groups() color = colors.get(value, 'white') tbl_data.append(tdfmt.format(color, target, value)) port_line = ''.join(tbl_data) # Drop the last line from the rest of the parse as it's the port # and just been dealt with. sliced_lines = lines[:-1] # loop peel the block header, it needs a HTML border fmtheader = ('<tr><td BGCOLOR="{}" BORDER="1" ALIGN="left" ' 'COLSPAN="{}">{}</td></tr>') new_lines.append(fmtheader.format(cs['default'], col_span, clean(sliced_lines[0].strip()))) # process rest of block creating the table row at a time. fmt = ('<tr><td BGCOLOR="{}" BORDER="0" ALIGN="left" ' 'COLSPAN="{}">{}</td></tr>') def metadata_interleave(l, new_lines): """ Search line `l` for metadata associated with python or line info and inject it into `new_lines` if requested. """ matched = metadata_marker.match(l) if matched is not None: # there's a metadata marker g = matched.groups() if g is not None: assert len(g) == 1, g marker = g[0] debug_data = md.get(marker, None) if debug_data is not None: # and the metadata marker has a corresponding piece # of metadata ld = location_entry.match(debug_data) if ld is not None: # and the metadata is line info... proceed assert len(ld.groups()) == 2, ld line, col = ld.groups() # only emit a new marker if the line number in # the metadata is "new". if line != cur_line or col != cur_col: if _interleave.lineinfo: mfmt = 'Marker %s, Line %s, column %s' mark_line = mfmt % (marker, line, col) ln = fmt.format(cs['marker'], col_span, clean(mark_line)) new_lines.append(ln) if _interleave.python: # TODO: # +1 for decorator, this probably needs # the same thing doing as for the # error messages where the decorator # is scanned for, its not always +1! lidx = int(line) - (firstlineno + 1) source_line = src_code[lidx + 1] ln = fmt.format(cs['python'], col_span, clean(source_line)) new_lines.append(ln) return line, col for l in sliced_lines[1:]: # Drop LLVM debug call entries if dbg_value.match(l): continue # if requested generate interleaving of markers or python from # metadata if _interleave.lineinfo or _interleave.python: updated_lineinfo = metadata_interleave(l, new_lines) if updated_lineinfo is not None: cur_line, cur_col = updated_lineinfo # Highlight other LLVM features if requested, HTML BGCOLOR # property is set by this. if _highlight.incref and nrt_incref.search(l): colour = cs['incref'] elif _highlight.decref and nrt_decref.search(l): colour = cs['decref'] elif _highlight.meminfo and nrt_meminfo.search(l): colour = cs['meminfo'] elif _highlight.raises and ll_raise.search(l): # search for raise as its more specific than exit colour = cs['raise'] elif _highlight.returns and ll_return.search(l): colour = cs['return'] elif _highlight.llvm_intrin_calls and ll_intrin_calls.search(l): colour = cs['llvm_intrin_calls'] elif _highlight.function_calls and ll_function_call.search(l): colour = cs['function_calls'] else: colour = cs['default'] # Use the default coloring as a flag to force printing if a # special token print was requested AND LLVM ir stripping is # required if colour is not cs['default'] or not strip_ir: for x in wrap(clean(l)): new_lines.append(fmt.format(colour, col_span, x)) # add in the port line at the end of the block if it was present # (this was built right at the top of the parse) if port_line: new_lines.append('<tr>{}</tr>'.format(port_line)) # If there was data, create a table, else don't! dat = ''.join(new_lines) if dat: tab = (('<table id="%s" BORDER="1" CELLBORDER="0" ' 'CELLPADDING="0" CELLSPACING="0">%s</table>') % (idc, dat)) label = '<{}>'.format(tab) else: label = '' # finally, add a replacement node for the original with a new marked # up label. f.node(name, label=label) # Parse the edge data if 'edges' in jzon: # might be a single block, no edges for edge in jzon['edges']: gvid = edge['_gvid'] tp = edge.get('tailport', None) edge_ids[gvid] = (edge['head'], edge['tail'], tp) # Write in the edge wiring with respect to the new nodes:ports. for gvid, edge in edge_ids.items(): tail = node_ids[edge[1]] head = node_ids[edge[0]] port = edge[2] if port is not None: tail += ':%s' % port f.edge(tail, head) # Add a key to the graph if requested. if show_key: key_tab = [] for k, v in cs.items(): key_tab.append(('<tr><td BGCOLOR="{}" BORDER="0" ALIGN="center"' '>{}</td></tr>').format(v, k)) # The first < and last > are DOT syntax, rest is DOT HTML. f.node("Key", label=('<<table BORDER="1" CELLBORDER="1" ' 'CELLPADDING="2" CELLSPACING="1"><tr><td BORDER="0">' 'Key:</td></tr>{}</table>>').format(''.join(key_tab))) # Render if required if filename is not None or view is not None: f.render(filename=filename, view=view, format=render_format) # Else pipe out a SVG return f.pipe(format='svg') def display(self, filename=None, format='pdf', view=False): """ Plot the CFG. In IPython notebook, the return image object can be inlined. The *filename* option can be set to a specific path for the rendered output to write to. If *view* option is True, the plot is opened by the system default application for the image format (PDF). *format* can be any valid format string accepted by graphviz, default is 'pdf'. """ rawbyt = self.pretty_printer(filename=filename, view=view, render_format=format, **self.kwargs) return rawbyt.decode('utf-8') def _repr_svg_(self): return self.pretty_printer(**self.kwargs).decode('utf-8') def __repr__(self): return self.dot
_CFG
python
xlwings__xlwings
xlwings/constants.py
{ "start": 63353, "end": 63838 }
class ____: xlButtonControl = 0 # from enum XlFormControl xlCheckBox = 1 # from enum XlFormControl xlDropDown = 2 # from enum XlFormControl xlEditBox = 3 # from enum XlFormControl xlGroupBox = 4 # from enum XlFormControl xlLabel = 5 # from enum XlFormControl xlListBox = 6 # from enum XlFormControl xlOptionButton = 7 # from enum XlFormControl xlScrollBar = 8 # from enum XlFormControl xlSpinner = 9 # from enum XlFormControl
FormControl
python
numpy__numpy
numpy/f2py/tests/test_string.py
{ "start": 518, "end": 979 }
class ____(util.F2PyTest): sources = [util.getpath("tests", "src", "string", "string.f")] def test_example(self): a = np.array(b"123\0\0") b = np.array(b"123\0\0") c = np.array(b"123") d = np.array(b"123") self.module.foo(a, b, c, d) assert a.tobytes() == b"123\0\0" assert b.tobytes() == b"B23\0\0" assert c.tobytes() == b"123" assert d.tobytes() == b"D23"
TestDocStringArguments
python
sympy__sympy
sympy/polys/matrices/exceptions.py
{ "start": 725, "end": 818 }
class ____(DMError): """The matrix in not invertible""" pass
DMNonInvertibleMatrixError
python
realpython__materials
python-tic-tac-toe-game-tkinter/source_code_final/tic_tac_toe.py
{ "start": 163, "end": 221 }
class ____(NamedTuple): label: str color: str
Player
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/metadata.py
{ "start": 3992, "end": 4198 }
class ____(graphene.ObjectType): assetKey = graphene.NonNull(GrapheneAssetKey) class Meta: interfaces = (GrapheneMetadataEntry,) name = "AssetMetadataEntry"
GrapheneAssetMetadataEntry
python
tensorflow__tensorflow
tensorflow/python/autograph/pyct/static_analysis/reaching_fndefs.py
{ "start": 3036, "end": 5319 }
class ____(transformer.Base): """AST visitor that annotates each symbol name with its reaching definitions. Simultaneously, the visitor runs the dataflow analysis on each function node, accounting for the effect of closures. For example: def foo(): def f(): pass def g(): # `def f` reaches here """ def __init__(self, source_info, graphs): super(TreeAnnotator, self).__init__(source_info) self.graphs = graphs self.allow_skips = False self.current_analyzer = None def _proces_function(self, node): parent_analyzer = self.current_analyzer subgraph = self.graphs[node] if (self.current_analyzer is not None and node in self.current_analyzer.graph.index): cfg_node = self.current_analyzer.graph.index[node] defined_in = self.current_analyzer.in_[cfg_node].value else: defined_in = () analyzer = Analyzer(subgraph, defined_in) analyzer.visit_forward() self.current_analyzer = analyzer node = self.generic_visit(node) self.current_analyzer = parent_analyzer return node def visit_FunctionDef(self, node): return self._proces_function(node) def visit_Lambda(self, node): return self._proces_function(node) def visit(self, node): # This can happen before entering the top level function if (self.current_analyzer is not None and node in self.current_analyzer.graph.index): cfg_node = self.current_analyzer.graph.index[node] anno.setanno(node, anno.Static.DEFINED_FNS_IN, self.current_analyzer.in_[cfg_node].value) extra_node = anno.getanno(node, anno.Basic.EXTRA_LOOP_TEST, default=None) if extra_node is not None: cfg_node = self.current_analyzer.graph.index[extra_node] anno.setanno(extra_node, anno.Static.DEFINED_FNS_IN, self.current_analyzer.in_[cfg_node].value) return super(TreeAnnotator, self).visit(node) def resolve(node, source_info, graphs): """Resolves reaching definitions for each symbol. Args: node: ast.AST source_info: transformer.SourceInfo graphs: Dict[ast.FunctionDef, cfg.Graph] Returns: ast.AST """ visitor = TreeAnnotator(source_info, graphs) node = visitor.visit(node) return node
TreeAnnotator
python
mlflow__mlflow
mlflow/gateway/config.py
{ "start": 15819, "end": 17404 }
class ____(AliasedConfigModel): endpoints: list[EndpointConfig] routes: list[TrafficRouteConfig] | None = None def _load_gateway_config(path: str | Path) -> GatewayConfig: """ Reads the gateway configuration yaml file from the storage location and returns an instance of the configuration RouteConfig class """ if isinstance(path, str): path = Path(path) try: configuration = yaml.safe_load(path.read_text()) except Exception as e: raise MlflowException.invalid_parameter_value( f"The file at {path} is not a valid yaml file" ) from e check_configuration_deprecated_fields(configuration) check_configuration_route_name_collisions(configuration) try: return GatewayConfig(**configuration) except ValidationError as e: raise MlflowException.invalid_parameter_value( f"The gateway configuration is invalid: {e}" ) from e def _save_route_config(config: GatewayConfig, path: str | Path) -> None: if isinstance(path, str): path = Path(path) path.write_text( yaml.safe_dump(json.loads(json.dumps(config.model_dump(), default=pydantic_encoder))) ) def _validate_config(config_path: str) -> GatewayConfig: if not os.path.exists(config_path): raise MlflowException.invalid_parameter_value(f"{config_path} does not exist") try: return _load_gateway_config(config_path) except Exception as e: raise MlflowException.invalid_parameter_value(f"Invalid gateway configuration: {e}") from e
GatewayConfig
python
pytorch__pytorch
test/distributed/_composable/fsdp/test_fully_shard_frozen.py
{ "start": 825, "end": 11095 }
class ____(FSDPTest): @property def world_size(self) -> int: return min(4, torch.get_device_module(device_type).device_count()) @skip_if_lt_x_gpu(2) def test_train_mixed_requires_grad_per_group(self): """ Tests training parity with DDP when mixing frozen and non-frozen parameters in the same FSDP communication group. This checks that the reduce-scatters reduce the expected numel and that they are called via the custom autograd function backward (i.e. that they are not delayed until the end of backward). """ self.run_subtests( { "reshard_after_forward": [False, True, 2], "use_activation_checkpointing": [False, True], "freeze_after_init": [False, True], }, self._test_train_mixed_requires_grad_per_group, ) def _test_train_mixed_requires_grad_per_group( self, reshard_after_forward: Union[bool, int], use_activation_checkpointing: bool, freeze_after_init: bool, ): torch.manual_seed(42) num_mlps, lin_dim = (3, 32) model = nn.Sequential( *[MLP(lin_dim, torch.device("cpu")) for _ in range(num_mlps)] ) # Train biases only (e.g. like BitFit) if not freeze_after_init: for param_name, param in model.named_parameters(): if "bias" not in param_name: param.requires_grad_(False) ref_model = replicate( copy.deepcopy(model).to(device_type), device_ids=[self.rank], find_unused_parameters=freeze_after_init, ) ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2) for mlp in model: if use_activation_checkpointing: checkpoint(mlp) fully_shard(mlp, reshard_after_forward=reshard_after_forward) fully_shard(model, reshard_after_forward=reshard_after_forward) optim = torch.optim.Adam(model.parameters(), lr=1e-2) orig_reduce_scatter = dist.reduce_scatter_tensor if freeze_after_init: for param_name, param in itertools.chain( model.named_parameters(), ref_model.named_parameters() ): if "bias" not in param_name: param.requires_grad_(False) for mlp in model: assert isinstance(mlp, MLP), ( "The reduce-scatter numel check assumes the model consists of " f"only the same MLP class but got {type(mlp)}" ) expected_numel = sum( p._local_tensor.numel() for n, p in model[0].named_parameters() if "bias" in n ) def assert_fn(output: torch.Tensor): self.assertEqual(output.numel(), expected_numel) reduce_scatter = functools.partial( reduce_scatter_with_assert, self, orig_reduce_scatter, assert_fn ) orig_backward = RegisterPostBackwardFunction.backward backward_count = 0 def backward_with_count(*args, **kwargs): nonlocal backward_count backward_count += 1 return orig_backward(*args, **kwargs) torch.manual_seed(42 + self.rank + 1) device = device_type with ( patch_reduce_scatter(reduce_scatter), patch_register_post_backward_hook_backward(backward_with_count), ): for iter_idx in range(10): inp = torch.randn((8, lin_dim), device=device) losses: list[torch.Tensor] = [] for _model, _optim in ((ref_model, ref_optim), (model, optim)): _optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) losses.append(_model(inp).sum()) losses[-1].backward() _optim.step() check_sharded_parity(self, ref_model, model) self.assertEqual(losses[0], losses[1]) # Check that the post-backward hooks ran through the autograd # backward, not the final callback (except possibly that of the # first MLP, which does not have an input that requires grad) self.assertTrue(backward_count >= num_mlps - 1) @skip_if_lt_x_gpu(2) def test_train_mixed_requires_grad_across_groups(self): """ Tests training parity with DDP when mixing frozen and non-frozen parameters across different FSDP communication groups, including possibly unfreezing parameters. """ self.run_subtests( { "reshard_after_forward": [False, True, 2], "unfreeze_params": [False, True], }, self._test_train_mixed_requires_grad_across_groups, ) def _test_train_mixed_requires_grad_across_groups( self, reshard_after_forward: Union[bool, int], unfreeze_params: bool, ): torch.manual_seed(42) num_linears, lin_dim = (6, 32) modules: list[nn.Module] = [] for _ in range(num_linears): modules += [nn.Linear(lin_dim, lin_dim), nn.ReLU()] model = nn.Sequential(*modules) ref_model = replicate( copy.deepcopy(model).to(device_type), device_ids=[self.rank], find_unused_parameters=True, ) for module in model.modules(): if isinstance(module, nn.Linear): fully_shard(module, reshard_after_forward=reshard_after_forward) ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2) optim = torch.optim.Adam(model.parameters(), lr=1e-2) orig_backward = RegisterPostBackwardFunction.backward backward_count = 0 def _set_requires_grad(seq: nn.Module, requires_grad: bool): for i in range(num_linears): # Interleave frozen -> non-frozen -> ... linears if i % 2 == 0: for param in seq[i % 2].parameters(): param.requires_grad_(requires_grad) def backward_with_count(*args, **kwargs): nonlocal backward_count backward_count += 1 return orig_backward(*args, **kwargs) _set_requires_grad(model, False) _set_requires_grad(ref_model, False) num_iters, no_grad_iter_idx = (3, 1) torch.manual_seed(42 + self.rank) inp = torch.randn((8, lin_dim), device=device_type) with patch_register_post_backward_hook_backward(backward_with_count): for iter_idx in range(num_iters): losses: list[torch.Tensor] = [] for _model, _optim in ((ref_model, ref_optim), (model, optim)): # Unfreeze the parameters on the last step to emulate some # kinds of fine-tuning if unfreeze_params and iter_idx == num_iters - 1: _set_requires_grad(model, True) if iter_idx == no_grad_iter_idx: with torch.no_grad(): losses.append(_model(inp).sum()) else: losses.append(_model(inp).sum()) losses[-1].backward() _optim.step() _optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) self.assertEqual(losses[0], losses[1]) # Check that the post-backward hooks ran through the autograd # backward, not the final callback (except possibly that of the # first linear, which does not have an input that requires grad) self.assertTrue(backward_count >= num_linears - 1) @skip_if_lt_x_gpu(2) def test_multi_forward_mixed_requires_grad(self): """ Tests training parity with DDP when having trainable and frozen modules that participate multiple times in forward. """ self.run_subtests( {"reshard_after_forward": [True, False, 2]}, self._test_multi_forward_mixed_requires_grad, ) def _test_multi_forward_mixed_requires_grad( self, reshard_after_forward: Union[bool, int], ): class MultiForwardModule(nn.Module): def __init__(self, device: torch.device): super().__init__() self.layer_0 = nn.Linear(5, 5, device=device) self.layer_no_grad = nn.Linear(5, 5, device=device) self.layer_with_grad = nn.Linear(5, 5, device=device) self.layer_no_grad.requires_grad_(False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.layer_0(x) for _ in range(3): x = self.layer_no_grad(F.relu(self.layer_with_grad(x))) # Make sure that calling the same layer multiple times # works regardless whether gradient is enabled with torch.no_grad(): x += F.relu(self.layer_with_grad(x)) return x torch.manual_seed(42) model = MultiForwardModule(torch.device("cpu")) ref_model = replicate( copy.deepcopy(model).to(device_type), device_ids=[self.rank] ) ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2) for module in model.modules(): if isinstance(module, nn.Linear): fully_shard(module, reshard_after_forward=reshard_after_forward) fully_shard(model, reshard_after_forward=reshard_after_forward) optim = torch.optim.Adam(model.parameters(), lr=1e-2) for iter_idx in range(10): inp = torch.randn((8, 5), device=device_type) losses: list[torch.Tensor] = [] for _model, _optim in ((ref_model, ref_optim), (model, optim)): _optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) losses.append(_model(inp).sum()) losses[-1].backward() _optim.step() self.assertEqual(losses[0], losses[1]) if __name__ == "__main__": run_tests()
TestFullyShardFrozen
python
huggingface__transformers
tests/models/dac/test_modeling_dac.py
{ "start": 1340, "end": 4292 }
class ____: # Ignore copy def __init__( self, parent, batch_size=3, num_channels=1, is_training=False, intermediate_size=1024, encoder_hidden_size=16, downsampling_ratios=[2, 4, 4], decoder_hidden_size=16, n_codebooks=6, codebook_size=512, codebook_dim=4, quantizer_dropout=0.0, commitment_loss_weight=0.25, codebook_loss_weight=1.0, sample_rate=16000, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.is_training = is_training self.intermediate_size = intermediate_size self.sample_rate = sample_rate self.encoder_hidden_size = encoder_hidden_size self.downsampling_ratios = downsampling_ratios self.decoder_hidden_size = decoder_hidden_size self.n_codebooks = n_codebooks self.codebook_size = codebook_size self.codebook_dim = codebook_dim self.quantizer_dropout = quantizer_dropout self.commitment_loss_weight = commitment_loss_weight self.codebook_loss_weight = codebook_loss_weight def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0) config = self.get_config() inputs_dict = {"input_values": input_values} return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def prepare_config_and_inputs_for_model_class(self, model_class): input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0) config = self.get_config() inputs_dict = {"input_values": input_values} return config, inputs_dict # Ignore copy def get_config(self): return DacConfig( encoder_hidden_size=self.encoder_hidden_size, downsampling_ratios=self.downsampling_ratios, decoder_hidden_size=self.decoder_hidden_size, n_codebooks=self.n_codebooks, codebook_size=self.codebook_size, codebook_dim=self.codebook_dim, quantizer_dropout=self.quantizer_dropout, commitment_loss_weight=self.commitment_loss_weight, codebook_loss_weight=self.codebook_loss_weight, ) # Ignore copy def create_and_check_model_forward(self, config, inputs_dict): model = DacModel(config=config).to(torch_device).eval() input_values = inputs_dict["input_values"] result = model(input_values) self.parent.assertEqual(result.audio_values.shape, (self.batch_size, self.intermediate_size)) @require_torch # Copied from transformers.tests.encodec.test_modeling_encodec.EncodecModelTest with Encodec->Dac
DacModelTester
python
allegroai__clearml
clearml/backend_api/services/v2_23/frames.py
{ "start": 41275, "end": 46046 }
class ____(NonStrictDataModel): """ :param cls: Augmentation class (see global definitions) :type cls: str :param type: Augmentation type (see global definitions) :type type: str :param trans_mat: Transform matrix (list of lists). Required for affine transforms. :type trans_mat: Sequence[Sequence[float]] :param params: Transform parameters, an array ot 3 randomly generated values. Fixed values are passed in case of affine reflect augmentation. :type params: Sequence[float] :param arguments: Arguments dictionary, passed to custom augmentations. :type arguments: dict :param strength: Transform strength. Required for pixel transforms. :type strength: float """ _schema = { "properties": { "arguments": { "additionalProperties": True, "description": "Arguments dictionary, passed to custom augmentations.", "type": ["object", "null"], }, "cls": { "description": "Augmentation class (see global definitions)", "type": ["string", "null"], }, "params": { "description": ( "Transform parameters, an array ot 3 randomly generated values. Fixed values are passed in case of" " affine reflect augmentation." ), "items": {"type": "number"}, "type": ["array", "null"], }, "strength": { "description": "Transform strength. Required for pixel transforms.", "type": ["number", "null"], }, "trans_mat": { "description": "Transform matrix (list of lists). Required for affine transforms.", "items": {"items": {"type": "number"}, "type": "array"}, "type": ["array", "null"], }, "type": { "description": "Augmentation type (see global definitions)", "type": ["string", "null"], }, }, "type": "object", } def __init__( self, cls=None, type=None, trans_mat=None, params=None, arguments=None, strength=None, **kwargs ): super(Augmentation, self).__init__(**kwargs) self.cls = cls self.type = type self.trans_mat = trans_mat self.params = params self.arguments = arguments self.strength = strength @schema_property("cls") def cls(self): return self._property_cls @cls.setter def cls(self, value): if value is None: self._property_cls = None return self.assert_isinstance(value, "cls", six.string_types) self._property_cls = value @schema_property("type") def type(self): return self._property_type @type.setter def type(self, value): if value is None: self._property_type = None return self.assert_isinstance(value, "type", six.string_types) self._property_type = value @schema_property("trans_mat") def trans_mat(self): return self._property_trans_mat @trans_mat.setter def trans_mat(self, value): if value is None: self._property_trans_mat = None return self.assert_isinstance(value, "trans_mat", (list, tuple)) self.assert_isinstance(value, "trans_mat", (list, tuple), is_array=True) self._property_trans_mat = value @schema_property("params") def params(self): return self._property_params @params.setter def params(self, value): if value is None: self._property_params = None return self.assert_isinstance(value, "params", (list, tuple)) self.assert_isinstance( value, "params", six.integer_types + (float,), is_array=True ) self._property_params = value @schema_property("arguments") def arguments(self): return self._property_arguments @arguments.setter def arguments(self, value): if value is None: self._property_arguments = None return self.assert_isinstance(value, "arguments", (dict,)) self._property_arguments = value @schema_property("strength") def strength(self): return self._property_strength @strength.setter def strength(self, value): if value is None: self._property_strength = None return self.assert_isinstance(value, "strength", six.integer_types + (float,)) self._property_strength = value
Augmentation
python
charliermarsh__ruff
crates/ruff_python_formatter/resources/test/fixtures/ruff/preview.py
{ "start": 441, "end": 1682 }
class ____: """Black's `Preview.no_blank_line_before_class_docstring`""" def f(): """Black's `Preview.prefer_splitting_right_hand_side_of_assignments`""" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[ bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ] = cccccccc.ccccccccccccc.cccccccc aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[ bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ] = cccccccc.ccccccccccccc().cccccccc aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[ bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ] = cccccccc.ccccccccccccc(d).cccccccc aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb] = ( cccccccc.ccccccccccccc(d).cccccccc + e ) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb] = ( cccccccc.ccccccccccccc.cccccccc + e ) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa[bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb] = ( cccccccc.ccccccccccccc.cccccccc + eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ) self._cache: dict[ DependencyCacheKey, list[list[DependencyPackage]] ] = collections.defaultdict(list) self._cached_dependencies_by_level: dict[ int, list[DependencyCacheKey] ] = collections.defaultdict(list)
RemoveNewlineBeforeClassDocstring
python
PrefectHQ__prefect
tests/test_tasks.py
{ "start": 37661, "end": 40727 }
class ____: @pytest.mark.parametrize("persist_result", [True, False]) def test_persist_result_set_to_bool(self, persist_result): @task(persist_result=persist_result) def my_task(): pass @task def base(): pass new_task = base.with_options(persist_result=persist_result) assert my_task.persist_result is persist_result assert new_task.persist_result is persist_result @pytest.mark.parametrize( "cache_policy", [policy for policy in CachePolicy.__subclasses__() if policy != NO_CACHE], ) def test_setting_cache_policy_sets_persist_result_to_true(self, cache_policy): @task(cache_policy=cache_policy) def my_task(): pass @task def base(): pass new_task = base.with_options(cache_policy=cache_policy) assert my_task.persist_result is True assert new_task.persist_result is True def test_setting_cache_key_fn_sets_persist_result_to_true(self): @task(cache_key_fn=lambda *_: "test-key") def my_task(): pass @task def base(): pass new_task = base.with_options(cache_key_fn=lambda *_: "test-key") assert my_task.persist_result is True assert new_task.persist_result is True def test_setting_result_storage_sets_persist_result_to_true(self, tmpdir): block = LocalFileSystem(basepath=str(tmpdir)) block.save("test-name", _sync=True) @task(result_storage=block) def my_task(): pass @task def base(): pass new_task = base.with_options(result_storage=block) assert my_task.persist_result is True assert new_task.persist_result is True def test_setting_result_serializer_sets_persist_result_to_true(self): @task(result_serializer="json") def my_task(): pass @task def base(): pass new_task = base.with_options(result_serializer="json") assert my_task.persist_result is True assert new_task.persist_result is True def test_setting_result_storage_key_sets_persist_result_to_true(self): @task(result_storage_key="test-key") def my_task(): pass @task def base(): pass new_task = base.with_options(result_storage_key="test-key") assert my_task.persist_result is True assert new_task.persist_result is True def test_logs_warning_on_serialization_error(self, caplog): @task(result_serializer="json") def my_task(): return lambda: 1 my_task() record = next( ( record for record in caplog.records if "Encountered an error while serializing result" in record.message ), None, ) assert record is not None assert record.levelname == "WARNING"
TestResultPersistence
python
networkx__networkx
networkx/readwrite/json_graph/tests/test_adjacency.py
{ "start": 178, "end": 2456 }
class ____: def test_graph(self): G = nx.path_graph(4) H = adjacency_graph(adjacency_data(G)) assert graphs_equal(G, H) def test_graph_attributes(self): G = nx.path_graph(4) G.add_node(1, color="red") G.add_edge(1, 2, width=7) G.graph["foo"] = "bar" G.graph[1] = "one" H = adjacency_graph(adjacency_data(G)) assert graphs_equal(G, H) assert H.graph["foo"] == "bar" assert H.nodes[1]["color"] == "red" assert H[1][2]["width"] == 7 d = json.dumps(adjacency_data(G)) H = adjacency_graph(json.loads(d)) assert graphs_equal(G, H) assert H.graph["foo"] == "bar" assert H.graph[1] == "one" assert H.nodes[1]["color"] == "red" assert H[1][2]["width"] == 7 def test_digraph(self): G = nx.DiGraph() nx.add_path(G, [1, 2, 3]) H = adjacency_graph(adjacency_data(G)) assert H.is_directed() assert graphs_equal(G, H) def test_multidigraph(self): G = nx.MultiDiGraph() nx.add_path(G, [1, 2, 3]) H = adjacency_graph(adjacency_data(G)) assert H.is_directed() assert H.is_multigraph() assert graphs_equal(G, H) def test_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, key="first") G.add_edge(1, 2, key="second", color="blue") H = adjacency_graph(adjacency_data(G)) assert graphs_equal(G, H) assert H[1][2]["second"]["color"] == "blue" def test_input_data_is_not_modified_when_building_graph(self): G = nx.path_graph(4) input_data = adjacency_data(G) orig_data = copy.deepcopy(input_data) # Ensure input is unmodified by deserialisation assert graphs_equal(G, adjacency_graph(input_data)) assert input_data == orig_data def test_adjacency_form_json_serialisable(self): G = nx.path_graph(4) H = adjacency_graph(json.loads(json.dumps(adjacency_data(G)))) assert graphs_equal(G, H) def test_exception(self): with pytest.raises(nx.NetworkXError): G = nx.MultiDiGraph() attrs = {"id": "node", "key": "node"} adjacency_data(G, attrs)
TestAdjacency
python
sqlalchemy__sqlalchemy
test/dialect/postgresql/test_types.py
{ "start": 156955, "end": 177818 }
class ____(_RangeTests): def _step_value_up(self, value): """given a value, return a step up this is a value that given the lower end of the sample range, would be less than the upper value of the range """ raise NotImplementedError() def _step_value_down(self, value): """given a value, return a step down this is a value that given the upper end of the sample range, would be greater than the lower value of the range """ raise NotImplementedError() def _value_values(self): """Return a series of values related to the base range le = left equal ll = lower than left re = right equal rh = higher than right il = inside lower ih = inside higher """ spec = self._data_obj() le, re_ = spec.lower, spec.upper ll = self._step_value_down(le) il = self._step_value_up(le) rh = self._step_value_up(re_) ih = self._step_value_down(re_) return {"le": le, "re_": re_, "ll": ll, "il": il, "rh": rh, "ih": ih} @testing.fixture( params=[ lambda **kw: Range(empty=True), lambda **kw: Range(bounds="[)"), lambda le, **kw: Range(upper=le, bounds="[)"), lambda le, re_, **kw: Range(lower=le, upper=re_, bounds="[)"), lambda le, re_, **kw: Range(lower=le, upper=re_, bounds="[)"), lambda le, re_, **kw: Range(lower=le, upper=re_, bounds="[]"), lambda le, re_, **kw: Range(lower=le, upper=re_, bounds="(]"), lambda le, re_, **kw: Range(lower=le, upper=re_, bounds="()"), lambda ll, le, **kw: Range(lower=ll, upper=le, bounds="[)"), lambda il, ih, **kw: Range(lower=il, upper=ih, bounds="[)"), lambda ll, le, **kw: Range(lower=ll, upper=le, bounds="(]"), lambda ll, rh, **kw: Range(lower=ll, upper=rh, bounds="[)"), ] ) def contains_range_obj_combinations(self, request): """ranges that are used for range contains() contained_by() tests""" data = self._value_values() range_ = request.param(**data) yield range_ @testing.fixture( params=[ lambda l, r: Range(empty=True), lambda l, r: Range(bounds="()"), lambda l, r: Range(upper=r, bounds="(]"), lambda l, r: Range(lower=l, bounds="[)"), lambda l, r: Range(lower=l, upper=r, bounds="[)"), lambda l, r: Range(lower=l, upper=r, bounds="[]"), lambda l, r: Range(lower=l, upper=r, bounds="(]"), lambda l, r: Range(lower=l, upper=r, bounds="()"), ] ) def bounds_obj_combinations(self, request): """sample ranges used for value and range contains()/contained_by() tests""" obj = self._data_obj() l, r = obj.lower, obj.upper template = request.param value = template(l=l, r=r) yield value @testing.fixture(params=["ll", "le", "il", "ih", "re_", "rh"]) def value_combinations(self, request): """sample values used for value contains() tests""" data = self._value_values() return data[request.param] def test_basic_py_sanity(self): values = self._value_values() range_ = self._data_obj() is_true(range_.contains(Range(lower=values["il"], upper=values["ih"]))) is_true( range_.contained_by(Range(lower=values["ll"], upper=values["rh"])) ) is_true(range_.contains(values["il"])) is_true(values["il"] in range_) is_false( range_.contains(Range(lower=values["ll"], upper=values["ih"])) ) is_false(range_.contains(values["rh"])) is_false(values["rh"] in range_) is_true(range_ == range_) is_false(range_ != range_) is_false(range_ == None) def test_compatibility_accessors(self): range_ = self._data_obj() is_true(range_.lower_inc) is_false(range_.upper_inc) is_false(Range(lower=range_.lower, bounds="()").lower_inc) is_true(Range(upper=range_.upper, bounds="(]").upper_inc) is_false(range_.lower_inf) is_false(range_.upper_inf) is_false(Range(empty=True).lower_inf) is_false(Range(empty=True).upper_inf) is_true(Range().lower_inf) is_true(Range().upper_inf) is_false(range_.isempty) is_true(Range(empty=True).isempty) def test_contains_value( self, connection, bounds_obj_combinations, value_combinations ): range_ = bounds_obj_combinations range_typ = self._col_str strvalue = range_._stringify() v = value_combinations RANGE = self._col_type q = select( literal_column(f"'{strvalue}'::{range_typ}", RANGE).label("r1"), cast(range_, RANGE).label("r2"), ) literal_range, cast_range = connection.execute(q).first() eq_(literal_range, cast_range) q = select( cast(range_, RANGE), cast(range_, RANGE).contains(v), ) r, expected = connection.execute(q).first() eq_(r.contains(v), expected) eq_(v in r, expected) _common_ranges_to_test = ( lambda r, e: Range(empty=True), lambda r, e: Range(None, None, bounds="()"), lambda r, e: Range(r.lower, None, bounds="[)"), lambda r, e: Range(None, r.upper, bounds="(]"), lambda r, e: r, lambda r, e: Range(r.lower, r.upper, bounds="[]"), lambda r, e: Range(r.lower, r.upper, bounds="(]"), lambda r, e: Range(r.lower, r.upper, bounds="()"), ) @testing.combinations( *_common_ranges_to_test, argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower + e, r.upper + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.upper - e, bounds="(]"), lambda r, e: Range(r.lower + e, r.upper - e, bounds="[]"), lambda r, e: Range(r.lower + e, r.upper - e, bounds="(]"), lambda r, e: Range(r.lower + e, r.upper, bounds="(]"), lambda r, e: Range(r.lower + e, r.upper, bounds="[]"), lambda r, e: Range(r.lower + e, r.upper + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.upper - e, bounds="[]"), lambda r, e: Range(r.lower - 2 * e, r.lower - e, bounds="(]"), lambda r, e: Range(r.lower - 4 * e, r.lower, bounds="[)"), lambda r, e: Range(r.upper + 4 * e, r.upper + 6 * e, bounds="()"), argnames="r2t", ) def test_contains_range(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).contains(r2), cast(r1, RANGE).contained_by(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ} @> '{r2}'::{range_typ}"), literal_column(f"'{r1}'::{range_typ} <@ '{r2}'::{range_typ}"), ) row = connection.execute(q).first() validate_row = connection.execute(validate_q).first() eq_(row, validate_row) pg_contains, pg_contained = row py_contains = r1.contains(r2) eq_( py_contains, pg_contains, f"{r1}.contains({r2}): got {py_contains}," f" expected {pg_contains}", ) r2_in_r1 = r2 in r1 eq_( r2_in_r1, pg_contains, f"{r2} in {r1}: got {r2_in_r1}, expected {pg_contains}", ) py_contained = r1.contained_by(r2) eq_( py_contained, pg_contained, f"{r1}.contained_by({r2}): got {py_contained}," f" expected {pg_contained}", ) eq_( r2.contains(r1), pg_contained, f"{r2}.contains({r1}: got {r2.contains(r1)}," f" expected {pg_contained})", ) r1_in_r2 = r1 in r2 eq_( r1_in_r2, pg_contained, f"{r1} in {r2}: got {r1_in_r2}, expected {pg_contained}", ) @testing.combinations( *_common_ranges_to_test, argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower - 2 * e, r.lower - e, bounds="(]"), lambda r, e: Range(r.upper + e, r.upper + 2 * e, bounds="[)"), argnames="r2t", ) def test_overlaps(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).overlaps(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ} && '{r2}'::{range_typ}"), ) row = connection.execute(q).first() validate_row = connection.execute(validate_q).first() eq_(row, validate_row) pg_res = row[0] py_res = r1.overlaps(r2) eq_( py_res, pg_res, f"{r1}.overlaps({r2}): got {py_res}, expected {pg_res}", ) @testing.combinations( *_common_ranges_to_test, argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.upper, r.upper + 2 * e, bounds="[]"), lambda r, e: Range(r.upper, r.upper + 2 * e, bounds="(]"), lambda r, e: Range(r.lower - 2 * e, r.lower, bounds="[]"), lambda r, e: Range(r.lower - 2 * e, r.lower, bounds="[)"), argnames="r2t", ) def test_strictly_left_or_right_of(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).strictly_left_of(r2), cast(r1, RANGE).strictly_right_of(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ} << '{r2}'::{range_typ}"), literal_column(f"'{r1}'::{range_typ} >> '{r2}'::{range_typ}"), ) row = connection.execute(q).first() validate_row = connection.execute(validate_q).first() eq_(row, validate_row) pg_left, pg_right = row py_left = r1.strictly_left_of(r2) eq_( py_left, pg_left, f"{r1}.strictly_left_of({r2}): got {py_left}, expected {pg_left}", ) py_left = r1 << r2 eq_( py_left, pg_left, f"{r1} << {r2}: got {py_left}, expected {pg_left}", ) py_right = r1.strictly_right_of(r2) eq_( py_right, pg_right, f"{r1}.strictly_right_of({r2}): got {py_left}," f" expected {pg_right}", ) py_right = r1 >> r2 eq_( py_right, pg_right, f"{r1} >> {r2}: got {py_left}, expected {pg_right}", ) @testing.combinations( *_common_ranges_to_test, argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.upper, r.upper + 2 * e, bounds="[]"), lambda r, e: Range(r.upper, r.upper + 2 * e, bounds="(]"), lambda r, e: Range(r.lower - 2 * e, r.lower, bounds="[]"), lambda r, e: Range(r.lower - 2 * e, r.lower, bounds="[)"), argnames="r2t", ) def test_not_extend_left_or_right_of(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).not_extend_left_of(r2), cast(r1, RANGE).not_extend_right_of(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ} &> '{r2}'::{range_typ}"), literal_column(f"'{r1}'::{range_typ} &< '{r2}'::{range_typ}"), ) row = connection.execute(q).first() validate_row = connection.execute(validate_q).first() eq_(row, validate_row) pg_left, pg_right = row py_left = r1.not_extend_left_of(r2) eq_( py_left, pg_left, f"{r1}.not_extend_left_of({r2}): got {py_left}," f" expected {pg_left}", ) py_right = r1.not_extend_right_of(r2) eq_( py_right, pg_right, f"{r1}.not_extend_right_of({r2}): got {py_right}," f" expected {pg_right}", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower - e, r.lower + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower - e, bounds="[]"), argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower - e, r.lower + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower - e, bounds="[]"), lambda r, e: Range(r.lower + e, r.upper - e, bounds="(]"), lambda r, e: Range(r.lower + e, r.upper - e, bounds="[]"), lambda r, e: Range(r.lower + e, r.upper, bounds="(]"), lambda r, e: Range(r.lower + e, r.upper, bounds="[]"), lambda r, e: Range(r.lower + e, r.upper + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower - e, bounds="[]"), lambda r, e: Range(r.lower - 2 * e, r.lower - e, bounds="(]"), lambda r, e: Range(r.lower - 4 * e, r.lower, bounds="[)"), lambda r, e: Range(r.upper + 4 * e, r.upper + 6 * e, bounds="()"), argnames="r2t", ) def test_adjacent(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).adjacent_to(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ} -|- '{r2}'::{range_typ}"), ) row = connection.execute(q).first() validate_row = connection.execute(validate_q).first() eq_(row, validate_row) pg_res = row[0] py_res = r1.adjacent_to(r2) eq_( py_res, pg_res, f"{r1}.adjacent_to({r2}): got {py_res}, expected {pg_res}", ) @testing.combinations( *_common_ranges_to_test, argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower + e, bounds="[]"), lambda r, e: Range(r.upper + 4 * e, r.upper + 6 * e, bounds="()"), argnames="r2t", ) def test_union(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).union(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ}+'{r2}'::{range_typ}", RANGE), ) try: pg_res = connection.execute(q).scalar() except DBAPIError: connection.rollback() with expect_raises(DBAPIError): connection.execute(validate_q).scalar() with expect_raises(ValueError): r1.union(r2) else: validate_union = connection.execute(validate_q).scalar() eq_(pg_res, validate_union) py_res = r1.union(r2) eq_( py_res, pg_res, f"{r1}.union({r2}): got {py_res}, expected {pg_res}", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), lambda r, e: Range(r.lower - e, r.upper - e, bounds="[]"), lambda r, e: Range(r.lower - e, r.upper + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.upper + e, bounds="[]"), argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), lambda r, e: Range(r.lower, r.upper - e, bounds="(]"), lambda r, e: Range(r.lower, r.lower + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower, bounds="(]"), lambda r, e: Range(r.lower - e, r.lower + e, bounds="()"), lambda r, e: Range(r.lower, r.upper, bounds="[]"), lambda r, e: Range(r.lower, r.upper, bounds="()"), argnames="r2t", ) def test_difference(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).difference(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ}-'{r2}'::{range_typ}", RANGE), ) try: pg_res = connection.execute(q).scalar() except DBAPIError: connection.rollback() with expect_raises(DBAPIError): connection.execute(validate_q).scalar() with expect_raises(ValueError): r1.difference(r2) else: validate_difference = connection.execute(validate_q).scalar() eq_(pg_res, validate_difference) py_res = r1.difference(r2) eq_( py_res, pg_res, f"{r1}.difference({r2}): got {py_res}, expected {pg_res}", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), lambda r, e: Range(r.lower - e, r.upper - e, bounds="[]"), lambda r, e: Range(r.lower - e, r.upper + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.upper + e, bounds="[]"), argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), lambda r, e: Range(r.lower, r.upper - e, bounds="(]"), lambda r, e: Range(r.lower, r.lower + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower, bounds="(]"), lambda r, e: Range(r.lower - e, r.lower + e, bounds="()"), lambda r, e: Range(r.lower, r.upper, bounds="[]"), lambda r, e: Range(r.lower, r.upper, bounds="()"), argnames="r2t", ) def test_intersection(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) RANGE = self._col_type range_typ = self._col_str q = select( cast(r1, RANGE).intersection(r2), ) validate_q = select( literal_column(f"'{r1}'::{range_typ}*'{r2}'::{range_typ}", RANGE), ) pg_res = connection.execute(q).scalar() validate_intersection = connection.execute(validate_q).scalar() eq_(pg_res, validate_intersection) py_res = r1.intersection(r2) eq_( py_res, pg_res, f"{r1}.intersection({r2}): got {py_res}, expected {pg_res}", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), argnames="r1t", ) @testing.combinations( *_common_ranges_to_test, lambda r, e: Range(r.lower, r.lower, bounds="[]"), lambda r, e: Range(r.lower, r.lower + e, bounds="[)"), lambda r, e: Range(r.lower - e, r.lower, bounds="(]"), lambda r, e: Range(r.lower - e, r.lower + e, bounds="()"), argnames="r2t", ) def test_equality(self, connection, r1t, r2t): r1 = r1t(self._data_obj(), self._epsilon) r2 = r2t(self._data_obj(), self._epsilon) range_typ = self._col_str q = select( literal_column(f"'{r1}'::{range_typ} = '{r2}'::{range_typ}") ) equal = connection.execute(q).scalar() eq_(r1 == r2, equal, f"{r1} == {r2}: got {r1 == r2}, expected {equal}") q = select( literal_column(f"'{r1}'::{range_typ} <> '{r2}'::{range_typ}") ) different = connection.execute(q).scalar() eq_( r1 != r2, different, f"{r1} != {r2}: got {r1 != r2}, expected {different}", ) def test_bool(self): is_false(bool(Range(empty=True))) is_true(bool(Range(1, 2)))
_RangeComparisonFixtures
python
scipy__scipy
scipy/stats/tests/test_distributions.py
{ "start": 300967, "end": 301714 }
class ____: def test_sf_tail(self): # Expected value computed with mpmath: # import mpmath # mpmath.mp.dps = 80 # x = mpmath.mpf(800.0) # c = mpmath.mpf(2.5) # s = float(1 - mpmath.ncdf(1/c * (mpmath.sqrt(x) # - 1/mpmath.sqrt(x)))) # print(s) # Output: # 6.593376447038406e-30 s = stats.fatiguelife.sf(800.0, 2.5) assert_allclose(s, 6.593376447038406e-30, rtol=1e-13) def test_isf_tail(self): # See test_sf_tail for the mpmath code. p = 6.593376447038406e-30 q = stats.fatiguelife.isf(p, 2.5) assert_allclose(q, 800.0, rtol=1e-13)
TestFatigueLife
python
walkccc__LeetCode
solutions/443. String Compression/443.py
{ "start": 0, "end": 387 }
class ____: def compress(self, chars: list[str]) -> int: ans = 0 i = 0 while i < len(chars): letter = chars[i] count = 0 while i < len(chars) and chars[i] == letter: count += 1 i += 1 chars[ans] = letter ans += 1 if count > 1: for c in str(count): chars[ans] = c ans += 1 return ans
Solution
python
airbytehq__airbyte
airbyte-integrations/connectors/destination-deepset/destination_deepset/models.py
{ "start": 2403, "end": 3711 }
class ____(BaseModel): name: str = Field(title="Name", description="File Name") content: bytes | str = Field(title="Content", description="File Content") meta: dict[str, Any] = Field(default_factory={}, title="Meta Data", description="File Meta Data") @property def meta_as_string(self) -> str: """Return metadata as a string.""" return json.dumps(self.meta or {}) @classmethod def from_record(cls, record: AirbyteRecordMessage) -> DeepsetCloudFile: data = FileData.model_validate(record.data) name = Path(util.generate_name(data.document_key, record.stream, namespace=record.namespace)) return cls( name=f"{name.stem}.md", content=data.content, meta={ "airbyte": { "stream": record.stream, "emitted_at": record.emitted_at, **({"namespace": record.namespace} if record.namespace else {}), **({"file_parse_error": data.file_parse_error} if data.file_parse_error else {}), }, **({"source_file_extension": name.suffix} if name.suffix else {}), **data.model_dump(exclude={"content", "file_parse_error"}, exclude_none=True), }, )
DeepsetCloudFile
python
scrapy__scrapy
tests/mockserver/http_resources.py
{ "start": 10241, "end": 10667 }
class ____(resource.Resource): """Return a response with a Set-Cookie header for each request url parameter""" def render(self, request): for cookie_name, cookie_values in request.args.items(): for cookie_value in cookie_values: cookie = (cookie_name.decode() + "=" + cookie_value.decode()).encode() request.setHeader(b"Set-Cookie", cookie) return b""
SetCookie
python
pytorch__pytorch
torch/nn/utils/_named_member_accessor.py
{ "start": 3796, "end": 14210 }
class ____: """ A class that provides a way to access the submodules and parameters/buffers of a module. It provides caching mechanism to speed up submodule lookups. This is useful for functional programming to manipulate the module state. """ def __init__(self, module: "torch.nn.Module") -> None: self.module = module self.memo: dict[str, torch.nn.Module] = {} # Nested attribute access def get_submodule(self, name: str) -> "torch.nn.Module": """ Return the submodule specified by the given path. For example, to get the submodule mod.layer1.conv1, use accessor.get_submodule("layer1.conv1") Compare to mod.get_submodule("layer1.conv1"), this method will cache the intermediate submodule access to speed up future lookups. """ if not name: return self.module if name in self.memo: return self.memo[name] else: prefix, dot, attr = name.rpartition(".") if dot: module = self.get_submodule(prefix) else: module = self.module try: submodule = getattr(module, attr) except AttributeError as ex: raise AttributeError( f"{module._get_name()} has no attribute `{attr}`" ) from ex if not isinstance(submodule, torch.nn.Module): raise TypeError( f"submodule `{name}`: {submodule} is not an instance of torch.nn.Module" ) self.memo[name] = submodule return submodule def swap_submodule(self, path: str, value: "torch.nn.Module") -> "torch.nn.Module": """ Swap the submodule specified by the given ``path`` to ``value``. For example, to swap the attribute mod.layer1.conv1 use ``accessor.swap_submodule("layer1.conv1", conv2)``. """ prefix, _, attr = path.rpartition(".") return swap_submodule(self.get_submodule(prefix), attr, value) def get_tensor(self, name: str) -> torch.Tensor: """ Get the tensor specified by the given path to value. For example, to get the attribute mod.layer1.conv1.weight, use accessor.get_tensor('layer1.conv1.weight') Compare to mod.get_parameter("layer1.conv1.weight"), this method will cache the intermediate submodule access to speed up future lookups. """ prefix, _, attr = name.rpartition(".") submodule = self.get_submodule(prefix) try: tensor = getattr(submodule, attr) except AttributeError as ex: raise AttributeError( f"{submodule._get_name()} has no attribute `{name}`" ) from ex if not isinstance(tensor, torch.Tensor) and tensor is not None: raise TypeError(f"{tensor} is not an instance of torch.Tensor") return tensor # type: ignore[return-value] def set_tensor(self, name: str, value: torch.Tensor) -> None: """ Set the attribute specified by the given path to value. For example, to set the attribute mod.layer1.conv1.weight, use accessor.set_tensor("layer1.conv1.weight", value) """ prefix, _, attr = name.rpartition(".") set_tensor(self.get_submodule(prefix), attr, value) def del_tensor(self, name: str) -> None: """ Delete the attribute specified by the given path. For example, to delete the attribute mod.layer1.conv1.weight, use accessor.del_tensor("layer1.conv1.weight") """ prefix, _, attr = name.rpartition(".") submodule = self.get_submodule(prefix) try: delattr(submodule, attr) except AttributeError as ex: raise AttributeError( f"{submodule._get_name()} has no attribute `{name}`" ) from ex def swap_tensor( self, name: str, value: torch.Tensor, allow_missing: bool = False ) -> torch.Tensor: """ Swap the attribute specified by the given path to value. For example, to swap the attribute mod.layer1.conv1.weight, use accessor.swap_tensor("layer1.conv1.weight", value) """ prefix, _, attr = name.rpartition(".") return swap_tensor( self.get_submodule(prefix), attr, value, allow_missing=allow_missing ) # Batched operations def get_tensors(self, names: Iterable[str]) -> list[torch.Tensor]: """ Get the tensors specified by the given paths. For example, to get the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.get_tensors(["layer1.conv1.weight", "layer1.conv1.bias"]) """ return [self.get_tensor(name) for name in names] def set_tensors(self, names: Iterable[str], values: Iterable[torch.Tensor]) -> None: """ Set the attributes specified by the given paths to values. For example, to set the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.set_tensors(["layer1.conv1.weight", "layer1.conv1.bias"], [weight, bias]) """ if not isinstance(names, (list, tuple)): names = list(names) if not isinstance(values, (list, tuple)): values = list(values) assert len(names) == len(values), "names and values must have the same length" for name, value in zip(names, values, strict=True): self.set_tensor(name, value) def set_tensors_dict(self, named_tensors: dict[str, torch.Tensor]) -> None: """ Set the attributes specified by the given paths to values. For example, to set the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.set_tensors_dict({ "layer1.conv1.weight": weight, "layer1.conv1.bias": bias, }) """ for name, value in named_tensors.items(): self.set_tensor(name, value) def del_tensors(self, names: Iterable[str]) -> None: """ Delete the attributes specified by the given paths. For example, to delete the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.del_tensors(["layer1.conv1.weight", "layer1.conv1.bias"]) """ for name in names: self.del_tensor(name) def swap_tensors( self, names: Iterable[str], values: Iterable[torch.Tensor], allow_missing: bool = False, ) -> list[torch.Tensor]: """ Swap the attributes specified by the given paths to values. For example, to swap the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.swap_tensors(["layer1.conv1.weight", "layer1.conv1.bias"], [weight, bias]) """ if not isinstance(names, (list, tuple)): names = list(names) if not isinstance(values, (list, tuple)): values = list(values) assert len(names) == len(values), "names and values must have the same length" return [ self.swap_tensor(name, value, allow_missing=allow_missing) for name, value in zip(names, values, strict=True) ] def swap_tensors_dict( self, named_tensors: dict[str, torch.Tensor], allow_missing: bool = False ) -> tuple[dict[str, torch.Tensor], list[str]]: """ Swap the attributes specified by the given paths to values. For example, to swap the attributes mod.layer1.conv1.weight and mod.layer1.conv1.bias, use accessor.swap_tensors_dict({ "layer1.conv1.weight": weight, "layer1.conv1.bias": bias, }) """ orig_named_tensors = {} missing_keys = [] try: for name, tensor in named_tensors.items(): orig_tensor = self.swap_tensor(name, tensor, allow_missing=True) if orig_tensor is _MISSING: missing_keys.append(name) orig_named_tensors[name] = orig_tensor except Exception: # Swap back if any exception occurs for name, orig_tensor in orig_named_tensors.items(): self.swap_tensor(name, orig_tensor, allow_missing=True) raise if missing_keys and not allow_missing: # Swap back if any key is missing when allow_missing is False for name, orig_tensor in orig_named_tensors.items(): self.swap_tensor(name, orig_tensor, allow_missing=True) raise RuntimeError(f"Missing key(s): {', '.join(map(repr, missing_keys))}.") return orig_named_tensors, missing_keys def check_keys(self, keys: Iterable[str]) -> tuple[list[str], list[str]]: """Check that the given keys are valid.""" keys = set(keys) valid_keys = {name for name, _ in self.named_tensors(remove_duplicate=False)} missing_keys = valid_keys - keys unexpected_keys = keys - valid_keys return sorted(missing_keys), sorted(unexpected_keys) # Shortcut methods def named_parameters( self, remove_duplicate: bool = True, ) -> Iterable[tuple[str, torch.Tensor]]: """Iterate over all the parameters in the module.""" yield from self.module.named_parameters(remove_duplicate=remove_duplicate) def named_buffers( self, remove_duplicate: bool = True, ) -> Iterable[tuple[str, torch.Tensor]]: """Iterate over all the buffers in the module.""" yield from self.module.named_buffers(remove_duplicate=remove_duplicate) def named_tensors( self, remove_duplicate: bool = True, ) -> Iterable[tuple[str, torch.Tensor]]: """Iterate over all the tensors in the module.""" yield from self.module.named_parameters(remove_duplicate=remove_duplicate) yield from self.module.named_buffers(remove_duplicate=remove_duplicate) def named_modules( self, remove_duplicate: bool = True, ) -> Iterable[tuple[str, "torch.nn.Module"]]: """Iterate over all the modules in the module.""" yield from self.module.named_modules(remove_duplicate=remove_duplicate)
NamedMemberAccessor
python
lazyprogrammer__machine_learning_examples
ab_testing/server_starter.py
{ "start": 605, "end": 1306 }
class ____: def __init__(self, name): self.name = name def sample(self): # TODO return 1 # TODO - what else does the Bandit need to do? # initialize bandits banditA = Bandit('A') banditB = Bandit('B') @app.route('/get_ad') def get_ad(): # TODO return jsonify({'advertisement_id': 'A'}) @app.route('/click_ad', methods=['POST']) def click_ad(): result = 'OK' if request.form['advertisement_id'] == 'A': # TODO pass elif request.form['advertisement_id'] == 'B': # TODO pass else: result = 'Invalid Input.' # nothing to return really return jsonify({'result': result}) if __name__ == '__main__': app.run(host='127.0.0.1', port='8888')
Bandit
python
weaviate__weaviate-python-client
weaviate/client.py
{ "start": 957, "end": 4689 }
class ____(_WeaviateClientExecutor[ConnectionAsync]): """The v4 Python-native Weaviate Client class that encapsulates Weaviate functionalities in one object. WARNING: This client is only compatible with Weaviate v1.23.6 and higher! A Client instance creates all the needed objects to interact with Weaviate, and connects all of them to the same Weaviate instance. See below the Attributes of the Client instance. For the per attribute functionality see that attribute's documentation. Attributes: backup (_BackupAsync): Backup object instance connected to the same Weaviate instance as the Client. This namespace contains all the functionality to upload data in batches to Weaviate for all collections and tenants. cluster (_ClusterAsync): Cluster object instance connected to the same Weaviate instance as the Client. This namespace contains all functionality to inspect the connected Weaviate cluster. collections (_CollectionsAsync): Collections object instance connected to the same Weaviate instance as the Client. This namespace contains all the functionality to manage Weaviate data collections. It is your main entry point for all collection-related functionality. Use it to retrieve collection objects using `client.collections.get("MyCollection")` or to create new collections using `client.collections.create("MyCollection", ...)`. debug (_DebugAsync): Debug object instance connected to the same Weaviate instance as the Client. This namespace contains functionality used to debug Weaviate clusters. As such, it is deemed experimental and is subject to change. We can make no guarantees about the stability of this namespace nor the potential for future breaking changes. Use at your own risk. roles (_RolesAsync): Roles object instance connected to the same Weaviate instance as the Client. This namespace contains all functionality to manage Weaviate's RBAC functionality. users (_UsersAsync): Users object instance connected to the same Weaviate instance as the Client. This namespace contains all functionality to manage Weaviate users. """ def __init__( self, connection_params: Optional[ConnectionParams] = None, embedded_options: Optional[EmbeddedOptions] = None, auth_client_secret: Optional[AuthCredentials] = None, additional_headers: Optional[dict] = None, additional_config: Optional[AdditionalConfig] = None, skip_init_checks: bool = False, ) -> None: self._connection_type = ConnectionAsync super().__init__( connection_params=connection_params, embedded_options=embedded_options, auth_client_secret=auth_client_secret, additional_headers=additional_headers, additional_config=additional_config, skip_init_checks=skip_init_checks, ) self.alias = _AliasAsync(self._connection) self.backup = _BackupAsync(self._connection) self.cluster = _ClusterAsync(self._connection) self.collections = _CollectionsAsync(self._connection) self.debug = _DebugAsync(self._connection) self.groups = _GroupsAsync(self._connection) self.roles = _RolesAsync(self._connection) self.users = _UsersAsync(self._connection) async def __aenter__(self) -> "WeaviateAsyncClient": await executor.aresult(self.connect()) return self async def __aexit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: await executor.aresult(self.close()) @executor.wrap("sync")
WeaviateAsyncClient
python
django-mptt__django-mptt
tests/myapp/models.py
{ "start": 298, "end": 378 }
class ____(QuerySet): def custom_method(self): pass
CustomTreeQueryset
python
doocs__leetcode
solution/1700-1799/1718.Construct the Lexicographically Largest Valid Sequence/Solution.py
{ "start": 0, "end": 846 }
class ____: def constructDistancedSequence(self, n: int) -> List[int]: def dfs(u): if u == n * 2: return True if path[u]: return dfs(u + 1) for i in range(n, 1, -1): if cnt[i] and u + i < n * 2 and path[u + i] == 0: cnt[i] = 0 path[u] = path[u + i] = i if dfs(u + 1): return True path[u] = path[u + i] = 0 cnt[i] = 2 if cnt[1]: cnt[1], path[u] = 0, 1 if dfs(u + 1): return True path[u], cnt[1] = 0, 1 return False path = [0] * (n * 2) cnt = [2] * (n * 2) cnt[1] = 1 dfs(1) return path[1:]
Solution
python
altair-viz__altair
tools/generate_schema_wrapper.py
{ "start": 15323, "end": 15714 }
class ____(SchemaGenerator): schema_class_template = textwrap.dedent( ''' @with_property_setters class {classname}(ValueChannelMixin, core.{basename}): """{docstring}""" _class_is_valid_at_instantiation = False _encoding_name = "{encodingname}" {method_code} {init_code} ''' ) haspropsetters = True
ValueSchemaGenerator
python
pennersr__django-allauth
allauth/socialaccount/providers/openid_connect/provider.py
{ "start": 894, "end": 1047 }
class ____(ProviderAccount): def get_user_data(self) -> Optional[Dict]: return _pick_data(self.account.extra_data)
OpenIDConnectProviderAccount
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/newType1.py
{ "start": 1277, "end": 1982 }
class ____(TypedDict): x: int # This should generate an error because type cannot be a TypedDict. NewTypeBad7 = NewType("NewTypeBad7", TD1) NewTypeGood8 = NewType("NewTypeGood8", MyString) # This should generate an error because the name doesn't match. NewTypeBad9 = NewType("NewTypeBad9Not", int) def func2(x: MyString): # This should generate two errors because isinstance can't be used # with a NewType and it violates the isinstance siganture. if isinstance(x, MyString): pass # This should generate two errors because issubclass can't be used # with a NewType and it violates the issubclass signature. if issubclass(type(x), (MyString, int)): pass
TD1
python
facebook__pyre-check
source/interprocedural_analyses/taint/test/integration/static_methods.py
{ "start": 228, "end": 415 }
class ____: @staticmethod def sink(oops): _test_sink(oops) def test(source): return StaticClass.sink(source) def run_test(source): test(_test_source())
StaticClass
python
aimacode__aima-python
learning4e.py
{ "start": 29412, "end": 30538 }
class ____: """Given a list of learning algorithms, have them vote.""" def __init__(self, learners): self.learners = learners def train(self, dataset): self.predictors = [learner(dataset) for learner in self.learners] def predict(self, example): return mode(predictor.predict(example) for predictor in self.predictors) def ada_boost(dataset, L, K): """[Figure 18.34]""" examples, target = dataset.examples, dataset.target n = len(examples) eps = 1 / (2 * n) w = [1 / n] * n h, z = [], [] for k in range(K): h_k = L(dataset, w) h.append(h_k) error = sum(weight for example, weight in zip(examples, w) if example[target] != h_k.predict(example[:-1])) # avoid divide-by-0 from either 0% or 100% error rates error = np.clip(error, eps, 1 - eps) for j, example in enumerate(examples): if example[target] == h_k.predict(example[:-1]): w[j] *= error / (1 - error) w = normalize(w) z.append(np.log((1 - error) / error)) return weighted_majority(h, z)
EnsembleLearner
python
google__pytype
pytype/test_data/pytree.py
{ "start": 1295, "end": 8429 }
class ____: """Abstract base class for Node and Leaf. This provides some default functionality and boilerplate using the template pattern. A node may be a subnode of at most one parent. Each subclass of Base must provide a __str__ implementation that returns exactly the input that was used to create the item in the tree. Each subclass of Base must provide a value attribute, and the ranges of values must be distinct for each subclass. This isn't a strict requirement, but it's convenient so that instead of writing if isinstance(node, Leaf) and node.type == TOKEN.name: you can just write if node.type == TOKEN.name: """ # Default values for instance variables type = None # int: token number (< 256) or symbol number (>= 256) parent = None # Parent node pointer, or None children = () # Tuple of subnodes was_changed = False was_checked = False def __new__(cls, *args, **kwds): """Constructor that prevents Base from being instantiated.""" assert cls is not Base, "Cannot instantiate Base" return object.__new__(cls) def __eq__(self, other): """Compare two nodes for equality. This calls the method _eq(). """ if self is other: return True # We assume that it doesn't make sense to compare a class with a # subclass ... if that changes, then the following test needs to be # changed to something that uses isssubclass. if self.__class__ is not other.__class__: return NotImplemented return self._eq(other) # Implemented by subclass __hash__ = None # For Py3 compatibility. def __ne__(self, other): """Compare two nodes for inequality. This calls the method _eq(). """ if self.__class__ is not other.__class__: return NotImplemented return not self._eq(other) def _eq(self, other): """Compare two nodes for equality. This is called by __eq__ and __ne__. It is only called if the two nodes have the same type. This must be implemented by the concrete subclass. Nodes should be considered equal if they have the same structure, ignoring the prefix string and other context information. """ raise NotImplementedError def clone(self): """Return a cloned (deep) copy of self. This must be implemented by the concrete subclass. """ raise NotImplementedError def post_order(self): """Post-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def pre_order(self): """Pre-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def set_prefix(self, prefix): """Set the prefix for the node (see Leaf class). DEPRECATED; use the prefix property directly. """ warnings.warn( "set_prefix() is deprecated; use the prefix property", DeprecationWarning, stacklevel=2, ) self.prefix = prefix def get_prefix(self): """Return the prefix for the node (see Leaf class). DEPRECATED; use the prefix property directly. """ warnings.warn( "get_prefix() is deprecated; use the prefix property", DeprecationWarning, stacklevel=2, ) return self.prefix def replace(self, new): """Replace this node with a new one in the parent.""" assert self.parent is not None, str(self) assert new is not None if not isinstance(new, list): new = [new] l_children = [] found = False for ch in self.parent.children: if ch is self: assert not found, (self.parent.children, self, new) if new is not None: l_children.extend(new) found = True else: l_children.append(ch) assert found, (self.children, self, new) self.parent.changed() self.parent.children = l_children for x in new: x.parent = self.parent self.parent = None def get_line(self): """Return the line number which generated the invocant node.""" node = self while not isinstance(node, Leaf): if not node.children: return node = node.children[0] return node.line def changed(self): if self.parent: self.parent.changed() self.was_changed = True def remove(self): """Remove the node from the tree. Returns the position of the node in its parent's children before it was removed. """ if self.parent: for i, node in enumerate(self.parent.children): if node is self: self.parent.changed() del self.parent.children[i] self.parent = None return i @property def next_sibling(self): """The node immediately following the invocant in their parent's children list. If the invocant does not have a next sibling, it is None """ if self.parent is None: return None # Can't use index(); we need to test by identity for i, child in enumerate(self.parent.children): if child is self: try: return self.parent.children[i + 1] except IndexError: return None @property def prev_sibling(self): """The node immediately preceding the invocant in their parent's children list. If the invocant does not have a previous sibling, it is None. """ if self.parent is None: return None # Can't use index(); we need to test by identity for i, child in enumerate(self.parent.children): if child is self: if i == 0: return None return self.parent.children[i - 1] def leaves(self): for child in self.children: yield from child.leaves() def depth(self): if self.parent is None: return 0 return 1 + self.parent.depth() def get_suffix(self): """Return the string immediately following the invocant node. This is effectively equivalent to node.next_sibling.prefix """ next_sib = self.next_sibling if next_sib is None: return "" return next_sib.prefix if sys.version_info < (3, 0): def __str__(self): return str(self).encode("ascii") @property def type_repr(self): """Get the type as a human-readable string.""" return type_repr(self.type) def descend_to(self, indexes): """Takes a sequence of integers and descends via children. For example, descend_to([]) returns self; descend_to([0]) returns self.children[0]; descend_to([2,5,3]) returns self.children[2].children[5],children[3]. In effect, this gives each node a unique number, which is the list of child # that is needed to get to it. """ node = self for i in indexes: node = node.children[i] return node def label_nodes(self, indexes=None): """Create 'label' attritbute for each Node/Leaf. Args: indexes is used internally to keep track of the path to here. """ indexes = indexes or [] self.label = indexes try: for i, ch in enumerate(self.children): ch.label_nodes(indexes + [i]) except AttributeError: pass # Leaf has no children
Base
python
pandas-dev__pandas
pandas/tests/series/indexing/test_setitem.py
{ "start": 42844, "end": 43216 }
class ____(CoercionTest): @pytest.fixture def obj(self): return Series(["a", "b", "c", "d"], dtype=StringDtype(na_value=np.nan)) @pytest.mark.parametrize( "val,exp_dtype,raises", [ (1, np.complex128, False), (1.1, np.complex128, False), (1 + 1j, np.complex128, False), (True, object, True), ], )
TestCoercionString
python
PrefectHQ__prefect
src/integrations/prefect-aws/prefect_aws/observers/ecs.py
{ "start": 4628, "end": 8664 }
class ____: def __init__(self, queue_name: str, queue_region: str | None = None): self.queue_name = queue_name self.queue_region = queue_region async def stream_messages( self, ) -> AsyncGenerator["MessageTypeDef", None]: session = aiobotocore.session.get_session() async with session.create_client( "sqs", region_name=self.queue_region ) as sqs_client: try: queue_url = (await sqs_client.get_queue_url(QueueName=self.queue_name))[ "QueueUrl" ] except ClientError as e: if ( e.response.get("Error", {}).get("Code") == "AWS.SimpleQueueService.NonExistentQueue" ): logger.warning( ( "SQS queue '%s' does not exist in region '%s'. " "This worker will continue to submit ECS tasks, but event replication " "and crash detection will not work. To enable ECS event replication and " "crash detection, deploy an SQS queue using " "`prefect-aws ecs-worker deploy-events` and configure the " "PREFECT_INTEGRATIONS_AWS_ECS_OBSERVER_SQS_QUEUE_NAME environment " "variable on your worker to point to the deployed queue." ), self.queue_name, self.queue_region or "default", ) return raise track_record: deque[bool] = deque( [True] * SQS_CONSECUTIVE_FAILURES, maxlen=SQS_CONSECUTIVE_FAILURES ) failures: deque[tuple[Exception, TracebackType | None]] = deque( maxlen=SQS_MEMORY ) backoff_count = 0 while True: try: messages = await sqs_client.receive_message( QueueUrl=queue_url, MaxNumberOfMessages=10, WaitTimeSeconds=20, ) for message in messages.get("Messages", []): if not (receipt_handle := message.get("ReceiptHandle")): continue yield message await sqs_client.delete_message( QueueUrl=queue_url, ReceiptHandle=receipt_handle, ) backoff_count = 0 except Exception as e: track_record.append(False) failures.append((e, e.__traceback__)) logger.debug("Failed to receive messages from SQS", exc_info=e) if not any(track_record): backoff_count += 1 if backoff_count > SQS_MAX_BACKOFF_ATTEMPTS: logger.error( "SQS polling exceeded maximum backoff attempts (%s). " "Last %s errors: %s", SQS_MAX_BACKOFF_ATTEMPTS, len(failures), [str(e) for e, _ in failures], ) raise RuntimeError( f"SQS polling failed after {SQS_MAX_BACKOFF_ATTEMPTS} backoff attempts" ) track_record.extend([True] * SQS_CONSECUTIVE_FAILURES) failures.clear() backoff_seconds = SQS_BACKOFF * 2**backoff_count logger.debug( "Backing off due to consecutive errors, using increased interval of %s seconds.", backoff_seconds, ) await asyncio.sleep(backoff_seconds)
SqsSubscriber
python
PrefectHQ__prefect
src/integrations/prefect-dbt/prefect_dbt/cloud/credentials.py
{ "start": 330, "end": 6315 }
class ____(CredentialsBlock): """ Credentials block for credential use across dbt Cloud tasks and flows. Attributes: api_key (SecretStr): API key to authenticate with the dbt Cloud administrative API. Refer to the [Authentication docs]( https://docs.getdbt.com/dbt-cloud/api-v2#section/Authentication) for retrieving the API key. account_id (int): ID of dbt Cloud account with which to interact. domain (Optional[str]): Domain at which the dbt Cloud API is hosted. Examples: Load stored dbt Cloud credentials: ```python from prefect_dbt.cloud import DbtCloudCredentials dbt_cloud_credentials = DbtCloudCredentials.load("BLOCK_NAME") ``` Use DbtCloudCredentials instance to trigger a job run: ```python from prefect_dbt.cloud import DbtCloudCredentials credentials = DbtCloudCredentials(api_key="my_api_key", account_id=123456789) async with dbt_cloud_credentials.get_administrative_client() as client: client.trigger_job_run(job_id=1) ``` Load saved dbt Cloud credentials within a flow: ```python from prefect import flow from prefect_dbt.cloud import DbtCloudCredentials from prefect_dbt.cloud.jobs import trigger_dbt_cloud_job_run @flow def trigger_dbt_cloud_job_run_flow(): credentials = DbtCloudCredentials.load("my-dbt-credentials") trigger_dbt_cloud_job_run(dbt_cloud_credentials=credentials, job_id=1) trigger_dbt_cloud_job_run_flow() ``` """ _block_type_name = "dbt Cloud Credentials" _logo_url = "https://images.ctfassets.net/gm98wzqotmnx/5zE9lxfzBHjw3tnEup4wWL/9a001902ed43a84c6c96d23b24622e19/dbt-bit_tm.png?h=250" # noqa _documentation_url = "https://docs.prefect.io/integrations/prefect-dbt" # noqa api_key: SecretStr = Field( default=..., title="API Key", description="A dbt Cloud API key to use for authentication.", ) account_id: int = Field( default=..., title="Account ID", description="The ID of your dbt Cloud account." ) domain: str = Field( default="cloud.getdbt.com", description="The base domain of your dbt Cloud instance.", ) def get_administrative_client(self) -> DbtCloudAdministrativeClient: """ Returns a newly instantiated client for working with the dbt Cloud administrative API. Returns: An authenticated dbt Cloud administrative API client. """ return DbtCloudAdministrativeClient( api_key=self.api_key.get_secret_value(), account_id=self.account_id, domain=self.domain, ) def get_metadata_client(self) -> DbtCloudMetadataClient: """ Returns a newly instantiated client for working with the dbt Cloud metadata API. Example: Sending queries via the returned metadata client: ```python from prefect_dbt import DbtCloudCredentials credentials_block = DbtCloudCredentials.load("test-account") metadata_client = credentials_block.get_metadata_client() query = \"\"\" { metrics(jobId: 123) { uniqueId name packageName tags label runId description type sql timestamp timeGrains dimensions meta resourceType filters { field operator value } model { name } } } \"\"\" metadata_client.query(query) # Result: # { # "data": { # "metrics": [ # { # "uniqueId": "metric.tpch.total_revenue", # "name": "total_revenue", # "packageName": "tpch", # "tags": [], # "label": "Total Revenue ($)", # "runId": 108952046, # "description": "", # "type": "sum", # "sql": "net_item_sales_amount", # "timestamp": "order_date", # "timeGrains": ["day", "week", "month"], # "dimensions": ["status_code", "priority_code"], # "meta": {}, # "resourceType": "metric", # "filters": [], # "model": { "name": "fct_orders" } # } # ] # } # } ``` Returns: An authenticated dbt Cloud metadata API client. """ return DbtCloudMetadataClient( api_key=self.api_key.get_secret_value(), domain=f"metadata.{self.domain}", ) def get_client( self, client_type: Literal["administrative", "metadata"] ) -> Union[DbtCloudAdministrativeClient, DbtCloudMetadataClient]: """ Returns a newly instantiated client for working with the dbt Cloud API. Args: client_type: Type of client to return. Accepts either 'administrative' or 'metadata'. Returns: The authenticated client of the requested type. """ get_client_method = getattr(self, f"get_{client_type}_client", None) if get_client_method is None: raise ValueError(f"'{client_type}' is not a supported client type.") return get_client_method()
DbtCloudCredentials
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 87817, "end": 88258 }
class ____(sgqlc.types.Enum): """Possible directions in which to order a list of repository migrations when provided an `orderBy` argument. Enumeration Choices: * `ASC`: Specifies an ascending order for a given `orderBy` argument. * `DESC`: Specifies a descending order for a given `orderBy` argument. """ __schema__ = github_schema __choices__ = ("ASC", "DESC")
RepositoryMigrationOrderDirection
python
protocolbuffers__protobuf
python/google/protobuf/descriptor.py
{ "start": 36600, "end": 39594 }
class ____(_NestedDescriptorBase): """Descriptor for a service. Attributes: name (str): Name of the service. full_name (str): Full name of the service, including package name. index (int): 0-indexed index giving the order that this services definition appears within the .proto file. methods (list[MethodDescriptor]): List of methods provided by this service. methods_by_name (dict(str, MethodDescriptor)): Same :class:`MethodDescriptor` objects as in :attr:`methods_by_name`, but indexed by "name" attribute in each :class:`MethodDescriptor`. options (descriptor_pb2.ServiceOptions): Service options message or None to use default service options. file (FileDescriptor): Reference to file info. """ if _USE_C_DESCRIPTORS: _C_DESCRIPTOR_CLASS = _message.ServiceDescriptor def __new__( cls, name=None, full_name=None, index=None, methods=None, options=None, serialized_options=None, file=None, # pylint: disable=redefined-builtin serialized_start=None, serialized_end=None, create_key=None, ): _message.Message._CheckCalledFromGeneratedFile() # pylint: disable=protected-access return _message.default_pool.FindServiceByName(full_name) def __init__( self, name, full_name, index, methods, options=None, serialized_options=None, file=None, # pylint: disable=redefined-builtin serialized_start=None, serialized_end=None, create_key=None, ): if create_key is not _internal_create_key: _Deprecated('create function ServiceDescriptor()') super(ServiceDescriptor, self).__init__( options, 'ServiceOptions', name, full_name, file, None, serialized_start=serialized_start, serialized_end=serialized_end, serialized_options=serialized_options, ) self.index = index self.methods = methods self.methods_by_name = dict((m.name, m) for m in methods) # Set the containing service for each method in this service. for method in self.methods: method.file = self.file method.containing_service = self @property def _parent(self): return self.file def FindMethodByName(self, name): """Searches for the specified method, and returns its descriptor. Args: name (str): Name of the method. Returns: MethodDescriptor: The descriptor for the requested method. Raises: KeyError: if the method cannot be found in the service. """ return self.methods_by_name[name] def CopyToProto(self, proto): """Copies this to a descriptor_pb2.ServiceDescriptorProto. Args: proto (descriptor_pb2.ServiceDescriptorProto): An empty descriptor proto. """ # This function is overridden to give a better doc comment. super(ServiceDescriptor, self).CopyToProto(proto)
ServiceDescriptor
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/logs/events.py
{ "start": 3824, "end": 3989 }
class ____(graphene.ObjectType): class Meta: interfaces = (GrapheneMessageEvent, GrapheneRunEvent) name = "RunSuccessEvent"
GrapheneRunSuccessEvent
python
readthedocs__readthedocs.org
readthedocs/core/models.py
{ "start": 394, "end": 1554 }
class ____(TimeStampedModel): """Additional information about a User.""" user = AutoOneToOneField( User, verbose_name=_("User"), related_name="profile", on_delete=models.CASCADE, ) # Shown on the users profile homepage = models.CharField(_("Homepage"), max_length=100, blank=True) # User configuration options allow_ads = models.BooleanField( _("See paid advertising"), help_text=_("If unchecked, you will still see community ads."), default=True, ) mailing_list = models.BooleanField( default=False, help_text=_("Subscribe to our mailing list, and get helpful onboarding suggestions."), ) # Internal tracking whitelisted = models.BooleanField(_("Whitelisted"), default=False) banned = models.BooleanField(_("Banned"), default=False) # Model history history = ExtraHistoricalRecords() def get_absolute_url(self): return reverse( "profiles_profile_detail", kwargs={"username": self.user.username}, ) register(User, records_class=ExtraHistoricalRecords, app=__package__)
UserProfile
python
doocs__leetcode
solution/1100-1199/1150.Check If a Number Is Majority Element in a Sorted Array/Solution.py
{ "start": 0, "end": 216 }
class ____: def isMajorityElement(self, nums: List[int], target: int) -> bool: left = bisect_left(nums, target) right = bisect_right(nums, target) return right - left > len(nums) // 2
Solution
python
django__django
django/urls/resolvers.py
{ "start": 4130, "end": 5199 }
class ____: def __get__(self, instance, cls=None): """ Return a compiled regular expression based on the active language. """ if instance is None: return self # As a performance optimization, if the given regex string is a regular # string (not a lazily-translated string proxy), compile it once and # avoid per-language compilation. pattern = instance._regex if isinstance(pattern, str): instance.__dict__["regex"] = self._compile(pattern) return instance.__dict__["regex"] language_code = get_language() if language_code not in instance._regex_dict: instance._regex_dict[language_code] = self._compile(str(pattern)) return instance._regex_dict[language_code] def _compile(self, regex): try: return re.compile(regex) except re.error as e: raise ImproperlyConfigured( f'"{regex}" is not a valid regular expression: {e}' ) from e
LocaleRegexDescriptor
python
huggingface__transformers
src/transformers/models/bert_generation/modeling_bert_generation.py
{ "start": 25988, "end": 26468 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): logits = self.decoder(hidden_states) return logits @auto_docstring( custom_intro=""" BertGeneration Model with a `language modeling` head on top for CLM fine-tuning. """ )
BertGenerationOnlyLMHead
python
anthropics__anthropic-sdk-python
src/anthropic/types/web_search_result_block_param.py
{ "start": 253, "end": 476 }
class ____(TypedDict, total=False): encrypted_content: Required[str] title: Required[str] type: Required[Literal["web_search_result"]] url: Required[str] page_age: Optional[str]
WebSearchResultBlockParam
python
joke2k__faker
faker/providers/phone_number/el_GR/__init__.py
{ "start": 49, "end": 523 }
class ____(PhoneNumberProvider): formats = ( "69########", "69## ######", "69## ### ###", "210#######", "210 #######", "210 ### ####", "2##0######", "2##0 ######", "2##0 ### ###", "2###0#####", "2###0 ## ###", "(+30) 69## ######", "+30 69## ######", "+3069########", "(+30) 2### ######", "+30 2### ######", "+302#########", )
Provider
python
huggingface__transformers
src/transformers/models/xlm_roberta/modular_xlm_roberta.py
{ "start": 1652, "end": 1830 }
class ____(RobertaModel): pass @auto_docstring( custom_intro=""" XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """ )
XLMRobertaModel
python
PyCQA__pydocstyle
src/pydocstyle/parser.py
{ "start": 599, "end": 976 }
class ____(ParseError): def __init__(self, token, expected_kind): self.token = token self.expected_kind = expected_kind def __str__(self): return "Unexpected token {}, expected {}".format( self.token, self.expected_kind ) def humanize(string): return re(r'(.)([A-Z]+)').sub(r'\1 \2', string).lower()
UnexpectedTokenError
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pylint/single_string_slots.py
{ "start": 390, "end": 547 }
class ____: __slots__: tuple[str, ...] = ("bar",) def __init__(self, bar): self.bar = bar # This is a type error, out of scope for the rule
Foo
python
MongoEngine__mongoengine
tests/fixtures.py
{ "start": 1465, "end": 1505 }
class ____: name = StringField()
Mixin
python
wandb__wandb
wandb/sdk/artifacts/_generated/fetch_linked_artifacts.py
{ "start": 284, "end": 378 }
class ____(GQLResult): artifact: Optional[FetchLinkedArtifactsArtifact]
FetchLinkedArtifacts
python
google__jax
docs/autodidax.py
{ "start": 32311, "end": 32434 }
class ____(NamedTuple): primitive: Primitive inputs: list[Atom] params: dict[str, Any] out_binders: list[Var]
JaxprEqn
python
tox-dev__tox
src/tox/tox_env/python/virtual_env/package/pyproject.py
{ "start": 17281, "end": 17506 }
class ____(Pep517VenvPackager, VirtualEnv): """local file system python virtual environment via the virtualenv package.""" @staticmethod def id() -> str: return "virtualenv-pep-517"
Pep517VirtualEnvPackager
python
realpython__materials
python-isinstance/balls_v2.py
{ "start": 208, "end": 481 }
class ____(Ball): def __init__(self, color, number): super().__init__(color, shape="sphere") self.number = number def get_state(self): print( f"Color = {self.color}, Number = {self.number}, Shape = {self.shape}" )
PoolBall
python
matplotlib__matplotlib
lib/matplotlib/colors.py
{ "start": 97231, "end": 108376 }
class ____(Normalize): def __init__(self, vcenter=0, halfrange=None, clip=False): """ Normalize symmetrical data around a center (0 by default). Unlike `TwoSlopeNorm`, `CenteredNorm` applies an equal rate of change around the center. Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4, with 0 as the midpoint, and with equal rates of change around that midpoint. Parameters ---------- vcenter : float, default: 0 The data value that defines ``0.5`` in the normalization. halfrange : float, optional The range of data values that defines a range of ``0.5`` in the normalization, so that *vcenter* - *halfrange* is ``0.0`` and *vcenter* + *halfrange* is ``1.0`` in the normalization. Defaults to the largest absolute difference to *vcenter* for the values in the dataset. clip : bool, default: False Determines the behavior for mapping values outside the range ``[vmin, vmax]``. If clipping is off, values outside the range ``[vmin, vmax]`` are also transformed, resulting in values outside ``[0, 1]``. This behavior is usually desirable, as colormaps can mark these *under* and *over* values with specific colors. If clipping is on, values below *vmin* are mapped to 0 and values above *vmax* are mapped to 1. Such values become indistinguishable from regular boundary values, which may cause misinterpretation of the data. Examples -------- This maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and below 0.0): >>> import matplotlib.colors as mcolors >>> norm = mcolors.CenteredNorm(halfrange=4.0) >>> data = [-2., 0., 4.] >>> norm(data) array([0.25, 0.5 , 1. ]) """ super().__init__(vmin=None, vmax=None, clip=clip) self._vcenter = vcenter # calling the halfrange setter to set vmin and vmax self.halfrange = halfrange def autoscale(self, A): """ Set *halfrange* to ``max(abs(A-vcenter))``, then set *vmin* and *vmax*. """ A = np.asanyarray(A) self.halfrange = max(self._vcenter-A.min(), A.max()-self._vcenter) def autoscale_None(self, A): """Set *vmin* and *vmax*.""" A = np.asanyarray(A) if self.halfrange is None and A.size: self.autoscale(A) @property def vmin(self): return self._vmin @vmin.setter def vmin(self, value): value = _sanitize_extrema(value) if value != self._vmin: self._vmin = value self._vmax = 2*self.vcenter - value self._changed() @property def vmax(self): return self._vmax @vmax.setter def vmax(self, value): value = _sanitize_extrema(value) if value != self._vmax: self._vmax = value self._vmin = 2*self.vcenter - value self._changed() @property def vcenter(self): return self._vcenter @vcenter.setter def vcenter(self, vcenter): if vcenter != self._vcenter: self._vcenter = vcenter # Trigger an update of the vmin/vmax values through the setter self.halfrange = self.halfrange self._changed() @property def halfrange(self): if self.vmin is None or self.vmax is None: return None return (self.vmax - self.vmin) / 2 @halfrange.setter def halfrange(self, halfrange): if halfrange is None: self.vmin = None self.vmax = None else: self.vmin = self.vcenter - abs(halfrange) self.vmax = self.vcenter + abs(halfrange) def make_norm_from_scale(scale_cls, base_norm_cls=None, *, init=None): """ Decorator for building a `.Normalize` subclass from a `~.scale.ScaleBase` subclass. After :: @make_norm_from_scale(scale_cls) class norm_cls(Normalize): ... *norm_cls* is filled with methods so that normalization computations are forwarded to *scale_cls* (i.e., *scale_cls* is the scale that would be used for the colorbar of a mappable normalized with *norm_cls*). If *init* is not passed, then the constructor signature of *norm_cls* will be ``norm_cls(vmin=None, vmax=None, clip=False)``; these three parameters will be forwarded to the base class (``Normalize.__init__``), and a *scale_cls* object will be initialized with no arguments (other than a dummy axis). If the *scale_cls* constructor takes additional parameters, then *init* should be passed to `make_norm_from_scale`. It is a callable which is *only* used for its signature. First, this signature will become the signature of *norm_cls*. Second, the *norm_cls* constructor will bind the parameters passed to it using this signature, extract the bound *vmin*, *vmax*, and *clip* values, pass those to ``Normalize.__init__``, and forward the remaining bound values (including any defaults defined by the signature) to the *scale_cls* constructor. """ if base_norm_cls is None: return functools.partial(make_norm_from_scale, scale_cls, init=init) if isinstance(scale_cls, functools.partial): scale_args = scale_cls.args scale_kwargs_items = tuple(scale_cls.keywords.items()) scale_cls = scale_cls.func else: scale_args = scale_kwargs_items = () if init is None: def init(vmin=None, vmax=None, clip=False): pass return _make_norm_from_scale( scale_cls, scale_args, scale_kwargs_items, base_norm_cls, inspect.signature(init)) @functools.cache def _make_norm_from_scale( scale_cls, scale_args, scale_kwargs_items, base_norm_cls, bound_init_signature, ): """ Helper for `make_norm_from_scale`. This function is split out to enable caching (in particular so that different unpickles reuse the same class). In order to do so, - ``functools.partial`` *scale_cls* is expanded into ``func, args, kwargs`` to allow memoizing returned norms (partial instances always compare unequal, but we can check identity based on ``func, args, kwargs``; - *init* is replaced by *init_signature*, as signatures are picklable, unlike to arbitrary lambdas. """ class ScaleNorm(base_norm_cls): def __reduce__(self): cls = type(self) # If the class is toplevel-accessible, it is possible to directly # pickle it "by name". This is required to support norm classes # defined at a module's toplevel, as the inner base_norm_cls is # otherwise unpicklable (as it gets shadowed by the generated norm # class). If either import or attribute access fails, fall back to # the general path. try: if cls is getattr(importlib.import_module(cls.__module__), cls.__qualname__): return (_create_empty_object_of_class, (cls,), vars(self)) except (ImportError, AttributeError): pass return (_picklable_norm_constructor, (scale_cls, scale_args, scale_kwargs_items, base_norm_cls, bound_init_signature), vars(self)) def __init__(self, *args, **kwargs): ba = bound_init_signature.bind(*args, **kwargs) ba.apply_defaults() super().__init__( **{k: ba.arguments.pop(k) for k in ["vmin", "vmax", "clip"]}) self._scale = functools.partial( scale_cls, *scale_args, **dict(scale_kwargs_items))( axis=None, **ba.arguments) self._trf = self._scale.get_transform() __init__.__signature__ = bound_init_signature.replace(parameters=[ inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD), *bound_init_signature.parameters.values()]) def __call__(self, value, clip=None): value, is_scalar = self.process_value(value) if self.vmin is None or self.vmax is None: self.autoscale_None(value) if self.vmin > self.vmax: raise ValueError("vmin must be less or equal to vmax") if self.vmin == self.vmax: return np.full_like(value, 0) if clip is None: clip = self.clip if clip: value = np.clip(value, self.vmin, self.vmax) t_value = self._trf.transform(value).reshape(np.shape(value)) t_vmin, t_vmax = self._trf.transform([self.vmin, self.vmax]) if not np.isfinite([t_vmin, t_vmax]).all(): raise ValueError("Invalid vmin or vmax") t_value -= t_vmin t_value /= (t_vmax - t_vmin) t_value = np.ma.masked_invalid(t_value, copy=False) return t_value[0] if is_scalar else t_value def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") if self.vmin > self.vmax: raise ValueError("vmin must be less or equal to vmax") t_vmin, t_vmax = self._trf.transform([self.vmin, self.vmax]) if not np.isfinite([t_vmin, t_vmax]).all(): raise ValueError("Invalid vmin or vmax") value, is_scalar = self.process_value(value) rescaled = value * (t_vmax - t_vmin) rescaled += t_vmin value = (self._trf .inverted() .transform(rescaled) .reshape(np.shape(value))) return value[0] if is_scalar else value def autoscale_None(self, A): # i.e. A[np.isfinite(...)], but also for non-array A's in_trf_domain = np.extract(np.isfinite(self._trf.transform(A)), A) if in_trf_domain.size == 0: in_trf_domain = np.ma.masked return super().autoscale_None(in_trf_domain) if base_norm_cls is Normalize: ScaleNorm.__name__ = f"{scale_cls.__name__}Norm" ScaleNorm.__qualname__ = f"{scale_cls.__qualname__}Norm" else: ScaleNorm.__name__ = base_norm_cls.__name__ ScaleNorm.__qualname__ = base_norm_cls.__qualname__ ScaleNorm.__module__ = base_norm_cls.__module__ ScaleNorm.__doc__ = base_norm_cls.__doc__ return ScaleNorm def _create_empty_object_of_class(cls): return cls.__new__(cls) def _picklable_norm_constructor(*args): return _create_empty_object_of_class(_make_norm_from_scale(*args)) @make_norm_from_scale( scale.FuncScale, init=lambda functions, vmin=None, vmax=None, clip=False: None)
CenteredNorm
python
ray-project__ray
python/ray/tune/tests/test_trial_scheduler.py
{ "start": 8370, "end": 10403 }
class ____: def __init__(self, scheduler): self._scheduler_alg = scheduler self.search_alg = None self.trials = [] def process_action(self, trial, action): if action == TrialScheduler.CONTINUE: pass elif action == TrialScheduler.PAUSE: self.pause_trial(trial) elif action == TrialScheduler.STOP: self.stop_trial(trial) def pause_trial(self, trial, should_checkpoint: bool = True): if should_checkpoint: self._schedule_trial_save(trial, None) trial.status = Trial.PAUSED def stop_trial(self, trial, error=False, error_msg=None): if trial.status in [Trial.ERROR, Trial.TERMINATED]: return elif trial.status in [Trial.PENDING, Trial.PAUSED]: self._scheduler_alg.on_trial_remove(self, trial) else: self._scheduler_alg.on_trial_complete(self, trial, result(100, 10)) trial.status = Trial.ERROR if error else Trial.TERMINATED def add_trial(self, trial): self.trials.append(trial) self._scheduler_alg.on_trial_add(self, trial) def get_trials(self): return self.trials def get_live_trials(self): return {t for t in self.trials if t.status != Trial.TERMINATED} def _launch_trial(self, trial): trial.status = Trial.RUNNING def _set_trial_status(self, trial, status): trial.status = status def start_trial(self, trial, checkpoint_obj=None, train=True): trial.logger_running = True if checkpoint_obj: trial.restored_checkpoint = checkpoint_obj.dir_or_data trial.status = Trial.RUNNING return True def _schedule_trial_restore(self, trial): pass def _schedule_trial_save(self, trial, result=None): return _FakeFutureResult( _TrainingResult( checkpoint=Checkpoint.from_directory(trial.trainable_name), metrics=result, ) )
_MockTrialRunner
python
django__django
tests/template_tests/filter_tests/test_truncatechars_html.py
{ "start": 103, "end": 1495 }
class ____(SimpleTestCase): def test_truncate_zero(self): self.assertEqual( truncatechars_html( '<p>one <a href="#">two - three <br>four</a> five</p>', 0 ), "", ) def test_truncate(self): self.assertEqual( truncatechars_html( '<p>one <a href="#">two - three <br>four</a> five</p>', 4 ), "<p>one…</p>", ) def test_truncate2(self): self.assertEqual( truncatechars_html( '<p>one <a href="#">two - three <br>four</a> five</p>', 9 ), '<p>one <a href="#">two …</a></p>', ) def test_truncate3(self): self.assertEqual( truncatechars_html( '<p>one <a href="#">two - three <br>four</a> five</p>', 100 ), '<p>one <a href="#">two - three <br>four</a> five</p>', ) def test_truncate_unicode(self): self.assertEqual( truncatechars_html("<b>\xc5ngstr\xf6m</b> was here", 3), "<b>\xc5n…</b>" ) def test_truncate_something(self): self.assertEqual(truncatechars_html("a<b>b</b>c", 3), "a<b>b</b>c") def test_invalid_arg(self): html = '<p>one <a href="#">two - three <br>four</a> five</p>' self.assertEqual(truncatechars_html(html, "a"), html)
FunctionTests
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pylint/eq_without_hash.py
{ "start": 507, "end": 582 }
class ____: for _ in ...: def __eq__(self, other): ...
MaybeEqFor
python
huggingface__transformers
src/transformers/models/xlm/modeling_xlm.py
{ "start": 8918, "end": 11712 }
class ____(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config ([`XLMConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model. """ def __init__(self, config: XLMConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): The hidden states of the first tokens for the labeled span. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the first token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. <Tip> One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides `start_states`. </Tip> Returns: `torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert start_states is not None or start_positions is not None, ( "One of start_states, start_positions should be not None" ) if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x
XLMPoolerAnswerClass
python
mamba-org__mamba
docs/source/tools/mermaid_inheritance.py
{ "start": 1657, "end": 4464 }
class ____(InheritanceGraph): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a mermaid graph from them. """ # These are the default attrs default_graph_attrs = {} # 'rankdir': 'LR', # 'size': '"8.0, 12.0"', # 'bgcolor': 'transparent', # } default_node_attrs = {} # 'shape': 'box', # 'fontsize': 10, # 'height': 0.25, # 'fontname': '"Vera Sans, DejaVu Sans, Liberation Sans, ' # 'Arial, Helvetica, sans"', # 'style': '"setlinewidth(0.5),filled"', # 'fillcolor': 'white', # } default_edge_attrs = {} # 'arrowsize': 0.5, # 'style': '"setlinewidth(0.5)"', # } def _format_node_attrs(self, attrs: dict) -> str: # return ','.join(['%s=%s' % x for x in sorted(attrs.items())]) return "" def _format_graph_attrs(self, attrs: dict) -> str: # return ''.join(['%s=%s;\n' % x for x in sorted(attrs.items())]) return "" def generate_dot( self, name: str, urls: dict = {}, # noqa env: BuildEnvironment = None, graph_attrs: dict = {}, # noqa node_attrs: dict = {}, # noqa edge_attrs: dict = {}, # noqa ) -> str: """Generate a mermaid graph from the classes that were passed in to __init__. *name* is the name of the graph. *urls* is a dictionary mapping class names to HTTP URLs. *graph_attrs*, *node_attrs*, *edge_attrs* are dictionaries containing key/value pairs to pass on as graphviz properties. """ # g_attrs = self.default_graph_attrs.copy() # n_attrs = self.default_node_attrs.copy() # e_attrs = self.default_edge_attrs.copy() # g_attrs.update(graph_attrs) # n_attrs.update(node_attrs) # e_attrs.update(edge_attrs) # if env: # g_attrs.update(env.config.inheritance_graph_attrs) # n_attrs.update(env.config.inheritance_node_attrs) # e_attrs.update(env.config.inheritance_edge_attrs) res = [] # type: List[str] res.append("classDiagram\n") for name, fullname, bases, tooltip in sorted(self.class_info): # Write the node res.append(f" class {name!s}\n") if fullname in urls: res.append( ' link {!s} "./{!s}" {!s}\n'.format( name, urls[fullname], tooltip or f'"{name}"' ) ) # Write the edges for base_name in bases: res.append(f" {base_name!s} <|-- {name!s}\n") return "".join(res)
MermaidGraph
python
PyCQA__pylint
tests/functional/u/used/used_before_assignment_typing.py
{ "start": 3781, "end": 4237 }
class ____: # pylint: disable=too-few-public-methods """Class to test conditional imports guarded by TYPE_CHECKING two levels up then used in function annotation. See https://github.com/pylint-dev/pylint/issues/7539""" def is_close(self, comparator: math.isclose, first, second): # <3.14:[used-before-assignment] """Conditional imports guarded are only valid for variable annotations.""" comparator(first, second)
MyFourthClass
python
openai__openai-python
src/openai/types/eval_create_params.py
{ "start": 6242, "end": 6371 }
class ____(PythonGraderParam, total=False): pass_threshold: float """The threshold for the score."""
TestingCriterionPython
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/orm/descriptor_props.py
{ "start": 32181, "end": 32648 }
class ____(CompositeProperty[_T], _DeclarativeMapped[_T]): """Declarative-compatible front-end for the :class:`.CompositeProperty` class. Public constructor is the :func:`_orm.composite` function. .. versionchanged:: 2.0 Added :class:`_orm.Composite` as a Declarative compatible subclass of :class:`_orm.CompositeProperty`. .. seealso:: :ref:`mapper_composite` """ inherit_cache = True """:meta private:"""
Composite
python
pytorch__pytorch
torch/_dynamo/variables/dicts.py
{ "start": 40341, "end": 43573 }
class ____(ConstDictVariable): def __init__( self, items: dict[VariableTracker, VariableTracker], user_cls: type, default_factory: Optional[VariableTracker] = None, **kwargs: Any, ) -> None: super().__init__(items, user_cls, **kwargs) assert user_cls is collections.defaultdict if default_factory is None: default_factory = ConstantVariable.create(None) self.default_factory = default_factory def is_python_constant(self) -> bool: # Return false for unsupported defaults. This ensures that a bad handler # path is not taken in BuiltinVariable for getitem. if self.default_factory not in [list, tuple, dict] and not self.items: return False return super().is_python_constant() def debug_repr(self) -> str: assert self.default_factory is not None return ( f"defaultdict({self.default_factory.debug_repr()}, {super().debug_repr()})" ) @staticmethod def is_supported_arg(arg: VariableTracker) -> bool: if isinstance(arg, variables.BuiltinVariable): return arg.fn in (list, tuple, dict, set) else: return isinstance( arg, ( variables.functions.BaseUserFunctionVariable, variables.functions.PolyfilledFunctionVariable, ), ) def call_method( self, tx: "InstructionTranslator", name: str, args: list[VariableTracker], kwargs: dict[str, VariableTracker], ) -> VariableTracker: if name == "__getitem__": if len(args) != 1: raise_args_mismatch(tx, name, "1 args", f"{len(args)} args") if args[0] in self: return self.getitem_const(tx, args[0]) else: if ( istype(self.default_factory, ConstantVariable) and self.default_factory.value is None ): raise_observed_exception(KeyError, tx, args=[args[0]]) else: default_var = self.default_factory.call_function(tx, [], {}) super().call_method( tx, "__setitem__", [args[0], default_var], kwargs ) return default_var else: return super().call_method(tx, name, args, kwargs) def reconstruct(self, codegen: "PyCodegen") -> None: # emit `defaultdict(default_factory, new_dict)` codegen.add_push_null( lambda: codegen.extend_output( [ codegen.create_load_python_module(collections), codegen.create_load_attr("defaultdict"), ] ) ) codegen(self.default_factory) self.reconstruct_kvs_into_new_dict(codegen) codegen.extend_output(create_call_function(2, False)) # TODO: Implementing this via inheritance rather than composition is a # footgun, because self method calls in dict will route back to the set # implementation, which is almost assuredly wrong
DefaultDictVariable
python
ray-project__ray
python/ray/serve/_private/router.py
{ "start": 2028, "end": 20301 }
class ____: """Manages metrics for the router.""" PUSH_METRICS_TO_CONTROLLER_TASK_NAME = "push_metrics_to_controller" RECORD_METRICS_TASK_NAME = "record_metrics" def __init__( self, deployment_id: DeploymentID, handle_id: str, self_actor_id: str, handle_source: DeploymentHandleSource, controller_handle: ActorHandle, router_requests_counter: metrics.Counter, queued_requests_gauge: metrics.Gauge, running_requests_gauge: metrics.Gauge, event_loop: asyncio.BaseEventLoop, ): self._handle_id = handle_id self._deployment_id = deployment_id self._self_actor_id = self_actor_id self._handle_source = handle_source self._controller_handle = controller_handle # Exported metrics self.num_router_requests = router_requests_counter self.num_router_requests.set_default_tags( { "deployment": deployment_id.name, "application": deployment_id.app_name, "handle": self._handle_id, "actor_id": self._self_actor_id, } ) self.num_queued_requests = 0 self.num_queued_requests_gauge = queued_requests_gauge self.num_queued_requests_gauge.set_default_tags( { "deployment": deployment_id.name, "application": deployment_id.app_name, "handle": self._handle_id, "actor_id": self._self_actor_id, } ) self.num_queued_requests_gauge.set(0) # Track queries sent to replicas for the autoscaling algorithm. self.num_requests_sent_to_replicas: DefaultDict[ReplicaID, int] = defaultdict( int ) self.num_running_requests_gauge = running_requests_gauge self.num_running_requests_gauge.set_default_tags( { "deployment": deployment_id.name, "application": deployment_id.app_name, "handle": self._handle_id, "actor_id": self._self_actor_id, } ) # We use Ray object ref callbacks to update state when tracking # number of requests running on replicas. The callbacks will be # called from a C++ thread into the router's async event loop, # so non-atomic read and write operations need to be guarded by # this thread-safe lock. self._queries_lock = threading.Lock() # Regularly aggregate and push autoscaling metrics to controller self.metrics_pusher = MetricsPusher() self.metrics_store = InMemoryMetricsStore() # The config for the deployment this router sends requests to will be broadcast # by the controller. That means it is not available until we get the first # update. This includes an optional autoscaling config. self._deployment_config: Optional[DeploymentConfig] = None # Track whether the metrics manager has been shutdown self._shutdown: bool = False # If the interval is set to 0, eagerly sets all metrics. self._cached_metrics_enabled = RAY_SERVE_METRICS_EXPORT_INTERVAL_MS != 0 self._cached_metrics_interval_s = RAY_SERVE_METRICS_EXPORT_INTERVAL_MS / 1000 if self._cached_metrics_enabled: self._cached_num_router_requests = defaultdict(int) def create_metrics_task(): event_loop.create_task(self._report_cached_metrics_forever()) # the constructor is called in the user thread, but its trying to create a task on the event loop # which is running in the router thread. This is not thread safe, so we need to use call_soon_threadsafe # to create the task on the event loop thread safely. event_loop.call_soon_threadsafe(create_metrics_task) @contextmanager def wrap_request_assignment(self, request_meta: RequestMetadata): max_queued_requests = ( self._deployment_config.max_queued_requests if self._deployment_config is not None else -1 ) if ( max_queued_requests != -1 and self.num_queued_requests >= max_queued_requests ): # Due to the async nature of request handling, we may reject more requests # than strictly necessary. This is more likely to happen during # high concurrency. Here's why: # # When multiple requests arrive simultaneously with max_queued_requests=1: # 1. First request increments num_queued_requests to 1 # 2. Before that request gets assigned to a replica and decrements the counter, # we yield to the event loop # 3. Other requests see num_queued_requests=1 and get rejected, even though # the first request will soon free up the queue slot # # For example, with max_queued_requests=1 and 4 simultaneous requests: # - Request 1 gets queued (num_queued_requests=1) # - Requests 2,3,4 get rejected since queue appears full # - Request 1 gets assigned and frees queue slot (num_queued_requests=0) # - But we already rejected Request 2 which could have been queued e = BackPressureError( num_queued_requests=self.num_queued_requests, max_queued_requests=max_queued_requests, ) logger.warning(e.message) raise e self.inc_num_total_requests(request_meta.route) yield @contextmanager def wrap_queued_request(self, is_retry: bool, num_curr_replicas: int): """Increment queued requests gauge and maybe push autoscaling metrics to controller.""" try: self.inc_num_queued_requests() # Optimization: if there are currently zero replicas for a deployment, # push handle metric to controller to allow for fast cold start time. # Only do this on the first attempt to route the request. if not is_retry and self.should_send_scaled_to_zero_optimized_push( curr_num_replicas=num_curr_replicas ): self.push_autoscaling_metrics_to_controller() yield finally: # If the request is disconnected before assignment, this coroutine # gets cancelled by the caller and an asyncio.CancelledError is # raised. The finally block ensures that num_queued_requests # is correctly decremented in this case. self.dec_num_queued_requests() def _update_running_replicas(self, running_replicas: List[RunningReplicaInfo]): """Prune list of replica ids in self.num_queries_sent_to_replicas. We want to avoid self.num_queries_sent_to_replicas from growing in memory as the deployment upscales and downscales over time. """ running_replica_set = {replica.replica_id for replica in running_replicas} with self._queries_lock: self.num_requests_sent_to_replicas = defaultdict( int, { id: self.num_requests_sent_to_replicas[id] for id, num_queries in self.num_requests_sent_to_replicas.items() if num_queries or id in running_replica_set }, ) @property def autoscaling_config(self) -> Optional[AutoscalingConfig]: if self._deployment_config is None: return None return self._deployment_config.autoscaling_config def update_deployment_config( self, deployment_config: DeploymentConfig, curr_num_replicas: int ): """Update the config for the deployment this router sends requests to.""" if self._shutdown: return self._deployment_config = deployment_config # Start the metrics pusher if autoscaling is enabled. autoscaling_config = self.autoscaling_config if autoscaling_config: self.metrics_pusher.start() # Optimization for autoscaling cold start time. If there are # currently 0 replicas for the deployment, and there is at # least one queued request on this router, then immediately # push handle metric to the controller. if self.should_send_scaled_to_zero_optimized_push(curr_num_replicas): self.push_autoscaling_metrics_to_controller() # Record number of queued + ongoing requests at regular # intervals into the in-memory metrics store self.metrics_pusher.register_or_update_task( self.RECORD_METRICS_TASK_NAME, self._add_autoscaling_metrics_point, min( RAY_SERVE_HANDLE_AUTOSCALING_METRIC_RECORD_INTERVAL_S, autoscaling_config.metrics_interval_s, ), ) # Push metrics to the controller periodically. self.metrics_pusher.register_or_update_task( self.PUSH_METRICS_TO_CONTROLLER_TASK_NAME, self.push_autoscaling_metrics_to_controller, autoscaling_config.metrics_interval_s, ) else: if self.metrics_pusher: self.metrics_pusher.stop_tasks() def _report_cached_metrics(self): for route, count in self._cached_num_router_requests.items(): self.num_router_requests.inc(count, tags={"route": route}) self._cached_num_router_requests.clear() self.num_queued_requests_gauge.set(self.num_queued_requests) self.num_running_requests_gauge.set( sum(self.num_requests_sent_to_replicas.values()) ) async def _report_cached_metrics_forever(self): assert self._cached_metrics_interval_s > 0 consecutive_errors = 0 while True: try: await asyncio.sleep(self._cached_metrics_interval_s) self._report_cached_metrics() consecutive_errors = 0 except Exception: logger.exception("Unexpected error reporting metrics.") # Exponential backoff starting at 1s and capping at 10s. backoff_time_s = min(10, 2**consecutive_errors) consecutive_errors += 1 await asyncio.sleep(backoff_time_s) def inc_num_total_requests(self, route: str): if self._cached_metrics_enabled: self._cached_num_router_requests[route] += 1 else: self.num_router_requests.inc(tags={"route": route}) def inc_num_queued_requests(self): self.num_queued_requests += 1 if not self._cached_metrics_enabled: self.num_queued_requests_gauge.set(self.num_queued_requests) def dec_num_queued_requests(self): self.num_queued_requests -= 1 if not self._cached_metrics_enabled: self.num_queued_requests_gauge.set(self.num_queued_requests) def inc_num_running_requests_for_replica(self, replica_id: ReplicaID): with self._queries_lock: self.num_requests_sent_to_replicas[replica_id] += 1 if not self._cached_metrics_enabled: self.num_running_requests_gauge.set( sum(self.num_requests_sent_to_replicas.values()) ) def dec_num_running_requests_for_replica(self, replica_id: ReplicaID): with self._queries_lock: self.num_requests_sent_to_replicas[replica_id] -= 1 if not self._cached_metrics_enabled: self.num_running_requests_gauge.set( sum(self.num_requests_sent_to_replicas.values()) ) def should_send_scaled_to_zero_optimized_push(self, curr_num_replicas: int) -> bool: return ( self.autoscaling_config is not None and curr_num_replicas == 0 and self.num_queued_requests > 0 ) def push_autoscaling_metrics_to_controller(self): """Pushes queued and running request metrics to the controller. These metrics are used by the controller for autoscaling. """ self._controller_handle.record_autoscaling_metrics_from_handle.remote( self._get_metrics_report() ) def _add_autoscaling_metrics_point(self): """Adds metrics point for queued and running requests at replicas. Also prunes keys in the in memory metrics store with outdated datapoints. ┌─────────────────────────────────────────────────────────────────┐ │ Handle-based metrics collection │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ Client Handle Replicas │ │ ┌──────┐ ┌────────┐ ┌─────────┐ │ │ │ App │───────────>│ Handle │─────────>│ Replica │ │ │ │ │ Requests │ │ Forwards │ 1 │ │ │ └──────┘ │ Tracks │ └─────────┘ │ │ │ Queued │ │ │ │ + │ ┌─────────┐ │ │ │Running │─────────>│ Replica │ │ │ │Requests│ Forwards │ 2 │ │ │ └────────┘ └─────────┘ │ │ │ │ │ │ Push metrics │ │ └─────────────────> Controller │ │ │ └─────────────────────────────────────────────────────────────────┘ :::{note} The long-term plan is to deprecate handle-based metrics collection in favor of replica-based collection. Replica-based collection will become the default in a future release. Queued requests will be continues to be tracked at the handle. ::: """ timestamp = time.time() self.metrics_store.add_metrics_point( {QUEUED_REQUESTS_KEY: self.num_queued_requests}, timestamp ) if RAY_SERVE_COLLECT_AUTOSCALING_METRICS_ON_HANDLE: self.metrics_store.add_metrics_point( self.num_requests_sent_to_replicas, timestamp ) # Prevent in memory metrics store memory from growing start_timestamp = time.time() - self.autoscaling_config.look_back_period_s self.metrics_store.prune_keys_and_compact_data(start_timestamp) def _get_metrics_report(self) -> HandleMetricReport: timestamp = time.time() running_requests = dict() avg_running_requests = dict() look_back_period = self.autoscaling_config.look_back_period_s self.metrics_store.prune_keys_and_compact_data(time.time() - look_back_period) avg_queued_requests = self.metrics_store.aggregate_avg([QUEUED_REQUESTS_KEY])[0] if avg_queued_requests is None: # If the queued requests timeseries is empty, we set the # average to the current number of queued requests. avg_queued_requests = self.num_queued_requests # If the queued requests timeseries is empty, we set the number of data points to 1. # This is to avoid division by zero. num_data_points = self.metrics_store.timeseries_count(QUEUED_REQUESTS_KEY) or 1 queued_requests = self.metrics_store.data.get( QUEUED_REQUESTS_KEY, [TimeStampedValue(timestamp, self.num_queued_requests)] ) if RAY_SERVE_COLLECT_AUTOSCALING_METRICS_ON_HANDLE and self.autoscaling_config: for replica_id, num_requests in self.num_requests_sent_to_replicas.items(): # Calculate avg running requests. # NOTE (abrar): The number of data points from queued requests is often higher than # those from running requests. This is because replica metrics are only collected # once a replica is up, whereas queued request metrics are collected continuously # as long as the handle is alive. To approximate the true average of ongoing requests, # we should normalize by using the same number of data points for both queued and # running request time series. running_requests_sum = self.metrics_store.aggregate_sum([replica_id])[0] if running_requests_sum is None: # If the running requests timeseries is empty, we set the sum # to the current number of requests. running_requests_sum = num_requests avg_running_requests[replica_id] = ( running_requests_sum / num_data_points ) # Get running requests data running_requests[replica_id] = self.metrics_store.data.get( replica_id, [TimeStampedValue(timestamp, num_requests)] ) handle_metric_report = HandleMetricReport( deployment_id=self._deployment_id, handle_id=self._handle_id, actor_id=self._self_actor_id, handle_source=self._handle_source, aggregated_queued_requests=avg_queued_requests, queued_requests=queued_requests, aggregated_metrics={ RUNNING_REQUESTS_KEY: avg_running_requests, }, metrics={ RUNNING_REQUESTS_KEY: running_requests, }, timestamp=timestamp, ) return handle_metric_report async def shutdown(self): """Shutdown metrics manager gracefully.""" if self.metrics_pusher: await self.metrics_pusher.graceful_shutdown() self._shutdown = True
RouterMetricsManager
python
scipy__scipy
scipy/linalg/tests/test_blas.py
{ "start": 26635, "end": 27054 }
class ____: @parametrize_blas(fblas, "gemm", "sdcz") def test_gemm(self, f, dtype): assert_array_almost_equal(f(3, [3], [-4]), [[-36]]) assert_array_almost_equal(f(3, [3], [-4], 3, [5]), [-21]) if dtype in COMPLEX_DTYPES: assert_array_almost_equal(f(3j, [3-4j], [-4]), [[-48-36j]]) assert_array_almost_equal(f(3j, [3-4j], [-4], 3, [5j]), [-48-21j])
TestFBLAS3Simple
python
ray-project__ray
python/ray/autoscaler/v2/instance_manager/cloud_providers/kuberay/cloud_provider.py
{ "start": 1025, "end": 23378 }
class ____(ICloudInstanceProvider): """ This class is a thin wrapper around the Kubernetes API client. It modifies the RayCluster resource spec on the Kubernetes API server to scale the cluster: It launches new instances/nodes by submitting patches to the Kubernetes API to update the RayCluster CRD. """ def __init__( self, cluster_name: str, provider_config: Dict[str, Any], k8s_api_client: Optional[IKubernetesHttpApiClient] = None, ): """ Args: cluster_name: The name of the RayCluster resource. provider_config: The namespace of the RayCluster. k8s_api_client: The client to the Kubernetes API server. This could be used to mock the Kubernetes API server for testing. """ self._cluster_name = cluster_name self._namespace = provider_config["namespace"] self._k8s_api_client = k8s_api_client or KubernetesHttpApiClient( namespace=self._namespace ) # Below are states that are cached locally. self._requests = set() self._launch_errors_queue = [] self._terminate_errors_queue = [] # Below are states that are fetched from the Kubernetes API server. self._ray_cluster = None self._cached_instances: Dict[CloudInstanceId, CloudInstance] @dataclass class ScaleRequest: """Represents a scale request that contains the current states and go-to states for the ray cluster. This class will be converted to patches to be submitted to the Kubernetes API server: - For launching new instances, it will adjust the `replicas` field in the workerGroupSpecs. - For terminating instances, it will adjust the `workersToDelete` field in the workerGroupSpecs. """ # The desired number of workers for each node type. desired_num_workers: Dict[NodeType, int] = field(default_factory=dict) # The workers to delete for each node type. workers_to_delete: Dict[NodeType, List[CloudInstanceId]] = field( default_factory=dict ) # The worker groups with empty workersToDelete field. # This is needed since we will also need to clear the workersToDelete field # for the worker groups that have finished deletes. worker_groups_without_pending_deletes: Set[NodeType] = field( default_factory=set ) # The worker groups that still have workers to be deleted. worker_groups_with_pending_deletes: Set[NodeType] = field(default_factory=set) ################################ # Interface for ICloudInstanceProvider ################################ def get_non_terminated(self) -> Dict[CloudInstanceId, CloudInstance]: self._sync_with_api_server() return copy.deepcopy(dict(self._cached_instances)) def terminate(self, ids: List[CloudInstanceId], request_id: str) -> None: if request_id in self._requests: # This request is already processed. logger.warning(f"Request {request_id} is already processed for: {ids}") return self._requests.add(request_id) logger.info("Terminating worker pods: {}".format(ids)) scale_request = self._initialize_scale_request( to_launch={}, to_delete_instances=ids ) if scale_request.worker_groups_with_pending_deletes: errors_msg = ( "There are workers to be deleted from: " f"{scale_request.worker_groups_with_pending_deletes}. " "Waiting for them to be deleted before adding new workers " " to be deleted" ) logger.warning(errors_msg) self._add_terminate_errors( ids, request_id, details=errors_msg, ) return try: self._submit_scale_request(scale_request) except Exception as e: logger.exception(f"Error terminating nodes: {scale_request}") self._add_terminate_errors(ids, request_id, details=str(e), e=e) def launch(self, shape: Dict[NodeType, int], request_id: str) -> None: if request_id in self._requests: # This request is already processed. return self._requests.add(request_id) scale_request = self._initialize_scale_request( to_launch=shape, to_delete_instances=[] ) if scale_request.worker_groups_with_pending_deletes: error_msg = ( "There are workers to be deleted from: " f"{scale_request.worker_groups_with_pending_deletes}. " "Waiting for them to be deleted before creating new workers." ) logger.warning(error_msg) self._add_launch_errors( shape, request_id, details=error_msg, ) return try: self._submit_scale_request(scale_request) except Exception as e: logger.exception(f"Error launching nodes: {scale_request}") self._add_launch_errors(shape, request_id, details=str(e), e=e) def poll_errors(self) -> List[CloudInstanceProviderError]: errors = [] errors += self._launch_errors_queue errors += self._terminate_errors_queue self._launch_errors_queue = [] self._terminate_errors_queue = [] return errors ############################ # Private ############################ def _initialize_scale_request( self, to_launch: Dict[NodeType, int], to_delete_instances: List[CloudInstanceId] ) -> "KubeRayProvider.ScaleRequest": """ Initialize the scale request based on the current state of the cluster and the desired state (to launch, to delete). Args: to_launch: The desired number of workers to launch for each node type. to_delete_instances: The instances to delete. Returns: The scale request. """ # Update the cached states. self._sync_with_api_server() ray_cluster = self.ray_cluster cur_instances = self.instances # Get the worker groups that have pending deletes and the worker groups that # have finished deletes, and the set of workers included in the workersToDelete # field of any worker group. ( worker_groups_with_pending_deletes, worker_groups_without_pending_deletes, worker_to_delete_set, ) = self._get_workers_delete_info(ray_cluster, set(cur_instances.keys())) observed_workers_dict = defaultdict(int) for instance in cur_instances.values(): if instance.node_kind != NodeKind.WORKER: continue if instance.cloud_instance_id in worker_to_delete_set: continue observed_workers_dict[instance.node_type] += 1 # Calculate the desired number of workers by type. num_workers_dict = defaultdict(int) worker_groups = ray_cluster["spec"].get("workerGroupSpecs", []) for worker_group in worker_groups: node_type = worker_group["groupName"] # Handle the case where users manually increase `minReplicas` # to scale up the number of worker Pods. In this scenario, # `replicas` will be smaller than `minReplicas`. # num_workers_dict should account for multi-host replicas when # `numOfHosts`` is set. num_of_hosts = worker_group.get("numOfHosts", 1) replicas = ( max(worker_group["replicas"], worker_group["minReplicas"]) * num_of_hosts ) # The `replicas` field in worker group specs can be updated by users at any time. # However, users should only increase the field (manually upscaling the worker group), not decrease it, # because downscaling the worker group requires specifying which workers to delete explicitly in the `workersToDelete` field. # Since we don't have a way to enforce this, we need to fix unexpected decreases on the `replicas` field by using actual observations. # For example, if the user manually decreases the `replicas` field to 0 without specifying which workers to delete, # we should fix the `replicas` field back to the number of observed workers excluding the workers to be deleted, # otherwise, we won't have a correct `replicas` matches the actual number of workers eventually. num_workers_dict[node_type] = max( replicas, observed_workers_dict[node_type] ) # Add to launch nodes. for node_type, count in to_launch.items(): num_workers_dict[node_type] += count to_delete_instances_by_type = defaultdict(list) # Update the number of workers with to_delete_instances # and group them by type. for to_delete_id in to_delete_instances: to_delete_instance = cur_instances.get(to_delete_id, None) if to_delete_instance is None: # This instance has already been deleted. continue if to_delete_instance.node_kind == NodeKind.HEAD: # Not possible to delete head node. continue if to_delete_instance.cloud_instance_id in worker_to_delete_set: # If the instance is already in the workersToDelete field of # any worker group, skip it. continue num_workers_dict[to_delete_instance.node_type] -= 1 assert num_workers_dict[to_delete_instance.node_type] >= 0 to_delete_instances_by_type[to_delete_instance.node_type].append( to_delete_instance ) scale_request = KubeRayProvider.ScaleRequest( desired_num_workers=num_workers_dict, workers_to_delete=to_delete_instances_by_type, worker_groups_without_pending_deletes=worker_groups_without_pending_deletes, worker_groups_with_pending_deletes=worker_groups_with_pending_deletes, ) return scale_request def _submit_scale_request( self, scale_request: "KubeRayProvider.ScaleRequest" ) -> None: """Submits a scale request to the Kubernetes API server. This method will convert the scale request to patches and submit the patches to the Kubernetes API server. Args: scale_request: The scale request. Raises: Exception: An exception is raised if the Kubernetes API server returns an error. """ # Get the current ray cluster spec. patch_payload = [] raycluster = self.ray_cluster # Collect patches for replica counts. for node_type, num_workers in scale_request.desired_num_workers.items(): group_index = _worker_group_index(raycluster, node_type) group_max_replicas = _worker_group_max_replicas(raycluster, group_index) group_num_of_hosts = _worker_group_num_of_hosts(raycluster, group_index) # the num_workers from the scale request is multiplied by numOfHosts, so we need to divide it back. target_replicas = num_workers // group_num_of_hosts # Cap the replica count to maxReplicas. if group_max_replicas is not None and group_max_replicas < target_replicas: logger.warning( "Autoscaler attempted to create " + "more than maxReplicas pods of type {}.".format(node_type) ) target_replicas = group_max_replicas # Check if we need to change the target count. if target_replicas == _worker_group_replicas(raycluster, group_index): # No patch required. continue # Need to patch replica count. Format the patch and add it to the payload. patch = worker_replica_patch(group_index, target_replicas) patch_payload.append(patch) # Maps node_type to nodes to delete for that group. for ( node_type, workers_to_delete_of_type, ) in scale_request.workers_to_delete.items(): group_index = _worker_group_index(raycluster, node_type) worker_ids_to_delete = [ worker.cloud_instance_id for worker in workers_to_delete_of_type ] patch = worker_delete_patch(group_index, worker_ids_to_delete) patch_payload.append(patch) # Clear the workersToDelete field for the worker groups that have been deleted. for node_type in scale_request.worker_groups_without_pending_deletes: if node_type in scale_request.workers_to_delete: # This node type is still being deleted. continue group_index = _worker_group_index(raycluster, node_type) patch = worker_delete_patch(group_index, []) patch_payload.append(patch) if len(patch_payload) == 0: # No patch required. return logger.info(f"Submitting a scale request: {scale_request}") self._patch(f"rayclusters/{self._cluster_name}", patch_payload) def _add_launch_errors( self, shape: Dict[NodeType, int], request_id: str, details: str, e: Optional[Exception] = None, ) -> None: """ Adds launch errors to the error queue. Args: shape: The shape of the nodes that failed to launch. request_id: The request id of the launch request. details: The details of the error. e: The exception that caused the error. """ for node_type, count in shape.items(): self._launch_errors_queue.append( LaunchNodeError( node_type=node_type, timestamp_ns=time.time_ns(), count=count, request_id=request_id, details=details, cause=e, ) ) def _add_terminate_errors( self, ids: List[CloudInstanceId], request_id: str, details: str, e: Optional[Exception] = None, ) -> None: """ Adds terminate errors to the error queue. Args: ids: The ids of the nodes that failed to terminate. request_id: The request id of the terminate request. details: The details of the error. e: The exception that caused the error. """ for id in ids: self._terminate_errors_queue.append( TerminateNodeError( cloud_instance_id=id, timestamp_ns=time.time_ns(), request_id=request_id, details=details, cause=e, ) ) def _sync_with_api_server(self) -> None: """Fetches the RayCluster resource from the Kubernetes API server.""" self._ray_cluster = self._get(f"rayclusters/{self._cluster_name}") self._cached_instances = self._fetch_instances() @property def ray_cluster(self) -> Dict[str, Any]: return copy.deepcopy(self._ray_cluster) @property def instances(self) -> Dict[CloudInstanceId, CloudInstance]: return copy.deepcopy(self._cached_instances) @staticmethod def _get_workers_delete_info( ray_cluster_spec: Dict[str, Any], node_set: Set[CloudInstanceId] ) -> Tuple[Set[NodeType], Set[NodeType], Set[CloudInstanceId]]: """ Gets the worker groups that have pending deletes and the worker groups that have finished deletes. Returns: worker_groups_with_pending_deletes: The worker groups that have pending deletes. worker_groups_with_finished_deletes: The worker groups that have finished deletes. worker_to_delete_set: A set of Pods that are included in the workersToDelete field of any worker group. """ worker_groups_with_pending_deletes = set() worker_groups_with_deletes = set() worker_to_delete_set = set() worker_groups = ray_cluster_spec["spec"].get("workerGroupSpecs", []) for worker_group in worker_groups: workersToDelete = worker_group.get("scaleStrategy", {}).get( "workersToDelete", [] ) if not workersToDelete: # No workers to delete in this group. continue node_type = worker_group["groupName"] worker_groups_with_deletes.add(node_type) for worker in workersToDelete: worker_to_delete_set.add(worker) if worker in node_set: worker_groups_with_pending_deletes.add(node_type) worker_groups_with_finished_deletes = ( worker_groups_with_deletes - worker_groups_with_pending_deletes ) return ( worker_groups_with_pending_deletes, worker_groups_with_finished_deletes, worker_to_delete_set, ) def _fetch_instances(self) -> Dict[CloudInstanceId, CloudInstance]: """ Fetches the pods from the Kubernetes API server and convert them to Ray CloudInstance. Returns: A dict of CloudInstanceId to CloudInstance. """ # Get the pods resource version. # Specifying a resource version in list requests is important for scalability: # https://kubernetes.io/docs/reference/using-api/api-concepts/#semantics-for-get-and-list resource_version = self._get_head_pod_resource_version() if resource_version: logger.info( f"Listing pods for RayCluster {self._cluster_name}" f" in namespace {self._namespace}" f" at pods resource version >= {resource_version}." ) # Filter pods by cluster_name. label_selector = requests.utils.quote(f"ray.io/cluster={self._cluster_name}") resource_path = f"pods?labelSelector={label_selector}" if resource_version: resource_path += ( f"&resourceVersion={resource_version}" + "&resourceVersionMatch=NotOlderThan" ) pod_list = self._get(resource_path) fetched_resource_version = pod_list["metadata"]["resourceVersion"] logger.info( f"Fetched pod data at resource version" f" {fetched_resource_version}." ) # Extract node data from the pod list. cloud_instances = {} for pod in pod_list["items"]: # Kubernetes sets metadata.deletionTimestamp immediately after admitting a # request to delete an object. Full removal of the object may take some time # after the deletion timestamp is set. See link for details: # https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-deletion if "deletionTimestamp" in pod["metadata"]: # Ignore pods marked for termination. continue pod_name = pod["metadata"]["name"] cloud_instance = self._cloud_instance_from_pod(pod) if cloud_instance: cloud_instances[pod_name] = cloud_instance return cloud_instances @staticmethod def _cloud_instance_from_pod(pod: Dict[str, Any]) -> Optional[CloudInstance]: """ Convert a pod to a Ray CloudInstance. Args: pod: The pod resource dict. """ labels = pod["metadata"]["labels"] if labels[KUBERAY_LABEL_KEY_KIND] == KUBERAY_KIND_HEAD: kind = NodeKind.HEAD type = labels[KUBERAY_LABEL_KEY_TYPE] elif labels[KUBERAY_LABEL_KEY_KIND] == KUBERAY_KIND_WORKER: kind = NodeKind.WORKER type = labels[KUBERAY_LABEL_KEY_TYPE] else: # Other ray nodes types defined by KubeRay. # e.g. this could also be `redis-cleanup` # We will not track these nodes. return None # TODO: we should prob get from the pod's env var (RAY_CLOUD_INSTANCE_ID) # directly. cloud_instance_id = pod["metadata"]["name"] return CloudInstance( cloud_instance_id=cloud_instance_id, node_type=type, node_kind=kind, is_running=KubeRayProvider._is_running(pod), ) @staticmethod def _is_running(pod) -> bool: """Convert pod state to Ray NodeStatus A cloud instance is considered running if the pod is in the running state, else it could be pending/containers-terminated. When it disappears from the list, it is considered terminated. """ if ( "containerStatuses" not in pod["status"] or not pod["status"]["containerStatuses"] ): return False state = pod["status"]["containerStatuses"][0]["state"] if "running" in state: return True return False def _get(self, remote_path: str) -> Dict[str, Any]: """Get a resource from the Kubernetes API server.""" return self._k8s_api_client.get(remote_path) def _patch(self, remote_path: str, payload: List[Dict[str, Any]]) -> Dict[str, Any]: """Patch a resource on the Kubernetes API server.""" return self._k8s_api_client.patch(remote_path, payload) def _get_head_pod_resource_version(self) -> str: """ Extract a recent pods resource version by reading the head pod's metadata.resourceVersion of the response. """ if not RAY_HEAD_POD_NAME: return None pod_resp = self._get(f"pods/{RAY_HEAD_POD_NAME}") return pod_resp["metadata"]["resourceVersion"]
KubeRayProvider
python
pytorch__pytorch
torch/fx/passes/utils/source_matcher_utils.py
{ "start": 940, "end": 5781 }
class ____: # Nodes in a particular partition nodes: list[Node] # The source these nodes decomposed from source: Any # Nodes in the graph that are needed as inputs to the partition # These do not include the params of the partition input_nodes: list[Node] = field(default_factory=list) # Nodes in the partition that are being used by nodes outside of the # partition output_nodes: list[Node] = field(default_factory=list) # Parameters that are being used params: list[Node] = field(default_factory=list) @compatibility(is_backward_compatible=False) # type: ignore[misc] def get_source_partitions( graph: Graph, wanted_sources: list[Any], filter_fn: Optional[Callable[[Node], bool]] = None, ) -> dict[Any, list[SourcePartition]]: """ Args: graph: The graph we want to partition wanted_sources: List of sources of nodes that were decomposed from this source. This can be a function (ex. torch.nn.functional.linear) or a leaf module type (ex. torch.nn.Linear). Returns: Dictionary mapping sources that were given to a list of SourcePartitions that correspond to the list of nodes that were decomposed from the given source. """ modules: dict[type, dict[str, list[Node]]] = {} for node in graph.nodes: # The metadata source_fn should contain a tuple of a unique name for the # source, and the source function if the node is decomposed from a # function, or the type of module if the node is decomposed from a leaf # module # TODO: Bypass "torch_fn" when "source_fn_stack" because now "torch_fn" can # be different from "source_fn_stack", for example for the add_ node # decomposed from batch norm. We should remove the check on "source_fn_stack" # after we fix "torch_fn". T199561090 if (source_fn_st := node.meta.get("source_fn_stack", None)) is None and ( torch_fn := node.meta.get("torch_fn", None) ) is not None: node_fqn, source_fn = torch_fn source_fn_name = source_fn.split(".")[1] if source_fn_name in wanted_sources: diff_modules = modules.setdefault(source_fn_name, {}) partition = diff_modules.setdefault(node_fqn, []) partition.append(node) if (source_fn_st := node.meta.get("source_fn_stack", None)) is not None: source_fn = source_fn_st[-1] if source_fn[1] in wanted_sources: diff_modules = modules.setdefault(source_fn[1], {}) partition = diff_modules.setdefault(source_fn[0], []) partition.append(node) def make_partition(nodes: list[Node], module_type: type) -> SourcePartition: input_nodes = set() output_nodes = set() params = set() for node in nodes: for arg in node.args: if isinstance(arg, Node) and arg not in nodes and arg.op != "get_attr": input_nodes.add(arg) if node.op == "get_attr": params.add(node) # get_attr nodes won't be output nodes continue for user in node.users: if user not in nodes: output_nodes.add(node) return SourcePartition( nodes, module_type, list(input_nodes), list(output_nodes), list(params), # type: ignore[arg-type] ) ret: dict[type[Any], list[SourcePartition]] = {} if filter_fn: # for each partition, we apply filter_fn to filter out all partitions that doesn't satisfy the # filter condition filtered_modules = {} for tp, name_to_partition in modules.items(): filtered_name_to_partition = { name: partition for name, partition in name_to_partition.items() if all(map(filter_fn, partition)) } filtered_modules[tp] = filtered_name_to_partition modules = filtered_modules for k, v in modules.items(): ret[k] = [make_partition(partition, k) for partition in v.values()] return ret @compatibility(is_backward_compatible=False) # type: ignore[misc] def check_subgraphs_connected( subgraph1: SourcePartition, subgraph2: SourcePartition ) -> bool: """ Given two subgraphs A and B (in the form of a list of nodes), checks if A has nodes connecting to at least one node in B -- aka there exists a node in B that uses a node in A (not the other way around). """ for node in reversed(subgraph1.nodes): for user in node.users: if user in subgraph2.nodes: return True return False
SourcePartition
python
huggingface__transformers
src/transformers/models/vits/modeling_vits.py
{ "start": 54073, "end": 61536 }
class ____(VitsPreTrainedModel): def __init__(self, config: VitsConfig): super().__init__(config) self.config = config self.text_encoder = VitsTextEncoder(config) self.flow = VitsResidualCouplingBlock(config) self.decoder = VitsHifiGan(config) if config.use_stochastic_duration_prediction: self.duration_predictor = VitsStochasticDurationPredictor(config) else: self.duration_predictor = VitsDurationPredictor(config) if config.num_speakers > 1: self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) # This is used only for training. self.posterior_encoder = VitsPosteriorEncoder(config) # These parameters control the synthesised speech properties self.speaking_rate = config.speaking_rate self.noise_scale = config.noise_scale self.noise_scale_duration = config.noise_scale_duration # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, speaker_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.FloatTensor] = None, ) -> Union[tuple[Any], VitsModelOutput]: r""" speaker_id (`int`, *optional*): Which speaker embedding to use. Only used for multispeaker models. labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*): Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss computation. Example: ```python >>> from transformers import VitsTokenizer, VitsModel, set_seed >>> import torch >>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") >>> model = VitsModel.from_pretrained("facebook/mms-tts-eng") >>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") >>> set_seed(555) # make deterministic >>> with torch.no_grad(): ... outputs = model(inputs["input_ids"]) >>> outputs.waveform.shape torch.Size([1, 45824]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: raise NotImplementedError("Training of VITS is not supported yet.") mask_dtype = self.text_encoder.embed_tokens.weight.dtype if attention_mask is not None: input_padding_mask = attention_mask.unsqueeze(-1).to(mask_dtype) else: input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).to(mask_dtype) if self.config.num_speakers > 1 and speaker_id is not None: if not 0 <= speaker_id < self.config.num_speakers: raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") if isinstance(speaker_id, int): speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) else: speaker_embeddings = None text_encoder_output = self.text_encoder( input_ids=input_ids, padding_mask=input_padding_mask, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state hidden_states = hidden_states.transpose(1, 2) input_padding_mask = input_padding_mask.transpose(1, 2) prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances if self.config.use_stochastic_duration_prediction: log_duration = self.duration_predictor( hidden_states, input_padding_mask, speaker_embeddings, reverse=True, noise_scale=self.noise_scale_duration, ) else: log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) length_scale = 1.0 / self.speaking_rate duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) batch_size, _, output_length, input_length = attn_mask.shape cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) valid_indices = indices.unsqueeze(0) < cum_duration valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask # Expand prior distribution prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) spectrogram = latents * output_padding_mask waveform = self.decoder(spectrogram, speaker_embeddings) waveform = waveform.squeeze(1) sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) if not return_dict: outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] return outputs return VitsModelOutput( waveform=waveform, sequence_lengths=sequence_lengths, spectrogram=spectrogram, hidden_states=text_encoder_output.hidden_states, attentions=text_encoder_output.attentions, ) __all__ = ["VitsModel", "VitsPreTrainedModel"]
VitsModel
python
scikit-image__scikit-image
tests/skimage/morphology/test_extrema.py
{ "start": 11380, "end": 26972 }
class ____(unittest.TestCase): """Some tests for local_minima are included as well.""" supported_dtypes = [ np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, ] image = np.array( [ [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 0, 2, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 4, 4, 0, 3, 0, 0, 0], [0, 2, 0, 1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0], [0, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0], ], dtype=np.uint8, ) # Connectivity 2, maxima can touch border, returned with default values expected_default = np.array( [ [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) # Connectivity 1 (cross), maxima can touch border expected_cross = np.array( [ [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) def test_empty(self): """Test result with empty image.""" result = extrema.local_maxima(np.array([[]]), indices=False) assert result.size == 0 assert result.dtype == bool assert result.shape == (1, 0) result = extrema.local_maxima(np.array([]), indices=True) assert isinstance(result, tuple) assert len(result) == 1 assert result[0].size == 0 assert result[0].dtype == np.intp result = extrema.local_maxima(np.array([[]]), indices=True) assert isinstance(result, tuple) assert len(result) == 2 assert result[0].size == 0 assert result[0].dtype == np.intp assert result[1].size == 0 assert result[1].dtype == np.intp def test_dtypes(self): """Test results with default configuration for all supported dtypes.""" for dtype in self.supported_dtypes: result = extrema.local_maxima(self.image.astype(dtype)) assert result.dtype == bool assert_equal(result, self.expected_default) def test_dtypes_old(self): """ Test results with default configuration and data copied from old unit tests for all supported dtypes. """ data = np.array( [ [10, 11, 13, 14, 14, 15, 14, 14, 13, 11], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13], [13, 15, 40, 40, 18, 18, 18, 60, 60, 15], [14, 16, 40, 40, 19, 19, 19, 60, 60, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [15, 16, 18, 19, 19, 20, 19, 19, 18, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [14, 16, 80, 80, 19, 19, 19, 100, 100, 16], [13, 15, 80, 80, 18, 18, 18, 100, 100, 15], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13], ], dtype=np.uint8, ) expected = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) for dtype in self.supported_dtypes: image = data.astype(dtype) result = extrema.local_maxima(image) assert result.dtype == bool assert_equal(result, expected) def test_connectivity(self): """Test results if footprint is a scalar.""" # Connectivity 1: generates cross shaped footprint result_conn1 = extrema.local_maxima(self.image, connectivity=1) assert result_conn1.dtype == bool assert_equal(result_conn1, self.expected_cross) # Connectivity 2: generates square shaped footprint result_conn2 = extrema.local_maxima(self.image, connectivity=2) assert result_conn2.dtype == bool assert_equal(result_conn2, self.expected_default) # Connectivity 3: generates square shaped footprint result_conn3 = extrema.local_maxima(self.image, connectivity=3) assert result_conn3.dtype == bool assert_equal(result_conn3, self.expected_default) def test_footprint(self): """Test results if footprint is given.""" footprint_cross = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=bool) result_footprint_cross = extrema.local_maxima( self.image, footprint=footprint_cross ) assert result_footprint_cross.dtype == bool assert_equal(result_footprint_cross, self.expected_cross) for footprint in [ ((True,) * 3,) * 3, np.ones((3, 3), dtype=np.float64), np.ones((3, 3), dtype=np.uint8), np.ones((3, 3), dtype=bool), ]: # Test different dtypes for footprint which expects a boolean array # but will accept and convert other types if possible result_footprint_square = extrema.local_maxima( self.image, footprint=footprint ) assert result_footprint_square.dtype == bool assert_equal(result_footprint_square, self.expected_default) footprint_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=bool) expected_footprint_x = np.array( [ [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], ], dtype=bool, ) result_footprint_x = extrema.local_maxima(self.image, footprint=footprint_x) assert result_footprint_x.dtype == bool assert_equal(result_footprint_x, expected_footprint_x) def test_indices(self): """Test output if indices of peaks are desired.""" # Connectivity 1 expected_conn1 = np.nonzero(self.expected_cross) result_conn1 = extrema.local_maxima(self.image, connectivity=1, indices=True) assert_equal(result_conn1, expected_conn1) # Connectivity 2 expected_conn2 = np.nonzero(self.expected_default) result_conn2 = extrema.local_maxima(self.image, connectivity=2, indices=True) assert_equal(result_conn2, expected_conn2) def test_allow_borders(self): """Test maxima detection at the image border.""" # Use connectivity 1 to allow many maxima, only filtering at border is # of interest result_with_boder = extrema.local_maxima( self.image, connectivity=1, allow_borders=True ) assert result_with_boder.dtype == bool assert_equal(result_with_boder, self.expected_cross) expected_without_border = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) result_without_border = extrema.local_maxima( self.image, connectivity=1, allow_borders=False ) assert result_with_boder.dtype == bool assert_equal(result_without_border, expected_without_border) def test_nd(self): """Test one- and three-dimensional case.""" # One-dimension x_1d = np.array([1, 1, 0, 1, 2, 3, 0, 2, 1, 2, 0]) expected_1d = np.array([1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0], dtype=bool) result_1d = extrema.local_maxima(x_1d) assert result_1d.dtype == bool assert_equal(result_1d, expected_1d) # 3-dimensions (adapted from old unit test) x_3d = np.zeros((8, 8, 8), dtype=np.uint8) expected_3d = np.zeros((8, 8, 8), dtype=bool) # first maximum: only one pixel x_3d[1, 1:3, 1:3] = 100 x_3d[2, 2, 2] = 200 x_3d[3, 1:3, 1:3] = 100 expected_3d[2, 2, 2] = 1 # second maximum: three pixels in z-direction x_3d[5:8, 1, 1] = 200 expected_3d[5:8, 1, 1] = 1 # third: two maxima in 0 and 3. x_3d[0, 5:8, 5:8] = 200 x_3d[1, 6, 6] = 100 x_3d[2, 5:7, 5:7] = 200 x_3d[0:3, 5:8, 5:8] += 50 expected_3d[0, 5:8, 5:8] = 1 expected_3d[2, 5:7, 5:7] = 1 # four : one maximum in the corner of the square x_3d[6:8, 6:8, 6:8] = 200 x_3d[7, 7, 7] = 255 expected_3d[7, 7, 7] = 1 result_3d = extrema.local_maxima(x_3d) assert result_3d.dtype == bool assert_equal(result_3d, expected_3d) def test_constant(self): """Test behaviour for 'flat' images.""" const_image = np.full((7, 6), 42, dtype=np.uint8) expected = np.zeros((7, 6), dtype=np.uint8) for dtype in self.supported_dtypes: const_image = const_image.astype(dtype) # test for local maxima result = extrema.local_maxima(const_image) assert result.dtype == bool assert_equal(result, expected) # test for local minima result = extrema.local_minima(const_image) assert result.dtype == bool assert_equal(result, expected) def test_extrema_float(self): """Specific tests for float type.""" # Copied from old unit test for local_maxima image = np.array( [ [0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13], [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15], [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16], [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13], ], dtype=np.float32, ) inverted_image = 1.0 - image expected_result = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) # Test for local maxima with automatic step calculation result = extrema.local_maxima(image) assert result.dtype == bool assert_equal(result, expected_result) # Test for local minima with automatic step calculation result = extrema.local_minima(inverted_image) assert result.dtype == bool assert_equal(result, expected_result) def test_extrema_small_float(self): image = np.array( [ [9.89232736e-20, 8.78543302e-20, 8.78543302e-20, 9.89232736e-20], [8.78543302e-20, 6.38842355e-20, 6.38842355e-20, 8.78543302e-20], [8.78543302e-20, 6.38842355e-20, 6.38842355e-20, 8.78543302e-20], [9.89232736e-20, 8.78543302e-20, 8.78543302e-20, 9.89232736e-20], ] ) result = extrema.local_minima(image) expected_result = np.array( [ [False, False, False, False], [False, True, True, False], [False, True, True, False], [False, False, False, False], ] ) assert_equal(result, expected_result) def test_exceptions(self): """Test if input validation triggers correct exceptions.""" # Mismatching number of dimensions with raises(ValueError, match="number of dimensions"): extrema.local_maxima(self.image, footprint=np.ones((3, 3, 3), dtype=bool)) with raises(ValueError, match="number of dimensions"): extrema.local_maxima(self.image, footprint=np.ones((3,), dtype=bool)) # All dimensions in footprint must be of size 3 with raises(ValueError, match="dimension size"): extrema.local_maxima(self.image, footprint=np.ones((2, 3), dtype=bool)) with raises(ValueError, match="dimension size"): extrema.local_maxima(self.image, footprint=np.ones((5, 5), dtype=bool)) with raises(TypeError, match="float16 which is not supported"): extrema.local_maxima(np.empty(1, dtype=np.float16)) def test_small_array(self): """Test output for arrays with dimension smaller 3. If any dimension of an array is smaller than 3 and `allow_borders` is false a footprint, which has at least 3 elements in each dimension, can't be applied. This is an implementation detail so `local_maxima` should still return valid output (see gh-3261). If `allow_borders` is true the array is padded internally and there is no problem. """ warning_msg = "maxima can't exist .* any dimension smaller 3 .*" x = np.array([0, 1]) extrema.local_maxima(x, allow_borders=True) # no warning with warns(UserWarning, match=warning_msg): result = extrema.local_maxima(x, allow_borders=False) assert_equal(result, [0, 0]) assert result.dtype == bool x = np.array([[1, 2], [2, 2]]) extrema.local_maxima(x, allow_borders=True, indices=True) # no warning with warns(UserWarning, match=warning_msg): result = extrema.local_maxima(x, allow_borders=False, indices=True) assert_equal(result, np.zeros((2, 0), dtype=np.intp)) assert result[0].dtype == np.intp assert result[1].dtype == np.intp
TestLocalMaxima
python
getsentry__sentry
src/sentry/uptime/migrations/0045_backfill_detector_thresholds.py
{ "start": 1686, "end": 2253 }
class ____(CheckedMigration): # This is a data migration that can take a while on large deployments # and should be run manually after code deployment is_post_deployment = True dependencies = [ ("uptime", "0044_remove_project_uptime_subscription"), ("workflow_engine", "0085_crons_link_detectors_to_all_workflows"), ] operations = [ migrations.RunPython( backfill_detector_thresholds, migrations.RunPython.noop, hints={"tables": ["workflow_engine_detector"]}, ) ]
Migration
python
facebookresearch__faiss
tests/test_graph_based.py
{ "start": 372, "end": 6926 }
class ____(unittest.TestCase): def __init__(self, *args, **kwargs): unittest.TestCase.__init__(self, *args, **kwargs) d = 32 nt = 0 nb = 1500 nq = 500 (_, self.xb, self.xq) = get_dataset_2(d, nt, nb, nq) index = faiss.IndexFlatL2(d) index.add(self.xb) Dref, Iref = index.search(self.xq, 1) self.Iref = Iref def test_hnsw(self): d = self.xq.shape[1] index = faiss.IndexHNSWFlat(d, 16) index.add(self.xb) Dhnsw, Ihnsw = index.search(self.xq, 1) self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460) self.io_and_retest(index, Dhnsw, Ihnsw) def test_range_search(self): index_flat = faiss.IndexFlat(self.xb.shape[1]) index_flat.add(self.xb) D, _ = index_flat.search(self.xq, 10) radius = np.median(D[:, -1]) lims_ref, Dref, Iref = index_flat.range_search(self.xq, radius) index = faiss.IndexHNSWFlat(self.xb.shape[1], 16) index.add(self.xb) lims, D, I = index.range_search(self.xq, radius) nmiss = 0 # check if returned results are a subset of the reference results for i in range(len(self.xq)): ref = Iref[lims_ref[i]: lims_ref[i + 1]] new = I[lims[i]: lims[i + 1]] self.assertLessEqual(set(new), set(ref)) nmiss += len(ref) - len(new) # currently we miss 405 / 6019 neighbors self.assertLessEqual(nmiss, lims_ref[-1] * 0.1) def test_hnsw_unbounded_queue(self): d = self.xq.shape[1] index = faiss.IndexHNSWFlat(d, 16) index.add(self.xb) index.hnsw.search_bounded_queue = False Dhnsw, Ihnsw = index.search(self.xq, 1) self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460) self.io_and_retest(index, Dhnsw, Ihnsw) def test_hnsw_no_init_level0(self): d = self.xq.shape[1] index = faiss.IndexHNSWFlat(d, 16) index.init_level0 = False index.add(self.xb) Dhnsw, Ihnsw = index.search(self.xq, 1) # This is expected to be smaller because we are not initializing # vectors into level 0. self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 25) self.io_and_retest(index, Dhnsw, Ihnsw) def io_and_retest(self, index, Dhnsw, Ihnsw): index2 = faiss.deserialize_index(faiss.serialize_index(index)) Dhnsw2, Ihnsw2 = index2.search(self.xq, 1) self.assertTrue(np.all(Dhnsw2 == Dhnsw)) self.assertTrue(np.all(Ihnsw2 == Ihnsw)) # also test clone index3 = faiss.clone_index(index) Dhnsw3, Ihnsw3 = index3.search(self.xq, 1) self.assertTrue(np.all(Dhnsw3 == Dhnsw)) self.assertTrue(np.all(Ihnsw3 == Ihnsw)) def test_hnsw_2level(self): d = self.xq.shape[1] quant = faiss.IndexFlatL2(d) index = faiss.IndexHNSW2Level(quant, 256, 8, 8) index.train(self.xb) index.add(self.xb) Dhnsw, Ihnsw = index.search(self.xq, 1) self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 307) self.io_and_retest(index, Dhnsw, Ihnsw) def test_hnsw_2level_mixed_search(self): d = self.xq.shape[1] quant = faiss.IndexFlatL2(d) storage = faiss.IndexIVFPQ(quant, d, 32, 8, 8) storage.make_direct_map() index = faiss.IndexHNSW2Level(quant, 32, 8, 8) index.storage = storage index.train(self.xb) index.add(self.xb) Dhnsw, Ihnsw = index.search(self.xq, 1) # It is expected that the mixed search will perform worse. self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 200) self.io_and_retest(index, Dhnsw, Ihnsw) def test_add_0_vecs(self): index = faiss.IndexHNSWFlat(10, 16) zero_vecs = np.zeros((0, 10), dtype='float32') # infinite loop index.add(zero_vecs) def test_hnsw_IP(self): d = self.xq.shape[1] index_IP = faiss.IndexFlatIP(d) index_IP.add(self.xb) Dref, Iref = index_IP.search(self.xq, 1) index = faiss.IndexHNSWFlat(d, 16, faiss.METRIC_INNER_PRODUCT) index.add(self.xb) Dhnsw, Ihnsw = index.search(self.xq, 1) self.assertGreaterEqual((Iref == Ihnsw).sum(), 470) mask = Iref[:, 0] == Ihnsw[:, 0] assert np.allclose(Dref[mask, 0], Dhnsw[mask, 0]) def test_ndis_stats(self): d = self.xq.shape[1] index = faiss.IndexHNSWFlat(d, 16) index.add(self.xb) stats = faiss.cvar.hnsw_stats stats.reset() Dhnsw, Ihnsw = index.search(self.xq, 1) self.assertGreater(stats.ndis, len(self.xq) * index.hnsw.efSearch) def test_io_no_storage(self): d = self.xq.shape[1] index = faiss.IndexHNSWFlat(d, 16) index.add(self.xb) Dref, Iref = index.search(self.xq, 5) # test writing without storage index2 = faiss.deserialize_index( faiss.serialize_index(index, faiss.IO_FLAG_SKIP_STORAGE) ) self.assertEqual(index2.storage, None) self.assertRaises( RuntimeError, index2.search, self.xb, 1) # make sure we can store an index with empty storage index4 = faiss.deserialize_index( faiss.serialize_index(index2)) # add storage afterwards index.storage = faiss.clone_index(index.storage) index.own_fields = True Dnew, Inew = index.search(self.xq, 5) np.testing.assert_array_equal(Dnew, Dref) np.testing.assert_array_equal(Inew, Iref) if False: # test reading without storage # not implemented because it is hard to skip over an index index3 = faiss.deserialize_index( faiss.serialize_index(index), faiss.IO_FLAG_SKIP_STORAGE ) self.assertEqual(index3.storage, None) def test_hnsw_reset(self): d = self.xb.shape[1] index_flat = faiss.IndexFlat(d) index_flat.add(self.xb) self.assertEqual(index_flat.ntotal, self.xb.shape[0]) index_hnsw = faiss.IndexHNSW(index_flat) index_hnsw.add(self.xb) # * 2 because we add to storage twice. This is just for testing # that storage gets cleared correctly. self.assertEqual(index_hnsw.ntotal, self.xb.shape[0] * 2) index_hnsw.reset() self.assertEqual(index_flat.ntotal, 0) self.assertEqual(index_hnsw.ntotal, 0)
TestHNSW
python
numba__numba
numba/core/pythonapi.py
{ "start": 3084, "end": 4971 }
class ____(object): def __init__(self, pyapi, env, env_body, env_ptr): assert isinstance(env, lowering.Environment) self.pyapi = pyapi self.env = env self.env_body = env_body self.env_ptr = env_ptr def add_const(self, const): """ Add a constant to the environment, return its index. """ # All constants are frozen inside the environment if isinstance(const, str): const = sys.intern(const) for index, val in enumerate(self.env.consts): if val is const: break else: index = len(self.env.consts) self.env.consts.append(const) return index def read_const(self, index): """ Look up constant number *index* inside the environment body. A borrowed reference is returned. The returned LLVM value may have NULL value at runtime which indicates an error at runtime. """ assert index < len(self.env.consts) builder = self.pyapi.builder consts = self.env_body.consts ret = cgutils.alloca_once(builder, self.pyapi.pyobj, zfill=True) with builder.if_else(cgutils.is_not_null(builder, consts)) as \ (br_not_null, br_null): with br_not_null: getitem = self.pyapi.list_getitem(consts, index) builder.store(getitem, ret) with br_null: # This can happen when the Environment is accidentally released # and has subsequently been garbage collected. self.pyapi.err_set_string( "PyExc_RuntimeError", "`env.consts` is NULL in `read_const`", ) return builder.load(ret) _IteratorLoop = namedtuple('_IteratorLoop', ('value', 'do_break'))
EnvironmentManager
python
Textualize__textual
docs/examples/guide/dom2.py
{ "start": 88, "end": 263 }
class ____(App): def compose(self) -> ComposeResult: yield Header() yield Footer() if __name__ == "__main__": app = ExampleApp() app.run()
ExampleApp
python
walkccc__LeetCode
solutions/3210. Find the Encrypted String/3210.py
{ "start": 0, "end": 113 }
class ____: def getEncryptedString(self, s: str, k: int) -> str: k %= len(s) return s[k:] + s[0:k]
Solution
python
tensorflow__tensorflow
tensorflow/python/keras/metrics.py
{ "start": 98357, "end": 99976 }
class ____(Mean): """Computes root mean squared error metric between `y_true` and `y_pred`. Standalone usage: >>> m = tf.keras.metrics.RootMeanSquaredError() >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]]) >>> m.result().numpy() 0.5 >>> m.reset_state() >>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]], ... sample_weight=[1, 0]) >>> m.result().numpy() 0.70710677 Usage with `compile()` API: ```python model.compile( optimizer='sgd', loss='mse', metrics=[tf.keras.metrics.RootMeanSquaredError()]) ``` """ def __init__(self, name='root_mean_squared_error', dtype=None): super(RootMeanSquaredError, self).__init__(name, dtype=dtype) def update_state(self, y_true, y_pred, sample_weight=None): """Accumulates root mean squared error statistics. Args: y_true: The ground truth values. y_pred: The predicted values. sample_weight: Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. Returns: Update op. """ y_true = math_ops.cast(y_true, self._dtype) y_pred = math_ops.cast(y_pred, self._dtype) y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( y_pred, y_true) error_sq = math_ops.squared_difference(y_pred, y_true) return super(RootMeanSquaredError, self).update_state( error_sq, sample_weight=sample_weight) def result(self): return math_ops.sqrt(math_ops.div_no_nan(self.total, self.count))
RootMeanSquaredError
python
google__pytype
pytype/tests/test_test_code.py
{ "start": 3349, "end": 4350 }
class ____(test_base.BaseTest): """Tests for unittest.mock.""" def test_patch(self): self.Check(""" import unittest from unittest import mock foo = __any_object__ bar = __any_object__ class Foo(unittest.TestCase): def setUp(self): super().setUp() self.some_mock = mock.patch.object(foo, 'foo').start() self.some_mock.return_value = True def test_bar(self): other_mock = mock.patch.object(bar, 'bar').start() other_mock.return_value.__enter__ = lambda x: x """) def test_decorated_setup(self): self.Check(""" from typing import Any import unittest from unittest import mock random_module: Any class FooTest(unittest.TestCase): @mock.patch.object(random_module, 'attr') def setUp(self): self.x = 42 def test_something(self): assert_type(self.x, int) """) if __name__ == "__main__": test_base.main()
MockTest