language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/dataclassHash1.py
{ "start": 150, "end": 264 }
class ____: a: int # This should generate an error. v1: Hashable = DC1(0) @dataclass(eq=True, frozen=True)
DC1
python
huggingface__transformers
src/transformers/models/squeezebert/modeling_squeezebert.py
{ "start": 25807, "end": 30544 }
class ____(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, MultipleChoiceModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring
SqueezeBertForMultipleChoice
python
astropy__astropy
astropy/io/fits/header.py
{ "start": 68488, "end": 69404 }
class ____: """ This class allows to access cards with the _BasicHeader.cards attribute. This is needed because during the HDU class detection, some HDUs uses the .cards interface. Cards cannot be modified here as the _BasicHeader object will be deleted once the HDU object is created. """ def __init__(self, header): self.header = header def __getitem__(self, key): # .cards is a list of cards, so key here is an integer. # get the keyword name from its index. key = self.header._keys[key] # then we get the card from the _BasicHeader._cards list, or parse it # if needed. try: return self.header._cards[key] except KeyError: cardstr = self.header._raw_cards[key] card = Card.fromstring(cardstr) self.header._cards[key] = card return card
_BasicHeaderCards
python
encode__django-rest-framework
rest_framework/authentication.py
{ "start": 3639, "end": 4896 }
class ____(BaseAuthentication): """ Use Django's session framework for authentication. """ def authenticate(self, request): """ Returns a `User` if the request session currently has a logged in user. Otherwise returns `None`. """ # Get the session-based user from the underlying HttpRequest object user = getattr(request._request, 'user', None) # Unauthenticated, CSRF validation not required if not user or not user.is_active: return None self.enforce_csrf(request) # CSRF passed with authenticated user return (user, None) def enforce_csrf(self, request): """ Enforce CSRF validation for session based authentication. """ def dummy_get_response(request): # pragma: no cover return None check = CSRFCheck(dummy_get_response) # populates request.META['CSRF_COOKIE'], which is used in process_view() check.process_request(request) reason = check.process_view(request, None, (), {}) if reason: # CSRF failed, bail with explicit error message raise exceptions.PermissionDenied('CSRF Failed: %s' % reason)
SessionAuthentication
python
huggingface__transformers
src/transformers/models/kosmos2_5/modeling_kosmos2_5.py
{ "start": 75303, "end": 83188 }
class ____(Kosmos2_5PreTrainedModel, GenerationMixin): config_class = Kosmos2_5Config def __init__(self, config: Kosmos2_5Config): super().__init__(config) self.text_model = Kosmos2_5TextForCausalLM(config.text_config) self.vision_model = Kosmos2_5VisionModel(config.vision_config) self.image_to_text_projection = Kosmos2_5ImageToTextProjection(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.model.embed_tokens def set_input_embeddings(self, value): self.text_model.model.embed_tokens = value def get_output_embeddings(self) -> nn.Module: return self.text_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.text_model.set_output_embeddings(new_embeddings) @can_return_tuple @add_start_docstrings_to_model_forward(KOSMOS2_5_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=Kosmos2_5ForConditionalGenerationModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, flattened_patches: Optional[torch.Tensor] = None, width: Optional[torch.Tensor] = None, height: Optional[torch.Tensor] = None, image_embeds_position_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, image_embeds: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Kosmos2_5ForConditionalGenerationModelOutput: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> import torch >>> from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration >>> repo = "microsoft/kosmos-2.5" >>> device = "cuda:0" >>> dtype = torch.bfloat16 # torch.float16 >>> model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, dtype=dtype) >>> processor = AutoProcessor.from_pretrained(repo) >>> url = "https://huggingface.co/microsoft/kosmos-2.5/resolve/main/receipt_00008.png" >>> image = Image.open(requests.get(url, stream=True).raw) >>> prompt = "<ocr>" # <md> >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> height, width = inputs.pop("height"), inputs.pop("width") >>> inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()} >>> inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype) >>> generated_ids = model.generate(**inputs,max_new_tokens=1024) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> generated_text '<ocr><bbox><x_53><y_573><x_69><y_606></bbox>1\n<bbox><x_79><y_573><x_464><y_612></bbox>[REG] BLACK SAKURA\n<bbox><x_690><y_569><x_810><y_606></bbox>45,455\n<bbox><x_53><y_614><x_69><y_648></bbox>1\n<bbox><x_79><y_614><x_468><y_650></bbox>COOKIE DOH SAUCES\n<bbox><x_788><y_609><x_812><y_644></bbox>0\n<bbox><x_50><y_658><x_69><y_693></bbox>1\n<bbox><x_79><y_658><x_358><y_693></bbox>NATA DE COCO\n<bbox><x_790><y_652><x_814><y_687></bbox>0\n<bbox><x_31><y_742><x_820><y_781></bbox>Sub Total 45,455\n<bbox><x_27><y_781><x_822><y_827></bbox>PB1 (10%) 4,545\n<bbox><x_27><y_826><x_824><y_872></bbox>Rounding 0\n<bbox><x_24><y_872><x_827><y_921></bbox>Total 50,000\n<bbox><x_17><y_1056><x_836><y_1108></bbox>Card Payment 50,000\n' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_model_output = None projection_attentions = None if image_embeds is None: if flattened_patches is not None: vision_model_output = self.vision_model( flattened_patches=flattened_patches, output_attentions=output_attentions, output_hidden_states=output_hidden_states, **kwargs, ) image_embeds = nn.functional.normalize(vision_model_output.last_hidden_state, dim=-1) image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) lm_outputs: CausalLMOutputWithCrossAttentions = self.text_model( input_ids=input_ids, attention_mask=attention_mask, image_embeds=image_embeds, image_embeds_position_mask=image_embeds_position_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, position_ids=position_ids, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, logits_to_keep=logits_to_keep, **kwargs, ) return Kosmos2_5ForConditionalGenerationModelOutput( loss=lm_outputs.loss, logits=lm_outputs.logits, past_key_values=lm_outputs.past_key_values, hidden_states=lm_outputs.hidden_states, attentions=lm_outputs.attentions, width=width, height=height, image_embeds=image_embeds, projection_attentions=projection_attentions, vision_model_output=vision_model_output, ) def prepare_inputs_for_generation( self, input_ids, flattened_patches=None, image_embeds=None, image_embeds_position_mask=None, past_key_values=None, attention_mask=None, use_cache=None, cache_position=None, position_ids=None, **model_kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.text_model.prepare_inputs_for_generation( input_ids, image_embeds=image_embeds, image_embeds_position_mask=image_embeds_position_mask, past_key_values=past_key_values, attention_mask=attention_mask, use_cache=use_cache, cache_position=cache_position, position_ids=position_ids, **model_kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, `flattened_patches` should be `None` because `input_ids` do not contain special image token anymore # Otherwise we need `flattened_patches` to be passed to model model_inputs["flattened_patches"] = flattened_patches return model_inputs __all__ = [ "Kosmos2_5ForConditionalGeneration", "Kosmos2_5Model", "Kosmos2_5PreTrainedModel", ]
Kosmos2_5ForConditionalGeneration
python
fluentpython__example-code-2e
21-async/mojifinder/bottle.py
{ "start": 116932, "end": 117161 }
class ____(ServerAdapter): def run(self,handler): from socketio import server address = (self.host, self.port) server.SocketIOServer(address, handler, **self.options).serve_forever()
GeventSocketIOServer
python
dagster-io__dagster
python_modules/dagster/dagster/_core/workspace/context.py
{ "start": 33425, "end": 49129 }
class ____(IWorkspaceProcessContext[WorkspaceRequestContext]): """Process-scoped object that tracks the state of a workspace. 1. Maintains an update-to-date dictionary of repository locations 2. Creates a `WorkspaceRequestContext` to be the workspace for each request 3. Runs watch thread processes that monitor repository locations To access a CodeLocation, you should create a `WorkspaceRequestContext` using `create_request_context`. """ def __init__( self, instance: DagsterInstance, workspace_load_target: Optional[WorkspaceLoadTarget], version: str = "", read_only: bool = False, grpc_server_registry: Optional[GrpcServerRegistry] = None, code_server_log_level: str = "INFO", server_command: GrpcServerCommand = GrpcServerCommand.API_GRPC, ): self._stack = ExitStack() check.opt_str_param(version, "version") check.bool_param(read_only, "read_only") self._instance = check.inst_param(instance, "instance", DagsterInstance) self._workspace_load_target = check.opt_inst_param( workspace_load_target, "workspace_load_target", WorkspaceLoadTarget ) self._read_only = read_only self._version = version # Guards changes to _current_workspace, _watch_thread_shutdown_events and _watch_threads self._lock = threading.Lock() self._watch_thread_shutdown_events: dict[str, threading.Event] = {} self._watch_threads: dict[str, threading.Thread] = {} self._state_subscribers_lock = threading.Lock() self._state_subscriber_id_iter = count() self._state_subscribers: dict[int, LocationStateSubscriber] = {} self.add_state_subscriber(LocationStateSubscriber(self._location_state_events_handler)) if grpc_server_registry: self._grpc_server_registry: GrpcServerRegistry = check.inst_param( grpc_server_registry, "grpc_server_registry", GrpcServerRegistry ) else: self._grpc_server_registry = self._stack.enter_context( GrpcServerRegistry( instance_ref=self._instance.get_ref(), server_command=server_command, heartbeat_ttl=WEBSERVER_GRPC_SERVER_HEARTBEAT_TTL, startup_timeout=instance.code_server_process_startup_timeout, log_level=code_server_log_level, wait_for_processes_on_shutdown=instance.wait_for_local_code_server_processes_on_shutdown, additional_timeout_msg=INCREASE_TIMEOUT_DAGSTER_YAML_MSG, ) ) self._current_workspace: CurrentWorkspace = CurrentWorkspace(code_location_entries={}) self._update_workspace( { origin.location_name: self._load_location(origin, reload=False) for origin in self._origins } ) @property def workspace_load_target(self) -> Optional[WorkspaceLoadTarget]: return self._workspace_load_target @property def _origins(self) -> Sequence[CodeLocationOrigin]: return self._workspace_load_target.create_origins() if self._workspace_load_target else [] def get_code_server_specs(self) -> Sequence[Mapping[str, Mapping[str, Any]]]: result = [] for origin in self._origins: if isinstance(origin, ManagedGrpcPythonEnvCodeLocationOrigin): grpc_endpoint = self._grpc_server_registry.get_grpc_endpoint(origin) server_spec = { "location_name": origin.location_name, "socket": grpc_endpoint.socket, "port": grpc_endpoint.port, "host": grpc_endpoint.host, "additional_metadata": origin.loadable_target_origin.as_dict, } elif isinstance(origin, GrpcServerCodeLocationOrigin): server_spec = { "location_name": origin.location_name, "host": origin.host, "port": origin.port, "socket": origin.socket, "additional_metadata": origin.additional_metadata, } else: check.failed(f"Unexpected origin type {origin}") result.append({"grpc_server": {k: v for k, v in server_spec.items() if v is not None}}) return result def add_state_subscriber(self, subscriber: LocationStateSubscriber) -> int: token = next(self._state_subscriber_id_iter) with self._state_subscribers_lock: self._state_subscribers[token] = subscriber return token def rm_state_subscriber(self, token: int) -> None: with self._state_subscribers_lock: if token in self._state_subscribers: del self._state_subscribers[token] @property def instance(self) -> DagsterInstance: return self._instance @property def read_only(self) -> bool: return self._read_only @property def permissions(self) -> Mapping[str, PermissionResult]: return get_user_permissions(True) def permissions_for_location(self, *, location_name: str) -> Mapping[str, PermissionResult]: return get_location_scoped_user_permissions(True) def permissions_for_owner(self, *, owner: str) -> Mapping[str, PermissionResult]: return {} @property def version(self) -> str: return self._version def _send_state_event_to_subscribers(self, event: LocationStateChangeEvent) -> None: check.inst_param(event, "event", LocationStateChangeEvent) with self._state_subscribers_lock: for subscriber in self._state_subscribers.values(): subscriber.handle_event(event) def _start_watch_thread(self, origin: GrpcServerCodeLocationOrigin) -> None: from dagster._grpc.server_watcher import create_grpc_watch_thread location_name = origin.location_name check.invariant(location_name not in self._watch_thread_shutdown_events) client = origin.create_client() shutdown_event, watch_thread = create_grpc_watch_thread( location_name, client, on_updated=lambda location_name, new_server_id: self._send_state_event_to_subscribers( LocationStateChangeEvent( LocationStateChangeEventType.LOCATION_UPDATED, location_name=location_name, message="Server has been updated.", server_id=new_server_id, ) ), on_error=lambda location_name: self._send_state_event_to_subscribers( LocationStateChangeEvent( LocationStateChangeEventType.LOCATION_ERROR, location_name=location_name, message=( "Unable to reconnect to server. You can reload the server once it is " "reachable again" ), ) ), ) self._watch_thread_shutdown_events[location_name] = shutdown_event self._watch_threads[location_name] = watch_thread watch_thread.start() def _load_location(self, origin: CodeLocationOrigin, reload: bool) -> CodeLocationEntry: location_name = origin.location_name location = None error = None try: if isinstance(origin, ManagedGrpcPythonEnvCodeLocationOrigin): endpoint = ( self._grpc_server_registry.reload_grpc_endpoint(origin) if reload else self._grpc_server_registry.get_grpc_endpoint(origin) ) location = GrpcServerCodeLocation( origin=origin, port=endpoint.port, socket=endpoint.socket, host=endpoint.host, heartbeat=True, watch_server=False, grpc_server_registry=self._grpc_server_registry, instance=self._instance, ) else: location = ( origin.reload_location(self.instance) if reload else origin.create_location(self.instance) ) except Exception: error = serializable_error_info_from_exc_info(sys.exc_info()) # In dagster dev, the code server process already logs the error, so we don't need to log it again from # the workspace process context if using_dagster_dev(): warnings.warn(f"Error loading repository location {location_name}") else: warnings.warn( f"Error loading repository location {location_name}:{error.to_string()}" ) load_time = get_current_timestamp() if isinstance(location, GrpcServerCodeLocation): version_key = location.server_id else: version_key = str(load_time) return CodeLocationEntry( origin=origin, code_location=location, load_error=error, load_status=CodeLocationLoadStatus.LOADED, display_metadata=( location.get_display_metadata() if location else origin.get_display_metadata() ), update_timestamp=load_time, version_key=version_key, definitions_source=DefinitionsSource.CODE_SERVER, ) def get_current_workspace(self) -> CurrentWorkspace: with self._lock: return self._current_workspace @property def code_locations_count(self) -> int: with self._lock: return len(self._current_workspace.code_location_entries) @property def code_location_names(self) -> Sequence[str]: with self._lock: return list(self._current_workspace.code_location_entries) def has_code_location(self, location_name: str) -> bool: check.str_param(location_name, "location_name") with self._lock: return ( location_name in self._current_workspace.code_location_entries and self._current_workspace.code_location_entries[location_name].code_location is not None ) def has_code_location_error(self, location_name: str) -> bool: check.str_param(location_name, "location_name") with self._lock: return ( location_name in self._current_workspace.code_location_entries and self._current_workspace.code_location_entries[location_name].load_error is not None ) def reload_code_location(self, name: str) -> None: new_entry = self._load_location( self._current_workspace.code_location_entries[name].origin, reload=True ) with self._lock: # Relying on GC to clean up the old location once nothing else # is referencing it self._current_workspace = self._current_workspace.with_code_location(name, new_entry) def shutdown_code_location(self, name: str) -> None: with self._lock: self._current_workspace.code_location_entries[name].origin.shutdown_server() def refresh_workspace(self) -> None: updated_locations = { origin.location_name: self._load_location(origin, reload=False) for origin in self._origins } self._update_workspace(updated_locations) def reload_workspace(self) -> None: updated_locations = { origin.location_name: self._load_location(origin, reload=True) for origin in self._origins } self._update_workspace(updated_locations) def _update_workspace(self, new_locations: dict[str, CodeLocationEntry]): # minimize lock time by only holding while swapping data old to new with self._lock: previous_events = self._watch_thread_shutdown_events self._watch_thread_shutdown_events = {} previous_threads = self._watch_threads self._watch_threads = {} previous_locations = self._current_workspace.code_location_entries self._current_workspace = CurrentWorkspace(code_location_entries=new_locations) # start monitoring for new locations for entry in new_locations.values(): if isinstance(entry.origin, GrpcServerCodeLocationOrigin): self._start_watch_thread(entry.origin) # clean up previous locations for event in previous_events.values(): event.set() for watch_thread in previous_threads.values(): watch_thread.join() for entry in previous_locations.values(): if entry.code_location: entry.code_location.cleanup() def create_request_context(self, source: Optional[object] = None) -> WorkspaceRequestContext: return WorkspaceRequestContext( instance=self._instance, current_workspace=self.get_current_workspace(), process_context=self, version=self.version, source=source, read_only=self._read_only, ) def _location_state_events_handler(self, event: LocationStateChangeEvent) -> None: # If the server was updated or we were not able to reconnect, we immediately reload the # location handle if event.event_type in ( LocationStateChangeEventType.LOCATION_UPDATED, LocationStateChangeEventType.LOCATION_ERROR, ): # In case of an updated location, reload the handle to get updated repository data and # re-attach a subscriber # In case of a location error, just reload the handle in order to update the workspace # with the correct error messages logging.getLogger("dagster-webserver").info( f"Received {event.event_type} event for location {event.location_name}, refreshing" ) self.refresh_code_location(event.location_name) def refresh_code_location(self, name: str) -> None: # This method reloads the webserver's copy of the code from the remote gRPC server without # restarting it, and returns a new request context created from the updated process context new_entry = self._load_location( self._current_workspace.code_location_entries[name].origin, reload=False ) with self._lock: # Relying on GC to clean up the old location once nothing else # is referencing it self._current_workspace = self._current_workspace.with_code_location(name, new_entry) def __enter__(self) -> Self: return self def __exit__(self, exception_type, exception_value, traceback) -> None: self._update_workspace({}) # update to empty to close all current locations self._stack.close() def copy_for_test_instance(self, instance: DagsterInstance) -> "WorkspaceProcessContext": """Make a copy with a different instance, created for tests.""" return WorkspaceProcessContext( instance=instance, workspace_load_target=self.workspace_load_target, version=self.version, read_only=self.read_only, grpc_server_registry=self._grpc_server_registry, )
WorkspaceProcessContext
python
allegroai__clearml
clearml/backend_api/services/v2_23/datasets.py
{ "start": 3496, "end": 8171 }
class ____(NonStrictDataModel): """ :param id: ROI id :type id: str :param label: ROI labels :type label: Sequence[str] :param poly: ROI polygon (x0, y0, ..., xn, yn) :type poly: Sequence[float] :param confidence: ROI confidence :type confidence: float :param meta: Additional metadata dictionary for the roi :type meta: dict :param sources: Source ID :type sources: Sequence[str] :param mask: Mask info for this ROI :type mask: RoiMask """ _schema = { "properties": { "confidence": {"description": "ROI confidence", "type": "number"}, "id": {"description": "ROI id", "type": ["string", "null"]}, "label": { "description": "ROI labels", "items": {"type": "string"}, "type": "array", }, "mask": { "$ref": "#/definitions/roi_mask", "description": "Mask info for this ROI", }, "meta": { "additionalProperties": True, "description": "Additional metadata dictionary for the roi", "type": "object", }, "poly": { "description": "ROI polygon (x0, y0, ..., xn, yn)", "items": {"type": "number"}, "type": "array", }, "sources": { "description": "Source ID", "items": {"type": "string"}, "type": "array", }, }, "required": ["label"], "type": "object", } def __init__( self, label, id=None, poly=None, confidence=None, meta=None, sources=None, mask=None, **kwargs ): super(Roi, self).__init__(**kwargs) self.id = id self.label = label self.poly = poly self.confidence = confidence self.meta = meta self.sources = sources self.mask = mask @schema_property("id") def id(self): return self._property_id @id.setter def id(self, value): if value is None: self._property_id = None return self.assert_isinstance(value, "id", six.string_types) self._property_id = value @schema_property("label") def label(self): return self._property_label @label.setter def label(self, value): if value is None: self._property_label = None return self.assert_isinstance(value, "label", (list, tuple)) self.assert_isinstance(value, "label", six.string_types, is_array=True) self._property_label = value @schema_property("poly") def poly(self): return self._property_poly @poly.setter def poly(self, value): if value is None: self._property_poly = None return self.assert_isinstance(value, "poly", (list, tuple)) self.assert_isinstance( value, "poly", six.integer_types + (float,), is_array=True ) self._property_poly = value @schema_property("confidence") def confidence(self): return self._property_confidence @confidence.setter def confidence(self, value): if value is None: self._property_confidence = None return self.assert_isinstance(value, "confidence", six.integer_types + (float,)) self._property_confidence = value @schema_property("meta") def meta(self): return self._property_meta @meta.setter def meta(self, value): if value is None: self._property_meta = None return self.assert_isinstance(value, "meta", (dict,)) self._property_meta = value @schema_property("sources") def sources(self): return self._property_sources @sources.setter def sources(self, value): if value is None: self._property_sources = None return self.assert_isinstance(value, "sources", (list, tuple)) self.assert_isinstance(value, "sources", six.string_types, is_array=True) self._property_sources = value @schema_property("mask") def mask(self): return self._property_mask @mask.setter def mask(self, value): if value is None: self._property_mask = None return if isinstance(value, dict): value = RoiMask.from_dict(value) else: self.assert_isinstance(value, "mask", RoiMask) self._property_mask = value
Roi
python
pytorch__pytorch
test/distributed/test_launcher.py
{ "start": 690, "end": 1359 }
class ____(TestCase): def test_launch_user_script(self): nnodes = 1 nproc_per_node = 4 sock = get_socket_with_port() with closing(sock): master_port = sock.getsockname()[1] args = [ f"--nnodes={nnodes}", f"--nproc-per-node={nproc_per_node}", "--monitor-interval=1", "--start-method=spawn", "--master-addr=localhost", f"--master-port={master_port}", "--node-rank=0", "--use-env", path("bin/test_script.py"), ] launch.main(args) if __name__ == "__main__": run_tests()
TestDistributedLaunch
python
ansible__ansible
lib/ansible/modules/user.py
{ "start": 87676, "end": 100643 }
class ____(User): """ This is a Darwin macOS User manipulation class. Main differences are that Darwin:- - Handles accounts in a database managed by dscl(1) - Has no useradd/groupadd - Does not create home directories - User password must be cleartext - UID must be given - System users must ben under 500 This overrides the following methods from the generic class:- - user_exists() - create_user() - remove_user() - modify_user() """ platform = 'Darwin' distribution = None SHADOWFILE = None dscl_directory = '.' fields = [ ('comment', 'RealName'), ('home', 'NFSHomeDirectory'), ('shell', 'UserShell'), ('uid', 'UniqueID'), ('group', 'PrimaryGroupID'), ('hidden', 'IsHidden'), ] def __init__(self, module): super(DarwinUser, self).__init__(module) # make the user hidden if option is set or defer to system option if self.hidden is None: if self.system: self.hidden = 1 elif self.hidden: self.hidden = 1 else: self.hidden = 0 # add hidden to processing if set if self.hidden is not None: self.fields.append(('hidden', 'IsHidden')) def _get_dscl(self): return [self.module.get_bin_path('dscl', True), self.dscl_directory] def _list_user_groups(self): cmd = self._get_dscl() cmd += ['-search', '/Groups', 'GroupMembership', self.name] (rc, out, err) = self.execute_command(cmd, obey_checkmode=False) groups = [] for line in out.splitlines(): if line.startswith(' ') or line.startswith(')'): continue groups.append(line.split()[0]) return groups def _get_user_property(self, property): """Return user PROPERTY as given my dscl(1) read or None if not found.""" cmd = self._get_dscl() cmd += ['-read', '/Users/%s' % self.name, property] (rc, out, err) = self.execute_command(cmd, obey_checkmode=False) if rc != 0: return None # from dscl(1) # if property contains embedded spaces, the list will instead be # displayed one entry per line, starting on the line after the key. lines = out.splitlines() # sys.stderr.write('*** |%s| %s -> %s\n' % (property, out, lines)) if len(lines) == 1: return lines[0].split(': ')[1] if len(lines) > 2: return '\n'.join([lines[1].strip()] + lines[2:]) if len(lines) == 2: return lines[1].strip() return None def _get_next_uid(self, system=None): """ Return the next available uid. If system=True, then uid should be below of 500, if possible. """ cmd = self._get_dscl() cmd += ['-list', '/Users', 'UniqueID'] (rc, out, err) = self.execute_command(cmd, obey_checkmode=False) if rc != 0: self.module.fail_json( msg="Unable to get the next available uid", rc=rc, out=out, err=err ) max_uid = 0 max_system_uid = 0 for line in out.splitlines(): current_uid = int(line.split(' ')[-1]) if max_uid < current_uid: max_uid = current_uid if max_system_uid < current_uid and current_uid < 500: max_system_uid = current_uid if system and (0 < max_system_uid < 499): return max_system_uid + 1 return max_uid + 1 def _change_user_password(self): """Change password for SELF.NAME against SELF.PASSWORD. Please note that password must be cleartext. """ # some documentation on how is stored passwords on OSX: # http://null-byte.wonderhowto.com/how-to/hack-mac-os-x-lion-passwords-0130036/ # http://pastebin.com/RYqxi7Ca # on OSX 10.8+ hash is SALTED-SHA512-PBKDF2 # https://passlib.readthedocs.io/en/stable/lib/passlib.hash.pbkdf2_digest.html # https://gist.github.com/nueh/8252572 cmd = self._get_dscl() if self.password: cmd += ['-passwd', '/Users/%s' % self.name, self.password] else: cmd += ['-create', '/Users/%s' % self.name, 'Password', '*'] (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Error when changing password', err=err, out=out, rc=rc) return (rc, out, err) def _make_group_numerical(self): """Convert SELF.GROUP to is stringed numerical value suitable for dscl.""" if self.group is None: self.group = 'nogroup' try: self.group = grp.getgrnam(self.group).gr_gid except KeyError: self.module.fail_json(msg='Group "%s" not found. Try to create it first using "group" module.' % self.group) # We need to pass a string to dscl self.group = str(self.group) def __modify_group(self, group, action): """Add or remove SELF.NAME to or from GROUP depending on ACTION. ACTION can be 'add' or 'remove' otherwise 'remove' is assumed. """ if action == 'add': option = '-a' else: option = '-d' cmd = ['dseditgroup', '-o', 'edit', option, self.name, '-t', 'user', group] (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot %s user "%s" to group "%s".' % (action, self.name, group), err=err, out=out, rc=rc) return (rc, out, err) def _modify_group(self): """Add or remove SELF.NAME to or from GROUP depending on ACTION. ACTION can be 'add' or 'remove' otherwise 'remove' is assumed. """ rc = 0 out = '' err = '' changed = False current = set(self._list_user_groups()) if self.groups is not None: target = self.get_groups_set(names_only=True) else: target = set([]) if self.append is False: for remove in current - target: (_rc, _out, _err) = self.__modify_group(remove, 'delete') rc += rc out += _out err += _err changed = True for add in target - current: (_rc, _out, _err) = self.__modify_group(add, 'add') rc += _rc out += _out err += _err changed = True return (rc, out, err, changed) def _update_system_user(self): """Hide or show user on login window according SELF.SYSTEM. Returns 0 if a change has been made, None otherwise.""" plist_file = '/Library/Preferences/com.apple.loginwindow.plist' # http://support.apple.com/kb/HT5017?viewlocale=en_US cmd = ['defaults', 'read', plist_file, 'HiddenUsersList'] (rc, out, err) = self.execute_command(cmd, obey_checkmode=False) # returned value is # ( # "_userA", # "_UserB", # userc # ) hidden_users = [] for x in out.splitlines()[1:-1]: try: x = x.split('"')[1] except IndexError: x = x.strip() hidden_users.append(x) if self.system: if self.name not in hidden_users: cmd = ['defaults', 'write', plist_file, 'HiddenUsersList', '-array-add', self.name] (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot user "%s" to hidden user list.' % self.name, err=err, out=out, rc=rc) return 0 else: if self.name in hidden_users: del (hidden_users[hidden_users.index(self.name)]) cmd = ['defaults', 'write', plist_file, 'HiddenUsersList', '-array'] + hidden_users (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot remove user "%s" from hidden user list.' % self.name, err=err, out=out, rc=rc) return 0 def user_exists(self): """Check is SELF.NAME is a known user on the system.""" cmd = self._get_dscl() cmd += ['-read', '/Users/%s' % self.name, 'UniqueID'] (rc, out, err) = self.execute_command(cmd, obey_checkmode=False) return rc == 0 def remove_user(self): """Delete SELF.NAME. If SELF.FORCE is true, remove its home directory.""" info = self.user_info() cmd = self._get_dscl() cmd += ['-delete', '/Users/%s' % self.name] (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot delete user "%s".' % self.name, err=err, out=out, rc=rc) if self.force: if os.path.exists(info[5]): shutil.rmtree(info[5]) out += "Removed %s" % info[5] return (rc, out, err) def create_user(self, command_name='dscl'): cmd = self._get_dscl() cmd += ['-create', '/Users/%s' % self.name] (rc, out, err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot create user "%s".' % self.name, err=err, out=out, rc=rc) # Make the Gecos (alias display name) default to username if self.comment is None: self.comment = self.name # Make user group default to 'staff' if self.group is None: self.group = 'staff' self._make_group_numerical() if self.uid is None: self.uid = str(self._get_next_uid(self.system)) # Homedir is not created by default if self.create_home: if self.home is None: self.home = '/Users/%s' % self.name if not self.module.check_mode: if not os.path.exists(self.home): os.makedirs(self.home) self.chown_homedir(int(self.uid), int(self.group), self.home) # dscl sets shell to /usr/bin/false when UserShell is not specified # so set the shell to /bin/bash when the user is not a system user if not self.system and self.shell is None: self.shell = '/bin/bash' for field in self.fields: if field[0] in self.__dict__ and self.__dict__[field[0]]: cmd = self._get_dscl() cmd += ['-create', '/Users/%s' % self.name, field[1], self.__dict__[field[0]]] (rc, _out, _err) = self.execute_command(cmd) if rc != 0: self.module.fail_json(msg='Cannot add property "%s" to user "%s".' % (field[0], self.name), err=err, out=out, rc=rc) out += _out err += _err if rc != 0: return (rc, _out, _err) (rc, _out, _err) = self._change_user_password() out += _out err += _err self._update_system_user() # here we don't care about change status since it is a creation, # thus changed is always true. if self.groups: (rc, _out, _err, changed) = self._modify_group() out += _out err += _err return (rc, out, err) def modify_user(self): changed = None out = '' err = '' if self.group: self._make_group_numerical() for field in self.fields: if field[0] in self.__dict__ and self.__dict__[field[0]]: current = self._get_user_property(field[1]) if current is None or current != to_text(self.__dict__[field[0]]): cmd = self._get_dscl() cmd += ['-create', '/Users/%s' % self.name, field[1], self.__dict__[field[0]]] (rc, _out, _err) = self.execute_command(cmd) if rc != 0: self.module.fail_json( msg='Cannot update property "%s" for user "%s".' % (field[0], self.name), err=err, out=out, rc=rc) changed = rc out += _out err += _err if self.update_password == 'always' and self.password is not None: (rc, _out, _err) = self._change_user_password() out += _out err += _err changed = rc if self.groups: (rc, _out, _err, _changed) = self._modify_group() out += _out err += _err if _changed is True: changed = rc rc = self._update_system_user() if rc == 0: changed = rc return (changed, out, err)
DarwinUser
python
tensorflow__tensorflow
tensorflow/python/data/experimental/kernel_tests/index_flat_map_test.py
{ "start": 1686, "end": 7936 }
class ____(test_base.DatasetTestBase, parameterized.TestCase): """Tests for global shuffling of index flat map datasets.""" @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine(use_tensors=[True, False]))) def test_split_strings(self, use_tensors: bool): input_data = ["0 1", "2 3 4 5", "6 7", "8"] # The metadata is [(0, 2, 0), (2, 6, 1), (6, 8, 2), (8, 9, 3)]. metadata = _get_metadata(input_data) def _index_map_func(index: _IndexType) -> tuple[_IndexType, _IndexType]: index = _maybe_convert_to_tensor(index) element_index, offset = _get_index_map_func(metadata)(index) return (_maybe_convert_to_tensor(element_index), _maybe_convert_to_tensor(offset)) def _maybe_convert_to_tensor(value: Any) -> _IndexType: return math_ops.cast(value, dtypes.int64) if use_tensors else value dataset = dataset_ops.Dataset.from_tensor_slices(input_data) dataset = index_flat_map_op.index_flat_map(dataset, _split, _index_map_func) output = self.getDatasetOutput(dataset) self.assertEqual(output, [b"0", b"1", b"2", b"3", b"4", b"5", b"6", b"7", b"8"]) @combinations.generate(test_base.default_test_combinations()) def test_cache(self): input_data = ["0 1", "2 3 4 5", "6 7", "8"] metadata = _get_metadata(input_data) dataset = dataset_ops.Dataset.from_tensor_slices(input_data) dataset = dataset.cache() dataset = index_flat_map_op.index_flat_map( dataset, _split, _get_index_map_func(metadata)) output = self.getDatasetOutput(dataset) self.assertEqual(output, [b"0", b"1", b"2", b"3", b"4", b"5", b"6", b"7", b"8"]) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( repetitions=[1, 3], seed=[None, 42], reshuffle_each_iteration=[True, False]))) def test_global_shuffle( self, repetitions: int, seed: Optional[int], reshuffle_each_iteration: bool): input_data = ["0 1", "2 3 4 5", "6 7", "8"] metadata = _get_metadata(input_data) dataset = dataset_ops.Dataset.from_tensor_slices(input_data) dataset = index_flat_map_op.index_flat_map( dataset, _split, _get_index_map_func(metadata), output_cardinality=9) self.assertEqual(self.evaluate(dataset.cardinality()), 9) if repetitions > 1: dataset = dataset.repeat(repetitions) dataset = global_shuffle_op._global_shuffle( dataset, seed=seed, reshuffle_each_iteration=reshuffle_each_iteration) dataset_output = self.getDatasetOutput( dataset, requires_initialization=True) expected = [ b"0", b"1", b"2", b"3", b"4", b"5", b"6", b"7", b"8"] * repetitions self.assertCountEqual(dataset_output, expected) self.assertNotEqual(dataset_output, expected) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine(dataset_range=[0, 10]))) def test_identity_map(self, dataset_range: int): def _map_func(element: Any) -> Any: return element def _index_map_func(index: int) -> tuple[int, int]: return (index, 0) dataset = dataset_ops.Dataset.range(dataset_range) dataset = index_flat_map_op.index_flat_map( dataset, _map_func, _index_map_func) self.assertDatasetProduces(dataset, list(range(dataset_range))) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( input_range=[0, 10], map_output=[ [[1, 2], [3, 4], [5, 6]], [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]] ], use_tensors=[True, False]))) def test_nested_list( self, input_range: int, map_output: list[Any], use_tensors: bool): def _map_func(_) -> Union[tensor.Tensor, list[list[int]]]: return (constant_op.constant(map_output, dtype=dtypes.int64) if use_tensors else map_output) def _index_map_func(i: int) -> tuple[int, int]: return (i // len(map_output), i % len(map_output)) dataset = dataset_ops.Dataset.range(input_range) dataset = index_flat_map_op.index_flat_map( dataset, _map_func, _index_map_func) self.assertDatasetProduces(dataset, map_output * input_range) @combinations.generate(test_base.default_test_combinations()) def test_offset_out_of_range(self): def _index_map_func(_) -> tuple[int, int]: return (0, 1000) input_data = ["0 1", "2 3 4 5", "6 7", "8"] dataset = dataset_ops.Dataset.from_tensor_slices(input_data) dataset = index_flat_map_op.index_flat_map(dataset, _split, _index_map_func) with self.assertRaisesRegex( errors.InvalidArgumentError, "invalid `index_map_func` which returns offset 1000"): self.getDatasetOutput(dataset) @combinations.generate(test_base.default_test_combinations()) def test_invalid_map_fn_type(self): def _index_map_func(_) -> str: # Expected to return two integers. return "Hello" input_data = ["0 1", "2 3 4 5", "6 7", "8"] dataset = dataset_ops.Dataset.from_tensor_slices(input_data) dataset = index_flat_map_op.index_flat_map(dataset, _split, _index_map_func) with self.assertRaisesRegex( errors.InvalidArgumentError, "expected to return two int values"): self.getDatasetOutput(dataset) @combinations.generate(test_base.default_test_combinations()) def test_unknown_cardinality(self): input_data = ["0 1", "2 3 4 5", "6 7", "8"] dataset = dataset_ops.Dataset.from_tensor_slices(input_data) with self.assertRaisesRegex( errors.InvalidArgumentError, "`global_shuffle` requires the input dataset to have a non-empty " "finite cardinality."): dataset = index_flat_map_op.index_flat_map( dataset, _split, _get_index_map_func(_get_metadata(input_data))) dataset = global_shuffle_op._global_shuffle(dataset) self.getDatasetOutput(dataset, requires_initialization=True)
IndexFlatMapTest
python
facebookresearch__faiss
tests/test_index_accuracy.py
{ "start": 687, "end": 5410 }
class ____(unittest.TestCase): def test_IndexFlatIP(self): q = faiss.IndexFlatIP(d) # Ask inner product res = ev.launch("FLAT / IP", q) e = ev.evalres(res) assert e[1] == 1.0 def test_IndexFlatL2(self): q = faiss.IndexFlatL2(d) res = ev.launch("FLAT / L2", q) e = ev.evalres(res) assert e[1] == 1.0 def test_ivf_kmeans(self): ivfk = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, ncentroids) ivfk.nprobe = kprobe res = ev.launch("IndexIVFFlat", ivfk) e = ev.evalres(res) # should give 0.260 0.260 0.260 assert e[1] > 0.2 # test parallel mode Dref, Iref = ivfk.search(ev.xq, 100) ivfk.parallel_mode = 1 Dnew, Inew = ivfk.search(ev.xq, 100) assert (Iref != Inew).sum() < Iref.size / 5000.0 assert np.all(Dref == Dnew) def test_indexLSH(self): q = faiss.IndexLSH(d, nbits) res = ev.launch("FLAT / LSH Cosine", q) e = ev.evalres(res) # should give 0.070 0.250 0.580 assert e[10] > 0.2 def test_IndexLSH_32_48(self): # CHECK: the difference between 32 and 48 does not make much sense for nbits2 in 32, 48: q = faiss.IndexLSH(d, nbits2) res = ev.launch("LSH half size", q) e = ev.evalres(res) # should give 0.003 0.019 0.108 assert e[10] > 0.018 def test_IndexPQ(self): q = faiss.IndexPQ(d, M, nbits_per_index) res = ev.launch("FLAT / PQ L2", q) e = ev.evalres(res) # should give 0.070 0.230 0.260 assert e[10] > 0.2 # Approximate search module: PQ with inner product distance def test_IndexPQ_ip(self): q = faiss.IndexPQ(d, M, nbits_per_index, faiss.METRIC_INNER_PRODUCT) res = ev.launch("FLAT / PQ IP", q) e = ev.evalres(res) # should give 0.070 0.230 0.260 # (same result as regular PQ on normalized distances) assert e[10] > 0.2 def test_IndexIVFPQ(self): ivfpq = faiss.IndexIVFPQ(faiss.IndexFlatL2(d), d, ncentroids, M, 8) ivfpq.nprobe = kprobe res = ev.launch("IVF PQ", ivfpq) e = ev.evalres(res) # should give 0.070 0.230 0.260 assert e[10] > 0.2 # TODO: translate evaluation of nested # Approximate search: PQ with full vector refinement def test_IndexPQ_refined(self): q = faiss.IndexPQ(d, M, nbits_per_index) res = ev.launch("PQ non-refined", q) e = ev.evalres(res) q.reset() rq = faiss.IndexRefineFlat(q) res = ev.launch("PQ refined", rq) e2 = ev.evalres(res) assert e2[10] >= e[10] rq.k_factor = 4 res = ev.launch("PQ refined*4", rq) e3 = ev.evalres(res) assert e3[10] >= e2[10] def test_polysemous(self): index = faiss.IndexPQ(d, M, nbits_per_index) index.do_polysemous_training = True # reduce nb iterations to speed up training for the test index.polysemous_training.n_iter = 50000 index.polysemous_training.n_redo = 1 res = ev.launch("normal PQ", index) e_baseline = ev.evalres(res) index.search_type = faiss.IndexPQ.ST_polysemous index.polysemous_ht = int(M / 16.0 * 58) stats = faiss.cvar.indexPQ_stats stats.reset() res = ev.launch("Polysemous ht=%d" % index.polysemous_ht, index) e_polysemous = ev.evalres(res) # The randu dataset is difficult, so we are not too picky on # the results. Here we assert that we have < 10 % loss when # computing full PQ on fewer than 20% of the data. assert stats.n_hamming_pass < stats.ncode / 5 # Test disabled because difference is 0.17 on aarch64 # TODO check why??? # assert e_polysemous[10] > e_baseline[10] - 0.1 def test_ScalarQuantizer(self): quantizer = faiss.IndexFlatL2(d) ivfpq = faiss.IndexIVFScalarQuantizer( quantizer, d, ncentroids, faiss.ScalarQuantizer.QT_8bit ) ivfpq.nprobe = kprobe res = ev.launch("IVF SQ", ivfpq) e = ev.evalres(res) # should give 0.234 0.236 0.236 assert e[10] > 0.235 def test_polysemous_OOM(self): """this used to cause OOM when training polysemous with large nb bits""" d = 32 xt, xb, xq = get_dataset_2(d, 10000, 0, 0) index = faiss.IndexPQ(d, M, 13) index.do_polysemous_training = True index.pq.cp.niter = 0 index.polysemous_training.max_memory = 128 * 1024 * 1024 self.assertRaises(RuntimeError, index.train, xt)
IndexAccuracy
python
pytest-dev__pytest-xdist
testing/test_looponfail.py
{ "start": 10525, "end": 12214 }
class ____: def test_fail_to_ok(self, pytester: pytest.Pytester) -> None: p = pytester.makepyfile( textwrap.dedent( """ def test_one(): x = 0 assert x == 1 """ ) ) # p = pytester.mkdir("sub").join(p1.basename) # p1.move(p) child = pytester.spawn_pytest("-f %s --traceconfig" % p, expect_timeout=30.0) child.expect("def test_one") child.expect("x == 1") child.expect("1 failed") child.expect("### LOOPONFAILING ####") child.expect("waiting for changes") p.write_text( textwrap.dedent( """ def test_one(): x = 1 assert x == 1 """ ), ) child.expect(".*1 passed.*") child.kill(15) def test_xfail_passes(self, pytester: pytest.Pytester) -> None: p = pytester.makepyfile( textwrap.dedent( """ import pytest @pytest.mark.xfail def test_one(): pass """ ) ) child = pytester.spawn_pytest("-f %s" % p, expect_timeout=30.0) child.expect("1 xpass") # child.expect("### LOOPONFAILING ####") child.expect("waiting for changes") child.kill(15) def removepyc(path: Path) -> None: # XXX damn those pyc files pyc = path.with_suffix(".pyc") if pyc.exists(): pyc.unlink() c = path.parent / "__pycache__" if c.exists(): shutil.rmtree(c)
TestFunctional
python
pydantic__pydantic
tests/mypy/modules/plugin_success.py
{ "start": 992, "end": 1088 }
class ____(Model): z: int = 1 InheritingModel.model_validate(model.__dict__)
InheritingModel
python
huggingface__transformers
tests/models/gemma3n/test_modeling_gemma3n.py
{ "start": 12394, "end": 29645 }
class ____(CausalLMModelTest, unittest.TestCase): model_tester_class = Gemma3nTextModelTester _is_stateful = True model_split_percents = [0.5, 0.6] def _check_hidden_states_for_generate( self, batch_size, hidden_states, prompt_length, output_length, config, use_cache=False ): "Gemma3n has special hidden states shape with 1 additional dim (which is then reduced with projections)" self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (output_length - prompt_length)) # When `output_hidden_states=True`, each iteration of generate appends the hidden states corresponding to the # new token(s) for generated_length, iter_hidden_states in enumerate(hidden_states): # regardless of using cache, the first forward pass will have the full prompt as input if use_cache and generated_length > 0: model_input_length = 1 else: model_input_length = prompt_length + generated_length expected_shape = (config.altup_num_inputs, batch_size, model_input_length, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION) def test_eager_matches_sdpa_inference( self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels, ): "We need to relax a bit the `atols` and `rtols` for fp32 here due to the altup projections" atols = { ("cpu", False, torch.float32): 5e-2, # this was relaxed ("cpu", False, torch.float16): 5e-3, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 5e-2, # this was relaxed ("cpu", True, torch.float16): 5e-3, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 5e-2, # this was relaxed ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 5e-2, # this was relaxed ("cuda", True, torch.bfloat16): 1e-2, ("cuda", True, torch.float16): 5e-3, } rtols = { ("cpu", False, torch.float32): 1e-2, # this was relaxed ("cpu", False, torch.float16): 5e-3, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 1e-2, # this was relaxed ("cpu", True, torch.float16): 5e-3, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 1e-2, # this was relaxed ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 1e-2, # this was relaxed ("cuda", True, torch.bfloat16): 3e-2, ("cuda", True, torch.float16): 5e-3, } _test_eager_matches_sdpa_inference( self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels, atols=atols, rtols=rtols, ) @pytest.mark.generate @unittest.skip("Gemma3n does not support QuantizedCache as it performs cache manipulation in the forward pass") def test_generate_with_quant_cache(self): pass @unittest.skip("Gemma3n applies key/query norm which doesn't work with packing") def test_eager_padding_matches_padding_free_with_position_ids(self): pass @unittest.skip("Gemma3n applies key/query norm which doesn't work with packing") def test_sdpa_padding_matches_padding_free_with_position_ids(self): pass @unittest.skip("Gemma3n only support fp16 and bf16 data type") def test_flash_attn_2_fp32_ln(self): pass @pytest.mark.generate def test_generate_from_inputs_embeds_with_static_cache(self): """ Test that StaticCache can generate from inputs_embeds and calculates max_cache_length correctly in `generate()`. We force the model to not stop generation until max-length is reached to verify that the cache length is indeed set correctly and we don't run out of index when slicing the cache. """ for model_class in self.all_generative_model_classes: # Here, we should ideally not skip any model, and test them all. However, some old models cannot correctly # use a static cache because they don't create the causal masks correctly. # TODO: cyril -> relax this by adding a `_support_static_cache` attribute if not model_class._can_compile_fullgraph: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if config.is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters: self.skipTest(reason="This model does not support `inputs_embeds` in generation") input_ids = inputs_dict.pop("input_ids") model.config.use_cache = True model.config.is_decoder = True batch_size = input_ids.shape[0] max_new_tokens = 10 # here we force to not stop at eos and go until max-length model.generation_config.eos_token_id = model.config.get_text_config().eos_token_id = -1 generation_kwargs = { "max_new_tokens": max_new_tokens, "cache_implementation": "static", "return_dict_in_generate": True, # Required to return `past_key_values` } text_config = model.config.get_text_config() head_dim = ( getattr(text_config, "head_dim", None) or text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers inputs_embeds = model.get_input_embeddings()(input_ids) outputs = model.generate(inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict) # we should get `max_length - 1` in shape, not `max_length - embeds_length`. # -1 because the last generated token isn't yet in the cache. max_length = max_new_tokens + inputs_embeds.shape[1] - 1 cache_shape = [batch_size, num_key_value_heads, max_length, head_dim] self.assertIsInstance(outputs.past_key_values, StaticCache) self.assertEqual(len(outputs.past_key_values), num_hidden_layers - text_config.num_kv_shared_layers) self.assertListEqual(list(outputs.past_key_values.layers[0].keys.shape), cache_shape) @pytest.mark.generate def test_generate_with_static_cache(self): """ Tests that generating with static cache give almost same results as with dynamic cache, and the output cache has the expected shapes """ for model_class in self.all_generative_model_classes: # Here, we should ideally not skip any model, and test them all. However, some old models cannot correctly # use a static cache because they don't create the causal masks correctly. # TODO: cyril -> relax this by adding a `_support_static_cache` attribute if not model_class._can_compile_fullgraph: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() set_config_for_less_flaky_test(config) main_input = inputs_dict[model_class.main_input_name] if config.is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") config.is_decoder = True batch_size = main_input.shape[0] seq_length = self.model_tester.seq_length max_new_tokens = 20 for dtype in (torch.float32, torch.float16): model = model_class(copy.deepcopy(config)).to(torch_device).to(dtype).eval() inputs_dict = { k: v.to(dtype) if isinstance(v, torch.Tensor) and torch.is_floating_point(v) else v for k, v in inputs_dict.items() } set_model_for_less_flaky_test(model) generation_kwargs = { "max_new_tokens": max_new_tokens, "return_dict_in_generate": True, # Required to return `past_key_values` "output_scores": True, "use_cache": True, } static_cache_generation = model.generate( **generation_kwargs, **inputs_dict, cache_implementation="static" ) # Check 1: The cache shapes must match the expected shapes max_cache_len = seq_length + max_new_tokens - 1 # cache len = gen len - 1, the last token has no cache text_config = config.text_config if hasattr(config, "text_config") else config head_dim = ( getattr(text_config, "head_dim", None) or text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers cache_shape = (batch_size, num_key_value_heads, max_cache_len, head_dim) self.assertTrue(isinstance(static_cache_generation.past_key_values, StaticCache)) self.assertTrue( len(static_cache_generation.past_key_values) == num_hidden_layers - text_config.num_kv_shared_layers ) self.assertTrue(static_cache_generation.past_key_values.layers[0].keys.shape == cache_shape) # Check 2: The outputs must be similar to the case with dynamic cache dynamic_cache_generation = model.generate(**generation_kwargs, **inputs_dict) self.assertTrue(has_similar_generate_outputs(dynamic_cache_generation, static_cache_generation)) def test_model_rope_scaling_frequencies(self): """Tests the frequency properties of the different RoPE scaling types on the model RoPE layer.""" # Gemma3n has different RoPE configs per layer type config, _ = self.model_tester.prepare_config_and_inputs_for_common() # Retrieves the RoPE layer class from the base model class. Uses `.named_modules()` to avoid hardcoding the # named location of the RoPE layer class. base_model = self.model_tester.base_model_class(config) possible_rope_attributes = [ "pos_emb", "rotary_emb", # most common case "global_rotary_emb", "local_rotary_emb", ] for name, module in base_model.named_modules(): if any(potential_name in name for potential_name in possible_rope_attributes): rope_class = type(module) break scaling_factor = 10 short_input_length = 10 long_input_length = int(config.max_position_embeddings * 1.5) # Inputs x = torch.randn( 1, dtype=torch.float32, device=torch_device ) # used exclusively to get the dtype and the device position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device) position_ids_short = position_ids_short.unsqueeze(0) position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device) position_ids_long = position_ids_long.unsqueeze(0) # Sanity check original RoPE rope_params = {"rope_type": "default", "rope_theta": 10_000.0} config.rope_parameters = {"sliding_attention": rope_params, "full_attention": rope_params} original_rope = rope_class(config=config).to(torch_device) original_cos_short, original_sin_short = original_rope(x, position_ids_short, layer_type="sliding_attention") original_cos_long, original_sin_long = original_rope(x, position_ids_long, layer_type="sliding_attention") torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :]) torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :]) # Sanity check linear RoPE scaling # New position "x" should match original position with index "x/scaling_factor" rope_params = {"rope_type": "linear", "factor": scaling_factor, "rope_theta": 10_000.0} config.rope_parameters = {"sliding_attention": rope_params, "full_attention": rope_params} linear_scaling_rope = rope_class(config=config).to(torch_device) linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short, layer_type="sliding_attention") linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long, layer_type="sliding_attention") torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :]) torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :]) for new_position in range(0, long_input_length, scaling_factor): original_position = int(new_position // scaling_factor) torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :]) torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :]) # Sanity check Dynamic NTK RoPE scaling # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase # with scaling_factor (or that `inv_freq` decreases) rope_params = {"rope_type": "dynamic", "factor": scaling_factor, "rope_theta": 10_000.0} config.rope_parameters = {"sliding_attention": rope_params, "full_attention": rope_params} ntk_scaling_rope = rope_class(config=config).to(torch_device) ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short, layer_type="sliding_attention") ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long, layer_type="sliding_attention") torch.testing.assert_close(ntk_cos_short, original_cos_short) torch.testing.assert_close(ntk_sin_short, original_sin_short) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_cos_long, original_cos_long) with self.assertRaises(AssertionError): torch.testing.assert_close(ntk_sin_long, original_sin_long) self.assertTrue( (ntk_scaling_rope.sliding_attention_inv_freq <= original_rope.sliding_attention_inv_freq).all() ) # Sanity check Yarn RoPE scaling # Scaling should be over the entire input rope_params = {"rope_type": "yarn", "factor": scaling_factor, "rope_theta": 10_000.0} config.rope_parameters = {"sliding_attention": rope_params, "full_attention": rope_params} yarn_scaling_rope = rope_class(config=config).to(torch_device) yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short, layer_type="sliding_attention") yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long, layer_type="sliding_attention") torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :]) torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :]) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_cos_short, original_cos_short) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_sin_short, original_sin_short) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_cos_long, original_cos_long) with self.assertRaises(AssertionError): torch.testing.assert_close(yarn_sin_long, original_sin_long)
Gemma3nTextModelTest
python
pytorch__pytorch
benchmarks/operator_benchmark/pt/bmm_test.py
{ "start": 799, "end": 2348 }
class ____(op_bench.TorchBenchmarkBase): def init(self, B, M, N, K, device, dtype, op_func): self.inputs = { "batch1": torch.rand( (B, M, N), device=device, dtype=dtype, requires_grad=self.auto_set() ), "batch2": torch.rand( (B, N, K), device=device, dtype=dtype, requires_grad=self.auto_set() ), } self.op_func = op_func def forward(self, batch1, batch2): return self.op_func(batch1, batch2) def get_memory_traffic_bytes(self): """Override for bmm: (B, M, N) @ (B, N, K) -> (B, M, K) Memory traffic: read(B*M*N + B*N*K) + write(B*M*K) """ batch1 = self.inputs["batch1"] batch2 = self.inputs["batch2"] B, M, N = batch1.shape B_check, N_check, K = batch2.shape assert B == B_check and N == N_check, "Batch dimensions must match for bmm" bytes_per_element = batch1.element_size() total_elements = B * (M * N + N * K + M * K) return total_elements * bytes_per_element op_bench.generate_pt_tests_from_op_list( batched_binary_ops, batched_binary_configs_short + batched_binary_configs_long, BatchedBinaryOpBenchmark, ) op_bench.generate_pt_gradient_tests_from_op_list( batched_binary_ops, batched_binary_configs_long, BatchedBinaryOpBenchmark, ) # batched ternary ops batched_ternary_ops = op_bench.op_list( attr_names=["op_name", "op_func"], attrs=[["baddbmm", torch.baddbmm]], )
BatchedBinaryOpBenchmark
python
sympy__sympy
sympy/polys/domains/field.py
{ "start": 357, "end": 3172 }
class ____(Ring[Ef]): """Represents a field domain. """ is_Field = True is_PID = True def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def get_field(self) -> Self: """Returns a field associated with ``self``. """ return self def exquo(self, a: Ef, b: Ef) -> Ef: """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__truediv__``. """ return a / b def rem(self, a, b): """Remainder of ``a`` and ``b``, implies nothing. """ return self.zero def div(self, a, b): """Division of ``a`` and ``b``, implies ``__truediv__``. """ return a / b, self.zero def gcd(self, a, b) -> Ef: """ Returns GCD of ``a`` and ``b``. This definition of GCD over fields allows to clear denominators in `primitive()`. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy import S, gcd, primitive >>> from sympy.abc import x >>> QQ.gcd(QQ(2, 3), QQ(4, 9)) 2/9 >>> gcd(S(2)/3, S(4)/9) 2/9 >>> primitive(2*x/3 + S(4)/9) (2/9, 3*x + 2) """ try: ring = self.get_ring() except DomainError: return self.one p = ring.gcd(self.numer(a), self.numer(b)) q = ring.lcm(self.denom(a), self.denom(b)) return self.convert(p, ring)/q def gcdex(self, a, b) -> tuple[Ef, Ef, Ef]: """ Returns x, y, g such that a * x + b * y == g == gcd(a, b) """ d = self.gcd(a, b) if a == self.zero: if b == self.zero: return self.zero, self.one, self.zero else: return self.zero, d/b, d else: return d/a, self.zero, d def lcm(self, a, b): """ Returns LCM of ``a`` and ``b``. >>> from sympy.polys.domains import QQ >>> from sympy import S, lcm >>> QQ.lcm(QQ(2, 3), QQ(4, 9)) 4/3 >>> lcm(S(2)/3, S(4)/9) 4/3 """ try: ring = self.get_ring() except DomainError: return a*b p = ring.lcm(self.numer(a), self.numer(b)) q = ring.gcd(self.denom(a), self.denom(b)) return self.convert(p, ring)/q def revert(self, a): """Returns ``a**(-1)`` if possible. """ if a: return 1/a else: raise NotReversible('zero is not reversible') def is_unit(self, a): """Return true if ``a`` is a invertible""" return bool(a)
Field
python
django__django
tests/template_tests/syntax_tests/test_named_endblock.py
{ "start": 116, "end": 2475 }
class ____(SimpleTestCase): @setup( { "namedendblocks01": "1{% block first %}_{% block second %}" "2{% endblock second %}_{% endblock first %}3" } ) def test_namedendblocks01(self): output = self.engine.render_to_string("namedendblocks01") self.assertEqual(output, "1_2_3") # Unbalanced blocks @setup( { "namedendblocks02": "1{% block first %}_{% block second %}" "2{% endblock first %}_{% endblock second %}3" } ) def test_namedendblocks02(self): with self.assertRaises(TemplateSyntaxError): self.engine.get_template("namedendblocks02") @setup( { "namedendblocks03": "1{% block first %}_{% block second %}" "2{% endblock %}_{% endblock second %}3" } ) def test_namedendblocks03(self): with self.assertRaises(TemplateSyntaxError): self.engine.get_template("namedendblocks03") @setup( { "namedendblocks04": "1{% block first %}_{% block second %}" "2{% endblock second %}_{% endblock third %}3" } ) def test_namedendblocks04(self): with self.assertRaises(TemplateSyntaxError): self.engine.get_template("namedendblocks04") @setup( { "namedendblocks05": ( "1{% block first %}_{% block second %}2{% endblock first %}" ) } ) def test_namedendblocks05(self): with self.assertRaises(TemplateSyntaxError): self.engine.get_template("namedendblocks05") # Mixed named and unnamed endblocks @setup( { "namedendblocks06": "1{% block first %}_{% block second %}" "2{% endblock %}_{% endblock first %}3" } ) def test_namedendblocks06(self): """ Mixed named and unnamed endblocks """ output = self.engine.render_to_string("namedendblocks06") self.assertEqual(output, "1_2_3") @setup( { "namedendblocks07": "1{% block first %}_{% block second %}" "2{% endblock second %}_{% endblock %}3" } ) def test_namedendblocks07(self): output = self.engine.render_to_string("namedendblocks07") self.assertEqual(output, "1_2_3")
NamedEndblockTests
python
pypa__pipenv
pipenv/patched/pip/_internal/utils/temp_dir.py
{ "start": 6612, "end": 9325 }
class ____(TempDirectory): """Helper class that creates a temporary directory adjacent to a real one. Attributes: original The original directory to create a temp directory for. path After calling create() or entering, contains the full path to the temporary directory. delete Whether the directory should be deleted when exiting (when used as a contextmanager) """ # The characters that may be used to name the temp directory # We always prepend a ~ and then rotate through these until # a usable name is found. # pkg_resources raises a different error for .dist-info folder # with leading '-' and invalid metadata LEADING_CHARS = "-~.=%0123456789" def __init__(self, original: str, delete: Optional[bool] = None) -> None: self.original = original.rstrip("/\\") super().__init__(delete=delete) @classmethod def _generate_names(cls, name: str) -> Generator[str, None, None]: """Generates a series of temporary names. The algorithm replaces the leading characters in the name with ones that are valid filesystem characters, but are not valid package names (for both Python and pip definitions of package). """ for i in range(1, len(name)): for candidate in itertools.combinations_with_replacement( cls.LEADING_CHARS, i - 1 ): new_name = "~" + "".join(candidate) + name[i:] if new_name != name: yield new_name # If we make it this far, we will have to make a longer name for i in range(len(cls.LEADING_CHARS)): for candidate in itertools.combinations_with_replacement( cls.LEADING_CHARS, i ): new_name = "~" + "".join(candidate) + name if new_name != name: yield new_name def _create(self, kind: str) -> str: root, name = os.path.split(self.original) for candidate in self._generate_names(name): path = os.path.join(root, candidate) try: os.mkdir(path) except OSError as ex: # Continue if the name exists already if ex.errno != errno.EEXIST: raise else: path = os.path.realpath(path) break else: # Final fallback on the default behavior. path = os.path.realpath(tempfile.mkdtemp(prefix=f"pip-{kind}-")) logger.debug("Created temporary directory: %s", path) return path
AdjacentTempDirectory
python
facelessuser__pymdown-extensions
tests/test_extensions/test_blocks/test_general_blocks.py
{ "start": 10447, "end": 12227 }
class ____(util.MdCase): """Test Nested blocks and lists.""" extension = ['pymdownx.blocks.tab', 'pymdownx.blocks.html'] extension_configs = { 'pymdownx.blocks.tab': {'alternate_style': True} } def test_nested_blocks_in_lists(self): """Test a nested blocks case with lists.""" self.check_markdown( R""" //// html | div.my-div - List - List /// tab | TEST1 Content /// /// tab | TEST2 - A list Paragraph Code /// //// """, """ <div class="my-div"> <ul> <li> <p>List</p> <ul> <li> <p>List</p> <div class="tabbed-set tabbed-alternate" data-tabs="1:2"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">TEST1</label><label for="__tabbed_1_2">TEST2</label></div> <div class="tabbed-content"> <div class="tabbed-block"> <p>Content</p> </div> <div class="tabbed-block"> <ul> <li> <p>A list</p> <p>Paragraph</p> <pre><code>Code </code></pre> </li> </ul> </div> </div> </div> </li> </ul> </li> </ul> </div> """, # noqa: E501 True )
TestNestedBlocksAndLists
python
tensorflow__tensorflow
tensorflow/python/ops/nn_fused_batchnorm_d9m_test.py
{ "start": 1408, "end": 7073 }
class ____(test.TestCase, parameterized.TestCase): """Test determinsitic functionality and exceptions for FusedBatchNorm. Test that tf.errors.UnimplementedError is thrown, as appropriate, by the GPU code-path through FusedBatchNormFreezeGrad when deterministic ops are enabled. This test assumes that nn_fused_batchnorm_test.py runs equivalent test cases when deterministic ops are not enabled and will therefore detect erroneous exception throwing in those cases. Also test that the other code-paths, running on both CPU and GPU, operate deterministically. """ def _genParams(self, data_format, x_dtype, large_batch): if large_batch: batch_size = 5000 height = width = 4 else: batch_size = 10 height = 5 width = 5000 channel_count = 3 if data_format == 'NHWC': x_shape = (batch_size, height, width, channel_count) else: # 'NCHW' x_shape = (batch_size, channel_count, height, width) # Using random_ops.random_normal would produce different values on each run x = constant_op.constant(np.random.normal(size=x_shape), dtype=x_dtype) scale_shape = (channel_count,) scale = constant_op.constant( np.random.normal(size=scale_shape), dtype=dtypes.float32) offset = constant_op.constant( np.random.normal(size=scale_shape), dtype=dtypes.float32) mean = np.random.normal(size=scale_shape) variance = np.random.normal(size=scale_shape) y_shape = x_shape y_dtype = x_dtype upstream_gradients = constant_op.constant( np.random.normal(size=y_shape), dtype=y_dtype) return x, scale, offset, mean, variance, upstream_gradients @parameterized.parameters('NHWC', 'NCHW') def testForward(self, data_format): with self.cached_session(): for large_batch in [False, True]: for x_dtype in [dtypes.float16, dtypes.float32]: # skipping bfloat16 x, scale, offset, mean, variance, _ = self._genParams( data_format, x_dtype, large_batch) for is_training in [False, True]: op_output = nn_impl.fused_batch_norm( x, scale, offset, mean, variance, data_format=data_format, is_training=is_training, exponential_avg_factor=1.01) y_a, running_mean_a, running_var_a = op_output y_a = self.evaluate(y_a) if is_training: running_mean_a = self.evaluate(running_mean_a) running_var_a = self.evaluate(running_var_a) for _ in range(5): op_output_b = nn_impl.fused_batch_norm( x, scale, offset, mean, variance, data_format=data_format, is_training=is_training, exponential_avg_factor=1.01) y_b, running_mean_b, running_var_b = op_output_b y_b = self.evaluate(y_b) self.assertAllEqual(y_a, y_b) if is_training: running_mean_b = self.evaluate(running_mean_b) running_var_b = self.evaluate(running_var_b) self.assertAllEqual(running_mean_a, running_mean_b) self.assertAllEqual(running_var_a, running_var_b) @parameterized.parameters('NHWC', 'NCHW') @test_util.disable_xla('XLA is deterministic') def testBackward(self, data_format): with self.cached_session(): for large_batch in [False, True]: # Only run with float32, as float16 is very slow on CPUs params = self._genParams(data_format, dtypes.float32, large_batch) x, scale, offset, mean, variance, upstream_gradients = params for is_training in [False, True]: for backprop_to in [x, scale, offset]: with backprop.GradientTape(persistent=True) as tape: tape.watch(backprop_to) op_output = nn_impl.fused_batch_norm( x, scale, offset, mean, variance, data_format=data_format, is_training=is_training, exponential_avg_factor=0.99) gradient_injector_output = op_output[0] * upstream_gradients if (len(config.list_physical_devices('GPU')) and not is_training): # Only backprop to offset is nondeterministic (on GPU, when # is_training=False), but backprop to the other parameters is # calculated using the same kernel. with self.assertRaisesRegex( errors_impl.UnimplementedError, 'A deterministic GPU implementation of fused batch-norm' + ' backprop, when training is disabled, is not currently' + ' available.'): grad = tape.gradient(gradient_injector_output, backprop_to) self.evaluate(grad) else: grad_a = tape.gradient(gradient_injector_output, backprop_to) grad_a = self.evaluate(grad_a) for _ in range(3): grad_b = tape.gradient(gradient_injector_output, backprop_to) grad_b = self.evaluate(grad_b) self.assertAllEqual(grad_a, grad_b) if __name__ == '__main__': # TODO(reedwm): Merge this file with nn_fused_batchnorm_test.py config.enable_op_determinism() test.main()
FusedBatchNormalizationDeterministicTest
python
huggingface__transformers
tests/models/internvl/test_video_processing_internvl.py
{ "start": 1043, "end": 2923 }
class ____: def __init__( self, parent, batch_size=5, num_frames=8, num_channels=3, min_resolution=30, max_resolution=80, do_resize=True, size=None, do_normalize=True, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD, do_convert_rgb=True, ): size = size if size is not None else {"height": 384, "width": 384} self.parent = parent self.batch_size = batch_size self.num_frames = num_frames self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_video_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def expected_output_video_shape(self, videos): return [self.num_frames, self.num_channels, self.size["height"], self.size["width"]] def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"): videos = prepare_video_inputs( batch_size=self.batch_size, num_frames=self.num_frames, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, return_tensors=return_tensors, ) return videos @require_torch @require_vision
InternVLVideoProcessingTester
python
pyqtgraph__pyqtgraph
pyqtgraph/parametertree/interactive.py
{ "start": 827, "end": 7351 }
class ____: """ ``interact`` can be used with regular functions. However, when they are connected to changed or changing signals, there is no way to access these connections later to i.e. disconnect them temporarily. This utility class wraps a normal function but can provide an external scope for accessing the hooked up parameter signals. """ # Attributes below are populated by `update_wrapper` but aren't detected by linters __name__: str __qualname__: str def __init__(self, function, *, closures=None, **extra): """ Wraps a callable function in a way that forwards Parameter arguments as keywords Parameters ---------- function: callable Function to wrap closures: dict[str, callable] Arguments that shouldn't be constant, but can't be represented as a parameter. See the rst docs for more information. extra: dict extra keyword arguments to pass to ``function`` when this wrapper is called """ super().__init__() self.parameters = {} self.extra = extra self.function = function if closures is None: closures = {} self.closures = closures self._disconnected = False self.parametersNeedRunKwargs = False self.parameterCache = {} # No need for wrapper __dict__ to function as function.__dict__, since # Only __doc__, __name__, etc. attributes are required functools.update_wrapper(self, function, updated=()) def __call__(self, **kwargs): """ Calls ``self.function``. Extra, closures, and parameter keywords as defined on init and through :func:`InteractiveFunction.setParams` are forwarded during the call. """ if self.parametersNeedRunKwargs: self._updateParametersFromRunKwargs(**kwargs) runKwargs = self.extra.copy() runKwargs.update(self.parameterCache) for kk, vv in self.closures.items(): runKwargs[kk] = vv() runKwargs.update(**kwargs) return self.function(**runKwargs) def updateCachedParameterValues(self, param, value): """ This function is connected to ``sigChanged`` of every parameter associated with it. This way, those parameters don't have to be queried for their value every time InteractiveFunction is __call__'ed """ self.parameterCache[param.name()] = value def _updateParametersFromRunKwargs(self, **kwargs): """ Updates attached params from __call__ without causing additional function runs """ # Ensure updates don't cause firing of self's function wasDisconnected = self.disconnect() try: for kwarg in set(kwargs).intersection(self.parameters): self.parameters[kwarg].setValue(kwargs[kwarg]) finally: if not wasDisconnected: self.reconnect() for extraKey in set(kwargs) & set(self.extra): self.extra[extraKey] = kwargs[extraKey] def _disconnectParameter(self, param): param.sigValueChanged.disconnect(self.updateCachedParameterValues) for signal in (param.sigValueChanging, param.sigValueChanged): fn.disconnect(signal, self.runFromChangedOrChanging) def hookupParameters(self, params=None, clearOld=True): """ Binds a new set of parameters to this function. If ``clearOld`` is *True* ( default), previously bound parameters are disconnected. Parameters ---------- params: Sequence[Parameter] New parameters to listen for updates and optionally propagate keywords passed to :meth:`__call__` clearOld: bool If ``True``, previously hooked up parameters will be removed first """ if clearOld: self.removeParameters() for param in params: self.parameters[param.name()] = param param.sigValueChanged.connect(self.updateCachedParameterValues) # Populate initial values self.parameterCache[param.name()] = param.value() if param.hasValue() else None def removeParameters(self, clearCache=True): """ Disconnects from all signals of parameters in ``self.parameters``. Also, optionally clears the old cache of param values """ for p in self.parameters.values(): self._disconnectParameter(p) # Disconnected all old signals, clear out and get ready for new ones self.parameters.clear() if clearCache: self.parameterCache.clear() def runFromChangedOrChanging(self, param, value): if self._disconnected: return None # Since this request came from a parameter, ensure it's not propagated back # for efficiency and to avoid ``changing`` signals causing ``changed`` values oldPropagate = self.parametersNeedRunKwargs self.parametersNeedRunKwargs = False try: ret = self(**{param.name(): value}) finally: self.parametersNeedRunKwargs = oldPropagate return ret def runFromAction(self, **kwargs): if self._disconnected: return None return self(**kwargs) def disconnect(self): """ Simulates disconnecting the runnable by turning ``runFrom*`` functions into no-ops """ oldDisconnect = self._disconnected self._disconnected = True return oldDisconnect def setDisconnected(self, disconnected): """ Sets the disconnected state of the runnable, see :meth:`disconnect` and :meth:`reconnect` for more information """ oldDisconnect = self._disconnected self._disconnected = disconnected return oldDisconnect def reconnect(self): """Simulates reconnecting the runnable by re-enabling ``runFrom*`` functions""" oldDisconnect = self._disconnected self._disconnected = False return oldDisconnect def __str__(self): return f"{type(self).__name__}(`<{self.function.__name__}>`) at {hex(id(self))}" def __repr__(self): return ( str(self) + " with keys:\n" f"parameters={list(self.parameters)}, " f"extra={list(self.extra)}, " f"closures={list(self.closures)}" )
InteractiveFunction
python
pytorch__pytorch
torch/ao/quantization/backend_config/backend_config.py
{ "start": 1475, "end": 2146 }
class ____(Enum): """An enum that represents different ways of how an operator/operator pattern should be observed """ OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0 """this means input and output are observed with different observers, based on qconfig.activation example: conv, linear, softmax """ OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1 """this means the output will use the same observer instance as input, based on qconfig.activation example: torch.cat, maxpool """ INPUT_OUTPUT_NOT_OBSERVED = 2 """this means the input and output are never observed example: x.shape, x.size """ @dataclass
ObservationType
python
getsentry__sentry
src/sentry/conf/types/role_dict.py
{ "start": 80, "end": 322 }
class ____(TypedDict): id: str name: str desc: str scopes: set[str] is_retired: NotRequired[bool] is_global: NotRequired[bool] is_minimum_role_for: NotRequired[str] is_team_roles_allowed: NotRequired[bool]
RoleDict
python
spyder-ide__spyder
spyder/plugins/pylint/main_widget.py
{ "start": 1981, "end": 2164 }
class ____: ChangeHistory = "change_history_depth_action" RunCodeAnalysis = "run_analysis_action" BrowseFile = "browse_action" ShowLog = "log_action"
PylintWidgetActions
python
pyqtgraph__pyqtgraph
doc/source/images/gen_example_gradient_plot.py
{ "start": 181, "end": 2027 }
class ____(pg.GraphicsLayoutWidget): """ example application main window """ def __init__(self): super().__init__() self.resize(420,400) self.show() # Prepare demonstration data raw = np.linspace(0.0, 2.0, 400) y_data1 = ( (raw+0.1)%1 ) ** 4 y_data2 = ( (raw+0.1)%1 ) ** 4 - ( (raw+0.6)%1 ) ** 4 # Example 1: Gradient pen cm = pg.colormap.get('CET-L17') # prepare a linear color map cm.reverse() # reverse it to put light colors at the top pen = cm.getPen( span=(0.0,1.0), width=5 ) # gradient from blue (y=0) to white (y=1) # plot a curve drawn with a pen colored according to y value: curve1 = pg.PlotDataItem( y=y_data1, pen=pen ) # Example 2: Gradient brush cm = pg.colormap.get('CET-D1') # prepare a diverging color map cm.setMappingMode('diverging') # set mapping mode brush = cm.getBrush( span=(-1., 1.) ) # gradient from blue at -1 to red at +1 # plot a curve that is filled to zero with the gradient brush: curve2 = pg.PlotDataItem( y=y_data2, pen='w', brush=brush, fillLevel=0.0 ) for idx, curve in enumerate( (curve1, curve2) ): plot = self.addPlot(row=idx, col=0) plot.getAxis('left').setWidth(25) plot.addItem( curve ) self.timer = pg.QtCore.QTimer( singleShot=True ) self.timer.timeout.connect(self.export) self.timer.start(100) def export(self): print('exporting') exporter = exp.ImageExporter(self.scene()) exporter.parameters()['width'] = 420 exporter.export('example_gradient_plot.png') mkQApp("Gradient plotting example") main_window = MainWindow() ## Start Qt event loop if __name__ == '__main__': pg.exec()
MainWindow
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/links/emr.py
{ "start": 4385, "end": 5032 }
class ____(BaseAwsLink): """Helper class for constructing Amazon EMR Serverless link to Spark stdout logs.""" name = "Spark Driver stdout" key = "emr_serverless_logs" def format_link(self, application_id: str | None = None, job_run_id: str | None = None, **kwargs) -> str: if not application_id or not job_run_id: return "" url = get_serverless_dashboard_url( aws_conn_id=kwargs.get("conn_id"), application_id=application_id, job_run_id=job_run_id ) if url: return url._replace(path="/logs/SPARK_DRIVER/stdout.gz").geturl() return ""
EmrServerlessLogsLink
python
pytorch__pytorch
test/cpp_extensions/open_registration_extension/torch_openreg/tests/test_storage.py
{ "start": 805, "end": 8437 }
class ____(TestCase): def test_serialization(self): storage = torch.UntypedStorage(4, device=torch.device("openreg")) self.assertEqual(torch.serialization.location_tag(storage), "openreg:0") storage = torch.UntypedStorage(4, device=torch.device("openreg:0")) self.assertEqual(torch.serialization.location_tag(storage), "openreg:0") storage_cpu = torch.empty(4, 4).storage() storage_openreg = torch.serialization.default_restore_location( storage_cpu, "openreg:0" ) self.assertTrue(storage_openreg.is_openreg) tensor = torch.empty(3, 3, device="openreg") self.assertEqual(torch._utils.get_tensor_metadata(tensor), {}) metadata = {"version_number": True, "format_number": True} torch._utils.set_tensor_metadata(tensor, metadata) self.assertEqual(torch._utils.get_tensor_metadata(tensor), metadata) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "data.pt") torch.save(tensor, path) tensor_openreg = torch.load(path) self.assertTrue(tensor_openreg.is_openreg) self.assertEqual(torch._utils.get_tensor_metadata(tensor_openreg), metadata) tensor_cpu = torch.load(path, map_location="cpu") self.assertFalse(tensor_cpu.is_openreg) self.assertEqual(torch._utils.get_tensor_metadata(tensor_cpu), {}) @skipIfTorchDynamo() @unittest.skipIf( numpy.__version__ < "1.25", "versions < 1.25 serialize dtypes differently from how it's serialized in data_legacy_numpy", ) def test_open_device_numpy_serialization(self): """ This tests the legacy _rebuild_device_tensor_from_numpy serialization path """ data_legacy_numpy = ( b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x10\x00\x12\x00archive/data.pklFB\x0e\x00ZZZZZZZZZZZZZZ\x80\x02}q\x00X\x01" b"\x00\x00\x00xq\x01ctorch._utils\n_rebuild_device_tensor_from_numpy\nq\x02(cnumpy.core.m" b"ultiarray\n_reconstruct\nq\x03cnumpy\nndarray\nq\x04K\x00\x85q\x05c_codecs\nencode\nq\x06" b"X\x01\x00\x00\x00bq\x07X\x06\x00\x00\x00latin1q\x08\x86q\tRq\n\x87q\x0bRq\x0c(K\x01K\x02K" b"\x03\x86q\rcnumpy\ndtype\nq\x0eX\x02\x00\x00\x00f4q\x0f\x89\x88\x87q\x10Rq\x11(K\x03X\x01" b"\x00\x00\x00<q\x12NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00tq\x13b\x89h\x06X\x1c\x00\x00" b"\x00\x00\x00\xc2\x80?\x00\x00\x00@\x00\x00@@\x00\x00\xc2\x80@\x00\x00\xc2\xa0@\x00\x00\xc3" b"\x80@q\x14h\x08\x86q\x15Rq\x16tq\x17bctorch\nfloat32\nq\x18X\t\x00\x00\x00openreg:0q\x19\x89" b"tq\x1aRq\x1bs.PK\x07\x08\xdfE\xd6\xcaS\x01\x00\x00S\x01\x00\x00PK\x03\x04\x00\x00\x08" b"\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00.\x00" b"archive/byteorderFB*\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZlittlePK\x07\x08" b"\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00=\x00archive/versionFB9\x00" b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00" b"\x00\x02\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x1e\x002\x00archive/.data/serialization_idFB.\x00ZZZZZZZZZZZZZ" b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ0636457737946401051300000025273995036293PK\x07\x08\xee(\xcd" b"\x8d(\x00\x00\x00(\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00" b"\xdfE\xd6\xcaS\x01\x00\x00S\x01\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00archive/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00" b"\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\xa3\x01\x00\x00archive/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00" b"\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x16\x02\x00\x00archive/versionPK\x01\x02\x00\x00\x00\x00\x08" b"\x08\x00\x00\x00\x00\x00\x00\xee(\xcd\x8d(\x00\x00\x00(\x00\x00\x00\x1e\x00\x00\x00\x00" b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00archive/.data/serialization_idPK\x06" b"\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00" b"\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x06\x01\x00\x00\x00\x00\x00\x008\x03\x00" b"\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00>\x04\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00" b"PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00\x06\x01\x00\x008\x03\x00\x00\x00\x00" ) buf_data_legacy_numpy = io.BytesIO(data_legacy_numpy) with safe_globals( [ ( ( numpy.core.multiarray._reconstruct, "numpy.core.multiarray._reconstruct", ) if numpy.__version__ >= "2.1" else numpy.core.multiarray._reconstruct ), numpy.ndarray, numpy.dtype, _codecs.encode, numpy.dtypes.Float32DType, ] ): sd_loaded = torch.load(buf_data_legacy_numpy, weights_only=True) buf_data_legacy_numpy.seek(0) # Test map_location sd_loaded_cpu = torch.load( buf_data_legacy_numpy, weights_only=True, map_location="cpu" ) expected = torch.tensor( [[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device="openreg" ) self.assertEqual(sd_loaded["x"].cpu(), expected.cpu()) self.assertFalse(sd_loaded["x"].is_cpu) self.assertTrue(sd_loaded_cpu["x"].is_cpu) def test_open_device_cpu_serialization(self): default_protocol = torch.serialization.DEFAULT_PROTOCOL with unittest.mock.patch.object(torch._C, "_has_storage", return_value=False): x = torch.randn(2, 3) x_openreg = x.to("openreg") sd = {"x": x_openreg} rebuild_func = x_openreg._reduce_ex_internal(default_protocol)[0] self.assertTrue( rebuild_func is torch._utils._rebuild_device_tensor_from_cpu_tensor ) # Test map_location with TemporaryFileName() as f: torch.save(sd, f) sd_loaded = torch.load(f, weights_only=True) # Test map_location sd_loaded_cpu = torch.load(f, weights_only=True, map_location="cpu") self.assertFalse(sd_loaded["x"].is_cpu) self.assertEqual(sd_loaded["x"].cpu(), x) self.assertTrue(sd_loaded_cpu["x"].is_cpu) # Test metadata_only with TemporaryFileName() as f: with self.assertRaisesRegex( RuntimeError, "Cannot serialize tensors on backends with no storage under skip_data context manager", ): with torch.serialization.skip_data(): torch.save(sd, f) if __name__ == "__main__": run_tests()
TestSerialization
python
ray-project__ray
python/ray/serve/_private/router.py
{ "start": 39735, "end": 44418 }
class ____(Router): """Wrapper class that runs an AsyncioRouter on a separate thread. The motivation for this is to avoid user code blocking the event loop and preventing the router from making progress. Maintains a singleton event loop running in a daemon thread that is shared by all AsyncioRouters. """ _asyncio_loop: Optional[asyncio.AbstractEventLoop] = None _asyncio_loop_creation_lock = threading.Lock() def __init__(self, **passthrough_kwargs): assert ( "event_loop" not in passthrough_kwargs ), "SingletonThreadRouter manages the router event loop." self._asyncio_router = AsyncioRouter( event_loop=self._get_singleton_asyncio_loop(), **passthrough_kwargs ) @classmethod def _get_singleton_asyncio_loop(cls) -> asyncio.AbstractEventLoop: """Get singleton asyncio loop running in a daemon thread. This method is thread safe. """ with cls._asyncio_loop_creation_lock: if cls._asyncio_loop is None: cls._asyncio_loop = asyncio.new_event_loop() thread = threading.Thread( daemon=True, target=cls._asyncio_loop.run_forever, ) thread.start() return cls._asyncio_loop def running_replicas_populated(self) -> bool: return self._asyncio_router.running_replicas_populated() def assign_request( self, request_meta: RequestMetadata, *request_args, **request_kwargs, ) -> concurrent.futures.Future[ReplicaResult]: """Routes assign_request call on the internal asyncio loop. This method uses `run_coroutine_threadsafe` to execute the actual request assignment logic (`_asyncio_router.assign_request`) on the dedicated asyncio event loop thread. It returns a `concurrent.futures.Future` that can be awaited or queried from the calling thread. Returns: A concurrent.futures.Future resolving to the ReplicaResult representing the assigned request. """ def asyncio_future_callback( asyncio_future: asyncio.Future, concurrent_future: concurrent.futures.Future ): """Callback attached to the asyncio Task running assign_request. This runs when the asyncio Task finishes (completes, fails, or is cancelled). Its primary goal is to propagate cancellation initiated via the `concurrent_future` back to the `ReplicaResult` in situations where asyncio_future didn't see the cancellation event in time. Think of it like a second line of defense for cancellation of replica results. """ # Check if the cancellation originated from the concurrent.futures.Future if ( concurrent_future.cancelled() and not asyncio_future.cancelled() and asyncio_future.exception() is None ): result: ReplicaResult = asyncio_future.result() logger.info( "Asyncio task completed despite cancellation attempt. " "Attempting to cancel the request that was assigned to a replica." ) result.cancel() concurrent_future = concurrent.futures.Future() def create_task_and_setup(): task = self._asyncio_loop.create_task( self._asyncio_router.assign_request( request_meta, *request_args, **request_kwargs ) ) # Set up your cancellation callback task.add_done_callback( lambda _: asyncio_future_callback(_, concurrent_future) ) try: # chain the two futures to handle direction channel of cancellation futures._chain_future( ensure_future(task, loop=self._asyncio_loop), concurrent_future ) except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: if concurrent_future.set_running_or_notify_cancel(): concurrent_future.set_exception(exc) raise # Schedule on the event loop thread self._asyncio_loop.call_soon_threadsafe(create_task_and_setup) return concurrent_future def shutdown(self) -> concurrent.futures.Future: return asyncio.run_coroutine_threadsafe( self._asyncio_router.shutdown(), loop=self._asyncio_loop )
SingletonThreadRouter
python
run-llama__llama_index
llama-index-core/llama_index/core/query_engine/flare/schema.py
{ "start": 68, "end": 163 }
class ____: """Query task.""" query_str: str start_idx: int end_idx: int
QueryTask
python
PrefectHQ__prefect
src/prefect/client/collections.py
{ "start": 196, "end": 1050 }
class ____(Protocol): async def read_worker_metadata(self) -> Dict[str, Any]: ... async def __aenter__(self) -> "CollectionsMetadataClient": ... async def __aexit__(self, *exc_info: Any) -> Any: ... def get_collections_metadata_client( httpx_settings: Optional[Dict[str, Any]] = None, ) -> "CollectionsMetadataClient": """ Creates a client that can be used to fetch metadata for Prefect collections. Will return a `CloudClient` if profile is set to connect to Prefect Cloud, otherwise will return an `OrchestrationClient`. """ orchestration_client = get_client(httpx_settings=httpx_settings) if orchestration_client.server_type == ServerType.CLOUD: return get_cloud_client(httpx_settings=httpx_settings, infer_cloud_url=True) else: return orchestration_client
CollectionsMetadataClient
python
kubernetes-client__python
kubernetes/client/models/v1_stateful_set_status.py
{ "start": 383, "end": 14116 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'available_replicas': 'int', 'collision_count': 'int', 'conditions': 'list[V1StatefulSetCondition]', 'current_replicas': 'int', 'current_revision': 'str', 'observed_generation': 'int', 'ready_replicas': 'int', 'replicas': 'int', 'update_revision': 'str', 'updated_replicas': 'int' } attribute_map = { 'available_replicas': 'availableReplicas', 'collision_count': 'collisionCount', 'conditions': 'conditions', 'current_replicas': 'currentReplicas', 'current_revision': 'currentRevision', 'observed_generation': 'observedGeneration', 'ready_replicas': 'readyReplicas', 'replicas': 'replicas', 'update_revision': 'updateRevision', 'updated_replicas': 'updatedReplicas' } def __init__(self, available_replicas=None, collision_count=None, conditions=None, current_replicas=None, current_revision=None, observed_generation=None, ready_replicas=None, replicas=None, update_revision=None, updated_replicas=None, local_vars_configuration=None): # noqa: E501 """V1StatefulSetStatus - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._available_replicas = None self._collision_count = None self._conditions = None self._current_replicas = None self._current_revision = None self._observed_generation = None self._ready_replicas = None self._replicas = None self._update_revision = None self._updated_replicas = None self.discriminator = None if available_replicas is not None: self.available_replicas = available_replicas if collision_count is not None: self.collision_count = collision_count if conditions is not None: self.conditions = conditions if current_replicas is not None: self.current_replicas = current_replicas if current_revision is not None: self.current_revision = current_revision if observed_generation is not None: self.observed_generation = observed_generation if ready_replicas is not None: self.ready_replicas = ready_replicas self.replicas = replicas if update_revision is not None: self.update_revision = update_revision if updated_replicas is not None: self.updated_replicas = updated_replicas @property def available_replicas(self): """Gets the available_replicas of this V1StatefulSetStatus. # noqa: E501 Total number of available pods (ready for at least minReadySeconds) targeted by this statefulset. # noqa: E501 :return: The available_replicas of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._available_replicas @available_replicas.setter def available_replicas(self, available_replicas): """Sets the available_replicas of this V1StatefulSetStatus. Total number of available pods (ready for at least minReadySeconds) targeted by this statefulset. # noqa: E501 :param available_replicas: The available_replicas of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._available_replicas = available_replicas @property def collision_count(self): """Gets the collision_count of this V1StatefulSetStatus. # noqa: E501 collisionCount is the count of hash collisions for the StatefulSet. The StatefulSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision. # noqa: E501 :return: The collision_count of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._collision_count @collision_count.setter def collision_count(self, collision_count): """Sets the collision_count of this V1StatefulSetStatus. collisionCount is the count of hash collisions for the StatefulSet. The StatefulSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision. # noqa: E501 :param collision_count: The collision_count of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._collision_count = collision_count @property def conditions(self): """Gets the conditions of this V1StatefulSetStatus. # noqa: E501 Represents the latest available observations of a statefulset's current state. # noqa: E501 :return: The conditions of this V1StatefulSetStatus. # noqa: E501 :rtype: list[V1StatefulSetCondition] """ return self._conditions @conditions.setter def conditions(self, conditions): """Sets the conditions of this V1StatefulSetStatus. Represents the latest available observations of a statefulset's current state. # noqa: E501 :param conditions: The conditions of this V1StatefulSetStatus. # noqa: E501 :type: list[V1StatefulSetCondition] """ self._conditions = conditions @property def current_replicas(self): """Gets the current_replicas of this V1StatefulSetStatus. # noqa: E501 currentReplicas is the number of Pods created by the StatefulSet controller from the StatefulSet version indicated by currentRevision. # noqa: E501 :return: The current_replicas of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._current_replicas @current_replicas.setter def current_replicas(self, current_replicas): """Sets the current_replicas of this V1StatefulSetStatus. currentReplicas is the number of Pods created by the StatefulSet controller from the StatefulSet version indicated by currentRevision. # noqa: E501 :param current_replicas: The current_replicas of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._current_replicas = current_replicas @property def current_revision(self): """Gets the current_revision of this V1StatefulSetStatus. # noqa: E501 currentRevision, if not empty, indicates the version of the StatefulSet used to generate Pods in the sequence [0,currentReplicas). # noqa: E501 :return: The current_revision of this V1StatefulSetStatus. # noqa: E501 :rtype: str """ return self._current_revision @current_revision.setter def current_revision(self, current_revision): """Sets the current_revision of this V1StatefulSetStatus. currentRevision, if not empty, indicates the version of the StatefulSet used to generate Pods in the sequence [0,currentReplicas). # noqa: E501 :param current_revision: The current_revision of this V1StatefulSetStatus. # noqa: E501 :type: str """ self._current_revision = current_revision @property def observed_generation(self): """Gets the observed_generation of this V1StatefulSetStatus. # noqa: E501 observedGeneration is the most recent generation observed for this StatefulSet. It corresponds to the StatefulSet's generation, which is updated on mutation by the API Server. # noqa: E501 :return: The observed_generation of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._observed_generation @observed_generation.setter def observed_generation(self, observed_generation): """Sets the observed_generation of this V1StatefulSetStatus. observedGeneration is the most recent generation observed for this StatefulSet. It corresponds to the StatefulSet's generation, which is updated on mutation by the API Server. # noqa: E501 :param observed_generation: The observed_generation of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._observed_generation = observed_generation @property def ready_replicas(self): """Gets the ready_replicas of this V1StatefulSetStatus. # noqa: E501 readyReplicas is the number of pods created for this StatefulSet with a Ready Condition. # noqa: E501 :return: The ready_replicas of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._ready_replicas @ready_replicas.setter def ready_replicas(self, ready_replicas): """Sets the ready_replicas of this V1StatefulSetStatus. readyReplicas is the number of pods created for this StatefulSet with a Ready Condition. # noqa: E501 :param ready_replicas: The ready_replicas of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._ready_replicas = ready_replicas @property def replicas(self): """Gets the replicas of this V1StatefulSetStatus. # noqa: E501 replicas is the number of Pods created by the StatefulSet controller. # noqa: E501 :return: The replicas of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._replicas @replicas.setter def replicas(self, replicas): """Sets the replicas of this V1StatefulSetStatus. replicas is the number of Pods created by the StatefulSet controller. # noqa: E501 :param replicas: The replicas of this V1StatefulSetStatus. # noqa: E501 :type: int """ if self.local_vars_configuration.client_side_validation and replicas is None: # noqa: E501 raise ValueError("Invalid value for `replicas`, must not be `None`") # noqa: E501 self._replicas = replicas @property def update_revision(self): """Gets the update_revision of this V1StatefulSetStatus. # noqa: E501 updateRevision, if not empty, indicates the version of the StatefulSet used to generate Pods in the sequence [replicas-updatedReplicas,replicas) # noqa: E501 :return: The update_revision of this V1StatefulSetStatus. # noqa: E501 :rtype: str """ return self._update_revision @update_revision.setter def update_revision(self, update_revision): """Sets the update_revision of this V1StatefulSetStatus. updateRevision, if not empty, indicates the version of the StatefulSet used to generate Pods in the sequence [replicas-updatedReplicas,replicas) # noqa: E501 :param update_revision: The update_revision of this V1StatefulSetStatus. # noqa: E501 :type: str """ self._update_revision = update_revision @property def updated_replicas(self): """Gets the updated_replicas of this V1StatefulSetStatus. # noqa: E501 updatedReplicas is the number of Pods created by the StatefulSet controller from the StatefulSet version indicated by updateRevision. # noqa: E501 :return: The updated_replicas of this V1StatefulSetStatus. # noqa: E501 :rtype: int """ return self._updated_replicas @updated_replicas.setter def updated_replicas(self, updated_replicas): """Sets the updated_replicas of this V1StatefulSetStatus. updatedReplicas is the number of Pods created by the StatefulSet controller from the StatefulSet version indicated by updateRevision. # noqa: E501 :param updated_replicas: The updated_replicas of this V1StatefulSetStatus. # noqa: E501 :type: int """ self._updated_replicas = updated_replicas def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1StatefulSetStatus): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1StatefulSetStatus): return True return self.to_dict() != other.to_dict()
V1StatefulSetStatus
python
realpython__materials
python-enum/iterate.py
{ "start": 24, "end": 423 }
class ____(Enum): VANILLA = 1 CHOCOLATE = 2 MINT = 3 # Iterating over members for flavor in Flavor: print(flavor) # Iterating over members' names for flavor in Flavor: print(flavor.name) # Iterating over members' value for flavor in Flavor: print(flavor.value) # Iterating over __members__ for name, member in Flavor.__members__.items(): print(name, "->", member)
Flavor
python
huggingface__transformers
src/transformers/models/xlm/modeling_xlm.py
{ "start": 62985, "end": 66878 }
class ____(XLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = XLMModel(config) self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[dict[str, torch.Tensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TokenClassifierOutput]: r""" langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the *language name to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the *language id to language name* mapping is in `model.config.id2lang` (dictionary int to string). See usage examples detailed in the [multilingual documentation](../multilingual). lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use *attention_mask* for the same result (see above), kept here for compatibility. Indices selected in `[0, ..., input_ids.size(-1)]`. cache (`dict[str, torch.FloatTensor]`, *optional*): Instance of `EncoderDecoderCache` that contains precomputed KV states. Can be used to speed up sequential decoding. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring
XLMForTokenClassification
python
run-llama__llama_index
llama-index-packs/llama-index-packs-koda-retriever/llama_index/packs/koda_retriever/base.py
{ "start": 10025, "end": 11245 }
class ____(BaseLlamaPack): def __init__( self, index: VectorStoreIndex, llm: Optional[LLM] = None, # if I could, I'd default to reranker: Optional[BaseNodePostprocessor] = None, default_alpha: float = 0.5, matrix: dict or AlphaMatrix = DEFAULT_CATEGORIES, # type: ignore verbose: bool = False, **kwargs, # kwargs for VectorIndexRetriever ) -> None: """Init params.""" self.retriever = KodaRetriever( index=index, llm=llm, reranker=reranker, default_alpha=default_alpha, matrix=matrix, verbose=verbose, **kwargs, ) def get_modules(self) -> dict: """Get modules.""" return { "retriever": self.retriever, "retriever_cls": KodaRetriever, } def run(self, query_str: str, **kwargs: Any) -> RESPONSE_TYPE: """Run method.""" return self.retriever.retrieve(query_str, **kwargs) async def arun(self, query_str: str, **kwargs: Any) -> RESPONSE_TYPE: """Asynchronous run method.""" return await self.retriever.aretrieve(query_str, **kwargs)
KodaRetrieverPack
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/linalg/linear_operator_util_test.py
{ "start": 10833, "end": 11060 }
class ____(object): def __init__(self, domain_dimension): self._domain_dimension = ops.convert_to_tensor(domain_dimension) def domain_dimension_tensor(self): return self._domain_dimension
DomainDimensionStubOperator
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/constructor15.py
{ "start": 414, "end": 602 }
class ____(Generic[_M, _N]): def __new__(cls, m: _M, n: _N) -> "B[_M, _N]": ... def __init__(self, *args: Any, **kwargs: Any) -> None: ... b: B[Literal[3], Literal[4]] = B(3, 4)
B
python
sqlalchemy__sqlalchemy
test/orm/test_deferred.py
{ "start": 54029, "end": 72863 }
class ____(_Polymorphic): __dialect__ = "default" @classmethod def setup_mappers(cls): super().setup_mappers() from sqlalchemy import inspect inspect(Company).add_property( "managers", relationship(Manager, viewonly=True) ) def test_load_only_subclass(self): s = fixture_session() q = ( s.query(Manager) .order_by(Manager.person_id) .options(load_only(Manager.status, Manager.manager_name)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id " "ORDER BY managers.person_id", ) @testing.variation("load", ["contains_eager", "joinedload"]) def test_issue_10125(self, load): s = fixture_session() employee_alias = aliased(Manager, flat=True) company_alias = aliased(Company) if load.contains_eager: q = ( s.query(company_alias) .outerjoin( employee_alias, company_alias.employees.of_type(employee_alias), ) .options( contains_eager( company_alias.employees.of_type(employee_alias) ).load_only( employee_alias.person_id, ) ) ) elif load.joinedload: q = s.query(company_alias).options( joinedload( company_alias.employees.of_type(employee_alias) ).load_only( employee_alias.person_id, ) ) else: load.fail() if load.contains_eager: self.assert_compile( q, "SELECT people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id, " "companies_1.company_id AS companies_1_company_id, " "companies_1.name AS companies_1_name " "FROM companies AS companies_1 LEFT OUTER JOIN " "(people AS people_1 JOIN managers AS managers_1 " "ON people_1.person_id = managers_1.person_id) " "ON companies_1.company_id = people_1.company_id", ) elif load.joinedload: self.assert_compile( q, "SELECT companies_1.company_id AS companies_1_company_id, " "companies_1.name AS companies_1_name, " "people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id " "FROM companies AS companies_1 LEFT OUTER JOIN " "(people AS people_1 JOIN managers AS managers_1 " "ON people_1.person_id = managers_1.person_id) " "ON companies_1.company_id = people_1.company_id " "ORDER BY people_1.person_id", ) else: load.fail() def test_load_only_subclass_bound(self): s = fixture_session() q = ( s.query(Manager) .order_by(Manager.person_id) .options( Load(Manager).load_only(Manager.status, Manager.manager_name) ) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id " "ORDER BY managers.person_id", ) def test_load_only_subclass_and_superclass(self): s = fixture_session() q = ( s.query(Boss) .order_by(Person.person_id) .options(load_only(Boss.status, Boss.manager_name)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id JOIN boss " "ON managers.person_id = boss.boss_id ORDER BY people.person_id", ) def test_load_only_subclass_and_superclass_bound(self): s = fixture_session() q = ( s.query(Boss) .order_by(Person.person_id) .options(Load(Boss).load_only(Boss.status, Manager.manager_name)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id JOIN boss " "ON managers.person_id = boss.boss_id ORDER BY people.person_id", ) def test_load_only_alias_subclass(self): s = fixture_session() m1 = aliased(Manager, flat=True) q = ( s.query(m1) .order_by(m1.person_id) .options(load_only(m1.status, m1.manager_name)) ) self.assert_compile( q, "SELECT managers_1.person_id AS managers_1_person_id, " "people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.status AS managers_1_status, " "managers_1.manager_name AS managers_1_manager_name " "FROM people AS people_1 JOIN managers AS " "managers_1 ON people_1.person_id = managers_1.person_id " "ORDER BY managers_1.person_id", ) def test_load_only_alias_subclass_bound(self): s = fixture_session() m1 = aliased(Manager, flat=True) q = ( s.query(m1) .order_by(m1.person_id) .options(Load(m1).load_only(m1.status, m1.manager_name)) ) self.assert_compile( q, "SELECT managers_1.person_id AS managers_1_person_id, " "people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.status AS managers_1_status, " "managers_1.manager_name AS managers_1_manager_name " "FROM people AS people_1 JOIN managers AS " "managers_1 ON people_1.person_id = managers_1.person_id " "ORDER BY managers_1.person_id", ) def test_load_only_subclass_from_relationship_polymorphic(self): s = fixture_session() wp = with_polymorphic(Person, [Manager], flat=True) q = ( s.query(Company) .join(Company.employees.of_type(wp)) .options( contains_eager(Company.employees.of_type(wp)).load_only( wp.Manager.status, wp.Manager.manager_name ) ) ) self.assert_compile( q, "SELECT people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id, " "managers_1.status AS managers_1_status, " "managers_1.manager_name AS managers_1_manager_name, " "companies.company_id AS companies_company_id, " "companies.name AS companies_name " "FROM companies JOIN (people AS people_1 LEFT OUTER JOIN " "managers AS managers_1 ON people_1.person_id = " "managers_1.person_id) ON companies.company_id = " "people_1.company_id", ) def test_load_only_subclass_from_relationship_polymorphic_bound(self): s = fixture_session() wp = with_polymorphic(Person, [Manager], flat=True) q = ( s.query(Company) .join(Company.employees.of_type(wp)) .options( Load(Company) .contains_eager(Company.employees.of_type(wp)) .load_only(wp.Manager.status, wp.Manager.manager_name) ) ) self.assert_compile( q, "SELECT people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id, " "managers_1.status AS managers_1_status, " "managers_1.manager_name AS managers_1_manager_name, " "companies.company_id AS companies_company_id, " "companies.name AS companies_name " "FROM companies JOIN (people AS people_1 LEFT OUTER JOIN " "managers AS managers_1 ON people_1.person_id = " "managers_1.person_id) ON companies.company_id = " "people_1.company_id", ) def test_load_only_subclass_from_relationship(self): s = fixture_session() q = ( s.query(Company) .join(Company.managers) .options( contains_eager(Company.managers).load_only( Manager.status, Manager.manager_name ) ) ) self.assert_compile( q, "SELECT companies.company_id AS companies_company_id, " "companies.name AS companies_name, " "managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM companies JOIN (people JOIN managers ON people.person_id = " "managers.person_id) ON companies.company_id = people.company_id", ) def test_load_only_subclass_from_relationship_bound(self): s = fixture_session() q = ( s.query(Company) .join(Company.managers) .options( Load(Company) .contains_eager(Company.managers) .load_only(Manager.status, Manager.manager_name) ) ) self.assert_compile( q, "SELECT companies.company_id AS companies_company_id, " "companies.name AS companies_name, " "managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM companies JOIN (people JOIN managers ON people.person_id = " "managers.person_id) ON companies.company_id = people.company_id", ) def test_defer_on_wildcard_subclass(self): """test case changed as of #7495""" s = fixture_session() q = ( s.query(Manager) .order_by(Person.person_id) .options(defer("*"), undefer(Manager.status)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.type AS people_type, managers.status AS managers_status " "FROM people JOIN managers ON " "people.person_id = managers.person_id ORDER BY people.person_id", ) def test_load_only_subclass_of_type(self): s = fixture_session() q = s.query(Company).options( joinedload(Company.employees.of_type(Manager)).load_only( Manager.status ) ) self.assert_compile( q, "SELECT companies.company_id AS companies_company_id, " "companies.name AS companies_name, " "anon_1.people_person_id AS anon_1_people_person_id, " "anon_1.people_type AS anon_1_people_type, " "anon_1.managers_person_id AS anon_1_managers_person_id, " "anon_1.managers_status AS anon_1_managers_status " "FROM companies LEFT OUTER JOIN " "(SELECT people.person_id AS people_person_id, " "people.company_id AS people_company_id, " "people.name AS people_name, people.type AS people_type, " "managers.person_id AS managers_person_id, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people LEFT OUTER JOIN managers " "ON people.person_id = managers.person_id) AS anon_1 " "ON companies.company_id = anon_1.people_company_id " "ORDER BY anon_1.people_person_id", ) def test_wildcard_subclass_of_type(self): """fixed as of #7495""" s = fixture_session() q = s.query(Company).options( joinedload(Company.employees.of_type(Manager)).defer("*") ) self.assert_compile( q, "SELECT companies.company_id AS companies_company_id, " "companies.name AS companies_name, " "anon_1.people_person_id AS anon_1_people_person_id, " "anon_1.people_type AS anon_1_people_type, " "anon_1.managers_person_id AS anon_1_managers_person_id " "FROM companies LEFT OUTER JOIN " "(SELECT people.person_id AS people_person_id, " "people.company_id AS people_company_id, " "people.name AS people_name, people.type AS people_type, " "managers.person_id AS managers_person_id, " "managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people LEFT OUTER JOIN managers " "ON people.person_id = managers.person_id) AS anon_1 " "ON companies.company_id = anon_1.people_company_id " "ORDER BY anon_1.people_person_id", ) def test_defer_super_name_on_subclass(self): s = fixture_session() q = ( s.query(Manager) .order_by(Person.person_id) .options(defer(Person.name)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.company_id AS people_company_id, " "people.type AS people_type, managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id " "ORDER BY people.person_id", ) def test_defer_super_name_on_subclass_bound(self): s = fixture_session() q = ( s.query(Manager) .order_by(Person.person_id) .options(Load(Manager).defer(Manager.name)) ) self.assert_compile( q, "SELECT managers.person_id AS managers_person_id, " "people.person_id AS people_person_id, " "people.company_id AS people_company_id, " "people.type AS people_type, managers.status AS managers_status, " "managers.manager_name AS managers_manager_name " "FROM people JOIN managers " "ON people.person_id = managers.person_id " "ORDER BY people.person_id", ) def test_load_only_from_with_polymorphic_mismatch(self): s = fixture_session() wp = with_polymorphic(Person, [Manager], flat=True) assert_raises_message( sa.exc.ArgumentError, r"Mapped class Mapper\[Manager\(managers\)\] does not apply to " "any of the root entities in this query, e.g. " r"with_polymorphic\(Person, \[Manager\]\).", s.query(wp).options(load_only(Manager.status))._compile_context, ) def test_load_only_from_with_polymorphic_applied(self): s = fixture_session() wp = with_polymorphic(Person, [Manager], flat=True) q = s.query(wp).options(load_only(wp.Manager.status)) self.assert_compile( q, "SELECT people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id, " "managers_1.status AS managers_1_status " "FROM people AS people_1 " "LEFT OUTER JOIN managers AS managers_1 " "ON people_1.person_id = managers_1.person_id", ) def test_load_only_of_type_with_polymorphic(self): s = fixture_session() wp = with_polymorphic(Person, [Manager], flat=True) with expect_raises_message( sa.exc.ArgumentError, r'ORM mapped entity or attribute "Manager.status" does not link ' r'from relationship "Company.employees.' r'of_type\(with_polymorphic\(Person, \[Manager\]\)\)".', ): s.query(Company).options( joinedload(Company.employees.of_type(wp)).load_only( Manager.status ) )._compile_context() self.assert_compile( s.query(Company).options( joinedload(Company.employees.of_type(wp)).load_only( wp.Manager.status ) ), # should at least not have manager_name in it "SELECT companies.company_id AS companies_company_id, " "companies.name AS companies_name, " "people_1.person_id AS people_1_person_id, " "people_1.type AS people_1_type, " "managers_1.person_id AS managers_1_person_id, " "managers_1.status AS managers_1_status " "FROM companies LEFT OUTER JOIN " "(people AS people_1 LEFT OUTER JOIN managers AS managers_1 " "ON people_1.person_id = managers_1.person_id) " "ON companies.company_id = people_1.company_id " "ORDER BY people_1.person_id", )
InheritanceTest
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/forLoop1.py
{ "start": 1606, "end": 1962 }
class ____: @overload def __getitem__(self, i: int) -> str: ... @overload def __getitem__(self, i: slice) -> list[str]: ... def __getitem__(self, i: int | slice) -> str | list[str]: ... c = C() for c1 in iter(c): reveal_type(c1, expected_text="str") for c2 in c: reveal_type(c2, expected_text="str")
C
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 13285, "end": 13476 }
class ____(SchemaBase): _rootschema = load_schema() @classmethod def _default_wrapper_classes(cls) -> Iterator[type[Any]]: return _subclasses(VegaLiteSchema)
VegaLiteSchema
python
kamyu104__LeetCode-Solutions
Python/maximum-number-of-words-found-in-sentences.py
{ "start": 29, "end": 227 }
class ____(object): def mostWordsFound(self, sentences): """ :type sentences: List[str] :rtype: int """ return 1+max(s.count(' ') for s in sentences)
Solution
python
dagster-io__dagster
python_modules/dagster/dagster/components/core/defs_module.py
{ "start": 2139, "end": 3663 }
class ____(BaseModel): model_config = ConfigDict(extra="forbid") type: str attributes: Optional[Mapping[str, Any]] = None template_vars_module: Optional[str] = None requirements: Optional[ComponentRequirementsModel] = None post_processing: Optional[Mapping[str, Any]] = None def _add_defs_yaml_metadata( component_yaml_path: Path, load_context: ComponentLoadContext, component: Component, source_position: SourcePosition, metadata: ArbitraryMetadataMapping, ) -> ArbitraryMetadataMapping: existing_references_meta = CodeReferencesMetadataSet.extract(metadata) references = ( existing_references_meta.code_references.code_references if existing_references_meta.code_references else [] ) references_to_add = component.get_code_references_for_yaml( component_yaml_path, source_position, load_context ) return { **metadata, **CodeReferencesMetadataSet( code_references=CodeReferencesMetadataValue( code_references=[ *references, *references_to_add, ], ) ), "dagster/component_origin": ObjectMetadataValue(component), # maybe ComponentPath.get_relative_key too } def _add_defs_py_metadata( component: Component, metadata: ArbitraryMetadataMapping, ): return { **metadata, "dagster/component_origin": ObjectMetadataValue(component), }
ComponentFileModel
python
PrefectHQ__prefect
tests/experimental/test_bundles.py
{ "start": 13108, "end": 20786 }
class ____: def test_is_local_module_builtin(self): """Test that built-in modules are not considered local.""" assert not _is_local_module("sys") assert not _is_local_module("os") assert not _is_local_module("json") @pytest.mark.skipif( not hasattr(sys, "stdlib_module_names"), reason="Requires Python 3.10+" ) def test_is_local_module_stdlib(self): """Test that standard library modules are not considered local.""" assert not _is_local_module("logging") assert not _is_local_module("asyncio") assert not _is_local_module("unittest") def test_is_local_module_site_packages(self): """Test that modules in site-packages are not considered local.""" # pytest is definitely installed in site-packages assert not _is_local_module("pytest") def test_extract_imports_from_source(self): """Test extraction of import statements from source code.""" source = """ import os import sys from pathlib import Path from typing import List, Dict import numpy as np from my_module import helper from my_package.submodule import function """ imports = _extract_imports_from_source(source) assert "os" in imports assert "sys" in imports assert "pathlib" in imports assert "typing" in imports assert "numpy" in imports assert "my_module" in imports assert "my_package.submodule" in imports # These should not be included as they are individual items, not modules assert "my_module.helper" not in imports assert "my_package.submodule.function" not in imports def test_extract_imports_handles_syntax_errors(self): """Test that import extraction handles syntax errors gracefully.""" source = "this is not valid python syntax !!!" imports = _extract_imports_from_source(source) assert imports == set() def test_discover_local_dependencies_with_no_module(self): """Test discovery when flow has no module (e.g., defined in REPL).""" @flow def repl_flow(): return "repl" # Mock the flow to have no module with patch("inspect.getmodule", return_value=None): deps = _discover_local_dependencies(repl_flow) assert deps == set() def test_pickle_local_modules_context_manager(self): """Test the context manager for registering local modules.""" @flow def test_flow(): return "test" # Track which modules were registered/unregistered registered = [] unregistered = [] def mock_register(module): registered.append(module) def mock_unregister(module): unregistered.append(module) with patch("cloudpickle.register_pickle_by_value", side_effect=mock_register): with patch( "cloudpickle.unregister_pickle_by_value", side_effect=mock_unregister ): with patch( "prefect._experimental.bundles._discover_local_dependencies", return_value={"test_module"}, ): with patch("importlib.import_module") as mock_import: mock_module = MagicMock() mock_module.__name__ = "test_module" mock_import.return_value = mock_module with _pickle_local_modules_by_value(test_flow): # Inside context, module should be registered assert len(registered) == 1 assert registered[0] == mock_module # After context, module should be unregistered assert len(unregistered) == 1 assert unregistered[0] == mock_module def test_pickle_local_modules_handles_import_errors( self, caplog: pytest.LogCaptureFixture ): """Test that import errors are handled gracefully.""" @flow def test_flow(): return "test" with patch( "prefect._experimental.bundles._discover_local_dependencies", return_value={"nonexistent_module"}, ): with _pickle_local_modules_by_value(test_flow): pass # Check that a debug message was logged about the failure assert "Failed to register module nonexistent_module" in caplog.text def test_discover_deeply_nested_local_dependencies(self, tmp_path: Path): """Test that local dependencies are discovered recursively through multiple levels. This tests the scenario where: - flow_module imports module_b - module_b imports module_c - module_c imports module_d All modules should be discovered, including module_d which is 3 levels deep. """ # Create temporary package structure with deep nesting package_root = tmp_path / "test_packages" package_root.mkdir() # Create flow_module package flow_pkg = package_root / "flow_module" flow_pkg.mkdir() (flow_pkg / "__init__.py").write_text("") # Create module_b package module_b_pkg = package_root / "module_b" module_b_pkg.mkdir() (module_b_pkg / "__init__.py").write_text("") # Create module_c package module_c_pkg = package_root / "module_c" module_c_pkg.mkdir() (module_c_pkg / "__init__.py").write_text("") # Create module_d package (deepest level) module_d_pkg = package_root / "module_d" module_d_pkg.mkdir() (module_d_pkg / "__init__.py").write_text("") # Create module_d with a simple function (module_d_pkg / "utils.py").write_text(""" def function_d(): return "d" """) # Create module_c that imports from module_d (module_c_pkg / "utils.py").write_text(""" from module_d.utils import function_d def function_c(): return function_d() """) # Create module_b that imports from module_c (module_b_pkg / "utils.py").write_text(""" from module_c.utils import function_c def function_b(): return function_c() """) # Create flow_module that imports from module_b (flow_pkg / "my_flow.py").write_text(""" from module_b.utils import function_b from prefect import flow @flow def test_flow(): return function_b() """) # Add package_root to sys.path so modules can be imported sys.path.insert(0, str(package_root)) try: # Import the flow module and get the flow import flow_module.my_flow flow_obj = flow_module.my_flow.test_flow # Discover dependencies deps = _discover_local_dependencies(flow_obj) # All four modules should be discovered assert "flow_module.my_flow" in deps, ( "Flow module itself should be discovered" ) assert "module_b.utils" in deps, "First-level import should be discovered" assert "module_c.utils" in deps, "Second-level import should be discovered" assert "module_d.utils" in deps, "Third-level import should be discovered" finally: # Clean up sys.path and sys.modules sys.path.remove(str(package_root)) for module in list(sys.modules.keys()): if module.startswith( ("flow_module", "module_b", "module_c", "module_d") ): del sys.modules[module]
TestLocalDependencyDiscovery
python
PyCQA__pylint
pylint/pyreverse/mermaidjs_printer.py
{ "start": 3767, "end": 4506 }
class ____(MermaidJSPrinter): """Printer for MermaidJS diagrams wrapped in a html boilerplate.""" HTML_OPEN_BOILERPLATE = """<html> <body> <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> <div class="mermaid"> """ HTML_CLOSE_BOILERPLATE = """ </div> </body> </html> """ GRAPH_INDENT_LEVEL = 4 def _open_graph(self) -> None: self.emit(self.HTML_OPEN_BOILERPLATE) for _ in range(self.GRAPH_INDENT_LEVEL): self._inc_indent() super()._open_graph() def _close_graph(self) -> None: for _ in range(self.GRAPH_INDENT_LEVEL): self._dec_indent() self.emit(self.HTML_CLOSE_BOILERPLATE)
HTMLMermaidJSPrinter
python
FactoryBoy__factory_boy
tests/test_django.py
{ "start": 3008, "end": 3122 }
class ____(factory.django.DjangoModelFactory): class Meta: model = models.WithSignals
WithSignalsFactory
python
django-import-export__django-import-export
tests/core/tests/admin_integration/test_import_functionality.py
{ "start": 15745, "end": 20940 }
class ____(AdminTestMixin, TransactionTestCase): fixtures = ["author"] def _is_str_in_response( self, filename, input_format, encoding=None, str_in_response=None, follow=False, status_code=200, ): response = self._do_import_post( self.book_import_url, filename, input_format, encoding=encoding, follow=follow, ) self.assertEqual(response.status_code, status_code) if str_in_response is not None: self.assertContains(response, str_in_response) def _is_regex_in_response( self, filename, input_format, encoding=None, regex_in_response=None, follow=False, status_code=200, ): response = self._do_import_post( self.book_import_url, filename, input_format, encoding=encoding, follow=follow, ) self.assertEqual(response.status_code, status_code) if regex_in_response is not None: self.assertRegex(response.content.decode(), regex_in_response) def test_import_action_create(self): self._is_str_in_response( "books.csv", "0", follow=True, str_in_response="Import finished: 1 new, 0 updated, " + "0 deleted and 0 skipped books.", ) self.assertEqual(1, Book.objects.count()) def test_import_action_error_on_save(self): with mock.patch("core.models.Book.save") as mock_save: mock_save.side_effect = ValueError("some unknown error") response = self._do_import_post(self.book_import_url, "books.csv") self.assertIn("some unknown error", response.content.decode()) @override_settings(IMPORT_EXPORT_USE_TRANSACTIONS=True) def test_import_transaction_enabled_validation_error(self): # with transactions enabled, a validation error should cause the entire # import to be rolled back self._do_import_post(self.book_import_url, "books-invalid-date.csv") self.assertEqual(0, Book.objects.count()) @override_settings(IMPORT_EXPORT_USE_TRANSACTIONS=False) def test_import_transaction_disabled_validation_error(self): # with transactions disabled, a validation error should not cause the entire # import to fail self._do_import_post(self.book_import_url, "books-invalid-date.csv") self.assertEqual(1, Book.objects.count()) @override_settings(IMPORT_EXPORT_USE_TRANSACTIONS=True) def test_import_transaction_enabled_core_error(self): # test that if we send a file with multiple rows, # and transactions is enabled, a core error means that # no instances are persisted index = self._get_input_format_index("json") with mock.patch("core.admin.BookResource.skip_row") as mock_skip: mock_skip.side_effect = [None, ValueError("some unknown error"), None] response = self._do_import_post(self.book_import_url, "books.json", index) self.assertIn("some unknown error", response.content.decode()) self.assertEqual(0, Book.objects.count()) @override_settings(IMPORT_EXPORT_USE_TRANSACTIONS=False) def test_import_transaction_disabled_core_error(self): # with transactions disabled, a core (db constraint) error should not cause the # entire import to fail index = self._get_input_format_index("json") with mock.patch("core.admin.BookResource.skip_row") as mock_skip: mock_skip.side_effect = [None, ValueError("some unknown error"), None] response = self._do_import_post(self.book_import_url, "books.json", index) self.assertIn("some unknown error", response.content.decode()) self.assertEqual(2, Book.objects.count()) def test_import_action_mac(self): self._is_str_in_response( "books-mac.csv", "0", follow=True, str_in_response="Import finished: 1 new, 0 updated, " + "0 deleted and 0 skipped books.", ) def test_import_action_iso_8859_1(self): self._is_str_in_response( "books-ISO-8859-1.csv", "0", "ISO-8859-1", follow=True, str_in_response="Import finished: 1 new, 0 updated, " + "0 deleted and 0 skipped books.", ) def test_import_action_decode_error(self): # attempting to read a file with the incorrect encoding should raise an error self._is_regex_in_response( "books-ISO-8859-1.csv", "0", follow=True, encoding="utf-8-sig", regex_in_response=( ".*UnicodeDecodeError.* encountered " "while trying to read file" ), ) def test_import_action_binary(self): self._is_str_in_response( "books.xls", "1", follow=True, str_in_response="Import finished: 1 new, 0 updated, " + "0 deleted and 0 skipped books.", )
TestImportSkipConfirm
python
great-expectations__great_expectations
contrib/great_expectations_semantic_types_expectations/great_expectations_semantic_types_expectations/expectations/expect_column_values_to_be_valid_price.py
{ "start": 1603, "end": 3806 }
class ____(ColumnMapExpectation): """Expect column values to conform to valid price formats.""" # These examples will be shown in the public gallery. # They will also be executed as unit tests for your Expectation. examples = [ { "data": { "well_formed_price": [ "£9.15", "Price: $119.00", "99€", "Rp 1.550.000", ], "malformed_price": [ "", "Foo", "50% OFF", "$", ], }, "tests": [ { "title": "basic_positive_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "well_formed_price"}, "out": {"success": True}, }, { "title": "basic_negative_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "malformed_price"}, "out": {"success": False}, }, ], } ] # This is the id string of the Metric used by this Expectation. # For most Expectations, it will be the same as the `condition_metric_name` defined in your Metric class above. map_metric = "column_values.valid_price" # This is a list of parameter names that can affect whether the Expectation evaluates to True or False success_keys = ("mostly",) # This dictionary contains default values for any parameters that should have default values default_kwarg_values = {} # This object contains metadata for display in the public Gallery library_metadata = { "maturity": "experimental", "tags": ["experimental", "hackathon", "typed-entities"], "contributors": [ "@voidforall", ], "requirements": ["price_parser"], } if __name__ == "__main__": ExpectColumnValuesToBeValidPrice().print_diagnostic_checklist()
ExpectColumnValuesToBeValidPrice
python
bokeh__bokeh
src/bokeh/models/widgets/inputs.py
{ "start": 17968, "end": 19750 }
class ____(InputWidget): ''' Color palette select widget. ''' # explicit __init__ to support Init signatures def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) value = Required(String, help=""" The name of the initial or selected color palette. """) items = Required(Seq(Tuple(String, Seq(Color))), help=""" A selection of named color palettes to choose from. """) swatch_width = NonNegative(Int, default=100, help=""" The width of the UI element showing the preview of a palette, in pixels. """) swatch_height = Either(Auto, NonNegative(Int), default="auto", help=""" The height of the UI element showing the preview of a palette, either in pixels or automatically adjusted. """) ncols = Positive(Int, default=1, help=""" The number of columns to split the display of the palettes into. """) #----------------------------------------------------------------------------- # Legacy API #----------------------------------------------------------------------------- def ColorMap(*args: Any, **kwargs: Any) -> PaletteSelect: ''' Color palette select widget. .. deprecated:: 3.4.0 Use ``PaletteSelect`` widget instead. ''' from ...util.deprecation import deprecated deprecated((3, 4, 0), "ColorMap widget", "PaletteSelect widget") return PaletteSelect(*args, **kwargs) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
PaletteSelect
python
eth-brownie__brownie
brownie/network/middlewares/catch_tx_revert.py
{ "start": 195, "end": 1144 }
class ____(BrownieMiddlewareABC): """ Middleware to handle reverting transactions, bypasses web3 error formatting. As of web3.py version 5.13.0, a new error formatting middleware was added by default `raise_solidity_error_on_revert` which when a `eth_call` or `eth_estimateGas` tx raises a `ContractLogicError` instead of providing us with an RPCError dictionary. """ @classmethod def get_layer(cls, w3: Web3, network_type: str) -> Optional[int]: return -1 def process_request( self, make_request: Callable, method: RPCEndpoint, params: Sequence[Any], ) -> Dict[str, Any]: """Raise a ValueError when RPC.eth_call or RPC.eth_estimateGas errors.""" result = make_request(method, params) if method in {"eth_call", "eth_estimateGas"} and "error" in result: raise ValueError(result["error"]) return result
TxRevertCatcherMiddleware
python
etianen__django-reversion
tests/test_app/tests/test_api.py
{ "start": 433, "end": 574 }
class ____(TestModelMixin, TestBase): def testModelSave(self): TestModel.objects.create() self.assertNoRevision()
SaveTest
python
scrapy__scrapy
scrapy/exceptions.py
{ "start": 663, "end": 749 }
class ____(Exception): """Request the spider not to be closed yet"""
DontCloseSpider
python
tensorflow__tensorflow
tensorflow/python/tpu/tpu_outside_compilation_test.py
{ "start": 17406, "end": 26482 }
class ____(test.TestCase, parameterized.TestCase): def setUp(self): super(OutsideCompilationOnUnsupportedOpTest, self).setUp() config.set_soft_device_placement(True) def testStringOpWithManualOutsideCompilation(self): strategy = get_tpu_strategy() @def_function.function def train_step(x): def computation(x): return tpu_replication.outside_compilation( computation_with_string_ops, x) return strategy.run(computation, args=(x,)) self.assertAllEqual( strategy.experimental_local_results(train_step(0)), constant_op.constant(10, shape=(strategy.num_replicas_in_sync))) def testStringOpWithAutoOutsideCompilation(self): strategy = get_tpu_strategy() @def_function.function def train_step(x): def computation(x): return computation_with_string_ops(x) return strategy.run(computation, args=(x,)) self.assertAllEqual( strategy.experimental_local_results(train_step(0)), constant_op.constant(10, shape=(strategy.num_replicas_in_sync))) # Regression test for b/180509859. def testImageSummary(self): strategy = get_tpu_strategy() def run(): @def_function.function def sample_sequence(): bsz = 3 max_length = 32 * 32 def f(): def body(step, tokens): next_token = random_ops.random_uniform([bsz]) tokens = tokens.write(step, next_token) return (step + 1, tokens) def cond_fn(step, tokens): del tokens return math_ops.less(step, max_length) tokens_var = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=max_length, dynamic_size=False, clear_after_read=False, element_shape=(bsz,), name="tokens_accumulator", ) step = constant_op.constant(0) step, tokens_var = while_loop.while_loop(cond_fn, body, [step, tokens_var]) image_flat = array_ops.transpose(tokens_var.stack(), [1, 0]) image = array_ops.tile( array_ops.reshape(image_flat, [bsz, 32, 32, 1]), [1, 1, 1, 3]) image_summary_v2.image("image_sample", image, constant_op.constant(5, dtype=dtypes.int64)) return strategy.run(f) sample_sequence() logdir = tempfile.mkdtemp() summary_writer = summary.create_file_writer(logdir, flush_millis=10000) with summary_writer.as_default(), summary.always_record_summaries(): run() events = _events_from_logdir(self, logdir) decoded_image = image_ops.decode_png( events[1].summary.value[0].tensor.string_val[2]).numpy() # Ensure that non-zero values were written to the image summary. self.assertNotAllEqual( array_ops.zeros((3072,), dtype=dtypes.float32), list(decoded_image.flat)) def testSummaryWithAutoOutsideCompilation(self): strategy = get_tpu_strategy() def host_computation(x): scalar_summary_v2.scalar("x", x, step=0) return x * 2.0 @def_function.function def step(): def computation(x): x = x + 1.0 y = host_computation(x) return y + 1.0 return strategy.run(computation, args=(2.0,)) logdir = tempfile.mkdtemp() summary_writer = summary.create_file_writer(logdir, flush_millis=10000) with summary_writer.as_default(), summary.always_record_summaries(): self.assertAllEqual( strategy.experimental_local_results(step()), constant_op.constant(7., shape=(strategy.num_replicas_in_sync))) events = _events_from_logdir(self, logdir) # There will be 2 entries: 1 summary file header entry, and 1 entry # written by host. self.assertLen(events, 2) self.assertEqual(events[1].summary.value[0].tag, "x") def testNestedFunctionScalarSummary(self): strategy = get_tpu_strategy() def host_computation(x): scalar_summary_v2.scalar("x", x, step=0) return x * 2.0 @def_function.function def step(): @def_function.function def computation(x): x = x + 1.0 y = host_computation(x) return y + 1.0 return strategy.run(computation, args=(2.0,)) logdir = tempfile.mkdtemp() summary_writer = summary.create_file_writer(logdir, flush_millis=10000) with summary_writer.as_default(), summary.always_record_summaries(): self.assertAllEqual( strategy.experimental_local_results(step()), constant_op.constant(7., shape=(strategy.num_replicas_in_sync))) events = _events_from_logdir(self, logdir) # There will be 2 entries: 1 summary file header entry, and 1 entry # written by host. self.assertLen(events, 2) self.assertEqual(events[1].summary.value[0].tag, "x") def testHistogramSummaryWithAutoOutsideCompilation(self): strategy = get_tpu_strategy() def host_computation(x): histogram_summary_v2.histogram("x", x, step=0) return x * 2.0 @def_function.function def step(): def computation(x): x = x + 1.0 y = host_computation(x) return y + 1.0 return strategy.run(computation, args=(2.0,)) logdir = tempfile.mkdtemp() summary_writer = summary.create_file_writer(logdir, flush_millis=10000) with summary_writer.as_default(), summary.always_record_summaries(): self.assertAllEqual( strategy.experimental_local_results(step()), constant_op.constant(7., shape=(strategy.num_replicas_in_sync))) events = _events_from_logdir(self, logdir) # There will be 2 entries: 1 summary file header entry, and 1 entry # written by host. self.assertLen(events, 2) self.assertEqual(events[1].summary.value[0].tag, "x") @parameterized.parameters((True), (False)) def testSummaryControlFlowIfWithAutoOutsideCompilation( self, take_true_branch): strategy = get_tpu_strategy() @def_function.function def step(): def computation(x): x = x + 1.0 if x < 5: scalar_summary_v2.scalar("x", x, step=0) x = x * 2.0 return x + 1.0 if take_true_branch: return strategy.run(computation, args=(2.0,)) else: return strategy.run(computation, args=(10.0,)) logdir = tempfile.mkdtemp() summary_writer = summary.create_file_writer(logdir, flush_millis=10000) output_value = 12. if take_true_branch: output_value = 7. with summary_writer.as_default(), summary.always_record_summaries(): self.assertAllEqual( strategy.experimental_local_results(step()), constant_op.constant( output_value, shape=(strategy.num_replicas_in_sync))) if take_true_branch: events = _events_from_logdir(self, logdir) # There will be 2 entries: 1 summary file header entry, and 1 entry # written by host. # self.assertLen(events, 2) self.assertEqual(events[1].summary.value[0].tag, "cond/x") def testAutoOutsideCompilationWithFunctionalNodes(self): strategy = get_tpu_strategy() @def_function.function def train_step(a, b): def fn(a, b): fn1 = lambda: computation_with_string_ops(a * 100) fn2 = lambda: computation_with_string_ops(a) pred = math_ops.greater_equal(a, b) result = array_ops.identity( cond.cond(pred, fn1, fn2), name="uncompilable_control_flow") return result return strategy.run(fn, args=(a, b)) self.assertAllEqual( strategy.experimental_local_results(train_step(0.0, -1.0)), constant_op.constant(10, shape=(strategy.num_replicas_in_sync))) def testRandomOpsWithAutoOutsideCompilation(self): strategy = get_tpu_strategy() @def_function.function def train_step(): def computation(): return random_ops.random_normal(shape=[1, 2, 3]) return strategy.run(computation, args=()) self.assertAllEqual( strategy.experimental_local_results(train_step())[0].shape, [1, 2, 3]) def testOutsideCompilationWithTPUPartitionedCallOp(self): """Tests that control flow with TPUPartitionedCall including outside_compilation works.""" get_tpu_strategy() def host_computation(x): return x + 1 @def_function.function() def train_step(x): x2 = x + 5.0 logging_ops.print_v2(x2) x2 = tpu_replication.outside_compilation(host_computation, x2) return x2 + 4.0 tpu_fn = _rewrite_func_wrapper(train_step) partitioned_tpu_fn = _tpu_partitioned_call_wrapper(tpu_fn) concrete = partitioned_tpu_fn.get_concrete_function( x=tensor.TensorSpec( shape=(1), dtype=dtypes.float32, name="input_tensor")) self.assertIsInstance( concrete(array_ops.ones((1), dtype=dtypes.float32))[0], tensor.Tensor) if __name__ == "__main__": test.main()
OutsideCompilationOnUnsupportedOpTest
python
pandas-dev__pandas
pandas/tests/indexes/timedeltas/test_scalar_compat.py
{ "start": 355, "end": 4851 }
class ____: def test_tdi_total_seconds(self): # GH#10939 # test index rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s") expt = [ 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9, 1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456.0 / 1e9, ] tm.assert_almost_equal(rng.total_seconds(), Index(expt)) # test Series ser = Series(rng) s_expt = Series(expt, index=[0, 1]) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) # with nat ser[1] = np.nan s_expt = Series( [1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9, np.nan], index=[0, 1], ) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) def test_tdi_total_seconds_all_nat(self): # with both nat ser = Series([np.nan, np.nan], dtype="timedelta64[ns]") result = ser.dt.total_seconds() expected = Series([np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_tdi_round(self): td = timedelta_range(start="16801 days", periods=5, freq="30Min") elt = td[1] expected_rng = TimedeltaIndex( [ Timedelta("16801 days 00:00:00"), Timedelta("16801 days 00:00:00"), Timedelta("16801 days 01:00:00"), Timedelta("16801 days 02:00:00"), Timedelta("16801 days 02:00:00"), ] ) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq="h"), expected_rng) assert elt.round(freq="h") == expected_elt msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): td.round(freq="foo") with pytest.raises(ValueError, match=msg): elt.round(freq="foo") msg = "<MonthEnd> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): td.round(freq="ME") with pytest.raises(ValueError, match=msg): elt.round(freq="ME") @pytest.mark.parametrize( "freq,msg", [ ("YE", "<YearEnd: month=12> is a non-fixed frequency"), ("ME", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ], ) def test_tdi_round_invalid(self, freq, msg): t1 = timedelta_range("1 days", periods=3, freq="1 min 2 s 3 us") with pytest.raises(ValueError, match=msg): t1.round(freq) with pytest.raises(ValueError, match=msg): # Same test for TimedeltaArray t1._data.round(freq) # TODO: de-duplicate with test_tdi_round def test_round(self): t1 = timedelta_range("1 days", periods=3, freq="1 min 2 s 3 us") t2 = -1 * t1 t1a = timedelta_range("1 days", periods=3, freq="1 min 2 s") t1c = TimedeltaIndex(np.array([1, 1, 1], "m8[D]")).as_unit("ns") # note that negative times round DOWN! so don't give whole numbers msg = "'d' is deprecated and will be removed in a future version." with tm.assert_produces_warning(Pandas4Warning, match=msg): for freq, s1, s2 in [ ("ns", t1, t2), ("us", t1, t2), ( "ms", t1a, TimedeltaIndex( ["-1 days +00:00:00", "-2 days +23:58:58", "-2 days +23:57:56"] ), ), ( "s", t1a, TimedeltaIndex( ["-1 days +00:00:00", "-2 days +23:58:58", "-2 days +23:57:56"] ), ), ("12min", t1c, TimedeltaIndex(["-1 days", "-1 days", "-1 days"])), ("h", t1c, TimedeltaIndex(["-1 days", "-1 days", "-1 days"])), ("d", t1c, -1 * t1c), ]: r1 = t1.round(freq) r2 = t2.round(freq) tm.assert_index_equal(r1, s1) tm.assert_index_equal(r2, s2) def test_components(self): rng = timedelta_range("1 days, 10:11:12", periods=2, freq="s") rng.components # with nat s = Series(rng) s[1] = np.nan result = s.dt.components assert not result.iloc[0].isna().all() assert result.iloc[1].isna().all()
TestVectorizedTimedelta
python
plotly__plotly.py
plotly/graph_objs/layout/yaxis/_tickfont.py
{ "start": 235, "end": 9884 }
class ____(_BaseLayoutHierarchyType): _parent_path_str = "layout.yaxis" _path_str = "layout.yaxis.tickfont" _valid_props = { "color", "family", "lineposition", "shadow", "size", "style", "textcase", "variant", "weight", } @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val @property def lineposition(self): """ Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. The 'lineposition' property is a flaglist and may be specified as a string containing: - Any combination of ['under', 'over', 'through'] joined with '+' characters (e.g. 'under+over') OR exactly one of ['none'] (e.g. 'none') Returns ------- Any """ return self["lineposition"] @lineposition.setter def lineposition(self, val): self["lineposition"] = val @property def shadow(self): """ Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow for additional options. The 'shadow' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["shadow"] @shadow.setter def shadow(self, val): self["shadow"] = val @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val @property def style(self): """ Sets whether a font should be styled with a normal or italic face from its family. The 'style' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'italic'] Returns ------- Any """ return self["style"] @style.setter def style(self, val): self["style"] = val @property def textcase(self): """ Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. The 'textcase' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'word caps', 'upper', 'lower'] Returns ------- Any """ return self["textcase"] @textcase.setter def textcase(self, val): self["textcase"] = val @property def variant(self): """ Sets the variant of the font. The 'variant' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'small-caps', 'all-small-caps', 'all-petite-caps', 'petite-caps', 'unicase'] Returns ------- Any """ return self["variant"] @variant.setter def variant(self, val): self["variant"] = val @property def weight(self): """ Sets the weight (or boldness) of the font. The 'weight' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [1, 1000] OR exactly one of ['normal', 'bold'] (e.g. 'bold') Returns ------- int """ return self["weight"] @weight.setter def weight(self, val): self["weight"] = val @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. """ def __init__( self, arg=None, color=None, family=None, lineposition=None, shadow=None, size=None, style=None, textcase=None, variant=None, weight=None, **kwargs, ): """ Construct a new Tickfont object Sets the tick font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.yaxis.Tickfont` color family HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. Returns ------- Tickfont """ super().__init__("tickfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.layout.yaxis.Tickfont constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.yaxis.Tickfont`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._set_property("family", arg, family) self._set_property("lineposition", arg, lineposition) self._set_property("shadow", arg, shadow) self._set_property("size", arg, size) self._set_property("style", arg, style) self._set_property("textcase", arg, textcase) self._set_property("variant", arg, variant) self._set_property("weight", arg, weight) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Tickfont
python
chroma-core__chroma
chromadb/segment/distributed/__init__.py
{ "start": 238, "end": 1003 }
class ____(Component): """A segment directory is a data interface that manages the location of segments. Concretely, this means that for distributed chroma, it provides the grpc endpoint for a segment.""" @abstractmethod def get_segment_endpoints(self, segment: Segment, n: int) -> List[str]: """Return the segment residences for a given segment ID. Will return at most n residences. Should only return less than n residences if there are less than n residences available. """ @abstractmethod def register_updated_segment_callback( self, callback: Callable[[Segment], None] ) -> None: """Register a callback that will be called when a segment is updated""" pass @dataclass
SegmentDirectory
python
pytorch__pytorch
test/export/test_draft_export.py
{ "start": 597, "end": 25619 }
class ____(TestCase): def setUp(self): super().setUp() init_torchbind_implementations() self.torch_bind_ops = [ torch.ops._TorchScriptTesting.queue_pop, torch.ops._TorchScriptTesting.queue_push, torch.ops._TorchScriptTesting.queue_size, ] def tearDown(self): return def test_missing_meta_kernel_custom_op_basic(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo2", mutates_args={}) def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b class M(torch.nn.Module): def forward(self, a, b): res = torch.ops.mylib.foo2(a, b) return res inp = (torch.ones(3, 3), torch.ones(3, 3)) ep = draft_export(M(), inp) report = ep._report self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL ) inp = (torch.randn(3, 3), torch.randn(3, 3)) self.assertEqual(ep.module()(*inp), M()(*inp)) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): ep.run_decompositions() def test_missing_meta_kernel_impl(self): with torch.library._scoped_library("mylib", "FRAGMENT") as lib: torch.library.define( "mylib::foo", "(Tensor a, Tensor b) -> Tensor", tags=torch.Tag.pt2_compliant_tag, lib=lib, ) @torch.library.impl("mylib::foo", "cpu", lib=lib) def foo_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b class M(torch.nn.Module): def forward(self, a, b): res = torch.ops.mylib.foo(a, b) res = torch.ops.mylib.foo(res, b) return res inp = (torch.ones(3, 3), torch.ones(3, 3)) ep = draft_export(M(), inp) report = ep._report self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL ) inp = (torch.randn(3, 3), torch.randn(3, 3)) self.assertEqual(ep.module()(*inp), M()(*inp)) self.assertEqual(len(report.op_profiles), 1) self.assertEqual(len(report.op_profiles["mylib.foo.default"]), 1) print(report.op_profiles) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): ep = ep.run_decompositions() self.assertEqual(ep.module()(*inp), M()(*inp)) def test_missing_meta_kernel_custom_op_multiple_profiles(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo3", mutates_args={}) def foo3_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b class M(torch.nn.Module): def forward(self, a, b, c, d): res1 = torch.ops.mylib.foo3(a, b) res2 = torch.ops.mylib.foo3(c, d) return res1, res2 inp = ( torch.ones(3, 4), torch.ones(3, 4), torch.ones(2, 3, 4), torch.ones(2, 3, 4), ) ep = draft_export(M(), inp) report = ep._report self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL ) self.assertEqual(len(report.op_profiles), 1) self.assertEqual(len(report.op_profiles["mylib.foo3.default"]), 2) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): ep.run_decompositions() def test_missing_meta_kernel_custom_op_update_profile(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo8", mutates_args={}) def foo8_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b class M(torch.nn.Module): def forward(self, a, b): res = torch.ops.mylib.foo8(a, b) return res inp = ( torch.ones(3, 4), torch.ones(3, 4), ) ep = draft_export(M(), inp) report = ep._report self.assertEqual(len(report.op_profiles), 1) self.assertEqual(len(report.op_profiles["mylib.foo8.default"]), 1) new_inp = ( torch.ones(2, 3, 4), torch.ones(2, 3, 4), ) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): with FakeTensorMode(allow_non_fake_inputs=True, shape_env=ShapeEnv()): torch.ops.mylib.foo8(*inp) with self.assertRaisesRegex( RuntimeError, "no profiles match the given inputs" ): torch.ops.mylib.foo8(*new_inp) ep = draft_export(M(), new_inp) report = ep._report self.assertEqual(len(report.op_profiles), 1) self.assertEqual(len(report.op_profiles["mylib.foo8.default"]), 1) with ( torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ), FakeTensorMode(allow_non_fake_inputs=True, shape_env=ShapeEnv()), ): torch.ops.mylib.foo8(*new_inp) # Existing registration has been updated to match the new # profile traced with draft-export with self.assertRaisesRegex( RuntimeError, "no profiles match the given inputs" ): torch.ops.mylib.foo8(*inp) @unittest.skipIf(not torch.cuda.is_available(), "Requires cuda") def test_missing_meta_kernel_guard(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo4", mutates_args={}) def foo4_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b class M(torch.nn.Module): def forward(self, a, b): res1 = torch.ops.mylib.foo4(a, b) return res1 inp = ( torch.ones(3, 4), torch.ones(3, 4), ) ep = draft_export( M(), inp, dynamic_shapes={ "a": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC}, "b": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC}, }, ) inp = (torch.randn(2, 3), torch.randn(2, 3)) self.assertEqual(ep.module()(*inp), M()(*inp)) m = ep.module() with self.assertRaisesRegex(RuntimeError, "Tensor device mismatch!"): bad_device_inps = ( torch.randn(2, 3, device=torch.device("cuda")), torch.randn(2, 3, device=torch.device("cuda")), ) m(*bad_device_inps) with self.assertRaisesRegex(RuntimeError, "Tensor dtype mismatch!"): bad_dtype_inps = ( torch.randn(2, 3, dtype=torch.float16), torch.randn(2, 3, dtype=torch.float16), ) m(*bad_dtype_inps) def test_fake_infer_dense_in_memory_check(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo5", mutates_args={}) def foo5_impl(a: torch.Tensor) -> torch.Tensor: return a * 2 @torch.library.custom_op("mylib::foo6", mutates_args={}) def foo6_impl(a: torch.Tensor) -> torch.Tensor: return (a * 2)[:, :-1, :-1] # not dense in memory @torch.library.custom_op("mylib::foo7", mutates_args={}) def foo7_impl(a: torch.Tensor) -> torch.Tensor: return (a * 2)[:, 1:-1, :] # non-zero storage offset class Foo(torch.nn.Module): def forward(self, x, opt): if opt == 0: return torch.ops.mylib.foo5(x) elif opt == 1: return torch.ops.mylib.foo6(x) else: return torch.ops.mylib.foo7(x) draft_export(Foo(), (torch.randn(80, 4, 4), 0)) draft_export(Foo(), (torch.randn(80, 1, 4), 0)) draft_export(Foo(), (torch.randn(1, 4, 1, 1, 4, 1, 4), 0)) with self.assertRaisesRegex( RuntimeError, "a return was not dense in memory", ): draft_export(Foo(), (torch.randn(4, 6, 8), 1)) with self.assertRaisesRegex( RuntimeError, "a return has a non-zero storage offset", ): draft_export(Foo(), (torch.randn(4, 6, 8), 2)) def test_data_dependent_failure(self): with torch.library._scoped_library("mylib", "FRAGMENT") as lib: torch.library.define( "mylib::foo1", "(Tensor a, Tensor b) -> Tensor", tags=torch.Tag.pt2_compliant_tag, lib=lib, ) @torch.library.impl("mylib::foo1", "cpu", lib=lib) def foo_impl(a, b): return a + b class M(torch.nn.Module): def forward(self, a, b, c): res = torch.ops.mylib.foo1(a, b) c_item = c.item() if c_item > 0: return res[:c_item] inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3)) ep = draft_export(M(), inp) report = ep._report self.assertTrue(len(report.failures) > 0) self.assertEqual( report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL ) self.assertEqual( report.failures[1].failure_type, FailureType.DATA_DEPENDENT_ERROR ) inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2)) self.assertEqual(ep.module()(*inp), M()(*inp)) def test_unbacked_div_mod_replacement(self): class M(torch.nn.Module): def forward(self, x): x = torch.zeros(x.item()) x = x.unsqueeze(0).repeat(10, 2) return x.view(-1, 2, 2345) ep = draft_export(M(), (torch.tensor([938]),)) report = ep._report self.assertEqual(len(report.failures), 0) def test_dedup_data_dependent_failure(self): class M(torch.nn.Module): def forward(self, x, y, z): res = 0 for v in [x, y]: b = v.item() if b > 10: res += v * b else: res += v + b return z * res inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2)) ep = draft_export(M(), inp) report = ep._report self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR ) inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6)) self.assertEqual(ep.module()(*inp), M()(*inp)) # the fake tensors on node.meta["val"] should have real_tensor gm = ep.module() tensors = [ node.meta.get("val").real_tensor for node in gm.graph.nodes if node.op == "placeholder" ] self.assertTrue(all(isinstance(t, torch.Tensor) for t in tensors)) def test_complex_data_dependent_expr(self): class M(torch.nn.Module): def forward(self, x, y): a = x.item() a = -a a = a // 3 a = a + 5 z = torch.cat([y, y]) if a > 0: return z[:a] ep = draft_export( M(), (torch.tensor(6), torch.randn(5)), dynamic_shapes={"x": None, "y": {0: Dim.DYNAMIC}}, ) report = ep._report self.assertTrue(len(report.failures) > 0) self.assertEqual( report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR ) for _ep in [ep, ep.run_decompositions()]: # unbacked bindings unbacked_binding_symbols = set() for node in _ep.graph.nodes: if bindings := node.meta.get("unbacked_bindings"): unbacked_binding_symbols.update(bindings.keys()) self.assertEqual(len(unbacked_binding_symbols), 2) def test_offsets(self): class M(torch.nn.Module): def forward(self, x): a = x.item() if a == 0: raise RuntimeError("bad") return x * a inp = (torch.tensor(3),) draft_export(M(), inp) def test_shape_failure(self): class M(torch.nn.Module): def forward(self, a): assert a.shape[0] == 3 return a * a inp = (torch.ones(3, 3),) ep = draft_export( M(), inp, dynamic_shapes={"a": {0: Dim("a0")}}, prefer_deferred_runtime_asserts_over_guards=True, ) report = ep._report self.assertEqual(len(report.failures), 1) self.assertEqual(report.failures[0].failure_type, FailureType.GUARD_ADDED) inp = (torch.randn(3, 3),) self.assertEqual(ep.module()(*inp), M()(*inp)) inp = (torch.randn(4, 3),) with self.assertRaisesRegex( AssertionError, re.escape("Guard failed: a.size()[0] <= 3"), ): # expected <= 3, but got 4 ep.module()(*inp) def test_side_effect1(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("a", torch.tensor(2)) def forward(self, b): a_item = self.a.item() if a_item == 2: res = a_item * b else: res = (a_item + 1) * b self.a.add_(1) a_item = self.a.item() if a_item == 3: res = a_item * res else: res = (a_item + 1) * res return res inp = (torch.ones(3, 3),) mod = M() ep = draft_export(mod, inp) self.assertEqual(mod.a, torch.tensor(2)) FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run( ep.graph_module.code ) def test_side_effect_inps(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): x.sin_() return x inp = (torch.ones(3, 3),) ep = draft_export(M(), inp) report = ep._report self.assertTrue(report.successful()) self.assertEqual(inp[0], torch.ones(3, 3)) def test_masked_linear(self): class M(torch.nn.Module): def forward(self, x, mask, weight, bias): masked = x[mask != 0, :, :] return torch.nn.functional.linear(masked, weight, bias) x = torch.zeros(10) x[0] += 1 inp = (torch.randn(10, 8, 7), x, torch.randn(25, 7), torch.randn(25)) draft_ep = draft_export(M(), inp) ep = export(M(), inp) self.assertEqual(draft_ep.module()(*inp), ep.module()(*inp)) x[2] += 1 x[3] += 1 self.assertEqual(draft_ep.module()(*inp), ep.module()(*inp)) def test_torchbind(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) def forward(self, tq, x): x_cos = tq.pop() + tq.float_size() + self.linear(x) if tq.is_empty(): x_sin = self.linear(tq.pop()) - tq.size() + x else: x_sin = tq.pop() + tq.size() + x return x_sin, x_cos, tq mod = Model() tq = _empty_tensor_queue() tq2 = copy.deepcopy(tq) a = torch.randn(2, 2) b = torch.randn(2, 2) tq.push(a) tq.push(b) tq3 = copy.deepcopy(tq) inp = (tq, torch.randn(2, 2)) ep = draft_export(mod, inp) report = ep._report self.assertTrue(report.successful()) self.assertEqual(tq2.size(), 0) self.assertEqual(tq3.size(), 2) self.assertEqual(tq.size(), 2) def test_override_size_and_dtype_mismatched_fake_kernels(self): with torch.library._scoped_library("mylib", "FRAGMENT"): class M(torch.nn.Module): def forward(self, a): return torch.ops.mylib.foo9(a) @torch.library.custom_op("mylib::foo9", mutates_args={}) def foo(a: torch.Tensor) -> list[torch.Tensor]: x = a * 2 y = a.repeat(2, 2) z = a.to(torch.bfloat16) return [x, y, z] @torch.library.register_fake("mylib::foo9") def foo_fake_impl(a): x = torch.empty_like(a) # good y = torch.empty_like(a) # size mismatch z = torch.empty_like(a) # dtype mismatch return [x, y, z] mod = M() inputs = (torch.randn(3, 3),) with self.assertRaises(RuntimeError): with torch._functorch.config.patch( fake_tensor_propagate_real_tensors=True ): export(mod, inputs, strict=True) ep = draft_export(mod, inputs) report = ep._report for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)): self.assertTrue(torch.allclose(ep_out, eager_out)) self.assertEqual(ep_out.dtype, eager_out.dtype) self.assertEqual(len(report.failures), 2) self.assertEqual( report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL ) self.assertEqual( report.failures[1].failure_type, FailureType.MISMATCHED_FAKE_KERNEL ) self.assertEqual( sorted([f.data["reason"] for f in report.failures]), [ "Dtypes torch.bfloat16 and torch.float32 are not equal!", "mismatch between fake value 3 and real value 6 ", ], ) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): ep.run_decompositions() def test_override_incorrectly_aliasing_kernel(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo10", mutates_args={}) def foo(a: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: return a * 2, a + 2 @torch.library.register_fake("mylib::foo10") def foo_fake_impl(a): return a, torch.empty_like(a) # incorrectly aliasing class M(torch.nn.Module): def forward(self, a): return torch.ops.mylib.foo10(a) mod = M() inputs = (torch.randn(3, 3),) with self.assertRaisesRegex( RuntimeError, "Real tensor propagation found an aliasing mismatch", ): with torch._functorch.config.patch( fake_tensor_propagate_real_tensors=True ): export(mod, inputs, strict=True) ep = draft_export(mod, inputs) report = ep._report for ep_out, eager_out in zip( tree_leaves(ep.module()(*inputs)), tree_leaves(mod(*inputs)) ): self.assertTrue(torch.allclose(ep_out, eager_out)) self.assertEqual(ep_out.dtype, eager_out.dtype) self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL ) self.assertTrue( "Mismatched aliasing spec between fake kernel and real kernel" in report.failures[0].data["reason"] ) def test_override_mismatched_fake_kernel_with_unbacked_symbols(self): with torch.library._scoped_library("mylib", "FRAGMENT"): @torch.library.custom_op("mylib::foo11", mutates_args={}) def foo11(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a[b.item()].to(torch.bfloat16) @torch.library.register_fake("mylib::foo11") def foo_fake_impl(a, b): ctx = torch.library.get_ctx() u = ctx.new_dynamic_size() return torch.empty(u, a.shape[1], dtype=a.dtype) class M(torch.nn.Module): def forward(self, a, b): return torch.ops.mylib.foo11(a, b) mod = M() inputs = (torch.randn(100, 4), torch.tensor(10)) ep = draft_export(mod, inputs) report = ep._report for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)): self.assertTrue(torch.allclose(ep_out, eager_out)) self.assertEqual(ep_out.dtype, eager_out.dtype) self.assertEqual(len(report.failures), 1) self.assertEqual( report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL ) self.assertEqual( report.failures[0].data["reason"], "Dtypes torch.bfloat16 and torch.float32 are not equal!", ) with torch._library.fake_profile.unsafe_generate_fake_kernels( report.op_profiles ): ep.run_decompositions() # https://github.com/pytorch/pytorch/issues/140625 @unittest.skipIf(IS_WINDOWS, "aoti_compile_and_package not supported on Windows") def test_constantify_unbacked_symbol(self): class M(torch.nn.Module): def forward(self, x, y): xt = torch.tensor(x.shape) u0 = xt[0].item() return y * torch.arange(u0) mod = M() example_inputs = (torch.randn(3, 5), torch.randn(3)) draft_ep = draft_export(mod, example_inputs) with tempfile.NamedTemporaryFile(suffix=".pt2") as f: torch._inductor.aoti_compile_and_package( draft_ep, package_path=f.name, ) @unittest.skipIf( not torch.cuda.is_available() or torch.cuda.get_device_properties(0).total_memory < 2**28, "Requires 16 MB GPU memory to pass the test; setting it higher to catch violations", ) def test_cuda_memory_usage(self): # This used to OOM class Foo(torch.nn.Module): def forward(self, x): for _ in range(100): x = x + 1e-3 return x # measure base usage device = torch.device("cuda:0") torch.cuda.reset_peak_memory_stats() base_usage = torch.cuda.memory_allocated(device) # usage with input tensor allocated x = torch.randn(2**10, 2**10).to(device) x_usage = torch.cuda.memory_allocated(device) # draft export peak memory usage draft_export(Foo(), (x,), strict=False) peak_mem_usage = torch.cuda.memory_stats(device)["allocated_bytes.all.peak"] # right now it's actually exactly 4x; # I guess original tensor, 2 tensors per add op, 1 for clone stored in node.meta["val"] self.assertTrue((peak_mem_usage - base_usage) <= (x_usage - base_usage) * 4.0) if __name__ == "__main__": run_tests()
TestDraftExport
python
getsentry__sentry
src/sentry/interfaces/stacktrace.py
{ "start": 3809, "end": 11512 }
class ____(Interface): grouping_variants = ["system", "app"] @classmethod def to_python(cls, data, **kwargs): for key in ( "abs_path", "colno", "context_line", "data", "errors", "filename", "function", "raw_function", "image_addr", "in_app", "instruction_addr", "addr_mode", "lineno", "module", "package", "platform", "post_context", "pre_context", "source_link", "symbol", "symbol_addr", "trust", "vars", "lock", ): data.setdefault(key, None) return super().to_python(data, **kwargs) def to_json(self): return prune_empty_keys( { "abs_path": self.abs_path or None, "filename": self.filename or None, "platform": self.platform or None, "module": self.module or None, "function": self.function or None, "raw_function": self.raw_function or None, "package": self.package or None, "image_addr": self.image_addr, "symbol": self.symbol, "symbol_addr": self.symbol_addr, "instruction_addr": self.instruction_addr, "addr_mode": self.addr_mode, "trust": self.trust, "in_app": self.in_app, "context_line": self.context_line, "pre_context": self.pre_context or None, "post_context": self.post_context or None, "vars": self.vars or None, "data": self.data or None, "errors": self.errors or None, "lineno": self.lineno, "colno": self.colno, "lock": self.lock, "source_link": self.source_link or None, } ) def get_api_context(self, is_public=False, platform=None, pad_addr=None): from sentry.stacktraces.functions import ( get_function_name_for_frame, get_source_link_for_frame, ) function = get_function_name_for_frame(self, platform) source_link = get_source_link_for_frame(self) data = { "filename": self.filename, "absPath": self.abs_path, "module": self.module, "package": self.package, "platform": self.platform, "instructionAddr": pad_hex_addr(self.instruction_addr, pad_addr), "symbolAddr": pad_hex_addr(self.symbol_addr, pad_addr), "function": function, "rawFunction": self.raw_function, "symbol": self.symbol, "context": get_context( lineno=self.lineno, context_line=self.context_line, pre_context=self.pre_context, post_context=self.post_context, ), "lineNo": self.lineno, "colNo": self.colno, "inApp": self.in_app, "trust": self.trust, "errors": self.errors, "lock": self.lock, "sourceLink": source_link, } if not is_public: data["vars"] = self.vars if self.addr_mode and self.addr_mode != "abs": data["addrMode"] = self.addr_mode # TODO(dcramer): abstract out this API if self.data and "sourcemap" in self.data: data.update( { "map": self.data["sourcemap"].rsplit("/", 1)[-1], "origFunction": self.data.get("orig_function", "?"), "origAbsPath": self.data.get("orig_abs_path", "?"), "origFilename": self.data.get("orig_filename", "?"), "origLineNo": self.data.get("orig_lineno", "?"), "origColNo": self.data.get("orig_colno", "?"), } ) if is_url(self.data["sourcemap"]): data["mapUrl"] = self.data["sourcemap"] if self.data: if "symbolicator_status" in self.data: data["symbolicatorStatus"] = self.data["symbolicator_status"] if "min_grouping_level" in self.data: data["minGroupingLevel"] = self.data["min_grouping_level"] return data def get_meta_context(self, meta, is_public=False, platform=None): if not meta: return return { "filename": meta.get("filename"), "absPath": meta.get("abs_path"), "module": meta.get("module"), "package": meta.get("package"), "platform": meta.get("platform"), "instructionAddr": meta.get("instruction_addr"), "symbolAddr": meta.get("symbol_addr"), "function": meta.get("function"), "symbol": meta.get("symbol"), "context": get_context( lineno=meta.get("lineno"), context_line=meta.get("context_line"), pre_context=meta.get("pre_context"), post_context=meta.get("post_context"), ), "lineNo": meta.get("lineno"), "colNo": meta.get("colno"), "inApp": meta.get("in_app"), "trust": meta.get("trust"), "errors": meta.get("errors"), "lock": meta.get("lock"), "sourceLink": meta.get("source_link"), } def is_url(self): if not self.abs_path: return False # URLs can be generated such that they are: # blob:http://example.com/7f7aaadf-a006-4217-9ed5-5fbf8585c6c0 # https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL if self.abs_path.startswith("blob:"): return True return is_url(self.abs_path) def is_caused_by(self): # XXX(dcramer): don't compute hash using frames containing the 'Caused by' # text as it contains an exception value which may may contain dynamic # values (see raven-java#125) return self.filename.startswith("Caused by: ") def is_unhashable_module(self, platform): # Fix for the case where module is a partial copy of the URL # and should not be hashed if ( platform == "javascript" and "/" in self.module and self.abs_path and self.abs_path.endswith(self.module) ): return True elif platform == "java" and "$$Lambda$" in self.module: return True return False def is_unhashable_function(self): # TODO(dcramer): lambda$ is Java specific # TODO(dcramer): [Anonymous is PHP specific (used for things like SQL # queries and JSON data) return self.function.startswith(("lambda$", "[Anonymous")) def to_string(self, event) -> str: if event.platform is not None: choices = [event.platform] else: choices = [] choices.append("default") templates = ["sentry/partial/frames/%s.txt" % choice for choice in choices] return render_to_string( templates, { "abs_path": self.abs_path, "filename": self.filename, "function": self.function, "module": self.module, "lineno": self.lineno, "colno": self.colno, "context_line": self.context_line, }, ).strip("\n")
Frame
python
numba__numba
numba/core/typing/arraydecl.py
{ "start": 7907, "end": 8193 }
class ____(AbstractTemplate): def generic(self, args, kws): assert not kws [ary, idx] = args out = get_array_index_type(ary, idx) if out is not None: return signature(out.result, ary, out.index) @infer_global(operator.setitem)
GetItemBuffer
python
pytorch__pytorch
torch/_inductor/codegen/common.py
{ "start": 23221, "end": 26789 }
class ____: def __init__(self, body: LoopBody) -> None: self.body = body self.graphs: dict[Union[Callable[..., Any], str], Any] = { "root": body.root_block.graph } for k, v in body.subblocks.items(): self.graphs[k] = v.graph def deduce_node_dtype_by_inputs(self, node: torch.fx.Node) -> Optional[torch.dtype]: inputs = node.all_input_nodes input_nodes = [ n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder" ] if len(input_nodes) == 0: return None all_input_nodes_propagated = all( OptimizationContext.key in n.meta and n.meta[OptimizationContext.key].dtype is not None for n in input_nodes ) if not all_input_nodes_propagated: return None return functools.reduce( torch.promote_types, [n.meta[OptimizationContext.key].dtype for n in input_nodes], ) def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node) -> torch.dtype: sub_graph = self.graphs[node.target] dtype = self.propagate_graph(sub_graph) assert dtype return dtype def deduce_node_dtype(self, node: torch.fx.Node) -> Optional[torch.dtype]: if node.op == "placeholder": return None if node.target == "output" and len(node.args) != 1: # we can infer output node if it only have 1 arg return None if node.target is operator.getitem: node_arg = node.args[0] assert isinstance(node_arg, torch.fx.Node), type(node_arg) return self.deduce_node_dtype(node_arg) assert isinstance(node.target, str), type(node.target) if node.target.startswith("masked_subblock"): return self.deduce_node_dtype_by_subgraph(node) if ( output_dtype := deduce_output_dtype_by_name( node.target, *node.args, **node.kwargs, ) ) is not None: return output_dtype return self.deduce_node_dtype_by_inputs(node) def propagate_graph(self, graph: torch.fx.Graph) -> Optional[torch.dtype]: assert graph.nodes graph_dtype: Optional[torch.dtype] = None # For masked_subblock, we use output's dtype to represent # the dtype of this subgraph. For other cases, graph_dtype # might be None for node in graph.nodes: if OptimizationContext.key in node.meta: opt_ctx = node.meta[OptimizationContext.key] else: opt_ctx = OptimizationContext() opt_ctx.dtype = self.deduce_node_dtype(node) node.meta[OptimizationContext.key] = opt_ctx if node.target == "output": graph_dtype = opt_ctx.dtype return graph_dtype def propagate(self) -> Optional[torch.dtype]: return self.propagate_graph(self.graphs["root"]) @classmethod def propagate_loopbody(cls, body: LoopBody) -> Optional[torch.dtype]: return cls(body).propagate() @classmethod def propagate_scheduler_node(cls, node: SchedulerNode) -> Optional[torch.dtype]: from ..loop_body import LoopBody from ..scheduler import SchedulerNode assert isinstance(node, SchedulerNode), type(node) assert isinstance(node._body, LoopBody), type(node._body) return DataTypePropagation.propagate_loopbody(node._body)
DataTypePropagation
python
mkdocs__mkdocs
mkdocs/tests/config/config_options_tests.py
{ "start": 81616, "end": 83084 }
class ____(TestCase): class Schema(Config): plugins = c.Plugins(default=[]) hooks = c.Hooks('plugins') @tempdir() def test_hooks(self, src_dir) -> None: write_file( b'def on_page_markdown(markdown, **kwargs): return markdown.replace("f", "z")', os.path.join(src_dir, 'hooks', 'my_hook.py'), ) write_file( b'foo foo', os.path.join(src_dir, 'docs', 'index.md'), ) conf = self.get_config( self.Schema, {'hooks': ['hooks/my_hook.py']}, config_file_path=os.path.join(src_dir, 'mkdocs.yml'), ) self.assertIn('hooks/my_hook.py', conf.plugins) hook = conf.plugins['hooks/my_hook.py'] self.assertTrue(hasattr(hook, 'on_page_markdown')) self.assertEqual( {**conf.plugins.events, 'page_markdown': [hook.on_page_markdown]}, conf.plugins.events, ) self.assertEqual(hook.on_page_markdown('foo foo'), 'zoo zoo') # type: ignore[call-arg] self.assertFalse(hasattr(hook, 'on_nav')) def test_hooks_wrong_type(self) -> None: with self.expect_error(hooks="Expected a list of items, but a <class 'int'> was given."): self.get_config(self.Schema, {'hooks': 6}) with self.expect_error(hooks="Expected type: <class 'str'> but received: <class 'int'>"): self.get_config(self.Schema, {'hooks': [7]})
HooksTest
python
tensorflow__tensorflow
tensorflow/tools/ci_build/linux/mkl/set-build-env.py
{ "start": 7901, "end": 13493 }
class ____(object): """Prepares the proper environment settings for various Intel platforms.""" default_platform_ = "haswell" PLATFORMS_ = { "nehalem": NehalemPlatform(), "sandybridge": SandyBridgePlatform(), "haswell": HaswellPlatform(), "skylake": SkylakePlatform(), "cascadelake": CascadelakePlatform(), "icelake-client": IcelakeClientPlatform(), "icelake-server": IcelakeServerPlatform(), } def __init__(self): self.args = None self.bazel_flags_ = "build " self.target_platform_ = None # Return a tuple of the current gcc version def get_gcc_version(self): gcc_major_version = 0 gcc_minor_version = 0 # check to see if gcc is present gcc_path = "" gcc_path_cmd = "command -v gcc" try: gcc_path = subprocess.check_output(gcc_path_cmd, shell=True, stderr=subprocess.STDOUT).\ strip() print("gcc located here: {}".format(gcc_path)) if not os.access(gcc_path, os.F_OK | os.X_OK): raise ValueError( "{} does not exist or is not executable.".format(gcc_path)) gcc_output = subprocess.check_output( [gcc_path, "-dumpfullversion", "-dumpversion"], stderr=subprocess.STDOUT).strip() # handle python2 vs 3 (bytes vs str type) if isinstance(gcc_output, bytes): gcc_output = gcc_output.decode("utf-8") print("gcc version: {}".format(gcc_output)) gcc_info = gcc_output.split(".") gcc_major_version = int(gcc_info[0]) gcc_minor_version = int(gcc_info[1]) except subprocess.CalledProcessException as e: print("Problem getting gcc info: {}".format(e)) gcc_major_version = 0 gcc_minor_version = 0 return gcc_major_version, gcc_minor_version def parse_args(self): """Set up argument parser, and parse CLI args.""" arg_parser = argparse.ArgumentParser( description="Parse the arguments for the " "TensorFlow build environment " " setter") arg_parser.add_argument( "--disable-mkl", dest="disable_mkl", help="Turn off MKL. By default the compiler flag " "--config=mkl is enabled.", action="store_true") arg_parser.add_argument( "--disable-v2", dest="disable_v2", help="Build TensorFlow v1 rather than v2. By default the " " compiler flag --config=v2 is enabled.", action="store_true") arg_parser.add_argument( "--enable-bfloat16", dest="enable_bfloat16", help="Enable bfloat16 build. By default it is " " disabled if no parameter is passed.", action="store_true") arg_parser.add_argument( "--enable-dnnl1", dest="enable_dnnl1", help="Enable dnnl1 build. By default it is " " disabled if no parameter is passed.", action="store_true") arg_parser.add_argument( "-s", "--secure-build", dest="secure_build", help="Enable secure build flags.", action="store_true") arg_parser.add_argument( "-p", "--platform", choices=self.PLATFORMS_.keys(), help="The target platform.", dest="target_platform", default=self.default_platform_) arg_parser.add_argument( "-f", "--bazelrc-file", dest="bazelrc_file", help="The full path to the bazelrc file into which " "the build command will be written. The path " "will be relative to the container " " environment.", required=True) self.args = arg_parser.parse_args() def validate_args(self): # Check the bazelrc file if os.path.exists(self.args.bazelrc_file): if os.path.isfile(self.args.bazelrc_file): self._debug("The file {} exists and will be deleted.".format( self.args.bazelrc_file)) elif os.path.isdir(self.args.bazelrc_file): print("You can't write bazel config to \"{}\" " "because it is a directory".format(self.args.bazelrc_file)) return False # Validate gcc with the requested platform gcc_major_version, gcc_minor_version = self.get_gcc_version() if gcc_major_version == 0 or \ not self.target_platform_.set_host_gcc_version( gcc_major_version, gcc_minor_version): return False return True def set_build_args(self): """Generate Bazel build flags.""" for flag in BASIC_BUILD_OPTS: self.bazel_flags_ += "{} ".format(flag) if self.args.secure_build: for flag in SECURE_BUILD_OPTS: self.bazel_flags_ += "{} ".format(flag) if not self.args.disable_mkl: self.bazel_flags_ += "--config=mkl " if self.args.disable_v2: self.bazel_flags_ += "--config=v1 " if self.args.enable_dnnl1: self.bazel_flags_ += "--define build_with_mkl_dnn_v1_only=true " if self.args.enable_bfloat16: self.bazel_flags_ += "--copt=-DENABLE_INTEL_MKL_BFLOAT16 " self.bazel_flags_ += self.target_platform_.get_bazel_gcc_flags() def write_build_args(self): self._debug("Writing build flags: {}".format(self.bazel_flags_)) with open(self.args.bazelrc_file, "w") as f: f.write(self.bazel_flags_ + "\n") def _debug(self, msg): print(msg) def go(self): self.parse_args() self.target_platform_ = self.PLATFORMS_.get(self.args.target_platform) if self.validate_args(): self.set_build_args() self.write_build_args() else: print("Error.") env_setter = BuildEnvSetter() env_setter.go()
BuildEnvSetter
python
ray-project__ray
python/ray/autoscaler/_private/cli_logger.py
{ "start": 677, "end": 1919 }
class ____: def __init__(self): # do not do any color work self.identity = lambda x: x self.colorful = self self.colormode = None self.NO_COLORS = None self.ANSI_8_COLORS = None def disable(self): pass @contextmanager def with_style(self, x): class IdentityClass: def __getattr__(self, name): return lambda y: y yield IdentityClass() def __getattr__(self, name): if name == "with_style": return self.with_style return self.identity try: import colorful as _cf from colorful.core import ColorfulString _cf.use_8_ansi_colors() except ModuleNotFoundError: # We mock Colorful to restrict the colors used for consistency # anyway, so we also allow for not having colorful at all. # If the Ray Core dependency on colorful is ever removed, # the CliLogger code will still work. class ColorfulString: pass _cf = _ColorfulMock() # We want to only allow specific formatting # to prevent people from accidentally making bad looking color schemes. # # This is especially important since most will look bad on either light # or dark themes.
_ColorfulMock
python
apache__airflow
airflow-core/tests/unit/api_fastapi/core_api/routes/public/test_dags.py
{ "start": 45897, "end": 48456 }
class ____(TestDagEndpoint): """Unit tests for Delete DAG.""" def _create_dag_for_deletion( self, dag_maker, dag_id=None, dag_display_name=None, has_running_dagruns=False, ): with dag_maker( dag_id, dag_display_name=dag_display_name, start_date=datetime(2024, 10, 10, tzinfo=timezone.utc), ): EmptyOperator(task_id="dummy") if has_running_dagruns: dr = dag_maker.create_dagrun() ti = dr.get_task_instances()[0] ti.set_state(TaskInstanceState.RUNNING) dag_maker.sync_dagbag_to_db() @pytest.mark.parametrize( ( "dag_id", "dag_display_name", "status_code_delete", "status_code_details", "has_running_dagruns", "is_create_dag", ), [ ("test_nonexistent_dag_id", "nonexistent_display_name", 404, 404, False, False), (DAG4_ID, DAG4_DISPLAY_NAME, 204, 404, False, True), (DAG5_ID, DAG5_DISPLAY_NAME, 409, 200, True, True), ], ) @pytest.mark.usefixtures("configure_git_connection_for_dag_bundle") def test_delete_dag( self, dag_maker, test_client, dag_id, dag_display_name, status_code_delete, status_code_details, has_running_dagruns, is_create_dag, session, ): if is_create_dag: self._create_dag_for_deletion( dag_maker=dag_maker, dag_id=dag_id, dag_display_name=dag_display_name, has_running_dagruns=has_running_dagruns, ) delete_response = test_client.delete(f"{API_PREFIX}/{dag_id}") assert delete_response.status_code == status_code_delete details_response = test_client.get(f"{API_PREFIX}/{dag_id}/details") assert details_response.status_code == status_code_details if details_response.status_code == 204: check_last_log(session, dag_id=dag_id, event="delete_dag", logical_date=None) def test_delete_dag_should_response_401(self, unauthenticated_test_client): response = unauthenticated_test_client.delete(f"{API_PREFIX}/{DAG1_ID}") assert response.status_code == 401 def test_delete_dag_should_response_403(self, unauthorized_test_client): response = unauthorized_test_client.delete(f"{API_PREFIX}/{DAG1_ID}") assert response.status_code == 403
TestDeleteDAG
python
huggingface__transformers
src/transformers/models/gptj/modeling_gptj.py
{ "start": 18707, "end": 19029 }
class ____(PreTrainedModel): config: GPTJConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["GPTJBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _can_compile_fullgraph = True @auto_docstring
GPTJPreTrainedModel
python
h5py__h5py
h5py/_hl/base.py
{ "start": 11537, "end": 11741 }
class ____(KeysView): def __str__(self): return "<KeysViewHDF5 {}>".format(list(self)) def __reversed__(self): yield from reversed(self._mapping) __repr__ = __str__
KeysViewHDF5
python
pytorch__pytorch
torch/_inductor/codegen/memory_planning.py
{ "start": 691, "end": 1398 }
class ____: """ A range where a given tensor is live. Begin and end are both counters representing points in the program of grouped memory operations. Begin is inclusive, end is exclusive. Invariant: begin <= end """ begin: float # int | +/-inf end: float # int | +/-inf def contains(self, other: LiveRange): """Is other entirely within self""" return self.begin <= other.begin and other.end <= self.end def join(self, other: LiveRange): """Combine two ranges using a union operation""" return LiveRange(min(self.begin, other.begin), max(self.end, other.end)) def __len__(self): return self.end - self.begin
LiveRange
python
kamyu104__LeetCode-Solutions
Python/find-special-substring-of-length-k.py
{ "start": 38, "end": 406 }
class ____(object): def hasSpecialSubstring(self, s, k): """ :type s: str :type k: int :rtype: bool """ l = 0 for i in xrange(len(s)): l += 1 if i+1 == len(s) or s[i] != s[i+1]: if l == k: return True l = 0 return False
Solution
python
getsentry__sentry
tests/sentry/uptime/subscriptions/test_tasks.py
{ "start": 1404, "end": 2891 }
class ____(UptimeTestCase): __test__ = Abstract(__module__, __qualname__) def assert_redis_config( self, region: str, sub: UptimeSubscription, action: str | None, region_mode: UptimeSubscriptionRegion.RegionMode | None, ): region_config = get_region_config(region) assert region_config is not None cluster: RedisCluster | StrictRedis = redis.redis_clusters.get_binary( region_config.config_redis_cluster ) assert sub.subscription_id is not None config_key, update_key = get_partition_keys(UUID(sub.subscription_id), region_config) if action == "upsert": config_bytes = cluster.hget(config_key, sub.subscription_id) assert config_bytes is not None assert region_mode is not None assert msgpack.unpackb(config_bytes) == uptime_subscription_to_check_config( sub, sub.subscription_id, region_mode ) else: assert not cluster.hexists(config_key, sub.subscription_id) if action is None: assert not cluster.hexists(update_key, sub.subscription_id) else: update_bytes = cluster.hget(update_key, sub.subscription_id) assert update_bytes is not None assert msgpack.unpackb(update_bytes) == { "action": action, "subscription_id": sub.subscription_id, }
ConfigPusherTestMixin
python
getsentry__sentry
src/sentry/data_export/models.py
{ "start": 824, "end": 5683 }
class ____(Model): """ Stores references to asynchronous data export jobs """ __relocation_scope__ = RelocationScope.Excluded organization = FlexibleForeignKey("sentry.Organization") user_id = HybridCloudForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete="SET_NULL") file_id = BoundedBigIntegerField(null=True, db_index=True) date_added = models.DateTimeField(default=timezone.now) date_finished = models.DateTimeField(null=True) date_expired = models.DateTimeField(null=True, db_index=True) query_type = BoundedPositiveIntegerField(choices=ExportQueryType.as_choices()) query_info: models.Field[dict[str, Any], dict[str, Any]] = JSONField() @property def status(self) -> ExportStatus: if self.date_finished is None: return ExportStatus.Early elif self.date_expired is not None and self.date_expired < timezone.now(): return ExportStatus.Expired else: return ExportStatus.Valid @property def payload(self) -> dict[str, Any]: payload = self.query_info.copy() payload["export_type"] = ExportQueryType.as_str(self.query_type) return payload @property def file_name(self) -> str: date = self.date_added.strftime("%Y-%B-%d") export_type = ExportQueryType.as_str(self.query_type) # Example: Discover_2020-July-21_27.csv return f"{export_type}_{date}_{self.id}.csv" @staticmethod def format_date(date: datetime | None) -> str | None: # Example: 12:21 PM on July 21, 2020 (UTC) return None if date is None else date.strftime("%-I:%M %p on %B %d, %Y (%Z)") def delete_file(self) -> None: file = self._get_file() if file: file.delete() def delete(self, *args: Any, **kwargs: Any) -> tuple[int, dict[str, Any]]: self.delete_file() return super().delete(*args, **kwargs) def finalize_upload(self, file: File, expiration: timedelta = DEFAULT_EXPIRATION) -> None: self.delete_file() # If a file is present, remove it current_time = timezone.now() expire_time = current_time + expiration self.update(file_id=file.id, date_finished=current_time, date_expired=expire_time) transaction.on_commit(lambda: self.email_success(), router.db_for_write(ExportedData)) def email_success(self) -> None: from sentry.utils.email import MessageBuilder user_email = None if self.user_id is not None: user = user_service.get_user(user_id=self.user_id) if user: user_email = user.email # The following condition should never be true, but it's a safeguard in case someone manually calls this method if self.date_finished is None or self.date_expired is None or self._get_file() is None: logger.warning( "Notification email attempted on incomplete dataset", extra={"data_export_id": self.id, "organization_id": self.organization_id}, ) return url = self.organization.absolute_url( reverse("sentry-data-export-details", args=[self.organization.slug, self.id]) ) msg = MessageBuilder( subject="Your data is ready.", context={"url": url, "expiration": self.format_date(self.date_expired)}, type="organization.export-data", template="sentry/emails/data-export-success.txt", html_template="sentry/emails/data-export-success.html", ) if user_email is not None: msg.send_async([user_email]) def email_failure(self, message: str) -> None: from sentry.utils.email import MessageBuilder if self.user_id is None: return user = user_service.get_user(user_id=self.user_id) if user is None: return msg = MessageBuilder( subject="We couldn't export your data.", context={ "creation": self.format_date(self.date_added), "error_message": message, "payload": orjson.dumps(self.payload).decode(), }, type="organization.export-data", template="sentry/emails/data-export-failure.txt", html_template="sentry/emails/data-export-failure.html", ) msg.send_async([user.email]) self.delete() def _get_file(self) -> File | None: if self.file_id: try: return File.objects.get(pk=self.file_id) except File.DoesNotExist: self.update(file_id=None) return None class Meta: app_label = "sentry" db_table = "sentry_exporteddata" __repr__ = sane_repr("query_type", "query_info") @region_silo_model
ExportedData
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/logs/events.py
{ "start": 8106, "end": 8422 }
class ____(graphene.ObjectType): class Meta: interfaces = (GrapheneMessageEvent, GrapheneStepEvent, GrapheneDisplayableEvent) name = "ExecutionStepOutputEvent" output_name = graphene.NonNull(graphene.String) type_check = graphene.NonNull(GrapheneTypeCheck)
GrapheneExecutionStepOutputEvent
python
allegroai__clearml
clearml/backend_api/session/errors.py
{ "start": 291, "end": 343 }
class ____(SessionError): pass
TimeoutExpiredError
python
FactoryBoy__factory_boy
factory/errors.py
{ "start": 537, "end": 748 }
class ____(FactoryError): """Raised when a sub-declaration has no related declaration. This means that the user declared 'foo__bar' without adding a declaration at 'foo'. """
InvalidDeclarationError
python
ansible__ansible
lib/ansible/galaxy/collection/gpg.py
{ "start": 3921, "end": 4101 }
class ____(GpgBaseError): """The signature with the keyid is good, but the signature is expired.""" keyid: str username: str @dataclass(frozen=True, slots=True)
GpgExpSig
python
python-poetry__poetry
src/poetry/mixology/version_solver.py
{ "start": 5060, "end": 26690 }
class ____: """ The version solver that finds a set of package versions that satisfy the root package's dependencies. See https://github.com/dart-lang/pub/tree/master/doc/solver.md for details on how this solver works. """ def __init__(self, root: ProjectPackage, provider: Provider) -> None: self._root = root self._provider = provider self._dependency_cache = DependencyCache(provider) self._incompatibilities: dict[str, list[Incompatibility]] = {} self._contradicted_incompatibilities: set[Incompatibility] = set() self._contradicted_incompatibilities_by_level: dict[ int, set[Incompatibility] ] = collections.defaultdict(set) self._solution = PartialSolution() self._get_comp_key_cached = functools.cache(self._get_comp_key) @property def solution(self) -> PartialSolution: return self._solution def solve(self) -> SolverResult: """ Finds a set of dependencies that match the root package's constraints, or raises an error if no such set is available. """ start = time.time() root_dependency = Dependency(self._root.name, self._root.version) root_dependency.is_root = True self._add_incompatibility( Incompatibility([Term(root_dependency, False)], RootCauseError()) ) try: next: str | None = self._root.name while next is not None: self._propagate(next) next = self._choose_package_version() return self._result() except Exception: raise finally: self._log( f"Version solving took {time.time() - start:.3f} seconds.\n" f"Tried {self._solution.attempted_solutions} solutions." ) def _propagate(self, package: str) -> None: """ Performs unit propagation on incompatibilities transitively related to package to derive new assignments for _solution. """ changed = {package} while changed: package = changed.pop() # Iterate in reverse because conflict resolution tends to produce more # general incompatibilities as time goes on. If we look at those first, # we can derive stronger assignments sooner and more eagerly find # conflicts. for incompatibility in reversed(self._incompatibilities[package]): if incompatibility in self._contradicted_incompatibilities: continue result = self._propagate_incompatibility(incompatibility) if result is _conflict: # If the incompatibility is satisfied by the solution, we use # _resolve_conflict() to determine the root cause of the conflict as # a new incompatibility. # # It also backjumps to a point in the solution # where that incompatibility will allow us to derive new assignments # that avoid the conflict. root_cause = self._resolve_conflict(incompatibility) # Back jumping erases all the assignments we did at the previous # decision level, so we clear [changed] and refill it with the # newly-propagated assignment. changed.clear() result = self._propagate_incompatibility(root_cause) assert result is not None assert result != _conflict assert isinstance(result, str) changed.add(result) break if result is not None: assert isinstance(result, str) changed.add(result) def _propagate_incompatibility( self, incompatibility: Incompatibility ) -> str | object | None: """ If incompatibility is almost satisfied by _solution, adds the negation of the unsatisfied term to _solution. If incompatibility is satisfied by _solution, returns _conflict. If incompatibility is almost satisfied by _solution, returns the unsatisfied term's package name. Otherwise, returns None. """ # The first entry in incompatibility.terms that's not yet satisfied by # _solution, if one exists. If we find more than one, _solution is # inconclusive for incompatibility and we can't deduce anything. unsatisfied = None for term in incompatibility.terms: relation = self._solution.relation(term) if relation == SetRelation.DISJOINT: # If term is already contradicted by _solution, then # incompatibility is contradicted as well and there's nothing new we # can deduce from it. self._contradicted_incompatibilities.add(incompatibility) self._contradicted_incompatibilities_by_level[ self._solution.decision_level ].add(incompatibility) return None elif relation == SetRelation.OVERLAPPING: # If more than one term is inconclusive, we can't deduce anything about # incompatibility. if unsatisfied is not None: return None # If exactly one term in incompatibility is inconclusive, then it's # almost satisfied and [term] is the unsatisfied term. We can add the # inverse of the term to _solution. unsatisfied = term # If *all* terms in incompatibility are satisfied by _solution, then # incompatibility is satisfied and we have a conflict. if unsatisfied is None: return _conflict self._contradicted_incompatibilities.add(incompatibility) self._contradicted_incompatibilities_by_level[ self._solution.decision_level ].add(incompatibility) adverb = "not " if unsatisfied.is_positive() else "" self._log(f"derived: {adverb}{unsatisfied.dependency}") self._solution.derive( unsatisfied.dependency, not unsatisfied.is_positive(), incompatibility ) complete_name: str = unsatisfied.dependency.complete_name return complete_name def _resolve_conflict(self, incompatibility: Incompatibility) -> Incompatibility: """ Given an incompatibility that's satisfied by _solution, The `conflict resolution`_ constructs a new incompatibility that encapsulates the root cause of the conflict and backtracks _solution until the new incompatibility will allow _propagate() to deduce new assignments. Adds the new incompatibility to _incompatibilities and returns it. .. _conflict resolution: https://github.com/dart-lang/pub/tree/master/doc/solver.md#conflict-resolution """ self._log(f"conflict: {incompatibility}") new_incompatibility = False while not incompatibility.is_failure(): # The term in incompatibility.terms that was most recently satisfied by # _solution. most_recent_term = None # The earliest assignment in _solution such that incompatibility is # satisfied by _solution up to and including this assignment. most_recent_satisfier = None # The difference between most_recent_satisfier and most_recent_term; # that is, the versions that are allowed by most_recent_satisfier and not # by most_recent_term. This is None if most_recent_satisfier totally # satisfies most_recent_term. difference = None # The decision level of the earliest assignment in _solution *before* # most_recent_satisfier such that incompatibility is satisfied by # _solution up to and including this assignment plus # most_recent_satisfier. # # Decision level 1 is the level where the root package was selected. It's # safe to go back to decision level 0, but stopping at 1 tends to produce # better error messages, because references to the root package end up # closer to the final conclusion that no solution exists. previous_satisfier_level = 1 for term in incompatibility.terms: satisfier = self._solution.satisfier(term) if most_recent_satisfier is None: most_recent_term = term most_recent_satisfier = satisfier elif most_recent_satisfier.index < satisfier.index: previous_satisfier_level = max( previous_satisfier_level, most_recent_satisfier.decision_level ) most_recent_term = term most_recent_satisfier = satisfier difference = None else: previous_satisfier_level = max( previous_satisfier_level, satisfier.decision_level ) if most_recent_term == term: # If most_recent_satisfier doesn't satisfy most_recent_term on its # own, then the next-most-recent satisfier may be the one that # satisfies the remainder. difference = most_recent_satisfier.difference(most_recent_term) if difference is not None: previous_satisfier_level = max( previous_satisfier_level, self._solution.satisfier(difference.inverse).decision_level, ) # If most_recent_identifier is the only satisfier left at its decision # level, or if it has no cause (indicating that it's a decision rather # than a derivation), then incompatibility is the root cause. We then # backjump to previous_satisfier_level, where incompatibility is # guaranteed to allow _propagate to produce more assignments. # using assert to suppress mypy [union-attr] assert most_recent_satisfier is not None if ( previous_satisfier_level < most_recent_satisfier.decision_level or most_recent_satisfier.cause is None ): for level in range( self._solution.decision_level, previous_satisfier_level, -1 ): if level in self._contradicted_incompatibilities_by_level: self._contradicted_incompatibilities.difference_update( self._contradicted_incompatibilities_by_level.pop(level), ) self._dependency_cache.clear_level(level) self._solution.backtrack(previous_satisfier_level) if new_incompatibility: self._add_incompatibility(incompatibility) return incompatibility # Create a new incompatibility by combining incompatibility with the # incompatibility that caused most_recent_satisfier to be assigned. Doing # this iteratively constructs an incompatibility that's guaranteed to be # true (that is, we know for sure no solution will satisfy the # incompatibility) while also approximating the intuitive notion of the # "root cause" of the conflict. new_terms = [ term for term in incompatibility.terms if term != most_recent_term ] for term in most_recent_satisfier.cause.terms: if term.dependency != most_recent_satisfier.dependency: new_terms.append(term) # The most_recent_satisfier may not satisfy most_recent_term on its own # if there are a collection of constraints on most_recent_term that # only satisfy it together. For example, if most_recent_term is # `foo ^1.0.0` and _solution contains `[foo >=1.0.0, # foo <2.0.0]`, then most_recent_satisfier will be `foo <2.0.0` even # though it doesn't totally satisfy `foo ^1.0.0`. # # In this case, we add `not (most_recent_satisfier \ most_recent_term)` to # the incompatibility as well, See the `algorithm documentation`_ for # details. # # .. _algorithm documentation: # https://github.com/dart-lang/pub/tree/master/doc/solver.md#conflict-resolution if difference is not None: inverse = difference.inverse if inverse.dependency != most_recent_satisfier.dependency: new_terms.append(inverse) incompatibility = Incompatibility( new_terms, ConflictCauseError(incompatibility, most_recent_satisfier.cause), ) new_incompatibility = True partially = "" if difference is None else " partially" self._log( f"! {most_recent_term} is{partially} satisfied by" f" {most_recent_satisfier}" ) self._log(f'! which is caused by "{most_recent_satisfier.cause}"') self._log(f"! thus: {incompatibility}") raise SolveFailureError(incompatibility) def _get_comp_key(self, dependency: Dependency) -> CompKey: """ Returns a tuple of - preference - num_deps_upper_bound - has_deps - num_packages that serves as priority for choosing the next package to resolve. (A lower value takes precedence.) In order to provide results that are as deterministic as possible and consistent between `poetry lock` and `poetry update`, the return value of two different dependencies should not be equal if possible. ## preference See Preference class. ## num_deps_upper_bound A dependency with an upper bound is more likely to cause conflicts. Therefore, a package with more dependencies with upper bounds should be chosen first. ## has_deps A package with dependencies should be chosen first because a package without dependencies is less likely to cause conflicts. ## num_packages The original algorithm proposes to prefer packages with as few remaining versions as possible, so that if a conflict is necessary it's forced quickly. https://github.com/dart-lang/pub/blob/master/doc/solver.md#decision-making However, this leads to the famous boto3 vs. urllib3 issue, so we prefer packages with more remaining versions (see https://github.com/python-poetry/poetry/pull/8255#issuecomment-1657198242 for more details). """ preference = Preference.DEFAULT # Direct origin dependencies must be handled first: we don't want to resolve # a regular dependency for some package only to find later that we had a # direct-origin dependency. if dependency.is_direct_origin(): preference = Preference.DIRECT_ORIGIN packages: list[DependencyPackage] = [] use_latest = dependency.name in self._provider.use_latest if not use_latest: locked = self._provider.get_locked(dependency) if locked: if preference == Preference.DEFAULT: preference = Preference.LOCKED packages = [locked] if not packages: packages = self._dependency_cache.search_for( dependency, self._solution.decision_level ) num_packages = len(packages) if packages: package = packages[0].package if package.is_root(): relevant_dependencies = package.all_requires else: if preference != Preference.LOCKED and not package.is_direct_origin(): # We have to get the package from the pool, # otherwise `requires` will be empty. # # We might need `package.source_reference` as fallback # for transitive dependencies without a source # if there is a top-level dependency # for the same package with an explicit source. for repo in (dependency.source_name, package.source_reference): try: package = self._provider.get_package_from_pool( package.pretty_name, package.version, repository_name=repo, ) except Exception: pass else: break relevant_dependencies = [ r for r in package.requires if not r.in_extras or r.in_extras[0] in dependency.extras ] has_deps = bool(relevant_dependencies) num_deps_upper_bound = sum( 1 for d in relevant_dependencies if d.constraint.has_upper_bound() ) else: has_deps = False num_deps_upper_bound = 0 if preference == Preference.DEFAULT: if num_packages < 2: preference = Preference.NO_CHOICE elif use_latest: preference = Preference.USE_LATEST return preference, -num_deps_upper_bound, not has_deps, -num_packages def _choose_next(self, unsatisfied: list[Dependency]) -> Dependency: """ Chooses the next package to resolve. """ return min(unsatisfied, key=self._get_comp_key_cached) def _choose_package_version(self) -> str | None: """ Tries to select a version of a required package. Returns the name of the package whose incompatibilities should be propagated by _propagate(), or None indicating that version solving is complete and a solution has been found. """ unsatisfied = self._solution.unsatisfied if not unsatisfied: return None dependency = self._choose_next(unsatisfied) locked = self._provider.get_locked(dependency) if locked is None: packages = self._dependency_cache.search_for( dependency, self._solution.decision_level ) package = next(iter(packages), None) if package is None: # If there are no versions that satisfy the constraint, # add an incompatibility that indicates that. self._add_incompatibility( Incompatibility([Term(dependency, True)], NoVersionsCauseError()) ) complete_name = dependency.complete_name return complete_name package.dependency.transitive_marker = dependency.transitive_marker else: package = locked package = self._provider.complete_package(package) conflict = False for incompatibility in self._provider.incompatibilities_for(package): self._add_incompatibility(incompatibility) # If an incompatibility is already satisfied, then selecting version # would cause a conflict. # # We'll continue adding its dependencies, then go back to # unit propagation which will guide us to choose a better version. conflict = conflict or all( term.dependency.complete_name == dependency.complete_name or self._solution.satisfies(term) for term in incompatibility.terms ) if not conflict: self._solution.decide(package.package) self._log( f"selecting {package.package.complete_name}" f" ({package.package.full_pretty_version})" ) complete_name = dependency.complete_name return complete_name def _result(self) -> SolverResult: """ Creates a #SolverResult from the decisions in _solution """ decisions = self._solution.decisions return SolverResult( self._root, [p for p in decisions if not p.is_root()], self._solution.attempted_solutions, ) def _add_incompatibility(self, incompatibility: Incompatibility) -> None: self._log(f"fact: {incompatibility}") for term in incompatibility.terms: if term.dependency.complete_name not in self._incompatibilities: self._incompatibilities[term.dependency.complete_name] = [] if ( incompatibility in self._incompatibilities[term.dependency.complete_name] ): continue self._incompatibilities[term.dependency.complete_name].append( incompatibility ) def _log(self, text: str) -> None: self._provider.debug(text, self._solution.attempted_solutions)
VersionSolver
python
django__django
django/templatetags/i18n.py
{ "start": 2092, "end": 3341 }
class ____(Node): child_nodelists = () def __init__(self, filter_expression, noop, asvar=None, message_context=None): self.noop = noop self.asvar = asvar self.message_context = message_context self.filter_expression = filter_expression if isinstance(self.filter_expression.var, str): self.filter_expression.is_var = True self.filter_expression.var = Variable("'%s'" % self.filter_expression.var) def render(self, context): self.filter_expression.var.translate = not self.noop if self.message_context: self.filter_expression.var.message_context = self.message_context.resolve( context ) output = self.filter_expression.resolve(context) value = render_value_in_context(output, context) # Restore percent signs. Percent signs in template text are doubled # so they are not interpreted as string format flags. is_safe = isinstance(value, SafeData) value = value.replace("%%", "%") value = mark_safe(value) if is_safe else value if self.asvar: context[self.asvar] = value return "" else: return value
TranslateNode
python
sphinx-doc__sphinx
tests/roots/test-ext-autodoc/target/autoclass_content.py
{ "start": 503, "end": 678 }
class ____: """A class having both __init__ and __new__""" def __init__(self): """__init__ docstring""" def __new__(cls): """__new__ docstring"""
F
python
pytorch__pytorch
test/inductor/test_ordered_set.py
{ "start": 53769, "end": 53985 }
class ____(TestCopying, TestCase): def setUp(self): super().setUp() self.OrderedSet = OrderedSet() # ------------------------------------------------------------------------------
TestCopyingEmpty
python
numba__numba
numba/core/typing/context.py
{ "start": 445, "end": 1186 }
class ____(object): __slots__ = 'promote', 'safe_convert', "unsafe_convert" def __init__(self): self.promote = 0 self.safe_convert = 0 self.unsafe_convert = 0 def astuple(self): """Returns a tuple suitable for comparing with the worse situation start first. """ return (self.unsafe_convert, self.safe_convert, self.promote) def __add__(self, other): if type(self) is not type(other): return NotImplemented rsum = Rating() rsum.promote = self.promote + other.promote rsum.safe_convert = self.safe_convert + other.safe_convert rsum.unsafe_convert = self.unsafe_convert + other.unsafe_convert return rsum
Rating
python
pytorch__pytorch
test/torch_np/numpy_tests/core/test_getlimits.py
{ "start": 4919, "end": 7576 }
class ____(TestCase): @skip(reason="Instantiate {i,f}info from dtypes.") def test_instances(self): iinfo(10) finfo(3.0) @skip(reason="MachAr no implemented (does it need to)?") def test_known_types(self): # Test we are correctly compiling parameters for known types for ftype, ma_like in ( (np.float16, _float_ma[16]), (np.float32, _float_ma[32]), (np.float64, _float_ma[64]), ): assert_ma_equal(_discovered_machar(ftype), ma_like) # Suppress warning for broken discovery of double double on PPC ld_ma = _discovered_machar(np.longdouble) bytes = np.dtype(np.longdouble).itemsize if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16): # 80-bit extended precision assert_ma_equal(ld_ma, _float_ma[80]) elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16: # IEE 754 128-bit assert_ma_equal(ld_ma, _float_ma[128]) @skip(reason="MachAr no implemented (does it need to be)?") def test_subnormal_warning(self): """Test that the subnormal is zero warning is not being raised.""" ld_ma = _discovered_machar(np.longdouble) bytes = np.dtype(np.longdouble).itemsize with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16): # 80-bit extended precision ld_ma.smallest_subnormal assert len(w) == 0 elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16: # IEE 754 128-bit ld_ma.smallest_subnormal assert len(w) == 0 else: # Double double ld_ma.smallest_subnormal # This test may fail on some platforms assert len(w) == 0 @xpassIfTorchDynamo_np # (reason="None of nmant, minexp, maxexp is implemented.") def test_plausible_finfo(self): # Assert that finfo returns reasonable results for all types for ftype in ( [np.float16, np.float32, np.float64, np.longdouble] + [ np.complex64, np.complex128, ] # no complex256 in torch._numpy + ([np.clongdouble] if hasattr(np, "clongdouble") else []) ): info = np.finfo(ftype) assert_(info.nmant > 1) assert_(info.minexp < -1) assert_(info.maxexp > 1) if __name__ == "__main__": run_tests()
TestMisc
python
jazzband__django-simple-history
simple_history/tests/models.py
{ "start": 11417, "end": 11580 }
class ____(Document): history = HistoricalRecords() @Document._history_user.setter def _history_user(self, value): self.changed_by = value
Paper
python
jupyterlab__jupyterlab
jupyterlab/extensions/manager.py
{ "start": 4434, "end": 4957 }
class ____: """Plugin manager options. Attributes: lock_all: Whether to lock (prevent enabling/disabling) all plugins. lock_rules: A list of plugins or extensions that cannot be toggled. If extension name is provided, all its plugins will be disabled. The plugin names need to follow colon-separated format of `extension:plugin`. """ lock_rules: frozenset[str] = field(default_factory=frozenset) lock_all: bool = False @dataclass(frozen=True)
PluginManagerOptions
python
getsentry__sentry-python
sentry_sdk/integrations/pymongo.py
{ "start": 2802, "end": 6164 }
class ____(monitoring.CommandListener): def __init__(self): # type: () -> None self._ongoing_operations = {} # type: Dict[int, Span] def _operation_key(self, event): # type: (Union[CommandFailedEvent, CommandStartedEvent, CommandSucceededEvent]) -> int return event.request_id def started(self, event): # type: (CommandStartedEvent) -> None if sentry_sdk.get_client().get_integration(PyMongoIntegration) is None: return with capture_internal_exceptions(): command = dict(copy.deepcopy(event.command)) command.pop("$db", None) command.pop("$clusterTime", None) command.pop("$signature", None) tags = { "db.name": event.database_name, SPANDATA.DB_SYSTEM: "mongodb", SPANDATA.DB_OPERATION: event.command_name, SPANDATA.DB_MONGODB_COLLECTION: command.get(event.command_name), } try: tags["net.peer.name"] = event.connection_id[0] tags["net.peer.port"] = str(event.connection_id[1]) except TypeError: pass data = {"operation_ids": {}} # type: Dict[str, Any] data["operation_ids"]["operation"] = event.operation_id data["operation_ids"]["request"] = event.request_id data.update(_get_db_data(event)) try: lsid = command.pop("lsid")["id"] data["operation_ids"]["session"] = str(lsid) except KeyError: pass if not should_send_default_pii(): command = _strip_pii(command) query = json.dumps(command, default=str) span = sentry_sdk.start_span( op=OP.DB, name=query, origin=PyMongoIntegration.origin, ) for tag, value in tags.items(): # set the tag for backwards-compatibility. # TODO: remove the set_tag call in the next major release! span.set_tag(tag, value) span.set_data(tag, value) for key, value in data.items(): span.set_data(key, value) with capture_internal_exceptions(): sentry_sdk.add_breadcrumb( message=query, category="query", type=OP.DB, data=tags ) self._ongoing_operations[self._operation_key(event)] = span.__enter__() def failed(self, event): # type: (CommandFailedEvent) -> None if sentry_sdk.get_client().get_integration(PyMongoIntegration) is None: return try: span = self._ongoing_operations.pop(self._operation_key(event)) span.set_status(SPANSTATUS.INTERNAL_ERROR) span.__exit__(None, None, None) except KeyError: return def succeeded(self, event): # type: (CommandSucceededEvent) -> None if sentry_sdk.get_client().get_integration(PyMongoIntegration) is None: return try: span = self._ongoing_operations.pop(self._operation_key(event)) span.set_status(SPANSTATUS.OK) span.__exit__(None, None, None) except KeyError: pass
CommandTracer
python
huggingface__transformers
src/transformers/models/camembert/modular_camembert.py
{ "start": 15281, "end": 18428 }
class ____(RobertaForQuestionAnswering): def __init__(self, config): super().__init__(config) del self.camembert self.roberta = CamembertModel(config, add_pooling_layer=False) @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value >= 2. All the value in this tensor should be always < type_vocab_size. [What are token type IDs?](../glossary#token-type-ids) """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, return_dict=True, **kwargs, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
CamembertForQuestionAnswering
python
rapidsai__cudf
python/cudf/cudf/core/series.py
{ "start": 14236, "end": 14290 }
class ____(_SeriesLocIndexer): pass
_SeriesAtIndexer
python
lazyprogrammer__machine_learning_examples
rl2/a3c/thread_example.py
{ "start": 90, "end": 982 }
class ____: def __init__(self, id_, global_counter): self.id = id_ self.global_counter = global_counter self.local_counter = itertools.count() def run(self): while True: time.sleep(np.random.rand()*2) global_step = next(self.global_counter) local_step = next(self.local_counter) print("Worker({}): {}".format(self.id, local_step)) if global_step >= 20: break global_counter = itertools.count() NUM_WORKERS = multiprocessing.cpu_count() # create the workers workers = [] for worker_id in range(NUM_WORKERS): worker = Worker(worker_id, global_counter) workers.append(worker) # start the threads worker_threads = [] for worker in workers: worker_fn = lambda: worker.run() t = threading.Thread(target=worker_fn) t.start() worker_threads.append(t) # join the threads for t in worker_threads: t.join() print("DONE!")
Worker
python
pytorch__pytorch
torch/_dynamo/source.py
{ "start": 18419, "end": 18836 }
class ____(ChainedSource): idx: int def __post_init__(self) -> None: assert self.base is not None def reconstruct(self, codegen: "PyCodegen") -> None: raise NotImplementedError def guard_source(self) -> GuardSource: return self.base.guard_source() def name(self) -> str: return f"({self.idx}, {self.base.name()})" @dataclasses.dataclass(frozen=True)
IndexedSource
python
python-pillow__Pillow
Tests/test_imagewin.py
{ "start": 116, "end": 620 }
class ____: def test_sanity(self) -> None: dir(ImageWin) def test_hdc(self) -> None: # Arrange dc = 50 # Act hdc = ImageWin.HDC(dc) dc2 = int(hdc) # Assert assert dc2 == 50 def test_hwnd(self) -> None: # Arrange wnd = 50 # Act hwnd = ImageWin.HWND(wnd) wnd2 = int(hwnd) # Assert assert wnd2 == 50 @pytest.mark.skipif(not is_win32(), reason="Windows only")
TestImageWin
python
huggingface__transformers
src/transformers/models/instructblipvideo/modular_instructblipvideo.py
{ "start": 6823, "end": 6943 }
class ____(InstructBlipForConditionalGenerationModelOutput): pass
InstructBlipVideoForConditionalGenerationModelOutput
python
huggingface__transformers
src/transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py
{ "start": 34853, "end": 35835 }
class ____(nn.Module): def __init__(self, length, channels, max_timescale=10000): super().__init__() if channels % 2 != 0: raise ValueError("SinusoidsPositionEmbedding needs even channels input") log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float()) scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] self.register_buffer( "positional_embedding", torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1), persistent=False, ) def forward(self, seqlen: int): return self.positional_embedding[:seqlen, :] @auto_docstring( custom_intro=""" Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`Qwen2_5OmniAudioEncoderLayer`]. """ )
SinusoidsPositionEmbedding
python
plotly__plotly.py
tests/test_core/test_graph_objs/test_instantiate_hierarchy.py
{ "start": 303, "end": 1406 }
class ____(TestCase): def test_construct_datatypes(self): for datatypes_module in datatype_modules: module = importlib.import_module(datatypes_module) for name in getattr(module, "__all__", []): if name.startswith("_") or name[0].islower() or name == "FigureWidget": continue obj = getattr(module, name) try: v = obj() except Exception: print( "Failed to construct {obj} in module {module}".format( obj=obj, module=datatypes_module ) ) raise if obj.__module__ == "plotly.graph_objs._deprecations": self.assertTrue(isinstance(v, list) or isinstance(v, dict)) obj() elif name in ("Figure", "FigureWidget"): self.assertIsInstance(v, BaseFigure) else: self.assertIsInstance(v, BasePlotlyType)
HierarchyTest
python
huggingface__transformers
src/transformers/models/pixtral/modeling_pixtral.py
{ "start": 1743, "end": 8336 }
class ____(nn.Module): """ The key with pixtral embedding is just that you have a frequency for each pixel positions. If you have height x width pixels (or embedding pixels), then the frequency used for ROPE is given by indexing the pre_computed frequency on the width and height. What you output is of dimension (batch, height * width, dim) with dim the embed dim. This simply means that for each image hidden state, you are going to add a corresponding positional embedding, based on its index in the grid. """ inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: PixtralVisionConfig, device=None, layer_type=None): super().__init__() self.config = config self.rope_type = self.config.rope_parameters["rope_type"] rope_init_fn: Callable = self.compute_default_rope_parameters if self.rope_type != "default": raise ValueError( f"{self.__class__.__name__} does not support non-default RoPE, but got `rope_type={self.rope_type}`" ) inv_freq, attention_scaling = rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = inv_freq @staticmethod def compute_default_rope_parameters( config: Optional[PixtralVisionConfig] = None, device: Optional["torch.device"] = None, seq_len: Optional[int] = None, ) -> tuple["torch.Tensor", float]: """ Computes the inverse frequencies according to the original RoPE implementation Args: config ([`~transformers.PreTrainedConfig`]): The model configuration. device (`torch.device`): The device to use for initialization of the inverse frequencies. seq_len (`int`, *optional*): The current sequence length. Unused for this type of RoPE. Returns: Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). """ base = config.rope_parameters["rope_theta"] dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads attention_factor = 1.0 # Unused in this type of RoPE # Here is the diff from Llama RoPE max_patches_per_side = config.image_size // config.patch_size h = torch.arange(max_patches_per_side) w = torch.arange(max_patches_per_side) freqs = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) freqs_h = torch.outer(h, freqs[::2]).float() freqs_w = torch.outer(w, freqs[1::2]).float() inv_freq = torch.cat( [ freqs_h[:, None, :].repeat(1, max_patches_per_side, 1), freqs_w[None, :, :].repeat(max_patches_per_side, 1, 1), ], dim=-1, ).reshape(-1, dim // 2) # we reshape to only index on the position indexes, not tuple of indexes # Different from paper, but it uses a different permutation in order to obtain the same calculation # TODO maybe make it torch compatible later on. We can also just slice inv_freq = torch.cat((inv_freq, inv_freq), dim=-1) return inv_freq, attention_factor @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): freqs = self.inv_freq[position_ids] device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 emb = freqs cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.siglip.modeling_siglip.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights
PixtralRotaryEmbedding
python
ray-project__ray
python/ray/train/base_trainer.py
{ "start": 4480, "end": 37414 }
class ____(abc.ABC): """Defines interface for distributed training on Ray. Note: The base ``BaseTrainer`` class cannot be instantiated directly. Only one of its subclasses can be used. Note to developers: If a new trainer is added, please update `air/_internal/usage.py`. **How does a trainer work?** - First, initialize the Trainer. The initialization runs locally, so heavyweight setup should not be done in ``__init__``. - Then, when you call ``trainer.fit()``, the Trainer is serialized and copied to a remote Ray actor. The following methods are then called in sequence on the remote actor. - ``trainer.setup()``: Any heavyweight Trainer setup should be specified here. - ``trainer.training_loop()``: Executes the main training logic. - Calling ``trainer.fit()`` will return a ``ray.result.Result`` object where you can access metrics from your training run, as well as any checkpoints that may have been saved. **How do I create a new Trainer?** Subclass ``ray.train.trainer.BaseTrainer``, and override the ``training_loop`` method, and optionally ``setup``. .. testcode:: :skipif: True import torch from ray.train.trainer import BaseTrainer from ray import train, tune class MyPytorchTrainer(BaseTrainer): def setup(self): self.model = torch.nn.Linear(1, 1) self.optimizer = torch.optim.SGD( self.model.parameters(), lr=0.1) def training_loop(self): # You can access any Trainer attributes directly in this method. # self.datasets["train"] has already been dataset = self.datasets["train"] torch_ds = dataset.iter_torch_batches(dtypes=torch.float) loss_fn = torch.nn.MSELoss() for epoch_idx in range(10): loss = 0 num_batches = 0 torch_ds = dataset.iter_torch_batches( dtypes=torch.float, batch_size=2 ) for batch in torch_ds: X = torch.unsqueeze(batch["x"], 1) y = torch.unsqueeze(batch["y"], 1) # Compute prediction error pred = self.model(X) batch_loss = loss_fn(pred, y) # Backpropagation self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() loss += batch_loss.item() num_batches += 1 loss /= num_batches # Use Tune functions to report intermediate # results. train.report({"loss": loss, "epoch": epoch_idx}) # Initialize the Trainer, and call Trainer.fit() import ray train_dataset = ray.data.from_items( [{"x": i, "y": i} for i in range(10)]) my_trainer = MyPytorchTrainer(datasets={"train": train_dataset}) result = my_trainer.fit() Args: scaling_config: Configuration for how to scale training. run_config: Configuration for the execution of the training run. datasets: Any Datasets to use for training. Use the key "train" to denote which dataset is the training dataset. metadata: Dict that should be made available via `train.get_context().get_metadata()` and in `checkpoint.get_metadata()` for checkpoints saved from this Trainer. Must be JSON-serializable. resume_from_checkpoint: A checkpoint to resume training from. """ _scaling_config_allowed_keys: List[str] = [ "trainer_resources", ] _handles_checkpoint_freq: bool = False _handles_checkpoint_at_end: bool = False # fields to propagate to Tuner param_space. # See `BaseTrainer._extract_fields_for_tuner_param_space` for more details. _fields_for_tuner_param_space = [] def __init__( self, *, scaling_config: Optional[ScalingConfig] = None, run_config: Optional[RunConfig] = None, datasets: Optional[Dict[str, GenDataset]] = None, metadata: Optional[Dict[str, Any]] = None, resume_from_checkpoint: Optional[Checkpoint] = None, ): self.scaling_config = ( scaling_config if scaling_config is not None else ScalingConfig() ) self.run_config = ( copy.copy(run_config) if run_config is not None else RunConfig() ) self.metadata = metadata self.datasets = datasets if datasets is not None else {} self.starting_checkpoint = resume_from_checkpoint if _v2_migration_warnings_enabled(): if metadata is not None: _log_deprecation_warning(_GET_METADATA_DEPRECATION_MESSAGE) if resume_from_checkpoint is not None: _log_deprecation_warning(_RESUME_FROM_CHECKPOINT_DEPRECATION_WARNING) # These attributes should only be set through `BaseTrainer.restore` self._restore_path = None self._restore_storage_filesystem = None self._validate_attributes() usage_lib.record_library_usage("train") air_usage.tag_air_trainer(self) @classmethod @Deprecated(message=_TRAINER_RESTORE_DEPRECATION_WARNING) def restore( cls: Type["BaseTrainer"], path: Union[str, os.PathLike], storage_filesystem: Optional[pyarrow.fs.FileSystem] = None, datasets: Optional[Dict[str, GenDataset]] = None, scaling_config: Optional[ScalingConfig] = None, **kwargs, ) -> "BaseTrainer": """Restores a Train experiment from a previously interrupted/failed run. Restore should be used for experiment-level fault tolerance in the event that the head node crashes (e.g., OOM or some other runtime error) or the entire cluster goes down (e.g., network error affecting all nodes). A run that has already completed successfully will not be resumed from this API. To continue training from a successful run, launch a new run with the ``<Framework>Trainer(resume_from_checkpoint)`` API instead, passing in a checkpoint from the previous run to start with. .. note:: Restoring an experiment from a path that's pointing to a *different* location than the original experiment path is supported. However, Ray Train assumes that the full experiment directory is available (including checkpoints) so that it's possible to resume trials from their latest state. For example, if the original experiment path was run locally, then the results are uploaded to cloud storage, Ray Train expects the full contents to be available in cloud storage if attempting to resume via ``<Framework>Trainer.restore("s3://...")``. The restored run will continue writing results to the same cloud storage location. The following example can be paired with implementing job retry using :ref:`Ray Jobs <jobs-overview>` to produce a Train experiment that will attempt to resume on both experiment-level and trial-level failures: .. testcode:: :skipif: True import os import ray from ray import train from ray.train.trainer import BaseTrainer experiment_name = "unique_experiment_name" storage_path = os.path.expanduser("~/ray_results") experiment_dir = os.path.join(storage_path, experiment_name) # Define some dummy inputs for demonstration purposes datasets = {"train": ray.data.from_items([{"a": i} for i in range(10)])} class CustomTrainer(BaseTrainer): def training_loop(self): pass if CustomTrainer.can_restore(experiment_dir): trainer = CustomTrainer.restore( experiment_dir, datasets=datasets ) else: trainer = CustomTrainer( datasets=datasets, run_config=train.RunConfig( name=experiment_name, storage_path=storage_path, # Tip: You can also enable retries on failure for # worker-level fault tolerance failure_config=train.FailureConfig(max_failures=3), ), ) result = trainer.fit() Args: path: The path to the experiment directory of the training run to restore. This can be a local path or a remote URI if the experiment was uploaded to the cloud. storage_filesystem: Custom ``pyarrow.fs.FileSystem`` corresponding to the ``path``. This may be necessary if the original experiment passed in a custom filesystem. datasets: Re-specified datasets used in the original training run. This must include all the datasets that were passed in the original trainer constructor. scaling_config: Optionally re-specified scaling config. This can be modified to be different from the original spec. **kwargs: Other optionally re-specified arguments, passed in by subclasses. Raises: ValueError: If all datasets were not re-supplied on restore. Returns: BaseTrainer: A restored instance of the class that is calling this method. """ if _v2_migration_warnings_enabled(): _log_deprecation_warning(_TRAINER_RESTORE_DEPRECATION_WARNING) if not cls.can_restore(path, storage_filesystem): raise ValueError( f"Invalid restore path: {path}. Make sure that this path exists and " "is the experiment directory that results from a call to " "`trainer.fit()`." ) fs, fs_path = get_fs_and_path(path, storage_filesystem) trainer_pkl_path = Path(fs_path, _TRAINER_PKL).as_posix() with fs.open_input_file(trainer_pkl_path) as f: trainer_cls, param_dict = pickle.loads(f.readall()) if trainer_cls is not cls: warnings.warn( f"Invalid trainer type. You are attempting to restore a trainer of type" f" {trainer_cls} with `{cls.__name__}.restore`, " "which will most likely fail. " f"Use `{trainer_cls.__name__}.restore` instead." ) original_datasets = param_dict.pop("datasets", {}) if original_datasets and not datasets: raise ValueError( "The following datasets need to be provided again on restore: " f"{list(original_datasets.keys())}\n" f"Use {cls.__name__}.restore(..., datasets=datasets) " "with the datasets that were provided to the original trainer." ) datasets = datasets or {} if set(original_datasets) != set(datasets): raise ValueError( "The provided datasets don't match the original dataset keys.\n" f" Expected datasets for the keys: {list(original_datasets.keys())}\n" f" Actual datasets provided: {list(datasets.keys())}" ) param_dict["datasets"] = datasets if scaling_config: param_dict["scaling_config"] = scaling_config for param_name, val in kwargs.items(): # Overwrite the old value if something is passed into restore if val is not None: param_dict[param_name] = val try: trainer = cls(**param_dict) except Exception as e: raise ValueError( "Trainer restoration failed (see above for the stack trace). " "Make sure that you use the right trainer class to restore: " f"`{cls.__name__}.restore`\n" ) from e trainer._restore_path = path trainer._restore_storage_filesystem = storage_filesystem return trainer @classmethod @Deprecated( message=_TRAINER_RESTORE_DEPRECATION_WARNING, warning=_v2_migration_warnings_enabled(), ) def can_restore( cls: Type["BaseTrainer"], path: Union[str, os.PathLike], storage_filesystem: Optional[pyarrow.fs.FileSystem] = None, ) -> bool: """Checks whether a given directory contains a restorable Train experiment. Args: path: The path to the experiment directory of the Train experiment. This can be either a local directory (e.g., ~/ray_results/exp_name) or a remote URI (e.g., s3://bucket/exp_name). Returns: bool: Whether this path exists and contains the trainer state to resume from """ if _v2_migration_warnings_enabled(): _log_deprecation_warning(_TRAINER_RESTORE_DEPRECATION_WARNING) fs, fs_path = get_fs_and_path(path, storage_filesystem) trainer_pkl_path = Path(fs_path, _TRAINER_PKL).as_posix() return _exists_at_fs_path(fs, trainer_pkl_path) def __repr__(self): # A dictionary that maps parameters to their default values. default_values: Dict[str, Any] = { "scaling_config": ScalingConfig(), "run_config": RunConfig(), "datasets": {}, "starting_checkpoint": None, } non_default_arguments = [] for parameter, default_value in default_values.items(): value = getattr(self, parameter) if value != default_value: non_default_arguments.append(f"{parameter}={value!r}") if non_default_arguments: return f"<{self.__class__.__name__} {' '.join(non_default_arguments)}>" return f"<{self.__class__.__name__}>" def __new__(cls, *args, **kwargs): # Store the init args as attributes so this can be merged with Tune hparams. trainer = super(BaseTrainer, cls).__new__(cls) parameters = inspect.signature(cls.__init__).parameters parameters = list(parameters.keys()) # Remove self. parameters = parameters[1:] arg_dict = dict(zip(parameters, args)) trainer._param_dict = {**arg_dict, **kwargs} return trainer def _validate_attributes(self): """Called on __init()__ to validate trainer attributes.""" # Run config if not isinstance(self.run_config, RunConfig): raise ValueError( f"`run_config` should be an instance of `ray.train.RunConfig`, " f"found {type(self.run_config)} with value `{self.run_config}`." ) # Scaling config if not isinstance(self.scaling_config, ScalingConfig): raise ValueError( "`scaling_config` should be an instance of `ScalingConfig`, " f"found {type(self.scaling_config)} with value `{self.scaling_config}`." ) # Datasets if not isinstance(self.datasets, dict): raise ValueError( f"`datasets` should be a dict mapping from a string to " f"`ray.data.Dataset` objects, " f"found {type(self.datasets)} with value `{self.datasets}`." ) else: for key, dataset in self.datasets.items(): if not isinstance(dataset, ray.data.Dataset) and not callable(dataset): raise ValueError( f"The Dataset under '{key}' key is not a " "`ray.data.Dataset`. " f"Received {dataset} instead." ) # Metadata. self.metadata = self.metadata or {} if not isinstance(self.metadata, dict): raise TypeError( f"The provided metadata must be a dict, was {type(self.metadata)}." ) try: self.metadata = json.loads(json.dumps(self.metadata)) except Exception as e: raise ValueError( "The provided metadata must be JSON-serializable: " f"{self.metadata}: {e}" ) if self.starting_checkpoint is not None and not isinstance( self.starting_checkpoint, Checkpoint ): raise ValueError( f"`resume_from_checkpoint` should be an instance of " f"`ray.train.Checkpoint`, found {type(self.starting_checkpoint)} " f"with value `{self.starting_checkpoint}`." ) self._log_v2_deprecation_warnings() def _log_v2_deprecation_warnings(self): """Logs deprecation warnings for v2 migration. Log them here in the Ray Train case rather than in the configuration constructors to avoid logging incorrect deprecation warnings when `ray.train.RunConfig` is passed to Ray Tune. """ from ray.train.v2._internal.constants import V2_ENABLED_ENV_VAR, is_v2_enabled if is_v2_enabled(): raise DeprecationWarning( f"Detected use of a deprecated Trainer import from `{self.__class__.__module__}`. " "This Trainer class is not compatible with Ray Train V2.\n" "To fix this:\n" " - Update to use the new import path. For example, " "`from ray.train.torch.torch_trainer import TorchTrainer` -> " "`from ray.train.torch import TorchTrainer`\n" f" - Or, explicitly disable V2 by setting: {V2_ENABLED_ENV_VAR}=0\n" "See this issue for more context: " "https://github.com/ray-project/ray/issues/49454" ) if not _v2_migration_warnings_enabled(): return from ray.train.v2._internal.migration_utils import ( CALLBACKS_DEPRECATION_MESSAGE, FAIL_FAST_DEPRECATION_MESSAGE, LOG_TO_FILE_DEPRECATION_MESSAGE, PROGRESS_REPORTER_DEPRECATION_MESSAGE, STOP_DEPRECATION_MESSAGE, SYNC_CONFIG_DEPRECATION_MESSAGE, TRAINER_RESOURCES_DEPRECATION_MESSAGE, VERBOSE_DEPRECATION_MESSAGE, ) # ScalingConfig deprecations if self.scaling_config.trainer_resources is not None: _log_deprecation_warning(TRAINER_RESOURCES_DEPRECATION_MESSAGE) # FailureConfig deprecations if self.run_config.failure_config.fail_fast: _log_deprecation_warning(FAIL_FAST_DEPRECATION_MESSAGE) # RunConfig deprecations # NOTE: _verbose is the original verbose value passed by the user if self.run_config._verbose is not None: _log_deprecation_warning(VERBOSE_DEPRECATION_MESSAGE) if self.run_config.log_to_file: _log_deprecation_warning(LOG_TO_FILE_DEPRECATION_MESSAGE) if self.run_config.stop is not None: _log_deprecation_warning(STOP_DEPRECATION_MESSAGE) if self.run_config.callbacks is not None: _log_deprecation_warning(CALLBACKS_DEPRECATION_MESSAGE) if self.run_config.progress_reporter is not None: _log_deprecation_warning(PROGRESS_REPORTER_DEPRECATION_MESSAGE) if self.run_config.sync_config != ray.train.SyncConfig(): _log_deprecation_warning(SYNC_CONFIG_DEPRECATION_MESSAGE) @classmethod def _validate_scaling_config(cls, scaling_config: ScalingConfig) -> ScalingConfig: """Returns scaling config dataclass after validating updated keys.""" ensure_only_allowed_dataclass_keys_updated( dataclass=scaling_config, allowed_keys=cls._scaling_config_allowed_keys, ) return scaling_config def setup(self) -> None: """Called during fit() to perform initial setup on the Trainer. .. note:: This method is run on a remote process. This method will not be called on the driver, so any expensive setup operations should be placed here and not in ``__init__``. This method is called prior to ``preprocess_datasets`` and ``training_loop``. """ pass def preprocess_datasets(self) -> None: """Deprecated.""" raise DeprecationWarning( "`preprocess_datasets` is no longer used, since preprocessors " f"are no longer accepted by Trainers.\n{PREPROCESSOR_DEPRECATION_MESSAGE}" ) @abc.abstractmethod def training_loop(self) -> None: """Loop called by fit() to run training and report results to Tune. .. note:: This method runs on a remote process. ``self.datasets`` have already been evaluated if they were wrapped in a factory. You can use the :ref:`Ray Train utilities <train-loop-api>` (:func:`train.report() <ray.train.report>` and :func:`train.get_checkpoint() <ray.train.get_checkpoint>`) inside this training loop. Example: .. testcode:: from ray.train.trainer import BaseTrainer from ray import train class MyTrainer(BaseTrainer): def training_loop(self): for epoch_idx in range(5): ... train.report({"epoch": epoch_idx}) """ raise NotImplementedError @PublicAPI(stability="beta") def fit(self) -> Result: """Runs training. Returns: A Result object containing the training result. Raises: ray.train.base_trainer.TrainingFailedError: If any failures during the execution of ``self.as_trainable()``, or during the Tune execution loop. """ from ray.tune import ResumeConfig, TuneError from ray.tune.tuner import Tuner trainable = self.as_trainable() param_space = self._extract_fields_for_tuner_param_space() self.run_config.name = ( self.run_config.name or StorageContext.get_experiment_dir_name(trainable) ) # The storage context here is only used to access the resolved # storage fs and experiment path, in order to avoid duplicating that logic. # This is NOT the storage context object that gets passed to remote workers. storage = StorageContext( storage_path=self.run_config.storage_path, experiment_dir_name=self.run_config.name, storage_filesystem=self.run_config.storage_filesystem, ) if self._restore_path: tuner = Tuner.restore( path=self._restore_path, trainable=trainable, param_space=param_space, _resume_config=ResumeConfig( finished=ResumeConfig.ResumeType.RESUME, unfinished=ResumeConfig.ResumeType.RESUME, errored=ResumeConfig.ResumeType.RESUME, ), storage_filesystem=self._restore_storage_filesystem, ) else: tuner = Tuner( trainable=trainable, param_space=param_space, run_config=self.run_config, _entrypoint=AirEntrypoint.TRAINER, ) self._save(storage.storage_filesystem, storage.experiment_fs_path) restore_msg = TrainingFailedError._RESTORE_MSG.format( trainer_cls_name=self.__class__.__name__, path=str(storage.experiment_fs_path), ) try: result_grid = tuner.fit() except TuneError as e: # Catch any `TuneError`s raised by the `Tuner.fit` call. # Unwrap the `TuneError` if needed. parent_error = e.__cause__ or e # Raise it to the user as a `TrainingFailedError` with a message to restore. raise TrainingFailedError(restore_msg) from parent_error # Other exceptions get passed through directly (ex: on `fail_fast='raise'`) assert len(result_grid) == 1 result = result_grid[0] if result.error: # Raise trainable errors to the user with a message to restore # or configure `FailureConfig` in a new run. raise TrainingFailedError( "\n".join([restore_msg, TrainingFailedError._FAILURE_CONFIG_MSG]) ) from result.error return result def _save(self, fs: pyarrow.fs.FileSystem, experiment_path: str): """Saves the current trainer's class along with the `param_dict` of parameters passed to this trainer's constructor. This is used to recreate the trainer on restore. Unless a parameter is re-specified during restoration (only a subset of parameters can be passed in again), that parameter will be loaded from the saved copy. Datasets should not be saved as part of the state. Instead, we save the keys and replace the dataset values with dummy functions that will raise an error if invoked. The error only serves as a guardrail for misuse (e.g., manually unpickling and constructing the Trainer again) and is not typically surfaced, since datasets must be re-specified upon restoration. """ param_dict = self._param_dict.copy() datasets = param_dict.pop("datasets", {}) def raise_fn(): raise RuntimeError if datasets: param_dict["datasets"] = { dataset_name: raise_fn for dataset_name in datasets } cls_and_param_dict = (self.__class__, param_dict) fs.create_dir(experiment_path) with fs.open_output_stream(Path(experiment_path, _TRAINER_PKL).as_posix()) as f: f.write(pickle.dumps(cls_and_param_dict)) def _extract_fields_for_tuner_param_space(self) -> Dict: """Extracts fields to be included in `Tuner.param_space`. This is needed to leverage the full logging/integration offerings from Tune. For example, `param_space` is logged automatically to wandb integration. Currently only done for `train_loop_config`. Returns: A dictionary that should be passed to Tuner.param_space. """ result = {} for key in self._fields_for_tuner_param_space: if key in self._param_dict.keys(): result[key] = copy.deepcopy(self._param_dict[key]) return result def _generate_trainable_cls(self) -> Type["Trainable"]: """Generates the base Trainable class. Returns: A Trainable class to use for training. """ from ray.tune.execution.placement_groups import PlacementGroupFactory from ray.tune.trainable import wrap_function trainer_cls = self.__class__ scaling_config = self.scaling_config metadata = self.metadata train_coordinator_fn = partial( _train_coordinator_fn, trainer_cls=trainer_cls, metadata=metadata ) # Change the name of the training function to match the name of the Trainer # class. This will mean the Tune trial name will match the name of Trainer on # stdout messages and the results directory. train_coordinator_fn.__name__ = trainer_cls.__name__ trainable_cls = wrap_function(train_coordinator_fn) has_base_dataset = bool(self.datasets) if has_base_dataset: from ray.data.context import DataContext dataset_context = DataContext.get_current() else: dataset_context = None class TrainTrainable(trainable_cls): """Adds default resources to the Trainable.""" _handles_checkpoint_freq = trainer_cls._handles_checkpoint_freq _handles_checkpoint_at_end = trainer_cls._handles_checkpoint_at_end @classmethod def has_base_dataset(cls) -> bool: """Whether a dataset is provided through the Trainer.""" return has_base_dataset @classmethod def base_scaling_config(cls) -> ScalingConfig: """Returns the unchanged scaling config provided through the Trainer.""" return scaling_config def setup(self, config, **kwargs): base_config = dict(kwargs) # Merge Tuner param space hyperparameters in `config` into the # base config passed to the Trainer constructor, which is `base_config`. # `base_config` is pulled from the object store from the usage of # tune.with_parameters in `BaseTrainer.as_trainable`. # run_config is not a tunable hyperparameter so it does not need to be # merged. run_config = base_config.pop("run_config", None) self._merged_config = deep_update( base_config, self.config, new_keys_allowed=True ) self._merged_config["run_config"] = run_config merged_scaling_config = self._merged_config.get( "scaling_config", ScalingConfig() ) if isinstance(merged_scaling_config, dict): merged_scaling_config = ScalingConfig(**merged_scaling_config) self._merged_config[ "scaling_config" ] = self._reconcile_scaling_config_with_trial_resources( merged_scaling_config ) if self.has_base_dataset(): # Set the DataContext on the Trainer actor to the DataContext # specified on the driver. DataContext._set_current(dataset_context) super(TrainTrainable, self).setup(config) def _reconcile_scaling_config_with_trial_resources( self, scaling_config: ScalingConfig ) -> ScalingConfig: """ ResourceChangingScheduler workaround. Ensures that the scaling config matches trial resources. This should be replaced with RCS returning a ScalingConfig in the future. """ trial_resources = self.trial_resources # This will be false if the resources are default if not isinstance(trial_resources, PlacementGroupFactory): return scaling_config # Ignore ResourceChangingScheduler workaround when resource bundles # are unchanged if self.trial_resources == scaling_config.as_placement_group_factory(): return scaling_config trainer_cls._validate_scaling_config(scaling_config) return ScalingConfig.from_placement_group_factory(trial_resources) def _trainable_func(self, config): # We ignore the config passed by Tune and instead use the merged # config which includes the initial Trainer args. super()._trainable_func(self._merged_config) @classmethod def default_resource_request(cls, config): # `config["scaling_config"] is a dataclass when passed via the # `scaling_config` argument in `Trainer` and is a dict when passed # via the `scaling_config` key of `param_spec`. # Conversion logic must be duplicated in `TrainTrainable.__init__` # because this is a class method. updated_scaling_config = config.get("scaling_config", scaling_config) if isinstance(updated_scaling_config, dict): updated_scaling_config = ScalingConfig(**updated_scaling_config) validated_scaling_config = trainer_cls._validate_scaling_config( updated_scaling_config ) return validated_scaling_config.as_placement_group_factory() return TrainTrainable def as_trainable(self) -> Type["Trainable"]: """Converts self to a ``tune.Trainable`` class.""" from ray import tune base_config = self._param_dict trainable_cls = self._generate_trainable_cls() # Wrap with `tune.with_parameters` to handle very large values in base_config return tune.with_parameters(trainable_cls, **base_config)
BaseTrainer
python
getsentry__sentry
src/sentry/search/events/fields.py
{ "start": 37674, "end": 38539 }
class ____(ColumnArg): def __init__(self, name: str, **kwargs): super().__init__(name, **kwargs) self.has_default = True def get_default(self, _) -> None: return None def normalize( self, value: str, params: ParamsType, combinator: Combinator | None ) -> str | list[Any]: if value is None: raise InvalidFunctionArgument("a column is required") if value not in FIELD_ALIASES: return value field = FIELD_ALIASES[value] # If the alias has an expression prefer that over the column alias # This enables user.display to work in aggregates expression = field.get_expression(params) if expression is not None: return expression elif field.alias is not None: return field.alias return value
CountColumn
python
spack__spack
lib/spack/spack/util/file_cache.py
{ "start": 617, "end": 1037 }
class ____: def __init__(self, path: Union[str, pathlib.Path]) -> None: self.path = path def __enter__(self) -> Optional[IO[str]]: """Return a file object for the cache if it exists.""" self.cache_file = _maybe_open(self.path) return self.cache_file def __exit__(self, type, value, traceback): if self.cache_file: self.cache_file.close()
ReadContextManager
python
huggingface__transformers
src/transformers/models/janus/modeling_janus.py
{ "start": 16779, "end": 17791 }
class ____(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`JanusVisionEncoderLayer`]. Args: config: JanusVisionConfig """ def __init__(self, config: JanusVisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([JanusVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy @auto_docstring def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutput: hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer( hidden_states, attention_mask, **kwargs, ) return BaseModelOutput(last_hidden_state=hidden_states)
JanusVisionEncoder
python
geekcomputers__Python
BrowserHistory/tests/test_browser_history.py
{ "start": 201, "end": 3525 }
class ____(unittest.TestCase): def setUp(self): """Set up test cases""" self.browser = BrowserHistory("homepage.com") def test_initialization(self): """Test proper initialization of BrowserHistory""" self.assertEqual(self.browser._curr.val, "homepage.com") self.assertEqual(self.browser._back_count, 0) self.assertEqual(self.browser._forward_count, 0) self.assertIsNone(self.browser._curr.nxt) self.assertIsNone(self.browser._curr.prev) def test_visit(self): """Test visit functionality and forward history cleanup""" self.browser.visit("page1.com") self.assertEqual(self.browser._curr.val, "page1.com") self.assertEqual(self.browser._back_count, 1) self.assertEqual(self.browser._forward_count, 0) # Test forward history cleanup self.browser.visit("page2.com") self.browser.back(1) self.browser.visit("page3.com") # Should clear forward history self.assertIsNone(self.browser._curr.nxt) self.assertEqual(self.browser._forward_count, 0) def test_back_navigation(self): """Test back navigation with counter validation""" # Setup history self.browser.visit("page1.com") self.browser.visit("page2.com") # Test normal back navigation result = self.browser.back(1) self.assertEqual(result, "page1.com") self.assertEqual(self.browser._back_count, 1) self.assertEqual(self.browser._forward_count, 1) # Test back with more steps than available result = self.browser.back(5) # Should only go back 1 step self.assertEqual(result, "homepage.com") self.assertEqual(self.browser._back_count, 0) self.assertEqual(self.browser._forward_count, 2) def test_forward_navigation(self): """Test forward navigation with counter validation""" # Setup history and position self.browser.visit("page1.com") self.browser.visit("page2.com") self.browser.back(2) # Go back to homepage # Test normal forward navigation result = self.browser.forward(1) self.assertEqual(result, "page1.com") self.assertEqual(self.browser._forward_count, 1) self.assertEqual(self.browser._back_count, 1) # Test forward with more steps than available result = self.browser.forward(5) # Should only go forward remaining 1 step self.assertEqual(result, "page2.com") self.assertEqual(self.browser._forward_count, 0) self.assertEqual(self.browser._back_count, 2) def test_complex_navigation(self): """Test complex navigation patterns""" self.browser.visit("page1.com") self.browser.visit("page2.com") self.browser.visit("page3.com") # Back navigation self.assertEqual(self.browser.back(2), "page1.com") # New visit should clear forward history self.browser.visit("page4.com") self.assertEqual(self.browser._forward_count, 0) self.assertIsNone(self.browser._curr.nxt) # Verify we can't go forward to cleared history self.assertEqual(self.browser.forward(1), "page4.com") # starting point of code if __name__ == "__main__": unittest.main()
TestBrowserHistory
python
GoogleCloudPlatform__python-docs-samples
appengine/standard/taskqueue/pull-counter/main.py
{ "start": 1640, "end": 2588 }
class ____(webapp2.RequestHandler): def get(self): """Indefinitely fetch tasks and update the datastore.""" queue = taskqueue.Queue("pullq") while True: try: tasks = queue.lease_tasks_by_tag(3600, 1000, deadline=60) except ( taskqueue.TransientError, apiproxy_errors.DeadlineExceededError, ) as e: logging.exception(e) time.sleep(1) continue if tasks: key = tasks[0].tag try: update_counter(key, tasks) except Exception as e: logging.exception(e) raise finally: queue.delete_tasks(tasks) time.sleep(1) app = webapp2.WSGIApplication( [("/", CounterHandler), ("/_ah/start", CounterWorker)], debug=True )
CounterWorker
python
mlflow__mlflow
mlflow/store/artifact/utils/models.py
{ "start": 1760, "end": 6353 }
class ____(NamedTuple): model_id: str | None = None name: str | None = None version: str | None = None stage: str | None = None alias: str | None = None def _parse_model_uri(uri, scheme: str = "models") -> ParsedModelUri: """ Returns a ParsedModelUri tuple. Since a models:/ or prompts:/ URI can only have one of {version, stage, 'latest', alias}, it will return - (id, None, None, None) to look for a specific model by ID, - (name, version, None, None) to look for a specific version, - (name, None, stage, None) to look for the latest version of a stage, - (name, None, None, None) to look for the latest of all versions. - (name, None, None, alias) to look for a registered model alias. Args: uri: The URI to parse (e.g., "models:/name/version" or "prompts:/name@alias") scheme: The expected URI scheme (default: "models", can be "prompts") """ parsed = urllib.parse.urlparse(uri, allow_fragments=False) if parsed.scheme != scheme: raise MlflowException(_improper_model_uri_msg(uri, scheme)) path = parsed.path if not path.startswith("/") or len(path) <= 1: raise MlflowException(_improper_model_uri_msg(uri, scheme)) parts = path.lstrip("/").split("/") if len(parts) > 2 or parts[0].strip() == "": raise MlflowException(_improper_model_uri_msg(uri, scheme)) if len(parts) == 2: name, suffix = parts if suffix.strip() == "": raise MlflowException(_improper_model_uri_msg(uri, scheme)) # The URI is in the suffix format if suffix.isdigit(): # The suffix is a specific version, e.g. "models:/AdsModel1/123" return ParsedModelUri(name=name, version=suffix) elif suffix.lower() == _MODELS_URI_SUFFIX_LATEST.lower() and scheme == "models": # The suffix is the 'latest' string (case insensitive), e.g. "models:/AdsModel1/latest" # Only supported for models, not prompts return ParsedModelUri(name=name) elif scheme == "models": # The suffix is a specific stage (case insensitive), e.g. "models:/AdsModel1/Production" # Only supported for models, not prompts return ParsedModelUri(name=name, stage=suffix) else: # For prompts, only version numbers are supported, not stages or 'latest' raise MlflowException(_improper_model_uri_msg(uri, scheme)) elif "@" in path: # The URI is an alias URI, e.g. "models:/AdsModel1@Champion" alias_parts = parts[0].rsplit("@", 1) if len(alias_parts) != 2 or alias_parts[1].strip() == "": raise MlflowException(_improper_model_uri_msg(uri, scheme)) return ParsedModelUri(name=alias_parts[0], alias=alias_parts[1]) else: # The URI is of the form "models:/<model_id>" return ParsedModelUri(parts[0]) def _parse_model_id_if_present(possible_model_uri: str | Path) -> str | None: """ Parses the model ID from the given string. If the string represents a UC model URI, we get the model version to extract the model ID. If the string is not a models:/ URI, returns None. Args: possible_model_uri: The string that may be a models:/ URI. Returns: The model ID if the string is a models:/ URI, otherwise None. """ uri = str(possible_model_uri) if is_models_uri(uri): parsed_model_uri = _parse_model_uri(uri) if parsed_model_uri.model_id is not None: return parsed_model_uri.model_id elif parsed_model_uri.name is not None and parsed_model_uri.version is not None: client = mlflow.tracking.MlflowClient() return client.get_model_version( parsed_model_uri.name, parsed_model_uri.version ).model_id return None def get_model_name_and_version(client, models_uri): (model_id, model_name, model_version, model_stage, model_alias) = _parse_model_uri(models_uri) if model_id is not None: return (model_id,) if model_version is not None: return model_name, model_version # NB: Call get_model_version_by_alias of registry client directly to bypass prompt check if isinstance(client, mlflow.MlflowClient): client = client._get_registry_client() if model_alias is not None: mv = client.get_model_version_by_alias(model_name, model_alias) return model_name, mv.version return model_name, str(_get_latest_model_version(client, model_name, model_stage))
ParsedModelUri
python
pytorch__pytorch
benchmarks/tensorexpr/reduction.py
{ "start": 7170, "end": 7666 }
class ____(DynamicReduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super().__init__(mode, device, dtype, 1, dim0, dim1) @staticmethod def default_configs(): parent_config = DynamicReduce2DBench.default_configs()[0] return [parent_config[1:]] def config(self): parent_config = super().config() return parent_config[1:] @staticmethod def module(): return "reduce2d_dynamic_inner"
DynamicReduce2DInnerBench