language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
ray-project__ray
rllib/algorithms/impala/impala_learner.py
{ "start": 12425, "end": 16346 }
class ____(threading.Thread): def __init__( self, *, in_queue: queue.Queue, out_queue: deque, device: torch.device, metrics_logger: MetricsLogger, ): super().__init__(name="_GPULoaderThread") self.daemon = True self._in_queue = in_queue self._out_queue = out_queue self._ts_dropped = 0 self._device = device self.metrics = metrics_logger self._metrics_impala_gpu_loader_thread_step_time = Histogram( name="rllib_learner_impala_gpu_loader_thread_step_time", description="Time taken in seconds for gpu loader thread _step.", boundaries=DEFAULT_HISTOGRAM_BOUNDARIES_SHORT_EVENTS, tag_keys=("rllib",), ) self._metrics_impala_gpu_loader_thread_step_time.set_default_tags( {"rllib": "IMPALA/GPULoaderThread"} ) self._metrics_impala_gpu_loader_thread_step_in_queue_get_time = Histogram( name="rllib_learner_impala_gpu_loader_thread_step_get_time", description="Time taken in seconds for gpu loader thread _step _in_queue.get().", boundaries=DEFAULT_HISTOGRAM_BOUNDARIES_SHORT_EVENTS, tag_keys=("rllib",), ) self._metrics_impala_gpu_loader_thread_step_in_queue_get_time.set_default_tags( {"rllib": "IMPALA/GPULoaderThread"} ) self._metrics_impala_gpu_loader_thread_step_load_to_gpu_time = Histogram( name="rllib_learner_impala_gpu_loader_thread_step_load_to_gpu_time", description="Time taken in seconds for GPU loader thread _step to load batch to GPU.", boundaries=DEFAULT_HISTOGRAM_BOUNDARIES_SHORT_EVENTS, tag_keys=("rllib",), ) self._metrics_impala_gpu_loader_thread_step_load_to_gpu_time.set_default_tags( {"rllib": "IMPALA/GPULoaderThread"} ) self._metrics_impala_gpu_loader_thread_in_qsize_beginning_of_step = Gauge( name="rllib_impala_gpu_loader_thread_in_qsize_beginning_of_step", description="Size of the _GPULoaderThread in-queue size, at the beginning of the step.", tag_keys=("rllib",), ) self._metrics_impala_gpu_loader_thread_in_qsize_beginning_of_step.set_default_tags( {"rllib": "IMPALA/GPULoaderThread"} ) def run(self) -> None: while True: with TimerAndPrometheusLogger( self._metrics_impala_gpu_loader_thread_step_time ): self._step() def _step(self) -> None: self._metrics_impala_gpu_loader_thread_in_qsize_beginning_of_step.set( value=self._in_queue.qsize() ) # Get a new batch from the data (in-queue). with self.metrics.log_time((ALL_MODULES, GPU_LOADER_QUEUE_WAIT_TIMER)): with TimerAndPrometheusLogger( self._metrics_impala_gpu_loader_thread_step_in_queue_get_time ): ma_batch_on_cpu = self._in_queue.get() # Load the batch onto the GPU device. with self.metrics.log_time((ALL_MODULES, GPU_LOADER_LOAD_TO_GPU_TIMER)): with TimerAndPrometheusLogger( self._metrics_impala_gpu_loader_thread_step_load_to_gpu_time ): ma_batch_on_gpu = ma_batch_on_cpu.to_device( self._device, pin_memory=False ) if isinstance(self._out_queue, CircularBuffer): ts_dropped = self._out_queue.add(ma_batch_on_gpu) self.metrics.log_value( (ALL_MODULES, LEARNER_THREAD_ENV_STEPS_DROPPED), ts_dropped, reduce="sum", ) else: # Enqueue to Learner thread's in-queue. _LearnerThread.enqueue(self._out_queue, ma_batch_on_gpu, self.metrics)
_GPULoaderThread
python
sphinx-doc__sphinx
sphinx/domains/cpp/_ast.py
{ "start": 152341, "end": 153316 }
class ____(ASTBase): def __init__(self, expr: ASTExpression) -> None: self.expr = expr def __eq__(self, other: object) -> bool: if not isinstance(other, ASTRequiresClause): return NotImplemented return self.expr == other.expr def __hash__(self) -> int: return hash(self.expr) def _stringify(self, transform: StringifyTransform) -> str: return 'requires ' + transform(self.expr) def describe_signature( self, signode: nodes.TextElement, mode: str, env: BuildEnvironment, symbol: Symbol, ) -> None: signode += addnodes.desc_sig_keyword('requires', 'requires') signode += addnodes.desc_sig_space() self.expr.describe_signature(signode, mode, env, symbol) ################################################################################ ################################################################################
ASTRequiresClause
python
run-llama__llama_index
llama-index-experimental/llama_index/experimental/param_tuner/base.py
{ "start": 289, "end": 470 }
class ____(BaseModel): """Run result.""" score: float params: Dict[str, Any] metadata: Dict[str, Any] = Field(default_factory=dict, description="Metadata.")
RunResult
python
wandb__wandb
wandb/integration/tensorflow/estimator_hook.py
{ "start": 727, "end": 1756 }
class ____(SessionRunHook): def __init__(self, summary_op=None, steps_per_log=1000, history=None): self._summary_op = summary_op self._steps_per_log = steps_per_log self._history = history with telemetry.context() as tel: tel.feature.estimator_hook = True def begin(self): if wandb.run is None: raise wandb.Error("You must call `wandb.init()` before calling `WandbHook`") if self._summary_op is None: self._summary_op = merge_all_summaries() self._step = -1 def before_run(self, run_context): return SessionRunArgs( {"summary": self._summary_op, "global_step": get_global_step()} ) def after_run(self, run_context, run_values): step = run_values.results["global_step"] if step % self._steps_per_log == 0: wandb.tensorboard._log( run_values.results["summary"], history=self._history, step=step, )
WandbHook
python
getsentry__sentry
tests/sentry/workflow_engine/endpoints/validators/actions/test_msteams.py
{ "start": 254, "end": 2155 }
class ____(TestCase): def setUp(self) -> None: super().setUp() self.integration, self.org_integration = self.create_provider_integration_for( provider="msteams", organization=self.organization, user=self.user, name="msteams" ) self.valid_data = { "type": Action.Type.MSTEAMS, "config": {"targetDisplay": "cathy-sentry", "targetType": "specific"}, "data": {}, "integrationId": self.integration.id, } @mock.patch("sentry.integrations.msteams.actions.form.find_channel_id") def test_validate(self, mock_check_for_channel: mock.MagicMock) -> None: mock_check_for_channel.return_value = "C1234567890" validator = BaseActionValidator( data=self.valid_data, context={"organization": self.organization}, ) result = validator.is_valid() assert result is True validator.save() @mock.patch("sentry.integrations.msteams.actions.form.find_channel_id") def test_validate__invalid_channel_id(self, mock_find_channel_id: mock.MagicMock) -> None: mock_find_channel_id.return_value = None validator = BaseActionValidator( data={ **self.valid_data, "config": { "targetType": "specific", "targetIdentifier": "C1234567890", "targetDisplay": "asdf", }, }, context={"organization": self.organization}, ) result = validator.is_valid() assert result is False assert validator.errors == { "all": [ ErrorDetail( string='The channel or user "asdf" could not be found in the msteams Team.', code="invalid", ) ] }
TestMSTeamsActionValidator
python
mlflow__mlflow
tests/gateway/tools.py
{ "start": 4068, "end": 4514 }
class ____(mock.Mock): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) async def __aenter__(self): return self async def __aexit__(self, *args): return def mock_http_client(mock_response: MockAsyncResponse | MockAsyncStreamingResponse): mock_http_client = MockHttpClient() mock_http_client.post = mock.Mock(return_value=mock_response) return mock_http_client
MockHttpClient
python
mlflow__mlflow
mlflow/pyfunc/scoring_server/client.py
{ "start": 485, "end": 1124 }
class ____(ABC): @abstractmethod def wait_server_ready(self, timeout=30, scoring_server_proc=None): """ Wait until the scoring server is ready to accept requests. """ @abstractmethod def invoke(self, data, params: dict[str, Any] | None = None): """ Invoke inference on input data. The input data must be pandas dataframe or numpy array or a dict of numpy arrays. Args: data: Model input data. params: Additional parameters to pass to the model for inference. Returns: Prediction result. """
BaseScoringServerClient
python
kubernetes-client__python
kubernetes/client/models/v1_ingress_service_backend.py
{ "start": 383, "end": 4426 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'str', 'port': 'V1ServiceBackendPort' } attribute_map = { 'name': 'name', 'port': 'port' } def __init__(self, name=None, port=None, local_vars_configuration=None): # noqa: E501 """V1IngressServiceBackend - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._port = None self.discriminator = None self.name = name if port is not None: self.port = port @property def name(self): """Gets the name of this V1IngressServiceBackend. # noqa: E501 name is the referenced service. The service must exist in the same namespace as the Ingress object. # noqa: E501 :return: The name of this V1IngressServiceBackend. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1IngressServiceBackend. name is the referenced service. The service must exist in the same namespace as the Ingress object. # noqa: E501 :param name: The name of this V1IngressServiceBackend. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def port(self): """Gets the port of this V1IngressServiceBackend. # noqa: E501 :return: The port of this V1IngressServiceBackend. # noqa: E501 :rtype: V1ServiceBackendPort """ return self._port @port.setter def port(self, port): """Sets the port of this V1IngressServiceBackend. :param port: The port of this V1IngressServiceBackend. # noqa: E501 :type: V1ServiceBackendPort """ self._port = port def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1IngressServiceBackend): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1IngressServiceBackend): return True return self.to_dict() != other.to_dict()
V1IngressServiceBackend
python
pypa__pip
src/pip/_vendor/distlib/util.py
{ "start": 33749, "end": 36067 }
class ____(object): """ A very simple publish/subscribe system. """ def __init__(self): self._subscribers = {} def add(self, event, subscriber, append=True): """ Add a subscriber for an event. :param event: The name of an event. :param subscriber: The subscriber to be added (and called when the event is published). :param append: Whether to append or prepend the subscriber to an existing subscriber list for the event. """ subs = self._subscribers if event not in subs: subs[event] = deque([subscriber]) else: sq = subs[event] if append: sq.append(subscriber) else: sq.appendleft(subscriber) def remove(self, event, subscriber): """ Remove a subscriber for an event. :param event: The name of an event. :param subscriber: The subscriber to be removed. """ subs = self._subscribers if event not in subs: raise ValueError('No subscribers: %r' % event) subs[event].remove(subscriber) def get_subscribers(self, event): """ Return an iterator for the subscribers for an event. :param event: The event to return subscribers for. """ return iter(self._subscribers.get(event, ())) def publish(self, event, *args, **kwargs): """ Publish a event and return a list of values returned by its subscribers. :param event: The event to publish. :param args: The positional arguments to pass to the event's subscribers. :param kwargs: The keyword arguments to pass to the event's subscribers. """ result = [] for subscriber in self.get_subscribers(event): try: value = subscriber(event, *args, **kwargs) except Exception: logger.exception('Exception during event publication') value = None result.append(value) logger.debug('publish %s: args = %s, kwargs = %s, result = %s', event, args, kwargs, result) return result # # Simple sequencing #
EventMixin
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/memberAccess1.py
{ "start": 2448, "end": 2823 }
class ____: @Decorator async def method1(self, a: int, *, b: str) -> str: ... def method2(self): reveal_type(self.method1, expected_text="(a: int, *, b: str) -> Awaitable[str]") @classmethod def method3(cls): reveal_type( cls.method1, expected_text="Decorator[Self@ClassF, (a: int, *, b: str), str]", )
ClassF
python
pyca__cryptography
src/cryptography/x509/ocsp.py
{ "start": 3587, "end": 6568 }
class ____: def __init__( self, request: tuple[ x509.Certificate, x509.Certificate, hashes.HashAlgorithm ] | None = None, request_hash: tuple[bytes, bytes, int, hashes.HashAlgorithm] | None = None, extensions: list[x509.Extension[x509.ExtensionType]] = [], ) -> None: self._request = request self._request_hash = request_hash self._extensions = extensions def add_certificate( self, cert: x509.Certificate, issuer: x509.Certificate, algorithm: hashes.HashAlgorithm, ) -> OCSPRequestBuilder: if self._request is not None or self._request_hash is not None: raise ValueError("Only one certificate can be added to a request") _verify_algorithm(algorithm) if not isinstance(cert, x509.Certificate) or not isinstance( issuer, x509.Certificate ): raise TypeError("cert and issuer must be a Certificate") return OCSPRequestBuilder( (cert, issuer, algorithm), self._request_hash, self._extensions ) def add_certificate_by_hash( self, issuer_name_hash: bytes, issuer_key_hash: bytes, serial_number: int, algorithm: hashes.HashAlgorithm, ) -> OCSPRequestBuilder: if self._request is not None or self._request_hash is not None: raise ValueError("Only one certificate can be added to a request") if not isinstance(serial_number, int): raise TypeError("serial_number must be an integer") _verify_algorithm(algorithm) utils._check_bytes("issuer_name_hash", issuer_name_hash) utils._check_bytes("issuer_key_hash", issuer_key_hash) if algorithm.digest_size != len( issuer_name_hash ) or algorithm.digest_size != len(issuer_key_hash): raise ValueError( "issuer_name_hash and issuer_key_hash must be the same length " "as the digest size of the algorithm" ) return OCSPRequestBuilder( self._request, (issuer_name_hash, issuer_key_hash, serial_number, algorithm), self._extensions, ) def add_extension( self, extval: x509.ExtensionType, critical: bool ) -> OCSPRequestBuilder: if not isinstance(extval, x509.ExtensionType): raise TypeError("extension must be an ExtensionType") extension = x509.Extension(extval.oid, critical, extval) _reject_duplicate_extension(extension, self._extensions) return OCSPRequestBuilder( self._request, self._request_hash, [*self._extensions, extension] ) def build(self) -> OCSPRequest: if self._request is None and self._request_hash is None: raise ValueError("You must add a certificate before building") return ocsp.create_ocsp_request(self)
OCSPRequestBuilder
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/hooks/vertex_ai/experiment_service.py
{ "start": 3870, "end": 9012 }
class ____(GoogleBaseHook): """Use the Vertex AI SDK for Python to create and manage your experiment runs.""" @GoogleBaseHook.fallback_to_default_project_id def create_experiment_run( self, experiment_run_name: str, experiment_name: str, location: str, project_id: str = PROVIDE_PROJECT_ID, experiment_run_tensorboard: str | None = None, run_after_creation: bool = False, ) -> None: """ Create experiment run for the experiment. :param project_id: Required. The ID of the Google Cloud project that the service belongs to. :param location: Required. The ID of the Google Cloud location that the service belongs to. :param experiment_name: Required. The name of the evaluation experiment. :param experiment_run_name: Required. The specific run name or ID for this experiment. :param experiment_run_tensorboard: Optional. A backing TensorBoard resource to enable and store time series metrics logged to this experiment run. :param run_after_creation: Optional. Responsible for state after creation of experiment run. If true experiment run will be created with state RUNNING. """ experiment_run_state = ( gca_execution.Execution.State.NEW if not run_after_creation else gca_execution.Execution.State.RUNNING ) experiment_run = aiplatform.ExperimentRun.create( run_name=experiment_run_name, experiment=experiment_name, project=project_id, location=location, state=experiment_run_state, tensorboard=experiment_run_tensorboard, ) self.log.info( "Created experiment run with name: %s and status: %s", experiment_run.name, experiment_run.state, ) @GoogleBaseHook.fallback_to_default_project_id def list_experiment_runs( self, experiment_name: str, location: str, project_id: str = PROVIDE_PROJECT_ID, ) -> list[aiplatform.ExperimentRun]: """ List experiment run for the experiment. :param project_id: Required. The ID of the Google Cloud project that the service belongs to. :param location: Required. The ID of the Google Cloud location that the service belongs to. :param experiment_name: Required. The name of the evaluation experiment. """ experiment_runs = aiplatform.ExperimentRun.list( experiment=experiment_name, project=project_id, location=location, ) return experiment_runs @GoogleBaseHook.fallback_to_default_project_id def update_experiment_run_state( self, experiment_run_name: str, experiment_name: str, location: str, new_state: gca_execution.Execution.State, project_id: str = PROVIDE_PROJECT_ID, ) -> None: """ Update state of the experiment run. :param project_id: Required. The ID of the Google Cloud project that the service belongs to. :param location: Required. The ID of the Google Cloud location that the service belongs to. :param experiment_name: Required. The name of the evaluation experiment. :param experiment_run_name: Required. The specific run name or ID for this experiment. :param new_state: Required. New state of the experiment run. """ experiment_run = aiplatform.ExperimentRun( run_name=experiment_run_name, experiment=experiment_name, project=project_id, location=location, ) self.log.info("State of the %s before update is: %s", experiment_run.name, experiment_run.state) experiment_run.update_state(new_state) @GoogleBaseHook.fallback_to_default_project_id def delete_experiment_run( self, experiment_run_name: str, experiment_name: str, location: str, project_id: str = PROVIDE_PROJECT_ID, delete_backing_tensorboard_run: bool = False, ) -> None: """ Delete experiment run from the experiment. :param project_id: Required. The ID of the Google Cloud project that the service belongs to. :param location: Required. The ID of the Google Cloud location that the service belongs to. :param experiment_name: Required. The name of the evaluation experiment. :param experiment_run_name: Required. The specific run name or ID for this experiment. :param delete_backing_tensorboard_run: Whether to delete the backing Vertex AI TensorBoard run that stores time series metrics for this run. """ self.log.info("Next experiment run will be deleted: %s", experiment_run_name) experiment_run = aiplatform.ExperimentRun( run_name=experiment_run_name, experiment=experiment_name, project=project_id, location=location ) experiment_run.delete(delete_backing_tensorboard_run=delete_backing_tensorboard_run)
ExperimentRunHook
python
oauthlib__oauthlib
oauthlib/oauth2/rfc8628/endpoints/device_authorization.py
{ "start": 448, "end": 9721 }
class ____(BaseEndpoint): """DeviceAuthorization endpoint - used by the client to initiate the authorization flow by requesting a set of verification codes from the authorization server by making an HTTP "POST" request to the device authorization endpoint. The client authentication requirements of Section 3.2.1 of [RFC6749] apply to requests on this endpoint, which means that confidential clients (those that have established client credentials) authenticate in the same manner as when making requests to the token endpoint, and public clients provide the "client_id" parameter to identify themselves. """ def __init__( self, request_validator, verification_uri, expires_in=1800, interval=None, verification_uri_complete=None, user_code_generator: Callable[[None], str] = None, ): """ :param request_validator: An instance of RequestValidator. :type request_validator: oauthlib.oauth2.rfc6749.RequestValidator. :param verification_uri: a string containing the URL that can be polled by the client application :param expires_in: a number that represents the lifetime of the `user_code` and `device_code` :param interval: an option number that represents the number of seconds between each poll requests :param verification_uri_complete: a string of a function that can be called with `user_data` as parameter :param user_code_generator: a callable that returns a configurable user code """ self.request_validator = request_validator self._expires_in = expires_in self._interval = interval self._verification_uri = verification_uri self._verification_uri_complete = verification_uri_complete self.user_code_generator = user_code_generator BaseEndpoint.__init__(self) @property def interval(self): """The minimum amount of time in seconds that the client SHOULD wait between polling requests to the token endpoint. If no value is provided, clients MUST use 5 as the default. """ return self._interval @property def expires_in(self): """The lifetime in seconds of the "device_code" and "user_code".""" return self._expires_in @property def verification_uri(self): """The end-user verification URI on the authorization server. The URI should be short and easy to remember as end users will be asked to manually type it into their user agent. """ return self._verification_uri def verification_uri_complete(self, user_code): if not self._verification_uri_complete: return None if isinstance(self._verification_uri_complete, str): return self._verification_uri_complete.format(user_code=user_code) if callable(self._verification_uri_complete): return self._verification_uri_complete(user_code) return None @catch_errors_and_unavailability def validate_device_authorization_request(self, request): """Validate the device authorization request. The client_id is required if the client is not authenticating with the authorization server as described in `Section 3.2.1. of [RFC6749]`_. The client identifier as described in `Section 2.2 of [RFC6749]`_. .. _`Section 3.2.1. of [RFC6749]`: https://www.rfc-editor.org/rfc/rfc6749#section-3.2.1 .. _`Section 2.2 of [RFC6749]`: https://www.rfc-editor.org/rfc/rfc6749#section-2.2 """ # First check duplicate parameters for param in ("client_id", "scope"): try: duplicate_params = request.duplicate_params except ValueError: raise errors.InvalidRequestFatalError( description="Unable to parse query string", request=request ) if param in duplicate_params: raise errors.InvalidRequestFatalError( description="Duplicate %s parameter." % param, request=request ) # the "application/x-www-form-urlencoded" format, per Appendix B of [RFC6749] # https://www.rfc-editor.org/rfc/rfc6749#appendix-B if request.headers["Content-Type"] != "application/x-www-form-urlencoded": raise errors.InvalidRequestError( "Content-Type must be application/x-www-form-urlencoded", request=request, ) # REQUIRED. The client identifier as described in Section 2.2. # https://tools.ietf.org/html/rfc6749#section-2.2 # TODO: extract client_id an helper validation function. if not request.client_id: raise errors.MissingClientIdError(request=request) if not self.request_validator.validate_client_id(request.client_id, request): raise errors.InvalidClientIdError(request=request) # The client authentication requirements of Section 3.2.1 of [RFC6749] # apply to requests on this endpoint, which means that confidential # clients (those that have established client credentials) authenticate # in the same manner as when making requests to the token endpoint, and # public clients provide the "client_id" parameter to identify # themselves. self._raise_on_invalid_client(request) @catch_errors_and_unavailability def create_device_authorization_response( self, uri, http_method="POST", body=None, headers=None ): """ Generate a unique device verification code and an end-user code that are valid for a limited time. Include them in the HTTP response body using the "application/json" format [RFC8259] with a 200 (OK) status code, as described in `Section-3.2`_. :param uri: The full URI of the token request. :type uri: str :param request: OAuthlib request. :type request: oauthlib.common.Request :param user_code_generator: A callable that returns a string for the user code. This allows the caller to decide how the `user_code` should be formatted. :type user_code_generator: Callable[[], str] :return: A tuple of three elements: 1. A dict of headers to set on the response. 2. The response body as a string. 3. The response status code as an integer. :rtype: tuple The response contains the following parameters: device_code **REQUIRED.** The device verification code. user_code **REQUIRED.** The end-user verification code. verification_uri **REQUIRED.** The end-user verification URI on the authorization server. The URI should be short and easy to remember as end users will be asked to manually type it into their user agent. verification_uri_complete **OPTIONAL.** A verification URI that includes the `user_code` (or other information with the same function as the `user_code`), which is designed for non-textual transmission. expires_in **REQUIRED.** The lifetime in seconds of the `device_code` and `user_code`. interval **OPTIONAL.** The minimum amount of time in seconds that the client SHOULD wait between polling requests to the token endpoint. If no value is provided, clients MUST use 5 as the default. **For example:** .. code-block:: http HTTP/1.1 200 OK Content-Type: application/json Cache-Control: no-store { "device_code": "GmRhmhcxhwAzkoEqiMEg_DnyEysNkuNhszIySk9eS", "user_code": "WDJB-MJHT", "verification_uri": "https://example.com/device", "verification_uri_complete": "https://example.com/device?user_code=WDJB-MJHT", "expires_in": 1800, "interval": 5 } .. _`Section-3.2`: https://www.rfc-editor.org/rfc/rfc8628#section-3.2 """ request = Request(uri, http_method, body, headers) self.validate_device_authorization_request(request) log.debug("Pre resource owner authorization validation ok for %r.", request) headers = {} user_code = self.user_code_generator() if self.user_code_generator else generate_token() data = { "verification_uri": self.verification_uri, "expires_in": self.expires_in, "user_code": user_code, "device_code": generate_token(), } if self.interval is not None: data["interval"] = self.interval verification_uri_complete = self.verification_uri_complete(user_code) if verification_uri_complete: data["verification_uri_complete"] = verification_uri_complete return headers, data, 200
DeviceAuthorizationEndpoint
python
pytest-dev__pytest-cov
src/pytest_cov/__init__.py
{ "start": 436, "end": 547 }
class ____(PytestCovWarning): """ Indicates that we failed to generate a report. """
CovReportWarning
python
scipy__scipy
scipy/stats/tests/test_distributions.py
{ "start": 409098, "end": 409978 }
class ____: @pytest.mark.parametrize("case", [ # a, b, loc, scale, m1, m2, g1, g2 (-0.01, 1.1, 0.02, 0.0001, 0.02000137427557091, 2.1112742956578063e-08, 0.05989781342460999, 20.36324408592951-3), (2.554395574161155, 2.2482281679651965, 0, 1, -1.54215386737391, 0.7629882028469993, -1.256656139406788, 6.303058419339775-3)]) def test_moment_gh18071(self, case): # gh-18071 reported an IntegrationWarning emitted by johnsonsu.stats # Check that the warning is no longer emitted and that the values # are accurate compared against results from Mathematica. # Reference values from Mathematica, e.g. # Mean[JohnsonDistribution["SU",-0.01, 1.1, 0.02, 0.0001]] res = stats.johnsonsu.stats(*case[:4], moments='mvsk') assert_allclose(res, case[4:], rtol=1e-14)
TestJohnsonSU
python
getsentry__sentry
src/sentry/snuba/entity_subscription.py
{ "start": 13194, "end": 16696 }
class ____(BaseEntitySubscription, ABC): def __init__( self, aggregate: str, time_window: int, extra_fields: _EntitySpecificParams | None = None, ): super().__init__(aggregate, time_window, extra_fields) self.aggregate = aggregate if not extra_fields or "org_id" not in extra_fields: raise InvalidQuerySubscription( "org_id is a required param when " "building snuba filter for a metrics subscription" ) self.org_id = extra_fields["org_id"] self.time_window = time_window self.use_metrics_layer = False self.on_demand_metrics_enabled = features.has( "organizations:on-demand-metrics-extraction", Organization.objects.get_from_cache(id=self.org_id), ) @abstractmethod def get_snql_aggregations(self) -> list[str]: raise NotImplementedError @abstractmethod def get_snql_extra_conditions(self) -> list[Condition]: raise NotImplementedError @abstractmethod def get_granularity(self) -> int: pass def get_entity_extra_params(self) -> Mapping[str, Any]: return { "organization": self.org_id, "granularity": self.get_granularity(), } def _get_use_case_id(self) -> UseCaseID: if self.dataset == Dataset.PerformanceMetrics: return UseCaseID.TRANSACTIONS else: return UseCaseID.SESSIONS def resolve_tag_key_if_needed(self, string: str) -> str: if self.use_metrics_layer: return string return resolve_tag_key(self._get_use_case_id(), self.org_id, string) def resolve_tag_values_if_needed(self, strings: Sequence[str]) -> Sequence[str | int]: if self.use_metrics_layer: return strings return resolve_tag_values(self._get_use_case_id(), self.org_id, strings) def build_query_builder( self, query: str, project_ids: list[int], environment: Environment | None, params: ParamsType | None = None, skip_field_validation_for_entity_subscription_deletion: bool = False, ) -> BaseQueryBuilder: if params is None: params = {} if environment: params["environment"] = environment.name query = apply_dataset_query_conditions(self.query_type, query, None) params["project_id"] = project_ids params["use_case_id"] = self._get_use_case_id().value qb = AlertMetricsQueryBuilder( dataset=Dataset(self.dataset.value), query=query, selected_columns=self.get_snql_aggregations(), params=params, offset=None, granularity=self.get_granularity(), time_range_window=self.time_window, config=QueryBuilderConfig( skip_time_conditions=True, use_metrics_layer=self.use_metrics_layer, on_demand_metrics_enabled=self.on_demand_metrics_enabled, on_demand_metrics_type=MetricSpecType.SIMPLE_QUERY, skip_field_validation_for_entity_subscription_deletion=skip_field_validation_for_entity_subscription_deletion, insights_metrics_override_metric_layer=True, ), ) extra_conditions = self.get_snql_extra_conditions() qb.add_conditions(extra_conditions) return qb
BaseMetricsEntitySubscription
python
matplotlib__matplotlib
lib/matplotlib/backends/_backend_pdf_ps.py
{ "start": 3476, "end": 5968 }
class ____(RendererBase): # The following attributes must be defined by the subclasses: # - _afm_font_dir # - _use_afm_rc_name def __init__(self, width, height): super().__init__() self.width = width self.height = height def flipy(self): # docstring inherited return False # y increases from bottom to top. def option_scale_image(self): # docstring inherited return True # PDF and PS support arbitrary image scaling. def option_image_nocomposite(self): # docstring inherited # Decide whether to composite image based on rcParam value. return not mpl.rcParams["image.composite_image"] def get_canvas_width_height(self): # docstring inherited return self.width * 72.0, self.height * 72.0 def get_text_width_height_descent(self, s, prop, ismath): # docstring inherited if ismath == "TeX": return super().get_text_width_height_descent(s, prop, ismath) elif ismath: parse = self._text2path.mathtext_parser.parse(s, 72, prop) return parse.width, parse.height, parse.depth elif mpl.rcParams[self._use_afm_rc_name]: font = self._get_font_afm(prop) l, b, w, h, d = font.get_str_bbox_and_descent(s) scale = prop.get_size_in_points() / 1000 w *= scale h *= scale d *= scale return w, h, d else: font = self._get_font_ttf(prop) font.set_text(s, 0.0, flags=ft2font.LoadFlags.NO_HINTING) w, h = font.get_width_height() d = font.get_descent() scale = 1 / 64 w *= scale h *= scale d *= scale return w, h, d def _get_font_afm(self, prop): fname = font_manager.findfont( prop, fontext="afm", directory=self._afm_font_dir) return _cached_get_afm_from_fname(fname) def _get_font_ttf(self, prop): fnames = font_manager.fontManager._find_fonts_by_props(prop) try: font = font_manager.get_font(fnames) font.clear() font.set_size(prop.get_size_in_points(), 72) return font except RuntimeError: logging.getLogger(__name__).warning( "The PostScript/PDF backend does not currently " "support the selected font (%s).", fnames) raise
RendererPDFPSBase
python
getsentry__sentry
src/sentry/seer/models.py
{ "start": 2490, "end": 2703 }
class ____(Exception): def __init__(self, message: str): self.message = message def __str__(self): return f"Seer API response validation error: {self.message}"
SeerApiResponseValidationError
python
conda__conda
conda/exceptions.py
{ "start": 12687, "end": 13050 }
class ____(CondaError): def __init__(self, environment_name: str): message = dals( """ Could not find conda environment: %(environment_name)s You can list all discoverable environments with `conda info --envs`. """ ) super().__init__(message, environment_name=environment_name)
EnvironmentNameNotFound
python
apache__airflow
providers/cncf/kubernetes/tests/unit/cncf/kubernetes/operators/test_job.py
{ "start": 3803, "end": 36307 }
class ____: @pytest.fixture(autouse=True) def setup_tests(self): self._default_client_patch = patch(f"{HOOK_CLASS}._get_default_client") self._default_client_mock = self._default_client_patch.start() yield patch.stopall() def test_templates(self, create_task_instance_of_operator, session): dag_id = "TestKubernetesJobOperator" ti = create_task_instance_of_operator( KubernetesJobOperator, dag_id=dag_id, task_id="task-id", namespace="{{ dag.dag_id }}", container_resources=k8s.V1ResourceRequirements( requests={"memory": "{{ dag.dag_id }}", "cpu": "{{ dag.dag_id }}"}, limits={"memory": "{{ dag.dag_id }}", "cpu": "{{ dag.dag_id }}"}, ), volume_mounts=[ k8s.V1VolumeMount( name="{{ dag.dag_id }}", mount_path="mount_path", sub_path="{{ dag.dag_id }}", ) ], job_template_file="{{ dag.dag_id }}", config_file="{{ dag.dag_id }}", labels="{{ dag.dag_id }}", env_vars=["{{ dag.dag_id }}"], arguments="{{ dag.dag_id }}", cmds="{{ dag.dag_id }}", image="{{ dag.dag_id }}", annotations={"dag-id": "{{ dag.dag_id }}"}, session=session, ) session.add(ti) session.commit() rendered = ti.render_templates() assert dag_id == rendered.container_resources.limits["memory"] assert dag_id == rendered.container_resources.limits["cpu"] assert dag_id == rendered.container_resources.requests["memory"] assert dag_id == rendered.container_resources.requests["cpu"] assert dag_id == rendered.volume_mounts[0].name assert dag_id == rendered.volume_mounts[0].sub_path assert dag_id == ti.task.image assert dag_id == ti.task.cmds assert dag_id == ti.task.namespace assert dag_id == ti.task.config_file assert dag_id == ti.task.labels assert dag_id == ti.task.job_template_file assert dag_id == ti.task.arguments assert dag_id == ti.task.env_vars[0] assert dag_id == rendered.annotations["dag-id"] def sanitize_for_serialization(self, obj): return ApiClient().sanitize_for_serialization(obj) def test_backoff_limit_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", backoff_limit=6, ) job = k.build_job_request_obj(create_context(k)) assert job.spec.backoff_limit == 6 def test_completion_mode_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", completion_mode="NonIndexed", ) job = k.build_job_request_obj(create_context(k)) assert job.spec.completion_mode == "NonIndexed" def test_completions_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", completions=1, ) job = k.build_job_request_obj(create_context(k)) assert job.spec.completions == 1 def test_manual_selector_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", manual_selector=False, ) job = k.build_job_request_obj(create_context(k)) assert job.spec.manual_selector is False def test_parallelism_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", parallelism=2, ) job = k.build_job_request_obj(create_context(k)) assert job.spec.parallelism == 2 def test_selector(self, clean_dags_dagruns_and_dagbundles): selector = k8s.V1LabelSelector( match_expressions=[], match_labels={"foo": "bar", "hello": "airflow"}, ) k = KubernetesJobOperator( task_id="task", selector=selector, ) job = k.build_job_request_obj(create_context(k)) assert isinstance(job.spec.selector, k8s.V1LabelSelector) assert job.spec.selector == selector def test_suspend_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", suspend=True, ) job = k.build_job_request_obj(create_context(k)) assert job.spec.suspend is True def test_ttl_seconds_after_finished_correctly_set(self, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator(task_id="task", ttl_seconds_after_finished=5) job = k.build_job_request_obj(create_context(k)) assert job.spec.ttl_seconds_after_finished == 5 @pytest.mark.parametrize("randomize", [True, False]) def test_provided_job_name(self, randomize, clean_dags_dagruns_and_dagbundles): name_base = "test" k = KubernetesJobOperator( name=name_base, random_name_suffix=randomize, task_id="task", ) context = create_context(k) job = k.build_job_request_obj(context) if randomize: assert job.metadata.name.startswith(f"job-{name_base}") assert job.metadata.name != f"job-{name_base}" else: assert job.metadata.name == f"job-{name_base}" @pytest.fixture def job_spec(self): return k8s.V1Job( metadata=k8s.V1ObjectMeta(name="hello", labels={"foo": "bar"}, namespace="jobspecnamespace"), spec=k8s.V1JobSpec( template=k8s.V1PodTemplateSpec( metadata=k8s.V1ObjectMeta( name="world", labels={"foo": "bar"}, namespace="podspecnamespace" ), spec=k8s.V1PodSpec( containers=[ k8s.V1Container( name="base", image="ubuntu:16.04", command=["something"], ) ] ), ) ), ) @pytest.mark.parametrize("randomize_name", (True, False)) def test_full_job_spec(self, randomize_name, job_spec, clean_dags_dagruns_and_dagbundles): job_spec_name_base = job_spec.metadata.name k = KubernetesJobOperator( task_id="task", random_name_suffix=randomize_name, full_job_spec=job_spec, ) context = create_context(k) job = k.build_job_request_obj(context) if randomize_name: assert job.metadata.name.startswith(f"job-{job_spec_name_base}") assert job.metadata.name != f"job-{job_spec_name_base}" else: assert job.metadata.name == f"job-{job_spec_name_base}" assert job.metadata.namespace == job_spec.metadata.namespace assert job.spec.template.spec.containers[0].image == job_spec.spec.template.spec.containers[0].image assert ( job.spec.template.spec.containers[0].command == job_spec.spec.template.spec.containers[0].command ) assert job.metadata.labels == {"foo": "bar"} @pytest.mark.parametrize("randomize_name", (True, False)) def test_full_job_spec_kwargs(self, randomize_name, job_spec, clean_dags_dagruns_and_dagbundles): # kwargs take precedence, however image = "some.custom.image:andtag" name_base = "world" k = KubernetesJobOperator( task_id="task", random_name_suffix=randomize_name, full_job_spec=job_spec, name=name_base, image=image, labels={"hello": "world"}, ) job = k.build_job_request_obj(create_context(k)) # make sure the kwargs takes precedence (and that name is randomized when expected) if randomize_name: assert job.metadata.name.startswith(f"job-{name_base}") assert job.metadata.name != f"job-{name_base}" else: assert job.metadata.name == f"job-{name_base}" assert job.spec.template.spec.containers[0].image == image assert job.metadata.labels == { "foo": "bar", "hello": "world", } @pytest.fixture def job_template_file(self, tmp_path): job_template_yaml = """ apiVersion: batch/v1 kind: Job metadata: name: hello namespace: templatenamespace labels: foo: bar spec: ttlSecondsAfterFinished: 60 parallelism: 3 completions: 3 suspend: true template: spec: serviceAccountName: foo affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: kubernetes.io/role operator: In values: - foo - bar preferredDuringSchedulingIgnoredDuringExecution: - weight: 1 preference: matchExpressions: - key: kubernetes.io/role operator: In values: - foo - bar containers: - name: base image: ubuntu:16.04 imagePullPolicy: Always command: - something """ tpl_file = tmp_path / "template.yaml" tpl_file.write_text(job_template_yaml) return tpl_file @pytest.mark.parametrize("randomize_name", (True, False)) def test_job_template_file(self, randomize_name, job_template_file, clean_dags_dagruns_and_dagbundles): k = KubernetesJobOperator( task_id="task", random_name_suffix=randomize_name, job_template_file=job_template_file, ) job = k.build_job_request_obj(create_context(k)) if randomize_name: assert job.metadata.name.startswith("job-hello") assert job.metadata.name != "job-hello" else: assert job.metadata.name == "job-hello" assert job.metadata.labels == {"foo": "bar"} assert job.metadata.namespace == "templatenamespace" assert job.spec.template.spec.containers[0].image == "ubuntu:16.04" assert job.spec.template.spec.containers[0].image_pull_policy == "Always" assert job.spec.template.spec.containers[0].command == ["something"] assert job.spec.template.spec.service_account_name == "foo" affinity = { "node_affinity": { "preferred_during_scheduling_ignored_during_execution": [ { "preference": { "match_expressions": [ {"key": "kubernetes.io/role", "operator": "In", "values": ["foo", "bar"]} ], "match_fields": None, }, "weight": 1, } ], "required_during_scheduling_ignored_during_execution": { "node_selector_terms": [ { "match_expressions": [ {"key": "kubernetes.io/role", "operator": "In", "values": ["foo", "bar"]} ], "match_fields": None, } ] }, }, "pod_affinity": None, "pod_anti_affinity": None, } assert job.spec.template.spec.affinity.to_dict() == affinity @pytest.mark.parametrize("randomize_name", (True, False)) def test_job_template_file_kwargs_override( self, randomize_name, job_template_file, clean_dags_dagruns_and_dagbundles ): # kwargs take precedence, however image = "some.custom.image:andtag" name_base = "world" k = KubernetesJobOperator( task_id="task", job_template_file=job_template_file, name=name_base, random_name_suffix=randomize_name, image=image, labels={"hello": "world"}, ) job = k.build_job_request_obj(create_context(k)) # make sure the kwargs takes precedence (and that name is randomized when expected) if randomize_name: assert job.metadata.name.startswith(f"job-{name_base}") assert job.metadata.name != f"job-{name_base}" else: assert job.metadata.name == f"job-{name_base}" assert job.spec.template.spec.containers[0].image == image assert job.metadata.labels == { "foo": "bar", "hello": "world", } def test_task_id_as_name(self): k = KubernetesJobOperator( task_id=".hi.-_09HI", random_name_suffix=False, ) job = k.build_job_request_obj({}) assert job.metadata.name == "job-hi-09hi" def test_task_id_as_name_with_suffix(self): k = KubernetesJobOperator( task_id=".hi.-_09HI", random_name_suffix=True, ) job = k.build_job_request_obj({}) expected = "job-hi-09hi" assert job.metadata.name[: len(expected)] == expected assert re.match(rf"{expected}-[a-z0-9]{{8}}", job.metadata.name) is not None def test_task_id_as_name_with_suffix_very_long(self): k = KubernetesJobOperator( task_id="a" * 250, random_name_suffix=True, ) job = k.build_job_request_obj({}) assert ( re.match( r"job-a{50}-[a-z0-9]{8}", job.metadata.name, ) is not None ) def test_task_id_as_name_dag_id_is_ignored(self): dag = DAG(dag_id="this_is_a_dag_name", schedule=None, start_date=pendulum.now()) k = KubernetesJobOperator( task_id="a_very_reasonable_task_name", dag=dag, ) job = k.build_job_request_obj({}) assert re.match(r"job-a-very-reasonable-task-name-[a-z0-9-]+", job.metadata.name) is not None @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_or_create_pod")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(HOOK_CLASS) def test_execute(self, mock_hook, mock_create_job, mock_build_job_request_obj, mock_get_or_create_pod): mock_hook.return_value.is_job_failed.return_value = False mock_job_request_obj = mock_build_job_request_obj.return_value mock_job_expected = mock_create_job.return_value mock_ti = mock.MagicMock() context = dict(ti=mock_ti) op = KubernetesJobOperator( task_id="test_task_id", ) with pytest.warns(AirflowProviderDeprecationWarning): execute_result = op.execute(context=context) mock_build_job_request_obj.assert_called_once_with(context) mock_create_job.assert_called_once_with(job_request_obj=mock_job_request_obj) mock_ti.xcom_push.assert_has_calls( [ mock.call(key="job_name", value=mock_job_expected.metadata.name), mock.call(key="job_namespace", value=mock_job_expected.metadata.namespace), mock.call(key="job", value=mock_job_expected.to_dict.return_value), ] ) assert op.job_request_obj == mock_job_request_obj assert op.job == mock_job_expected assert not op.wait_until_job_complete assert execute_result is None assert not mock_hook.wait_until_job_complete.called @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_pods")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(HOOK_CLASS) def test_execute_with_parallelism( self, mock_hook, mock_create_job, mock_build_job_request_obj, mock_get_pods ): mock_hook.return_value.is_job_failed.return_value = False mock_job_request_obj = mock_build_job_request_obj.return_value mock_job_expected = mock_create_job.return_value mock_get_pods.return_value = [mock.MagicMock(), mock.MagicMock()] mock_pods_expected = mock_get_pods.return_value mock_ti = mock.MagicMock() context = dict(ti=mock_ti) op = KubernetesJobOperator( task_id="test_task_id", parallelism=2, ) execute_result = op.execute(context=context) mock_build_job_request_obj.assert_called_once_with(context) mock_create_job.assert_called_once_with(job_request_obj=mock_job_request_obj) mock_ti.xcom_push.assert_has_calls( [ mock.call(key="job_name", value=mock_job_expected.metadata.name), mock.call(key="job_namespace", value=mock_job_expected.metadata.namespace), mock.call(key="job", value=mock_job_expected.to_dict.return_value), ] ) assert op.job_request_obj == mock_job_request_obj assert op.job == mock_job_expected assert op.pods == mock_pods_expected with pytest.warns(AirflowProviderDeprecationWarning): assert op.pod is mock_pods_expected[0] assert not op.wait_until_job_complete assert execute_result is None assert not mock_hook.wait_until_job_complete.called @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_or_create_pod")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.execute_deferrable")) @patch(HOOK_CLASS) def test_execute_in_deferrable( self, mock_hook, mock_execute_deferrable, mock_create_job, mock_build_job_request_obj, mock_get_or_create_pod, ): mock_hook.return_value.is_job_failed.return_value = False mock_job_request_obj = mock_build_job_request_obj.return_value mock_job_expected = mock_create_job.return_value mock_ti = mock.MagicMock() context = dict(ti=mock_ti) op = KubernetesJobOperator( task_id="test_task_id", wait_until_job_complete=True, deferrable=True, ) with pytest.warns(AirflowProviderDeprecationWarning): actual_result = op.execute(context=context) mock_build_job_request_obj.assert_called_once_with(context) mock_create_job.assert_called_once_with(job_request_obj=mock_job_request_obj) mock_ti.xcom_push.assert_has_calls( [ mock.call(key="job_name", value=mock_job_expected.metadata.name), mock.call(key="job_namespace", value=mock_job_expected.metadata.namespace), ] ) mock_execute_deferrable.assert_called_once() assert op.job_request_obj == mock_job_request_obj assert op.job == mock_job_expected assert actual_result is None assert not mock_hook.wait_until_job_complete.called @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_or_create_pod")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(HOOK_CLASS) def test_execute_fail( self, mock_hook, mock_create_job, mock_build_job_request_obj, mock_get_or_create_pod ): mock_hook.return_value.is_job_failed.return_value = "Error" op = KubernetesJobOperator( task_id="test_task_id", wait_until_job_complete=True, ) with pytest.warns(AirflowProviderDeprecationWarning): with pytest.raises(AirflowException): op.execute(context=dict(ti=mock.MagicMock())) @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.defer")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobTrigger")) def test_execute_deferrable(self, mock_trigger, mock_execute_deferrable): mock_cluster_context = mock.MagicMock() mock_config_file = mock.MagicMock() mock_in_cluster = mock.MagicMock() mock_job = mock.MagicMock() mock_job.metadata.name = JOB_NAME mock_job.metadata.namespace = JOB_NAMESPACE mock_pod = mock.MagicMock() mock_pod.metadata.name = POD_NAME mock_pod.metadata.namespace = POD_NAMESPACE mock_trigger_instance = mock_trigger.return_value op = KubernetesJobOperator( task_id="test_task_id", kubernetes_conn_id=KUBERNETES_CONN_ID, cluster_context=mock_cluster_context, config_file=mock_config_file, in_cluster=mock_in_cluster, job_poll_interval=POLL_INTERVAL, wait_until_job_complete=True, deferrable=True, ) op.job = mock_job op.pod = mock_pod op.pods = [ mock_pod, ] actual_result = op.execute_deferrable() mock_execute_deferrable.assert_called_once_with( trigger=mock_trigger_instance, method_name="execute_complete", ) mock_trigger.assert_called_once_with( job_name=JOB_NAME, job_namespace=JOB_NAMESPACE, pod_names=[ POD_NAME, ], pod_namespace=POD_NAMESPACE, base_container_name=op.BASE_CONTAINER_NAME, kubernetes_conn_id=KUBERNETES_CONN_ID, cluster_context=mock_cluster_context, config_file=mock_config_file, in_cluster=mock_in_cluster, poll_interval=POLL_INTERVAL, get_logs=True, do_xcom_push=False, ) assert actual_result is None @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.defer")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobTrigger")) def test_execute_deferrable_with_parallelism(self, mock_trigger, mock_execute_deferrable): mock_cluster_context = mock.MagicMock() mock_config_file = mock.MagicMock() mock_in_cluster = mock.MagicMock() mock_job = mock.MagicMock() mock_job.metadata.name = JOB_NAME mock_job.metadata.namespace = JOB_NAMESPACE pod_name_1 = POD_NAME + "-1" mock_pod_1 = mock.MagicMock() mock_pod_1.metadata.name = pod_name_1 mock_pod_1.metadata.namespace = POD_NAMESPACE pod_name_2 = POD_NAME + "-2" mock_pod_2 = mock.MagicMock() mock_pod_2.metadata.name = pod_name_2 mock_pod_2.metadata.namespace = POD_NAMESPACE mock_trigger_instance = mock_trigger.return_value op = KubernetesJobOperator( task_id="test_task_id", kubernetes_conn_id=KUBERNETES_CONN_ID, cluster_context=mock_cluster_context, config_file=mock_config_file, in_cluster=mock_in_cluster, job_poll_interval=POLL_INTERVAL, parallelism=2, wait_until_job_complete=True, deferrable=True, ) op.job = mock_job op.pods = [mock_pod_1, mock_pod_2] actual_result = op.execute_deferrable() mock_execute_deferrable.assert_called_once_with( trigger=mock_trigger_instance, method_name="execute_complete", ) mock_trigger.assert_called_once_with( job_name=JOB_NAME, job_namespace=JOB_NAMESPACE, pod_names=[pod_name_1, pod_name_2], pod_namespace=POD_NAMESPACE, base_container_name=op.BASE_CONTAINER_NAME, kubernetes_conn_id=KUBERNETES_CONN_ID, cluster_context=mock_cluster_context, config_file=mock_config_file, in_cluster=mock_in_cluster, poll_interval=POLL_INTERVAL, get_logs=True, do_xcom_push=False, ) assert actual_result is None @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_or_create_pod")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(f"{HOOK_CLASS}.wait_until_job_complete") def test_wait_until_job_complete( self, mock_wait_until_job_complete, mock_create_job, mock_build_job_request_obj, mock_get_or_create_pod, ): mock_job_expected = mock_create_job.return_value mock_ti = mock.MagicMock() op = KubernetesJobOperator( task_id="test_task_id", wait_until_job_complete=True, job_poll_interval=POLL_INTERVAL ) with pytest.warns(AirflowProviderDeprecationWarning): op.execute(context=dict(ti=mock_ti)) assert op.wait_until_job_complete assert op.job_poll_interval == POLL_INTERVAL mock_wait_until_job_complete.assert_called_once_with( job_name=mock_job_expected.metadata.name, namespace=mock_job_expected.metadata.namespace, job_poll_interval=POLL_INTERVAL, ) @pytest.mark.parametrize("do_xcom_push", [True, False]) @pytest.mark.parametrize("get_logs", [True, False]) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator._write_logs")) def test_execute_complete(self, mocked_write_logs, get_logs, do_xcom_push): mock_ti = mock.MagicMock() context = {"ti": mock_ti} mock_job = mock.MagicMock() event = { "job": mock_job, "status": "success", "pod_names": [ POD_NAME, ] if get_logs else None, "pod_namespace": POD_NAMESPACE if get_logs else None, "xcom_result": [ TEST_XCOM_RESULT, ] if do_xcom_push else None, } KubernetesJobOperator( task_id="test_task_id", get_logs=get_logs, do_xcom_push=do_xcom_push ).execute_complete(context=context, event=event) mock_ti.xcom_push.assert_called_once_with(key="job", value=mock_job) if get_logs: mocked_write_logs.assert_called_once() else: mocked_write_logs.assert_not_called() @pytest.mark.non_db_test_override def test_execute_complete_fail(self): mock_ti = mock.MagicMock() context = {"ti": mock_ti} mock_job = mock.MagicMock() event = {"job": mock_job, "status": "error", "message": "error message"} with pytest.raises(AirflowException): KubernetesJobOperator(task_id="test_task_id").execute_complete(context=context, event=event) mock_ti.xcom_push.assert_called_once_with(key="job", value=mock_job) @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.job_client")) def test_on_kill(self, mock_client): mock_job = mock.MagicMock() mock_job.metadata.name = JOB_NAME mock_job.metadata.namespace = JOB_NAMESPACE op = KubernetesJobOperator(task_id="test_task_id") op.job = mock_job op.on_kill() mock_client.delete_namespaced_job.assert_called_once_with( name=JOB_NAME, namespace=JOB_NAMESPACE, propagation_policy=ON_KILL_PROPAGATION_POLICY, ) @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.job_client")) def test_on_kill_termination_grace_period(self, mock_client): mock_job = mock.MagicMock() mock_job.metadata.name = JOB_NAME mock_job.metadata.namespace = JOB_NAMESPACE mock_termination_grace_period = mock.MagicMock() op = KubernetesJobOperator( task_id="test_task_id", termination_grace_period=mock_termination_grace_period ) op.job = mock_job op.on_kill() mock_client.delete_namespaced_job.assert_called_once_with( name=JOB_NAME, namespace=JOB_NAMESPACE, propagation_policy=ON_KILL_PROPAGATION_POLICY, grace_period_seconds=mock_termination_grace_period, ) @pytest.mark.non_db_test_override @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.client")) @patch(HOOK_CLASS) def test_on_kill_none_job(self, mock_hook, mock_client): mock_serialize = mock_hook.return_value.batch_v1_client.api_client.sanitize_for_serialization op = KubernetesJobOperator(task_id="test_task_id") op.on_kill() mock_client.delete_namespaced_job.assert_not_called() mock_serialize.assert_not_called() @pytest.mark.parametrize("parallelism", [None, 2]) @pytest.mark.parametrize("do_xcom_push", [True, False]) @pytest.mark.parametrize("get_logs", [True, False]) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.extract_xcom")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_pods")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.get_or_create_pod")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.build_job_request_obj")) @patch(JOB_OPERATORS_PATH.format("KubernetesJobOperator.create_job")) @patch(f"{POD_MANAGER_CLASS}.fetch_requested_container_logs") @patch(f"{POD_MANAGER_CLASS}.await_xcom_sidecar_container_start") @patch(f"{POD_MANAGER_CLASS}.await_container_completion") @patch(f"{HOOK_CLASS}.wait_until_job_complete") def test_execute_xcom_and_logs( self, mock_wait_until_job_complete, mock_await_container_completion, mock_await_xcom_sidecar_container_start, mocked_fetch_logs, mock_create_job, mock_build_job_request_obj, mock_get_or_create_pod, mock_get_pods, mock_extract_xcom, get_logs, do_xcom_push, parallelism, ): if parallelism == 2: mock_pod_1 = mock.MagicMock() mock_pod_2 = mock.MagicMock() mock_get_pods.return_value = [mock_pod_1, mock_pod_2] mock_ti = mock.MagicMock() op = KubernetesJobOperator( task_id="test_task_id", wait_until_job_complete=True, job_poll_interval=POLL_INTERVAL, get_logs=get_logs, do_xcom_push=do_xcom_push, parallelism=parallelism, ) if not parallelism: with pytest.warns(AirflowProviderDeprecationWarning): op.execute(context=dict(ti=mock_ti)) else: op.execute(context=dict(ti=mock_ti)) if do_xcom_push and not parallelism: mock_extract_xcom.assert_called_once() elif do_xcom_push and parallelism is not None: assert mock_extract_xcom.call_count == parallelism else: mock_extract_xcom.assert_not_called() if get_logs and not parallelism: mocked_fetch_logs.assert_called_once() elif get_logs and parallelism is not None: assert mocked_fetch_logs.call_count == parallelism else: mocked_fetch_logs.assert_not_called() @pytest.mark.db_test @pytest.mark.execution_timeout(300)
TestKubernetesJobOperator
python
matplotlib__matplotlib
lib/matplotlib/sankey.py
{ "start": 514, "end": 36150 }
class ____: """ Sankey diagram. Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. They are typically used to visualize energy or material or cost transfers between processes. `Wikipedia (6/1/2011) <https://en.wikipedia.org/wiki/Sankey_diagram>`_ """ def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25, radius=0.1, shoulder=0.03, offset=0.15, head_angle=100, margin=0.4, tolerance=1e-6, **kwargs): """ Create a new Sankey instance. The optional arguments listed below are applied to all subdiagrams so that there is consistent alignment and formatting. In order to draw a complex Sankey diagram, create an instance of `Sankey` by calling it without any kwargs:: sankey = Sankey() Then add simple Sankey sub-diagrams:: sankey.add() # 1 sankey.add() # 2 #... sankey.add() # n Finally, create the full diagram:: sankey.finish() Or, instead, simply daisy-chain those calls:: Sankey().add().add... .add().finish() Other Parameters ---------------- ax : `~matplotlib.axes.Axes` Axes onto which the data should be plotted. If *ax* isn't provided, new Axes will be created. scale : float Scaling factor for the flows. *scale* sizes the width of the paths in order to maintain proper layout. The same scale is applied to all subdiagrams. The value should be chosen such that the product of the scale and the sum of the inputs is approximately 1.0 (and the product of the scale and the sum of the outputs is approximately -1.0). unit : str The physical unit associated with the flow quantities. If *unit* is None, then none of the quantities are labeled. format : str or callable A Python number formatting string or callable used to label the flows with their quantities (i.e., a number times a unit, where the unit is given). If a format string is given, the label will be ``format % quantity``. If a callable is given, it will be called with ``quantity`` as an argument. gap : float Space between paths that break in/break away to/from the top or bottom. radius : float Inner radius of the vertical paths. shoulder : float Size of the shoulders of output arrows. offset : float Text offset (from the dip or tip of the arrow). head_angle : float Angle, in degrees, of the arrow heads (and negative of the angle of the tails). margin : float Minimum space between Sankey outlines and the edge of the plot area. tolerance : float Acceptable maximum of the magnitude of the sum of flows. The magnitude of the sum of connected flows cannot be greater than *tolerance*. **kwargs Any additional keyword arguments will be passed to `add`, which will create the first subdiagram. See Also -------- Sankey.add Sankey.finish Examples -------- .. plot:: gallery/specialty_plots/sankey_basics.py """ # Check the arguments. if gap < 0: raise ValueError( "'gap' is negative, which is not allowed because it would " "cause the paths to overlap") if radius > gap: raise ValueError( "'radius' is greater than 'gap', which is not allowed because " "it would cause the paths to overlap") if head_angle < 0: raise ValueError( "'head_angle' is negative, which is not allowed because it " "would cause inputs to look like outputs and vice versa") if tolerance < 0: raise ValueError( "'tolerance' is negative, but it must be a magnitude") # Create Axes if necessary. if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[]) self.diagrams = [] # Store the inputs. self.ax = ax self.unit = unit self.format = format self.scale = scale self.gap = gap self.radius = radius self.shoulder = shoulder self.offset = offset self.margin = margin self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0) self.tolerance = tolerance # Initialize the vertices of tight box around the diagram(s). self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf)) # If there are any kwargs, create the first subdiagram. if len(kwargs): self.add(**kwargs) def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)): """ Return the codes and vertices for a rotated, scaled, and translated 90 degree arc. Other Parameters ---------------- quadrant : {0, 1, 2, 3}, default: 0 Uses 0-based indexing (0, 1, 2, or 3). cw : bool, default: True If True, the arc vertices are produced clockwise; counter-clockwise otherwise. radius : float, default: 1 The radius of the arc. center : (float, float), default: (0, 0) (x, y) tuple of the arc's center. """ # Note: It would be possible to use matplotlib's transforms to rotate, # scale, and translate the arc, but since the angles are discrete, # it's just as easy and maybe more efficient to do it here. ARC_CODES = [Path.LINETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4] # Vertices of a cubic Bezier curve approximating a 90 deg arc # These can be determined by Path.arc(0, 90). ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.65114773e-01], [8.94571235e-01, 5.19642327e-01], [7.07106781e-01, 7.07106781e-01], [5.19642327e-01, 8.94571235e-01], [2.65114773e-01, 1.00000000e+00], # Insignificant # [6.12303177e-17, 1.00000000e+00]]) [0.00000000e+00, 1.00000000e+00]]) if quadrant in (0, 2): if cw: vertices = ARC_VERTICES else: vertices = ARC_VERTICES[:, ::-1] # Swap x and y. else: # 1, 3 # Negate x. if cw: # Swap x and y. vertices = np.column_stack((-ARC_VERTICES[:, 1], ARC_VERTICES[:, 0])) else: vertices = np.column_stack((-ARC_VERTICES[:, 0], ARC_VERTICES[:, 1])) if quadrant > 1: radius = -radius # Rotate 180 deg. return list(zip(ARC_CODES, radius * vertices + np.tile(center, (ARC_VERTICES.shape[0], 1)))) def _add_input(self, path, angle, flow, length): """ Add an input to a path and return its tip and label locations. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. dipdepth = (flow / 2) * self.pitch if angle == RIGHT: x -= length dip = [x + dipdepth, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, dip), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x + self.gap, y + flow])]) label_location = [dip[0] - self.offset, dip[1]] else: # Vertical x -= self.gap if angle == UP: sign = 1 else: sign = -1 dip = [x - flow / 2, y - sign * (length - dipdepth)] if angle == DOWN: quadrant = 2 else: quadrant = 1 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x + self.radius, y - sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y - sign * length]), (Path.LINETO, dip), (Path.LINETO, [x - flow, y - sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=flow + self.radius, center=(x + self.radius, y - sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [dip[0], dip[1] - sign * self.offset] return dip, label_location def _add_output(self, path, angle, flow, length): """ Append an output to a path and return its tip and label locations. .. note:: *flow* is negative for an output. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. tipheight = (self.shoulder - flow / 2) * self.pitch if angle == RIGHT: x += length tip = [x + tipheight, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, [x, y + self.shoulder]), (Path.LINETO, tip), (Path.LINETO, [x, y - self.shoulder + flow]), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x - self.gap, y + flow])]) label_location = [tip[0] + self.offset, tip[1]] else: # Vertical x += self.gap if angle == UP: sign, quadrant = 1, 3 else: sign, quadrant = -1, 0 tip = [x - flow / 2.0, y + sign * (length + tipheight)] # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x - self.radius, y + sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y + sign * length]), (Path.LINETO, [x - self.shoulder, y + sign * length]), (Path.LINETO, tip), (Path.LINETO, [x + self.shoulder - flow, y + sign * length]), (Path.LINETO, [x - flow, y + sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=self.radius - flow, center=(x - self.radius, y + sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [tip[0], tip[1] + sign * self.offset] return tip, label_location def _revert(self, path, first_action=Path.LINETO): """ A path is not simply reversible by path[::-1] since the code specifies an action to take from the **previous** point. """ reverse_path = [] next_code = first_action for code, position in path[::-1]: reverse_path.append((next_code, position)) next_code = code return reverse_path # This might be more efficient, but it fails because 'tuple' object # doesn't support item assignment: # path[1] = path[1][-1:0:-1] # path[1][0] = first_action # path[2] = path[2][::-1] # return path @_docstring.interpd def add(self, patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs): """ Add a simple Sankey diagram with flows at the same hierarchical level. Parameters ---------- patchlabel : str Label to be placed at the center of the diagram. Note that *label* (not *patchlabel*) can be passed as keyword argument to create an entry in the legend. flows : list of float Array of flow values. By convention, inputs are positive and outputs are negative. Flows are placed along the top of the diagram from the inside out in order of their index within *flows*. They are placed along the sides of the diagram from the top down and along the bottom from the outside in. If the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bézier curve along the top and bottom edges of the trunk. orientations : list of {-1, 0, 1} List of orientations of the flows (or a single orientation to be used for all flows). Valid values are 0 (inputs from the left, outputs to the right), 1 (from and to the top) or -1 (from and to the bottom). labels : list of (str or None) List of labels for the flows (or a single label to be used for all flows). Each label may be *None* (no label), or a labeling string. If an entry is a (possibly empty) string, then the quantity for the corresponding flow will be shown below the string. However, if the *unit* of the main diagram is None, then quantities are never shown, regardless of the value of this argument. trunklength : float Length between the bases of the input and output groups (in data-space units). pathlengths : list of float List of lengths of the vertical arrows before break-in or after break-away. If a single value is given, then it will be applied to the first (inside) paths on the top and bottom, and the length of all other arrows will be justified accordingly. The *pathlengths* are not applied to the horizontal inputs and outputs. prior : int Index of the prior diagram to which this diagram should be connected. connect : (int, int) A (prior, this) tuple indexing the flow of the prior diagram and the flow of this diagram which should be connected. If this is the first diagram or *prior* is *None*, *connect* will be ignored. rotation : float Angle of rotation of the diagram in degrees. The interpretation of the *orientations* argument will be rotated accordingly (e.g., if *rotation* == 90, an *orientations* entry of 1 means to/from the left). *rotation* is ignored if this diagram is connected to an existing one (using *prior* and *connect*). Returns ------- Sankey The current `.Sankey` instance. Other Parameters ---------------- **kwargs Additional keyword arguments set `matplotlib.patches.PathPatch` properties, listed below. For example, one may want to use ``fill=False`` or ``label="A legend entry"``. %(Patch:kwdoc)s See Also -------- Sankey.finish """ # Check and preprocess the arguments. flows = np.array([1.0, -1.0]) if flows is None else np.array(flows) n = flows.shape[0] # Number of flows if rotation is None: rotation = 0 else: # In the code below, angles are expressed in deg/90. rotation /= 90.0 if orientations is None: orientations = 0 try: orientations = np.broadcast_to(orientations, n) except ValueError: raise ValueError( f"The shapes of 'flows' {np.shape(flows)} and 'orientations' " f"{np.shape(orientations)} are incompatible" ) from None try: labels = np.broadcast_to(labels, n) except ValueError: raise ValueError( f"The shapes of 'flows' {np.shape(flows)} and 'labels' " f"{np.shape(labels)} are incompatible" ) from None if trunklength < 0: raise ValueError( "'trunklength' is negative, which is not allowed because it " "would cause poor layout") if abs(np.sum(flows)) > self.tolerance: _log.info("The sum of the flows is nonzero (%f; patchlabel=%r); " "is the system not at steady state?", np.sum(flows), patchlabel) scaled_flows = self.scale * flows gain = sum(max(flow, 0) for flow in scaled_flows) loss = sum(min(flow, 0) for flow in scaled_flows) if prior is not None: if prior < 0: raise ValueError("The index of the prior diagram is negative") if min(connect) < 0: raise ValueError( "At least one of the connection indices is negative") if prior >= len(self.diagrams): raise ValueError( f"The index of the prior diagram is {prior}, but there " f"are only {len(self.diagrams)} other diagrams") if connect[0] >= len(self.diagrams[prior].flows): raise ValueError( "The connection index to the source diagram is {}, but " "that diagram has only {} flows".format( connect[0], len(self.diagrams[prior].flows))) if connect[1] >= n: raise ValueError( f"The connection index to this diagram is {connect[1]}, " f"but this diagram has only {n} flows") if self.diagrams[prior].angles[connect[0]] is None: raise ValueError( f"The connection cannot be made, which may occur if the " f"magnitude of flow {connect[0]} of diagram {prior} is " f"less than the specified tolerance") flow_error = (self.diagrams[prior].flows[connect[0]] + flows[connect[1]]) if abs(flow_error) >= self.tolerance: raise ValueError( f"The scaled sum of the connected flows is {flow_error}, " f"which is not within the tolerance ({self.tolerance})") # Determine if the flows are inputs. are_inputs = [None] * n for i, flow in enumerate(flows): if flow >= self.tolerance: are_inputs[i] = True elif flow <= -self.tolerance: are_inputs[i] = False else: _log.info( "The magnitude of flow %d (%f) is below the tolerance " "(%f).\nIt will not be shown, and it cannot be used in a " "connection.", i, flow, self.tolerance) # Determine the angles of the arrows (before rotation). angles = [None] * n for i, (orient, is_input) in enumerate(zip(orientations, are_inputs)): if orient == 1: if is_input: angles[i] = DOWN elif is_input is False: # Be specific since is_input can be None. angles[i] = UP elif orient == 0: if is_input is not None: angles[i] = RIGHT else: if orient != -1: raise ValueError( f"The value of orientations[{i}] is {orient}, " f"but it must be -1, 0, or 1") if is_input: angles[i] = UP elif is_input is False: angles[i] = DOWN # Justify the lengths of the paths. if np.iterable(pathlengths): if len(pathlengths) != n: raise ValueError( f"The lengths of 'flows' ({n}) and 'pathlengths' " f"({len(pathlengths)}) are incompatible") else: # Make pathlengths into a list. urlength = pathlengths ullength = pathlengths lrlength = pathlengths lllength = pathlengths d = dict(RIGHT=pathlengths) pathlengths = [d.get(angle, 0) for angle in angles] # Determine the lengths of the top-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(zip(angles, are_inputs, scaled_flows)): if angle == DOWN and is_input: pathlengths[i] = ullength ullength += flow elif angle == UP and is_input is False: pathlengths[i] = urlength urlength -= flow # Flow is negative for outputs. # Determine the lengths of the bottom-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(reversed(list(zip( angles, are_inputs, scaled_flows)))): if angle == UP and is_input: pathlengths[n - i - 1] = lllength lllength += flow elif angle == DOWN and is_input is False: pathlengths[n - i - 1] = lrlength lrlength -= flow # Determine the lengths of the left-side arrows # from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, zip(scaled_flows, pathlengths))))): if angle == RIGHT: if is_input: if has_left_input: pathlengths[n - i - 1] = 0 else: has_left_input = True # Determine the lengths of the right-side arrows # from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT: if is_input is False: if has_right_output: pathlengths[i] = 0 else: has_right_output = True # Begin the subpaths, and smooth the transition if the sum of the flows # is nonzero. urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0), # Upper right gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, gain / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, gain / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap), -loss / 2.0])] llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower left loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, loss / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, loss / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0), -gain / 2.0])] lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower right loss / 2.0])] ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0, # Upper left gain / 2.0])] # Add the subpaths and assign the locations of the tips and labels. tips = np.zeros((n, 2)) label_locations = np.zeros((n, 2)) # Add the top-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == DOWN and is_input: tips[i, :], label_locations[i, :] = self._add_input( ulpath, angle, *spec) elif angle == UP and is_input is False: tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Add the bottom-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == UP and is_input: tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location elif angle == DOWN and is_input is False: tip, label_location = self._add_output(lrpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the left-side inputs from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT and is_input: if not has_left_input: # Make sure the lower path extends # at least as far as the upper one. if llpath[-1][1][0] > ulpath[-1][1][0]: llpath.append((Path.LINETO, [ulpath[-1][1][0], llpath[-1][1][1]])) has_left_input = True tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the right-side outputs from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT and is_input is False: if not has_right_output: # Make sure the upper path extends # at least as far as the lower one. if urpath[-1][1][0] < lrpath[-1][1][0]: urpath.append((Path.LINETO, [lrpath[-1][1][0], urpath[-1][1][1]])) has_right_output = True tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Trim any hanging vertices. if not has_left_input: ulpath.pop() llpath.pop() if not has_right_output: lrpath.pop() urpath.pop() # Concatenate the subpaths in the correct order (clockwise from top). path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) + [(Path.CLOSEPOLY, urpath[0][1])]) # Create a patch with the Sankey outline. codes, vertices = zip(*path) vertices = np.array(vertices) def _get_angle(a, r): if a is None: return None else: return a + r if prior is None: if rotation != 0: # By default, none of this is needed. angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) label_locations = rotate(label_locations) vertices = rotate(vertices) text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center') else: rotation = (self.diagrams[prior].angles[connect[0]] - angles[connect[1]]) angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]] translate = Affine2D().translate(*offset).transform_affine tips = translate(tips) label_locations = translate(rotate(label_locations)) vertices = translate(rotate(vertices)) kwds = dict(s=patchlabel, ha='center', va='center') text = self.ax.text(*offset, **kwds) if mpl.rcParams['_internal.classic_mode']: fc = kwargs.pop('fc', kwargs.pop('facecolor', '#bfd1d4')) lw = kwargs.pop('lw', kwargs.pop('linewidth', 0.5)) else: fc = kwargs.pop('fc', kwargs.pop('facecolor', None)) lw = kwargs.pop('lw', kwargs.pop('linewidth', None)) if fc is None: fc = self.ax._get_patches_for_fill.get_next_color() patch = PathPatch(Path(vertices, codes), fc=fc, lw=lw, **kwargs) self.ax.add_patch(patch) # Add the path labels. texts = [] for number, angle, label, location in zip(flows, angles, labels, label_locations): if label is None or angle is None: label = '' elif self.unit is not None: if isinstance(self.format, str): quantity = self.format % abs(number) + self.unit elif callable(self.format): quantity = self.format(number) else: raise TypeError( 'format must be callable or a format string') if label != '': label += "\n" label += quantity texts.append(self.ax.text(x=location[0], y=location[1], s=label, ha='center', va='center')) # Text objects are placed even they are empty (as long as the magnitude # of the corresponding flow is larger than the tolerance) in case the # user wants to provide labels later. # Expand the size of the diagram if necessary. self.extent = (min(np.min(vertices[:, 0]), np.min(label_locations[:, 0]), self.extent[0]), max(np.max(vertices[:, 0]), np.max(label_locations[:, 0]), self.extent[1]), min(np.min(vertices[:, 1]), np.min(label_locations[:, 1]), self.extent[2]), max(np.max(vertices[:, 1]), np.max(label_locations[:, 1]), self.extent[3])) # Include both vertices _and_ label locations in the extents; there are # where either could determine the margins (e.g., arrow shoulders). # Add this diagram as a subdiagram. self.diagrams.append( SimpleNamespace(patch=patch, flows=flows, angles=angles, tips=tips, text=text, texts=texts)) # Allow a daisy-chained call structure (see docstring for the class). return self def finish(self): """ Adjust the Axes and return a list of information about the Sankey subdiagram(s). Returns a list of subdiagrams with the following fields: ======== ============================================================= Field Description ======== ============================================================= *patch* Sankey outline (a `~matplotlib.patches.PathPatch`). *flows* Flow values (positive for input, negative for output). *angles* List of angles of the arrows [deg/90]. For example, if the diagram has not been rotated, an input to the top side has an angle of 3 (DOWN), and an output from the top side has an angle of 1 (UP). If a flow has been skipped (because its magnitude is less than *tolerance*), then its angle will be *None*. *tips* (N, 2)-array of the (x, y) positions of the tips (or "dips") of the flow paths. If the magnitude of a flow is less the *tolerance* of this `Sankey` instance, the flow is skipped and its tip will be at the center of the diagram. *text* `.Text` instance for the diagram label. *texts* List of `.Text` instances for the flow labels. ======== ============================================================= See Also -------- Sankey.add """ self.ax.axis([self.extent[0] - self.margin, self.extent[1] + self.margin, self.extent[2] - self.margin, self.extent[3] + self.margin]) self.ax.set_aspect('equal', adjustable='datalim') return self.diagrams
Sankey
python
realpython__materials
flask-google-login/user.py
{ "start": 58, "end": 855 }
class ____(UserMixin): def __init__(self, id_, name, email, profile_pic): self.id = id_ self.name = name self.email = email self.profile_pic = profile_pic @staticmethod def get(user_id): db = get_db() user = db.execute( "SELECT * FROM user WHERE id = ?", (user_id,) ).fetchone() if not user: return None user = User( id_=user[0], name=user[1], email=user[2], profile_pic=user[3] ) return user @staticmethod def create(id_, name, email, profile_pic): db = get_db() db.execute( "INSERT INTO user (id, name, email, profile_pic) VALUES (?, ?, ?, ?)", (id_, name, email, profile_pic), ) db.commit()
User
python
doocs__leetcode
solution/1600-1699/1688.Count of Matches in Tournament/Solution.py
{ "start": 0, "end": 83 }
class ____: def numberOfMatches(self, n: int) -> int: return n - 1
Solution
python
pandas-dev__pandas
pandas/io/json/_json.py
{ "start": 43337, "end": 45985 }
class ____(Parser): _default_orient = "columns" _split_keys = ("columns", "index", "data") def _parse(self) -> DataFrame: json = self.json orient = self.orient if orient == "split": decoded = { str(k): v for k, v in ujson_loads(json, precise_float=self.precise_float).items() } self.check_keys_split(decoded) orig_names = [ (tuple(col) if isinstance(col, list) else col) for col in decoded["columns"] ] decoded["columns"] = dedup_names( orig_names, is_potential_multi_index(orig_names, None), ) return DataFrame(dtype=None, **decoded) elif orient == "index": return DataFrame.from_dict( ujson_loads(json, precise_float=self.precise_float), dtype=None, orient="index", ) elif orient == "table": return parse_table_schema(json, precise_float=self.precise_float) else: # includes orient == "columns" return DataFrame( ujson_loads(json, precise_float=self.precise_float), dtype=None ) def _try_convert_types(self, obj: DataFrame) -> DataFrame: arrays = [] for col_label, series in obj.items(): result, _ = self._try_convert_data( col_label, series, convert_dates=_should_convert_dates( self.convert_dates, keep_default_dates=self.keep_default_dates, col=col_label, ), ) arrays.append(result.array) return DataFrame._from_arrays( arrays, obj.columns, obj.index, verify_integrity=False ) def _should_convert_dates( convert_dates: bool | list[str], keep_default_dates: bool, col: Hashable, ) -> bool: """ Return bool whether a DataFrame column should be cast to datetime. """ if convert_dates is False: # convert_dates=True means follow keep_default_dates return False elif not isinstance(convert_dates, bool) and col in set(convert_dates): return True elif not keep_default_dates: return False elif not isinstance(col, str): return False col_lower = col.lower() if ( col_lower.endswith(("_at", "_time")) or col_lower in {"modified", "date", "datetime"} or col_lower.startswith("timestamp") ): return True return False
FrameParser
python
kamyu104__LeetCode-Solutions
Python/shortest-path-in-a-weighted-tree.py
{ "start": 33, "end": 535 }
class ____(object): # 0-indexed. def __init__(self, n): self.__bit = [0]*(n+1) # Extra one for dummy node. def add(self, i, val): i += 1 # Extra one for dummy node. while i < len(self.__bit): self.__bit[i] += val i += (i & -i) def query(self, i): i += 1 # Extra one for dummy node. ret = 0 while i > 0: ret += self.__bit[i] i -= (i & -i) return ret # iterative dfs, fenwick tree
BIT
python
fluentpython__example-code
14-it-generator/sentence_iter.py
{ "start": 244, "end": 525 }
class ____: def __init__(self, text): self.text = text self.words = RE_WORD.findall(text) def __repr__(self): return 'Sentence(%s)' % reprlib.repr(self.text) def __iter__(self): # <1> return SentenceIterator(self.words) # <2>
Sentence
python
HypothesisWorks__hypothesis
hypothesis-python/tests/cover/test_cache_implementation.py
{ "start": 1206, "end": 1857 }
class ____(GenericCache): def new_entry(self, key, value): return 1 def on_access(self, key, value, score): return score + 1 @st.composite def write_pattern(draw, min_distinct_keys=0): keys = draw( st.lists(st.integers(0, 1000), unique=True, min_size=max(min_distinct_keys, 1)) ) values = draw(st.lists(st.integers(), unique=True, min_size=1)) s = st.lists( st.tuples(st.sampled_from(keys), st.sampled_from(values)), min_size=min_distinct_keys, ) if min_distinct_keys > 0: s = s.filter(lambda ls: len({k for k, _ in ls}) >= min_distinct_keys) return draw(s)
LFUCache
python
Textualize__textual
tests/test_on.py
{ "start": 9002, "end": 10866 }
class ____(Widget): class Parent(Message): pass class JustSomeRandomMixin: pass class Child(JustSomeRandomMixin, Parent): pass def post_parent(self) -> None: self.post_message(self.Parent()) def post_child(self) -> None: self.post_message(self.Child()) async def test_fire_on_inherited_message_plus_mixins() -> None: """Handlers should fire when descendant messages are posted, without mixins messing things up.""" posted: list[str] = [] class InheritTestApp(App[None]): def compose(self) -> ComposeResult: yield MixinMessageSender() @on(MixinMessageSender.Parent) def catch_parent(self) -> None: posted.append("parent") @on(MixinMessageSender.Child) def catch_child(self) -> None: posted.append("child") def on_mount(self) -> None: self.query_one(MixinMessageSender).post_parent() self.query_one(MixinMessageSender).post_child() async with InheritTestApp().run_test(): pass assert posted == ["parent", "child", "parent"] async def test_on_with_enter_and_leave_events(): class EnterLeaveApp(App): messages = [] def compose(self) -> ComposeResult: yield Button("OK") @on(Enter, "Button") @on(Leave, "Button") def record(self, event: Enter | Leave) -> None: self.messages.append(event.__class__.__name__) app = EnterLeaveApp() async with app.run_test() as pilot: expected_messages = [] await pilot.hover(Button) expected_messages.append("Enter") assert app.messages == expected_messages await pilot.hover(Button, offset=(0, 20)) expected_messages.append("Leave") assert app.messages == expected_messages
MixinMessageSender
python
pytorch__pytorch
test/distributed/_composable/fsdp/test_fully_shard_training.py
{ "start": 32732, "end": 34621 }
class ____(FSDPTest): @property def world_size(self) -> int: return min(8, torch.get_device_module(device_type).device_count()) @skip_if_lt_x_gpu(2) def test_train_parity_shard_placement_fn_shard_largest_dim(self): torch.manual_seed(42) model_args = ModelArgs(n_layers=3, dropout_p=0.0) model = Transformer(model_args) ref_model = copy.deepcopy(model).to(device_type) ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2) def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]: return Shard(param.shape.index(max(param.shape))) for layer in model.layers: fully_shard(layer, shard_placement_fn=shard_placement_fn) fully_shard(model, shard_placement_fn=shard_placement_fn) optim = torch.optim.AdamW(model.parameters(), lr=1e-2) for param, ref_param in zip(model.parameters(), ref_model.parameters()): full_param = param.full_tensor() self.assertEqual(full_param, ref_param) torch.manual_seed(42 + self.rank) inp = torch.randint(0, model_args.vocab_size, (2, 16), device=device_type.type) for _ in range(5): ref_loss = ref_model(inp).sum() loss = model(inp).sum() self.assertEqual(ref_loss, loss) ref_loss.backward() loss.backward() for param in ref_model.parameters(): if param.grad is not None: dist.all_reduce(param.grad, op=dist.ReduceOp.AVG) ref_optim.step() optim.step() ref_optim.zero_grad() optim.zero_grad() for param, ref_param in zip(model.parameters(), ref_model.parameters()): full_param = param.full_tensor() self.assertEqual(full_param, ref_param)
TestFullyShardShardPlacementFnMultiProcess
python
PyCQA__pycodestyle
testing/data/python313.py
{ "start": 146, "end": 271 }
class ____[T, U: str = str]: pass def f[T: (int, str) = str](t: T) -> T: pass def f2[T = str](t: T) -> T: pass
C3
python
PyCQA__pylint
pylint/testutils/lint_module_test.py
{ "start": 1235, "end": 13268 }
class ____: maxDiff = None def __init__( self, test_file: FunctionalTestFile, config: Config | None = None ) -> None: _test_reporter = FunctionalTestReporter() self._linter = PyLinter() self._linter.config.persistent = 0 checkers.initialize(self._linter) # See if test has its own .rc file, if so we use that one rc_file: Path | str = PYLINTRC try: rc_file = test_file.option_file self._linter.disable("suppressed-message") self._linter.disable("locally-disabled") self._linter.disable("useless-suppression") except NoFileError: pass self._test_file = test_file try: args = [test_file.source] except NoFileError: # If we're still raising NoFileError the actual source file doesn't exist args = [""] if config and config.getoption("minimal_messages_config"): with self._open_source_file() as f: messages_to_enable = {msg[1] for msg in self.get_expected_messages(f)} # Always enable fatal errors messages_to_enable.add("astroid-error") messages_to_enable.add("fatal") messages_to_enable.add("syntax-error") args.extend(["--disable=all", f"--enable={','.join(messages_to_enable)}"]) # Add testoptions self._linter._arg_parser.add_argument( "--min_pyver", type=parse_python_version, default=(2, 5) ) self._linter._arg_parser.add_argument( "--max_pyver", type=parse_python_version, default=(4, 0) ) self._linter._arg_parser.add_argument( "--min_pyver_end_position", type=parse_python_version, default=(3, 8) ) self._linter._arg_parser.add_argument( "--requires", type=lambda s: [i.strip() for i in s.split(",")], default=[] ) self._linter._arg_parser.add_argument( "--except_implementations", type=lambda s: [i.strip() for i in s.split(",")], default=[], ) self._linter._arg_parser.add_argument( "--exclude_platforms", type=lambda s: [i.strip() for i in s.split(",")], default=[], ) self._linter._arg_parser.add_argument( "--exclude_from_minimal_messages_config", default=False ) _config_initialization( self._linter, args_list=args, config_file=rc_file, reporter=_test_reporter ) self._check_end_position = ( sys.version_info >= self._linter.config.min_pyver_end_position ) self._config = config def setUp(self) -> None: if self._should_be_skipped_due_to_version(): pytest.skip( f"Test cannot run with Python {sys.version.split(' ', maxsplit=1)[0]}." ) missing = [] for requirement in self._linter.config.requires: try: __import__(requirement) except ImportError: missing.append(requirement) if missing: pytest.skip(f"Requires {','.join(missing)} to be present.") except_implementations = self._linter.config.except_implementations if except_implementations: if platform.python_implementation() in except_implementations: msg = "Test cannot run with Python implementation %r" pytest.skip(msg % platform.python_implementation()) excluded_platforms = self._linter.config.exclude_platforms if excluded_platforms: if sys.platform.lower() in excluded_platforms: pytest.skip(f"Test cannot run on platform {sys.platform!r}") if ( self._config and self._config.getoption("minimal_messages_config") and self._linter.config.exclude_from_minimal_messages_config ): pytest.skip("Test excluded from --minimal-messages-config") def runTest(self) -> None: self._runTest() def _should_be_skipped_due_to_version(self) -> bool: return ( # type: ignore[no-any-return] sys.version_info < self._linter.config.min_pyver or sys.version_info > self._linter.config.max_pyver ) def __str__(self) -> str: return f"{self._test_file.base} ({self.__class__.__module__}.{self.__class__.__name__})" @staticmethod def get_expected_messages(stream: TextIO) -> MessageCounter: """Parses a file and get expected messages. :param stream: File-like input stream. :type stream: enumerable :returns: A dict mapping line,msg-symbol tuples to the count on this line. :rtype: dict """ messages: MessageCounter = Counter() for i, line in enumerate(stream): match = _EXPECTED_RE.search(line) if match is None: continue line = match.group("line") if line is None: lineno = i + 1 elif line.startswith(("+", "-")): lineno = i + 1 + int(line) else: lineno = int(line) version = match.group("version") op = match.group("op") if version: required = parse_python_version(version) if not _OPERATORS[op](sys.version_info, required): continue for msg_id in match.group("msgs").split(","): messages[lineno, msg_id.strip()] += 1 return messages @staticmethod def multiset_difference( expected_entries: MessageCounter, actual_entries: MessageCounter, ) -> tuple[MessageCounter, dict[tuple[int, str], int]]: """Takes two multisets and compares them. A multiset is a dict with the cardinality of the key as the value. """ missing = expected_entries.copy() missing.subtract(actual_entries) unexpected = {} for key, value in list(missing.items()): if value <= 0: missing.pop(key) if value < 0: unexpected[key] = -value return missing, unexpected def _open_expected_file(self) -> TextIO: try: return open(self._test_file.expected_output, encoding="utf-8") except FileNotFoundError: return StringIO("") def _open_source_file(self) -> TextIO: if self._test_file.base == "invalid_encoded_data": return open(self._test_file.source, encoding="utf-8") if "latin1" in self._test_file.base: return open(self._test_file.source, encoding="latin1") return open(self._test_file.source, encoding="utf8") def _get_expected(self) -> tuple[MessageCounter, list[OutputLine]]: with self._open_source_file() as f: expected_msgs = self.get_expected_messages(f) if not expected_msgs: expected_msgs = Counter() with self._open_expected_file() as f: expected_output_lines = [ OutputLine.from_csv(row, self._check_end_position) for row in csv.reader(f, "test") ] return expected_msgs, expected_output_lines def _get_actual(self) -> tuple[MessageCounter, list[OutputLine]]: messages: list[Message] = self._linter.reporter.messages messages.sort(key=lambda m: (m.line, m.symbol, m.msg)) received_msgs: MessageCounter = Counter() received_output_lines = [] for msg in messages: assert ( msg.symbol != "fatal" ), f"Pylint analysis failed because of '{msg.msg}'" received_msgs[msg.line, msg.symbol] += 1 received_output_lines.append( OutputLine.from_msg(msg, self._check_end_position) ) return received_msgs, received_output_lines def _runTest(self) -> None: __tracebackhide__ = True # pylint: disable=unused-variable modules_to_check = [self._test_file.source] self._linter.check(modules_to_check) expected_messages, expected_output = self._get_expected() actual_messages, actual_output = self._get_actual() assert ( expected_messages == actual_messages ), self.error_msg_for_unequal_messages( actual_messages, expected_messages, actual_output ) self._check_output_text(expected_messages, expected_output, actual_output) def error_msg_for_unequal_messages( self, actual_messages: MessageCounter, expected_messages: MessageCounter, actual_output: list[OutputLine], ) -> str: msg = [f'Wrong message(s) raised for "{Path(self._test_file.source).name}":'] missing, unexpected = self.multiset_difference( expected_messages, actual_messages ) if missing: msg.append("\nExpected in testdata:") msg.extend( # pragma: no cover f" {msg[0]:3}: {msg[1]} (times {times})" for msg, times in sorted(missing.items()) ) if unexpected: msg.append("\nUnexpected in testdata:") msg.extend( f" {msg[0]:3}: {msg[1]} (times {times})" for msg, times in sorted(unexpected.items()) ) error_msg = "\n".join(msg) if self._config and self._config.getoption("verbose") > 0: error_msg += "\n\nActual pylint output for this file:\n" error_msg += "\n".join(str(o) for o in actual_output) return error_msg def error_msg_for_unequal_output( self, expected_lines: list[OutputLine], received_lines: list[OutputLine], ) -> str: missing = set(expected_lines) - set(received_lines) unexpected = set(received_lines) - set(expected_lines) error_msg = f'Wrong output for "{Path(self._test_file.expected_output).name}":' sort_by_line_number = operator.attrgetter("lineno") if missing: error_msg += "\n- Missing lines:\n" for line in sorted(missing, key=sort_by_line_number): error_msg += f"{line}\n" if unexpected: error_msg += "\n- Unexpected lines:\n" for line in sorted(unexpected, key=sort_by_line_number): error_msg += f"{line}\n" error_msg += ( "\nYou can update the expected output automatically with:\n'" f"python tests/test_functional.py {UPDATE_OPTION} -k " f'"test_functional[{self._test_file.base}]"\'\n\n' "Here's the update text in case you can't:\n" ) expected_csv = StringIO() writer = csv.writer(expected_csv, dialect="test") for line in sorted(received_lines, key=sort_by_line_number): self.safe_write_output_line(writer, line) error_msg += expected_csv.getvalue() return error_msg def safe_write_output_line(self, writer: _csv._writer, line: OutputLine) -> None: """Write an OutputLine to the CSV writer, handling UnicodeEncodeError.""" try: writer.writerow(line.to_csv()) except UnicodeEncodeError: writer.writerow( [ BaseReporter.reencode_output_after_unicode_error(s) for s in line.to_csv() ] ) def _check_output_text( self, _: MessageCounter, expected_output: list[OutputLine], actual_output: list[OutputLine], ) -> None: """This is a function because we want to be able to update the text in LintModuleOutputUpdate. """ assert expected_output == actual_output, self.error_msg_for_unequal_output( expected_output, actual_output )
LintModuleTest
python
django__django
tests/sitemaps_tests/urls/http.py
{ "start": 2094, "end": 2162 }
class ____(SimpleSitemap): lastmod = date(2013, 3, 13)
DateSiteMap
python
crytic__slither
slither/slithir/variables/temporary.py
{ "start": 161, "end": 873 }
class ____(Variable): def __init__(self, node: "Node", index: Optional[int] = None) -> None: super().__init__() if index is None: self._index = node.compilation_unit.counter_slithir_temporary node.compilation_unit.counter_slithir_temporary += 1 else: self._index = index self._node = node @property def node(self) -> "Node": return self._node @property def index(self): return self._index @index.setter def index(self, idx): self._index = idx @property def name(self) -> str: return f"TMP_{self.index}" def __str__(self) -> str: return self.name
TemporaryVariable
python
sympy__sympy
sympy/matrices/sparse.py
{ "start": 570, "end": 14432 }
class ____(RepMatrix): """ A sparse matrix (a matrix with a large number of zero elements). Examples ======== >>> from sympy import SparseMatrix, ones >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]]) A SparseMatrix can be instantiated from a ragged list of lists: >>> SparseMatrix([[1, 2, 3], [1, 2], [1]]) Matrix([ [1, 2, 3], [1, 2, 0], [1, 0, 0]]) For safety, one may include the expected size and then an error will be raised if the indices of any element are out of range or (for a flat list) if the total number of elements does not match the expected shape: >>> SparseMatrix(2, 2, [1, 2]) Traceback (most recent call last): ... ValueError: List length (2) != rows*columns (4) Here, an error is not raised because the list is not flat and no element is out of range: >>> SparseMatrix(2, 2, [[1, 2]]) Matrix([ [1, 2], [0, 0]]) But adding another element to the first (and only) row will cause an error to be raised: >>> SparseMatrix(2, 2, [[1, 2, 3]]) Traceback (most recent call last): ... ValueError: The location (0, 2) is out of designated range: (1, 1) To autosize the matrix, pass None for rows: >>> SparseMatrix(None, [[1, 2, 3]]) Matrix([[1, 2, 3]]) >>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3}) Matrix([ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 3]]) Values that are themselves a Matrix are automatically expanded: >>> SparseMatrix(4, 4, {(1, 1): ones(2)}) Matrix([ [0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]) A ValueError is raised if the expanding matrix tries to overwrite a different element already present: >>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2}) Traceback (most recent call last): ... ValueError: collision at (1, 1) See Also ======== DenseMatrix MutableSparseMatrix ImmutableSparseMatrix """ @classmethod def _handle_creation_inputs(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], MatrixBase): rows = args[0].rows cols = args[0].cols smat = args[0].todok() return rows, cols, smat smat = {} # autosizing if len(args) == 2 and args[0] is None: args = [None, None, args[1]] if len(args) == 3: r, c, arg3 = args if r is c is None: rows = cols = None elif None in (r, c): raise ValueError( 'Pass rows=None and no cols for autosizing.') else: rows, cols = as_int(args[0]), as_int(args[1]) if isinstance(arg3, Callable): op = arg3 if rows is None or cols is None: raise ValueError( "{} and {} must be integers for this " "specification.".format(rows, cols)) row_indices = [cls._sympify(i) for i in range(rows)] col_indices = [cls._sympify(j) for j in range(cols)] for i in row_indices: for j in col_indices: value = cls._sympify(op(i, j)) if value != cls.zero: smat[i, j] = value return rows, cols, smat elif isinstance(arg3, (dict, Dict)): def update(i, j, v): # update smat and make sure there are no collisions if v: if (i, j) in smat and v != smat[i, j]: raise ValueError( "There is a collision at {} for {} and {}." .format((i, j), v, smat[i, j]) ) smat[i, j] = v # manual copy, copy.deepcopy() doesn't work for (r, c), v in arg3.items(): # type: ignore if isinstance(v, MatrixBase): for (i, j), vv in v.todok().items(): update(r + i, c + j, vv) elif isinstance(v, (list, tuple)): _, _, smat = cls._handle_creation_inputs(v, **kwargs) for i, j in smat: update(r + i, c + j, smat[i, j]) else: v = cls._sympify(v) # type: ignore update(r, c, cls._sympify(v)) elif is_sequence(arg3): flat = not any(is_sequence(i) for i in arg3) if not flat: _, _, smat = \ cls._handle_creation_inputs(arg3, **kwargs) else: flat_list = arg3 if len(flat_list) != rows * cols: # type: ignore raise ValueError( "The length of the flat list ({}) does not " "match the specified size ({} * {})." .format(len(flat_list), rows, cols) ) for i in range(rows): # type: ignore for j in range(cols): # type: ignore value = flat_list[i*cols + j] # type: ignore value = cls._sympify(value) if value != cls.zero: smat[i, j] = value if rows is None: # autosizing keys = smat.keys() rows = max(r for r, _ in keys) + 1 if keys else 0 cols = max(c for _, c in keys) + 1 if keys else 0 else: for i, j in smat.keys(): if i and i >= rows or j and j >= cols: raise ValueError( "The location {} is out of the designated range" "[{}, {}]x[{}, {}]" .format((i, j), 0, rows - 1, 0, cols - 1) # type: ignore ) return rows, cols, smat elif len(args) == 1 and isinstance(args[0], (list, tuple)): # list of values or lists v = args[0] c = 0 for i, row in enumerate(v): if not isinstance(row, (list, tuple)): row = [row] for j, vv in enumerate(row): if vv != cls.zero: smat[i, j] = cls._sympify(vv) c = max(c, len(row)) rows = len(v) if c else 0 cols = c return rows, cols, smat else: # handle full matrix forms with _handle_creation_inputs rows, cols, mat = super()._handle_creation_inputs(*args) for i in range(rows): for j in range(cols): value = mat[cols*i + j] if value != cls.zero: smat[i, j] = value return rows, cols, smat @property def _smat(self): sympy_deprecation_warning( """ The private _smat attribute of SparseMatrix is deprecated. Use the .todok() method instead. """, deprecated_since_version="1.9", active_deprecations_target="deprecated-private-matrix-attributes" ) return self.todok() def _eval_inverse(self, **kwargs): return self.inv(method=kwargs.get('method', 'LDL'), iszerofunc=kwargs.get('iszerofunc', _iszero), try_block_diag=kwargs.get('try_block_diag', False)) def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") # XXX: This only applies the function to the nonzero elements of the # matrix so is inconsistent with DenseMatrix.applyfunc e.g. # zeros(2, 2).applyfunc(lambda x: x + 1) dok = {} for k, v in self.todok().items(): fv = f(v) if fv != 0: dok[k] = fv return self.from_dok(self.rows, self.cols, dok) def as_immutable(self): """Returns an Immutable version of this Matrix.""" from .immutable import ImmutableSparseMatrix return ImmutableSparseMatrix(self) def as_mutable(self): """Returns a mutable version of this matrix. Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return MutableSparseMatrix(self) def col_list(self): """Returns a column-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)] See Also ======== sympy.matrices.sparse.SparseMatrix.row_list """ return [tuple(k + (self[k],)) for k in sorted(self.todok().keys(), key=lambda k: list(reversed(k)))] def nnz(self): """Returns the number of non-zero elements in Matrix.""" return len(self.todok()) def row_list(self): """Returns a row-sorted list of non-zero elements of the matrix. Examples ======== >>> from sympy import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)] See Also ======== sympy.matrices.sparse.SparseMatrix.col_list """ return [tuple(k + (self[k],)) for k in sorted(self.todok().keys(), key=list)] def scalar_multiply(self, scalar): "Scalar element-wise multiplication" return scalar * self def solve_least_squares(self, rhs, method='LDL'): """Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ t = self.T return (t*self).inv(method=method)*t*rhs def solve(self, rhs, method='LDL'): """Return solution to self*soln = rhs using given inversion method. For a list of possible inversion methods, see the .inv() docstring. """ if not self.is_square: if self.rows < self.cols: raise ValueError('Under-determined system.') elif self.rows > self.cols: raise ValueError('For over-determined system, M, having ' 'more rows than columns, try M.solve_least_squares(rhs).') return self.inv(method=method).multiply(rhs) RL = property(row_list, None, None, "Alternate faster representation") CL = property(col_list, None, None, "Alternate faster representation") def liupc(self): return _liupc(self) def row_structure_symbolic_cholesky(self): return _row_structure_symbolic_cholesky(self) def cholesky(self, hermitian=True): return _cholesky_sparse(self, hermitian=hermitian) def LDLdecomposition(self, hermitian=True): return _LDLdecomposition_sparse(self, hermitian=hermitian) def lower_triangular_solve(self, rhs): return _lower_triangular_solve_sparse(self, rhs) def upper_triangular_solve(self, rhs): return _upper_triangular_solve_sparse(self, rhs) liupc.__doc__ = _liupc.__doc__ row_structure_symbolic_cholesky.__doc__ = _row_structure_symbolic_cholesky.__doc__ cholesky.__doc__ = _cholesky_sparse.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition_sparse.__doc__ lower_triangular_solve.__doc__ = lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = upper_triangular_solve.__doc__
SparseRepMatrix
python
django-guardian__django-guardian
guardian/testapp/tests/test_utils.py
{ "start": 4604, "end": 5345 }
class ____(TestCase): def test_for_instance(self): project = Project(name="Foobar") self.assertEqual(get_user_obj_perms_model(project), ProjectUserObjectPermission) def test_for_class(self): self.assertEqual(get_user_obj_perms_model(Project), ProjectUserObjectPermission) def test_default(self): self.assertEqual(get_user_obj_perms_model(ContentType), UserObjectPermission) def test_user_model(self): # this test assumes that there were no direct obj perms model to User # model defined (i.e. while testing guardian app in some custom # project) self.assertEqual(get_user_obj_perms_model(User), UserObjectPermission) @skipUnlessTestApp
GetUserObjPermsModelTest
python
huggingface__transformers
tests/models/groupvit/test_modeling_groupvit.py
{ "start": 12463, "end": 15733 }
class ____: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): rng = random.Random(0) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size, rng=rng) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return GroupViTTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask): model = GroupViTTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch
GroupViTTextModelTester
python
apache__airflow
airflow-ctl/src/airflowctl/api/datamodels/generated.py
{ "start": 39749, "end": 40512 }
class ____(BaseModel): model_config = ConfigDict( extra="forbid", ) action: Annotated[ Literal["update"], Field(description="The action to be performed on the entities.", title="Action") ] entities: Annotated[ list[PoolBody], Field(description="A list of entities to be updated.", title="Entities") ] update_mask: Annotated[ list[str] | None, Field( description="A list of field names to update for each entity.Only these fields will be applied from the request body to the database model.Any extra fields provided will be ignored.", title="Update Mask", ), ] = None action_on_non_existence: BulkActionNotOnExistence | None = "fail"
BulkUpdateActionPoolBody
python
dagster-io__dagster
python_modules/libraries/dagster-airlift/dagster_airlift/in_airflow/dag_proxy_operator.py
{ "start": 2407, "end": 3771 }
class ____(BaseProxyDAGToDagsterOperator): """The default task proxying operator - which opens a blank session and expects the dagster URL to be set in the environment. The dagster url is expected to be set in the environment as DAGSTER_URL. This operator should not be instantiated directly - it is instantiated by :py:func:`proxying_to_dagster` if no override operator is provided. """ def get_dagster_session(self, context: Context) -> requests.Session: return requests.Session() def get_dagster_url(self, context: Context) -> str: return os.environ["DAGSTER_URL"] @classmethod def build_from_dag(cls, dag: DAG) -> "DefaultProxyDAGToDagsterOperator": return DefaultProxyDAGToDagsterOperator( task_id=f"DAGSTER_OVERRIDE_DAG_{dag.dag_id}", dag=dag, ) def matched_dag_id(asset_node: Mapping[str, Any], dag_id: str) -> bool: json_metadata_entries = { entry["label"]: entry["jsonString"] for entry in asset_node["metadataEntries"] if entry["__typename"] == "JsonMetadataEntry" } mapping_entry = json_metadata_entries.get(DAG_MAPPING_METADATA_KEY) if mapping_entry: mappings = json.loads(mapping_entry) return any(mapping["dag_id"] == dag_id for mapping in mappings) return False
DefaultProxyDAGToDagsterOperator
python
facelessuser__soupsieve
tests/test_level2/test_next_sibling.py
{ "start": 59, "end": 1207 }
class ____(util.TestCase): """Test next sibling combinators.""" MARKUP = """ <div> <p id="0">Some text <span id="1"> in a paragraph</span>.</p> <a id="2" href="http://google.com">Link</a> <span id="3">Direct child</span> <pre> <span id="4">Child 1</span> <span id="5">Child 2</span> <span id="6">Child 3</span> </pre> </div> """ def test_direct_sibling(self): """Test direct sibling.""" # Spaces self.assert_selector( self.MARKUP, "span + span", ["5", "6"], flags=util.HTML ) def test_direct_sibling_no_spaces(self): """Test direct sibling with no spaces.""" # No spaces self.assert_selector( self.MARKUP, "span+span", ["5", "6"], flags=util.HTML ) def test_complex_direct_siblings(self): """Test direct sibling with no spaces.""" # Complex self.assert_selector( self.MARKUP, "span#\\34 + span#\\35", ["5"], flags=util.HTML )
TestNextSibling
python
numba__numba
numba/cuda/cudadrv/driver.py
{ "start": 2761, "end": 6008 }
class ____(CudaDriverError): def __init__(self, code, msg): self.code = code self.msg = msg super(CudaAPIError, self).__init__(code, msg) def __str__(self): return "[%s] %s" % (self.code, self.msg) def locate_driver_and_loader(): envpath = config.CUDA_DRIVER if envpath == '0': # Force fail _raise_driver_not_found() # Determine DLL type if sys.platform == 'win32': dlloader = ctypes.WinDLL dldir = ['\\windows\\system32'] dlnames = ['nvcuda.dll'] elif sys.platform == 'darwin': dlloader = ctypes.CDLL dldir = ['/usr/local/cuda/lib'] dlnames = ['libcuda.dylib'] else: # Assume to be *nix like dlloader = ctypes.CDLL dldir = ['/usr/lib', '/usr/lib64'] dlnames = ['libcuda.so', 'libcuda.so.1'] if envpath: try: envpath = os.path.abspath(envpath) except ValueError: raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid path" % envpath) if not os.path.isfile(envpath): raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid file " "path. Note it must be a filepath of the .so/" ".dll/.dylib or the driver" % envpath) candidates = [envpath] else: # First search for the name in the default library path. # If that is not found, try the specific path. candidates = dlnames + [os.path.join(x, y) for x, y in product(dldir, dlnames)] return dlloader, candidates def load_driver(dlloader, candidates): # Load the driver; Collect driver error information path_not_exist = [] driver_load_error = [] for path in candidates: try: dll = dlloader(path) except OSError as e: # Problem opening the DLL path_not_exist.append(not os.path.isfile(path)) driver_load_error.append(e) else: return dll, path # Problem loading driver if all(path_not_exist): _raise_driver_not_found() else: errmsg = '\n'.join(str(e) for e in driver_load_error) _raise_driver_error(errmsg) def find_driver(): dlloader, candidates = locate_driver_and_loader() dll, path = load_driver(dlloader, candidates) return dll DRIVER_NOT_FOUND_MSG = """ CUDA driver library cannot be found. If you are sure that a CUDA driver is installed, try setting environment variable NUMBA_CUDA_DRIVER with the file path of the CUDA driver shared library. """ DRIVER_LOAD_ERROR_MSG = """ Possible CUDA driver libraries are found but error occurred during load: %s """ def _raise_driver_not_found(): raise CudaSupportError(DRIVER_NOT_FOUND_MSG) def _raise_driver_error(e): raise CudaSupportError(DRIVER_LOAD_ERROR_MSG % e) def _build_reverse_error_map(): prefix = 'CUDA_ERROR' map = utils.UniqueDict() for name in dir(enums): if name.startswith(prefix): code = getattr(enums, name) map[code] = name return map def _getpid(): return os.getpid() ERROR_MAP = _build_reverse_error_map()
CudaAPIError
python
spack__spack
lib/spack/spack/vendor/jinja2/nodes.py
{ "start": 18469, "end": 18857 }
class ____(Literal): """A constant template string.""" fields = ("data",) data: str def as_const(self, eval_ctx: t.Optional[EvalContext] = None) -> str: eval_ctx = get_eval_context(self, eval_ctx) if eval_ctx.volatile: raise Impossible() if eval_ctx.autoescape: return Markup(self.data) return self.data
TemplateData
python
ray-project__ray
python/ray/llm/_internal/serve/core/configs/openai_api_models.py
{ "start": 3947, "end": 4077 }
class ____(vLLMTranscriptionStreamResponse): model_config = ConfigDict(arbitrary_types_allowed=True)
TranscriptionStreamResponse
python
ansible__ansible
test/integration/targets/collections/collection_root_user/ansible_collections/testns/testcoll/plugins/action/bypass_host_loop.py
{ "start": 217, "end": 487 }
class ____(ActionBase): BYPASS_HOST_LOOP = True def run(self, tmp=None, task_vars=None): result = super(ActionModule, self).run(tmp, task_vars) result['bypass_inventory_hostname'] = task_vars['inventory_hostname'] return result
ActionModule
python
huggingface__transformers
src/transformers/models/mixtral/modeling_mixtral.py
{ "start": 6511, "end": 7238 }
class ____(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MixtralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
MixtralRMSNorm
python
getsentry__sentry
src/sentry/workflow_engine/typings/notification_action.py
{ "start": 523, "end": 733 }
class ____(Enum): ALL_MEMBERS = "AllMembers" ACTIVE_MEMBERS = "ActiveMembers" NO_ONE = "NoOne" # Keep existing excluded keys constant EXCLUDED_ACTION_DATA_KEYS = ["uuid", "id"]
FallthroughChoiceType
python
django__django
django/contrib/postgres/indexes.py
{ "start": 4030, "end": 5001 }
class ____(PostgresIndex): suffix = "btree" def __init__(self, *expressions, fillfactor=None, deduplicate_items=None, **kwargs): self.fillfactor = fillfactor self.deduplicate_items = deduplicate_items super().__init__(*expressions, **kwargs) def deconstruct(self): path, args, kwargs = super().deconstruct() if self.fillfactor is not None: kwargs["fillfactor"] = self.fillfactor if self.deduplicate_items is not None: kwargs["deduplicate_items"] = self.deduplicate_items return path, args, kwargs def get_with_params(self): with_params = [] if self.fillfactor is not None: with_params.append("fillfactor = %d" % self.fillfactor) if self.deduplicate_items is not None: with_params.append( "deduplicate_items = %s" % ("on" if self.deduplicate_items else "off") ) return with_params
BTreeIndex
python
django__django
tests/filtered_relation/models.py
{ "start": 2679, "end": 3053 }
class ____(models.Model): rate_date = models.DateField() from_currency = models.ForeignKey( Currency, models.CASCADE, related_name="rates_from", ) to_currency = models.ForeignKey( Currency, models.CASCADE, related_name="rates_to", ) rate = models.DecimalField(max_digits=6, decimal_places=4)
ExchangeRate
python
openai__openai-python
src/openai/types/shared_params/compound_filter.py
{ "start": 372, "end": 646 }
class ____(TypedDict, total=False): filters: Required[Iterable[Filter]] """Array of filters to combine. Items can be `ComparisonFilter` or `CompoundFilter`. """ type: Required[Literal["and", "or"]] """Type of operation: `and` or `or`."""
CompoundFilter
python
pytorch__pytorch
test/test_python_dispatch.py
{ "start": 99178, "end": 104319 }
class ____(TestCase): def _test_wrapper_subclass_aliasing(self, op, args, kwargs): def to_subclass(t: torch.Tensor): return TwoTensor(t, t.clone()) result_ref = op(*args, **kwargs) args_subclass = pytree.tree_map_only(torch.Tensor, to_subclass, args) kwargs_subclass = pytree.tree_map_only(torch.Tensor, to_subclass, kwargs) result_test = op(*args_subclass, **kwargs_subclass) args_ref_flat = pytree.arg_tree_leaves(*args, **kwargs) args_ref_flat_tensors = [ x for x in args_ref_flat if isinstance(x, torch.Tensor) ] args_test_flat = pytree.tree_leaves((args_subclass, kwargs_subclass)) args_test_flat_tensors = [ x for x in args_test_flat if isinstance(x, torch.Tensor) ] result_ref_flat = pytree.tree_leaves(result_ref) result_ref_flat_tensors = [ x for x in result_ref_flat if isinstance(x, torch.Tensor) ] result_test_flat = pytree.tree_leaves(result_test) result_test_flat_tensors = [ x for x in result_test_flat if isinstance(x, torch.Tensor) ] for o_ref, o_test in zip(result_ref_flat_tensors, result_test_flat_tensors): for a_ref, a_test in zip(args_ref_flat_tensors, args_test_flat_tensors): out_is_inpt = o_ref is a_ref if out_is_inpt: self.assertTrue(o_test is a_test) out_aliases_inpt = StorageWeakRef( o_ref.untyped_storage() ) == StorageWeakRef(a_ref.untyped_storage()) if out_aliases_inpt: self.assertTrue( StorageWeakRef(o_test.untyped_storage()) == StorageWeakRef(a_test.untyped_storage()) ) else: self.assertFalse( StorageWeakRef(o_test.untyped_storage()) == StorageWeakRef(a_test.untyped_storage()) ) # This tests the correctness of `torch.utils._python_dispatch.return_and_correct_aliasing`, # a util for wrapper subclasses to promise correct aliasing behavior. # It's probably overkill to test every OpInfo, # so I picked a sampling of ops with representative schemas. @ops( [ op for op in op_db if op.name in [ "mul", # out-of-place "cat", # out-of-place (TensorList input) "index", # out-of-place (Optional TensorList input) "mul_", # inplace "view", # view "t_", # inplace-view "split", # view (multi-return) "native_batch_norm", # mutable op (returns outputs and mutates some inputs) ] ], allowed_dtypes=(torch.float,), ) def test_wrapper_subclass_aliasing(self, device, dtype, op): samples = op.sample_inputs(device, dtype) sample = first_sample(self, samples) args = (sample.input, *sample.args) kwargs = sample.kwargs self._test_wrapper_subclass_aliasing(op, args, kwargs) @ops(custom_op_db, allowed_dtypes=(torch.float,)) def test_wrapper_subclass_aliasing_custom(self, device, dtype, op): samples = op.sample_inputs(device, dtype) sample = first_sample(self, samples) args = (sample.input, *sample.args) kwargs = sample.kwargs self._test_wrapper_subclass_aliasing(op, args, kwargs) def test_wrapper_subclass_aliasing_conv2d(self, device): args = (torch.randn(4, 4, 4, 4), torch.randn(4, 4, 4, 4)) kwargs = {} # conv2d has a default arg 'int[2] strides=0', # which torchscript expands into 'int[2] strides=[0, 0]' # Make sure that _return_and_correct_aliasing can handle this case # (I'm using inference_mode to make sure conv2d doesn't decompose and goes to torch_dispatch) with torch.inference_mode(): self._test_wrapper_subclass_aliasing( torch.ops.aten.conv2d.default, args, kwargs ) def test_wrapper_subclass_aliasing_out_op(self, device): # Make sure that _return_and_correct_aliasing can handle kwargs w mutable tensors args = (torch.ones(4), torch.ones(4)) kwargs = {"out": torch.empty(4)} self._test_wrapper_subclass_aliasing(torch.ops.aten.add.out, args, kwargs) def test_wrapper_subclass_aliasing_fft_fft2(self, device): args = (torch.randn(4, 4),) kwargs = {} # fft_fft2 has a default arg 'int[1] dim=[-2,-1]', # Make sure that _return_and_correct_aliasing can handle this case # (I'm using inference_mode to make sure fft_fft2 doesn't decompose and goes to torch_dispatch) with torch.inference_mode(): self._test_wrapper_subclass_aliasing(torch.ops.aten.fft_fft2, args, kwargs) instantiate_device_type_tests(TestWrapperSubclassAliasing, globals()) if __name__ == "__main__": run_tests()
TestWrapperSubclassAliasing
python
cython__cython
tests/run/genexpr_arg_order.py
{ "start": 2340, "end": 4534 }
class ____: @property def indexer(self): print("Getting indexer") return IndexableClass() @property def function(self): print("Getting function") def func(a, b, c): print("In func") return [a, b, c] return func def genexp_index_order(): """ >>> list(genexp_index_order()) Getting indexer In zero In five In one In indexer Made generator expression [0, 5, 1] """ obj = NoisyAttributeLookup() ret = (a for a in obj.indexer[zero():five():one()]) print("Made generator expression") return ret @cython.test_assert_path_exists("//InlinedGeneratorExpressionNode") def list_index_order(): """ >>> list_index_order() Getting indexer In zero In five In one In indexer [0, 5, 1] """ obj = NoisyAttributeLookup() return list(a for a in obj.indexer[zero():five():one()]) def genexpr_fcall_order(): """ Note that the order of getting the function and evaluating the function arguments can end up slightly different in Python and Cython and so isn't tested. >>> list(genexpr_fcall_order()) Getting function In func Made generator expression [0, 5, 1] """ obj = NoisyAttributeLookup() ret = (a for a in obj.function(0, 5, 1)) print("Made generator expression") return ret @cython.test_assert_path_exists("//InlinedGeneratorExpressionNode") def list_fcall_order(): """ Note that the order of getting the function and evaluating the function arguments can end up slightly different in Python and Cython and so isn't tested. >>> list_fcall_order() Getting function In func [0, 5, 1] """ obj = NoisyAttributeLookup() return list(a for a in obj.function(0, 5, 1)) def call1(): print("In call1") return ["a"] def call2(): print("In call2") return ["b"] def multiple_genexps_to_call_order(): """ >>> multiple_genexps_to_call_order() In call1 In call2 """ def takes_two_genexps(a, b): pass return takes_two_genexps((x for x in call1()), (x for x in call2()))
NoisyAttributeLookup
python
ray-project__ray
python/ray/serve/_private/deployment_state.py
{ "start": 2517, "end": 2644 }
class ____(Enum): PENDING_ALLOCATION = 1 PENDING_INITIALIZATION = 2 SUCCEEDED = 3 FAILED = 4
ReplicaStartupStatus
python
django__django
tests/servers/tests.py
{ "start": 878, "end": 1188 }
class ____(LiveServerTestCase): available_apps = [ "servers", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", ] fixtures = ["testdata.json"] def urlopen(self, url): return urlopen(self.live_server_url + url)
LiveServerBase
python
astropy__astropy
astropy/cosmology/_src/core.py
{ "start": 2658, "end": 2944 }
class ____(Exception): pass # TODO: replace with `field(converter=lambda x: None if x is None else str(x))` when # the `converter` argument is available in `field` (py3.13, maybe?). # See https://peps.python.org/pep-0712/ @dataclass(frozen=True, slots=True)
CosmologyError
python
pola-rs__polars
py-polars/src/polars/interchange/protocol.py
{ "start": 6679, "end": 7076 }
class ____(Protocol): """Dataframe that supports conversion into an interchange dataframe object.""" def __dataframe__( self, nan_as_null: bool = False, # noqa: FBT001 allow_copy: bool = True, # noqa: FBT001 ) -> SupportsInterchange: """Convert to a dataframe object implementing the dataframe interchange protocol.""" # noqa: W505
SupportsInterchange
python
getsentry__sentry
tests/sentry/receivers/test_onboarding.py
{ "start": 2655, "end": 55177 }
class ____(TestCase): @assume_test_silo_mode(SiloMode.CONTROL) def _create_integration(self, provider: str, external_id: int = 9999): return self.create_provider_integration( provider=provider, name="test", external_id=external_id, ) def test_existing_complete_task(self) -> None: now = timezone.now() project = self.create_project(first_event=now) task = OrganizationOnboardingTask.objects.create( organization=project.organization, task=OnboardingTask.FIRST_PROJECT, status=OnboardingTaskStatus.COMPLETE, ) event = self.store_event(data={}, project_id=project.id) first_event_received.send(project=project, event=event, sender=None) task = OrganizationOnboardingTask.objects.get(id=task.id) assert task.status == OnboardingTaskStatus.COMPLETE assert not task.project_id # Tests on the receivers def test_event_processed(self) -> None: now = timezone.now() project = self.create_project(first_event=now) event = self.store_event( data={ "event_id": "a" * 32, "platform": "javascript", "timestamp": before_now(minutes=1).isoformat(), "tags": { "sentry:user": "id:41656", }, "release": "e1b5d1900526feaf20fe2bc9cad83d392136030a", "user": {"ip_address": "0.0.0.0", "id": "41656", "email": "test@example.com"}, "exception": { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] }, }, project_id=project.id, ) event_processed.send(project=project, event=event, sender=None) task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.RELEASE_TRACKING, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.SOURCEMAPS, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_project_created(self) -> None: now = timezone.now() project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.FIRST_PROJECT, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None second_project = self.create_project(first_event=now) project_created.send(project=second_project, user=self.user, sender=None) second_project.delete() task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.FIRST_PROJECT, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_project_created__default_workflow(self) -> None: project = self.create_project(fire_project_created=True) assert Rule.objects.filter(project=project).exists() workflow = Workflow.objects.get(organization=project.organization, name=DEFAULT_RULE_LABEL) assert Detector.objects.filter(project=project, type=ErrorGroupType.slug).count() == 1 assert Detector.objects.filter(project=project, type=IssueStreamGroupType.slug).count() == 1 assert DetectorWorkflow.objects.filter(workflow=workflow).count() == 2 @patch("sentry.analytics.record", wraps=record) def test_project_created_with_origin(self, record_analytics: MagicMock) -> None: project = self.create_project() project_created.send( project=project, user=self.user, default_rules=False, sender=None, origin="ui" ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.FIRST_PROJECT, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None # Verify origin is passed to analytics event assert_last_analytics_event( record_analytics, ProjectCreatedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, project_id=project.id, platform=project.platform, origin="ui", ), ) @patch("sentry.analytics.record", wraps=record) def test_first_event_received(self, record_analytics: MagicMock) -> None: now = timezone.now() # Create first project and send event project = self.create_project(first_event=now, platform="javascript") project_created.send_robust(project=project, user=self.user, sender=None) event = self.store_event( data={"platform": "javascript", "message": "javascript error message"}, project_id=project.id, ) first_event_received.send_robust(project=project, event=event, sender=None) # Assert first event onboarding task is created and completed task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.FIRST_EVENT, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None assert task.project_id == project.id # Ensure analytics events are called in the right order assert len(record_analytics.call_args_list) >= 2 # Ensure at least two calls assert_any_analytics_event( record_analytics, FirstEventSentForProjectEvent( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=event.platform, project_platform=project.platform, url=dict(event.tags).get("url", None), has_minified_stack_trace=has_event_minified_stack_trace(event), sdk_name=None, ), ) assert_any_analytics_event( record_analytics, FirstEventSentEvent( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=event.platform, project_platform=project.platform, ), ) # Create second project and send event second_project = self.create_project(first_event=now, platform="python") project_created.send(project=second_project, user=self.user, sender=None) # Assert second platform onboarding task is completed second_task = OrganizationOnboardingTask.objects.get( organization=second_project.organization, task=OnboardingTask.SECOND_PLATFORM, status=OnboardingTaskStatus.COMPLETE, ) assert second_task is not None # An event is sent for the second project first_event_received.send_robust(project=second_project, event=event, sender=None) # Ensure first project's onboarding task remains unchanged task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.FIRST_EVENT, status=OnboardingTaskStatus.COMPLETE, ) assert task.project_id == project.id # Ensure "first_event_for_project.sent" was called again for second project record_analytics.call_args_list[-1].assert_called_with( FirstEventSentForProjectEvent( user_id=self.user.id, organization_id=second_project.organization_id, project_id=second_project.id, platform=event.platform, project_platform=second_project.platform, url=dict(event.tags).get("url", None), has_minified_stack_trace=has_event_minified_stack_trace(event), sdk_name=None, ) ) # Ensure "first_event.sent" was called exactly once assert get_event_count(record_analytics, FirstEventSentEvent, exact=True) == 1 def test_first_transaction_received(self) -> None: project = self.create_project() event_data = load_data("transaction") min_ago = before_now(minutes=1).isoformat() event_data.update({"start_timestamp": min_ago, "timestamp": min_ago}) event = self.store_event(data=event_data, project_id=project.id) first_event_received.send(project=project, event=event, sender=None) first_transaction_received.send(project=project, event=event, sender=None) task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.FIRST_TRANSACTION, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_member_invited(self) -> None: user = self.create_user(email="test@example.org") member = self.create_member( organization=self.organization, teams=[self.team], email=user.email ) member_invited.send(member=member, user=user, sender=None) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.INVITE_MEMBER, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_alert_added(self) -> None: alert_rule_created.send( rule_id=Rule(id=1).id, project=self.project, user=self.user, rule_type="issue", sender=None, is_api_token=False, ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.ALERT_RULE, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_integration_added(self) -> None: integration_added.send( integration_id=self._create_integration("slack", 1234).id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.REAL_TIME_NOTIFICATIONS, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None # Adding a second integration integration_added.send( integration_id=self._create_integration("github", 4567).id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.LINK_SENTRY_TO_SOURCE_CODE, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None @patch("sentry.analytics.record", wraps=record) def test_first_event_without_minified_stack_trace_received( self, record_analytics: MagicMock ) -> None: """ Test that an analytics event is NOT recorded when there no event with minified stack trace is received """ now = timezone.now() project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) data = load_data("javascript") self.store_event( data=data, project_id=project.id, ) with pytest.raises(AssertionError): assert_last_analytics_event( record_analytics, FirstEventSentEventWithMinifiedStackTraceForProject( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform="javascript", url="http://localhost:3000", ), ) @patch("sentry.analytics.record", wraps=record) def test_first_event_with_minified_stack_trace_received( self, record_analytics: MagicMock ) -> None: """ Test that an analytics event is recorded when a first event with minified stack trace is received """ now = timezone.now() project = self.create_project(first_event=now, platform="VueJS") project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" event = load_data("javascript") event["tags"] = [("url", url)] event["exception"] = { "values": [ { **event["exception"]["values"][0], "raw_stacktrace": { "frames": [ { "function": "o", "filename": "/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "abs_path": "https://s1.sentry-cdn.com/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "lineno": 2, "colno": 37098, "pre_context": [ "/*! For license information please see vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd. {snip}" ], "context_line": "{snip} .apply(this,arguments);const i=o.map((e=>c(e,t)));return e.apply(this,i)}catch(e){throw l(),(0,i.$e)((n=>{n.addEventProcessor((e=>(t.mechani {snip}", "post_context": [ "//# sourceMappingURL=../sourcemaps/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.fe32 {snip}" ], "in_app": False, }, ], }, } ] } self.store_event( project_id=project.id, data=event, ) assert_last_analytics_event( record_analytics, FirstEventSentEventWithMinifiedStackTraceForProject( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=event["platform"], project_platform="VueJS", url=url, ), ) @patch("sentry.analytics.record", wraps=record) def test_analytic_triggered_only_once_if_multiple_events_with_minified_stack_trace_received( self, record_analytics ): """ Test that an analytic event is triggered only once when multiple events with minified stack trace are received """ now = timezone.now() project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" event = load_data("javascript") event["tags"] = [("url", url)] event["exception"] = { "values": [ { **event["exception"]["values"][0], "raw_stacktrace": { "frames": [ { "function": "o", "filename": "/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "abs_path": "https://s1.sentry-cdn.com/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "lineno": 2, "colno": 37098, "pre_context": [ "/*! For license information please see vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd. {snip}" ], "context_line": "{snip} .apply(this,arguments);const i=o.map((e=>c(e,t)));return e.apply(this,i)}catch(e){throw l(),(0,i.$e)((n=>{n.addEventProcessor((e=>(t.mechani {snip}", "post_context": [ "//# sourceMappingURL=../sourcemaps/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.fe32 {snip}" ], "in_app": False, }, ], }, } ] } # Store first event self.store_event( project_id=project.id, data=event, ) # Store second event self.store_event( project_id=project.id, data=event, ) assert ( get_event_count(record_analytics, FirstEventSentEventWithMinifiedStackTraceForProject) == 1 ) @patch("sentry.analytics.record", wraps=record) def test_old_project_sending_minified_stack_trace_event( self, record_analytics: MagicMock ) -> None: """ Test that an analytics event is NOT recorded when the project creation date is older than the date we defined (START_DATE_TRACKING_FIRST_EVENT_WITH_MINIFIED_STACK_TRACE_PER_PROJ). In this test we also check if the has_minified_stack_trace is being set to "True" in old projects """ old_date = datetime(2022, 12, 10, tzinfo=UTC) project = self.create_project(first_event=old_date, date_added=old_date) project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" event = load_data("javascript") event["tags"] = [("url", url)] event["exception"] = { "values": [ { **event["exception"]["values"][0], "raw_stacktrace": { "frames": [ { "function": "o", "filename": "/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "abs_path": "https://s1.sentry-cdn.com/_static/dist/sentry/chunks/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.255071ceadabfb67483c.js", "lineno": 2, "colno": 37098, "pre_context": [ "/*! For license information please see vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd. {snip}" ], "context_line": "{snip} .apply(this,arguments);const i=o.map((e=>c(e,t)));return e.apply(this,i)}catch(e){throw l(),(0,i.$e)((n=>{n.addEventProcessor((e=>(t.mechani {snip}", "post_context": [ "//# sourceMappingURL=../sourcemaps/vendors-node_modules_emotion_is-prop-valid_node_modules_emotion_memoize_dist_memoize_browser_-4fe4bd.fe32 {snip}" ], "in_app": False, }, ], }, } ] } def _project_has_minified_stack_trace(p: Project) -> bool: return p.flags.has_minified_stack_trace assert not _project_has_minified_stack_trace(project) # Store event self.store_event( project_id=project.id, data=event, ) project.refresh_from_db() assert _project_has_minified_stack_trace(project) # The analytic's event "first_event_with_minified_stack_trace_for_project" shall not be sent assert ( get_event_count(record_analytics, FirstEventSentEventWithMinifiedStackTraceForProject) == 0 ) @patch("sentry.analytics.record", wraps=record) def test_first_event_without_sourcemaps_received(self, record_analytics: MagicMock) -> None: """ Test that an analytics event is NOT recorded when no event with sourcemaps is received """ now = timezone.now() project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) data = load_data("javascript") data["exception"] = { "values": [ { "stacktrace": {"frames": [{"data": {}}]}, "type": "TypeError", } ] } event = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event, sender=None) assert get_event_count(record_analytics, FirstSourcemapsSentEventForProject) == 0 @patch("sentry.analytics.record", wraps=record) def test_first_event_with_sourcemaps_received(self, record_analytics: MagicMock) -> None: """ Test that an analytics event is recorded when a first event with sourcemaps is received """ now = timezone.now() project = self.create_project(first_event=now, platform="VueJS") project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" data = load_data("javascript") data["tags"] = [("url", url)] data["exception"] = { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] } event = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event, sender=None) assert_last_analytics_event( record_analytics, FirstSourcemapsSentEventForProject( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=event.platform, project_platform="VueJS", url=url, ), ) @patch("sentry.analytics.record", wraps=record) def test_analytic_triggered_only_once_if_multiple_events_with_sourcemaps_received( self, record_analytics ): """ Test that an analytic event is triggered only once when multiple events with sourcemaps are received """ now = timezone.now() project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" data = load_data("javascript") data["tags"] = [("url", url)] data["exception"] = { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] } # Store first event event_1 = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event_1, sender=None) # Store second event event_2 = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event_2, sender=None) assert get_event_count(record_analytics, FirstSourcemapsSentEventForProject) == 1 @patch("sentry.analytics.record", wraps=record) def test_old_project_sending_sourcemap_event(self, record_analytics: MagicMock) -> None: """ Test that an analytics event is NOT recorded when the project creation date is older than the date we defined (START_DATE_TRACKING_FIRST_EVENT_WITH_SOURCEMAPS_PER_PROJ). In this test we also check if the has_sourcemaps is being set to "True" in old projects """ old_date = datetime(2022, 12, 10, tzinfo=UTC) project = self.create_project(first_event=old_date, date_added=old_date) project_created.send(project=project, user=self.user, sender=None) url = "http://localhost:3000" data = load_data("javascript") data["tags"] = [("url", url)] data["exception"] = { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] } def _project_has_sourcemaps(p: Project) -> bool: return project.flags.has_sourcemaps assert not _project_has_sourcemaps(project) event = self.store_event(project_id=project.id, data=data) event_processed.send(project=project, event=event, sender=None) project.refresh_from_db() assert _project_has_sourcemaps(project) # The analytic's event "first_event_with_minified_stack_trace_for_project" shall not be sent assert get_event_count(record_analytics, FirstSourcemapsSentEventForProject) == 0 @patch("sentry.analytics.record", wraps=record) def test_real_time_notifications_added(self, record_analytics: MagicMock) -> None: integration_id = self._create_integration("slack", 123).id integration_added.send( integration_id=integration_id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.REAL_TIME_NOTIFICATIONS, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None assert_last_analytics_event( record_analytics, IntegrationAddedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, id=integration_id, provider="slack", ), ) @patch("sentry.analytics.record", wraps=record) def test_source_code_management_added(self, record_analytics: MagicMock) -> None: integration_id = self._create_integration("github", 123).id integration_added.send( integration_id=integration_id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.LINK_SENTRY_TO_SOURCE_CODE, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None assert_last_analytics_event( record_analytics, IntegrationAddedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, id=integration_id, provider="github", ), ) def test_second_platform_complete(self) -> None: now = timezone.now() project = self.create_project(first_event=now) second_project = self.create_project(first_event=now) project_created.send(project=project, user=self.user, sender=None) project_created.send(project=second_project, user=self.user, sender=None) task = OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.SECOND_PLATFORM, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_release_received_through_transaction_event(self) -> None: project = self.create_project() event_data = load_data("transaction") event_data.update({"release": "my-first-release", "tags": []}) event = self.store_event(data=event_data, project_id=project.id) event_processed.send(project=project, event=event, sender=None) task = OrganizationOnboardingTask.objects.get( organization=project.organization, task=OnboardingTask.RELEASE_TRACKING, status=OnboardingTaskStatus.COMPLETE, ) assert task is not None def test_issue_alert_received_through_project_creation(self) -> None: now = timezone.now() first_organization = self.create_organization(owner=self.user, slug="first-org") first_project = self.create_project(first_event=now, organization=first_organization) # By default, the project creation will create a default rule project_created.send(project=first_project, user=self.user, sender=None) assert OrganizationOnboardingTask.objects.filter( organization=first_project.organization, task=OnboardingTask.ALERT_RULE, status=OnboardingTaskStatus.COMPLETE, ).exists() second_organization = self.create_organization(owner=self.user, slug="second-org") second_project = self.create_project(first_event=now, organization=second_organization) # When creating a project, a user can opt out of creating a default rule project_created.send( project=second_project, user=self.user, sender=None, default_rules=False, ) assert not OrganizationOnboardingTask.objects.filter( organization=second_project.organization, task=OnboardingTask.ALERT_RULE, status=OnboardingTaskStatus.COMPLETE, ).exists() @patch("sentry.analytics.record", wraps=record) def test_new_onboarding_complete(self, record_analytics: MagicMock) -> None: """ Test the new quick start happy path (without source maps) """ # Create first project project = self.create_project(platform="python") project_created.send(project=project, user=self.user, default_rules=False, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.FIRST_PROJECT, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, ProjectCreatedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, project_id=project.id, platform=project.platform, origin=None, ), ) # Set up tracing transaction_event = load_data("transaction") transaction_event.update({"user": None}) event = self.store_event(data=transaction_event, project_id=project.id) transaction_processed.send(project=project, event=event, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.FIRST_TRANSACTION, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, FirstTransactionSentEvent( default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, project_id=project.id, platform=project.platform, ), ) # Capture first error error_event = self.store_event( data={ "event_id": "c" * 32, "message": "this is bad.", "timestamp": timezone.now().isoformat(), "type": "error", }, project_id=project.id, ) event_processed.send(project=project, event=error_event, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.FIRST_EVENT, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, FirstEventSentEvent( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=error_event.platform, project_platform=project.platform, ), ) # Configure an issue alert alert_rule_created.send( rule_id=Rule(id=1).id, project=project, user=self.user, rule_type="issue", sender=None, is_api_token=False, ) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.ALERT_RULE, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, AlertCreatedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, project_id=project.id, rule_id=Rule(id=1).id, rule_type="issue", is_api_token=False, referrer=None, session_id=None, alert_rule_ui_component=None, duplicate_rule=None, wizard_v3=None, query_type=None, ), ) # Track releases transaction_event = load_data("transaction") transaction_event.update({"release": "my-first-release", "tags": []}) event = self.store_event(data=transaction_event, project_id=project.id) transaction_processed.send(project=project, event=event, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.RELEASE_TRACKING, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_any_analytics_event( record_analytics, FirstReleaseTagSentEvent( user_id=self.user.id, project_id=project.id, organization_id=self.organization.id, ), ) # Link Sentry to source code github_integration = self._create_integration("github", 1234) integration_added.send( integration_id=github_integration.id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.LINK_SENTRY_TO_SOURCE_CODE, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, IntegrationAddedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, provider=github_integration.provider, id=github_integration.id, ), ) # Invite your team user = self.create_user(email="test@example.org") member = self.create_member( organization=self.organization, teams=[self.team], email=user.email ) member_invited.send(member=member, user=user, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.INVITE_MEMBER, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, MemberInvitedEvent( invited_member_id=member.id, inviter_user_id=user.id, organization_id=self.organization.id, referrer=None, ), ) # Manually update the completionSeen column of existing tasks OrganizationOnboardingTask.objects.filter(organization=self.organization).update( completion_seen=timezone.now() ) onboarding_tasks.try_mark_onboarding_complete(self.organization.id) # The first group is complete but the beyond the basics is not assert ( OrganizationOption.objects.filter( organization=self.organization, key="onboarding:complete" ).count() == 0 ) # Set up session replay first_replay_received.send(project=project, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.SESSION_REPLAY, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, FirstReplaySentEvent( user_id=self.user.id, organization_id=project.organization_id, project_id=project.id, platform=project.platform, ), ) # Get real time notifications slack_integration = self._create_integration("slack", 4321) integration_added.send( integration_id=slack_integration.id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.REAL_TIME_NOTIFICATIONS, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_last_analytics_event( record_analytics, IntegrationAddedEvent( user_id=self.user.id, default_user_id=self.organization.default_owner_id, organization_id=self.organization.id, provider=slack_integration.provider, id=slack_integration.id, ), ) # Add Sentry to other parts app second_project = self.create_project( first_event=timezone.now(), organization=self.organization ) project_created.send( project=second_project, user=self.user, sender=None, default_rules=False, ) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.SECOND_PLATFORM, status=OnboardingTaskStatus.COMPLETE, ) is not None ) record_analytics.call_args_list[ len(record_analytics.call_args_list) - 2 ].assert_called_with( "second_platform.added", user_id=self.user.id, organization_id=self.organization.id, project_id=second_project.id, ) # Manually update the completionSeen column of existing tasks OrganizationOnboardingTask.objects.filter(organization=self.organization).update( completion_seen=timezone.now() ) onboarding_tasks.try_mark_onboarding_complete(self.organization.id) # Onboarding is complete assert ( OrganizationOption.objects.filter( organization=self.organization, key="onboarding:complete" ).count() == 1 ) assert_last_analytics_event( record_analytics, OnboardingCompleteEvent( user_id=self.user.id, organization_id=self.organization.id, referrer="onboarding_tasks", ), ) @patch("sentry.analytics.record", wraps=record) def test_source_maps_as_required_task(self, record_analytics: MagicMock) -> None: """ Test the new quick start happy path (with source maps) """ # Create a project that can have source maps + create an issue alert project = self.create_project(platform="javascript") project_created.send(project=project, user=self.user, sender=None) # Capture first transaction + release transaction_event = load_data("transaction") transaction_event.update({"release": "my-first-release", "tags": []}) event = self.store_event(data=transaction_event, project_id=project.id) transaction_processed.send(project=project, event=event, sender=None) # Capture first error error_event = self.store_event( data={ "event_id": "c" * 32, "message": "this is bad.", "timestamp": timezone.now().isoformat(), "type": "error", "release": "my-first-release", }, project_id=project.id, ) event_processed.send(project=project, event=error_event, sender=None) # Invite your team user = self.create_user(email="test@example.org") member = self.create_member( organization=self.organization, teams=[self.team], email=user.email ) member_invited.send(member=member, user=user, sender=None) # Member accepted the invite member_joined.send( organization_member_id=member.id, organization_id=self.organization.id, user_id=user.id, sender=None, ) # Link Sentry to source code github_integration = self._create_integration("github", 1234) integration_added.send( integration_id=github_integration.id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) # Set up session replay first_replay_received.send(project=project, sender=None) # Get real time notifications slack_integration = self._create_integration("slack", 4321) integration_added.send( integration_id=slack_integration.id, organization_id=self.organization.id, user_id=self.user.id, sender=None, ) # Add Sentry to other parts app second_project = self.create_project( first_event=timezone.now(), organization=self.organization ) project_created.send( project=second_project, user=self.user, sender=None, default_rules=False, ) # Manually update the completionSeen column of existing tasks OrganizationOnboardingTask.objects.filter(organization=self.organization).update( completion_seen=timezone.now() ) onboarding_tasks.try_mark_onboarding_complete(self.organization.id) # Onboarding is NOT yet complete assert ( OrganizationOption.objects.filter( organization=self.organization, key="onboarding:complete" ).count() == 0 ) # Unminify your code # Send event with source map data = load_data("javascript") data["exception"] = { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] } event_with_sourcemap = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event_with_sourcemap, sender=None) assert ( OrganizationOnboardingTask.objects.get( organization=self.organization, task=OnboardingTask.SOURCEMAPS, status=OnboardingTaskStatus.COMPLETE, ) is not None ) assert_any_analytics_event( record_analytics, FirstSourcemapsSentEvent( user_id=self.user.id, organization_id=self.organization.id, project_id=project.id, platform=event_with_sourcemap.platform, project_platform=project.platform, url=dict(event_with_sourcemap.tags).get("url", None), ), ) assert_last_analytics_event( record_analytics, FirstSourcemapsSentEventForProject( user_id=self.user.id, organization_id=self.organization.id, project_id=project.id, platform=event_with_sourcemap.platform, project_platform=project.platform, url=dict(event_with_sourcemap.tags).get("url", None), ), ) # Manually update the completionSeen column of existing tasks OrganizationOnboardingTask.objects.filter(organization=self.organization).update( completion_seen=timezone.now() ) onboarding_tasks.try_mark_onboarding_complete(self.organization.id) # Onboarding is NOW complete assert ( OrganizationOption.objects.filter( organization=self.organization, key="onboarding:complete" ).count() == 1 ) @patch("sentry.analytics.record", wraps=record) def test_tasks_are_transferred_when_project_is_transferred( self, record_analytics: MagicMock ) -> None: """ Test that onboarding tasks are transferred when a project is transferred """ project = self.create_project(platform="python") project_created.send(project=project, user=self.user, default_rules=True, sender=None) transaction_event = load_data("transaction") transaction_event.update({"user": None, "release": "my-first-release", "tags": []}) event = self.store_event(data=transaction_event, project_id=project.id) transaction_processed.send(project=project, event=event, sender=None) data = load_data("javascript") data["exception"] = { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] } event_with_sourcemap = self.store_event( project_id=project.id, data=data, ) event_processed.send(project=project, event=event_with_sourcemap, sender=None) error_event = self.store_event( data={ "event_id": "c" * 32, "message": "this is bad.", "timestamp": timezone.now().isoformat(), "type": "error", }, project_id=project.id, ) event_processed.send(project=project, event=error_event, sender=None) first_replay_received.send(project=project, sender=None) new_organization = self.create_organization(slug="new-org") project.organization = new_organization project_transferred.send( old_org_id=self.organization.id, project=project, sender=None, ) assert_last_analytics_event( record_analytics, ProjectTransferredEvent( old_organization_id=self.organization.id, new_organization_id=new_organization.id, project_id=project.id, platform=project.platform, ), ) project2 = self.create_project(platform="javascript-react") project_created.send(project=project2, user=self.user, default_rules=False, sender=None) project2.organization = new_organization project_transferred.send( old_org_id=self.organization.id, project=project2, sender=None, ) assert_last_analytics_event( record_analytics, ProjectTransferredEvent( old_organization_id=self.organization.id, new_organization_id=new_organization.id, project_id=project2.id, platform=project2.platform, ), ) transferred_tasks = OrganizationOnboardingTask.objects.filter( organization_id=new_organization.id, task__in=OrganizationOnboardingTask.TRANSFERABLE_TASKS, ) self.assertEqual(len(transferred_tasks), len(OrganizationOnboardingTask.TRANSFERABLE_TASKS))
OrganizationOnboardingTaskTest
python
pytorch__pytorch
torch/_inductor/pattern_matcher.py
{ "start": 36500, "end": 37588 }
class ____: pattern: PatternExpr extra_check: Callable[[Match], bool] def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node) -> None: raise NotImplementedError def register( self, pass_dicts: Union[_PassDictsType, Sequence[_PassDictsType]], target: Union[torch.fx.node.Target, None] = None, prepend: bool = False, ) -> None: if target is None: assert hasattr(self.pattern, "fns") for fn in self.pattern.fns: self.register(pass_dicts, fn, prepend=prepend) elif isinstance(pass_dicts, (dict, PatternMatcherPass)): assert hasattr(self.pattern, "op") if prepend: pass_dicts[(self.pattern.op, target)].insert(0, self) else: pass_dicts[(self.pattern.op, target)].append(self) else: pass_dicts = typing.cast(Sequence[_PassDictsType], pass_dicts) for x in pass_dicts: self.register(x, target, prepend=prepend) @dataclasses.dataclass
PatternEntry
python
prompt-toolkit__python-prompt-toolkit
src/prompt_toolkit/validation.py
{ "start": 4661, "end": 5162 }
class ____(Validator): """ Validator that can be switched on/off according to a filter. (This wraps around another validator.) """ def __init__(self, validator: Validator, filter: FilterOrBool) -> None: self.validator = validator self.filter = to_filter(filter) def validate(self, document: Document) -> None: # Call the validator only if the filter is active. if self.filter(): self.validator.validate(document)
ConditionalValidator
python
pydantic__pydantic
pydantic/_internal/_mock_val_ser.py
{ "start": 626, "end": 2284 }
class ____(Mapping[str, Any]): """Mocker for `pydantic_core.CoreSchema` which optionally attempts to rebuild the thing it's mocking when one of its methods is accessed and raises an error if that fails. """ __slots__ = '_error_message', '_code', '_attempt_rebuild', '_built_memo' def __init__( self, error_message: str, *, code: PydanticErrorCodes, attempt_rebuild: Callable[[], CoreSchema | None] | None = None, ) -> None: self._error_message = error_message self._code: PydanticErrorCodes = code self._attempt_rebuild = attempt_rebuild self._built_memo: CoreSchema | None = None def __getitem__(self, key: str) -> Any: return self._get_built().__getitem__(key) def __len__(self) -> int: return self._get_built().__len__() def __iter__(self) -> Iterator[str]: return self._get_built().__iter__() def _get_built(self) -> CoreSchema: if self._built_memo is not None: return self._built_memo if self._attempt_rebuild: schema = self._attempt_rebuild() if schema is not None: self._built_memo = schema return schema raise PydanticUserError(self._error_message, code=self._code) def rebuild(self) -> CoreSchema | None: self._built_memo = None if self._attempt_rebuild: schema = self._attempt_rebuild() if schema is not None: return schema else: raise PydanticUserError(self._error_message, code=self._code) return None
MockCoreSchema
python
walkccc__LeetCode
solutions/3535. Unit Conversion II/3535.py
{ "start": 0, "end": 1016 }
class ____: def queryConversions( self, conversions: list[list[int]], queries: list[list[int]] ) -> list[int]: self.MOD = 1_000_000_007 units = self._baseUnitConversions(conversions) # By Fermat's little theorem. return [units[v] * self._modPow(units[u], self.MOD - 2) % self.MOD for u, v in queries] # Same as 3528. Unit Conversion I def _baseUnitConversions(self, conversions: list[list[int]]) -> list[int]: n = len(conversions) + 1 res = [0] * n res[0] = 1 q = collections.deque([0]) graph = [[] for _ in range(n)] for u, v, factor in conversions: graph[u].append((v, factor)) while q: u = q.popleft() for v, factor in graph[u]: res[v] = (res[u] * factor) % self.MOD q.append(v) return res def _modPow(self, x: int, n: int) -> int: if n == 0: return 1 if n % 2 == 1: return x * self._modPow(x, n - 1) % self.MOD return self._modPow(x * x % self.MOD, n // 2)
Solution
python
python-openxml__python-docx
src/docx/opc/part.py
{ "start": 550, "end": 5711 }
class ____: """Base class for package parts. Provides common properties and methods, but intended to be subclassed in client code to implement specific part behaviors. """ def __init__( self, partname: PackURI, content_type: str, blob: bytes | None = None, package: Package | None = None, ): super(Part, self).__init__() self._partname = partname self._content_type = content_type self._blob = blob self._package = package def after_unmarshal(self): """Entry point for post-unmarshaling processing, for example to parse the part XML. May be overridden by subclasses without forwarding call to super. """ # don't place any code here, just catch call if not overridden by # subclass pass def before_marshal(self): """Entry point for pre-serialization processing, for example to finalize part naming if necessary. May be overridden by subclasses without forwarding call to super. """ # don't place any code here, just catch call if not overridden by # subclass pass @property def blob(self) -> bytes: """Contents of this package part as a sequence of bytes. May be text or binary. Intended to be overridden by subclasses. Default behavior is to return load blob. """ return self._blob or b"" @property def content_type(self): """Content type of this part.""" return self._content_type def drop_rel(self, rId: str): """Remove the relationship identified by `rId` if its reference count is less than 2. Relationships with a reference count of 0 are implicit relationships. """ if self._rel_ref_count(rId) < 2: del self.rels[rId] @classmethod def load(cls, partname: PackURI, content_type: str, blob: bytes, package: Package): return cls(partname, content_type, blob, package) def load_rel(self, reltype: str, target: Part | str, rId: str, is_external: bool = False): """Return newly added |_Relationship| instance of `reltype`. The new relationship relates the `target` part to this part with key `rId`. Target mode is set to ``RTM.EXTERNAL`` if `is_external` is |True|. Intended for use during load from a serialized package, where the rId is well-known. Other methods exist for adding a new relationship to a part when manipulating a part. """ return self.rels.add_relationship(reltype, target, rId, is_external) @property def package(self): """|OpcPackage| instance this part belongs to.""" return self._package @property def partname(self): """|PackURI| instance holding partname of this part, e.g. '/ppt/slides/slide1.xml'.""" return self._partname @partname.setter def partname(self, partname: str): if not isinstance(partname, PackURI): tmpl = "partname must be instance of PackURI, got '%s'" raise TypeError(tmpl % type(partname).__name__) self._partname = partname def part_related_by(self, reltype: str) -> Part: """Return part to which this part has a relationship of `reltype`. Raises |KeyError| if no such relationship is found and |ValueError| if more than one such relationship is found. Provides ability to resolve implicitly related part, such as Slide -> SlideLayout. """ return self.rels.part_with_reltype(reltype) def relate_to(self, target: Part | str, reltype: str, is_external: bool = False) -> str: """Return rId key of relationship of `reltype` to `target`. The returned `rId` is from an existing relationship if there is one, otherwise a new relationship is created. """ if is_external: return self.rels.get_or_add_ext_rel(reltype, cast(str, target)) else: rel = self.rels.get_or_add(reltype, cast(Part, target)) return rel.rId @property def related_parts(self): """Dictionary mapping related parts by rId, so child objects can resolve explicit relationships present in the part XML, e.g. sldIdLst to a specific |Slide| instance.""" return self.rels.related_parts @lazyproperty def rels(self): """|Relationships| instance holding the relationships for this part.""" # -- prevent breakage in `python-docx-template` by retaining legacy `._rels` attribute -- self._rels = Relationships(self._partname.baseURI) return self._rels def target_ref(self, rId: str) -> str: """Return URL contained in target ref of relationship identified by `rId`.""" rel = self.rels[rId] return rel.target_ref def _rel_ref_count(self, rId: str) -> int: """Return the count of references in this part to the relationship identified by `rId`. Only an XML part can contain references, so this is 0 for `Part`. """ return 0
Part
python
bokeh__bokeh
src/bokeh/core/property/wrappers.py
{ "start": 7856, "end": 8946 }
class ____(PropertyValueContainer, set[T]): """ A list property value container that supports change notifications on mutating operations. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def _saved_copy(self) -> set[T]: return set(self) @notify_owner def add(self, element: T) -> None: super().add(element) @notify_owner def difference_update(self, *s: Iterable[Any]) -> None: super().difference_update(*s) @notify_owner def discard(self, element: T) -> None: super().discard(element) @notify_owner def intersection_update(self, *s: Iterable[Any]) -> None: super().intersection_update(*s) @notify_owner def remove(self, element: T) -> None: super().discard(element) @notify_owner def symmetric_difference_update(self, s: Iterable[T]) -> None: super().symmetric_difference_update(s) @notify_owner def update(self, *s: Iterable[T]) -> None: super().update(*s) T_Val = TypeVar("T_Val")
PropertyValueSet
python
PyCQA__pylint
doc/data/messages/i/invalid-repr-returned/good.py
{ "start": 0, "end": 107 }
class ____: """__repr__ returns <type 'str'>""" def __repr__(self): return "apples"
CustomRepr
python
django__django
django/contrib/contenttypes/models.py
{ "start": 183, "end": 5011 }
class ____(models.Manager): use_in_migrations = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Cache shared by all the get_for_* methods to speed up # ContentType retrieval. self._cache = {} def get_by_natural_key(self, app_label, model): try: ct = self._cache[self.db][(app_label, model)] except KeyError: ct = self.get(app_label=app_label, model=model) self._add_to_cache(self.db, ct) return ct def _get_opts(self, model, for_concrete_model): if for_concrete_model: model = model._meta.concrete_model return model._meta def _get_from_cache(self, opts): key = (opts.app_label, opts.model_name) return self._cache[self.db][key] def get_for_model(self, model, for_concrete_model=True): """ Return the ContentType object for a given model, creating the ContentType if necessary. Lookups are cached so that subsequent lookups for the same model don't hit the database. """ opts = self._get_opts(model, for_concrete_model) try: return self._get_from_cache(opts) except KeyError: pass # The ContentType entry was not found in the cache, therefore we # proceed to load or create it. try: # Start with get() and not get_or_create() in order to use # the db_for_read (see #20401). ct = self.get(app_label=opts.app_label, model=opts.model_name) except self.model.DoesNotExist: # Not found in the database; we proceed to create it. This time # use get_or_create to take care of any race conditions. ct, created = self.get_or_create( app_label=opts.app_label, model=opts.model_name, ) self._add_to_cache(self.db, ct) return ct def get_for_models(self, *models, for_concrete_models=True): """ Given *models, return a dictionary mapping {model: content_type}. """ results = {} # Models that aren't already in the cache grouped by app labels. needed_models = defaultdict(set) # Mapping of opts to the list of models requiring it. needed_opts = defaultdict(list) for model in models: opts = self._get_opts(model, for_concrete_models) try: ct = self._get_from_cache(opts) except KeyError: needed_models[opts.app_label].add(opts.model_name) needed_opts[(opts.app_label, opts.model_name)].append(model) else: results[model] = ct if needed_opts: # Lookup required content types from the DB. condition = Q( *( Q(("app_label", app_label), ("model__in", models)) for app_label, models in needed_models.items() ), _connector=Q.OR, ) cts = self.filter(condition) for ct in cts: opts_models = needed_opts.pop((ct.app_label, ct.model), []) for model in opts_models: results[model] = ct self._add_to_cache(self.db, ct) # Create content types that weren't in the cache or DB. for (app_label, model_name), opts_models in needed_opts.items(): ct = self.create(app_label=app_label, model=model_name) self._add_to_cache(self.db, ct) for model in opts_models: results[model] = ct return results def get_for_id(self, id): """ Lookup a ContentType by ID. Use the same shared cache as get_for_model (though ContentTypes are not created on-the-fly by get_by_id). """ try: ct = self._cache[self.db][id] except KeyError: # This could raise a DoesNotExist; that's correct behavior and will # make sure that only correct ctypes get stored in the cache dict. ct = self.get(pk=id) self._add_to_cache(self.db, ct) return ct def clear_cache(self): """ Clear out the content-type cache. """ self._cache.clear() def _add_to_cache(self, using, ct): """Insert a ContentType into the cache.""" # Note it's possible for ContentType objects to be stale; model_class() # will return None. Hence, there is no reliance on # model._meta.app_label here, just using the model fields instead. key = (ct.app_label, ct.model) self._cache.setdefault(using, {})[key] = ct self._cache.setdefault(using, {})[ct.id] = ct
ContentTypeManager
python
geekcomputers__Python
Calculator with simple ui.py
{ "start": 37, "end": 1950 }
class ____: def __init__(self): pass def add(self, num1, num2): """ This function adds two numbers. Examples: >>> add(2, 3) 5 >>> add(5, 9) 14 >>> add(-1, 2) 1 """ return num1 + num2 def subtract(self, num1, num2): """ This function subtracts two numbers. Examples: >>> subtract(5, 3) 2 >>> subtract(9, 5) 4 >>> subtract(4, 9) -5 """ return num1 - num2 def multiply(self, num1, num2): """ This function multiplies two numbers. Examples: >>> multiply(4, 2) 8 >>> multiply(3, 3) 9 >>> multiply(9, 9) 81 """ return num1 * num2 def divide(self, num1, num2): """ This function divides two numbers. Examples: >>> divide(4, 4) 1 >>> divide(6, 3) 2 >>> divide(9, 1) 9 """ if num2 == 0: print("Cannot divide by zero") else: return num1 / num2 calculator = Calculator() print("1.Add") print("2.Subtract") print("3.Multiply") print("4.Divide") while True: # Take input from the user choice = input("Enter choice(1/2/3/4): ") # Check if choice is one of the four options if choice in ("1", "2", "3", "4"): num1 = float(input("Enter first number: ")) num2 = float(input("Enter second number: ")) if choice == "1": print(calculator.add(num1, num2)) elif choice == "2": print(calculator.subtract(num1, num2)) elif choice == "3": print(calculator.multiply(num1, num2)) elif choice == "4": print(calculator.divide(num1, num2)) break else: print("Invalid Input")
Calculator
python
lepture__authlib
authlib/oidc/core/errors.py
{ "start": 1586, "end": 2015 }
class ____(OAuth2Error): """The Authorization Server requires End-User consent. This error MAY be returned when the prompt parameter value in the Authentication Request is none, but the Authentication Request cannot be completed without displaying a user interface for End-User consent. http://openid.net/specs/openid-connect-core-1_0.html#AuthError """ error = "consent_required"
ConsentRequiredError
python
walkccc__LeetCode
solutions/424. Longest Repeating Character Replacement/424-2.py
{ "start": 0, "end": 394 }
class ____: def characterReplacement(self, s: str, k: int) -> int: maxCount = 0 count = collections.Counter() # l and r track the maximum window instead of the valid window. l = 0 for r, c in enumerate(s): count[c] += 1 maxCount = max(maxCount, count[c]) while maxCount + k < r - l + 1: count[s[l]] -= 1 l += 1 return r - l + 1
Solution
python
huggingface__transformers
src/transformers/models/eomt/modeling_eomt.py
{ "start": 41094, "end": 41584 }
class ____(nn.LayerNorm): def __init__(self, num_channels, eps=1e-6, affine=True): super().__init__(num_channels, eps=eps, elementwise_affine=affine) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = hidden_state.permute(0, 2, 3, 1) hidden_state = F.layer_norm(hidden_state, self.normalized_shape, self.weight, self.bias, self.eps) hidden_state = hidden_state.permute(0, 3, 1, 2) return hidden_state
EomtLayerNorm2d
python
huggingface__transformers
src/transformers/models/paligemma/modeling_paligemma.py
{ "start": 3579, "end": 9756 }
class ____(nn.Module): def __init__(self, config: PaliGemmaConfig): super().__init__() self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True) def forward(self, image_features): hidden_states = self.linear(image_features) return hidden_states def token_type_ids_mask_function( token_type_ids: Optional[torch.Tensor], image_group_ids: Optional[torch.Tensor], ) -> Optional[Callable]: """ This function adds the correct offsets to the `q_idx` and `kv_idx` as the torch API can only accept lengths, not start and end indices. """ # Do not return an additional mask in this case if token_type_ids is None: return None def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool: # If it's 1 for both query and key/value, we are in an image block # NOTE: static cache shape goes beyond input seq length, while token_type_ids.shape[1] == input seq length # Since vmap doesn't support `if statement` we workaround it with `torch.where` safe_q_idx = torch.where(q_idx < token_type_ids.shape[1], q_idx, 0) safe_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0) token_type_ids_at_q_idx = token_type_ids[batch_idx, safe_q_idx] token_type_ids_at_q_idx = torch.where(q_idx < token_type_ids.shape[1], token_type_ids_at_q_idx, 0) token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_kv_idx] token_type_ids_at_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], token_type_ids_at_kv_idx, 0) image_group_ids_at_q_idx = image_group_ids[batch_idx, safe_q_idx] image_group_ids_at_q_idx = torch.where(q_idx < image_group_ids.shape[1], image_group_ids_at_q_idx, -1) image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_kv_idx] image_group_ids_at_kv_idx = torch.where(kv_idx < image_group_ids.shape[1], image_group_ids_at_kv_idx, -1) is_image_block = (token_type_ids_at_q_idx == 1) & (token_type_ids_at_kv_idx == 1) same_image_block = image_group_ids_at_q_idx == image_group_ids_at_kv_idx # This is bidirectional attention whenever we are dealing with image tokens return is_image_block & same_image_block return inner_mask def create_causal_mask_mapping( config: PreTrainedConfig, input_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor], cache_position: torch.Tensor, past_key_values: Optional[Cache], position_ids: Optional[torch.Tensor], token_type_ids: Optional[torch.Tensor] = None, pixel_values: Optional[torch.FloatTensor] = None, is_training: bool = False, **kwargs, ) -> dict: """ Overwrites the base `create_masks_for_generate` with `token_type_ids` masking to create the causal mask mapping for all kinds of forward passes. Paligemma uses a bidirectional mask on the prompt tokens. Uses `pixel_values` as an optional input to disambiguate edge cases. """ if is_training and token_type_ids is None: raise ValueError("`token_type_ids` is required as a model input when training") mask_kwargs = { "config": config.get_text_config(), "input_embeds": input_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } # NOTE: this `is_prompt` logic is not flawless, it fails when we're using a cache eagerly initialized # (e.g. compiled prefill) AND `pixel_values` are not provided (i.e. the image data is provided through other # means). Determining prefill in that case requires checking data values, which is not compile-compatible. maybe_is_prompt = past_key_values is None or not past_key_values.is_initialized or pixel_values is not None if maybe_is_prompt: if token_type_ids is not None: # The logic bellow was originally written for Gemma3, where `token_type_ids` is reversed. Let's reverse # it to then use exactly the same logic. token_type_ids = 1 - token_type_ids else: logger.warning_once( "The input may be the prompt, but `token_type_ids` is not provided. We recommend " "passing `token_type_ids` to the model to prevent bad attention masking." ) # BC: when NOT training, use bidirectional mask if sequence length > 1. Otherwise, use the default causal # mask. This is incorrect in some advanced use cases, hence the warning above. # NOTE: this branch can't be reached when training because `token_type_ids` is required as a model input. if input_embeds.shape[1] > 1: token_type_ids = torch.ones_like(input_embeds)[:, :, 0] # Logic originally copied from Gemma3. It holds up for Paligemma as well because Paligemma assumes up to one image # per prompt AND we reverse `token_type_ids` above. Gemma3 uses a bidirectional mask for images, tagged through # `token_type_ids` 1s. if token_type_ids is not None and maybe_is_prompt: # We need to pass an additional mask function to account for token type ids, and it needs to be an `or` (to # undo the causal masking) # First find where a new image block starts: 1 if image and previous not image # The images cannot attend to future images, but can attend to all prev images and to itself bidirectionally is_image = (token_type_ids == 1).to(cache_position.device) is_previous_image = nn.functional.pad(is_image, (1, 0), value=0)[:, :-1] new_image_start = is_image & ~is_previous_image image_group_ids = torch.cumsum(new_image_start.int(), dim=1) - 1 image_group_ids = torch.where(is_image, image_group_ids, torch.full_like(token_type_ids, -1)) mask_kwargs["or_mask_function"] = token_type_ids_mask_function( token_type_ids.to(cache_position.device), image_group_ids ) return create_masks_for_generate(**mask_kwargs) @auto_docstring
PaliGemmaMultiModalProjector
python
getsentry__sentry
src/sentry/backup/comparators.py
{ "start": 8319, "end": 9522 }
class ____(JSONScrubbingComparator): """Comparator that ensures that the specified fields' value on the right input is an ISO-8601 date that is greater than (ie, occurs after) or equal to the specified field's left input.""" def compare(self, on: InstanceID, left: Any, right: Any) -> list[ComparatorFinding]: findings = [] fields = sorted(self.fields) for f in fields: if left["fields"].get(f) is None and right["fields"].get(f) is None: continue left_date_updated = left["fields"][f] or UNIX_EPOCH right_date_updated = right["fields"][f] or UNIX_EPOCH if parser.parse(left_date_updated) > parser.parse(right_date_updated): findings.append( ComparatorFinding( kind=self.get_kind(), on=on, left_pk=left["pk"], right_pk=right["pk"], reason=f"""the left value ({left_date_updated}) of `{f}` was not less than or equal to the right value ({right_date_updated})""", ) ) return findings
DateUpdatedComparator
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeVarDefaultClass2.py
{ "start": 577, "end": 805 }
class ____(dict[T1, T2]): ... a1 = ClassA[int]() reveal_type(a1, expected_text="ClassA[int, int]") a2 = ClassA() reveal_type(a2, expected_text="ClassA[str, str]") # This should generate an error because T2 depends on T1.
ClassA
python
doocs__leetcode
solution/3000-3099/3081.Replace Question Marks in String to Minimize Its Value/Solution.py
{ "start": 0, "end": 495 }
class ____: def minimizeStringValue(self, s: str) -> str: cnt = Counter(s) pq = [(cnt[c], c) for c in ascii_lowercase] heapify(pq) t = [] for _ in range(s.count("?")): v, c = pq[0] t.append(c) heapreplace(pq, (v + 1, c)) t.sort() cs = list(s) j = 0 for i, c in enumerate(s): if c == "?": cs[i] = t[j] j += 1 return "".join(cs)
Solution
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/backoff_strategies.py
{ "start": 230, "end": 1894 }
class ____(BackoffStrategy): def __init__(self, stream: HttpStream, **kwargs): # type: ignore # noqa self.stream = stream super().__init__(**kwargs) def backoff_time( self, response_or_exception: Optional[Union[requests.Response, requests.RequestException]], **kwargs: Any ) -> Optional[float]: # This method is called if we run into the rate limit. GitHub limits requests to 5000 per hour and provides # `X-RateLimit-Reset` header which contains time when this hour will be finished and limits will be reset so # we again could have 5000 per another hour. if isinstance(response_or_exception, requests.Response): min_backoff_time = 60.0 retry_after = response_or_exception.headers.get("Retry-After") if retry_after is not None: backoff_time_in_seconds = max(float(retry_after), min_backoff_time) return self.get_waiting_time(backoff_time_in_seconds) reset_time = response_or_exception.headers.get("X-RateLimit-Reset") if reset_time: backoff_time_in_seconds = max(float(reset_time) - time.time(), min_backoff_time) return self.get_waiting_time(backoff_time_in_seconds) return None def get_waiting_time(self, backoff_time_in_seconds: Optional[float]) -> Optional[float]: if backoff_time_in_seconds < 60 * 10: # type: ignore[operator] return backoff_time_in_seconds else: self.stream._http_client._session.auth.update_token() # New token will be used in next request return 1
GithubStreamABCBackoffStrategy
python
getsentry__sentry
src/sentry/deletions/defaults/monitor_environment.py
{ "start": 181, "end": 826 }
class ____(ModelDeletionTask[MonitorEnvironment]): def get_child_relations(self, instance: MonitorEnvironment) -> list[BaseRelation]: from sentry.monitors import models return [ ModelRelation( models.MonitorIncident, {"monitor_environment_id": instance.id}, ), # Use BulkModelDeletionTask here since MonitorIncidents are already handled above ModelRelation( models.MonitorCheckIn, {"monitor_environment_id": instance.id}, BulkModelDeletionTask, ), ]
MonitorEnvironmentDeletionTask
python
matplotlib__matplotlib
lib/mpl_toolkits/axes_grid1/axes_rgb.py
{ "start": 1707, "end": 5085 }
class ____: """ 4-panel `~.Axes.imshow` (RGB, R, G, B). Layout:: ┌───────────────┬─────┐ │ │ R │ │ ├─────┤ │ RGB │ G │ │ ├─────┤ │ │ B │ └───────────────┴─────┘ Subclasses can override the ``_defaultAxesClass`` attribute. By default RGBAxes uses `.mpl_axes.Axes`. Attributes ---------- RGB : ``_defaultAxesClass`` The Axes object for the three-channel `~.Axes.imshow`. R : ``_defaultAxesClass`` The Axes object for the red channel `~.Axes.imshow`. G : ``_defaultAxesClass`` The Axes object for the green channel `~.Axes.imshow`. B : ``_defaultAxesClass`` The Axes object for the blue channel `~.Axes.imshow`. """ _defaultAxesClass = Axes def __init__(self, *args, pad=0, **kwargs): """ Parameters ---------- pad : float, default: 0 Fraction of the Axes height to put as padding. axes_class : `~matplotlib.axes.Axes` Axes class to use. If not provided, ``_defaultAxesClass`` is used. *args Forwarded to *axes_class* init for the RGB Axes **kwargs Forwarded to *axes_class* init for the RGB, R, G, and B Axes """ axes_class = kwargs.pop("axes_class", self._defaultAxesClass) self.RGB = ax = axes_class(*args, **kwargs) ax.get_figure().add_axes(ax) self.R, self.G, self.B = make_rgb_axes( ax, pad=pad, axes_class=axes_class, **kwargs) # Set the line color and ticks for the axes. for ax1 in [self.RGB, self.R, self.G, self.B]: if isinstance(ax1.axis, MethodType): ad = Axes.AxisDict(self) ad.update( bottom=SimpleAxisArtist(ax1.xaxis, 1, ax1.spines["bottom"]), top=SimpleAxisArtist(ax1.xaxis, 2, ax1.spines["top"]), left=SimpleAxisArtist(ax1.yaxis, 1, ax1.spines["left"]), right=SimpleAxisArtist(ax1.yaxis, 2, ax1.spines["right"])) else: ad = ax1.axis ad[:].line.set_color("w") ad[:].major_ticks.set_markeredgecolor("w") def imshow_rgb(self, r, g, b, **kwargs): """ Create the four images {rgb, r, g, b}. Parameters ---------- r, g, b : array-like The red, green, and blue arrays. **kwargs Forwarded to `~.Axes.imshow` calls for the four images. Returns ------- rgb : `~matplotlib.image.AxesImage` r : `~matplotlib.image.AxesImage` g : `~matplotlib.image.AxesImage` b : `~matplotlib.image.AxesImage` """ if not (r.shape == g.shape == b.shape): raise ValueError( f'Input shapes ({r.shape}, {g.shape}, {b.shape}) do not match') RGB = np.dstack([r, g, b]) R = np.zeros_like(RGB) R[:, :, 0] = r G = np.zeros_like(RGB) G[:, :, 1] = g B = np.zeros_like(RGB) B[:, :, 2] = b im_rgb = self.RGB.imshow(RGB, **kwargs) im_r = self.R.imshow(R, **kwargs) im_g = self.G.imshow(G, **kwargs) im_b = self.B.imshow(B, **kwargs) return im_rgb, im_r, im_g, im_b
RGBAxes
python
prompt-toolkit__python-prompt-toolkit
src/prompt_toolkit/filters/base.py
{ "start": 193, "end": 2699 }
class ____(metaclass=ABCMeta): """ Base class for any filter to activate/deactivate a feature, depending on a condition. The return value of ``__call__`` will tell if the feature should be active. """ def __init__(self) -> None: self._and_cache: dict[Filter, Filter] = {} self._or_cache: dict[Filter, Filter] = {} self._invert_result: Filter | None = None @abstractmethod def __call__(self) -> bool: """ The actual call to evaluate the filter. """ return True def __and__(self, other: Filter) -> Filter: """ Chaining of filters using the & operator. """ assert isinstance(other, Filter), f"Expecting filter, got {other!r}" if isinstance(other, Always): return self if isinstance(other, Never): return other if other in self._and_cache: return self._and_cache[other] result = _AndList.create([self, other]) self._and_cache[other] = result return result def __or__(self, other: Filter) -> Filter: """ Chaining of filters using the | operator. """ assert isinstance(other, Filter), f"Expecting filter, got {other!r}" if isinstance(other, Always): return other if isinstance(other, Never): return self if other in self._or_cache: return self._or_cache[other] result = _OrList.create([self, other]) self._or_cache[other] = result return result def __invert__(self) -> Filter: """ Inverting of filters using the ~ operator. """ if self._invert_result is None: self._invert_result = _Invert(self) return self._invert_result def __bool__(self) -> None: """ By purpose, we don't allow bool(...) operations directly on a filter, because the meaning is ambiguous. Executing a filter has to be done always by calling it. Providing defaults for `None` values should be done through an `is None` check instead of for instance ``filter1 or Always()``. """ raise ValueError( "The truth value of a Filter is ambiguous. Instead, call it as a function." ) def _remove_duplicates(filters: list[Filter]) -> list[Filter]: result = [] for f in filters: if f not in result: result.append(f) return result
Filter
python
django__django
tests/managers_regress/models.py
{ "start": 809, "end": 1049 }
class ____(models.Model): value = models.IntegerField() class Meta: abstract = True # Custom manager restricted = Value42() # No custom manager on this class to make sure the default case doesn't break.
AbstractBase2
python
fluentpython__example-code-2e
05-data-classes/cards_enum.py
{ "start": 203, "end": 381 }
class ____: rank: Suit suit: Rank def __str__(self): glyphs = [chr(x) for x in range(0x2660, 0x2664)] return f'{self.rank} of {glyphs[self.suit-1]}'
Card
python
ray-project__ray
rllib/algorithms/dreamerv3/torch/models/actor_network.py
{ "start": 358, "end": 7435 }
class ____(nn.Module): """The `actor` (policy net) of DreamerV3. Consists of a simple MLP for Discrete actions and two MLPs for cont. actions (mean and stddev). Also contains two scalar variables to keep track of the percentile-5 and percentile-95 values of the computed value targets within a batch. This is used to compute the "scaled value targets" for actor learning. These two variables decay over time exponentially (see [1] for more details). """ def __init__( self, *, input_size: int, model_size: str = "XS", action_space: gym.Space, ): """Initializes an ActorNetwork instance. Args: input_size: The input size of the actor network. model_size: The "Model Size" used according to [1] Appendinx B. Use None for manually setting the different network sizes. action_space: The action space the our environment used. """ super().__init__() self.input_size = input_size self.model_size = model_size self.action_space = action_space # The EMA decay variables used for the [Percentile(R, 95%) - Percentile(R, 5%)] # diff to scale value targets for the actor loss. self.ema_value_target_pct5 = nn.Parameter( torch.tensor(float("nan")), requires_grad=False ) self.ema_value_target_pct95 = nn.Parameter( torch.tensor(float("nan")), requires_grad=False ) # For discrete actions, use a single MLP that computes logits. if isinstance(self.action_space, gym.spaces.Discrete): self.mlp = MLP( input_size=self.input_size, model_size=self.model_size, output_layer_size=self.action_space.n, ) # For cont. actions, use separate MLPs for Gaussian mean and stddev. # TODO (sven): In the author's original code repo, this is NOT the case, # inputs are pushed through a shared MLP, then only the two output linear # layers are separate for std- and mean logits. elif isinstance(action_space, gym.spaces.Box): output_layer_size = np.prod(action_space.shape) self.mlp = MLP( input_size=self.input_size, model_size=self.model_size, output_layer_size=output_layer_size, ) self.std_mlp = MLP( input_size=self.input_size, model_size=self.model_size, output_layer_size=output_layer_size, ) else: raise ValueError(f"Invalid action space: {action_space}") def forward(self, h, z, return_distr_params=False): """Performs a forward pass through this policy network. Args: h: The deterministic hidden state of the sequence model. [B, dim(h)]. z: The stochastic discrete representations of the original observation input. [B, num_categoricals, num_classes]. return_distr_params: Whether to return (as a second tuple item) the action distribution parameter tensor created by the policy. """ # Flatten last two dims of z. assert len(z.shape) == 3 z_shape = z.shape z = z.view(z_shape[0], -1) assert len(z.shape) == 2 out = torch.cat([h, z], dim=-1) # Send h-cat-z through MLP. action_logits = self.mlp(out) if isinstance(self.action_space, gym.spaces.Discrete): action_probs = nn.functional.softmax(action_logits, dim=-1) # Add the unimix weighting (1% uniform) to the probs. # See [1]: "Unimix categoricals: We parameterize the categorical # distributions for the world model representations and dynamics, as well as # for the actor network, as mixtures of 1% uniform and 99% neural network # output to ensure a minimal amount of probability mass on every class and # thus keep log probabilities and KL divergences well behaved." action_probs = 0.99 * action_probs + 0.01 * (1.0 / self.action_space.n) # Danijar's code does: distr = [Distr class](logits=torch.log(probs)). # Not sure why we don't directly use the already available probs instead. action_logits = torch.log(action_probs) # Distribution parameters are the log(probs) directly. distr_params = action_logits distr = self.get_action_dist_object(distr_params) action = distr.sample().float().detach() + ( action_probs - action_probs.detach() ) elif isinstance(self.action_space, gym.spaces.Box): # Send h-cat-z through MLP to compute stddev logits for Normal dist std_logits = self.std_mlp(out) # minstd, maxstd taken from [1] from configs.yaml minstd = 0.1 maxstd = 1.0 # Distribution parameters are the squashed std_logits and the tanh'd # mean logits. # squash std_logits from (-inf, inf) to (minstd, maxstd) std_logits = (maxstd - minstd) * torch.sigmoid(std_logits + 2.0) + minstd mean_logits = torch.tanh(action_logits) distr_params = torch.cat([mean_logits, std_logits], dim=-1) distr = self.get_action_dist_object(distr_params) action = distr.rsample() if return_distr_params: return action, distr_params return action def get_action_dist_object(self, action_dist_params_T_B): """Helper method to create an action distribution object from (T, B, ..) params. Args: action_dist_params_T_B: The time-major action distribution parameters. This could be simply the logits (discrete) or a to-be-split-in-2 tensor for mean and stddev (continuous). Returns: The torch action distribution object, from which one can sample, compute log probs, entropy, etc.. """ if isinstance(self.action_space, gym.spaces.Discrete): # Create the distribution object using the unimix'd logits. distr = torch.distributions.OneHotCategorical(logits=action_dist_params_T_B) elif isinstance(self.action_space, gym.spaces.Box): # Compute Normal distribution from action_logits and std_logits loc, scale = torch.split( action_dist_params_T_B, action_dist_params_T_B.shape[-1] // 2, dim=-1, ) distr = torch.distributions.Normal(loc=loc, scale=scale) # If action_space is a box with multiple dims, make individual dims # independent. distr = torch.distributions.Independent(distr, len(self.action_space.shape)) else: raise ValueError(f"Action space {self.action_space} not supported!") return distr
ActorNetwork
python
vyperlang__vyper
tests/unit/ast/test_source_annotation.py
{ "start": 1060, "end": 6342 }
class ____(Exception): def __init__(self, message='Error Message not found.', item=None): self.message = message self.lineno = None self.col_offset = None if isinstance(item, tuple): # is a position. self.lineno, self.col_offset = item elif item and hasattr(item, 'lineno'): self.set_err_pos(item.lineno, item.col_offset) if hasattr(item, 'source_code'): self.source_code = item.source_code.splitlines() def set_err_pos(self, lineno, col_offset): if not self.lineno: self.lineno = lineno if not self.col_offset: self.col_offset = col_offset def __str__(self): output = self.message if self.lineno and hasattr(self, 'source_code'): output = f'line {self.lineno}: {output}\n{self.source_code[self.lineno -1]}' if self.col_offset: col = '-' * self.col_offset + '^' output += '\n' + col elif self.lineno is not None and self.col_offset is not None: output = f'line {self.lineno}:{self.col_offset} {output}' return output """[ 1:-1 ] def test_annotate_source_code_marks_positions_in_source_code(): annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=16, context_lines=0, line_numbers=False ) assert ( annotation == r""" def __str__(self): ----------------^ """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=15, context_lines=1, line_numbers=False ) assert ( annotation == r""" def __str__(self): ---------------^ output = self.message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 22, col_offset=20, context_lines=2, line_numbers=False ) assert ( annotation == r""" self.col_offset = col_offset def __str__(self): --------------------^ output = self.message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 1, col_offset=5, context_lines=3, line_numbers=True ) assert ( annotation == r""" ---> 1 # Attempts to display the line and column of violating code. ------------^ 2 class ParserException(Exception): 3 def __init__(self, message='Error Message not found.', item=None): 4 self.message = message """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 36, col_offset=8, context_lines=4, line_numbers=True ) assert ( annotation == r""" 32 33 elif self.lineno is not None and self.col_offset is not None: 34 output = f'line {self.lineno}:{self.col_offset} {output}' 35 ---> 36 return output ----------------^ """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=8, context_lines=11, line_numbers=True ) assert ( annotation == r""" 4 self.message = message 5 self.lineno = None 6 self.col_offset = None 7 8 if isinstance(item, tuple): # is a position. 9 self.lineno, self.col_offset = item 10 elif item and hasattr(item, 'lineno'): 11 self.set_err_pos(item.lineno, item.col_offset) 12 if hasattr(item, 'source_code'): 13 self.source_code = item.source_code.splitlines() 14 ---> 15 def set_err_pos(self, lineno, col_offset): ----------------^ 16 if not self.lineno: 17 self.lineno = lineno 18 19 if not self.col_offset: 20 self.col_offset = col_offset 21 22 def __str__(self): 23 output = self.message 24 25 if self.lineno and hasattr(self, 'source_code'): 26 """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=None, context_lines=3, line_numbers=True ) assert ( annotation == r""" 12 if hasattr(item, 'source_code'): 13 self.source_code = item.source_code.splitlines() 14 ---> 15 def set_err_pos(self, lineno, col_offset): 16 if not self.lineno: 17 self.lineno = lineno 18 """[ 1:-1 ] ) annotation = annotate_source_code( TEST_SOURCE_CODE, 15, col_offset=None, context_lines=2, line_numbers=False ) assert ( annotation == r""" self.source_code = item.source_code.splitlines() def set_err_pos(self, lineno, col_offset): if not self.lineno: self.lineno = lineno """[ 1:-1 ] ) @pytest.mark.parametrize("bad_lineno", (-100, -1, 0, 45, 1000)) def test_annotate_source_code_raises_value_errors(bad_lineno): with pytest.raises(ValueError, match="Line number is out of range"): annotate_source_code(TEST_SOURCE_CODE, bad_lineno)
ParserException
python
pdm-project__pdm
src/pdm/cli/commands/venv/backends.py
{ "start": 469, "end": 4885 }
class ____(abc.ABC): """The base class for virtualenv backends""" def __init__(self, project: Project, python: str | None) -> None: self.project = project self.python = python @abc.abstractmethod def pip_args(self, with_pip: bool) -> Iterable[str]: pass @cached_property def _resolved_interpreter(self) -> PythonInfo: if not self.python: project_python = self.project._python if project_python: return project_python def match_func(py_version: PythonInfo) -> bool: return bool(self.python) or ( py_version.valid and self.project.python_requires.contains(py_version.version, True) ) respect_version_file = self.project.config["python.use_python_version"] for py_version in self.project.iter_interpreters( self.python, search_venv=False, filter_func=match_func, respect_version_file=respect_version_file ): return py_version python = f" {self.python}" if self.python else "" raise VirtualenvCreateError(f"Can't resolve python interpreter{python}") @property def ident(self) -> str: """Get the identifier of this virtualenv. self.python can be one of: 3.8 /usr/bin/python 3.9.0a4 python3.8 """ return self._resolved_interpreter.identifier def subprocess_call(self, cmd: list[str], **kwargs: Any) -> None: self.project.core.ui.echo( f"Run command: [success]{cmd}[/]", verbosity=termui.Verbosity.DETAIL, err=True, ) try: subprocess.check_call( cmd, stdout=subprocess.DEVNULL if self.project.core.ui.verbosity < termui.Verbosity.DETAIL else None, ) except subprocess.CalledProcessError as e: # pragma: no cover raise VirtualenvCreateError(e) from None def _ensure_clean(self, location: Path, force: bool = False) -> None: if not location.exists(): return if location.is_dir() and not any(location.iterdir()): return if not force: raise VirtualenvCreateError(f"The location {location} is not empty, add --force to overwrite it.") if location.is_file(): self.project.core.ui.info(f"Removing existing file {location}", verbosity=termui.Verbosity.DETAIL) location.unlink() else: self.project.core.ui.info( f"Cleaning existing target directory {location}", verbosity=termui.Verbosity.DETAIL ) with os.scandir(location) as entries: for entry in entries: if entry.is_dir() and not entry.is_symlink(): shutil.rmtree(entry.path) else: os.remove(entry.path) def get_location(self, name: str | None = None, venv_name: str | None = None) -> Path: if name and venv_name: raise PdmUsageError("Cannot specify both name and venv_name") venv_parent = Path(self.project.config["venv.location"]).expanduser() if not venv_parent.is_dir(): venv_parent.mkdir(exist_ok=True, parents=True) if not venv_name: venv_name = f"{get_venv_prefix(self.project)}{name or self.ident}" return venv_parent / venv_name def create( self, name: str | None = None, args: tuple[str, ...] = (), force: bool = False, in_project: bool = False, prompt: str | None = None, with_pip: bool = False, venv_name: str | None = None, ) -> Path: if in_project: location = self.project.root / ".venv" else: location = self.get_location(name, venv_name) args = (*self.pip_args(with_pip), *args) if prompt is not None: prompt = prompt.format( project_name=self.project.root.name.lower() or "virtualenv", python_version=self.ident, ) self._ensure_clean(location, force) self.perform_create(location, args, prompt=prompt) return location @abc.abstractmethod def perform_create(self, location: Path, args: tuple[str, ...], prompt: str | None = None) -> None: pass
Backend
python
Pylons__pyramid
tests/test_integration.py
{ "start": 20490, "end": 21202 }
class ____(IntegrationBase, unittest.TestCase): package = 'tests.pkgs.securityapp' def test_public(self): res = self.testapp.get('/public', status=200) self.assertEqual(res.body, b'Hello') def test_private_denied(self): self.testapp.get('/private', status=403) def test_private_allowed(self): self.testapp.extra_environ = {'REMOTE_USER': 'bob'} res = self.testapp.get('/private', status=200) self.assertEqual(res.body, b'Secret') def test_inaccessible(self): self.testapp.get('/inaccessible', status=403) self.testapp.extra_environ = {'REMOTE_USER': 'bob'} self.testapp.get('/inaccessible', status=403)
TestSecurityApp
python
getsentry__sentry
tests/sentry/deletions/test_data_source.py
{ "start": 305, "end": 1081 }
class ____(BaseWorkflowTest, HybridCloudTestMixin): def setUp(self) -> None: self.alert_rule = self.create_alert_rule() self.snuba_query = self.alert_rule.snuba_query self.subscription = QuerySubscription.objects.get(snuba_query_id=self.snuba_query.id) self.data_source = self.create_data_source( organization=self.organization, source_id=self.subscription.id ) def test_simple(self) -> None: self.ScheduledDeletion.schedule(instance=self.data_source, days=0) with self.tasks(): run_scheduled_deletions() assert not DataSource.objects.filter(id=self.data_source.id).exists() assert not QuerySubscription.objects.filter(id=self.subscription.id).exists()
DeleteDataSourceTest
python
tensorflow__tensorflow
tensorflow/python/ops/lookup_ops.py
{ "start": 34148, "end": 34730 }
class ____(collections.namedtuple("HasherSpec", ["hasher", "key"])): """A structure for the spec of the hashing function to use for hash buckets. `hasher` is the name of the hashing function to use (eg. "fasthash", "stronghash"). `key` is optional and specify the key to use for the hash function if supported, currently only used by a strong hash. Fields: hasher: The hasher name to use. key: The key to be used by the hashing function, if required. """ __slots__ = () FastHashSpec = HasherSpec("fasthash", None) # pylint: disable=invalid-name
HasherSpec
python
pytorch__pytorch
torch/_dynamo/source.py
{ "start": 19723, "end": 20551 }
class ____(ChainedSource): is_int: bool def __post_init__(self) -> None: assert self.base is not None def reconstruct(self, codegen: "PyCodegen") -> None: # Integer casting at reconstruction helps reduce the amount of DynamicInts returned # to the user, in favor of plain ints. # For example, a compiled region that only does int arithmetic could return a # DynamicInt without the casting here. codegen.add_push_null(lambda: codegen.load_import_from("builtins", "int")) codegen(self.base) codegen.extend_output(create_call_function(1, False)) def guard_source(self) -> GuardSource: return self.base.guard_source() def name(self) -> str: return f"int({self.base.name()})" @dataclasses.dataclass(frozen=True)
DynamicScalarSource
python
Netflix__metaflow
metaflow/packaging_sys/tar_backend.py
{ "start": 130, "end": 3010 }
class ____(PackagingBackend): type = "tgz" @classmethod def get_extract_commands(cls, archive_name: str, dest_dir: str) -> List[str]: return [ f"TAR_OPTIONS='--warning=no-timestamp' tar -xzf {archive_name} -C {dest_dir}" ] def __init__(self): super().__init__() self._buf = None def create(self): self._buf = BytesIO() self._archive = tarfile.open( fileobj=self._buf, mode="w:gz", compresslevel=3, dereference=True ) return self def add_file(self, filename: str, arcname: Optional[str] = None): info = self._archive.gettarinfo(filename, arcname) # Setting this default to Dec 3, 2019 info.mtime = 1575360000 with open(filename, mode="rb") as f: self._archive.addfile(info, f) def add_data(self, data: BytesIO, arcname: str): info = tarfile.TarInfo(arcname) data.seek(0) info.size = len(data.getvalue()) # Setting this default to Dec 3, 2019 info.mtime = 1575360000 self._archive.addfile(info, data) def close(self): if self._archive: self._archive.close() def get_blob(self) -> Optional[Union[bytes, bytearray]]: if self._buf: blob = bytearray(self._buf.getvalue()) blob[4:8] = [0] * 4 # Reset 4 bytes from offset 4 to account for ts return blob return None @classmethod def cls_open(cls, content: IO[bytes]) -> tarfile.TarFile: return tarfile.open(fileobj=content, mode="r:gz") @classmethod def cls_member_name(cls, member: Union[tarfile.TarInfo, str]) -> str: """ Returns the name of the member as a string. """ return member.name if isinstance(member, tarfile.TarInfo) else member @classmethod def cls_has_member(cls, archive: tarfile.TarFile, name: str) -> bool: try: archive.getmember(name) return True except KeyError: return False @classmethod def cls_get_member(cls, archive: tarfile.TarFile, name: str) -> Optional[bytes]: try: member = archive.getmember(name) return archive.extractfile(member).read() except KeyError: return None @classmethod def cls_extract_members( cls, archive: tarfile.TarFile, members: Optional[List[Any]] = None, dest_dir: str = ".", ) -> None: archive.extractall(path=dest_dir, members=members) @classmethod def cls_list_members( cls, archive: tarfile.TarFile ) -> Optional[List[tarfile.TarInfo]]: return archive.getmembers() or None @classmethod def cls_list_names(cls, archive: tarfile.TarFile) -> Optional[List[str]]: return archive.getnames() or None
TarPackagingBackend
python
catalyst-team__catalyst
catalyst/contrib/datasets/cifar.py
{ "start": 10181, "end": 12825 }
class ____(QueryGalleryDataset): """ CIFAR10 for metric learning with query and gallery split. CIFAR10QGDataset should be used for test stage. For this dataset we used only test part of the CIFAR10 and only those images that are labeled as 'dog', 'frog', 'horse', 'ship', 'truck'. """ _split = 5 classes = [ "5 - dog", "6 - frog", "7 - horse", "8 - ship", "9 - truck", ] def __init__( self, root: str, transform: Optional[Callable] = None, gallery_fraq: Optional[float] = 0.2, **kwargs ) -> None: """ Args: root: root directory for storing dataset transform: transform gallery_fraq: gallery size """ self._cifar = CIFAR10(root, train=False, download=True, transform=transform) self._filter() self._gallery_size = int(gallery_fraq * len(self._cifar)) self._query_size = len(self._cifar) - self._gallery_size self._is_query = torch.zeros(len(self._cifar)).type(torch.bool) self._is_query[: self._query_size] = True def _filter(self) -> None: """Filter CIFAR10 dataset: select images of 'dog', 'frog', 'horse', 'ship', 'truck' classes.""" mask = np.array(self._cifar.targets) >= self._split self._cifar.data = self._cifar.data[mask] self._cifar.targets = np.array(self._cifar.targets)[mask].tolist() def __getitem__(self, idx: int) -> Dict[str, Any]: """ Get item method for dataset Args: idx: index of the object Returns: Dict with features, targets and is_query flag """ image, label = self._cifar[idx] return { "features": image, "targets": label, "is_query": self._is_query[idx], } def __len__(self) -> int: """Length""" return len(self._cifar) def __repr__(self) -> None: """Print info about the dataset""" return self._cifar.__repr__() @property def gallery_size(self) -> int: """Query Gallery dataset should have gallery_size property""" return self._gallery_size @property def query_size(self) -> int: """Query Gallery dataset should have query_size property""" return self._query_size @property def data(self) -> torch.Tensor: """Images from CIFAR10""" return self._cifar.data @property def targets(self) -> torch.Tensor: """Labels of digits""" return self._cifar.targets
CifarQGDataset
python
spack__spack
lib/spack/spack/test/installer_tui.py
{ "start": 2807, "end": 6215 }
class ____: """Test basic state management operations""" def test_add_build(self): """Test that add_build adds builds correctly""" status, _, _ = create_build_status(total=2) spec1 = MockSpec("pkg1", "1.0") spec2 = MockSpec("pkg2", "2.0") status.add_build(spec1, explicit=True, control_w_conn=MockConnection()) assert len(status.builds) == 1 assert spec1.dag_hash() in status.builds assert status.builds[spec1.dag_hash()].name == "pkg1" assert status.builds[spec1.dag_hash()].explicit is True assert status.dirty is True status.add_build(spec2, explicit=False, control_w_conn=MockConnection()) assert len(status.builds) == 2 assert spec2.dag_hash() in status.builds assert status.builds[spec2.dag_hash()].explicit is False def test_update_state_transitions(self): """Test that update_state transitions states properly""" status, fake_time, _ = create_build_status() (spec,) = add_mock_builds(status, 1) build_id = spec.dag_hash() # Update to 'building' state status.update_state(build_id, "building") assert status.builds[build_id].state == "building" assert status.builds[build_id].progress_percent is None assert status.completed == 0 # Update to 'finished' state status.update_state(build_id, "finished") assert status.builds[build_id].state == "finished" assert status.completed == 1 assert status.builds[build_id].finished_time == fake_time[0] + inst.CLEANUP_TIMEOUT def test_update_state_failed(self): """Test that failed state increments completed counter""" status, fake_time, _ = create_build_status() (spec,) = add_mock_builds(status, 1) build_id = spec.dag_hash() status.update_state(build_id, "failed") assert status.builds[build_id].state == "failed" assert status.completed == 1 assert status.builds[build_id].finished_time == fake_time[0] + inst.CLEANUP_TIMEOUT def test_update_progress(self): """Test that update_progress updates percentages""" status, _, _ = create_build_status() (spec,) = add_mock_builds(status, 1) build_id = spec.dag_hash() # Update progress status.update_progress(build_id, 50, 100) assert status.builds[build_id].progress_percent == 50 assert status.dirty is True # Same percentage shouldn't mark dirty again status.dirty = False status.update_progress(build_id, 50, 100) assert status.dirty is False # Different percentage should mark dirty status.update_progress(build_id, 75, 100) assert status.builds[build_id].progress_percent == 75 assert status.dirty is True def test_completion_counter(self): """Test that completion counter increments correctly""" status, _, _ = create_build_status(total=3) specs = add_mock_builds(status, 3) assert status.completed == 0 status.update_state(specs[0].dag_hash(), "finished") assert status.completed == 1 status.update_state(specs[1].dag_hash(), "failed") assert status.completed == 2 status.update_state(specs[2].dag_hash(), "finished") assert status.completed == 3
TestBasicStateManagement
python
getsentry__sentry
src/sentry/notifications/notifications/activity/escalating.py
{ "start": 236, "end": 1550 }
class ____(GroupActivityNotification): message_builder = "SlackNotificationsMessageBuilder" metrics_key = "escalating_activity" title = "Issue marked as escalating" def get_notification_title( self, provider: ExternalProviders, context: Mapping[str, Any] | None = None ) -> str: return self.title def get_description(self) -> tuple[str, str | None, Mapping[str, Any]]: forecast = int(self.activity.data.get("forecast", 0)) expired_snooze = self.activity.data.get("expired_snooze") if forecast: return ( "Sentry flagged this issue as escalating because over {forecast} {event} happened in an hour.", None, {"forecast": forecast, "event": "event" if forecast == 1 else "events"}, ) if expired_snooze: return ( "Sentry flagged this issue as escalating because your archive condition has expired.", None, {}, ) # Return a default basic message return ("Sentry flagged this issue as escalating.", None, {}) def get_message_description(self, recipient: Actor, provider: ExternalProviders) -> Any: return self.get_context()["text_description"]
EscalatingActivityNotification
python
scipy__scipy
scipy/stats/_multivariate.py
{ "start": 181438, "end": 185168 }
class ____(multi_rv_frozen): __class_getitem__ = None def __init__(self, loc=None, shape=1, df=1, allow_singular=False, seed=None): """Create a frozen multivariate t distribution. Parameters ---------- %(_mvt_doc_default_callparams)s Examples -------- >>> import numpy as np >>> from scipy.stats import multivariate_t >>> loc = np.zeros(3) >>> shape = np.eye(3) >>> df = 10 >>> dist = multivariate_t(loc, shape, df) >>> dist.rvs() array([[ 0.81412036, -1.53612361, 0.42199647]]) >>> dist.pdf([1, 1, 1]) array([0.01237803]) """ self._dist = multivariate_t_gen(seed) dim, loc, shape, df = self._dist._process_parameters(loc, shape, df) self.dim, self.loc, self.shape, self.df = dim, loc, shape, df self.shape_info = _PSD(shape, allow_singular=allow_singular) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) U = self.shape_info.U log_pdet = self.shape_info.log_pdet return self._dist._logpdf(x, self.loc, U, log_pdet, self.df, self.dim, self.shape_info.rank) def cdf(self, x, *, maxpts=None, lower_limit=None, random_state=None): x = self._dist._process_quantiles(x, self.dim) return self._dist._cdf(x, self.loc, self.shape, self.df, self.dim, maxpts, lower_limit, random_state) def pdf(self, x): return np.exp(self.logpdf(x)) def rvs(self, size=1, random_state=None): return self._dist.rvs(loc=self.loc, shape=self.shape, df=self.df, size=size, random_state=random_state) def entropy(self): return self._dist._entropy(self.dim, self.df, self.shape) multivariate_t = multivariate_t_gen() # Set frozen generator docstrings from corresponding docstrings in # multivariate_t_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs', 'cdf', 'entropy']: method = multivariate_t_gen.__dict__[name] method_frozen = multivariate_t_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvt_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvt_docdict_params) _mhg_doc_default_callparams = """\ m : array_like The number of each type of object in the population. That is, :math:`m[i]` is the number of objects of type :math:`i`. n : array_like The number of samples taken from the population. """ _mhg_doc_callparams_note = """\ `m` must be an array of positive integers. If the quantile :math:`i` contains values out of the range :math:`[0, m_i]` where :math:`m_i` is the number of objects of type :math:`i` in the population or if the parameters are inconsistent with one another (e.g. ``x.sum() != n``), methods return the appropriate value (e.g. ``0`` for ``pmf``). If `m` or `n` contain negative values, the result will contain ``nan`` there. """ _mhg_doc_frozen_callparams = "" _mhg_doc_frozen_callparams_note = """\ See class definition for a detailed description of parameters.""" mhg_docdict_params = { '_doc_default_callparams': _mhg_doc_default_callparams, '_doc_callparams_note': _mhg_doc_callparams_note, '_doc_random_state': _doc_random_state } mhg_docdict_noparams = { '_doc_default_callparams': _mhg_doc_frozen_callparams, '_doc_callparams_note': _mhg_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state }
multivariate_t_frozen
python
google__jax
jax/_src/interpreters/mlir.py
{ "start": 22567, "end": 24066 }
class ____: # The names of the dimension variables, sorted by name. This is the order in # which they are passed to the IR functions that need them. This is only # used for native serialization with polymorphic shapes when # --jax_dynamic_shapes is off. # TODO: for multi-platform lowering we prepend to the regular dimension # variables a fake dimension variable "platform_index_". This is a # temporary abuse, taking advantage that for platform index we need the # same lowering strategy as for dimension variables: add it as argument to # inner functions, and pass the values along at the call sites. dim_vars: tuple[str, ...] # Whether the module uses dimension variables, either in its inputs or # from an inner call to Exported modules that uses dimension variables. # This includes the case when the called Exported module uses a platform # index argument. uses_dim_vars: bool # If the first dimension variable is a platform index argument has_platform_index_argument: bool def __init__(self, dim_vars: tuple[str, ...], lowering_platforms: tuple[str, ...] | None): if lowering_platforms is not None and len(lowering_platforms) > 1: dim_vars = ("_platform_index",) + tuple(dim_vars) self.has_platform_index_argument = True else: self.has_platform_index_argument = False self.uses_dim_vars = (len(dim_vars) > 0) self.dim_vars = dim_vars @dataclasses.dataclass(frozen=True)
ShapePolyLoweringState
python
chroma-core__chroma
chromadb/test/test_api.py
{ "start": 85948, "end": 89709 }
class ____: """Test Search class dict input support.""" def test_search_with_dict_where(self): """Test Search accepts dict for where parameter.""" from chromadb.execution.expression.plan import Search from chromadb.execution.expression.operator import Where # Simple equality search = Search(where={"status": "active"}) assert search._where is not None assert isinstance(search._where, Where) # Complex where with operators search = Search(where={"$and": [{"status": "active"}, {"score": {"$gt": 0.5}}]}) assert search._where is not None def test_search_with_dict_rank(self): """Test Search accepts dict for rank parameter.""" from chromadb.execution.expression.plan import Search from chromadb.execution.expression.operator import Rank # KNN ranking search = Search(rank={"$knn": {"query": [0.1, 0.2]}}) assert search._rank is not None assert isinstance(search._rank, Rank) # Val ranking search = Search(rank={"$val": 0.5}) assert search._rank is not None def test_search_with_dict_limit(self): """Test Search accepts dict and int for limit parameter.""" from chromadb.execution.expression.plan import Search # Dict limit search = Search(limit={"limit": 10, "offset": 5}) assert search._limit.limit == 10 assert search._limit.offset == 5 # Int limit (creates Limit with offset=0) search = Search(limit=10) assert search._limit.limit == 10 assert search._limit.offset == 0 def test_search_with_dict_select(self): """Test Search accepts dict, list, and set for select parameter.""" from chromadb.execution.expression.plan import Search # Dict select search = Search(select={"keys": ["#document", "#score"]}) assert search._select is not None # List select search = Search(select=["#document", "#metadata"]) assert search._select is not None # Set select search = Search(select={"#document", "#embedding"}) assert search._select is not None def test_search_mixed_inputs(self): """Test Search with mixed expression and dict inputs.""" from chromadb.execution.expression.plan import Search from chromadb.execution.expression.operator import Key search = Search( where=Key("status") == "active", # Expression rank={"$knn": {"query": [0.1, 0.2]}}, # Dict limit=10, # Int select=["#document"], # List ) assert search._where is not None assert search._rank is not None assert search._limit.limit == 10 assert search._select is not None def test_search_builder_methods_with_dicts(self): """Test Search builder methods accept dicts.""" from chromadb.execution.expression.plan import Search search = Search().where({"status": "active"}).rank({"$val": 0.5}) assert search._where is not None assert search._rank is not None def test_search_invalid_inputs(self): """Test Search rejects invalid input types.""" import pytest from chromadb.execution.expression.plan import Search with pytest.raises(TypeError, match="where must be"): Search(where="invalid") with pytest.raises(TypeError, match="rank must be"): Search(rank=0.5) # Primitive numbers not allowed with pytest.raises(TypeError, match="limit must be"): Search(limit="10") with pytest.raises(TypeError, match="select must be"): Search(select=123)
TestSearchDictSupport
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeNarrowingTypeEquals1.py
{ "start": 1034, "end": 1178 }
class ____: pass E = C[T] | D def func5(x: E[T]) -> None: if type(x) == C: reveal_type(x, expected_text="C[T@func5]") @final
D
python
sqlalchemy__sqlalchemy
test/sql/test_type_expressions.py
{ "start": 16424, "end": 17036 }
class ____(fixtures.TablesTest, RoundTripTestBase): @classmethod def define_tables(cls, metadata): class MyString(UserDefinedType): cache_ok = True def get_col_spec(self, **kw): return "VARCHAR(50)" def bind_expression(self, bindvalue): return func.lower(bindvalue) def column_expression(self, col): return func.upper(col) Table( "test_table", metadata, Column("x", String(50)), Column("y", MyString()), )
UserDefinedTypeRoundTripTest
python
python-openxml__python-docx
src/docx/opc/phys_pkg.py
{ "start": 1075, "end": 2318 }
class ____(PhysPkgReader): """Implements |PhysPkgReader| interface for an OPC package extracted into a directory.""" def __init__(self, path): """`path` is the path to a directory containing an expanded package.""" super(_DirPkgReader, self).__init__() self._path = os.path.abspath(path) def blob_for(self, pack_uri): """Return contents of file corresponding to `pack_uri` in package directory.""" path = os.path.join(self._path, pack_uri.membername) with open(path, "rb") as f: blob = f.read() return blob def close(self): """Provides interface consistency with |ZipFileSystem|, but does nothing, a directory file system doesn't need closing.""" pass @property def content_types_xml(self): """Return the `[Content_Types].xml` blob from the package.""" return self.blob_for(CONTENT_TYPES_URI) def rels_xml_for(self, source_uri): """Return rels item XML for source with `source_uri`, or None if the item has no rels item.""" try: rels_xml = self.blob_for(source_uri.rels_uri) except IOError: rels_xml = None return rels_xml
_DirPkgReader
python
dagster-io__dagster
python_modules/libraries/dagster-omni/dagster_omni/translation.py
{ "start": 2108, "end": 4344 }
class ____: """Container class for data required to translate an object in an Omni workspace into a Dagster definition. Properties: obj (Union[OmniDocument, OmniQuery]): The object to translate. workspace_data (OmniWorkspaceData): Global workspace data. """ obj: Union[OmniDocument, OmniQuery] workspace_data: OmniWorkspaceData def _resolve_multilayer_translation(context: ResolutionContext, model): """The Omni translation schema supports defining global transforms as well as per-object-type transforms. This resolver composes the per-object-type transforms with the global transforms. """ info = TranslatorResolvingInfo( asset_attributes=model, resolution_context=context, model_key="translation", ) def _translation_fn(base_asset_spec: AssetSpec, data: OmniTranslatorData): processed_spec = info.get_asset_spec( base_asset_spec, { "data": data, "spec": base_asset_spec, }, ) nested_translation_fns = resolve_fields( model=model, resolved_cls=OmniTranslationArgs, context=context.with_scope( **{ "data": data, "spec": processed_spec, } ), ) for_document = nested_translation_fns.get("for_document") for_query = nested_translation_fns.get("for_query") if isinstance(data.obj, OmniDocument) and for_document: return for_document(processed_spec, data) if isinstance(data.obj, OmniQuery) and for_query: return for_query(processed_spec, data) return processed_spec return _translation_fn OmniTranslationFn: TypeAlias = TranslationFn[OmniTranslatorData] ResolvedTargetedOmniTranslationFn = Annotated[ OmniTranslationFn, TranslationFnResolver[OmniTranslatorData](lambda data: {"data": data}), ] ResolvedTargetedKeyOnlyOmniTranslationFn = Annotated[ OmniTranslationFn, TranslationFnResolver[OmniTranslatorData]( lambda data: {"data": data}, model_field_type=AssetSpecKeyUpdateKwargs.model() ), ] @record
OmniTranslatorData
python
python-attrs__attrs
typing-examples/mypy.py
{ "start": 687, "end": 736 }
class ____: z: Any = attr.ib() @attrs.define
FF
python
getsentry__sentry
tests/sentry/users/api/endpoints/test_userroles_index.py
{ "start": 1168, "end": 1494 }
class ____(UserRolesTest): def test_simple(self) -> None: UserRole.objects.create(name="test-role") resp = self.get_response() assert resp.status_code == 200 assert len(resp.data) >= 1, resp.data assert "test-role" in [r["name"] for r in resp.data] @control_silo_test
UserRolesGetTest
python
apache__airflow
providers/common/compat/tests/unit/common/compat/lineage/test_hook.py
{ "start": 22637, "end": 39563 }
class ____: """Test edge cases and error conditions to ensure collector never fails.""" @pytest.mark.parametrize("uri", ["", None]) def test_invalid_uri_none(self, collector, uri): """Test handling of None URI - should not raise.""" mock_context = mock.MagicMock() # Should not raise exceptions collector.add_input_asset(mock_context, uri=uri) collector.add_output_asset(mock_context, uri=uri) # Collector should handle gracefully and not collect invalid URIs assert not collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0 assert len(lineage.extra) == 0 def test_malformed_uri(self, collector): """Test handling of malformed URIs - should not raise.""" mock_context = mock.MagicMock() # Various malformed URIs should not cause crashes collector.add_input_asset(mock_context, uri="not-a-valid-uri") collector.add_input_asset(mock_context, uri="://missing-scheme") collector.add_input_asset(mock_context, uri="scheme:") collector.add_output_asset(mock_context, uri="//no-scheme") assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 3 assert lineage.inputs[0].asset.uri == "not-a-valid-uri" assert lineage.inputs[0].count == 1 assert lineage.inputs[0].context == mock_context assert lineage.inputs[1].asset.uri == "://missing-scheme" assert lineage.inputs[1].count == 1 assert lineage.inputs[1].context == mock_context assert lineage.inputs[2].asset.uri == "scheme:/" assert lineage.inputs[2].count == 1 assert lineage.inputs[2].context == mock_context assert len(lineage.outputs) == 1 assert lineage.outputs[0].asset.uri == "//no-scheme" assert lineage.outputs[0].count == 1 assert lineage.outputs[0].context == mock_context @pytest.mark.skipif(not AIRFLOW_V_3_0_PLUS, reason="Test requires Airflow 3.0+") def test_very_long_uri(self, collector): """Test handling of very long URIs - 1000 chars OK, 2000 chars raises ValueError.""" mock_context = mock.MagicMock() # Create very long URI (1000 chars - should work) long_path = "a" * 1000 long_uri = f"s3://bucket/{long_path}" # Create too long URI (2000 chars - should raise) too_long_uri = f"s3://bucket/{long_path * 2}" collector.add_input_asset(mock_context, uri=long_uri) # Too long URI should raise ValueError with pytest.raises(ValueError, match="Asset name cannot exceed"): collector.add_output_asset(mock_context, uri=too_long_uri) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 1 assert lineage.inputs[0].asset.uri == long_uri assert lineage.inputs[0].count == 1 assert lineage.inputs[0].context == mock_context assert len(lineage.outputs) == 0 assert len(lineage.extra) == 0 def test_none_context(self, collector): """Test handling of None context - should not raise.""" # Should not raise exceptions collector.add_input_asset(None, uri="s3://bucket/input") collector.add_output_asset(None, uri="s3://bucket/output") collector.add_extra(None, "key", "value") assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 1 assert lineage.inputs[0].asset.uri == "s3://bucket/input" assert lineage.inputs[0].count == 1 assert lineage.inputs[0].context is None assert len(lineage.outputs) == 1 assert lineage.outputs[0].asset.uri == "s3://bucket/output" assert lineage.outputs[0].count == 1 assert lineage.outputs[0].context is None assert len(lineage.extra) == 1 assert lineage.extra[0].key == "key" assert lineage.extra[0].value == "value" assert lineage.extra[0].count == 1 assert lineage.extra[0].context is None def test_special_characters_in_extra_key(self, collector): """Test that extra keys with special characters work.""" mock_context = mock.MagicMock() collector.add_extra(mock_context, "key-with-dashes", {"data": "value"}) collector.add_extra(mock_context, "key.with.dots", {"data": "value"}) collector.add_extra(mock_context, "key_with_underscores", {"data": "value"}) collector.add_extra(mock_context, "key/with/slashes", {"data": "value"}) collector.add_extra(mock_context, "key:with:colons", {"data": "value"}) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.extra) == 5 assert lineage.extra[0].key == "key-with-dashes" assert lineage.extra[1].key == "key.with.dots" assert lineage.extra[2].key == "key_with_underscores" assert lineage.extra[3].key == "key/with/slashes" assert lineage.extra[4].key == "key:with:colons" def test_unicode_in_extra_key_and_value(self, collector): """Test that unicode characters in extra work correctly.""" mock_context = mock.MagicMock() collector.add_extra(mock_context, "clé_française", {"données": "valeur"}) collector.add_extra(mock_context, "中文键", {"中文": "值"}) collector.add_extra(mock_context, "مفتاح", {"بيانات": "قيمة"}) collector.add_extra(mock_context, "emoji_🚀", {"status": "✅"}) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.extra) == 4 assert lineage.extra[0].key == "clé_française" assert lineage.extra[0].value == {"données": "valeur"} assert lineage.extra[0].count == 1 assert lineage.extra[0].context == mock_context assert lineage.extra[1].key == "中文键" assert lineage.extra[1].value == {"中文": "值"} assert lineage.extra[1].count == 1 assert lineage.extra[1].context == mock_context assert lineage.extra[2].key == "مفتاح" assert lineage.extra[2].value == {"بيانات": "قيمة"} assert lineage.extra[2].count == 1 assert lineage.extra[2].context == mock_context assert lineage.extra[3].key == "emoji_🚀" assert lineage.extra[3].value == {"status": "✅"} assert lineage.extra[3].count == 1 assert lineage.extra[3].context == mock_context def test_very_large_extra_value(self, collector): """Test that large extra values are handled.""" mock_context = mock.MagicMock() # Create a large value large_value = {"data": "x" * 10000, "list": list(range(1000))} collector.add_extra(mock_context, "large_key", large_value) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.extra) == 1 assert lineage.extra[0].key == "large_key" assert lineage.extra[0].value == large_value assert lineage.extra[0].count == 1 assert lineage.extra[0].context == mock_context assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0 def test_deeply_nested_extra_value(self, collector): """Test that deeply nested data structures in extra are handled.""" mock_context = mock.MagicMock() # Create deeply nested structure nested_value = {"level1": {"level2": {"level3": {"level4": {"level5": {"data": "deep"}}}}}} collector.add_extra(mock_context, "nested", nested_value) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.extra) == 1 assert lineage.extra[0].key == "nested" assert lineage.extra[0].value == nested_value assert lineage.extra[0].count == 1 assert lineage.extra[0].context == mock_context assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0 def test_extra_value_with_various_types(self, collector): """Test that extra can handle various data types.""" mock_context = mock.MagicMock() collector.add_extra(mock_context, "string", "text") collector.add_extra(mock_context, "integer", 42) collector.add_extra(mock_context, "float", 3.14) collector.add_extra(mock_context, "boolean", True) collector.add_extra(mock_context, "list", [1, 2, 3]) collector.add_extra(mock_context, "dict", {"key": "value"}) collector.add_extra(mock_context, "null", None) assert collector.has_collected # None value should not be collected (based on validation) lineage = collector.collected_assets assert len(lineage.extra) == 6 # None is filtered out assert lineage.extra[0].key == "string" assert lineage.extra[0].value == "text" assert lineage.extra[0].count == 1 assert lineage.extra[1].key == "integer" assert lineage.extra[1].value == 42 assert lineage.extra[1].count == 1 assert lineage.extra[2].key == "float" assert lineage.extra[2].value == 3.14 assert lineage.extra[2].count == 1 assert lineage.extra[3].key == "boolean" assert lineage.extra[3].value is True assert lineage.extra[3].count == 1 assert lineage.extra[4].key == "list" assert lineage.extra[4].value == [1, 2, 3] assert lineage.extra[4].count == 1 assert lineage.extra[5].key == "dict" assert lineage.extra[5].value == {"key": "value"} assert lineage.extra[5].count == 1 assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0 def test_non_json_serializable_value_in_extra(self, collector): """Test that non-JSON-serializable values are handled gracefully.""" mock_context = mock.MagicMock() # Create a non-serializable object class CustomObject: def __str__(self): return "custom_object" # Should not raise - collector should handle via str conversion or skip collector.add_extra(mock_context, "custom_key", CustomObject()) # May or may not be collected depending on implementation lineage = collector.collected_assets # Just verify it doesn't crash assert isinstance(lineage.extra, list) assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0 def test_empty_asset_extra(self, collector): """Test that empty asset_extra is handled correctly.""" mock_context = mock.MagicMock() collector.add_input_asset(mock_context, uri="s3://bucket/file", asset_extra={}) collector.add_output_asset(mock_context, uri="s3://bucket/file", asset_extra={}) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 1 assert lineage.inputs[0].asset.extra == {} assert len(lineage.outputs) == 1 assert lineage.outputs[0].asset.extra == {} @pytest.mark.skipif(not AIRFLOW_V_3_0_PLUS, reason="Test requires Airflow 3.0+") def test_asset_with_all_optional_parameters(self, collector): """Test asset creation with all optional parameters provided.""" mock_context = mock.MagicMock() collector.add_input_asset( mock_context, uri="s3://bucket/file", name="custom-name", group="custom-group", asset_extra={"key": "value"}, ) assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 1 assert lineage.inputs[0].asset.uri == "s3://bucket/file" assert lineage.inputs[0].asset.name == "custom-name" assert lineage.inputs[0].asset.group == "custom-group" assert lineage.inputs[0].asset.extra == {"key": "value"} def test_rapid_repeated_calls(self, collector): """Test that rapid repeated calls don't cause issues.""" mock_context = mock.MagicMock() # Simulate rapid repeated calls for _ in range(50): collector.add_input_asset(mock_context, uri="s3://bucket/file") collector.add_output_asset(mock_context, uri="s3://bucket/output") collector.add_extra(mock_context, "key", "value") assert collector.has_collected lineage = collector.collected_assets # Should have counted properly assert len(lineage.inputs) == 1 assert lineage.inputs[0].count == 50 assert len(lineage.outputs) == 1 assert lineage.outputs[0].count == 50 assert len(lineage.extra) == 1 assert lineage.extra[0].count == 50 def test_mixed_valid_invalid_operations(self, collector): """Test mixing valid and invalid operations.""" mock_context = mock.MagicMock() # Mix valid and invalid calls collector.add_input_asset(mock_context, uri="s3://bucket/valid") collector.add_input_asset(mock_context, uri=None) # Invalid - should not be collected collector.add_input_asset(mock_context, uri="") # Invalid - should not be collected collector.add_input_asset(mock_context, uri="s3://bucket/another-valid") collector.add_extra(mock_context, "valid_key", "valid_value") collector.add_extra(mock_context, "", "invalid_key") # Invalid key - should not be collected collector.add_extra(mock_context, "another_key", "another_value") assert collector.has_collected # Should collect only valid items lineage = collector.collected_assets assert len(lineage.inputs) == 2 assert lineage.inputs[0].asset.uri == "s3://bucket/valid" assert lineage.inputs[0].count == 1 assert lineage.inputs[0].context == mock_context assert lineage.inputs[1].asset.uri == "s3://bucket/another-valid" assert lineage.inputs[1].count == 1 assert lineage.inputs[1].context == mock_context assert len(lineage.extra) == 2 assert lineage.extra[0].key == "valid_key" assert lineage.extra[0].value == "valid_value" assert lineage.extra[0].count == 1 assert lineage.extra[1].key == "another_key" assert lineage.extra[1].value == "another_value" assert lineage.extra[1].count == 1 assert len(lineage.outputs) == 0 def test_collector_collected_assets_called_multiple_times(self, collector): """Test that collected_assets property can be called multiple times.""" mock_context = mock.MagicMock() collector.add_input_asset(mock_context, uri="s3://bucket/file") assert collector.has_collected # Call multiple times - should return same data lineage1 = collector.collected_assets lineage2 = collector.collected_assets lineage3 = collector.collected_assets assert lineage1.inputs == lineage2.inputs == lineage3.inputs assert len(lineage1.inputs) == 1 assert lineage1.inputs[0].asset.uri == "s3://bucket/file" assert lineage1.inputs[0].count == 1 assert lineage1.inputs[0].context == mock_context @pytest.mark.skipif(not AIRFLOW_V_3_0_PLUS, reason="Test requires Airflow 3.0+") def test_empty_name_and_group(self, collector): """Test that empty strings for name and group are handled.""" mock_context = mock.MagicMock() # Empty strings for optional parameters collector.add_input_asset(mock_context, uri="s3://bucket/file", name="", group="") assert collector.has_collected lineage = collector.collected_assets assert len(lineage.inputs) == 1 assert lineage.inputs[0].asset.uri == "s3://bucket/file" assert lineage.inputs[0].asset.name == "s3://bucket/file" assert lineage.inputs[0].asset.group == "asset" assert lineage.inputs[0].count == 1 assert lineage.inputs[0].context == mock_context assert len(lineage.outputs) == 0 assert len(lineage.extra) == 0 def test_extremely_long_extra_key(self, collector): """Test that extremely long extra keys are handled.""" mock_context = mock.MagicMock() long_key = "k" * 10000 collector.add_extra(mock_context, long_key, "value") assert collector.has_collected lineage = collector.collected_assets assert len(lineage.extra) == 1 assert lineage.extra[0].key == long_key assert lineage.extra[0].value == "value" assert lineage.extra[0].count == 1 assert lineage.extra[0].context == mock_context assert len(lineage.inputs) == 0 assert len(lineage.outputs) == 0
TestEdgeCases
python
scipy__scipy
scipy/stats/tests/test_distributions.py
{ "start": 362029, "end": 366743 }
class ____: # Construct a distribution w/ explicit shapes parameter and test it. def test_correct_shapes(self): dummy_distr = _distr_gen(name='dummy', shapes='a') assert_equal(dummy_distr.pdf(1, a=1), 42) def test_wrong_shapes_1(self): dummy_distr = _distr_gen(name='dummy', shapes='A') assert_raises(TypeError, dummy_distr.pdf, 1, **dict(a=1)) def test_wrong_shapes_2(self): dummy_distr = _distr_gen(name='dummy', shapes='a, b, c') dct = dict(a=1, b=2, c=3) assert_raises(TypeError, dummy_distr.pdf, 1, **dct) def test_shapes_string(self): # shapes must be a string dct = dict(name='dummy', shapes=42) assert_raises(TypeError, _distr_gen, **dct) def test_shapes_identifiers_1(self): # shapes must be a comma-separated list of valid python identifiers dct = dict(name='dummy', shapes='(!)') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_2(self): dct = dict(name='dummy', shapes='4chan') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_3(self): dct = dict(name='dummy', shapes='m(fti)') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_identifiers_nodefaults(self): dct = dict(name='dummy', shapes='a=2') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_args(self): dct = dict(name='dummy', shapes='*args') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_kwargs(self): dct = dict(name='dummy', shapes='**kwargs') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_keywords(self): # python keywords cannot be used for shape parameters dct = dict(name='dummy', shapes='a, b, c, lambda') assert_raises(SyntaxError, _distr_gen, **dct) def test_shapes_signature(self): # test explicit shapes which agree w/ the signature of _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, a): return stats.norm._pdf(x) * a dist = _dist_gen(shapes='a') assert_equal(dist.pdf(0.5, a=2), stats.norm.pdf(0.5)*2) def test_shapes_signature_inconsistent(self): # test explicit shapes which do not agree w/ the signature of _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, a): return stats.norm._pdf(x) * a dist = _dist_gen(shapes='a, b') assert_raises(TypeError, dist.pdf, 0.5, **dict(a=1, b=2)) def test_star_args(self): # test _pdf with only starargs # NB: **kwargs of pdf will never reach _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, *args): extra_kwarg = args[0] return stats.norm._pdf(x) * extra_kwarg dist = _dist_gen(shapes='extra_kwarg') assert_equal(dist.pdf(0.5, extra_kwarg=33), stats.norm.pdf(0.5)*33) assert_equal(dist.pdf(0.5, 33), stats.norm.pdf(0.5)*33) assert_raises(TypeError, dist.pdf, 0.5, **dict(xxx=33)) def test_star_args_2(self): # test _pdf with named & starargs # NB: **kwargs of pdf will never reach _pdf class _dist_gen(stats.rv_continuous): def _pdf(self, x, offset, *args): extra_kwarg = args[0] return stats.norm._pdf(x) * extra_kwarg + offset dist = _dist_gen(shapes='offset, extra_kwarg') assert_equal(dist.pdf(0.5, offset=111, extra_kwarg=33), stats.norm.pdf(0.5)*33 + 111) assert_equal(dist.pdf(0.5, 111, 33), stats.norm.pdf(0.5)*33 + 111) def test_extra_kwarg(self): # **kwargs to _pdf are ignored. # this is a limitation of the framework (_pdf(x, *goodargs)) class _distr_gen(stats.rv_continuous): def _pdf(self, x, *args, **kwargs): # _pdf should handle *args, **kwargs itself. Here "handling" # is ignoring *args and looking for ``extra_kwarg`` and using # that. extra_kwarg = kwargs.pop('extra_kwarg', 1) return stats.norm._pdf(x) * extra_kwarg dist = _distr_gen(shapes='extra_kwarg') assert_equal(dist.pdf(1, extra_kwarg=3), stats.norm.pdf(1)) def test_shapes_empty_string(self): # shapes='' is equivalent to shapes=None class _dist_gen(stats.rv_continuous): def _pdf(self, x): return stats.norm.pdf(x) dist = _dist_gen(shapes='') assert_equal(dist.pdf(0.5), stats.norm.pdf(0.5))
TestSubclassingExplicitShapes
python
nedbat__coveragepy
coverage/config.py
{ "start": 803, "end": 5568 }
class ____(configparser.ConfigParser): """Our specialization of ConfigParser.""" def __init__(self, our_file: bool) -> None: """Create the HandyConfigParser. `our_file` is True if this config file is specifically for coverage, False if we are examining another config file (tox.ini, setup.cfg) for possible settings. """ super().__init__(interpolation=None) self.section_prefixes = ["coverage:"] if our_file: self.section_prefixes.append("") def read( # type: ignore[override] self, filenames: Iterable[str], encoding_unused: str | None = None, ) -> list[str]: """Read a file name as UTF-8 configuration data.""" return super().read(filenames, encoding="utf-8") def real_section(self, section: str) -> str | None: """Get the actual name of a section.""" for section_prefix in self.section_prefixes: real_section = section_prefix + section has = super().has_section(real_section) if has: return real_section return None def has_option(self, section: str, option: str) -> bool: # type: ignore[override] real_section = self.real_section(section) if real_section is not None: return super().has_option(real_section, option) return False def has_section(self, section: str) -> bool: # type: ignore[override] return bool(self.real_section(section)) def options(self, section: str) -> list[str]: # type: ignore[override] real_section = self.real_section(section) if real_section is not None: return super().options(real_section) raise ConfigError(f"No section: {section!r}") def get_section(self, section: str) -> TConfigSectionOut: """Get the contents of a section, as a dictionary.""" d: dict[str, TConfigValueOut] = {} for opt in self.options(section): d[opt] = self.get(section, opt) return d def get(self, section: str, option: str, *args: Any, **kwargs: Any) -> str: # type: ignore """Get a value, replacing environment variables also. The arguments are the same as `ConfigParser.get`, but in the found value, ``$WORD`` or ``${WORD}`` are replaced by the value of the environment variable ``WORD``. Returns the finished value. """ for section_prefix in self.section_prefixes: real_section = section_prefix + section if super().has_option(real_section, option): break else: raise ConfigError(f"No option {option!r} in section: {section!r}") v: str = super().get(real_section, option, *args, **kwargs) v = substitute_variables(v, os.environ) return v def getfile(self, section: str, option: str) -> str: """Fix up a file path setting.""" path = self.get(section, option) return process_file_value(path) def getlist(self, section: str, option: str) -> list[str]: """Read a list of strings. The value of `section` and `option` is treated as a comma- and newline- separated list of strings. Each value is stripped of white space. Returns the list of strings. """ value_list = self.get(section, option) values = [] for value_line in value_list.split("\n"): for value in value_line.split(","): value = value.strip() if value: values.append(value) return values def getregexlist(self, section: str, option: str) -> list[str]: """Read a list of full-line regexes. The value of `section` and `option` is treated as a newline-separated list of regexes. Each value is stripped of white space. Returns the list of strings. """ line_list = self.get(section, option) return process_regexlist(section, option, line_list.splitlines()) TConfigParser = HandyConfigParser | TomlConfigParser # The default line exclusion regexes. DEFAULT_EXCLUDE = [ r"#\s*(pragma|PRAGMA)[:\s]?\s*(no|NO)\s*(cover|COVER)", r"^\s*(((async )?def .*?)?\)(\s*->.*?)?:\s*)?\.\.\.\s*(#|$)", r"if (typing\.)?TYPE_CHECKING:", ] # The default partial branch regexes, to be modified by the user. DEFAULT_PARTIAL = [ r"#\s*(pragma|PRAGMA)[:\s]?\s*(no|NO)\s*(branch|BRANCH)", ] # The default partial branch regexes, based on Python semantics. # These are any Python branching constructs that can't actually execute all # their branches. DEFAULT_PARTIAL_ALWAYS = [ "while (True|1|False|0):", "if (True|1|False|0):", ]
HandyConfigParser