row_id
int64
0
48.4k
init_message
stringlengths
1
342k
conversation_hash
stringlengths
32
32
scores
dict
48,092
\begin{figure*}[!htb] \centering \subfloat[Hazy image]{\includegraphics[width=0.8in]{twopick_hazy.png}% \label{fig_first_case}} \hfil \subfloat[DCP]{\includegraphics[width=0.8in]{twopick_DCP.png}% \label{fig_second_case}} \hfil \subfloat[CAP]{\includegraphics[width=0.8in]{twopick_CAP.png}% \label{fig_second_case}} \hfil \subfloat[NLD]{\includegraphics[width=0.8in]{twopick_NLD.png}% \label{fig_second_case}} \hfil \subfloat[SLP]{\includegraphics[width=0.8in]{twopick_SLP.png}% \label{fig_second_case}} \hfil \subfloat[DehazeNet]{\includegraphics[width=0.8in]{twopick_dehazenet.png}% \label{fig_second_case}} \hfil \subfloat[AOD-Net]{\includegraphics[width=0.8in]{twopick_AOD.png}% \label{fig_second_case}} \hfil \subfloat[FFA-Net]{\includegraphics[width=0.8in]{twopick_FFA.png}% \label{fig_second_case}} \hfil \subfloat[Our method]{\includegraphics[width=0.8in]{twopick_my.png}% \label{fig_second_case}} \caption{Dehazing results of classical images without clear image reference. The lower part show local details of image.} \label{fig7} \end{figure*}帮我把这段latex改为单栏的两行三列的图像分布
e6486be81f7431517ab343279fa1da01
{ "intermediate": 0.3029104769229889, "beginner": 0.3791201412677765, "expert": 0.3179693818092346 }
48,093
Make ascii art for the letter m
f9a557d775aab0ca8c5d281626f7dd16
{ "intermediate": 0.41269373893737793, "beginner": 0.3237380385398865, "expert": 0.2635682225227356 }
48,094
What’s the difference between headers payload and form data?
f78be9fe8cc3917d299cf690dcdddd32
{ "intermediate": 0.41577795147895813, "beginner": 0.31949350237846375, "expert": 0.2647285759449005 }
48,095
I have this react custom input: import { TextInput } from "@mantine/core"; import { useState } from "react"; const [_value, setValue] = useState<any>(0); const handleInputChange = (value: string) => { let newValue : number | string = value.replace(/\D/g, ''); newValue = newValue === '' ? '0' : newValue; newValue = parseInt(newValue); newValue = Math.max(0, Math.min(0, 100)); setValue(newValue) }; const TableInput = () => { return( <TextInput defaultValue={0} type="number" value={_value} onChange={() => handleInputChange} /> ) } export default TableInput; And I want to import it to page but also to call some other function onChange like this: <TableInput onChange = {(event:any) => {handleInputChange(index, parseInt(event.currentTarget.value))} } /> How to do it?
705f4a70df332d2694b2d1455fec5abb
{ "intermediate": 0.39734160900115967, "beginner": 0.4826660752296448, "expert": 0.11999238282442093 }
48,096
I am performing the kaggle competition :""
b152acb4e70edb573d6241d59a821bf2
{ "intermediate": 0.24844972789287567, "beginner": 0.19325228035449982, "expert": 0.5582979917526245 }
48,097
I am doing the Kaggle competition "Titanic - Machine Learning from Disaster", my code: "# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load !pip install tensorflow import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler features = ['PassengerId', 'Survived', 'Pclass','Name','Sex','Age','SibSp','Parch','Ticket','Fare','Cabin','Embarked'] X = pd.get_dummies(train_data[features]) y = train_data['Survived'] # Splitting the training data for validation X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # It's generally a good idea to scale your data for neural networks scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_val_scaled = scaler.transform(X_val) import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout model = Sequential([ Dense(32, activation='relu', input_shape=(X_train_scaled.shape[1],)), Dropout(0.5), Dense(32, activation='relu'), Dropout(0.5), Dense(32, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_val_scaled, y_val), verbose=1, batch_size=2) # Scale the test data X_test = pd.get_dummies(test_data[features]) X_test_scaled = scaler.transform(X_test) # Prediction test_predictions = model.predict(X_test_scaled) test_predictions = (test_predictions > 0.5).astype(int).reshape(-1) # Preparing for submission output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': test_predictions}) output.to_csv('neural_network_submission.csv', index=False) print("Your neural network submission was successfully saved!") " However:Epoch 1/100 /opt/conda/lib/python3.10/site-packages/keras/src/layers/core/dense.py:86: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. the output of the layer (its "activation"). 92/356 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.6802 - loss: nan W0000 00:00:1714140438.775364 112 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update 336/356 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.6417 - loss: nan W0000 00:00:1714140439.695673 113 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
0a22f5d83af19fdf7de7a0834ab9d41f
{ "intermediate": 0.4611983299255371, "beginner": 0.21999861299991608, "expert": 0.3188031017780304 }
48,098
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: “# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here’s several helpful packages to load !pip install tensorflow import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only “…/input/” directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk(‘/kaggle/input’): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using “Save & Run All” # You can also write temporary files to /kaggle/temp/, but they won’t be saved outside of the current session train_data = pd.read_csv(”/kaggle/input/titanic/train.csv") test_data = pd.read_csv(“/kaggle/input/titanic/test.csv”) train_data.head(100) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler features = [‘PassengerId’, ‘Survived’, ‘Pclass’,‘Name’,‘Sex’,‘Age’,‘SibSp’,‘Parch’,‘Ticket’,‘Fare’,‘Cabin’,‘Embarked’] X = pd.get_dummies(train_data[features]) y = train_data[‘Survived’] # Splitting the training data for validation X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # It’s generally a good idea to scale your data for neural networks scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_val_scaled = scaler.transform(X_val) import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout model = Sequential([ Dense(32, activation=‘relu’, input_shape=(X_train_scaled.shape[1],)), Dropout(0.5), Dense(32, activation=‘relu’), Dropout(0.5), Dense(32, activation=‘relu’), Dropout(0.5), Dense(1, activation=‘sigmoid’) ]) model.compile(optimizer=‘adam’, loss=‘binary_crossentropy’, metrics=[‘accuracy’]) history = model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_val_scaled, y_val), verbose=1, batch_size=2) # Scale the test data X_test = pd.get_dummies(test_data[features]) X_test_scaled = scaler.transform(X_test) # Prediction test_predictions = model.predict(X_test_scaled) test_predictions = (test_predictions > 0.5).astype(int).reshape(-1) # Preparing for submission output = pd.DataFrame({‘PassengerId’: test_data.PassengerId, ‘Survived’: test_predictions}) output.to_csv(‘neural_network_submission.csv’, index=False) print(“Your neural network submission was successfully saved!”) " However:Epoch 1/100 /opt/conda/lib/python3.10/site-packages/keras/src/layers/core/dense.py:86: UserWarning: Do not pass an input_shape/input_dim argument to a layer. When using Sequential models, prefer using an Input(shape) object as the first layer in the model instead. the output of the layer (its “activation”). 92/356 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.6802 - loss: nan W0000 00:00:1714140438.775364 112 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update 336/356 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.6417 - loss: nan W0000 00:00:1714140439.695673 113 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
f96923504ecec7bd70d52eb0f2db8b83
{ "intermediate": 0.44246071577072144, "beginner": 0.23457184433937073, "expert": 0.32296743988990784 }
48,099
following the list of country codes: AF,AL,DZ,AS,AD,AO,AI,AG,AR,AM,AW,AU,AT,#CYRL,BS,BH,BD,BB,BY,BE,BZ,BJ,BM,BT,BO,#CYRL,BW,BR,IO,VG,BN,BG,#ADLM,BI,KH,CM,CA,IC,CV,BQ,KY,CF,EA,TD,CL,CN,CX,CC,CO,KM,CG,CD,CK,CR,HR,CU,CW,CY,CZ,CI,DI,DK,DG,DJ,DM,DO,EC,EG,SV,GQ,ER,EE,SZ,ET,150,FK,FO,FJ,FI,FR,GF,PF,GA,GM,GE,DE,GH,GI,GR,GL,GD,GP,GU,GT,GG,#ADLM,#ADLM,GY,HT,HN,HK,HU,IS,IN,ID,IR,IQ,IE,IM,IL,IT,JM,JP,JE,JO,KZ,KE,KI,XK,KW,KG,LA,419,LV,LB,LS,LR,LY,LI,LT,LU,MO,MG,MW,MY,MV,ML,MT,MH,MQ,MR,MU,YT,MX,FM,MD,MC,MN,#CYRL,MS,MA,MZ,MM,NA,NR,NP,NL,NC,NZ,NI,NE,NG,NU,NF,KP,MK,MP,NO,OM,PK,PW,PS,PA,PG,PY,PE,PH,PN,PL,PT,XA,XB,PR,QA,RO,RU,RW,RE,WS,SM,SA,SN,#CYRL,SC,SL,SP,SG,SX,SK,SI,SB,SO,ZA,KR,SS,ES,LK,BL,SH,KN,LC,MF,PM,VC,SD,SR,SJ,SE,CH,SY,ST,#HANT,TJ,TZ,TH,TL,TG,TK,TO,TT,TN,TM,TC,TV,TR,UM,VI,UG,UA,AE,GB,US,UY,#CYRL,VU,VA,VE,VN,WF,EH,YE,ZM,ZG,ZW,001,AX I need a json array containing as key the country code and with two values groups containing regex and a mask following the rules on this page https://github.com/RedMadRobot/input-mask-android/wiki/Mask-Syntax%3A-Basics for vat numbers and zip codes
4f29b9e8773f6192e553c9d7d3a74c1b
{ "intermediate": 0.21980752050876617, "beginner": 0.5366187691688538, "expert": 0.24357371032238007 }
48,100
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: "# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # Imputing Age age_imputer = SimpleImputer(strategy='median') train_data['Age'] = age_imputer.fit_transform(train_data[['Age']]) test_data['Age'] = age_imputer.transform(test_data[['Age']]) # Assuming Fare missing values can be filled with -1 (or you could use mean or median) fare_imputer = SimpleImputer(strategy='median') train_data['Fare'] = fare_imputer.fit_transform(train_data[['Fare']]) test_data['Fare'] = fare_imputer.transform(test_data[['Fare']]) features = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare","Embarked","PassengerId"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) y = train_data["Survived"] model = RandomForestClassifier(n_estimators=200, max_depth=200, random_state=10) model.fit(X, y) predictions = model.predict(X_test) train_accuracy = model.score(X, y) print(f"Training Accuracy: {train_accuracy:.4f}") output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission.csv', index=False) print("Your submission was successfully saved!") " I want to change the model to neural network, show code.
1fed2f64247133c05d8ed2e915a0b23f
{ "intermediate": 0.5781989693641663, "beginner": 0.15743790566921234, "expert": 0.2643630802631378 }
48,101
convert this pinescript to python script and use talib : // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ //@version=5 indicator(title='Twin Range Filter', overlay=true, timeframe='') source = input(defval=close, title='Source') showsignals = input(title='Show Buy/Sell Signals ?', defval=true) per1 = input.int(defval=27, minval=1, title='Fast period') mult1 = input.float(defval=1.6, minval=0.1, title='Fast range') per2 = input.int(defval=55, minval=1, title='Slow period') mult2 = input.float(defval=2, minval=0.1, title='Slow range') smoothrng(x, t, m) => wper = t * 2 - 1 avrng = ta.ema(math.abs(x - x[1]), t) smoothrng = ta.ema(avrng, wper) * m smoothrng smrng1 = smoothrng(source, per1, mult1) smrng2 = smoothrng(source, per2, mult2) smrng = (smrng1 + smrng2) / 2 rngfilt(x, r) => rngfilt = x rngfilt := x > nz(rngfilt[1]) ? x - r < nz(rngfilt[1]) ? nz(rngfilt[1]) : x - r : x + r > nz(rngfilt[1]) ? nz(rngfilt[1]) : x + r rngfilt filt = rngfilt(source, smrng) upward = 0.0 upward := filt > filt[1] ? nz(upward[1]) + 1 : filt < filt[1] ? 0 : nz(upward[1]) downward = 0.0 downward := filt < filt[1] ? nz(downward[1]) + 1 : filt > filt[1] ? 0 : nz(downward[1]) STR = filt + smrng STS = filt - smrng FUB = 0.0 FUB := STR < nz(FUB[1]) or close[1] > nz(FUB[1]) ? STR : nz(FUB[1]) FLB = 0.0 FLB := STS > nz(FLB[1]) or close[1] < nz(FLB[1]) ? STS : nz(FLB[1]) TRF = 0.0 TRF := nz(TRF[1]) == FUB[1] and close <= FUB ? FUB : nz(TRF[1]) == FUB[1] and close >= FUB ? FLB : nz(TRF[1]) == FLB[1] and close >= FLB ? FLB : nz(TRF[1]) == FLB[1] and close <= FLB ? FUB : FUB long = ta.crossover(close, TRF) short = ta.crossunder(close, TRF) plotshape(showsignals and long, title='Long', text='BUY', style=shape.labelup, textcolor=color.white, size=size.tiny, location=location.belowbar, color=color.rgb(0, 19, 230)) plotshape(showsignals and short, title='Short', text='SELL', style=shape.labeldown, textcolor=color.white, size=size.tiny, location=location.abovebar, color=color.rgb(0, 19, 230)) alertcondition(long, title='Long', message='Long') alertcondition(short, title='Short', message='Short') Trfff = plot(TRF) mPlot = plot(ohlc4, title='', style=plot.style_circles, linewidth=0) longFillColor = close > TRF ? color.green : na shortFillColor = close < TRF ? color.red : na fill(mPlot, Trfff, title='UpTrend Highligter', color=longFillColor, transp=90) fill(mPlot, Trfff, title='DownTrend Highligter', color=shortFillColor, transp=90)
0af9a5e7e531fa94763f33b5941f22d5
{ "intermediate": 0.3307849168777466, "beginner": 0.3821905851364136, "expert": 0.28702446818351746 }
48,102
def CheckCarAvailability(instructions,summary): flag=False dates=[] car=instructions[1] start=datetime.strptime(instructions[2],"%Y-%m-%d") print(start) start = datetime.strptime(instructions[2], "%Y-%m-%d") duration = int(instructions[3]) end = start + timedelta(days=duration-1) for _, value in summary.items(): if value[0]==car: date = datetime.strptime(value[1], "%Y-%m-%d") dateend = datetime.strptime(value[1], "%Y-%m-%d") + timedelta(days=int(value[4]) - 1) if start<date<end or start<dateend<end: flag=True if start<date<dateend<end: for _ in range(value[4]): dates.append(date) date+=1 elif date<start<dateend<end: for _ in range(dateend-start+1): dates.append(start) start+=1 elif start<date<end<dateend: for _ in range(end-date+1): dates.append(date) date+=1 if flag==False: print(f"The Car {car} is available in this period.") else: print(f"The Car {car} is occupied in this period.") dates=sorted(dates) for date in dates: print(date)
d1cf43f4c05f3fe6f6bf31c7b0fba98e
{ "intermediate": 0.22443349659442902, "beginner": 0.5122814178466797, "expert": 0.2632850110530853 }
48,103
у мене є основна головна сторінка,нижче код<?php require_once 'include/db.php'; $mysqli = new mysqli('localhost', 'root', '17020575', 'тур'); if ($mysqli->connect_error) { die('Помилка з\'єднання: ' . $mysqli->connect_error); } ?> <!DOCTYPE html> <html lang="ua"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Empire of Travel</title> <style> body { margin: 0; font-family: Arial, sans-serif; } header { background-color: #66CDAA; padding: 15px; color: #fff; display: flex; justify-content: space-between; align-items: center; } header img{ height: 50px; width: 50px; } nav { display: flex; } nav ul { list-style: none; margin: 0; padding: 0; display: flex; } nav li { margin-right: 20px; color: #933; } section.hero { height: 500px; width: 100%; background-image: url('https://wide-w.com/wp-content/uploads/2019/01/gora-jeverest.jpg'); background-size: cover; background-position: center; display: flex; justify-content: center; align-items: center; color: #ffffff; text-align: center; } section { padding: 20px; } section#about { border: 2px solid #333; background-color: #00FA9A; padding: 20px; margin: 20px 0; overflow: hidden; } section#about img { float: left; margin-right: 20px; max-width: 300px; } section#about p { margin: 0 0 20px 0; } section#best-tour { text-align: center; } section#best-tour h2 { margin-bottom: 20px; } section#best-tour .feature { display: inline-block; margin: 0 20px 20px 0; border: 10px solid #F0E68C; padding: 10px; width: calc((100% - 60px) / 3); box-sizing: border-box; } section#best-tour img { width: 80px; height: 80px; border-radius: 50%; margin-bottom: 10px; display: block; margin-left: auto; margin-right: auto; } .hottourscontainer { max-width: 1200px; margin: 0 auto; display: flex; flex-wrap: wrap; align-items: center; justify-content: space-around; padding: 20px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .hottourscontainer img { max-width: 200px; margin-right: 20px; border-radius: 10px; margin-bottom: 20px; } .hottoursinfo { flex-grow: 1; width: 70%; } .tourtitle { font-size: 24px; font-weight: bold; margin-bottom: 10px; } .tourdescription { font-size: 16px; margin-bottom: 10px; } .tourprice { font-size: 18px; font-weight: bold; color: green; border: 2px solid #eee; padding: 10px; display: inline-block; } .hottourstitle { text-align: center; font-size: 32px; margin-bottom: 40px; } section#route-example { text-align: center; background-color: #FFF8DC; } section#route-example .route-block { display: flex; justify-content: center; align-items: center; margin-bottom: 40px; border: 2px solid #DCDCDC; padding: 10px; margin-bottom: 10px; } section#route-example .route-block img{ width: 500px; height: 400px; } section#route-example .route-block p { width: 48%; margin: 0 2%; box-sizing: border-box; } footer { background-color: #333; color: #fff; text-align: center; padding: 10px; position: fixed; width: 100%; bottom: 0; } #book-tour { background-color: #F0FFF0; text-align: center; padding: 50px 0; } .book-button-container { display: inline-block; } .book-button { background-color: #4CAF50; color: white; padding: 15px 32px; text-align: center; text-decoration: none; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } .book-button:hover { background-color: #45a049; } #testimonials { text-align: center; padding: 50px; } .testimonial-container { display: flex; justify-content: space-around; flex-wrap: wrap; gap: 20px; } .testimonial { background-color: #ffffff; border: 1px solid #eaeaea; padding: 20px; border-radius: 5px; box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.1); flex-basis: calc(30% - 40px); margin: 10px; flex-grow: 1; } .testimonial blockquote { font-style: italic; color: #555; } .testimonial-author, .tour-date { font-weight: bold; font-size: 0.9em; color: #333; text-align: right; margin-top: 15px; } #map { margin: 20px; padding: 20px; } #map h2 { text-align: center; margin-bottom: 20px; } #map iframe { width: 100%; } #contacts { background-color: #f8f8f8; padding: 50px 0; } #contacts .container { max-width: 1200px; margin: 0 auto; padding: 0 15px; } #contacts h2 { text-align: center; margin-bottom: 15px; #contacts p { text-align: center; margin: 10px 0; font-size: 1rem; } #contacts a { color: #007bff; text-decoration: none; } #contacts a:hover { text-decoration: underline; } footer{ height: 25px; } </style> </head>body> <header> <div> <img src="logo.png" alt="Логотип"> </div> <nav> <ul> <li><a href="#about">Про нас</a></li> <li><a href="hotels.php">Готелі</a></li> <li><a href="blog.php">Блог</a></li> <li><a href="newpage.php">Оформити тур</a></li> <li><a href="login.php">Admin</a></li> </ul> </nav> </header> я хочу,щоб ти взяв головну сторінку з коду нижче та змінівши мій код <!DOCTYPE html> <html class="wide wow-animation" lang="en"> <head> <!--Site Title--> <title>Home</title> <meta charset="utf-8"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, height=device-height, initial-scale=1.0, maximum-scale=1.0, user-scalable=0"> <!--Stylesheets --> <link href="//fonts.googleapis.com/css?family=Pacifico%7CLato:400,100,100italic,300,300italic,700,400italic,900,700italic,900italic%7CMontserrat:400,700" rel="stylesheet" type="text/css"> <link rel="icon" href="images/favicon.ico" type="image/x-icon"> <!--Bootstrap --> <link rel="stylesheet" href="css/bootstrap.css"> <link rel="stylesheet" href="css/fonts.css"> <link rel="stylesheet" href="css/style.css"> <style>.ie-panel{display: none;background: #212121;padding: 10px 0;box-shadow: 3px 3px 5px 0 rgba(0,0,0,.3);clear: both;text-align:center;position: relative;z-index: 1;} html.ie-10 .ie-panel, html.lt-ie-10 .ie-panel {display: block;}</style> </head> <body> <div class="ie-panel"><a href="http://windows.microsoft.com/en-US/internet-explorer/"><img src="images/ie8-panel/warning_bar_0000_us.jpg" height="42" width="820" alt="You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today."></a></div> <div class="preloader"> <div class="preloader-body"> <div class="cssload-container"> <div class="cssload-speeding-wheel"> </div> </div> <p>Loading...</p> </div> </div> <!--The Main Wrapper--><a class="section section-banner d-none d-xl-flex" href="https://www.templatemonster.com/website-templates/58434.html" style="background-image: url(images/banner/banner-1-bg-1600x60.jpg); background-image: -webkit-image-set( url(images/banner/banner-1-bg-1600x60.jpg) 1x, url(images/banner/banner-1-bg-3200x120.jpg) 2x )"> <img src="images/banner/banner-1-1600x60.png" srcset="images/banner/banner-1-1600x60.png 1x, images/banner/banner-1-3200x120.png 2x" alt=""></a> <div class="page"> <!-- ======================================================== HEADER ======================================================== --> <header class="page-header"> <!--RD Navbar--> <div class="rd-navbar-wrap"> <nav class="rd-navbar top-panel-none-items" data-layout="rd-navbar-fixed" data-sm-layout="rd-navbar-fixed" data-md-layout="rd-navbar-fixed" data-md-device-layout="rd-navbar-fixed" data-lg-layout="rd-navbar-fixed" data-lg-device-layout="rd-navbar-fixed" data-xl-layout="rd-navbar-static" data-xl-device-layout="rd-navbar-static" data-lg-stick-up-offset="46px" data-xl-stick-up-offset="46px" data-xxl-stick-up-offset="46px" data-lg-stick-up="true" data-xl-stick-up="true" data-xxl-stick-up="true"> <div class="rd-navbar-inner"> <!--RD Navbar Panel--> <div class="rd-navbar-panel"> <!--RD Navbar Toggle--> <button class="rd-navbar-toggle" data-rd-navbar-toggle=".rd-navbar"><span></span></button> <!--END RD Navbar Toggle--> <!--RD Navbar Brand--> <div class="rd-navbar-brand"><a href="index.html"><img src="images/logo-default.png" alt=""></a></div> <!--END RD Navbar Brand--> </div> <!--END RD Navbar Panel--> <div class="rd-navbar-nav-wrap"> <!--RD Navbar Nav--> <ul class="rd-navbar-nav"> <li class="active"><a href="./">Home</a></li> <li><a href="about.html">About Us</a></li> <li><a href="typography.html">Typography</a></li> <li><a href="contact_us.html">Contact Us</a></li> </ul> <!--END RD Navbar Nav--> </div> </div> </nav> </div> <!--END RD Navbar--> <section> <!--Swiper--> <div class="swiper-container swiper-slider" data-autoplay="5000" data-slide-effect="fade" data-loop="false"> <div class="jumbotron text-center"> <h1><small>#1 Web Design Agency</small>Welcome to Modicate </h1> <p class="big">We create quality products <br> tailored to your needs and requirements.</p><div class='button-group-variant'> <a class='button button-default round-xl button-sm' href='https://www.templatemonster.com/website-templates/58434.html'>Buy Now</a> <a class='button button-default round-xl button-sm' href='#'>View Features</a></div> </div> <div class="swiper-wrapper"> <div class="swiper-slide" data-slide-bg="images/nature-landscape-mountains-4k_1551644850.jpg"> <div class="swiper-slide-caption"></div> </div> <div class="swiper-slide" data-slide-bg="images/12690-mountains-peak-snow-snowy-sky-clouds-4k.jpg"> <div class="swiper-slide-caption"></div> </div> <div class="swiper-slide" data-slide-bg="images/mountains-peaks-snow-covered-snow-wallpaper.jpg"> <div class="swiper-slide-caption"></div> </div> </div> </div> </section> </header>
3b2d6aad9d296b505a9554d827a2ab9b
{ "intermediate": 0.3450203537940979, "beginner": 0.5187655091285706, "expert": 0.13621410727500916 }
48,104
есть ли тут код отвечающий за выборку от start char до далее по порядку идущих? #include "stdafx.h" #include "CBFGDefs.h" #include "Procs.h" #include "FontMapClass.h" #include "file-request.h" #include "WriteFont.h" #include <shellapi.h> // Required includes for Win2000 #include "Ws2tcpip.h" #include "Wspiapi.h" extern HINSTANCE G_Inst; extern HWND hMain; extern BFontMap *Fnt; extern AppInfo *info; extern bool cfgChange; int CALLBACK EnumFontMgr(ENUMLOGFONTEX *lpelfe,NEWTEXTMETRICEX *lpntme,int FontType,LPARAM lParam) { SendDlgItemMessage(hMain,CBO_FONTS,CB_ADDSTRING,0,(LPARAM)lpelfe->elfFullName); return 1; } BOOL CALLBACK MainProc(HWND hDlg, UINT msg, WPARAM wParam, LPARAM lParam) { HDC dc; LOGFONT fDef; char Text[256]; int RowDex,Index; int tVal,BPPVal,Flags,RetVal; SCROLLINFO scrInf; string VerData,VerNum; RECT rcArea; HBRUSH hBr; BFG_RGB ColVal; CHOOSECOLOR SelCol; static COLORREF CustCol[16]; // array of custom colors for color picker switch(msg) { case WM_INITDIALOG: SendMessage(hDlg,WM_SETICON,ICON_BIG,(LPARAM)LoadIcon(G_Inst,MAKEINTRESOURCE(MAKEINTRESOURCE(APP_ICON)))); SendDlgItemMessage(hDlg,CMD_UP,BM_SETIMAGE,IMAGE_ICON,(LPARAM)LoadIcon(G_Inst,MAKEINTRESOURCE(ICO_UP))); SendDlgItemMessage(hDlg,CMD_DOWN,BM_SETIMAGE,IMAGE_ICON,(LPARAM)LoadIcon(G_Inst,MAKEINTRESOURCE(ICO_DOWN))); SendDlgItemMessage(hDlg,CMD_RIGHT,BM_SETIMAGE,IMAGE_ICON,(LPARAM)LoadIcon(G_Inst,MAKEINTRESOURCE(ICO_RIGHT))); SendDlgItemMessage(hDlg,CMD_LEFT,BM_SETIMAGE,IMAGE_ICON,(LPARAM)LoadIcon(G_Inst,MAKEINTRESOURCE(ICO_LEFT))); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"16"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"32"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"64"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"128"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"256"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"512"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"1024"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"2048"); SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_ADDSTRING,0,(LPARAM)"4096"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"16"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"32"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"64"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"128"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"256"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"512"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"1024"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"2048"); SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_ADDSTRING,0,(LPARAM)"4096"); tVal=Fnt->GetSize(MAPWIDTH); if(tVal==32) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,1,0); else if(tVal==64) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,2,0); else if(tVal==128) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,3,0); else if(tVal==256) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,4,0); else if(tVal==512) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,5,0); else if(tVal==1024) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,6,0); else if(tVal==2048) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,7,0); else if(tVal==4096) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,8,0); else SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,0,0); tVal=Fnt->GetSize(MAPHEIGHT); if(tVal==32) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,1,0); if(tVal==64) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,2,0); if(tVal==128) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,3,0); else if(tVal==256) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,4,0); else if(tVal==512) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,5,0); else if(tVal==1024) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,6,0); else if(tVal==2048) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,7,0); else if(tVal==4096) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,8,0); else SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,0,0); SendDlgItemMessage(hDlg,CBO_ALIAS,CB_ADDSTRING,0,(LPARAM)"None"); SendDlgItemMessage(hDlg,CBO_ALIAS,CB_ADDSTRING,0,(LPARAM)"Normal Anti-Alias"); SendDlgItemMessage(hDlg,CBO_ALIAS,CB_ADDSTRING,0,(LPARAM)"ClearType (WinXP Only)"); SendDlgItemMessage(hDlg,CBO_ALIAS,CB_SETCURSEL,0,0); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_ADDSTRING,0,(LPARAM)"25%"); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_ADDSTRING,0,(LPARAM)"50%"); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_ADDSTRING,0,(LPARAM)"100%"); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_ADDSTRING,0,(LPARAM)"200%"); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_ADDSTRING,0,(LPARAM)"400%"); SendDlgItemMessage(hDlg,CBO_ZOOM,CB_SETCURSEL,2,0); wsprintf(Text,"%d",Fnt->GetSize(CELLWIDTH)); SendDlgItemMessage(hDlg,TXT_CELLWIDTH,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetSize(CELLHEIGHT)); SendDlgItemMessage(hDlg,TXT_CELLHEIGHT,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetFontWidth()); SendDlgItemMessage(hDlg,TXT_FONTWIDTH,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetFontHeight()); SendDlgItemMessage(hDlg,TXT_FONTHEIGHT,WM_SETTEXT,0,(LPARAM)Text); SendDlgItemMessage(hDlg,SPN_CELLWIDTH,UDM_SETRANGE,0,MAKELONG(256,8)); SendDlgItemMessage(hDlg,SPN_CELLHEIGHT,UDM_SETRANGE,0,MAKELONG(256,8)); SendDlgItemMessage(hDlg,SPN_FONTHEIGHT,UDM_SETRANGE,0,MAKELONG(256,1)); SendDlgItemMessage(hDlg,SPN_FONTWIDTH,UDM_SETRANGE,0,MAKELONG(256,0)); SendDlgItemMessage(hDlg,SPN_WIDTH,UDM_SETRANGE,0,MAKELONG(100,-100)); SendDlgItemMessage(hDlg,SPN_START,UDM_SETRANGE,0,MAKELONG(254,0)); SendDlgItemMessage(hDlg,RAD_ALL,BM_SETCHECK,BST_CHECKED,0); info->MaxChars=Fnt->GetSize(MAXCHARS); PostMessage(hDlg,WM_APP,0,0); return TRUE; case WM_DRAWITEM: if(wParam==ODR_FORECOL) { dc=((LPDRAWITEMSTRUCT)lParam)->hDC; ColVal=Fnt->GetCol(TEXTCOL); GetClientRect(hDlg, &rcArea); hBr=CreateSolidBrush(RGB(ColVal.Red,ColVal.Green,ColVal.Blue)); FillRect(dc,&rcArea,hBr); DeleteObject(hBr); } if(wParam==ODR_BACKCOL) { dc=((LPDRAWITEMSTRUCT)lParam)->hDC; ColVal=Fnt->GetCol(BACKCOL); GetClientRect(hDlg, &rcArea); hBr=CreateSolidBrush(RGB(ColVal.Red,ColVal.Green,ColVal.Blue)); FillRect(dc,&rcArea,hBr); DeleteObject(hBr); } CreateFontMap(); return TRUE; case WM_APP: SendDlgItemMessage(hDlg,CBO_FONTS,CB_RESETCONTENT,0,0); fDef.lfCharSet=ANSI_CHARSET; fDef.lfFaceName[0]=NULL; fDef.lfPitchAndFamily=0; dc=GetDC(hMain); EnumFontFamiliesEx(dc,&fDef,(FONTENUMPROC)EnumFontMgr,0,0); ReleaseDC(hMain,dc); SendDlgItemMessage(hDlg,CBO_FONTS,CB_SETCURSEL,0,0); SendDlgItemMessage(hDlg,CBO_FONTS,CB_GETLBTEXT,0,(LPARAM)Text); Fnt->SetFontName(Text); if(info->Grid) { SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_CHECKED); } else { SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_UNCHECKED); } if(info->wMarker) { SendDlgItemMessage(hDlg,CHK_WIDTH,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_CHECKED); } else { SendDlgItemMessage(hDlg,CHK_WIDTH,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_UNCHECKED); } EnableWindow(GetDlgItem(hMain,SCR_HOR),FALSE); EnableWindow(GetDlgItem(hMain,SCR_VERT),FALSE); Fnt->SetBaseChar(32); wsprintf(Text,"%d",Fnt->GetBaseChar()); SendDlgItemMessage(hDlg,TXT_START,WM_SETTEXT,0,(LPARAM)Text); SendMessage(hMain,WM_APP+1,0,0); EnableWindow(GetDlgItem(hMain,TXT_WIDTH),FALSE); EnableWindow(GetDlgItem(hMain,STA_WIDTH),FALSE); CalcScroll(); CreateFontMap(); return FALSE; case WM_APP+1: // Control Update if(info->ModAll==TRUE) { wsprintf(Text,"%d",Fnt->GetGlobal(HOFFSET)); SendDlgItemMessage(hMain,TXT_XADJ,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetGlobal(VOFFSET)); SendDlgItemMessage(hMain,TXT_YADJ,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetGlobal(WIDTH)); SendDlgItemMessage(hMain,TXT_WADJ,WM_SETTEXT,0,(LPARAM)Text); SendDlgItemMessage(hMain,TXT_WIDTH,WM_SETTEXT,0,(LPARAM)""); } else { wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),HOFFSET)); SendDlgItemMessage(hMain,TXT_XADJ,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),VOFFSET)); SendDlgItemMessage(hMain,TXT_YADJ,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),WOFFSET)); SendDlgItemMessage(hMain,TXT_WADJ,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),EWIDTH)); SendDlgItemMessage(hMain,TXT_WIDTH,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"Adjust Selection (%d) Only",info->Select+Fnt->GetBaseChar()); SendDlgItemMessage(hMain,RAD_SEL,WM_SETTEXT,0,(LPARAM)Text); } return TRUE; case WM_CLOSE: case WM_DESTROY: EndDialog(hDlg,0); PostQuitMessage(0); return TRUE; case WM_HSCROLL: { switch(LOWORD(wParam)) { case SB_THUMBTRACK: SetScrollPos((HWND)lParam,SB_CTL,HIWORD(wParam),TRUE); info->hScr=HIWORD(wParam); CreateFontMap(); return 0; case SB_LINELEFT: if(info->hScroll==FALSE) return 0; info->hScr-=8; if(info->hScr<0) info->hScr=0; SetScrollPos(GetDlgItem(hMain,SCR_HOR),SB_CTL,info->hScr,TRUE); CreateFontMap(); return 0; case SB_LINERIGHT: if(info->hScroll==FALSE) return 0; info->hScr+=8; scrInf.cbSize=sizeof(SCROLLINFO); scrInf.fMask=SIF_RANGE; GetScrollInfo(GetDlgItem(hMain,SCR_HOR),SB_CTL,&scrInf); if(info->hScr>scrInf.nMax) info->hScr=scrInf.nMax; SetScrollPos(GetDlgItem(hMain,SCR_HOR),SB_CTL,info->hScr,TRUE); CreateFontMap(); return 0; case SB_PAGELEFT: info->hScr-=24; SetScrollPos(GetDlgItem(hMain,SCR_HOR),SB_CTL,info->hScr,TRUE); CreateFontMap(); return 0; case SB_PAGERIGHT: info->hScr+=24; SetScrollPos(GetDlgItem(hMain,SCR_HOR),SB_CTL,info->hScr,TRUE); CreateFontMap(); return 0; } return FALSE; } case WM_VSCROLL: { switch(LOWORD(wParam)) { case SB_THUMBTRACK: SetScrollPos((HWND)lParam,SB_CTL,HIWORD(wParam),TRUE); info->vScr=HIWORD(wParam); CreateFontMap(); return 0; case SB_LINEUP: if(info->vScroll==FALSE) return 0; info->vScr-=8; if(info->vScr<0) info->vScr=0; SetScrollPos(GetDlgItem(hMain,SCR_VERT),SB_CTL,info->vScr,TRUE); CreateFontMap(); return 0; case SB_LINEDOWN: if(info->vScroll==FALSE) return 0; info->vScr+=8; scrInf.cbSize=sizeof(SCROLLINFO); scrInf.fMask=SIF_RANGE; GetScrollInfo(GetDlgItem(hMain,SCR_VERT),SB_CTL,&scrInf); if(info->vScr>scrInf.nMax) info->vScr=scrInf.nMax; SetScrollPos(GetDlgItem(hMain,SCR_VERT),SB_CTL,info->vScr,TRUE); CreateFontMap(); return 0; case SB_PAGEDOWN: info->vScr+=24; SetScrollPos(GetDlgItem(hMain,SCR_VERT),SB_CTL,info->vScr,TRUE); CreateFontMap(); return 0; case SB_PAGEUP: info->vScr-=24; SetScrollPos(GetDlgItem(hMain,SCR_VERT),SB_CTL,info->vScr,TRUE); CreateFontMap(); return 0; } return FALSE; } case WM_NOTIFY: { NMUPDOWN *Hdr; Hdr=(LPNMUPDOWN) lParam; if(Hdr->hdr.code==UDN_DELTAPOS) { switch(Hdr->hdr.idFrom) { case SPN_CELLHEIGHT: Fnt->SetSize(CELLHEIGHT,Hdr->iPos+Hdr->iDelta); info->MaxChars=Fnt->GetSize(MAXCHARS); info->Select=LimitSelection(info->Select,info->MaxChars); CreateFontMap(); return 0; case SPN_CELLWIDTH: Fnt->SetSize(CELLWIDTH,Hdr->iPos+Hdr->iDelta); info->MaxChars=Fnt->GetSize(MAXCHARS); info->Select=LimitSelection(info->Select,info->MaxChars); CreateFontMap(); return 0; case SPN_FONTHEIGHT: Fnt->SetFontHeight(Hdr->iPos+Hdr->iDelta); CreateFontMap(); return 0; case SPN_FONTWIDTH: Fnt->SetFontWidth(Hdr->iPos+Hdr->iDelta); CreateFontMap(); return 0; case SPN_WIDTH: if(info->ModAll) { Fnt->SetGlobal(WIDTH,Hdr->iPos+Hdr->iDelta); CreateFontMap(); } else { Fnt->SetCharVal(info->Select+Fnt->GetBaseChar(),WOFFSET,Hdr->iPos+Hdr->iDelta); wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),EWIDTH)); SendDlgItemMessage(hMain,TXT_WIDTH,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } return 0; case SPN_START: if(Hdr->iPos>0) Fnt->SetBaseChar(Hdr->iPos+Hdr->iDelta); if(Fnt->GetBaseChar()+info->Select>255) info->Select=255-Fnt->GetBaseChar(); SendMessage(hMain,WM_APP+1,0,0); CreateFontMap(); return 0; } } return 0; break; } case WM_COMMAND: { switch(LOWORD(wParam)) // Buttons & Menu items { case ID_COLOUR_SETTEXTCOLOUR: case ODR_FORECOL: ColVal=Fnt->GetCol(TEXTCOL); SelCol.lStructSize=sizeof(CHOOSECOLOR); SelCol.hwndOwner=hDlg; SelCol.rgbResult=RGB(ColVal.Red,ColVal.Green,ColVal.Blue); SelCol.lpCustColors=(LPDWORD)CustCol; SelCol.Flags=CC_FULLOPEN | CC_RGBINIT | CC_ANYCOLOR; if(ChooseColor(&SelCol)) Fnt->SetCol(TEXTCOL,GetRValue(SelCol.rgbResult),GetGValue(SelCol.rgbResult),GetBValue(SelCol.rgbResult)); InvalidateRgn(hDlg,NULL,NULL); return TRUE; case ID_COLOUR_SETBACKGROUNDCOLOUR: case ODR_BACKCOL: ColVal=Fnt->GetCol(BACKCOL); SelCol.lStructSize=sizeof(CHOOSECOLOR); SelCol.hwndOwner=hDlg; SelCol.rgbResult=RGB(ColVal.Red,ColVal.Green,ColVal.Blue); SelCol.lpCustColors=(LPDWORD)CustCol; SelCol.Flags=CC_FULLOPEN | CC_RGBINIT | CC_ANYCOLOR; if(ChooseColor(&SelCol)) Fnt->SetCol(BACKCOL,GetRValue(SelCol.rgbResult),GetGValue(SelCol.rgbResult),GetBValue(SelCol.rgbResult)); InvalidateRgn(hDlg,NULL,NULL); return TRUE; case ID_VIEW_SHOWGRID: case CHK_GRID: info->Grid^=1; if(info->Grid) { SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_CHECKED); } else { SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_UNCHECKED); } CreateFontMap(); return TRUE; case ID_VIEW_WIDTHMARKERS: case CHK_WIDTH: info->wMarker^=1; if(info->wMarker) { SendDlgItemMessage(hMain,CHK_WIDTH,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_CHECKED); } else { SendDlgItemMessage(hMain,CHK_WIDTH,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_UNCHECKED); } CreateFontMap(); return TRUE; case CHK_BOLD: if(Fnt->GetFontWeight()==FW_NORMAL) Fnt->SetFontWeight(FW_BOLD); else Fnt->SetFontWeight(FW_NORMAL); CreateFontMap(); return TRUE; case CHK_ITAL: if(Fnt->GetFontItalic()) Fnt->SetFontItalic(FALSE); else Fnt->SetFontItalic(TRUE); CreateFontMap(); return TRUE; case CMD_LEFT: if(info->ModAll) { tVal=Fnt->GetGlobal(HOFFSET); Fnt->SetGlobal(HOFFSET,tVal-1); SendMessage(hMain,WM_APP+1,0,0); } else { tVal=Fnt->GetCharVal(Fnt->GetBaseChar()+info->Select,HOFFSET); Fnt->SetCharVal(Fnt->GetBaseChar()+info->Select,HOFFSET,tVal-1); SendMessage(hMain,WM_APP+1,0,0); } CreateFontMap(); return TRUE; case CMD_RIGHT: if(info->ModAll) { tVal=Fnt->GetGlobal(HOFFSET); Fnt->SetGlobal(HOFFSET,tVal+1); SendMessage(hMain,WM_APP+1,0,0); } else { tVal=Fnt->GetCharVal(Fnt->GetBaseChar()+info->Select,HOFFSET); Fnt->SetCharVal(Fnt->GetBaseChar()+info->Select,HOFFSET,tVal+1); SendMessage(hMain,WM_APP+1,0,0); } CreateFontMap(); return TRUE; case CMD_UP: if(info->ModAll) { tVal=Fnt->GetGlobal(VOFFSET); Fnt->SetGlobal(VOFFSET,tVal-1); SendMessage(hMain,WM_APP+1,0,0); } else { tVal=Fnt->GetCharVal(Fnt->GetBaseChar()+info->Select,VOFFSET); Fnt->SetCharVal(Fnt->GetBaseChar()+info->Select,VOFFSET,tVal-1); SendMessage(hMain,WM_APP+1,0,0); } CreateFontMap(); return TRUE; case CMD_DOWN: if(info->ModAll) { tVal=Fnt->GetGlobal(VOFFSET); Fnt->SetGlobal(VOFFSET,tVal+1); SendMessage(hMain,WM_APP+1,0,0); } else { tVal=Fnt->GetCharVal(Fnt->GetBaseChar()+info->Select,VOFFSET); Fnt->SetCharVal(Fnt->GetBaseChar()+info->Select,VOFFSET,tVal+1); SendMessage(hMain,WM_APP+1,0,0); } CreateFontMap(); return TRUE; case RAD_ALL: info->ModAll=TRUE; EnableWindow(GetDlgItem(hMain,TXT_WIDTH),FALSE); EnableWindow(GetDlgItem(hMain,STA_WIDTH),FALSE); SendDlgItemMessage(hMain,RAD_SEL,WM_SETTEXT,0,(LPARAM)"Adjust Selection Only"); SendMessage(hMain,WM_APP+1,0,0); CreateFontMap(); return TRUE; case RAD_SEL: info->ModAll=FALSE; SendMessage(hMain,WM_APP+1,0,0); EnableWindow(GetDlgItem(hMain,TXT_WIDTH),TRUE); EnableWindow(GetDlgItem(hMain,STA_WIDTH),TRUE); wsprintf(Text,"Adjust Selection (%d) Only",info->Select+Fnt->GetBaseChar()); SendDlgItemMessage(hMain,RAD_SEL,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); return TRUE; case ID_FILE_RESET: Flags=Fnt->LoadConfig("bfg.cfg"); tVal=Fnt->GetSize(MAPWIDTH); if(tVal==32) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,1,0); else if(tVal==64) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,2,0); else if(tVal==128) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,3,0); else if(tVal==256) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,4,0); else if(tVal==512) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,5,0); else if(tVal==1024) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,6,0); else if(tVal==2048) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,7,0); else if(tVal==4096) SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,8,0); else SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_SETCURSEL,0,0); tVal=Fnt->GetSize(MAPHEIGHT); if(tVal==32) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,1,0); else if(tVal==64) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,2,0); else if(tVal==128) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,3,0); else if(tVal==256) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,4,0); else if(tVal==512) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,5,0); else if(tVal==1024) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,6,0); else if(tVal==2048) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,7,0); else if(tVal==4096) SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,8,0); else SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_SETCURSEL,0,0); wsprintf(Text,"%d",Fnt->GetSize(CELLHEIGHT)); SendDlgItemMessage(hMain,TXT_CELLHEIGHT,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetSize(CELLWIDTH)); SendDlgItemMessage(hMain,TXT_CELLWIDTH,WM_SETTEXT,0,(LPARAM)Text); info->MaxChars=Fnt->GetSize(MAXCHARS); info->hScr=0; info->vScr=0; info->Zoom=1.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,1,0); if(Flags & SHOW_GRID) { info->Grid=true; SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_CHECKED); } else { info->Grid=false; SendDlgItemMessage(hMain,CHK_GRID,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_SHOWGRID,MF_UNCHECKED); } if(Flags & SHOW_WIDTH) { info->wMarker=true; SendDlgItemMessage(hDlg,CHK_WIDTH,BM_SETCHECK,BST_CHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_CHECKED); } else { info->wMarker=false; SendDlgItemMessage(hDlg,CHK_WIDTH,BM_SETCHECK,BST_UNCHECKED,0); CheckMenuItem(GetMenu(hMain),ID_VIEW_WIDTHMARKERS,MF_UNCHECKED); } SendDlgItemMessage(hMain,CBO_FONTS,CB_SETCURSEL,0,0); SendDlgItemMessage(hDlg,CBO_FONTS,CB_GETLBTEXT,0,(LPARAM)Text); Fnt->SetFontName(Text); Fnt->SetBaseChar(32); wsprintf(Text,"%d",32); SendDlgItemMessage(hMain,TXT_START,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetFontHeight()); SendDlgItemMessage(hMain,TXT_FONTHEIGHT,WM_SETTEXT,0,(LPARAM)Text); wsprintf(Text,"%d",Fnt->GetFontWidth()); SendDlgItemMessage(hMain,TXT_FONTWIDTH,WM_SETTEXT,0,(LPARAM)Text); Fnt->SetFontWeight(FW_NORMAL); SendDlgItemMessage(hMain,CHK_BOLD,BM_SETCHECK,BST_UNCHECKED,0); Fnt->SetFontItalic(FALSE); SendDlgItemMessage(hMain,CHK_ITAL,BM_SETCHECK,BST_UNCHECKED,0); Fnt->SetFontQuality(NONANTIALIASED_QUALITY); SendDlgItemMessage(hDlg,CBO_ALIAS,CB_SETCURSEL,0,0); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_CHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_UNCHECKED); Fnt->ResetOffsets(); info->ModAll=TRUE; info->Select=0; SendDlgItemMessage(hMain,RAD_ALL,BM_SETCHECK,BST_CHECKED,0); SendDlgItemMessage(hMain,RAD_SEL,BM_SETCHECK,BST_UNCHECKED,0); SendDlgItemMessage(hMain,RAD_SEL,WM_SETTEXT,0,(LPARAM)"Adjust Selection Only"); EnableWindow(GetDlgItem(hMain,TXT_WIDTH),FALSE); EnableWindow(GetDlgItem(hMain,STA_WIDTH),FALSE); SendMessage(hMain,WM_APP+1,0,0); CreateFontMap(); return TRUE; case ID_FILE_SAVEBFF: lstrcpy(Text,Fnt->GetFontName()); lstrcat(Text,".bff"); if(GetTargetName(Text,"Save BFF","Bitmap Font Files (BFF)\0*.bff\0All Files\0*.*\0\0","bff")) { if(CheckOverwrite(Text)) { tVal=DialogBox(G_Inst,MAKEINTRESOURCE(DLG_SAVEOPT),hMain,SaveOptProc); if(tVal) { // Extract BPP and pre-processing flags from dialog return value BPPVal=tVal & 0x3F; switch(BPPVal) { case 8: RetVal=Fnt->SaveFont(SAVE_BFF8,Text,tVal); break; case 24: RetVal=Fnt->SaveFont(SAVE_BFF24,Text); break; case 32: RetVal=Fnt->SaveFont(SAVE_BFF32,Text,tVal); break; } if(RetVal) MessageBox(hDlg,"Save Complete","File Operation",MB_OK); else MessageBox(hDlg,"Save Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } } return TRUE; case ID_IMPORT_FONTDATA: Text[0]=NULL; if(GetSourceName(Text,"Import Font Data","Font Data Files (CSV)\0*.csv\0All Files\0*.*\0\0","csv")) { if(Fnt->ImportData(Text)) { // Set font face wsprintf(Text,"%d",Fnt->GetFontName()); Index=SendDlgItemMessage(hMain,CBO_FONTS,CB_FINDSTRING,-1,(LPARAM)Text); // Set Start Char wsprintf(Text,"%d",Fnt->GetBaseChar()); SendDlgItemMessage(hMain,TXT_START,WM_SETTEXT,0,(LPARAM)Text); // Set Bold Checkbox if(Fnt->GetFontWeight()==FW_NORMAL) SendDlgItemMessage(hMain,CHK_BOLD,BM_SETCHECK,BST_UNCHECKED,0); else SendDlgItemMessage(hMain,CHK_BOLD,BM_SETCHECK,BST_CHECKED,0); // Set Italic Checkbox if(Fnt->GetFontItalic()) SendDlgItemMessage(hMain,CHK_ITAL,BM_SETCHECK,BST_CHECKED,0); else SendDlgItemMessage(hMain,CHK_ITAL,BM_SETCHECK,BST_UNCHECKED,0); CreateFontMap(); } else { MessageBox(hDlg,"Import Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; case ID_EXPORT_BITMAP: lstrcpy(Text,"ExportedFont.bmp"); if(GetTargetName(Text,"Export BMP","Bitmap Images (BMP)\0*.bmp\0All Files\0*.*\0\0","bmp")) { if(CheckOverwrite(Text)) { if(Fnt->ExportMap(Text,EXPORT_BMP)==SBM_OK) MessageBox(hDlg,"Export Complete","BMP Export",MB_OK); else MessageBox(hDlg,"Export Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; case ID_EXPORT_TARGA: lstrcpy(Text,"ExportedFont.tga"); if(GetTargetName(Text,"Export TGA","Targa Images (TGA)\0*.tga\0All Files\0*.*\0\0","tga")) { if(CheckOverwrite(Text)) { if(Fnt->ExportMap(Text,EXPORT_TGA)==SBM_OK) MessageBox(hDlg,"Export Complete","TGA Export",MB_OK); else MessageBox(hDlg,"Export Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; case ID_EXPORT_TARGA32: lstrcpy(Text,"ExportedFont.tga"); if(GetTargetName(Text,"Export TGA","Targa Images (TGA)\0*.tga\0All Files\0*.*\0\0","tga")) { if(CheckOverwrite(Text)) { if(Fnt->ExportMap(Text,EXPORT_TGA32)==SBM_OK) MessageBox(hDlg,"Export Complete","TGA Export",MB_OK); else MessageBox(hDlg,"Export Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; case ID_EXPORT_FONTDATA: lstrcpy(Text,"FontData.csv"); if(GetTargetName(Text,"Export Font Data","Comma Separated Values (CSV)\0*.csv\0All Files\0*.*\0\0","csv")) { if(CheckOverwrite(Text)) { if(Fnt->SaveFont(SAVE_CSV,Text)) MessageBox(hDlg,"Export Complete","Font Data Export",MB_OK); else MessageBox(hDlg,"Export Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; case ID_EXPORT_BIN: lstrcpy(Text,"FontData.dat"); if(GetTargetName(Text,"Export Binary Font Data","Binary Font Files (dat)\0*.dat\0All Files\0*.*\0\0","dat")) { if(CheckOverwrite(Text)) { if(Fnt->SaveFont(SAVE_BIN,Text)) MessageBox(hDlg,"Export Complete","Font Data Export",MB_OK); else MessageBox(hDlg,"Export Failed","Error",MB_OK | MB_ICONEXCLAMATION); } } return TRUE; break; case ID_FILE_EXIT: EndDialog(hDlg,0); PostQuitMessage(0); return TRUE; case ID_VIEW_ZOOMIN: RowDex=SendDlgItemMessage(hMain,CBO_ZOOM,CB_GETCURSEL,0,0); switch(RowDex) { case 0: info->Zoom=0.5f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,1,0); CalcScroll(); CreateFontMap(); return TRUE; case 1: info->Zoom=1.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,2,0); CalcScroll(); CreateFontMap(); return TRUE; case 2: info->Zoom=2.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,3,0); CalcScroll(); CreateFontMap(); return TRUE; case 3: info->Zoom=4.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,4,0); CalcScroll(); CreateFontMap(); return TRUE; } return TRUE; case ID_VIEW_ZOOMOUT: RowDex=SendDlgItemMessage(hMain,CBO_ZOOM,CB_GETCURSEL,0,0); switch(RowDex) { case 1: info->Zoom=0.25f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,0,0); CalcScroll(); CreateFontMap(); return TRUE; case 2: info->Zoom=0.5f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,1,0); CalcScroll(); CreateFontMap(); return TRUE; case 3: info->Zoom=1.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,2,0); CalcScroll(); CreateFontMap(); return TRUE; case 4: info->Zoom=2.0f; SendDlgItemMessage(hMain,CBO_ZOOM,CB_SETCURSEL,3,0); CalcScroll(); CreateFontMap(); return TRUE; } return TRUE; case ID_ANTIALIAS_NONE: SendDlgItemMessage(hDlg,CBO_ALIAS,CB_SETCURSEL,0,0); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_CHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_UNCHECKED); Fnt->SetFontQuality(NONANTIALIASED_QUALITY); CreateFontMap(); return TRUE; case ID_ANTIALIAS_NORMAL: SendDlgItemMessage(hDlg,CBO_ALIAS,CB_SETCURSEL,1,0); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_CHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_UNCHECKED); Fnt->SetFontQuality(ANTIALIASED_QUALITY); CreateFontMap(); return TRUE; case ID_ANTIALIAS_CLEARTYPE: SendDlgItemMessage(hDlg,CBO_ALIAS,CB_SETCURSEL,2,0); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_CHECKED); Fnt->SetFontQuality(5); // CLEARTYPE_QUALITY; CreateFontMap(); return TRUE; case ID_TOOLS_PREVIEW: DialogBox(G_Inst,MAKEINTRESOURCE(DLG_PREVIEW),hDlg,PreviewWinProc); return TRUE; case ID_TOOLS_CONFIGURATION: DialogBox(G_Inst,MAKEINTRESOURCE(DLG_CONFIG),hDlg,ConfigWinProc); info->MaxChars=Fnt->GetSize(MAXCHARS); info->Select=LimitSelection(info->Select,info->MaxChars); SendMessage(hMain,WM_APP+1,0,0); InvalidateRgn(hDlg,NULL,NULL); CreateFontMap(); return TRUE; case ID_HELP_CONTENTS: if((int)ShellExecute(hDlg,"open","CBFGHelp.chm",NULL,NULL,SW_SHOWMAXIMIZED)<32) MessageBox(hDlg,"Unable to open Help file","Error",MB_OK | MB_ICONERROR); return TRUE; case ID_HELP_ABOUT: DialogBox(G_Inst,MAKEINTRESOURCE(DLG_ABOUT),hMain,AboutProc); return TRUE; } // End Switch LOWORD(wParam) switch(HIWORD(wParam)) // Notifications { case EN_KILLFOCUS: switch(LOWORD(wParam)) { case TXT_CELLWIDTH: SendDlgItemMessage(hDlg,TXT_CELLWIDTH,WM_GETTEXT,256,(LPARAM)Text); tVal=Fnt->SetSize(CELLWIDTH,atoi(Text)); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_CELLWIDTH,WM_SETTEXT,0,(LPARAM)Text); info->MaxChars=Fnt->GetSize(MAXCHARS); CreateFontMap(); return TRUE; case TXT_CELLHEIGHT: SendDlgItemMessage(hDlg,TXT_CELLHEIGHT,WM_GETTEXT,256,(LPARAM)Text); tVal=Fnt->SetSize(CELLHEIGHT,atoi(Text)); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_CELLHEIGHT,WM_SETTEXT,0,(LPARAM)Text); info->MaxChars=Fnt->GetSize(MAXCHARS); CreateFontMap(); return TRUE; case TXT_FONTWIDTH: SendDlgItemMessage(hDlg,TXT_FONTWIDTH,WM_GETTEXT,256,(LPARAM)Text); tVal=Fnt->SetFontWidth(atoi(Text)); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_FONTWIDTH,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); return TRUE; case TXT_FONTHEIGHT: SendDlgItemMessage(hDlg,TXT_FONTHEIGHT,WM_GETTEXT,256,(LPARAM)Text); tVal=Fnt->SetFontHeight(atoi(Text)); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_FONTHEIGHT,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); return TRUE; case TXT_START: SendDlgItemMessage(hDlg,TXT_START,WM_GETTEXT,256,(LPARAM)Text); tVal=Fnt->SetBaseChar(atoi(Text)); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_START,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); return TRUE; case TXT_XADJ: if(info->ModAll) { SendDlgItemMessage(hDlg,TXT_XADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetGlobal(HOFFSET,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_XADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } else { SendDlgItemMessage(hDlg,TXT_XADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetCharVal(info->Select+Fnt->GetBaseChar(),HOFFSET,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_XADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } case TXT_YADJ: if(info->ModAll) { SendDlgItemMessage(hDlg,TXT_YADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetGlobal(VOFFSET,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_YADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } else { SendDlgItemMessage(hDlg,TXT_YADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetCharVal(info->Select+Fnt->GetBaseChar(),VOFFSET,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_YADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } case TXT_WADJ: if(info->ModAll) { SendDlgItemMessage(hDlg,TXT_WADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetGlobal(WIDTH,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_WADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); } else { SendDlgItemMessage(hDlg,TXT_WADJ,WM_GETTEXT,256,(LPARAM)Text); tVal=Limit(atoi(Text)); tVal=Fnt->SetCharVal(info->Select+Fnt->GetBaseChar(),WOFFSET,tVal); wsprintf(Text,"%d",tVal); SendDlgItemMessage(hDlg,TXT_WADJ,WM_SETTEXT,0,(LPARAM)Text); CreateFontMap(); wsprintf(Text,"%d",Fnt->GetCharVal(info->Select+Fnt->GetBaseChar(),EWIDTH)); SendDlgItemMessage(hMain,TXT_WIDTH,WM_SETTEXT,0,(LPARAM)Text); } return TRUE; } return FALSE; break; // End EN_KILLFOCUS case CBN_SELCHANGE: switch(LOWORD(wParam)) { case CBO_FONTS: RowDex=SendDlgItemMessage(hDlg,CBO_FONTS,CB_GETCURSEL,0,0); SendDlgItemMessage(hDlg,CBO_FONTS,CB_GETLBTEXT,RowDex,(LPARAM)Text); Fnt->SetFontName(Text); CreateFontMap(); return TRUE; case CBO_ALIAS: RowDex=SendDlgItemMessage(hDlg,CBO_ALIAS,CB_GETCURSEL,0,0); if(RowDex==0) { Fnt->SetFontQuality(NONANTIALIASED_QUALITY); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_CHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_UNCHECKED); } else if(RowDex==1) { Fnt->SetFontQuality(ANTIALIASED_QUALITY); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_CHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_UNCHECKED); } else if(RowDex==2) { Fnt->SetFontQuality(5); //CLEARTYPE_QUALITY; CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NONE,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_NORMAL,MF_UNCHECKED); CheckMenuItem(GetMenu(hMain),ID_ANTIALIAS_CLEARTYPE,MF_CHECKED); } CreateFontMap(); return TRUE; case CBO_IMGXRES: RowDex=SendDlgItemMessage(hDlg,CBO_IMGXRES,CB_GETCURSEL,0,0); if(RowDex==0) Fnt->SetSize(MAPWIDTH,16); else if(RowDex==1) Fnt->SetSize(MAPWIDTH,32); else if(RowDex==2) Fnt->SetSize(MAPWIDTH,64); else if(RowDex==3) Fnt->SetSize(MAPWIDTH,128); else if(RowDex==4) Fnt->SetSize(MAPWIDTH,256); else if(RowDex==5) Fnt->SetSize(MAPWIDTH,512); else if(RowDex==6) Fnt->SetSize(MAPWIDTH,1024); else if(RowDex==7) Fnt->SetSize(MAPWIDTH,2048); else if(RowDex==8) Fnt->SetSize(MAPWIDTH,4096); info->MaxChars=Fnt->GetSize(MAXCHARS); CalcScroll(); CreateFontMap(); return TRUE; case CBO_IMGYRES: RowDex=SendDlgItemMessage(hDlg,CBO_IMGYRES,CB_GETCURSEL,0,0); if(RowDex==0) Fnt->SetSize(MAPHEIGHT,16); else if(RowDex==1) Fnt->SetSize(MAPHEIGHT,32); else if(RowDex==2) Fnt->SetSize(MAPHEIGHT,64); else if(RowDex==3) Fnt->SetSize(MAPHEIGHT,128); else if(RowDex==4) Fnt->SetSize(MAPHEIGHT,256); else if(RowDex==5) Fnt->SetSize(MAPHEIGHT,512); else if(RowDex==6) Fnt->SetSize(MAPHEIGHT,1024); else if(RowDex==7) Fnt->SetSize(MAPHEIGHT,2048); else if(RowDex==8) Fnt->SetSize(MAPHEIGHT,4096); info->MaxChars=Fnt->GetSize(MAXCHARS); CalcScroll(); CreateFontMap(); return TRUE; case CBO_ZOOM: RowDex=SendDlgItemMessage(hDlg,CBO_ZOOM,CB_GETCURSEL,0,0); if(RowDex==0) info->Zoom=0.25; else if(RowDex==1) info->Zoom=0.5f; else if(RowDex==2) info->Zoom=1.0f; else if(RowDex==3) info->Zoom=2.0f; else if(RowDex==4) info->Zoom=4.0f; CalcScroll(); CreateFontMap(); return TRUE; } return FALSE; break; } default: return 0; } // End WM_COMMAND } // End Switch MSG }// End FontProc
602c9054276bc3cc7210f86eb200cc05
{ "intermediate": 0.3828771710395813, "beginner": 0.3663898706436157, "expert": 0.25073301792144775 }
48,105
можно ли изменить этот код чтобы вместо прибавления к basechar по порядку символов оно использовало заранее заготовленную карту(порядок) символов? #include "stdafx.h" #include <memory.h> #include "FontMapClass.h" #include "UtilFunctions.h" BFontMap::BFontMap() { int loop; BaseChar=32; MapWidth=256; MapHeight=256; CellHeight=32; CellWidth=32; gHMod=0; gVMod=0; gWidthMod=0; for(loop=0;loop!=256;loop++) { HMod[loop]=0; VMod[loop]=0; WidthMod[loop]=0; } fnt=NULL; FntDef.lfHeight=20; FntDef.lfWidth=0; FntDef.lfEscapement=0; FntDef.lfOrientation=0; FntDef.lfWeight=FW_NORMAL; FntDef.lfItalic=FALSE; FntDef.lfUnderline=FALSE; FntDef.lfStrikeOut=FALSE; FntDef.lfCharSet=DEFAULT_CHARSET; FntDef.lfOutPrecision=OUT_DEFAULT_PRECIS; FntDef.lfClipPrecision=CLIP_DEFAULT_PRECIS; FntDef.lfQuality=NONANTIALIASED_QUALITY; FntDef.lfPitchAndFamily=DEFAULT_PITCH; FntDef.lfFaceName[0]=NULL; BkCol.Red=0; BkCol.Green=0; BkCol.Blue=0; TextCol.Red=255; TextCol.Green=255; TextCol.Blue=255; GridCol.Red=170; GridCol.Green=0; GridCol.Blue=170; WidthCol.Red=170; WidthCol.Green=170; WidthCol.Blue=0; SelCol.Red=0; SelCol.Green=154; SelCol.Blue=0; } BFontMap::~BFontMap() { DeleteObject(fnt); } int BFontMap::SetSize(int Which, int NewSize) { switch(Which) { case MAPWIDTH: if(!IsPower(NewSize)) NewSize=256; MapWidth=NewSize; return MapWidth; case MAPHEIGHT: if(!IsPower(NewSize)) NewSize=256; MapHeight=NewSize; return MapHeight; case CELLWIDTH: if(NewSize<8) CellWidth=8; else if(NewSize>256) CellWidth=256; else CellWidth=NewSize; return CellWidth; case CELLHEIGHT: if(NewSize<8) CellHeight=8; else if(NewSize>256) CellHeight=256; else CellHeight=NewSize; return CellHeight; } return 0; } int BFontMap::GetSize(int Which) { switch(Which) { case MAPWIDTH: return MapWidth; case MAPHEIGHT: return MapHeight; case CELLWIDTH: return CellWidth; case CELLHEIGHT: return CellHeight; case MAXCHARS: return (MapWidth/CellWidth)*(MapHeight/CellHeight); } return 0; } unsigned char BFontMap::SetBaseChar(int NewBase) { if(NewBase<0) NewBase=0; if(NewBase>255) NewBase=255; BaseChar=NewBase; return BaseChar; } unsigned char BFontMap::GetBaseChar() { return BaseChar; } char BFontMap::SetGlobal(int Which, char Value) { switch(Which) { case VOFFSET: gVMod=Value; break; case HOFFSET: gHMod=Value; break; case WIDTH: gWidthMod=Value; break; } return Value; } char BFontMap::GetGlobal(int Which) { switch(Which) { case VOFFSET: return gVMod; case HOFFSET: return gHMod; case WIDTH: return gWidthMod; } return 0; } char BFontMap::SetCharVal(int Char, int Which, char NewVal) { switch(Which) { case WOFFSET: WidthMod[Char]=NewVal; break; case HOFFSET: HMod[Char]=NewVal; break; case VOFFSET: VMod[Char]=NewVal; break; } return NewVal; } char BFontMap::GetCharVal(int Char, int Which) { switch(Which) { case WIDTH: return BaseWidth[Char]; case HOFFSET: return HMod[Char]; case VOFFSET: return VMod[Char]; case WOFFSET: return WidthMod[Char]; case EWIDTH: return WidthMod[Char]+BaseWidth[Char]+gWidthMod; } return 0; } long BFontMap::SetFontHeight(long NewHeight) { if(NewHeight<1) NewHeight=1; if(NewHeight>256) NewHeight=256; FntDef.lfHeight=NewHeight; return FntDef.lfHeight; } long BFontMap::GetFontHeight() { return FntDef.lfHeight; } long BFontMap::SetFontWidth(long NewWidth) { if(NewWidth<0) NewWidth=0; if(NewWidth>256) NewWidth=256; FntDef.lfWidth=NewWidth; return FntDef.lfWidth; } long BFontMap::GetFontWidth() { return FntDef.lfWidth; } bool BFontMap::SetFontName(char* NewName) { if(lstrcpy(FntDef.lfFaceName,NewName)) return true; else return false; } char* BFontMap::GetFontName() { return FntDef.lfFaceName; } long BFontMap::SetFontWeight(long NewWeight) { FntDef.lfWeight=NewWeight; return FntDef.lfWeight; } long BFontMap::GetFontWeight() { return FntDef.lfWeight; } long BFontMap::SetFontQuality(long NewQual) { FntDef.lfQuality=(BYTE)NewQual; return FntDef.lfQuality; } long BFontMap::GetFontQuality() { return FntDef.lfQuality; } long BFontMap::SetFontItalic(long NewItal) { FntDef.lfItalic=(BYTE)NewItal; return FntDef.lfItalic; } long BFontMap::GetFontItalic() { return FntDef.lfItalic; } void BFontMap::SetCol(int Which, BFG_RGB NewCol) { BFG_RGB *Tgt; switch(Which) { case GRIDCOL: Tgt=&GridCol; break; case WIDTHCOL: Tgt=&WidthCol; break; case SELCOL: Tgt=&SelCol; break; case TEXTCOL: Tgt=&TextCol; break; case BACKCOL: Tgt=&BkCol; break; default: return; } Tgt->Red=NewCol.Red; Tgt->Green=NewCol.Green; Tgt->Blue=NewCol.Blue; } void BFontMap::SetCol(int Which, unsigned char Red, unsigned char Green, unsigned char Blue) { BFG_RGB *Tgt; switch(Which) { case GRIDCOL: Tgt=&GridCol; break; case WIDTHCOL: Tgt=&WidthCol; break; case SELCOL: Tgt=&SelCol; break; case TEXTCOL: Tgt=&TextCol; break; case BACKCOL: Tgt=&BkCol; break; default: return; } Tgt->Red=Red; Tgt->Green=Green; Tgt->Blue=Blue; } BFG_RGB BFontMap::GetCol(int Which) { switch(Which) { case GRIDCOL: return GridCol; break; case WIDTHCOL: return WidthCol; break; case SELCOL: return SelCol; break; case TEXTCOL: return TextCol; break; case BACKCOL: return BkCol; break; } return BkCol; // Default } bool BFontMap::CalcWidths(HDC hdc) { BOOL Test; int Letter; ABC CharWidth[256]; int nttWidth[256]; // Populate Width data Test=GetCharABCWidths(hdc,0,255,CharWidth); if(Test) { for(Letter=0;Letter!=256;Letter++) BaseWidth[Letter]=(unsigned char)(CharWidth[Letter].abcA+ CharWidth[Letter].abcB+ CharWidth[Letter].abcC); } else { // GetCharWidth32 for non truetype fonts Test=GetCharWidth32(hdc,0,255,nttWidth); if(Test) for(Letter=0;Letter!=256;Letter++) BaseWidth[Letter]=(unsigned char)nttWidth[Letter]; } return true; } HBITMAP* BFontMap::DrawFontMap(int Flags, int Sel) { HDC wDC,mDC; HBITMAP *fDIB; BITMAPINFO BMDat; HBRUSH Brush; HPEN Pen; int RowDex,ColDex,Letter; HRGN ClipRgn; RECT CharArea; char Symbol[2]; unsigned char eVal; // Create Device context wDC=CreateDC("DISPLAY",NULL,NULL,NULL); mDC=CreateCompatibleDC(wDC); if(!wDC || !mDC) return NULL; // Create bitmap for font rendering fDIB=new HBITMAP; if(!fDIB) return NULL; BMDat.bmiHeader.biSize=sizeof(BITMAPINFOHEADER); BMDat.bmiHeader.biWidth=MapWidth; BMDat.bmiHeader.biHeight=MapHeight; BMDat.bmiHeader.biPlanes=1; BMDat.bmiHeader.biBitCount=24; BMDat.bmiHeader.biCompression=BI_RGB; BMDat.bmiHeader.biSizeImage=(MapWidth*MapHeight)*3; *fDIB=CreateDIBSection(mDC,&BMDat,DIB_RGB_COLORS,NULL,NULL,0); if(!fDIB) return NULL; if(!SelectObject(mDC,*fDIB)) return NULL; // Fill background if(Flags & DFM_ALPHA) { Brush=CreateSolidBrush(RGB(0,0,0)); Pen=CreatePen(PS_SOLID,0,RGB(0,0,0)); } else { Brush=CreateSolidBrush(RGB(BkCol.Red,BkCol.Green,BkCol.Blue)); Pen=CreatePen(PS_SOLID,0,RGB(BkCol.Red,BkCol.Green,BkCol.Blue)); } SelectObject(mDC,Brush); SelectObject(mDC,Pen); Rectangle(mDC,0,0,MapWidth,MapHeight); DeleteObject(Pen); DeleteObject(Brush); // Draw Selection Pen=CreatePen(PS_SOLID,0,RGB(SelCol.Red,SelCol.Green,SelCol.Blue)); Brush=CreateSolidBrush(RGB(SelCol.Red,SelCol.Green,SelCol.Blue)); if(Sel>-1) { SelectObject(mDC,Pen); SelectObject(mDC,Brush); RowDex=(Sel/(MapWidth/CellWidth)); ColDex=(Sel-((MapWidth/CellWidth)*RowDex)); ColDex*=CellWidth; RowDex*=CellHeight; Rectangle(mDC,ColDex,RowDex,ColDex+CellWidth,RowDex+CellHeight); } DeleteObject(Brush); DeleteObject(Pen); // Draw letters // Create the font if(fnt) DeleteObject(fnt); fnt=CreateFontIndirect(&FntDef); SelectObject(mDC,fnt); CalcWidths(mDC); if(Flags & DFM_ALPHA) { SetTextColor(mDC,RGB(255,255,255)); SetBkColor(mDC,RGB(0,0,0)); } else { SetTextColor(mDC,RGB(TextCol.Red,TextCol.Green,TextCol.Blue)); SetBkColor(mDC,RGB(BkCol.Red,BkCol.Green,BkCol.Blue)); } SetBkMode(mDC,TRANSPARENT); Pen=CreatePen(PS_SOLID,0,RGB(WidthCol.Red,WidthCol.Green,WidthCol.Blue)); SelectObject(mDC,Pen); Letter=BaseChar; for(RowDex=0;RowDex<(MapHeight-CellHeight)+1;RowDex+=CellHeight) { for(ColDex=0;ColDex<(MapWidth-CellWidth)+1 && Letter<256;ColDex+=CellWidth) { // Set Clipping Region ClipRgn=CreateRectRgn(ColDex,RowDex,ColDex+CellWidth,RowDex+CellHeight); SelectClipRgn(mDC,ClipRgn); // Draw width marker if(Flags & DFM_WIDTHLINE) { eVal=BaseWidth[Letter]+WidthMod[Letter]+gWidthMod; MoveToEx(mDC,ColDex+eVal,RowDex,NULL); LineTo(mDC,ColDex+eVal,RowDex+CellHeight); } // Render Char CharArea.left=ColDex+HMod[Letter]+gHMod; CharArea.right=ColDex+CellWidth; CharArea.top=RowDex+VMod[Letter]+gVMod; CharArea.bottom=RowDex+CellHeight; wsprintf(Symbol,"%c",Letter); Letter++; DrawText(mDC,Symbol,-1,&CharArea,DT_LEFT | DT_NOPREFIX | DT_NOCLIP); // Remove clip region SelectClipRgn(mDC,NULL); DeleteObject(ClipRgn); } } DeleteObject(Pen); // Draw grid lines Pen=CreatePen(PS_SOLID,0,RGB(GridCol.Red,GridCol.Green,GridCol.Blue)); if(Flags & DFM_GRIDLINES) { SelectObject(mDC,Pen); for(RowDex=CellHeight-1;RowDex<MapHeight;RowDex+=CellHeight) { MoveToEx(mDC,0,RowDex,NULL); LineTo(mDC,MapWidth,RowDex); } for(ColDex=CellWidth-1;ColDex<MapWidth;ColDex+=CellWidth) { MoveToEx(mDC,ColDex,0,NULL); LineTo(mDC,ColDex,MapHeight); } } DeleteObject(Pen); DeleteDC(wDC); DeleteDC(mDC); return fDIB; } int BFontMap::LoadConfig(char *fname) { ifstream cfgfile; long fSize; char *dat; char Hdr[7]; int tVal,Flags; cfgfile.open(fname,ios::binary); if(cfgfile.fail()) return -1; cfgfile.seekg(0,ios_base::end); fSize=cfgfile.tellg(); cfgfile.seekg(0,ios_base::beg); dat=new char[fSize]; if(!dat) return -1; cfgfile.read(dat,fSize); cfgfile.close(); // Check ID lstrcpyn(Hdr,dat,7); Hdr[6]=NULL; if(lstrcmp(Hdr,"BFGCFG")) { delete [] dat; return -1; } memcpy(&MapWidth,&dat[6],4); memcpy(&MapHeight,&dat[10],4); memcpy(&CellWidth,&dat[14],4); memcpy(&CellHeight,&dat[18],4); memcpy(&tVal,&dat[22],4); FntDef.lfHeight=tVal; memcpy(&tVal,&dat[26],4); FntDef.lfWidth=tVal; memcpy(&Flags,&dat[30],4); memcpy(&GridCol,&dat[34],3); memcpy(&WidthCol,&dat[37],3); memcpy(&SelCol,&dat[40],3); memcpy(&TextCol,&dat[43],3); memcpy(&BkCol,&dat[46],3); delete [] dat; return Flags; } bool BFontMap::SaveConfig(char *fname, bool Grid, bool Width) { ofstream cfgfile; int tVal,Flags=0; cfgfile.open(fname,ios_base::binary | ios_base::trunc ); if(cfgfile.fail()) return false; cfgfile.write("BFGCFG",6); cfgfile.write((char*)&MapWidth,sizeof(int)); cfgfile.write((char*)&MapHeight,sizeof(int)); cfgfile.write((char*)&CellWidth,sizeof(int)); cfgfile.write((char*)&CellHeight,sizeof(int)); tVal=(int)FntDef.lfHeight; cfgfile.write((char*)&tVal,sizeof(int)); tVal=(int)FntDef.lfWidth; cfgfile.write((char*)&tVal,sizeof(int)); if(Grid) Flags |= SHOW_GRID; if(Width) Flags |= SHOW_WIDTH; cfgfile.write((char*)&Flags,sizeof(int)); cfgfile.write((char*)&GridCol,sizeof(BFG_RGB)); cfgfile.write((char*)&WidthCol,sizeof(BFG_RGB)); cfgfile.write((char*)&SelCol,sizeof(BFG_RGB)); cfgfile.write((char*)&TextCol,sizeof(BFG_RGB)); cfgfile.write((char*)&BkCol,sizeof(BFG_RGB)); cfgfile.close(); return true; } void BFontMap::ResetOffsets() { int Loop; for(Loop=0;Loop!=256;++Loop) { WidthMod[Loop]=0; VMod[Loop]=0; HMod[Loop]=0; } gWidthMod=gHMod=gVMod=0; } bool BFontMap::SaveFont(int Format, char *fname, int flags) { bool Inv,Sat; Inv=Sat=false; if(flags & SAVE_INV_ALPHA) Inv=true; if(flags & SAVE_RGB_SAT) Sat=true; switch(Format) { case SAVE_BFF8: return SaveBFF2(fname,8,Inv,false); break; case SAVE_BFF24: return SaveBFF2(fname,24,false,false); break; case SAVE_BFF32: return SaveBFF2(fname,32,Inv,Sat); break; case SAVE_BIN: return ExportBinData(fname); break; case SAVE_CSV: return ExportCSVData(fname); } return false; } bool BFontMap::SaveBFF2(char *fname, char OutputBPP, bool Invert, bool RGBSat) { ofstream out; HBITMAP *hBMP; FontFileHeader Hdr; DIBSECTION bmInfo; SBM_Image FntImg,AlphaImg; int Loop; unsigned char EffWidth[256]; out.open(fname, ios::binary | ios::trunc); if(out.fail()) return false; // Populate header Hdr.ID1 = 0xBF; Hdr.ID2 = 0xF2; Hdr.BPP=24; Hdr.ImageWidth=MapWidth; Hdr.ImageHeight=MapHeight; Hdr.CellWidth=CellWidth; Hdr.CellHeight=CellHeight; Hdr.StartPoint=BaseChar; // Create the SBM image FntImg.Create(Hdr.ImageWidth,Hdr.ImageHeight,Hdr.BPP); // Render the font image if(OutputBPP==8) hBMP=DrawFontMap(DFM_ALPHA,-1); else hBMP=DrawFontMap(0,-1); // Grab the bitmap information if(!GetObject(*hBMP,sizeof(DIBSECTION),&bmInfo)) return FALSE; // Copy bitmap to SBM memcpy(FntImg.GetImg(),bmInfo.dsBm.bmBits,(Hdr.ImageWidth*Hdr.ImageHeight)*(Hdr.BPP/8)); // Flip memory bitmap BGR to BFF RGB FntImg.BGRtoRGB(); // Free the bitmap delete hBMP; // Add in alpha channel if required if(OutputBPP==32) { // Render new alpha fontmap hBMP=DrawFontMap(DFM_ALPHA,-1); // Create the SBM alpha image AlphaImg.Create(Hdr.ImageWidth,Hdr.ImageHeight,Hdr.BPP); // Get RGB data ptr from Img if(!GetObject(*hBMP,sizeof(DIBSECTION),&bmInfo)) return FALSE; // Copy bitmap to alpha SBM memcpy(AlphaImg.GetImg(),bmInfo.dsBm.bmBits,(Hdr.ImageWidth*Hdr.ImageHeight)*(Hdr.BPP/8)); // Free the bitmap delete hBMP; // Post-process images and insert alpha channel into font map AlphaImg.Grayscale(); if(RGBSat) FntImg.Saturate(0,0,0,255,255,255); if(Invert) AlphaImg.InvertCol(); FntImg.InsertAlpha(AlphaImg.GetImg()); Hdr.BPP=32; } if(OutputBPP==8) { FntImg.Grayscale(); if(Invert) FntImg.InvertCol(); Hdr.BPP=8; } // Invert image FntImg.FlipImg(); // Write header data out.write((char*)&Hdr,sizeof(Hdr)); // Write char widths for(Loop=0;Loop!=256;++Loop) EffWidth[Loop]=BaseWidth[Loop]+WidthMod[Loop]+gWidthMod; out.write((char*)EffWidth,256); // Write bitmap out.write((char*)FntImg.GetImg(),(Hdr.ImageWidth*Hdr.ImageHeight)*(OutputBPP/8)); out.close(); return true; } int BFontMap::ExportMap(char* fname, int fmt) { ofstream out; HBITMAP *hBMP; FontFileHeader Hdr; DIBSECTION bmInfo; SBM_Image FntImg,AlphaImg; int Result; out.open(fname, ios::binary | ios::trunc); if(out.fail()) return false; // Populate header Hdr.ID1 = 0xBF; Hdr.ID2 = 0xF2; Hdr.BPP=24; Hdr.ImageWidth=MapWidth; Hdr.ImageHeight=MapHeight; Hdr.CellHeight=CellHeight; Hdr.CellWidth=CellHeight; Hdr.StartPoint=BaseChar; // Create the SBM image FntImg.Create(Hdr.ImageWidth,Hdr.ImageHeight,Hdr.BPP); // Render the font image hBMP=DrawFontMap(0,-1); // Grab the bitmap information if(!GetObject(*hBMP,sizeof(DIBSECTION),&bmInfo)) return false; // Copy bitmap to SBM memcpy(FntImg.GetImg(),bmInfo.dsBm.bmBits,(Hdr.ImageWidth*Hdr.ImageHeight)*(Hdr.BPP/8)); // Free the bitmap delete hBMP; // Add in alpha channel if required if(fmt==EXPORT_TGA32) { // Render new alpha fontmap hBMP=DrawFontMap(DFM_ALPHA,-1); // Create the SBM alpha image AlphaImg.Create(Hdr.ImageWidth,Hdr.ImageHeight,Hdr.BPP); // Get RGB data ptr from Img if(!GetObject(*hBMP,sizeof(DIBSECTION),&bmInfo)) return false; // Copy bitmap to alpha SBM memcpy(AlphaImg.GetImg(),bmInfo.dsBm.bmBits,(Hdr.ImageWidth*Hdr.ImageHeight)*(Hdr.BPP/8)); // Free the bitmap delete hBMP; // Grayscale the alphamap AlphaImg.Grayscale(); // Insert alpha channel into font map FntImg.InsertAlpha(AlphaImg.GetImg()); } switch(fmt) { case EXPORT_TGA32: Result=FntImg.SaveTGA(fname); break; case EXPORT_TGA: Result=FntImg.SaveTGA(fname); break; case EXPORT_BMP: Result=FntImg.SaveBMP(fname); break; default: Result=false; break; } return Result; } bool BFontMap::ImportData(char *fname) { /* extern BFontMap *Fnt; FILE *in; long fsize,datptr; int Index,Val; char *data; in=fopen(fname,"r"); if(in==NULL) return FALSE; // Get filesize fseek(in,0,SEEK_END); fsize=ftell(in); rewind(in); // Allocate space for file contents data = new char[fsize]; if(data==NULL) { fclose(in); return FALSE; } // Read in the file contents fread(data,fsize,1,in); fclose(in); // Extract the font data datptr=0; // Image Width while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->ImgSize)); // Image Height while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->ImgSize)); // Cell Width while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->CellHeight)); // Cell Height while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->CellHeight)); // Start char while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->CharBase)); // Font Name while(data[datptr]!=',') ++datptr; datptr++; Index=0; while(data[datptr]!='\n') { cfg->FntDef.lfFaceName[Index]=data[datptr]; ++Index; ++datptr; } cfg->FntDef.lfFaceName[Index]=NULL; // Font Height while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->FntDef.lfHeight)); // Font Width while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&(cfg->FntDef.lfWidth)); // Char Widths for(Index=0;Index!=256;++Index) { while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->width[Index]=Val; // Prevents stack damage } // Char X Offsets for(Index=0;Index!=256;++Index) { while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->hAdj[Index]=Val; } // Char Y Offsets for(Index=0;Index!=256;++Index) { while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->vAdj[Index]=Val; } // Global Width Offset while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->gwAdj=Val; // Global X Offset while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->ghAdj=Val; // Global Y Offset while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->gvAdj=Val; // Bold Value while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->FntDef.lfWeight=Val; // Italic Value while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->FntDef.lfItalic=Val; // AntiAlias Value while(data[datptr]!=',') ++datptr; datptr++; sscanf(&data[datptr],"%d",&Val); cfg->FntDef.lfQuality=Val; delete [] data;*/ return TRUE; } bool BFontMap::ExportCSVData(char *fname) { ofstream out; int Loop; out.open(fname, ios::out | ios::trunc); if(out.fail()) return false; out<<"Image Width,"<<MapWidth<<"\n"; out<<"Image Height,"<<MapHeight<<"\n"; out<<"Cell Width,"<<CellWidth<<"\n"; out<<"Cell Height,"<<CellHeight<<"\n"; out<<"Start Char,"<<(int)BaseChar<<"\n"; out<<"Font Name,"<<FntDef.lfFaceName<<"\n"; out<<"Font Height,"<<FntDef.lfHeight<<"\n"; out<<"Font Width (0 is default),"<<FntDef.lfWidth<<"\n"; for(Loop=0;Loop!=256;++Loop) { out<<"Char "<<Loop<<" Base Width,"<<(int)BaseWidth[Loop]<<"\n"; } for(Loop=0;Loop!=256;++Loop) { out<<"Char "<<Loop<<" Width Offset,"<<(int)WidthMod[Loop]<<"\n"; } for(Loop=0;Loop!=256;++Loop) { out<<"Char "<<Loop<<" X Offset,"<<(int)HMod[Loop]<<"\n"; } for(Loop=0;Loop!=256;++Loop) { out<<"Char "<<Loop<<" Y Offset,"<<(int)VMod[Loop]<<"\n"; } out<<"Global Width Offset,"<<(int)gWidthMod<<"\n"; out<<"Global X Offset,"<<(int)gHMod<<"\n"; out<<"Global Y Offset,"<<(int)gVMod<<"\n"; out<<"Bold,"<<FntDef.lfWeight<<"\n"; out<<"Italic,"<<(int)FntDef.lfItalic<<"\n"; out<<"AntiAlias,"<<(int)FntDef.lfQuality<<"\n"; out.close(); return TRUE; } bool BFontMap::ExportBinData(char *fname) { ofstream out; int Loop; unsigned char eWidth[256]; out.open(fname, ios::binary | ios::trunc); if(out.fail()) return false; // Image dims out.write((char*)&MapWidth,sizeof(int)); out.write((char*)&MapHeight,sizeof(int)); // Cell dims out.write((char*)&CellWidth,sizeof(int)); out.write((char*)&CellHeight,sizeof(int)); // Start char out.write((char*)&BaseChar,1); // Font Widths for(Loop=0;Loop!=256;++Loop) eWidth[Loop]=BaseWidth[Loop]+WidthMod[Loop]+gWidthMod; out.write((char*)eWidth,256); out.close(); return TRUE; } bool BFontMap::IsPower(int TestValue) { bool Ret=FALSE; float Val; Val=(float)TestValue; while(Val>=2.0f) { if(Val==2.0f) Ret=TRUE; Val=Val/2.0f; } return Ret; }
cbbed06b89e8b14adaadcf150938c32f
{ "intermediate": 0.28728821873664856, "beginner": 0.4311906099319458, "expert": 0.28152111172676086 }
48,106
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: “# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here’s several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only “…/input/” directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk(‘/kaggle/input’): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using “Save & Run All” # You can also write temporary files to /kaggle/temp/, but they won’t be saved outside of the current session train_data = pd.read_csv(”/kaggle/input/titanic/train.csv") test_data = pd.read_csv(“/kaggle/input/titanic/test.csv”) train_data.head(100) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # Imputing Age age_imputer = SimpleImputer(strategy=‘median’) train_data[‘Age’] = age_imputer.fit_transform(train_data[[‘Age’]]) test_data[‘Age’] = age_imputer.transform(test_data[[‘Age’]]) # Assuming Fare missing values can be filled with -1 (or you could use mean or median) fare_imputer = SimpleImputer(strategy=‘median’) train_data[‘Fare’] = fare_imputer.fit_transform(train_data[[‘Fare’]]) test_data[‘Fare’] = fare_imputer.transform(test_data[[‘Fare’]]) features = [“Pclass”, “Sex”, “Age”, “SibSp”, “Parch”, “Fare”,“Embarked”,“PassengerId”] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) y = train_data[“Survived”] model = RandomForestClassifier(n_estimators=200, max_depth=200, random_state=10) model.fit(X, y) predictions = model.predict(X_test) train_accuracy = model.score(X, y) print(f"Training Accuracy: {train_accuracy:.4f}“) output = pd.DataFrame({‘PassengerId’: test_data.PassengerId, ‘Survived’: predictions}) output.to_csv(‘submission.csv’, index=False) print(“Your submission was successfully saved!”) ” I want to change the model to neural network, show code.
fa46d1c32853dac7cf5cd2da4930c42d
{ "intermediate": 0.4141998291015625, "beginner": 0.2301241010427475, "expert": 0.3556760549545288 }
48,107
<style> body { margin: 0; font-family: Arial, sans-serif; } header { background-color: #66CDAA; padding: 15px; color: #fff; display: flex; justify-content: space-between; align-items: center; } header img{ height: 50px; width: 50px; } nav { display: flex; } nav ul { list-style: none; margin: 0; padding: 0; display: flex; } nav li { margin-right: 20px; color: #933; } section.hero { height: 800px; width: 100%; background-image: url('https://wide-w.com/wp-content/uploads/2019/01/gora-jeverest.jpg'); background-size: cover; background-position: center; display: flex; justify-content: center; align-items: center; color: #ffffff; text-align: center; } section { padding: 20px; } section#about { border: 2px solid #333; background-color: #00FA9A; padding: 20px; margin: 20px 0; overflow: hidden; } section#about img { float: left; margin-right: 20px; max-width: 300px; } section#about p { margin: 0 0 20px 0; } section#best-tour { text-align: center; } section#best-tour h2 { margin-bottom: 20px; } section#best-tour .feature { display: inline-block; margin: 0 20px 20px 0; border: 10px solid #F0E68C; padding: 10px; width: calc((100% - 60px) / 3); box-sizing: border-box; } section#best-tour img { width: 80px; height: 80px; border-radius: 50%; margin-bottom: 10px; display: block; margin-left: auto; margin-right: auto; } .hottourscontainer { max-width: 1200px; margin: 0 auto; display: flex; flex-wrap: wrap; align-items: center; justify-content: space-around; padding: 20px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .hottourscontainer img { max-width: 200px; margin-right: 20px; border-radius: 10px; margin-bottom: 20px; } .hottoursinfo { flex-grow: 1; width: 70%; } .tourtitle { font-size: 24px; font-weight: bold; margin-bottom: 10px; } .tourdescription { font-size: 16px; margin-bottom: 10px; } .tourprice { font-size: 18px; font-weight: bold; color: green; border: 2px solid #eee; padding: 10px; display: inline-block; } .hottourstitle { text-align: center; font-size: 32px; margin-bottom: 40px; } section#route-example { text-align: center; background-color: #FFF8DC; } section#route-example .route-block { display: flex; justify-content: center; align-items: center; margin-bottom: 40px; border: 2px solid #DCDCDC; padding: 10px; margin-bottom: 10px; } section#route-example .route-block img{ width: 500px; height: 400px; } section#route-example .route-block p { width: 48%; margin: 0 2%; box-sizing: border-box; } footer { background-color: #333; color: #fff; text-align: center; padding: 10px; position: fixed; width: 100%; bottom: 0; } #book-tour { background-color: #F0FFF0; text-align: center; padding: 50px 0; } .book-button-container { display: inline-block; } .book-button { background-color: #4CAF50; color: white; padding: 15px 32px; text-align: center; text-decoration: none; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } .book-button:hover { background-color: #45a049; } #testimonials { text-align: center; padding: 50px; } .testimonial-container { display: flex; justify-content: space-around; flex-wrap: wrap; gap: 20px; } .testimonial { background-color: #ffffff; border: 1px solid #eaeaea; padding: 20px; border-radius: 5px; box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.1); flex-basis: calc(30% - 40px); margin: 10px; flex-grow: 1; } .testimonial blockquote { font-style: italic; color: #555; } .testimonial-author, .tour-date { font-weight: bold; font-size: 0.9em; color: #333; text-align: right; margin-top: 15px; } #map { margin: 20px; padding: 20px; } #map h2 { text-align: center; margin-bottom: 20px; } #map iframe { width: 100%; } #contacts { background-color: #f8f8f8; padding: 50px 0; } #contacts .container { max-width: 1200px; margin: 0 auto; padding: 0 15px; } #contacts h2 { text-align: center; margin-bottom: 15px; #contacts p { text-align: center; margin: 10px 0; font-size: 1rem; } #contacts a { color: #007bff; text-decoration: none; } #contacts a:hover { text-decoration: underline; } footer{ height: 25px; } .swiper-container { height: 1000vh; margin: 0 auto; position: relative; overflow: hidden; list-style: none; padding: 0; /* Fix of Webkit flickering */ z-index: 1; </style> <section class="hero"> <h1>Ласкаво просимо в нашу туристичну компанію<br> Тур від агентства " <b><i> Empire of Travel".</i></b> </h1> </section> <section id="about"> <img src="https://seo-evolution.com.ua/imgfly/public/Ej5uSGigkkhfGF9Sq2yBC9xGtsPNaiiNQ7uy0W4i.jpg?h=600" alt="Про нас"> <p> <h1>Фантастична подорож для вас!</h1><br> </p> <p>Чому б не відсвяткувати свою наступну літню відпустку в Європі! Відвідайте замки, парки, пляжі під час цього чудового туру... У старій Європі є безліч меморіалів і музеїв з античною архітектурою. Долина Луари відома на весь світ своїми замками, Рим – автентичною архітектурою, а Амальфі чудово підходить для пляжного відпочинку.</p> <p>Південь Франції та більша частина сусідньої Італії є майданчиками для захоплення. Це зони, які здавна активізували почуття розкоші та поблажливості. Тепер у вас є чудова нагода випробувати все на собі.</p> </section> покращи візуал
a24c36688efd3e1901432cdff91c363b
{ "intermediate": 0.3339492976665497, "beginner": 0.43508729338645935, "expert": 0.23096346855163574 }
48,108
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: “# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here’s several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only “…/input/” directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk(‘/kaggle/input’): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using “Save & Run All” # You can also write temporary files to /kaggle/temp/, but they won’t be saved outside of the current session train_data = pd.read_csv(”/kaggle/input/titanic/train.csv") test_data = pd.read_csv(“/kaggle/input/titanic/test.csv”) train_data.head(100) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # Imputing Age age_imputer = SimpleImputer(strategy=‘median’) train_data[‘Age’] = age_imputer.fit_transform(train_data[[‘Age’]]) test_data[‘Age’] = age_imputer.transform(test_data[[‘Age’]]) # Assuming Fare missing values can be filled with -1 (or you could use mean or median) fare_imputer = SimpleImputer(strategy=‘median’) train_data[‘Fare’] = fare_imputer.fit_transform(train_data[[‘Fare’]]) test_data[‘Fare’] = fare_imputer.transform(test_data[[‘Fare’]]) features = [“Pclass”, “Sex”, “Age”, “SibSp”, “Parch”, “Fare”,“Embarked”,“PassengerId”] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) y = train_data[“Survived”] model = RandomForestClassifier(n_estimators=200, max_depth=200, random_state=10) model.fit(X, y) predictions = model.predict(X_test) train_accuracy = model.score(X, y) print(f"Training Accuracy: {train_accuracy:.4f}“) output = pd.DataFrame({‘PassengerId’: test_data.PassengerId, ‘Survived’: predictions}) output.to_csv(‘submission.csv’, index=False) print(“Your submission was successfully saved!”) ” I want to change the model to neural network, show code.
1cb448bb2a9cf86a9181227055abb58e
{ "intermediate": 0.4141998291015625, "beginner": 0.2301241010427475, "expert": 0.3556760549545288 }
48,109
accessors in computer science
ec287cc4bcd02ba0d1dc7dc76d442d2a
{ "intermediate": 0.2793835997581482, "beginner": 0.2402334213256836, "expert": 0.4803830087184906 }
48,110
i have challenge like this: import time import numpy as np import socket import base64 # This might be useful with the exploitation of the device at some point! #import lascar HOST = '0.0.0.0' # This must be changed to the corresponding value of the live instance PORT = 1337 # This must be changed to the corresponding value of the live instance # This function is used to decode the base64 transmitted power trace (which is a NumPy array) # The function should only be called for the response of the 1. option and on the data received # after we send the plaintext (as seen in the example code below) def b64_decode_trace(leakage): byte_data = base64.b64decode(leakage) return np.frombuffer(byte_data) # convert binary data into a NumPy array # This function is used to communicate with the remote machine (Laptop-2) via socket def connect_to_socket(option, data): # Initialize a socket connection with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((HOST, PORT)) resp_1 = s.recv(1024) s.sendall(option) resp_2 = s.recv(1024) # Receive response # Send the data # option one: binary plaintext # option two: Hex encoded AES KEY s.sendall(data) # Receive response # option one: receive base64 encoded binary data # that represented the power traces as a Numpy array # option two: receive an ASCII Message # (if the key is correct the flag will be returned) resp_data = b'' while True: temp_data = s.recv(8096) if not temp_data: break resp_data += temp_data s.close() # The print commands can be used for debugging in order to observe the responses # The following print commands can be commented out. print(resp_1.decode('ascii')) print(option) print(resp_2.decode('ascii')) print(data) #print(resp_data) return resp_data # Sample binary plaintext plaintext = b'0123456789ABCDEF' # Example use of option 1 print("Option 1:") leakage = connect_to_socket(b'1', plaintext) power_trace = b64_decode_trace(leakage) print("Length of power trace: {}".format(power_trace.shape)) print(power_trace) # Outputs the NumPy array that represents the power trace. # Always use a delay between each connection # in order to have a stable connection time.sleep(0.1) # Sample HEX encoded AES KEY KEY = b'00112233445566778899AABBCCDDEEFF' print("\nOption 2:") # Example use of option 2 response = connect_to_socket(b'2', KEY) print(response)
f0e066b968b8043075ff0321f9f839f4
{ "intermediate": 0.500298261642456, "beginner": 0.3520253002643585, "expert": 0.1476764678955078 }
48,111
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: "# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load !pip install tensorflow import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout from tensorflow.keras.utils import to_categorical train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) test_data.head(5) # Preprocessing age_imputer = SimpleImputer(strategy='median') train_data['Age'] = age_imputer.fit_transform(train_data[['Age']]) test_data['Age'] = age_imputer.transform(test_data[['Age']]) fare_imputer = SimpleImputer(strategy='median') train_data['Fare'] = fare_imputer.fit_transform(train_data[['Fare']]) test_data['Fare'] = fare_imputer.transform(test_data[['Fare']]) # Encoding categorical variables train_data = pd.get_dummies(train_data, columns=["Sex", "Embarked"]) test_data = pd.get_dummies(test_data, columns=["Sex", "Embarked"]) # Selecting features and target features = ["Pclass", "Age", "SibSp", "Parch", "Fare", "Sex_female", "Sex_male", "Embarked_C", "Embarked_Q", "Embarked_S","PassengerId"] X = train_data[features] y = train_data["Survived"] X_test = test_data[features] # Neural Network requires scaled input features. scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_test_scaled = scaler.transform(X_test) # Splitting the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.2, random_state=42) model = Sequential([ Dense(128, activation='relu', input_shape=(X.shape[1],)), Dropout(0.5), # Add dropout to reduce overfitting Dense(128, activation='relu'), Dropout(0.5), # Add dropout to reduce overfitting Dense(128, activation='relu'), Dropout(0.3), # Add dropout to reduce overfitting Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Training with validation data model.fit(X_train, y_train, epochs=50, batch_size=16, validation_data=(X_val, y_val)) # Predicting on the test set predictions = model.predict(X_test_scaled) predictions = (predictions > 0.5).astype(int).reshape(X_test_scaled.shape[0]) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission_nn_val.csv', index=False) print("Your submission was successfully saved using neural network with a validation set!") "can I save my model , then the competition will used my saved model directly instead of training it again when running the code?
40597ed5613b2777d6f85d744256bab6
{ "intermediate": 0.4356418550014496, "beginner": 0.27508458495140076, "expert": 0.2892735004425049 }
48,112
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: "# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load !pip install tensorflow import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout from tensorflow.keras.utils import to_categorical train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) test_data.head(5) # Preprocessing age_imputer = SimpleImputer(strategy='median') train_data['Age'] = age_imputer.fit_transform(train_data[['Age']]) test_data['Age'] = age_imputer.transform(test_data[['Age']]) fare_imputer = SimpleImputer(strategy='median') train_data['Fare'] = fare_imputer.fit_transform(train_data[['Fare']]) test_data['Fare'] = fare_imputer.transform(test_data[['Fare']]) # Encoding categorical variables train_data = pd.get_dummies(train_data, columns=["Sex", "Embarked"]) test_data = pd.get_dummies(test_data, columns=["Sex", "Embarked"]) # Selecting features and target features = ["Pclass", "Age", "SibSp", "Parch", "Fare", "Sex_female", "Sex_male", "Embarked_C", "Embarked_Q", "Embarked_S","PassengerId"] X = train_data[features] y = train_data["Survived"] X_test = test_data[features] # Neural Network requires scaled input features. scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_test_scaled = scaler.transform(X_test) # Splitting the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.2, random_state=42) model = Sequential([ Dense(128, activation='relu', input_shape=(X.shape[1],)), Dropout(0.5), # Add dropout to reduce overfitting Dense(128, activation='relu'), Dropout(0.5), # Add dropout to reduce overfitting Dense(128, activation='relu'), Dropout(0.3), # Add dropout to reduce overfitting Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Training with validation data model.fit(X_train, y_train, epochs=50, batch_size=16, validation_data=(X_val, y_val)) # Predicting on the test set predictions = model.predict(X_test_scaled) predictions = (predictions > 0.5).astype(int).reshape(X_test_scaled.shape[0]) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission_nn_val.csv', index=False) print("Your submission was successfully saved using neural network with a validation set!") "can I save my model , then the competition will used my saved model directly instead of training it again ?
35bc6fda82945f9dbb95881a872f93e3
{ "intermediate": 0.4356418550014496, "beginner": 0.27508458495140076, "expert": 0.2892735004425049 }
48,113
What are the replacements for cellpadding cellspacing and border attributes in CSS when describing a table?
1bba78c83827352bd00e6eaebd82140d
{ "intermediate": 0.38646554946899414, "beginner": 0.34318092465400696, "expert": 0.27035361528396606 }
48,114
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: " # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) test_data.head(5) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # Imputing Age age_imputer = SimpleImputer(strategy='median') train_data['Age'] = age_imputer.fit_transform(train_data[['Age']]) test_data['Age'] = age_imputer.transform(test_data[['Age']]) # Assuming Fare missing values can be filled with -1 (or you could use mean or median) fare_imputer = SimpleImputer(strategy='median') train_data['Fare'] = fare_imputer.fit_transform(train_data[['Fare']]) test_data['Fare'] = fare_imputer.transform(test_data[['Fare']]) features = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare","Embarked","PassengerId"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) y = train_data["Survived"] model = RandomForestClassifier(n_estimators=200, max_depth=200, random_state=10) model.fit(X, y) predictions = model.predict(X_test) train_accuracy = model.score(X, y) print(f"Training Accuracy: {train_accuracy:.4f}") output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission.csv', index=False) print("Your submission was successfully saved!") Training Accuracy: 1.0000 Your submission was successfully saved! " The test accuarcy is 79, how to further improve?
b3a82091a61981f9aa5af931e64fd524
{ "intermediate": 0.6388859748840332, "beginner": 0.17631752789020538, "expert": 0.1847964972257614 }
48,115
I am doing the Kaggle competition “Titanic - Machine Learning from Disaster”, my code: " # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session train_data = pd.read_csv("/kaggle/input/titanic/train.csv") test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100) test_data.head(5) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer # Imputing Age age_imputer = SimpleImputer(strategy='median') train_data['Age'] = age_imputer.fit_transform(train_data[['Age']]) test_data['Age'] = age_imputer.transform(test_data[['Age']]) # Assuming Fare missing values can be filled with -1 (or you could use mean or median) fare_imputer = SimpleImputer(strategy='median') train_data['Fare'] = fare_imputer.fit_transform(train_data[['Fare']]) test_data['Fare'] = fare_imputer.transform(test_data[['Fare']]) features = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare","Embarked","PassengerId"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) y = train_data["Survived"] model = RandomForestClassifier(n_estimators=200, max_depth=200, random_state=10) model.fit(X, y) predictions = model.predict(X_test) train_accuracy = model.score(X, y) print(f"Training Accuracy: {train_accuracy:.4f}") output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission.csv', index=False) print("Your submission was successfully saved!") Training Accuracy: 1.0000 Your submission was successfully saved! " The test accuarcy is 79, how to further improve? Show code.
e60a8a9aaa4fe92495f52af355216e2d
{ "intermediate": 0.5621781349182129, "beginner": 0.23322196304798126, "expert": 0.20459993183612823 }
48,116
 public class Star { private int mySize; private double myDistance; private String myName; public Star() { mySize = 0; myDistance = 0; myName = "none"; the following attempts to create a Star Object. I. Star s = new Star(15, 25.9, Vega); II. Star s = new Star(); III. Star s = new Star(11, 14.25, "Rigel"); Which line of code above does NOT compile? } public Star(int s, double d, String n) { mySize = s; myDistance = d; A. II. B. I. myName = n; } public double getDistance() { return myDistance; } public double getInfo() { return mySize / 2. myDistance; + } public int calc(int m) { int xm 5; + return x; C. III.
911eecc884149fbd6a32db1b36d1330a
{ "intermediate": 0.2957535684108734, "beginner": 0.5563386678695679, "expert": 0.14790773391723633 }
48,117
i have following code to load my trained models i have 4 trained models and 4 equal y parameters(each has 3 values to be predicted) complete the code so predict each y with each mmodel and then validate predicted result based on mae : # Placeholder for storing the data frames data_frames = [] x_scaler = joblib.load('snn_all_1142_x_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp1_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp2_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp3_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp5_scaler.sav') model_y1 = load_model('snn_1142_hlp1_sec_5m_relu_trainloss09_mae17_valloss22_mae22.h5') model_y1 = load_model('snn_1142_hlp2_sec_5m_relu_trainloss07_mae15_valloss36_mae19.h5') model_y1 = load_model('snn_1142_hlp3_sec_5m_relu_trainloss05_mae13_valloss17_mae17.h5') model_y1 = load_model('snn_1142_hlp5_5m_relu_trainloss05_mae12_valloss12_mae14.h5') # Loop over the list of csv files for csv_file in csv_files: # Read the CSV file file_path = os.path.join(csv_directory, csv_file) df = pd.read_csv(file_path) # Assuming ‘df’ is your DataFrame and ‘Label’ is the target column X = df.drop(['y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1).values Y1 = df[['y_High_1d', 'y_Low_1d', 'y_Priority_1d']].values Y2 = df[['y_High_2d', 'y_Low_2d', 'y_Priority_2d']].values Y3 = df[['y_High_3d', 'y_Low_3d', 'y_Priority_3d']].values Y5 = df[['y_High_5d', 'y_Low_5d', 'y_Priority_5d']].values # Y = to_categorical(y) # Convert labels to one-hot encoding
9634765a1014facbec4b379ad981dde7
{ "intermediate": 0.24265849590301514, "beginner": 0.6116739511489868, "expert": 0.14566761255264282 }
48,118
code: # Placeholder for storing the data frames data_frames = [] x_scaler = joblib.load('snn_all_1142_x_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp1_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp2_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp3_scaler.sav') x_scaler = joblib.load('snn_all_1142_yhlp5_scaler.sav') model_y1 = load_model('snn_1142_hlp1_sec_5m_relu_trainloss09_mae17_valloss22_mae22.h5') model_y2 = load_model('snn_1142_hlp2_sec_5m_relu_trainloss07_mae15_valloss36_mae19.h5') model_y3 = load_model('snn_1142_hlp3_sec_5m_relu_trainloss05_mae13_valloss17_mae17.h5') model_y5 = load_model('snn_1142_hlp5_5m_relu_trainloss05_mae12_valloss12_mae14.h5') # Loop over the list of csv files for csv_file in csv_files: # Read the CSV file unique_part = csv_file.split('_')[-2] file_path = os.path.join(csv_directory, csv_file) df = pd.read_csv(file_path) # Assuming ‘df’ is your DataFrame and ‘Label’ is the target column X = df.drop(['y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1).values Y1_actual = df[['y_High_1d', 'y_Low_1d', 'y_Priority_1d']].values Y2_actual = df[['y_High_2d', 'y_Low_2d', 'y_Priority_2d']].values Y3_actual = df[['y_High_3d', 'y_Low_3d', 'y_Priority_3d']].values Y5_actual = df[['y_High_5d', 'y_Low_5d', 'y_Priority_5d']].values X_scaled = x_scaler.fit(X) # Make predictions Y1_pred = model_y1.predict(X_scaled) Y2_pred = model_y2.predict(X_scaled) Y3_pred = model_y3.predict(X_scaled) Y5_pred = model_y5.predict(X_scaled) # Note: If your y values were scaled during training, you should inverse transform # the predictions and the actual y values before calculating the MAE Y1_pred_actual = scaler_y1.inverse_transform(Y1_pred) Y2_pred_actual = scaler_y2.inverse_transform(Y2_pred) Y3_pred_actual = scaler_y3.inverse_transform(Y3_pred) Y5_pred_actual = scaler_y5.inverse_transform(Y5_pred) file_results = {'file_name': csv_file} # Calculate MAE for each column and add to the dictionary for i, label in enumerate(labels): file_results[f'Y1_{label}_MAE'] = mean_absolute_error(Y1_actual[:, i], Y1_pred_actual[:, i]) file_results[f'Y2{label}_MAE'] = mean_absolute_error(Y2_actual[:, i], Y2_pred_actual[:, i]) file_results[f'Y3{label}_MAE'] = mean_absolute_error(Y3_actual[:, i], Y3_pred_actual[:, i]) file_results[f'Y5{label}_MAE'] = mean_absolute_error(Y5_actual[:, i], Y5_pred_actual[:, i]) # Append the results of this file to the main results list results.append(file_results) # Convert the list of dictionaries to a DataFrame results_df = pd.DataFrame(results) # Output the DataFrame to a CSV file results_csv_path = 'mae_results.csv' # Define the output path results_df.to_csv(results_csv_path, index=False) # Export to CSV without the index error: { "name": "ImportError", "message": "Filepath looks like a hdf5 file but h5py is not available. filepath=snn_1142_hlp1_sec_5m_relu_trainloss09_mae17_valloss22_mae22.h5", "stack": "--------------------------------------------------------------------------- ImportError Traceback (most recent call last) Cell In[9], line 10 7 x_scaler = joblib.load('snn_all_1142_yhlp3_scaler.sav') 8 x_scaler = joblib.load('snn_all_1142_yhlp5_scaler.sav') ---> 10 model_y1 = load_model('snn_1142_hlp1_sec_5m_relu_trainloss09_mae17_valloss22_mae22.h5') 11 model_y2 = load_model('snn_1142_hlp2_sec_5m_relu_trainloss07_mae15_valloss36_mae19.h5') 12 model_y3 = load_model('snn_1142_hlp3_sec_5m_relu_trainloss05_mae13_valloss17_mae17.h5') File c:\\Users\\Fazel\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\utils\\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File c:\\Users\\Fazel\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\saving\\save.py:236, in load_model(filepath, custom_objects, compile, options) 234 else: 235 if h5py is None: --> 236 raise ImportError( 237 \"Filepath looks like a hdf5 file but h5py is \" 238 \"not available.\" 239 f\" filepath={filepath_str}\" 240 ) 241 return hdf5_format.load_model_from_hdf5( 242 tf.io.gfile.GFile(filepath_str, mode=\"rb\"), 243 custom_objects, 244 compile, 245 ) 246 elif h5py is not None and isinstance(filepath, h5py.File): ImportError: Filepath looks like a hdf5 file but h5py is not available. filepath=snn_1142_hlp1_sec_5m_relu_trainloss09_mae17_valloss22_mae22.h5" }
32bd8e7be6e2d7d546b3ccb5fa355073
{ "intermediate": 0.32182252407073975, "beginner": 0.39669960737228394, "expert": 0.28147783875465393 }
48,119
in following code i want to perform a sigmoid on thirs column of Y1_pred: Y1_pred = model_y1.predict(X_scaled) give me proper python copde
9f339f1dc59dc288936fbe16cf0305f4
{ "intermediate": 0.3222676217556, "beginner": 0.15759402513504028, "expert": 0.5201382637023926 }
48,120
Could you write a script that reads a simple syntax consisting of an instruction and parameters, both provided in an array?
3707bd1454c7756d70495ad8c03a9545
{ "intermediate": 0.3574806749820709, "beginner": 0.3314478099346161, "expert": 0.3110715448856354 }
48,121
write me an order confirmation email template, professional tone, in arabic
971cfc2cec6d71fe3a16b7b408fea96d
{ "intermediate": 0.4065905809402466, "beginner": 0.3189408779144287, "expert": 0.2744685411453247 }
48,122
Could you write a price of code that reads a specific instruction in a syntax, looks it up in a array, gets the specified parameters, stored in the same array as the instruction?
66d6738f38d2acab77dbe5b5b0159fa7
{ "intermediate": 0.46966472268104553, "beginner": 0.1541164368391037, "expert": 0.37621885538101196 }
48,123
Could you write a price of code that reads a specific instruction in a syntax, looks it up in a array, gets the specified parameters, stored in the same array as the instruction? The parameters are also written by the user, but to know how many parameters are required by the instruction the amount of parameters need to be stored beforehand.
eb7efd3072330a35b3cd5850e17758e3
{ "intermediate": 0.4388827979564667, "beginner": 0.23160450160503387, "expert": 0.32951271533966064 }
48,124
Suppose I wanted to play a simple beeping sound using ALSA in C. How would I do that?
da73b01924c68040fbfffdd2af09aae3
{ "intermediate": 0.4339192509651184, "beginner": 0.14053072035312653, "expert": 0.42555004358291626 }
48,125
convert flac to mp3 with ffmpeg using amd gpu hardware accelaration on linux
cf8f35963d34562dbc8d4da5a2eb6a10
{ "intermediate": 0.37496092915534973, "beginner": 0.2066117525100708, "expert": 0.41842734813690186 }
48,126
please check the code for errors:
202d313b19e7897751f503d74f347c00
{ "intermediate": 0.3656284809112549, "beginner": 0.279302716255188, "expert": 0.3550688326358795 }
48,127
please identify what type of cipher this is: thkhdliSrsyeosoTOnanAtSeelmeAttargeIsediaotelhedoeIoolelteAamehsReTeHnSeSnlDhFeePFuFsmeMtNidlhAccgseiaslalAsnlTdieishKeADehodrDFerhuhSinvhaDaIDehosWrrnrhfdySnFhTaeBTreeksdn
101a9364a9074fcea715325b1368db86
{ "intermediate": 0.4046347439289093, "beginner": 0.38990628719329834, "expert": 0.20545890927314758 }
48,128
# # For licensing see accompanying LICENSE file. # Copyright (C) 2024 Apple Inc. All Rights Reserved. # import argparse import functools from dataclasses import dataclass, field from numbers import Number from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch import Tensor, nn from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy from torch.nn import functional as F from corenet.modeling.layers import ( Embedding, LinearLayer, RotaryEmbedding, get_normalization_layer, norm_layers_tuple, ) from corenet.modeling.layers.activation import build_activation_layer from corenet.modeling.models import MODEL_REGISTRY from corenet.modeling.models.language_modeling.base_lm import BaseLanguageModel from corenet.utils import logger from corenet.utils.math_utils import make_divisible def compute_heads(model_dim: int, head_dim: int) -> int: """Compute the number of heads. Args: model_dim: Model dimension. head_dim: Head dimension. ...note: If model dimension is not divisible by head dimension, ValueError is raised. Otherwise, integer denoting number of heads in multi-head attention is returned. """ if model_dim % head_dim == 0: return model_dim // head_dim else: raise ValueError( f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}." ) @dataclass class GPTConfig: vocab_size: int = 32000 max_context_length: int = 2048 num_transformer_layers: int = 12 model_dim: int = 2048 head_dim: int = 128 qkv_multipliers: Union[Number, List[Number]] = 1.0 num_query_heads: int = compute_heads(model_dim=model_dim, head_dim=head_dim) # This variable allows to switch between multi-head attention, group query attention, and multi-query attention. # When num_gqa_groups == 1, then it is multi-head attention. # When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention # When num_gqa_groups == num_heads, then it is multi-query attention num_gqa_groups: int = 1 # Multipliers for the feed-forward network. ffn_multipliers: Union[Number, List[Number]] = 4.0 # use FFN with Gated Linear Unit (GLU) ffn_with_glu: bool = True ffn_dim_divisor: int = 256 activation_fn_name: str = "swish" normalization_layer_name: str = "rms_norm" normalize_qk_projections: bool = False share_input_output_layers: bool = False rope_freq_constant: int = 10000 # Note that rope_max_length is set to twice of max_context_length. # This allows flexibility in token lengths during training or fine-tuning. rope_max_length: int = 4096 def __post_init__(self) -> None: if self.num_gqa_groups is not None: head_multiple_of = self.num_gqa_groups else: head_multiple_of = 2 if isinstance(self.qkv_multipliers, Number): # All attention layers have the same latent dimensions, resulting in uniform allocation of parameters. qkv_dim = make_divisible( self.model_dim * self.qkv_multipliers, divisor=self.head_dim * head_multiple_of, ) query_dims = [int(qkv_dim)] * self.num_transformer_layers elif ( isinstance(self.qkv_multipliers, (tuple, list)) and len(self.qkv_multipliers) == 2 ): # Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1]. # This results in variable allocation of parameters in attention layer. # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 qkv_multipliers = [ round(v, 2) for v in np.linspace( self.qkv_multipliers[0], self.qkv_multipliers[1], num=self.num_transformer_layers, dtype=float, ) ] # Make sure that scaled model dimension is divisible by scaled head dimension. query_dims = [ int( make_divisible( self.model_dim * m, divisor=self.head_dim * head_multiple_of ) ) for m in qkv_multipliers ] else: raise NotImplementedError( f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}." ) # compute the number of query, key, and value heads # For multi-head and multi-query attention, the number of heads for query, key, and value are the same. # For group query attention, the number of key and value heads are the same. self.num_query_heads = [ int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims ] self.num_kv_heads = [ q_heads // self.num_gqa_groups for q_heads in self.num_query_heads ] # Feed-forward network (FFN) multipliers if isinstance(self.ffn_multipliers, Number): # All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters. self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers elif ( isinstance(self.ffn_multipliers, (tuple, list)) and len(self.ffn_multipliers) == 2 ): # Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1]. # This results in variable allocation of parameters in FFN layer. # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 self.ffn_multipliers = [ round(v, 2) for v in np.linspace( self.ffn_multipliers[0], self.ffn_multipliers[1], num=self.num_transformer_layers, dtype=float, ) ] else: raise NotImplementedError( f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}." ) @classmethod def from_name( cls, model_name: str, vocab_size: int, max_context_length: int ) -> "GPTConfig": if model_name in gpt_configs: config = gpt_configs[model_name] else: raise NotImplementedError(f"{model_name} is not yet implemented") config["vocab_size"] = vocab_size config["max_context_length"] = max_context_length return cls(**config) gpt_configs = { "gpt-test": dict( num_transformer_layers=1, model_dim=128, head_dim=64, num_gqa_groups=1, normalize_qk_projections=True, share_input_output_layers=True, # Vary the FFN and QKV multiplier to create variable FFN and attention layers respectively. ffn_multipliers=(0.25, 0.75), qkv_multipliers=(0.25, 0.5), ), # A sample GPT configuration. "gpt-1_3B": dict( num_transformer_layers=24, model_dim=2048, head_dim=64, max_context_length=2048, # For gated FFN, the value is around 3. while for standard FFN, the value is 4.0. ffn_multipliers=3.0, # Number of GQA groups. num_gqa_groups=4, normalize_qk_projections=True, share_input_output_layers=True, ), "OpenELM-270M": dict( num_transformer_layers=16, model_dim=1280, head_dim=64, num_gqa_groups=4, normalize_qk_projections=True, share_input_output_layers=True, # Vary the FFN and QKV multiplier to create variable FFN and attention layers respectively. ffn_multipliers=(0.5, 4.0), qkv_multipliers=(0.5, 1.0), ), "OpenELM-450M": dict( num_transformer_layers=20, model_dim=1536, head_dim=64, num_gqa_groups=4, normalize_qk_projections=True, share_input_output_layers=True, # Vary the FFN and QKV multiplier to create variable FFN and attention layers respectively. ffn_multipliers=(0.5, 4.0), qkv_multipliers=(0.5, 1.0), ), "OpenELM-1_1B": dict( num_transformer_layers=28, model_dim=2048, head_dim=64, num_gqa_groups=4, normalize_qk_projections=True, share_input_output_layers=True, # Vary the FFN and QKV multiplier to create variable FFN and attention layers respectively. ffn_multipliers=(0.5, 4.0), qkv_multipliers=(0.5, 1.0), ), "OpenELM-3B": dict( num_transformer_layers=36, model_dim=3072, head_dim=128, num_gqa_groups=4, normalize_qk_projections=True, share_input_output_layers=True, # Vary the FFN and QKV multiplier to create variable FFN and attention layers respectively. ffn_multipliers=(0.5, 4.0), qkv_multipliers=(0.5, 1.0), ), } class MultiHeadCausalAttention(nn.Module): """Multi-head causal attention. Args: opts: Command-line arguments. model_config: Model configuration. layer_idx: Layer index. """ def __init__( self, opts: argparse.Namespace, model_config: GPTConfig, layer_idx: int ) -> None: super().__init__() assert ( model_config.num_query_heads[layer_idx] % model_config.num_kv_heads[layer_idx] == 0 ), f"Number of query heads are not divisible by number of key/value heads. Got: {model_config.num_query_heads[layer_idx]} and {model_config.num_kv_heads[layer_idx]}." head_dim = model_config.head_dim q_heads = model_config.num_query_heads[layer_idx] k_heads = model_config.num_kv_heads[layer_idx] v_heads = model_config.num_kv_heads[layer_idx] self.qkv_proj = LinearLayer( in_features=model_config.model_dim, out_features=(q_heads + k_heads + v_heads) * head_dim, bias=False, ) self.pos_embedding = RotaryEmbedding( model_dim=model_config.head_dim, max_seq_length=model_config.rope_max_length, freq_constant=model_config.rope_freq_constant, ) if model_config.normalize_qk_projections: self.q_norm = get_normalization_layer( opts, num_features=model_config.head_dim, norm_type=model_config.normalization_layer_name, ) self.k_norm = get_normalization_layer( opts, num_features=model_config.head_dim, norm_type=model_config.normalization_layer_name, ) else: self.q_norm = None self.k_norm = None self.out_proj = LinearLayer( in_features=q_heads * head_dim, out_features=model_config.model_dim, bias=False, ) self.head_dim = model_config.head_dim self.num_q_heads = q_heads self.num_k_heads = k_heads self.num_v_heads = v_heads self.model_dim = model_config.model_dim self.num_groups = self.num_q_heads // self.num_k_heads def extra_repr(self) -> str: return ( super().extra_repr() + f"model_dim={self.model_dim}, num_query_heads={self.num_q_heads}, num_key_heads={self.num_k_heads}, num_value_heads={self.num_v_heads}" ) def forward( self, x: Tensor, past_keys: Optional[Tensor] = None, past_values: Optional[Tensor] = None, use_kv_cache: bool = False, is_causal: bool = True, ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: """ Forward pass of multi-head self-attention. Args: x: Input tensor of the shape [batch size, sequence length, model dimension]. past_keys: Tensor storing the cached keys. The shape of tensor is [batch size, number of key heads, sequence length, head dimension]. past_values: Tensor storing the cached values. The shape of the tensor is the same as 'past_keys'. use_kv_cache: Cache the output of key and value projection layers for faster inference. is_causal: Specifies whether to apply causal masking in scaled dot-product attention. Returns: The output of the same shape as the input, optionally with a tensor containing cached keys and values. """ batch_size, seq_length, d_model = x.shape # [batch_size, seq_length, d_model] --> [batch_size, seq_length, (num_q_heads + num_k_heads + num_v_heads) * head_dim] qkv = self.qkv_proj(x) # [batch_size, seq_length, (num_q_heads + num_k_heads + num_v_heads) * head_dim] --> [batch_size, seq_length, (num_q_heads + num_k_heads + num_v_heads), head_dim] qkv = qkv.reshape( batch_size, seq_length, self.num_q_heads + self.num_k_heads + self.num_v_heads, self.head_dim, ) # [batch_size, seq_length, (num_q_heads + num_k_heads + num_v_heads), head_dim] --> [batch_size, (num_q_heads + num_k_heads + num_v_heads), seq_length, head_dim] qkv = qkv.transpose(1, 2) # [batch_size, (num_q_heads + num_k_heads + num_v_heads), seq_length, head_dim] --> [batch_size, num_q_heads, seq_length, head_dim], [batch_size, num_k_heads, seq_length, head_dim], [batch_size, num_v_heads, seq_length, head_dim] queries, keys, values = qkv.split( [self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1 ) if self.q_norm is not None: queries = self.q_norm(queries) if self.k_norm is not None: keys = self.k_norm(keys) if use_kv_cache: if past_keys is not None: assert past_values is not None # concatenate past and current keys along the sequence dimension. keys = torch.cat([past_keys, keys], dim=-2) values = torch.cat([past_values, values], dim=-2) past_keys = keys past_values = values # Add positional embedding queries, keys = self.pos_embedding(queries, keys) if self.num_groups != 1: # Group-query attention. # [batch_size, num_k_heads, seq_length, head_dim] --> [batch_size, num_q_heads, seq_length, head_dim] keys = keys.repeat_interleave(self.num_groups, dim=1) # [batch_size, num_v_heads, seq_length, head_dim] --> [batch_size, num_q_heads, seq_length, head_dim] values = values.repeat_interleave(self.num_groups, dim=1) # scaled dot-product attention. # The output of this operation has size of [batch_size, num_q_heads, seq_length, head_dim] attn_output = F.scaled_dot_product_attention( queries, keys, values, attn_mask=None, dropout_p=0, is_causal=is_causal, ) # [batch_size, num_q_heads, seq_length, head_dim] --> [batch_size, seq_length, num_q_heads, head_dim] attn_output = attn_output.transpose(1, 2).contiguous() # [batch_size, seq_length, num_q_heads, head_dim] --> [batch_size, seq_length, num_q_heads * head_dim] attn_output = attn_output.reshape( batch_size, seq_length, self.num_q_heads * self.head_dim ) # [batch_size, seq_length, num_q_heads * head_dim] --> [batch_size, seq_length, d_model] out = self.out_proj(attn_output) return out, past_keys, past_values class FeedForwardNetwork(nn.Module): """Feed-forward network. Args: opts: Command-line arguments. model_config: Model configuration. layer_idx: Layer index. """ def __init__( self, opts: argparse.Namespace, model_config: GPTConfig, layer_idx: int ) -> None: super().__init__() ffn_multiplier = model_config.ffn_multipliers[layer_idx] intermediate_dim = int( make_divisible( ffn_multiplier * model_config.model_dim, divisor=model_config.ffn_dim_divisor, ) ) if model_config.ffn_with_glu: # FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1. self.proj_1 = LinearLayer( in_features=model_config.model_dim, out_features=2 * intermediate_dim, bias=False, ) self.proj_2 = LinearLayer( in_features=intermediate_dim, out_features=model_config.model_dim, bias=False, ) self.ffn_with_glu = True else: # Standard FFN, as described in https://arxiv.org/abs/1706.03762 self.proj_1 = LinearLayer( in_features=model_config.model_dim, out_features=intermediate_dim, bias=False, ) self.proj_2 = LinearLayer( in_features=intermediate_dim, out_features=model_config.model_dim, bias=False, ) self.ffn_with_glu = False self.act = build_activation_layer( opts=opts, act_type=model_config.activation_fn_name ) def extra_repr(self) -> str: return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}" def forward(self, x: Tensor) -> Tensor: """Forward function of FFN layer. Args: x: Input tensor of the shape [batch size, sequence length, model dimension]. Returns: A tensor of the same shape as the input. """ if self.ffn_with_glu: y_12 = self.proj_1(x) y_1, y_2 = y_12.chunk(2, dim=-1) y = self.act(y_1) * y_2 return self.proj_2(y) else: return self.proj_2(self.act(self.proj_1(x))) class TransformerDecoderLayer(nn.Module): """Transformer decoder layer. Args: opts: Command-line arguments. model_config: Model configuration. layer_idx: Layer index. """ def __init__( self, opts: argparse.Namespace, model_config: GPTConfig, layer_idx: int ) -> None: super().__init__() self.attn = MultiHeadCausalAttention( opts, model_config=model_config, layer_idx=layer_idx ) self.ffn = FeedForwardNetwork( opts, model_config=model_config, layer_idx=layer_idx ) self.ffn_norm = get_normalization_layer( opts, num_features=model_config.model_dim, norm_type=model_config.normalization_layer_name, ) self.attn_norm = get_normalization_layer( opts, num_features=model_config.model_dim, norm_type=model_config.normalization_layer_name, ) def forward( self, x: Tensor, past_keys: Optional[Tensor] = None, past_values: Optional[Tensor] = None, use_kv_cache: bool = False, is_causal: bool = True, ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: """ Forward pass of decoder layer. Args: x: Input tensor of the shape [batch size, sequence length, model dimension]. past_keys: Tensor storing the cached keys. The shape of tensor is [batch size, number of key heads, sequence length, head dimension]. past_values: Tensor storing the cached values. The shape of the tensor is the same as 'past_keys'. use_kv_cache: Cache the output of key and value projection layers for faster inference. is_causal: Specifies whether to apply causal masking in scaled dot-product attention. Returns: The output of the same shape as the input, optionally with a tensor containing cached keys and values. """ # Pre-norm attention. y_attn = self.attn_norm(x) y_attn, past_keys, past_values = self.attn( y_attn, past_keys, past_values, use_kv_cache, is_causal ) y_attn = x + y_attn # Pre-norm FFN. y_ffn = y_attn + self.ffn(self.ffn_norm(y_attn)) return y_ffn, past_keys, past_values @MODEL_REGISTRY.register(name="general_gpt", type="language_modeling") class GeneralGPTModel(BaseLanguageModel): """General GPT model. Args: opts: Command-line arguments. """ def __init__(self, opts: argparse.Namespace, *args, **kwargs) -> None: super().__init__(opts, *args, **kwargs) model_name = getattr(opts, "model.language_modeling.general_gpt.model_name") if model_name is None: logger.error( "Please specify model name using 'model.language_modeling.general_gpt.model_name' parameter in your configuration file." ) vocab_size = getattr(opts, "model.language_modeling.general_gpt.vocab_size") if vocab_size is None: logger.error( "Please specify vocabulary size using 'model.language_modeling.general_gpt.vocab_size' parameter in your configuration file." ) max_context_length = getattr( opts, "model.language_modeling.general_gpt.max_context_length" ) if max_context_length is None: logger.error( "Please specify maximum context length using 'model.language_modeling.general_gpt.max_context_length' parameter in your configuration file." ) padding_index = getattr( opts, "model.language_modeling.general_gpt.padding_index" ) model_config = GPTConfig.from_name( model_name=model_name, vocab_size=vocab_size, max_context_length=max_context_length, ) self.token_embeddings = Embedding( opts, embedding_dim=model_config.model_dim, num_embeddings=model_config.vocab_size, padding_idx=padding_index, ) self.layers = nn.ModuleList( TransformerDecoderLayer( opts, model_config=model_config, layer_idx=layer_idx ) for layer_idx in range(model_config.num_transformer_layers) ) self.norm = get_normalization_layer( opts, num_features=model_config.model_dim, norm_type=model_config.normalization_layer_name, ) if model_config.share_input_output_layers: self.classifier = None else: self.classifier = LinearLayer( in_features=model_config.model_dim, out_features=model_config.vocab_size, bias=False, ) self.reset_parameters(model_config=model_config) self.num_transformer_layers = model_config.num_transformer_layers @classmethod def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: """Add General GPT model arguments.""" if cls == GeneralGPTModel: group = parser.add_argument_group(cls.__name__) group.add_argument( "--model.language-modeling.general-gpt.model-name", type=str, default=None, choices=list(gpt_configs.keys()), help="Name of the generative transformer-based LM model. Defaults to None (i.e., user need to specify the model name.).", ) group.add_argument( "--model.language-modeling.general-gpt.max-context-length", type=int, default=None, help="Maximum context length. Defaults to None (i.e., user needs to specify the maximum contenxt length value.).", ) group.add_argument( "--model.language-modeling.general-gpt.vocab-size", type=int, default=None, help="Vocabulary size. Defaults to None (i.e., user needs to specify the vocabulary size.).", ) group.add_argument( "--model.language-modeling.general-gpt.padding-index", type=int, default=None, help="Padding index. Defaults to None (i.e., no padding).", ) return parser def forward( self, model_input: Union[Tensor, Dict[str, Tensor]] ) -> Union[Tensor, Dict[str, Tensor]]: """Forward function of GPT model. Args: model_input: Input to the model. It can be a tensor or a dictionary. In case of a tensor, the expected shape is [batch size, sequence length]. In case of a dictionary, the expected keys are 'input_ids', 'past_keys', 'past_values', 'use_kv_cache', and 'is_causal'. The shape of the values for each key is: { "input_ids": [batch size, sequence length], "past_keys": [ [batch size, number of key heads, sequence length, head dimension] ]* number of transformer layers, "past_values": [ [batch size, number of value heads, sequence length, head dimension] ] * number of transformer layers, "use_kv_cache": boolean, "is_causal": boolean, } where 'input_ids' represents input token indices. 'past_keys' and 'past_values' represents the cached tensor outputs of key and value branch in multi-head attention respectively. These values can be None. 'use_kv_cache' indicates to use KV caching or not. 'is_causal' indicates to use causal masking in scaled dot-product attention or not. Returns: Output of the model. 1. When 'use_kv_cache' is enabled, a dictionary with 'logits', 'past_keys', and 'past_values' is returned. The expected shape of the values is { "logits": [batch size, sequence length, vocabular size], "past_keys": [ [batch size, number of key heads, sequence length, head dimension] ] * number of transformer layers, "past_values": [ [batch size, number of value heads, sequence length, head dimension] ] * number of transformer layers, } 2. Logits tensor is returned. The shape of logits tensor is [batch size, sequence length, vocabulary size]. ...note: 1. For pre-training, 'model_input' is typically a tensor. 2. For inference, we have two scenarios. 2.a. Processing prefix or prompt: When dealing with a prefix or prompt, it is expected that the 'sequence length' is more than one and past keys or values are None. If the intention of the user is to perform generation following a prefix, it's recommended to provide the prefix inputs as a dictionary, specifying 'use_kv_cache=True', 'is_causal=True', 'past_keys=None', and 'past_values=None'. Otherwise, users should pass token indices as a tensor. 2.b. Generation: In this case, 'sequence length' should be one. In other words, one token is generated at a time with KV caching. Ideally, when using KV caching, 'is_causal' should be set to False. The generation logic may vary from task to task and we rely on user for correctly passing the inputs. """ if isinstance(model_input, dict): expected_input_keys = { "input_ids", "past_keys", "past_values", "use_kv_cache", "is_causal", } assert expected_input_keys == set( model_input.keys() ), f"Model input does not contain all keys. Expected keys are {expected_input_keys}, but got {set(model_input.keys())}." input_ids = model_input["input_ids"] past_keys = model_input["past_keys"] past_values = model_input["past_values"] use_kv_cache = model_input["use_kv_cache"] is_causal = model_input["is_causal"] if past_keys is None: assert past_values is None past_keys = [None] * self.num_transformer_layers past_values = [None] * self.num_transformer_layers elif isinstance(model_input, Tensor): input_ids = model_input past_keys = [None] * self.num_transformer_layers past_values = [None] * self.num_transformer_layers use_kv_cache = False is_causal = True else: raise NotImplementedError( f"Supported input types are either Tensor or Dictionary. Got: {type(model_input)}." ) x = self.token_embeddings(input_ids) for layer_idx in range(self.num_transformer_layers): past_keys_layer_i = past_keys[layer_idx] past_values_layer_i = past_values[layer_idx] x, past_keys_layer_i, past_values_layer_i = self.layers[layer_idx]( x, past_keys_layer_i, past_values_layer_i, use_kv_cache, is_causal ) # update the kv cache past_keys[layer_idx] = past_keys_layer_i past_values[layer_idx] = past_values_layer_i x = self.norm(x) if self.classifier is None: logits = F.linear(x, weight=self.token_embeddings.weight) else: logits = self.classifier(x) if use_kv_cache: return { "logits": logits, "past_keys": past_keys, "past_values": past_values, } else: return logits def get_fsdp_wrap_policy( self, ) -> Callable[[torch.nn.Module, bool, int], bool]: """Returns the FSDP policy.""" general_gpt_auto_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={TransformerDecoderLayer}, ) return general_gpt_auto_wrap_policy def get_activation_checkpoint_submodule_class(self) -> Callable: """Returns the layer that should be used for activation checkpointing.""" return TransformerDecoderLayer def reset_parameters(self, model_config: GPTConfig) -> None: """Initialize the parameters of language model. Args: model_config: Model configuration. """ for module in self.modules(): if isinstance(module, (LinearLayer, nn.Linear)): std = module.in_features**-0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, (nn.Embedding, Embedding)): std = module.embedding_dim**-0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) elif isinstance(module, norm_layers_tuple): if module.weight is not None: torch.nn.init.ones_(module.weight) if hasattr(module, "bias") and module.bias is not None: torch.nn.init.zeros_(module.bias) model_dim = model_config.model_dim n_layers = model_config.num_transformer_layers # standard deviation of output layers in transformer block is scaled, # following https://arxiv.org/pdf/2205.01068.pdf std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5) for param_name, param in self.named_parameters(): if param_name.endswith("out_proj.weight") or param_name.endswith( "ffn.proj_2.weight" ): torch.nn.init.normal_(param, mean=0.0, std=std)
dbad29ee9f5e9d8331d174291430f2e8
{ "intermediate": 0.35025927424430847, "beginner": 0.3643319606781006, "expert": 0.28540876507759094 }
48,129
am running a django project under django rest framework and running it with runserver , i set a static folder to server an excel file under it to react frontend and set allowed_cors to all , when react tries to fetch the file from the static path ( localhost/static/excel_file ) it return a has been blocked by CORS cuz no access contro;: aallow origin header is present on the requested resource , how can i fix it ?
b965e7e70fd61bf75aadc300d2b91b60
{ "intermediate": 0.8267281651496887, "beginner": 0.08556053787469864, "expert": 0.08771131187677383 }
48,130
In this exercise, we are going to look at creating a Superclass / Subclass relationship for Students. Our superclass will be the Student class and contain the following instance variables: String name - Student’s first and last name int id - Student’s ID number double gpa - Student’s GPA Our subclass will be StudentAthlete and contain the following instance variables: String sport - Name of sport student plays String level - The level at which the student plays (varsity, junior varsity, etc) For this exercise, you will focus on the constructors for both classes. Remember that your subclass constructor needs to call the superclass constructor, so make sure you have the parameters to do that. Note: For the autograder, your constructor needs to list the parameters in the order they are listed above. The classes will have getters and a toString, but no setters. You can use these to test, but do not need to alter them. Once completed, create two students as noted in the StudentTester class. public class Student { private String name; private int id; private double gpa; // Constructor goes here public String getName(){ return name; } public int getID(){ return id; } public double getGPA(){ return gpa; } public String toString(){ return name + " (" + id + ")"; } } public class StudentAthlete extends Student { private String sport; private String level; // Add the constructor here public String getSport(){ return sport; } public String getLevel(){ return level; } @Override public String toString(){ return super.toString() + " plays " + sport; } } public class StudentTester { public static void main(String[] args) { /** * Create a student with id # 123987, GPA: 2.56 */ /** * Create a student athlete with id # 987456, GPA: 3.47, * who plays lacrosse for the varsity team */ // Print out both objects } }
a72bc1a6a2b923aa1df839ca0e959239
{ "intermediate": 0.23127776384353638, "beginner": 0.5463882684707642, "expert": 0.2223338931798935 }
48,131
User const UploadModal: React.FC<UploadModalProps> = ({ open, onClose, files }) => { const onFileUpload = () => { files.forEach(file => { const uploadTask = ref(storage, `uploads/${file.name}`).put(file); uploadTask.on( "state_changed", snapshot => {}, error => { console.error('Upload failed', error); }, () => { uploadTask.snapshot.ref.getDownloadURL().then(downloadURL => { console.log('File available at', downloadURL); // Here, you can now save the downloadURL to your database or state for sharing }); } ); }); }; return ( <Modal open={open} onClose={onClose} aria-labelledby="upload-modal-title" aria-describedby="upload-modal-description" > <Box sx={modalStyle}> <Button onClick={onFileUpload} disabled={files.length === 0}>Upload Files</Button> </Box> </Modal> ); }; export default UploadModal; Add a MUI based progress circle, a check mark transition if its successful followed by the link, and a X if there is an error uploading followed by the error message. Additionally, I am using firebase auth, so use the unique uid from firebases const uid = user.uid; provided by auth.currentUser to upload files into a uid/file name folder.
e5d699e58e3e744dbac0f56cc56abfa9
{ "intermediate": 0.4697251617908478, "beginner": 0.3119722902774811, "expert": 0.21830259263515472 }
48,132
can you give me a python code for implementing tabnet
7ac0fadde61c3cec82c7ea2bc5bb304a
{ "intermediate": 0.48116442561149597, "beginner": 0.15523484349250793, "expert": 0.3636007606983185 }
48,133
suddenly with no reason after the project was worked successfully, i tried to serve again give me this D:\projects\oms_admin\node_modules\webpack-sources\lib\SizeOnlySource.js:16 return new Error( ^ Error: Content and Map of this Source is not available (only size() is supported) at SizeOnlySource._error (D:\projects\oms_admin\node_modules\webpack-sources\lib\SizeOnlySource.js:16:10) at SizeOnlySource.buffer (D:\projects\oms_admin\node_modules\webpack-sources\lib\SizeOnlySource.js:30:14) at _isSourceEqual (D:\projects\oms_admin\node_modules\@angular-devkit\build-angular\node_modules\webpack\lib\util\source.js:21:51) at isSourceEqual (D:\projects\oms_admin\node_modules\@angular-devkit\build-angular\node_modules\webpack\lib\util\source.js:43:17) at Compilation.emitAsset (D:\projects\oms_admin\node_modules\@angular-devkit\build-angular\node_modules\webpack\lib\Compilation.js:4253:9) at D:\projects\oms_admin\node_modules\@angular-devkit\build-angular\node_modules\webpack\lib\Compiler.js:566:28 at D:\projects\oms_admin\node_modules\@angular-devkit\build-angular\node_modules\webpack\lib\Compiler.js:1200:17 at eval (eval at create (D:\projects\oms_admin\node_modules\tapable\lib\HookCodeFactory.js:33:10), <anonymous>:13:1) at processTicksAndRejections (node:internal/process/task_queues:95:5) at runNextTicks (node:internal/process/task_queues:64:3)
57abb8d05de409192e8c9769cc1e57ac
{ "intermediate": 0.5322514772415161, "beginner": 0.23960137367248535, "expert": 0.22814717888832092 }
48,134
I would like to build a WP plugin to get familiar with WP, I don't have much experience with PHP
4e206c43f99530f972be2711a9c0fe0b
{ "intermediate": 0.5601149797439575, "beginner": 0.23322321474552155, "expert": 0.20666180551052094 }
48,135
I would like to build a WP plugin to get familiar with WP, I don’t have much experience with PHP what should i build?
8ee1d564b9af5e7e6c49939a99c0a415
{ "intermediate": 0.5390779972076416, "beginner": 0.31684499979019165, "expert": 0.14407697319984436 }
48,136
how to make something liek this [ "test item", "test category" : { "test item 2" } ]
1aadf2ac7de2bc7bc15f34f2220453a9
{ "intermediate": 0.3090571165084839, "beginner": 0.32061269879341125, "expert": 0.370330274105072 }
48,137
move ngb modal dialog to center of screen horizontally, it approximately move to left
17b47affd2bea8f52cc87e7b87991944
{ "intermediate": 0.36236611008644104, "beginner": 0.2024621069431305, "expert": 0.43517184257507324 }
48,138
c#: i have a lot of servers and i have chat between servers like player joins player one and can send messages to other servers, what should i use for this dublex messaaging or how to name that? connections should be constanly established between servers and not only chatmessages are sent between
e7fa7376dfa273e43c15d9fdc800c898
{ "intermediate": 0.46295416355133057, "beginner": 0.2583869993686676, "expert": 0.2786588966846466 }
48,139
convert mssql table to entity framework - "CREATE TABLE [dbo].[ObjectInCategory]( [ObjectId] [uniqueidentifier] NOT NULL, [ObjectTypeId] [uniqueidentifier] NOT NULL, [IsDeleted] [bit] NOT NULL, [CreationDate] [datetime] NOT NULL, [DeleteDate] [datetime] NOT NULL, [Ts] [timestamp] NOT NULL, [ObjectInCategoryId] [uniqueidentifier] NOT NULL, [CategoryId] [uniqueidentifier] NOT NULL)"
80379c41d85498b4e68b68c38e948024
{ "intermediate": 0.5225460529327393, "beginner": 0.23452189564704895, "expert": 0.2429320365190506 }
48,140
Convert to entity framework - "CREATE TABLE [dbo].[ElementPath]( [Path] [varchar](500) NULL, [ElementId] [uniqueidentifier] NULL )"
b097639ed2bb3153169d5f4e2495fe7e
{ "intermediate": 0.46537306904792786, "beginner": 0.241585373878479, "expert": 0.29304152727127075 }
48,141
I am trying to make a chat interface in wxWidgets C++ project, how would you tackle that? I want the left side panel to have the conversations and the rest I want to have the current selected chat. What widgets would you use to do this? How would you represent the conversations of the two participants and how would you differenciate between them?
518c3b2f6a146f754a5300b456caedd3
{ "intermediate": 0.5176844000816345, "beginner": 0.217820942401886, "expert": 0.26449474692344666 }
48,142
이뜌링 모음집 - 2021-06-15 221401 이뜌링 모음집 - 23106 t 이뜌링 모음집 - 23107 t 이뜌링 모음집 - 23108 t 이런 목록의 버튼을 눌리는 consol code를 만들고 싶다. 도와줘 아래는 해당 HTML을 가져왔다. <div class="mg-blog-post-box"><div class="mg-header"><div class="mg-blog-category"><div class="mg-blog-category"><a class="newsup-categories category-color-1" href="https://s7.watchfreejavonline.co/category/live-webcam-korean-bj/" alt="View all posts in Korean"> Korean </a></div></div><h1 class="title single"> <a title="Permalink to: 이뜌링 모음집"> 이뜌링 모음집</a></h1><div class="media mg-info-author-block"><div class="media-body"></div></div></div><article class="small single"><section id="custom_html-72" class="widget_text widget widget_custom_html"><div class="textwidget custom-html-widget"><div class="banners-container"><div class="banner"> <script data-cfasync="false" type="text/javascript" src="//pk910324e.com/lv/esnk/2004265/code.js" async="" class="__clb-2004265"></script> </div></div></div></section><div class="video_player"><iframe src="https://xxembed.com/p/12z4l8" frameborder="0" marginwidth="0" marginheight="0" scrolling="NO" width="640" height="360" allowfullscreen="" __idm_id__="65537"></iframe> <script>var vid1 = "<IFRAME SRC=\"https:\/\/xxembed.com\/p\/12z4l8\" FRAMEBORDER=0 MARGINWIDTH=0 MARGINHEIGHT=0 SCROLLING=NO WIDTH=640 HEIGHT=360 allowfullscreen><\/IFRAME>"; $(document).ready(function(){ //$('.video_player > iframe').remove(); $("#reload_button").hide(); // hide refresh button at start $('.img_player').click(function(){ // Add Ad //window.open("https://satisfactorilybewitchgreatness.com/wfm9wreipd?key=b29bfe175a8e73930083198952d02d09"); $('.img_player').hide(); $('.video_player').prepend(vid1); $("#reload_button").show(); }); $("#reload_button").click(function() { $('.video_player > iframe').remove(); $('.video_player').prepend(vid1); }); });</script> <img class="img_player" src="/wp-content/uploads/2020/09/playvideo.png" width="100%" style="display: none;"><div style="text-align: center;"> <a class="btn btn-success" href="https://link-to.net/1077184/592.0079368689959/dynamic/?r=aHR0cHM6Ly94eGVtYmVkLmNvbS9wLzEyejRsOA==" target="_blank" _target="blank">다운로드</a> <i id="reload_button" class="fa fa-refresh" aria-hidden="true" style="background-color: red; padding: 10px; border-radius: 50%; color: white; font-size: 24px;"></i></div></div><p><img fetchpriority="high" decoding="async" class="alignnone size-medium wp-image-79619" src="https://s7.watchfreejavonline.co/wp-content/uploads/2024/04/이뜌링-모음집추가자료-사카시섹-영상-225x300.jpg" alt="" width="225" height="300" srcset="https://s7.watchfreejavonline.co/wp-content/uploads/2024/04/이뜌링-모음집추가자료-사카시섹-영상-225x300.jpg 225w, https://s7.watchfreejavonline.co/wp-content/uploads/2024/04/이뜌링-모음집추가자료-사카시섹-영상-768x1024.jpg 768w, https://s7.watchfreejavonline.co/wp-content/uploads/2024/04/이뜌링-모음집추가자료-사카시섹-영상.jpg 1108w" sizes="(max-width: 225px) 100vw, 225px"></p><p>&nbsp;</p> <script>function pinIt() { var e = document.createElement('script'); e.setAttribute('type','text/javascript'); e.setAttribute('charset','UTF-8'); e.setAttribute('src','https://assets.pinterest.com/js/pinmarklet.js?r='+Math.random()*99999999); document.body.appendChild(e); }</script> <div class="post-share"><div class="post-share-icons cf"> <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fs7.watchfreejavonline.co%2F%25ec%259d%25b4%25eb%259c%258c%25eb%25a7%2581-%25eb%25aa%25a8%25ec%259d%258c%25ec%25a7%2591%25ec%25b6%2594%25ea%25b0%2580%25ec%259e%2590%25eb%25a3%258c-%25ec%2582%25ac%25ec%25b9%25b4%25ec%258b%259c%25ec%2584%25b9-%25ec%2598%2581%25ec%2583%2581%2F" class="link facebook" target="_blank"> <i class="fab fa-facebook"></i></a> <a href="http://twitter.com/share?url=https%3A%2F%2Fs7.watchfreejavonline.co%2F%25ec%259d%25b4%25eb%259c%258c%25eb%25a7%2581-%25eb%25aa%25a8%25ec%259d%258c%25ec%25a7%2591%25ec%25b6%2594%25ea%25b0%2580%25ec%259e%2590%25eb%25a3%258c-%25ec%2582%25ac%25ec%25b9%25b4%25ec%258b%259c%25ec%2584%25b9-%25ec%2598%2581%25ec%2583%2581%2F&amp;text=%E1%84%8B%E1%85%B5%E1%84%84%E1%85%B2%E1%84%85%E1%85%B5%E1%86%BC%20%E1%84%86%E1%85%A9%E1%84%8B%E1%85%B3%E1%86%B7%E1%84%8C%E1%85%B5%E1%86%B8%5B%E1%84%8E%E1%85%AE%E1%84%80%E1%85%A1%E1%84%8C%E1%85%A1%E1%84%85%E1%85%AD%20%E1%84%89%E1%85%A1%E1%84%8F%E1%85%A1%E1%84%89%E1%85%B5%2B%E1%84%89%E1%85%A6%E1%86%A8%20%E1%84%8B%E1%85%A7%E1%86%BC%E1%84%89%E1%85%A1%E1%86%BC%5D" class="link x-twitter" target="_blank"> <i class="fa-brands fa-x-twitter"></i></a> <a href="mailto:?subject=이뜌링%20모음집%5B추가자료%20사카시+섹%20영상%5D&amp;body=https%3A%2F%2Fs7.watchfreejavonline.co%2F%25ec%259d%25b4%25eb%259c%258c%25eb%25a7%2581-%25eb%25aa%25a8%25ec%259d%258c%25ec%25a7%2591%25ec%25b6%2594%25ea%25b0%2580%25ec%259e%2590%25eb%25a3%258c-%25ec%2582%25ac%25ec%25b9%25b4%25ec%258b%259c%25ec%2584%25b9-%25ec%2598%2581%25ec%2583%2581%2F" class="link email" target="_blank"> <i class="fas fa-envelope"></i></a><a href="https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fs7.watchfreejavonline.co%2F%25ec%259d%25b4%25eb%259c%258c%25eb%25a7%2581-%25eb%25aa%25a8%25ec%259d%258c%25ec%25a7%2591%25ec%25b6%2594%25ea%25b0%2580%25ec%259e%2590%25eb%25a3%258c-%25ec%2582%25ac%25ec%25b9%25b4%25ec%258b%259c%25ec%2584%25b9-%25ec%2598%2581%25ec%2583%2581%2F&amp;title=%E1%84%8B%E1%85%B5%E1%84%84%E1%85%B2%E1%84%85%E1%85%B5%E1%86%BC%20%E1%84%86%E1%85%A9%E1%84%8B%E1%85%B3%E1%86%B7%E1%84%8C%E1%85%B5%E1%86%B8%5B%E1%84%8E%E1%85%AE%E1%84%80%E1%85%A1%E1%84%8C%E1%85%A1%E1%84%85%E1%85%AD%20%E1%84%89%E1%85%A1%E1%84%8F%E1%85%A1%E1%84%89%E1%85%B5%2B%E1%84%89%E1%85%A6%E1%86%A8%20%E1%84%8B%E1%85%A7%E1%86%BC%E1%84%89%E1%85%A1%E1%86%BC%5D" class="link linkedin" target="_blank"> <i class="fab fa-linkedin"></i></a><a href="https://telegram.me/share/url?url=https%3A%2F%2Fs7.watchfreejavonline.co%2F%25ec%259d%25b4%25eb%259c%258c%25eb%25a7%2581-%25eb%25aa%25a8%25ec%259d%258c%25ec%25a7%2591%25ec%25b6%2594%25ea%25b0%2580%25ec%259e%2590%25eb%25a3%258c-%25ec%2582%25ac%25ec%25b9%25b4%25ec%258b%259c%25ec%2584%25b9-%25ec%2598%2581%25ec%2583%2581%2F&amp;text&amp;title=%E1%84%8B%E1%85%B5%E1%84%84%E1%85%B2%E1%84%85%E1%85%B5%E1%86%BC%20%E1%84%86%E1%85%A9%E1%84%8B%E1%85%B3%E1%86%B7%E1%84%8C%E1%85%B5%E1%86%B8%5B%E1%84%8E%E1%85%AE%E1%84%80%E1%85%A1%E1%84%8C%E1%85%A1%E1%84%85%E1%85%AD%20%E1%84%89%E1%85%A1%E1%84%8F%E1%85%A1%E1%84%89%E1%85%B5%2B%E1%84%89%E1%85%A6%E1%86%A8%20%E1%84%8B%E1%85%A7%E1%86%BC%E1%84%89%E1%85%A1%E1%86%BC%5D" class="link telegram" target="_blank"> <i class="fab fa-telegram"></i></a><a href="javascript:pinIt();" class="link pinterest"><i class="fab fa-pinterest"></i></a><a class="print-r" href="javascript:window.print()"> <i class="fas fa-print"></i></a></div></div><div class="clearfix mb-3"></div><nav class="navigation post-navigation" aria-label="Posts"><h2 class="screen-reader-text">Post navigation</h2><div class="nav-links"><div class="nav-previous"><a href="https://s7.watchfreejavonline.co/%ec%a7%9c%eb%af%b8-%eb%b0%a9%ec%85%80-%eb%aa%a8%ec%9d%8c/" rel="prev">짜미 방셀 모음<div class="fa fa-angle-double-right"></div><span></span></a></div><div class="nav-next"><a href="https://s7.watchfreejavonline.co/%ec%84%9c%eb%a6%b0%eb%b0%95%ec%86%8c%ec%97%b0/" rel="next"><div class="fa fa-angle-double-left"></div><span></span> 서린(박소연)</a></div></div></nav></article></div>
bbb6ac6491abdded33eba20316ad3aff
{ "intermediate": 0.27507302165031433, "beginner": 0.5232821106910706, "expert": 0.2016448676586151 }
48,143
How to read uncommited entity framework
df40265d7ff2125a146f135d61b50d85
{ "intermediate": 0.5265507698059082, "beginner": 0.2007337212562561, "expert": 0.2727155089378357 }
48,144
fix this python script : async def twin_range_filter(symbol, timeframe): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None # Ambil data candlestick dari MetaTrader candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 100) # Buat DataFrame dari data candlestick df = pd.DataFrame(candles) close = df['close'] def smoothrng(x, t, m): avrng = talib.EMA(np.abs(x.diff()), timeperiod=t) smoothrng = talib.EMA(avrng, timeperiod=t) * m return smoothrng.fillna(0) per1 = 27 mult1 = 1.6 per2 = 55 mult2 = 2.0 smrng1 = smoothrng(close, per1, mult1) smrng2 = smoothrng(close, per2, mult2) smrng = (smrng1 + smrng2) / 2 def rngfilt(x, r): rngfilt = x.copy() rngfilt = rngfilt.ffill() for i in range(1, len(x)): prev_val = rngfilt.iloc[i-1] if x.iloc[i] > prev_val: rngfilt.iloc[i] = max(prev_val, x.iloc[i] - r.iloc[i]) else: rngfilt.iloc[i] = min(prev_val, x.iloc[i] + r.iloc[i]) return rngfilt filt = rngfilt(close, smrng) STR = filt + smrng STS = filt - smrng FUB = np.zeros(len(df)) FLB = np.zeros(len(df)) FUB[0] = STR.iloc[0] FLB[0] = STS.iloc[0] for i in range(1, len(df)): FUB[i] = np.where((STR[i] < STR[i-1]) | (close[i-1] > FUB[i-1]), STR[i], FUB[i-1]) FLB[i] = np.where((STS[i] > STS[i-1]) | (close[i-1] < FLB[i-1]), STS[i], FLB[i-1]) TRF = np.zeros(len(df)) TRF[0] = FUB[0] # Initialize TRF with the first value of FUB for i in range(1, len(df)): if (np.roll(TRF, 1)[i] == FUB[i]) and (close[i] <= FUB[i]): TRF[i] = FUB[i] elif (np.roll(TRF, 1)[i] == FUB[i]) and (close[i] >= FUB[i]): TRF[i] = FLB[i] elif (np.roll(TRF, 1)[i] == FLB[i]) and (close[i] >= FLB[i]): TRF[i] = FLB[i] elif (np.roll(TRF, 1)[i] == FLB[i]) and (close[i] <= FLB[i]): TRF[i] = FUB[i] else: TRF[i] = FUB[i] # Default to FUB if none of the conditions match long_signal = (close > np.roll(TRF, 1)) short_signal = (close < np.roll(TRF, 1)) df['TRF'] = TRF df['long_signal'] = long_signal df['short_signal'] = short_signal # Filtering signals to print: if df.iloc[-1]['long_signal']: print("Current signal: BUY") elif df.iloc[-1]['short_signal']: print("Current signal: SELL") else: print("No clear signal"),,,,,, bcs the signal generate from this script not same with pine script from trading view indicator, this script : // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ //@version=5 indicator(title='Twin Range Filter', overlay=true, timeframe='') source = input(defval=close, title='Source') showsignals = input(title='Show Buy/Sell Signals ?', defval=true) per1 = input.int(defval=27, minval=1, title='Fast period') mult1 = input.float(defval=1.6, minval=0.1, title='Fast range') per2 = input.int(defval=55, minval=1, title='Slow period') mult2 = input.float(defval=2, minval=0.1, title='Slow range') smoothrng(x, t, m) => wper = t * 2 - 1 avrng = ta.ema(math.abs(x - x[1]), t) smoothrng = ta.ema(avrng, wper) * m smoothrng smrng1 = smoothrng(source, per1, mult1) smrng2 = smoothrng(source, per2, mult2) smrng = (smrng1 + smrng2) / 2 rngfilt(x, r) => rngfilt = x rngfilt := x > nz(rngfilt[1]) ? x - r < nz(rngfilt[1]) ? nz(rngfilt[1]) : x - r : x + r > nz(rngfilt[1]) ? nz(rngfilt[1]) : x + r rngfilt filt = rngfilt(source, smrng) upward = 0.0 upward := filt > filt[1] ? nz(upward[1]) + 1 : filt < filt[1] ? 0 : nz(upward[1]) downward = 0.0 downward := filt < filt[1] ? nz(downward[1]) + 1 : filt > filt[1] ? 0 : nz(downward[1]) STR = filt + smrng STS = filt - smrng FUB = 0.0 FUB := STR < nz(FUB[1]) or close[1] > nz(FUB[1]) ? STR : nz(FUB[1]) FLB = 0.0 FLB := STS > nz(FLB[1]) or close[1] < nz(FLB[1]) ? STS : nz(FLB[1]) TRF = 0.0 TRF := nz(TRF[1]) == FUB[1] and close <= FUB ? FUB : nz(TRF[1]) == FUB[1] and close >= FUB ? FLB : nz(TRF[1]) == FLB[1] and close >= FLB ? FLB : nz(TRF[1]) == FLB[1] and close <= FLB ? FUB : FUB long = ta.crossover(close, TRF) short = ta.crossunder(close, TRF) plotshape(showsignals and long, title='Long', text='BUY', style=shape.labelup, textcolor=color.white, size=size.tiny, location=location.belowbar, color=color.rgb(0, 19, 230)) plotshape(showsignals and short, title='Short', text='SELL', style=shape.labeldown, textcolor=color.white, size=size.tiny, location=location.abovebar, color=color.rgb(0, 19, 230)) alertcondition(long, title='Long', message='Long') alertcondition(short, title='Short', message='Short') Trfff = plot(TRF) mPlot = plot(ohlc4, title='', style=plot.style_circles, linewidth=0) longFillColor = close > TRF ? color.green : na shortFillColor = close < TRF ? color.red : na fill(mPlot, Trfff, title='UpTrend Highligter', color=longFillColor, transp=90) fill(mPlot, Trfff, title='DownTrend Highligter', color=shortFillColor, transp=90)
f686f9f3cd9f75ae23e83c177541464b
{ "intermediate": 0.3431336283683777, "beginner": 0.39342987537384033, "expert": 0.26343652606010437 }
48,145
entity framework add read uncommited to every query entity framework
e5ff87c11d2702448c903322c0810f59
{ "intermediate": 0.644354522228241, "beginner": 0.21372148394584656, "expert": 0.1419239491224289 }
48,146
entity framework set read uncommited to data context entity framework
015427bd411f0d40f6c2bbeac14542c9
{ "intermediate": 0.5572892427444458, "beginner": 0.2541193664073944, "expert": 0.18859143555164337 }
48,147
play typing of the dead on linux
fb3ae0a1c94f68926ae19f421b450738
{ "intermediate": 0.30916693806648254, "beginner": 0.41596680879592896, "expert": 0.2748662233352661 }
48,148
现在给你很多的大表,现在请你写hivesql来统一判断哪些表是空的,哪些表是不为空的,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
e6dbb3b8dbaa828b42f47e90064e8a1d
{ "intermediate": 0.33905577659606934, "beginner": 0.43175485730171204, "expert": 0.22918936610221863 }
48,149
whats a query string parameters? what is nc=1? and how to send them via python's requests?
9d5c3c8038688d69194263c951b868ac
{ "intermediate": 0.6273849606513977, "beginner": 0.17382800579071045, "expert": 0.19878706336021423 }
48,150
ossim server linux server scan username password and private key. on private key are password protected
69b5d4f65d4cb941848f5533715fa1b5
{ "intermediate": 0.35762256383895874, "beginner": 0.1887214183807373, "expert": 0.45365604758262634 }
48,151
using System; using PlayerScript.Input; using UnityEngine; namespace PlayerScript { public class PlayerCamera : MonoBehaviour { public event Action<float> OnCameraRotate; private static PlayerCamera s_Instance { get; set; } public static PlayerCamera Instance => s_Instance; public Transform target; public float maxDistance = 10f; public float sens = 1f; public float verticalOffset = 2f; public float collisionRadius = 0.2f; private Vector3 _offset; private float _xRotation; private float _yRotation; private void Awake() { s_Instance = this; } private void Start() { Cursor.visible = false; Cursor.lockState = CursorLockMode.Locked; _offset = transform.position - target.position; } private void Update() { var lookInput = PlayerInput.Instance.Look; Rotate(lookInput); } private void Rotate(Vector2 look) { _xRotation += look.y * Time.deltaTime * sens; _xRotation = Mathf.Clamp(_xRotation, -45f, 45f); _yRotation += look.x * Time.deltaTime * sens; transform.localRotation = Quaternion.Euler(_xRotation, 0, 0); target.localRotation = Quaternion.Euler(0, _yRotation, 0); var newPosition = target.position + target.TransformDirection(Vector3.forward * _offset.magnitude); newPosition.y += verticalOffset * Mathf.Sin(_xRotation * Mathf.Deg2Rad); if (Physics.SphereCast(target.position, collisionRadius, -transform.forward, out var hit, maxDistance, -1)) { newPosition = hit.point + hit.normal * collisionRadius; } else { newPosition = target.position + target.TransformDirection(_offset); newPosition.y += verticalOffset * Mathf.Sin(_xRotation * Mathf.Deg2Rad); } transform.position = newPosition; OnCameraRotate?.Invoke(_yRotation); } } } исправь, сделай колизию лучше
6cd22e539555f428fd371f9ba3d7a53a
{ "intermediate": 0.32165947556495667, "beginner": 0.3886631727218628, "expert": 0.2896774411201477 }
48,152
现在给你很多的大表,现在请你写hivesql来统一判断哪些表是空的,哪些表是不为空的,记住要判断所有的表,不要遗漏,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
f89a0202cdccb3f5d39ba4fc7b4808ce
{ "intermediate": 0.31844618916511536, "beginner": 0.46480926871299744, "expert": 0.216744527220726 }
48,153
现在给你很多的大表,现在请你写hivesql来统一判断每一张表哪些表是空的,哪些表是不为空的,记住要判断所有的表,不要遗漏,不要省略任何的表,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
d7e4118c42f5a11714cf8508dd8b28c3
{ "intermediate": 0.27771130204200745, "beginner": 0.42535701394081116, "expert": 0.2969317138195038 }
48,154
detect the text from image without pytessract, option to select image using tkinter
f93ddcaa0d88c23b6307f0d53d01feba
{ "intermediate": 0.34648337960243225, "beginner": 0.11261957883834839, "expert": 0.5408970713615417 }
48,155
现在给你很多的大表,现在请你写hivesql来统一判断每一张表哪些表是空的,哪些表是不为空的,记住要判断所有的表,不要遗漏不要省略,也不要写脚本,只写hivesql就好,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
07f05576c58e06d8b6ce2324fd5ae5e6
{ "intermediate": 0.32218194007873535, "beginner": 0.42789456248283386, "expert": 0.2499234527349472 }
48,156
现在给你很多的大表,现在请你写完整的hivesql来统一判断每一张表哪些表是空的,哪些表是不为空的,记住要判断所有的表,不要遗漏不要省略,也不要写脚本,只写hivesql就好,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
d1c4103da82bf8f2037ded2fdcfbdc5d
{ "intermediate": 0.26017090678215027, "beginner": 0.5260268449783325, "expert": 0.2138022631406784 }
48,157
i have this now: response = session.post(url, data=payload, headers=headers, files={'file[]': ('image.png', files)}) what if i dont want to send any files? what code would that be?
8f1566c6b3af70d131e64bf398bbd4c7
{ "intermediate": 0.5740837454795837, "beginner": 0.23329457640647888, "expert": 0.19262169301509857 }
48,158
以下是hivesql判断一张表是否为空的:学习下面的hivesql:SELECT 'hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in' as table_name, CASE WHEN COUNT(1) > 0 THEN 'Not empty' ELSE 'empty' END as status FROM (SELECT 1 FROM hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in where dt='2024-04-25' LIMIT 1) t
f29819489c4a360cc421d4798a031ff9
{ "intermediate": 0.3484835922718048, "beginner": 0.37530580163002014, "expert": 0.27621060609817505 }
48,159
以下是hivesql判断一张表是否为空的:学习下面的hivesql:SELECT ‘hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in’ as table_name, CASE WHEN COUNT(1) > 0 THEN ‘Not empty’ ELSE ‘empty’ END as status FROM (SELECT 1 FROM hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in where dt=‘2024-04-25’ LIMIT 1) t
0ab4c09d8a3cc58fa6879feed98ddbdc
{ "intermediate": 0.33117178082466125, "beginner": 0.36566829681396484, "expert": 0.3031599223613739 }
48,160
以下是hivesql判断一张表是否为空的:学习下面的hivesql:SELECT ‘hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in’ as table_name, CASE WHEN COUNT(1) > 0 THEN ‘Not empty’ ELSE ‘empty’ END as status FROM (SELECT 1 FROM hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in where dt=‘2024-04-25’ LIMIT 1) t
45ca1e3a1ba266faf8df29b3d7c1702d
{ "intermediate": 0.33117178082466125, "beginner": 0.36566829681396484, "expert": 0.3031599223613739 }
48,161
Vue 3 element plus. How to validate form on mount
7130a895613e7ee97bbb95fb2b71d511
{ "intermediate": 0.4764839708805084, "beginner": 0.23880818486213684, "expert": 0.28470781445503235 }
48,162
hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in。以上是一些库表名,格式是“库名.表名”。现在希望你把上面的格式改成:hll_compare.库名__表名
a90d9cf1d22aa982afc65ba12df68d04
{ "intermediate": 0.35972192883491516, "beginner": 0.2555314302444458, "expert": 0.3847466707229614 }
48,163
Write a persuasive essay on why the 1st amendment is the most important Amendment to the U.S. Constitution: Amendment Include three reasons to support your thesis. Suggested Organization: Paragraph 1 - Introduction and thesis statement Paragraph 2 - Reason 1 and argument Paragraph 3 - Reason 2 and argument Paragraph 4 - Reason 3 and argument Paragraph 5 - Conclusion Write at least 300 words.
de6db05a91efb69c0985016ef795e965
{ "intermediate": 0.37556353211402893, "beginner": 0.2765560746192932, "expert": 0.34788036346435547 }
48,164
import asyncio import sys import numpy as np from datetime import datetime import MetaTrader5 as mt5 import talib import pandas as pd from telegram import Bot ## Telegram ---------------------------- TOKEN = '6015612448:AAFGB5C35wkCItukxTEJrWY3gyqZy-iK5r4' CHAT_ID = '882283026' bot = Bot(TOKEN) ## Metatrader ---------------------------- # login = 116237638 # server = "Exness-MT5Trial6" login = 124385496 server = "Exness-MT5Trial7" password = "748798lokaldeN#" symbol = "XAUUSDm" volume = 0.01 ## Timing ---------------------------- timeframe = mt5.TIMEFRAME_M5 trend_macd = mt5.TIMEFRAME_M5 trend_tf = mt5.TIMEFRAME_M15 time_candle = 30 #second 3 min = 180s, 5 Min = 300s, 15 min = 900s, 20 min = 1200s candle_close = 56 #timeframe in second comment = "testing" ## Message Telegram, Timer --------------------------------------------------------------------------------- async def send_message_async(message): await bot.send_message(chat_id=CHAT_ID, text=message) async def count_down(seconds): for i in range(seconds, 0, -1): print(i, end='', flush=True) await asyncio.sleep(1) print('\r', end='', flush=True) print("OK!") ## Checking Side For OP --------------------------------------------------------------------------------- async def macd(symbol, timeframe=trend_macd): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 500) df = pd.DataFrame(candles) macd, signal, hist = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) # print(f"MACD Line: {macd.iloc[-1]:.5f}") # print(f"Signal Line: {signal.iloc[-1]:.5f}") # print(f"MACD Histogram: {hist.iloc[-1]:.5f}") if macd.iloc[-1] > signal.iloc[-1]: print("MACD: Buy") await send_message_async("MACD: Buy") return "Buy" elif macd.iloc[-1] < signal.iloc[-1]: print("MACD: Sell") await send_message_async("MACD: Sell") return "Sell" async def twin_range_filter(symbol, timeframe=trend_tf): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 500) df = pd.DataFrame(candles) close = df['close'] def smoothrng(x, t, m): wper = t * 2 - 1 avrng = talib.EMA(np.abs(x.diff()), timeperiod=t) smoothrng = talib.EMA(avrng, timeperiod=wper) * m return smoothrng per1, mult1, per2, mult2 = 27, 1.6, 55, 2.0 smrng1 = smoothrng(close, per1, mult1) smrng2 = smoothrng(close, per2, mult2) smrng = (smrng1 + smrng2) / 2 def rngfilt(x, r): rngfilt = x.copy() for i in range(1, len(x)): prev_val = rngfilt.iloc[i-1] if x.iloc[i] > prev_val: rngfilt.iloc[i] = max(prev_val, x.iloc[i] - r.iloc[i]) else: rngfilt.iloc[i] = min(prev_val, x.iloc[i] + r.iloc[i]) return rngfilt filt = rngfilt(close, smrng) STR = filt + smrng STS = filt - smrng FUB = [STR.iloc[0]] FLB = [STS.iloc[0]] for i in range(1, len(df)): FUB.append(STR.iloc[i] if (STR.iloc[i] < STR.iloc[i-1]) or (close.iloc[i-1] > FUB[i-1]) else FUB[i-1]) FLB.append(STS.iloc[i] if (STS.iloc[i] > STS.iloc[i-1]) or (close.iloc[i-1] < FLB[i-1]) else FLB[i-1]) FUB = np.array(FUB) FLB = np.array(FLB) TRF = [FUB[0]] for i in range(1, len(df)): last_trf = TRF[-1] if (last_trf == FUB[i-1] and close.iloc[i] <= FUB[i]) or (last_trf == FLB[i-1] and close.iloc[i] <= FLB[i]): TRF.append(FUB[i]) elif (last_trf == FUB[i-1] and close.iloc[i] >= FUB[i]) or (last_trf == FLB[i-1] and close.iloc[i] >= FLB[i]): TRF.append(FLB[i]) else: TRF.append(FUB[i]) TRF = np.array(TRF) long_signal = (close > np.roll(TRF, 1))[1:] short_signal = (close < np.roll(TRF, 1))[1:] df['TRF'] = TRF df['long_signal'] = np.append([False], long_signal) df['short_signal'] = np.append([False], short_signal) if df.iloc[-1]['long_signal']: print("Trend: BUY") await send_message_async("Trend: Buy") return "Buy" elif df.iloc[-1]['short_signal']: print("Trend: SELL") await send_message_async("Trend: Sell") return "Sell" ## Condition for OP --------------------------------------------------------------------------------- async def detect_engulfing(symbol, timeframe): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None start_time = datetime.now() start_seconds = start_time.second wait_seconds = candle_close - start_seconds print("Waiting for candle to close. Sleeping for", wait_seconds, "seconds") await send_message_async(f"Waiting for candle to close: {wait_seconds} seconds") await count_down(wait_seconds) candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 2) df = pd.DataFrame(candles) for i in range(1, len(df)): current = df.iloc[i].copy() previous = df.iloc[i-1].copy() if np.abs(current['open'] - previous['close']) > 0.005: current['open'] = previous['close'] if previous['open'] > previous['close'] and \ current['close'] > current['open'] and \ current['close'] >= previous['open'] and \ previous['close'] >= current['open'] and \ current['close'] - current['open'] > previous['open'] - previous['close']: print("Bullish Engulfing") await send_message_async("Bullish Engulfing") return "Bullish Engulfing" elif previous['close'] > previous['open'] and \ current['open'] > current['close'] and \ current['open'] >= previous['close'] and \ previous['open'] >= current['close'] and \ current['open'] - current['close'] > previous['close'] - previous['open']: print("Bearish Engulfing") await send_message_async("Bearish Engulfing") return "Bearish Engulfing" else: print("No Engulfing") await send_message_async("No Engulfing") return "No Engulfing" async def parabolic_sar(symbol, timeframe): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 100) df = pd.DataFrame(candles) df['SAR'] = talib.SAR(df['high'], df['low'], acceleration=0.02, maximum=0.2) current_price = df['close'].iloc[-1] current_sar = df['SAR'].iloc[-1] if current_price > current_sar: print("Parabolic SAR: Bullish") await send_message_async("Parabolic SAR: Bullish") return "Bullish" else: print("Parabolic SAR: Bearish") await send_message_async("Parabolic SAR: Bearish") return "Bearish" async def bollinger_bands(symbol, timeframe): if not mt5.initialize(): print("initialize() failed, error code =", mt5.last_error()) return None candles = mt5.copy_rates_from_pos(symbol, timeframe, 0, 100) df = pd.DataFrame(candles) upper_band, middle_band, lower_band = talib.BBANDS(df['close'], timeperiod=20, nbdevup=2, nbdevdn=2, matype=0) current_close = df['close'].iloc[-1] # print(f"Upper Band: {upper_band.iloc[-1]:.5f}") # print(f"Middle Band: {middle_band.iloc[-1]:.5f}") # print(f"Lower Band: {lower_band.iloc[-1]:.5f}") deviation = 0.5 if upper_band.iloc[-1] - deviation <= current_close <= upper_band.iloc[-1] + deviation: print("Bollinger Bands: Price around upper band") await send_message_async("Bollinger Bands: Price around upper band") elif lower_band.iloc[-1] - deviation <= current_close <= lower_band.iloc[-1] + deviation: print("Bollinger Bands: Price around lower band") await send_message_async("Bollinger Bands: Price around lower band") elif current_close > upper_band.iloc[-1]: print("Bollinger Bands: Overbought") await send_message_async("Bollinger Bands: Overbought") elif current_close < lower_band.iloc[-1]: print("Bollinger Bands: Oversold") await send_message_async("Bollinger Bands: Oversold") elif current_close > middle_band.iloc[-1]: print("Bollinger Bands: Neutral UP") elif current_close < middle_band.iloc[-1]: print("Bollinger Bands: Neutral Down") ## OP --------------------------------------------------------------------------------- async def execute_trade(symbol, timeframe, order_type): engulfing = await detect_engulfing(symbol, timeframe) psar = await parabolic_sar(symbol, timeframe) if order_type == "buy" and engulfing == "Bullish Engulfing" and psar == "Bullish": await send_order(order_type=order_type) elif order_type == "sell" and engulfing == "Bearish Engulfing" and psar == "Bearish": await send_order(order_type=order_type) else: print("Bad Candles & SAR") await send_message_async("Bad Candles & SAR") await main() async def send_order(login=login, server=server, password=password, symbol=symbol, volume=volume, order_type=None): if not mt5.initialize(login=login, server=server, password=password): print("initialize() failed, error code =", mt5.last_error()) return positions = mt5.positions_get(symbol=symbol) for position in positions: if position.profit > 0: print("There's an open position with profit. New order will be canceled.") await send_message_async("Existing position is profitable. New order canceled.") mt5.shutdown() return action = mt5.TRADE_ACTION_DEAL order_type = mt5.ORDER_TYPE_BUY if order_type == "buy" else mt5.ORDER_TYPE_SELL result = mt5.order_send({ "action": action, "symbol": symbol, "volume": volume, "type": order_type, "price": mt5.symbol_info_tick(symbol).ask if order_type == mt5.ORDER_TYPE_BUY else mt5.symbol_info_tick(symbol).bid, "deviation": 20, "magic": 234000, "comment": comment, "type_time": mt5.ORDER_TIME_GTC, "type_filling": mt5.ORDER_FILLING_FOK, }) if result.retcode == mt5.TRADE_RETCODE_DONE: print("Order successful") await send_message_async("Order Position open") await count_down(3) else: print("Order failed") await send_message_async("Order Failed") await count_down(3) mt5.shutdown() ## Initial --------------------------------------------------------------------------------- async def main(): while True: try: await send_message_async("Waiting.....") macd_signal = await macd(symbol) trend_signal = await twin_range_filter(symbol) if macd_signal == "Buy" and trend_signal == "Sell": print("Wait Candle for Sell") await send_message_async("Wait Candle for Sell") await execute_trade(symbol, timeframe, order_type="sell") await count_down(5) elif macd_signal == "Sell" and trend_signal == "Buy": print("Wait Candle for Buy") await send_message_async("Wait Candle for Buy") await execute_trade(symbol, timeframe, order_type="buy") await count_down(5) else: print("No suitable conditions found for trade execution.") await send_message_async("Wait next MACD, No Trade open") await count_down(5) except Exception as e: print("An error occurred:", e) await send_message_async("An error occurred: " + str(e)) await count_down(5) continue # await twin_range_filter(symbol) # await macd(symbol, timeframe) # await bollinger_bands(symbol, timeframe) # await execute_trade(symbol, timeframe, order_type="sell") try: asyncio.run(main()) except KeyboardInterrupt: print(".....Script stopped by user. Exiting gracefully.....") sys.exit(0)
eeb5f3750ec5ae60d200eaf59fb5ed99
{ "intermediate": 0.38881534337997437, "beginner": 0.4451081156730652, "expert": 0.16607648134231567 }
48,165
 Use the following class to answer the question. public class Automobiles { private String myMandM; private int myNumPassengers; private double myEngineSize; private boolean isHybrid; public Automobiles() { myManoM = "none"; Which of the following lines of code does NOT compile? A. Automobiles a3 = new Automobiles("vw", 8.0, 285.6, true); B. Automobiles a2 = new Automobiles(); C. Automobiles a1 = new Automobiles("Nova", 4, 360.5, false); myNumPassengers = -1; myEngineSize = 0.0; isHybrid false; } public Automobiles (String m, int np, double es, boolean h) { } myMandM = m; myNumPassengers = np; myEngineSize = es; isHybrid=h; public String getMakeAndModel() { } return myMandM; public int getNumPassengers() { } return myNumPassengers; public double getEngineSize() { } return myEngineSize; public boolean getHybrid() { return isHybrid; } }
97406073ea4712c405ae27e951343bc5
{ "intermediate": 0.17165692150592804, "beginner": 0.6715929508209229, "expert": 0.1567501723766327 }
48,166
理解下面用hivesql判断表是否为空语句:SELECT ‘hll_compare.hll_dm__dm_app_point_motion_trend_v1_1h_in’ AS table_name , CASE WHEN COUNT(1) > 0 THEN ‘Not empty’ ELSE ‘empty’ END AS status FROM ( SELECT 1 FROM hll_compare.hll_dm__dm_app_point_motion_trend_v1_1h_in WHERE dt = ‘2024-04-25’ LIMIT 1 ) t。现在给你更多的表名,请你按照上面给你hivesql一样的判断方法来写hivesql。只需要更改表名,其他的不要改变。这些表是:hll_compare.hll_dm__dm_app_point_motion_trend_v1_1h_in hll_compare.hll_dwb__dwb_lbs_compass_expo_order_driver_area_1d_in hll_compare.hll_dwb__dwb_order_expose_chain_1d_in hll_compare.hll_dm__dm_compass_user_funnel_behavior_1d_in hll_compare.hll_dwb__dwb_sensor_driver_order_expo_click_slide_detail_1d_in
46c1a07aab8807602b3cc3afe994acef
{ "intermediate": 0.34320592880249023, "beginner": 0.3499491810798645, "expert": 0.3068448603153229 }
48,167
现在给你很多的大表,现在请你写hivesql来统一判断每一张表哪些表是空的,哪些表是不为空的,记住要判断所有的表,不要遗漏不要省略,这些大表的表名是下面这些:hll_dm.dm_app_point_motion_trend_v1_1h_in hll_dwb.dwb_lbs_compass_expo_order_driver_area_1d_in hll_dwb.dwb_order_expose_chain_1d_in hll_dm.dm_compass_user_funnel_behavior_1d_in hll_dwb.dwb_sensor_driver_order_expo_click_slide_detail_1d_in hll_dwb.dwb_driver_compass_funnel_expo_1d_in hll_dws.dws_user_order_create_ib_1d_tm hll_dws.dws_user_sensor_tags_1d_in hll_dm.dm_profile_driver_extend_1d_tm hll_dws.dws_user_order_executed_sc_1d_tm hll_dws.dws_user_order_create_sc_1d_tm hll_dws.dws_app_abtest_user_p1_1d_in hll_dm.dm_app_abtest_driver_idx_1d_in hll_dwb.dwb_driver_order_grab_1d_in hll_dws.dws_user_tag_operation_1d_tm hll_dm.dm_app_point_hot_words_v1_1h_in hll_dm.dm_multi_bus_user_idx_sum_p0_90d_1d_in hll_dws.dws_user_idx_sum_p0_90d_1d_in hll_dm.dm_app_abtest_user_idx_p1_1d_in hll_dws.dws_order_createdate_idx_p1_1d_in hll_dwb.dwb_user_compass_funnel_start_1d_in hll_dwb.dwb_lbs_compass_push_order_driver_area_1d_in hll_dwb.dwb_app_abtest_user_tags_p1_1d_in hll_dws.dws_driver_market_1d_tm hll_dwb.dwb_driver_grab_order_idx_city_funnel_base_1d_in hll_dws.dws_app_abtest_user_1d_in hll_dm.dm_app_abtest_user_idx_1d_in hll_bi_cf.dsp_duoyewu_kexin_kpi_city_final hll_dwb.dwb_driver_compass_funnel_push_1d_in hll_dwb.dwb_user_compass_funnel_evaluate_1d_in hll_dwb.dwb_user_tags_p1_1d_in hll_dws.dws_user_coupon_1d_tm hll_dws.dws_driver_common_idx_sum_p1_90d_1d_in hll_dws.dws_user_order_complete_move_wf_1d_tm hll_dws.dws_move_porter_login_orderexpo_1d_tm hll_dws.dws_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_order_1d_in hll_dwb.dwb_app_abtest_user_trade_order_1d_in hll_dwb.dwb_driver_order_complete_1d_in hll_dwb.dwb_app_abtest_user_aborder_1d_in hll_dwb.dwb_user_tags_1d_in hll_dws.dws_driver_order_grab_1d_tm hll_dws.dws_user_business_line_1d_tm hll_dwb.dwb_order_ltl_new_base_1d_tm hll_dwb.dwb_user_compass_funnel_order_1d_in hll_dwb.dwb_order_tags_p1_1d_in hll_dws.dws_order_idx_sum_p0_90d_1d_in hll_dwb.dwb_order_tags_1d_in hll_dwb.dwb_app_abtest_driver_order_1d_in hll_dws.dws_driver_app_behavior_extend_1d_tm
c764970736a255df108936c4a9a7283c
{ "intermediate": 0.26672911643981934, "beginner": 0.4248306155204773, "expert": 0.308440238237381 }
48,168
在import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock import random import numpy as np _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set distilled (bool): model includes a distillation token and head as in DeiT models drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer weight_init: (str): weight init scheme """ # super().__init__() super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event_z = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=3, stride=1) # attn = CrossAttn(768, 4, 3072, 0.1, 'relu') # self.cross_attn = Iter_attn(attn, 2) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) def masking_fea(self,z, event_z, x, event_x, ratio=0.8 ): b,nz,c = z.shape b,nez,c = event_z.shape b,nx,c = x.shape b,nex,c = event_x.shape assert(nz == nez) assert(nx == nex) lenz_out = int(nz*ratio) lenx_out = int(nx*ratio) mask_nz = torch.rand(b,nz).float() mask_ez = torch.rand(b,nez).float() mask_nx = torch.rand(b,nx).float() mask_ex = torch.rand(b,nex).float() mask_nz = mask_nz>0.4 mask_ez = mask_ez>0.4 mask_ez = ~mask_nz + mask_ez mask_nz_idx = mask_nz.float().sort(1,descending=True)[-1].to(device = z.device) mask_ez_idx = mask_ez.float().sort(1,descending=True)[-1].to(device = z.device) mask_nx = mask_nx>0.4 mask_ex = mask_ex>0.4 mask_ex = ~mask_nx + mask_ex mask_nx_idx = mask_nx.float().sort(1,descending=True)[-1].to(device = z.device) mask_ex_idx = mask_ex.float().sort(1,descending=True)[-1].to(device = z.device) masked_z = torch.gather(z, 1, mask_nz_idx[:,:lenz_out,None].repeat([1,1,c])) masked_ez = torch.gather(event_z, 1, mask_ez_idx[:,:lenz_out,None].repeat([1,1,c])) masked_x = torch.gather(x, 1, mask_nx_idx[:,:lenx_out,None].repeat([1,1,c])) masked_ex = torch.gather(event_x, 1, mask_ex_idx[:,:lenx_out,None].repeat([1,1,c])) return masked_z, masked_ez, masked_x, masked_ex,{'x1':mask_nx_idx[:,:lenx_out],'x0':mask_nx_idx[:,lenx_out:], 'ex1':mask_ex_idx[:,:lenx_out],'ex0':mask_ex_idx[:,lenx_out:], } def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False,Track=False ): B, H, W = x.shape[0], x.shape[2], x.shape[3] # print('shape of event_z before projection:{}, event_x:{}'.format(event_z.shape, event_x.shape)) event_z = self.pos_embed_event(event_z) # [:,:,:,:1000] event_x = self.pos_embed_event(event_x) # B 768 1024 x = self.patch_embed(x) z = self.patch_embed(z) # print('shape of event_z:{}, event_x:{}, x:{}, z:{}'.format(event_z.shape,event_x.shape,x.shape,z.shape )) event_z += self.pos_embed_z event_x += self.pos_embed_x z += self.pos_embed_z x += self.pos_embed_x # attention mask handling # B, H, W if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed if Track == False: z, event_z, x, event_x, token_idx = self.masking_fea(z, event_z, x, event_x, ratio=0.9) x = combine_tokens(z, event_z, x, event_x, mode=self.cat_mode) # 64+64+256+256=640 # x = combine_tokens(z, x, event_z, event_x, mode=self.cat_mode) # 64+64+256+256=640 if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) # lens_z = self.pos_embed_z.shape[1] # lens_x = self.pos_embed_x.shape[1] lens_z = z.shape[1] lens_x = x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] out_attn = [] for i, blk in enumerate(self.blocks): # out_global_s.append(global_index_s) # out_global_t.append(global_index_t) x, global_index_t, global_index_s, removed_index_s, attn = \ blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) out_attn.append(attn) # print('shape of attn:{}, lens_z:{}, lens_x:{}'.format(attn.shape, lens_z, lens_x)) out_attn_idx = random.choice(np.arange(len(out_attn))) out_attn = out_attn[out_attn_idx] x = self.norm(x) lens_x_new = global_index_s.shape[1] lens_z_new = global_index_t.shape[1] z = x[:, :lens_z_new*2] x = x[:, lens_z_new*2:] if Track == False: idx1 = token_idx['x1'] idx0 = token_idx['x0'] idex1 = token_idx['ex1'] idex0 = token_idx['ex0'] ex = x[:,idex1.shape[1]:] x = x[:,:idex1.shape[1]] # if removed_indexes_s and removed_indexes_s[0] is not None: # removed_indexes_cat = torch.cat(removed_indexes_s, dim=1) pruned_lens_x = idx0.shape[1] pad_x = torch.zeros([B, pruned_lens_x, x.shape[2]], device=x.device) x = torch.cat([x, pad_x], dim=1) index_all = torch.cat([idx1, idx0], dim=1) # recover original token order C = x.shape[-1] x = torch.zeros_like(x).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=x) ex = torch.cat([ex, pad_x], dim=1) index_all = torch.cat([idex1, idex0], dim=1) # recover original token order C = ex.shape[-1] ex = torch.zeros_like(ex).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=ex) x = torch.cat([x,ex],dim=1) x = recover_tokens(x, lens_z_new, lens_x, mode=self.cat_mode) event_x = x[:, lens_x:] # RGB head x = x[:, :lens_x] # RGB head x = torch.cat([event_x, x], dim=1) aux_dict = { # "attn": attn, "attn": out_attn, "removed_indexes_s": removed_indexes_s, # used for visualization } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False,Track=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,Track=Track) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model是主模型,然后from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank_loss*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) # print('attn1 shape:{},attn2 shape:{}, attn:{}'.format(attn1.shape,attn2.shape,attn.shape)) # attn = self._random_permute(attn) # attn = attn[:,:,:,:] # B1, C1, H1, W1 = attn.shape # global_index_s = outputs['out_global_s'] # global_index_t = outputs['out_global_t'] # try: # assert((global_index_s.shape[1] + global_index_t.shape[1])== int(H1/2)) # except: # print('Falut,shape of attn:{}, s:{}, t:{}'.format(attn.shape,global_index_s.shape, global_index_t.shape )) # H1 = int(64) # H2 = int(256) # l_t = int(math.sqrt(64)) # l_s = int(math.sqrt(256)) # temp_anno = temp_annoi[0,:,:] # targets = targetsi[0,:,:] # r_s = torch.arange(l_s).to(temp_anno.device) # r_t = torch.arange(l_t).to(temp_anno.device) # r_t = r_t[None,:].repeat([B1,1]) # cx, cy, w, h = temp_anno[:,0:1], temp_anno[:,1:2], temp_anno[:,2:3], temp_anno[:,3:4] # cx *= l_t # cy *= l_t # w *= l_t # h *= l_t # flagx_01 = r_t >= cx - w/2 # flagx_02 = r_t <= cx + w/2 # flagy_02 = r_t >= cy - h/2 # flagy_01 = r_t <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_t,1]) # flagy = flagy[:,:,None].repeat([1,1,l_t]) # flag = flagx*flagy # flagt = flag.reshape([B1, H1]) # cx, cy, w, h = targets[:,0:1], targets[:,1:2], targets[:,2:3], targets[:,3:4] # cx *= l_s # cy *= l_s # w *= l_s # h *= l_s # flagx_01 = r_s >= cx - w/2 # flagx_02 = r_s <= cx + w/2 # flagy_02 = r_s >= cy - h/2 # flagy_01 = r_s <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_s,1]) # flagy = flagy[:,:,None].repeat([1,1,l_s]) # flag = flagx*flagy # flags = flag.reshape([B1, H2]) # flag = torch.cat([flagt, flags], dim=1) # flag_total = flag[:,:,None].repeat([1,1,int(H1+H2)]) * flag[:,None,:].repeat([1,int(H1+H2),1]) # attn1 = self.crop_fusion(flag_total[:,None,:,:], attn, global_index_s, global_index_t) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01)是CEUTrackActor,那么现在的模型是# 将 4输入分开,构建新的相同模态结合的2输入,2分支 import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock from .new_counter_guide import Counter_Guide # from .ad_counter_guide import Counter_Guide_Enhanced from .ad_counter_guide_downdim import Counter_Guide_Enhanced _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) # 添加交互模块counter_guide self.counter_guide = Counter_Guide_Enhanced(768, 768) def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False ): # 分支1 处理流程 B, H, W = x.shape[0], x.shape[2], x.shape[3] x = self.patch_embed(x) z = self.patch_embed(z) z += self.pos_embed_z x += self.pos_embed_x if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed x = combine_tokens(z, x, mode=self.cat_mode) if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] # # 分支2 处理流程 event_x = self.pos_embed_event(event_x) event_z = self.pos_embed_event(event_z) event_x += self.pos_embed_x event_z += self.pos_embed_z event_x = combine_tokens(event_z, event_x, mode=self.cat_mode) if self.add_cls_token: event_x = torch.cat([cls_tokens, event_x], dim=1) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t1 = torch.linspace(0, lens_z - 1, lens_z).to(event_x.device) global_index_t1 = global_index_t1.repeat(B, 1) global_index_s1 = torch.linspace(0, lens_x - 1, lens_x).to(event_x.device) global_index_s1 = global_index_s1.repeat(B, 1) removed_indexes_s1 = [] for i, blk in enumerate(self.blocks): # 第一个分支处理 x, global_index_t, global_index_s, removed_index_s, attn = \ blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) # 第二个分支处理 event_x, global_index_t1, global_index_s1, removed_index_s1, attn = \ blk(event_x, global_index_t1, global_index_s1, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) removed_indexes_s1.append(removed_index_s1) # 在第1层和第2层增加counter_guide模块,验证早期融合效果 if i == 0 : enhanced_x, enhanced_event_x = self.counter_guide(x, event_x) # 将增强后的特征与原特征相加 x = x + enhanced_x event_x = event_x + enhanced_event_x # 应用LayerNorm归一化处理 x = self.norm(x) event_x = self.norm(event_x) x_cat = torch.cat([event_x,x], dim=1) x = x_cat aux_dict = { "attn": attn, "removed_indexes_s": removed_indexes_s, # used for visualization } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model,然后他的CEUTrackActor是from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss ,那么第一个代码中的CEUTrackActor中引入了正交高秩正则化,那么在第二个代码的CEUTrackActor中也将正交高秩正则化添加进去
ca8d4dbd0be70773f0d215a7138318b5
{ "intermediate": 0.4144701659679413, "beginner": 0.39271798729896545, "expert": 0.19281193614006042 }
48,169
5. An electrical firm manufactures light bulbs that have a normally distributed lifespan with a mean of 800 hours and a standard deviation of 40 hours. (a) Find the probability the bulb burns between 778 and 834 hours. (b) Find the probability the bulb burns longer than 896 hours.
80d69c566b907314d7d34b1e04c536a1
{ "intermediate": 0.4016805589199066, "beginner": 0.39570924639701843, "expert": 0.20261022448539734 }
48,170
What is the code that muted line 6 in G code?
da427b7ce58611c36b8bfad8e95554cd
{ "intermediate": 0.2921062707901001, "beginner": 0.35837578773498535, "expert": 0.34951794147491455 }
48,171
What is the code that muted line 6 in G chord?
7455d236e42576afbe21fb77598069ae
{ "intermediate": 0.3753429651260376, "beginner": 0.3347611725330353, "expert": 0.2898959219455719 }
48,172
源代码中包含的代码① import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock import random import numpy as np _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set distilled (bool): model includes a distillation token and head as in DeiT models drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer weight_init: (str): weight init scheme """ # super().__init__() super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event_z = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=3, stride=1) # attn = CrossAttn(768, 4, 3072, 0.1, 'relu') # self.cross_attn = Iter_attn(attn, 2) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) def masking_fea(self,z, event_z, x, event_x, ratio=0.8 ): b,nz,c = z.shape b,nez,c = event_z.shape b,nx,c = x.shape b,nex,c = event_x.shape assert(nz == nez) assert(nx == nex) lenz_out = int(nz*ratio) lenx_out = int(nx*ratio) mask_nz = torch.rand(b,nz).float() mask_ez = torch.rand(b,nez).float() mask_nx = torch.rand(b,nx).float() mask_ex = torch.rand(b,nex).float() mask_nz = mask_nz>0.4 mask_ez = mask_ez>0.4 mask_ez = ~mask_nz + mask_ez mask_nz_idx = mask_nz.float().sort(1,descending=True)[-1].to(device = z.device) mask_ez_idx = mask_ez.float().sort(1,descending=True)[-1].to(device = z.device) mask_nx = mask_nx>0.4 mask_ex = mask_ex>0.4 mask_ex = ~mask_nx + mask_ex mask_nx_idx = mask_nx.float().sort(1,descending=True)[-1].to(device = z.device) mask_ex_idx = mask_ex.float().sort(1,descending=True)[-1].to(device = z.device) masked_z = torch.gather(z, 1, mask_nz_idx[:,:lenz_out,None].repeat([1,1,c])) masked_ez = torch.gather(event_z, 1, mask_ez_idx[:,:lenz_out,None].repeat([1,1,c])) masked_x = torch.gather(x, 1, mask_nx_idx[:,:lenx_out,None].repeat([1,1,c])) masked_ex = torch.gather(event_x, 1, mask_ex_idx[:,:lenx_out,None].repeat([1,1,c])) return masked_z, masked_ez, masked_x, masked_ex,{'x1':mask_nx_idx[:,:lenx_out],'x0':mask_nx_idx[:,lenx_out:], 'ex1':mask_ex_idx[:,:lenx_out],'ex0':mask_ex_idx[:,lenx_out:], } def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False,Track=False ): B, H, W = x.shape[0], x.shape[2], x.shape[3] # print('shape of event_z before projection:{}, event_x:{}'.format(event_z.shape, event_x.shape)) event_z = self.pos_embed_event(event_z) # [:,:,:,:1000] event_x = self.pos_embed_event(event_x) # B 768 1024 x = self.patch_embed(x) z = self.patch_embed(z) # print('shape of event_z:{}, event_x:{}, x:{}, z:{}'.format(event_z.shape,event_x.shape,x.shape,z.shape )) event_z += self.pos_embed_z event_x += self.pos_embed_x z += self.pos_embed_z x += self.pos_embed_x # attention mask handling # B, H, W if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed if Track == False: z, event_z, x, event_x, token_idx = self.masking_fea(z, event_z, x, event_x, ratio=0.9) x = combine_tokens(z, event_z, x, event_x, mode=self.cat_mode) # 64+64+256+256=640 # x = combine_tokens(z, x, event_z, event_x, mode=self.cat_mode) # 64+64+256+256=640 if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) # lens_z = self.pos_embed_z.shape[1] # lens_x = self.pos_embed_x.shape[1] lens_z = z.shape[1] lens_x = x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] out_attn = [] for i, blk in enumerate(self.blocks): # out_global_s.append(global_index_s) # out_global_t.append(global_index_t) x, global_index_t, global_index_s, removed_index_s, attn = \ blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) out_attn.append(attn) # print('shape of attn:{}, lens_z:{}, lens_x:{}'.format(attn.shape, lens_z, lens_x)) out_attn_idx = random.choice(np.arange(len(out_attn))) out_attn = out_attn[out_attn_idx] x = self.norm(x) lens_x_new = global_index_s.shape[1] lens_z_new = global_index_t.shape[1] z = x[:, :lens_z_new*2] x = x[:, lens_z_new*2:] if Track == False: idx1 = token_idx['x1'] idx0 = token_idx['x0'] idex1 = token_idx['ex1'] idex0 = token_idx['ex0'] ex = x[:,idex1.shape[1]:] x = x[:,:idex1.shape[1]] # if removed_indexes_s and removed_indexes_s[0] is not None: # removed_indexes_cat = torch.cat(removed_indexes_s, dim=1) pruned_lens_x = idx0.shape[1] pad_x = torch.zeros([B, pruned_lens_x, x.shape[2]], device=x.device) x = torch.cat([x, pad_x], dim=1) index_all = torch.cat([idx1, idx0], dim=1) # recover original token order C = x.shape[-1] x = torch.zeros_like(x).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=x) ex = torch.cat([ex, pad_x], dim=1) index_all = torch.cat([idex1, idex0], dim=1) # recover original token order C = ex.shape[-1] ex = torch.zeros_like(ex).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=ex) x = torch.cat([x,ex],dim=1) x = recover_tokens(x, lens_z_new, lens_x, mode=self.cat_mode) event_x = x[:, lens_x:] # RGB head x = x[:, :lens_x] # RGB head x = torch.cat([event_x, x], dim=1) aux_dict = { # "attn": attn, "attn": out_attn, "removed_indexes_s": removed_indexes_s, # used for visualization } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False,Track=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,Track=Track) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model是主模型,代码② 是模型的损失:from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank_loss*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) # print('attn1 shape:{},attn2 shape:{}, attn:{}'.format(attn1.shape,attn2.shape,attn.shape)) # attn = self._random_permute(attn) # attn = attn[:,:,:,:] # B1, C1, H1, W1 = attn.shape # global_index_s = outputs['out_global_s'] # global_index_t = outputs['out_global_t'] # try: # assert((global_index_s.shape[1] + global_index_t.shape[1])== int(H1/2)) # except: # print('Falut,shape of attn:{}, s:{}, t:{}'.format(attn.shape,global_index_s.shape, global_index_t.shape )) # H1 = int(64) # H2 = int(256) # l_t = int(math.sqrt(64)) # l_s = int(math.sqrt(256)) # temp_anno = temp_annoi[0,:,:] # targets = targetsi[0,:,:] # r_s = torch.arange(l_s).to(temp_anno.device) # r_t = torch.arange(l_t).to(temp_anno.device) # r_t = r_t[None,:].repeat([B1,1]) # cx, cy, w, h = temp_anno[:,0:1], temp_anno[:,1:2], temp_anno[:,2:3], temp_anno[:,3:4] # cx *= l_t # cy *= l_t # w *= l_t # h *= l_t # flagx_01 = r_t >= cx - w/2 # flagx_02 = r_t <= cx + w/2 # flagy_02 = r_t >= cy - h/2 # flagy_01 = r_t <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_t,1]) # flagy = flagy[:,:,None].repeat([1,1,l_t]) # flag = flagx*flagy # flagt = flag.reshape([B1, H1]) # cx, cy, w, h = targets[:,0:1], targets[:,1:2], targets[:,2:3], targets[:,3:4] # cx *= l_s # cy *= l_s # w *= l_s # h *= l_s # flagx_01 = r_s >= cx - w/2 # flagx_02 = r_s <= cx + w/2 # flagy_02 = r_s >= cy - h/2 # flagy_01 = r_s <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_s,1]) # flagy = flagy[:,:,None].repeat([1,1,l_s]) # flag = flagx*flagy # flags = flag.reshape([B1, H2]) # flag = torch.cat([flagt, flags], dim=1) # flag_total = flag[:,:,None].repeat([1,1,int(H1+H2)]) * flag[:,None,:].repeat([1,int(H1+H2),1]) # attn1 = self.crop_fusion(flag_total[:,None,:,:], attn, global_index_s, global_index_t) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01),此处的rank loss计算的是什么,对应于vit_ce中的什么?
8b7faacbb96ed30fb45f0a192575168c
{ "intermediate": 0.3723090589046478, "beginner": 0.4451221823692322, "expert": 0.18256868422031403 }
48,173
Hello ChatGPT, I need some matplotlib code written to display a figure. I need to load the following csv file: exposure_bias_non_gap.csv it looks like this: model prefix Rep_2 gpt2 20 0.0456923548707846 gpt2 40 0.0376174829107073 gpt2 60 0.0385942191087302 gpt2 80 0.0399946315930748 gpt2 100 0.0160664433651837 gpt2+knn 20 0.0455856574444207 gpt2+knn 40 0.0391952024753186 gpt2+knn 60 0.0376619694566408 gpt2+knn 80 0.0339169018652571 gpt2+knn 100 0.0337967929147069 gpt2+ft 20 0.0381663910336764 gpt2+ft 40 0.0473735821920047 gpt2+ft 60 0.0540370239182715 gpt2+ft 80 0.0567987647160258 gpt2+ft 100 0.0607158716726295 gpt2+ft+knn 20 0.0350845336064363 gpt2+ft+knn 40 0.0431638175747123 gpt2+ft+knn 60 0.0484514332141914 gpt2+ft+knn 80 0.054032185896671 gpt2+ft+knn 100 0.0597133626728642 I want to create a plot where the x axis is the prefix [20, 40, 60, 80, 100] and the y axis is the rep2 score (floating point integers). I want each of the different labels ['gpt2, 'gpt+knn', 'gpt2+ft', 'gpt2+ft+knn'] are colored differently as well.
3226f1cf03a84d8fe97aaa0b0fc33da0
{ "intermediate": 0.3885008990764618, "beginner": 0.2789492905139923, "expert": 0.3325497806072235 }
48,174
multipart/form-data what is it. explain like im 5
6d5f8d5936c73fb00a419b3fdba8ff1d
{ "intermediate": 0.37924084067344666, "beginner": 0.2952773869037628, "expert": 0.32548174262046814 }
48,175
generate 1 color image with random resolution from 50x50 to 150x150 pixels using python
f5a83292a5d6f580ff824a890310c063
{ "intermediate": 0.2849481403827667, "beginner": 0.16303536295890808, "expert": 0.5520164370536804 }
48,176
import numpy as np import pandas as pd from backtesting import Strategy, Backtest import talib import MetaTrader5 as mt5 mt5.initialize() def get_historical_data(symbol, timeframe, start_pos, count): rates = mt5.copy_rates_from_pos(symbol, timeframe, start_pos, count) df = pd.DataFrame(rates) df['time'] = pd.to_datetime(df['time'], unit='s') # Convert time to datetime df.set_index('time', inplace=True) # Set time as index df.drop(['spread', 'real_volume'], axis=1, inplace=True) # Drop unnecessary columns # Rename columns to match backtesting library requirements df.rename(columns={'open': 'Open', 'high': 'High', 'low': 'Low', 'close': 'Close'}, inplace=True) return df[['Open', 'High', 'Low', 'Close']] def macd(self): macd, signal = talib.MACD(self.data['close'], fastperiod=12, slowperiod=26, signalperiod=9) if macd.iloc[-1] > signal.iloc[-1]: return "Buy" elif macd.iloc[-1] < signal.iloc[-1]: return "Sell" def twin_range_filter(self): close = self.data['close'] def smoothrng(x, t, m): wper = t * 2 - 1 avrng = talib.EMA(np.abs(x.diff()), timeperiod=t) smoothrng = talib.EMA(avrng, timeperiod=wper) * m return smoothrng per1, mult1, per2, mult2 = 27, 1.6, 55, 2.0 smrng1 = smoothrng(close, per1, mult1) smrng2 = smoothrng(close, per2, mult2) smrng = (smrng1 + smrng2) / 2 def rngfilt(x, r): rngfilt = x.copy() for i in range(1, len(x)): prev_val = rngfilt.iloc[i-1] if x.iloc[i] > prev_val: rngfilt.iloc[i] = max(prev_val, x.iloc[i] - r.iloc[i]) else: rngfilt.iloc[i] = min(prev_val, x.iloc[i] + r.iloc[i]) return rngfilt filt = rngfilt(close, smrng) STR = filt + smrng STS = filt - smrng FUB = [STR.iloc[0]] FLB = [STS.iloc[0]] for i in range(1, len(df)): FUB.append(STR.iloc[i] if (STR.iloc[i] < STR.iloc[i-1]) or (close.iloc[i-1] > FUB[i-1]) else FUB[i-1]) FLB.append(STS.iloc[i] if (STS.iloc[i] > STS.iloc[i-1]) or (close.iloc[i-1] < FLB[i-1]) else FLB[i-1]) FUB = np.array(FUB) FLB = np.array(FLB) TRF = [FUB[0]] for i in range(1, len(df)): last_trf = TRF[-1] if (last_trf == FUB[i-1] and close.iloc[i] <= FUB[i]) or (last_trf == FLB[i-1] and close.iloc[i] <= FLB[i]): TRF.append(FUB[i]) elif (last_trf == FUB[i-1] and close.iloc[i] >= FUB[i]) or (last_trf == FLB[i-1] and close.iloc[i] >= FLB[i]): TRF.append(FLB[i]) else: TRF.append(FUB[i]) TRF = np.array(TRF) long_signal = (close > np.roll(TRF, 1))[1:] short_signal = (close < np.roll(TRF, 1))[1:] self.data['TRF'] = TRF self.data['long_signal'] = np.append([False], long_signal) self.data['short_signal'] = np.append([False], short_signal) if self.data.iloc[-1]['long_signal']: return "Buy" elif self.data.iloc[-1]['short_signal']: return "Sell" def detect_engulfing(self): for i in range(1, len(self.data)): current = self.data.iloc[i].copy() previous = self.data.iloc[i-1].copy() if np.abs(current['open'] - previous['close']) > 0.005: current['open'] = previous['close'] if previous['open'] > previous['close'] and \ current['close'] > current['open'] and \ current['close'] >= previous['open'] and \ previous['close'] >= current['open'] and \ current['close'] - current['open'] > previous['open'] - previous['close']: return "Bullish Engulfing" elif previous['close'] > previous['open'] and \ current['open'] > current['close'] and \ current['open'] >= previous['close'] and \ previous['open'] >= current['close'] and \ current['open'] - current['close'] > previous['close'] - previous['open']: return "Bearish Engulfing" else: return "No Engulfing" class EngulfingStrategy(Strategy): def init(self): self.macd = self.I(self.macd) self.trf = self.I(self.twin_range_filter) self.engulfing = self.I(self.detect_engulfing) def next(self): # Check for bullish engulfing condition if self.macd() == "Sell" and self.trf() == "Buy" and self.engulfing() == "Bullish Engulfing": self.buy() # Check for bearish engulfing condition elif self.macd() == "Buy" and self.trf() == "Sell" and self.engulfing() == "Bearish Engulfing": self.sell() #Define your backtest parameters symbol = 'XAUUSDm' # Example symbol timeframe = mt5.TIMEFRAME_M5 # Example timeframe (H1) data = get_historical_data(symbol, timeframe, 0, 10000) # Example: Get 1000 bars of historical data bt = Backtest(data, EngulfingStrategy, cash=10000, commission=0.0) # Run the backtest stats = bt.run() # Print the performance statistics print(stats)
a1d3c2a3616cc1c2cf4f6ddcf5ca1b07
{ "intermediate": 0.4968603849411011, "beginner": 0.30280935764312744, "expert": 0.2003302425146103 }
48,177
what is gradio?
92f5051aeaec076513d34ff5fe97b5f5
{ "intermediate": 0.24201053380966187, "beginner": 0.12483757734298706, "expert": 0.6331518292427063 }
48,178
Make CSS code for this HTML, which is a redesign. Use a code block for this. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Progresswire Coo</title> <link rel="stylesheet" href="newstyle.css"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content="This is Progresswire Coo! It is a site by the creators behind Progresswire Coo."> </head> <body> <header> <img src="progresswirecoo.png" alt="Progresswire Coo Logo"> <h1>Progresswire Coo</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <h2>Links</h2> <ul> <li><a href="news.html">News</a><br><small>See the old page <a href="old.html">here</a>. This is WIP.</small></li> <li><a href="terminal/index.html">Terminal</a><br><small>Incomplete</small></li> <li><a href="#">Text Edition</a><br><small><a href="textedition.png">What does it look like?</a></small></li> <li><a href="https://linktr.ee/i4kthetf1thingy">Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href="ProgresswireCoo.wav">Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href="bootstrapver.html">Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
1d1a4abeb4c5f84bc7b51f7e26fdbfe9
{ "intermediate": 0.3535723090171814, "beginner": 0.26828986406326294, "expert": 0.3781377971172333 }
48,179
Make a CSS for this that is a redesign. Use code blocks, no comments, flexes, and the color #447db7. Also don't use smart quotes <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Progresswire Coo</title> <link rel="stylesheet" href="newstyle.css"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content="This is Progresswire Coo! It is a site by the creators behind Progresswire Coo."> </head> <body> <header> <img src="progresswirecoo.png" alt="Progresswire Coo Logo"> <h1>The Progresswire Coo homepage</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <ul> <li><a href="news.html">News</a><br><small>See the old page <a href="old.html">here</a>. This is WIP.</small></li> <li><a href="terminal/index.html">Terminal</a><br><small>Incomplete</small></li> <li><a href="#">Text Edition</a><br><small><a href="textedition.png">What does it look like?</a></small></li> <li><a href="https://linktr.ee/i4kthetf1thingy">Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href="ProgresswireCoo.wav">Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href="bootstrapver.html">Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
f448168a22e57ab1b701af710631399a
{ "intermediate": 0.3376358151435852, "beginner": 0.3734409511089325, "expert": 0.2889232039451599 }
48,180
Make a CSS for this redesign. Use code blocks, no comments, flexes and the color #447db7 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Progresswire Coo</title> <link rel="stylesheet" href="newstyle.css"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content="This is Progresswire Coo! It is a site by the creators behind Progresswire Coo."> </head> <body> <header> <img src="progresswirecoo.png" alt="Progresswire Coo Logo"> <h1>The Progresswire Coo homepage</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <h2>Links</h2> <ul> <li><a href="news.html">News</a><br><small>See the old page <a href="old.html">here</a> (WARNING: NO STYLE). This is WIP.</small></li> <li><a href="terminal/index.html">Terminal</a><br><small>Incomplete</small></li> <li><a href="#">Text Edition</a><br><small><a href="textedition.png">What does it look like?</a></small></li> <li><a href="https://linktr.ee/i4kthetf1thingy">Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href="ProgresswireCoo.wav">Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href="bootstrapver.html">Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
35608a9f6ece3e22d7d52b2c2da318de
{ "intermediate": 0.36556583642959595, "beginner": 0.2306639850139618, "expert": 0.40377017855644226 }
48,181
Make a CSS for this redesign. Use code blocks, no comments, flexes and the color #447db7 <!DOCTYPE html> <html> <head> <meta charset=“utf-8”> <title>Progresswire Coo</title> <link rel=“stylesheet” href=“newstyle.css”> <meta name=“viewport” content=“width=device-width, initial-scale=1.0”> <meta name=“description” content=“This is Progresswire Coo! It is a site by the creators behind Progresswire Coo.”> </head> <body> <header> <img src=“progresswirecoo.png” alt=“Progresswire Coo Logo”> <h1>The Progresswire Coo homepage</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <h2>Links</h2> <ul> <li><a href=“news.html”>News</a><br><small>See the old page <a href=“old.html”>here</a> (WARNING: NO STYLE). This is WIP.</small></li> <li><a href=“terminal/index.html”>Terminal</a><br><small>Incomplete</small></li> <li><a href=“#”>Text Edition</a><br><small><a href=“textedition.png”>What does it look like?</a></small></li> <li><a href=“https://linktr.ee/i4kthetf1thingy”>Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href=“ProgresswireCoo.wav”>Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href=“bootstrapver.html”>Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
aaf6e918680e9b537a79cd842f92a906
{ "intermediate": 0.35384154319763184, "beginner": 0.2902519404888153, "expert": 0.35590648651123047 }
48,182
Make a CSS for this redesign. Use code blocks, no comments, flexes and the color #447db7 <!DOCTYPE html> <html> <head> <meta charset=“utf-8”> <title>Progresswire Coo</title> <link rel=“stylesheet” href=“newstyle.css”> <meta name=“viewport” content=“width=device-width, initial-scale=1.0”> <meta name=“description” content=“This is Progresswire Coo! It is a site by the creators behind Progresswire Coo.”> </head> <body> <header> <img src=“progresswirecoo.png” alt=“Progresswire Coo Logo”> <h1>The Progresswire Coo homepage</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <h2>Links</h2> <ul> <li><a href=“news.html”>News</a><br><small>See the old page <a href=“old.html”>here</a> (WARNING: NO STYLE). This is WIP.</small></li> <li><a href=“terminal/index.html”>Terminal</a><br><small>Incomplete</small></li> <li><a href=“#”>Text Edition</a><br><small><a href=“textedition.png”>What does it look like?</a></small></li> <li><a href=“https://linktr.ee/i4kthetf1thingy”>Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href=“ProgresswireCoo.wav”>Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href=“bootstrapver.html”>Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
578fbf6583287a3cb8a7399298bbb4c5
{ "intermediate": 0.35384154319763184, "beginner": 0.2902519404888153, "expert": 0.35590648651123047 }
48,183
Make a CSS for this redesign using code blocks, no comments, flexes and the color #447db7 for links and lightened/darkened for other stuff like headers <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Progresswire Coo</title> <link rel="stylesheet" href="newstyle.css"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="description" content="This is Progresswire Coo! It is a site by the creators behind Progresswire Coo."> </head> <body> <header> <img src="progresswirecoo.png" alt="Progresswire Coo Logo"> <h1>The Progresswire Coo homepage</h1> </header> <p>Hello! This is the Progresswire Coo home page thing.</p> <h2>Links</h2> <ul> <li><a href="news.html">News</a><br><small>See the old page <a href="old.html">here</a> (WARNING: NO STYLE). This is WIP.</small></li> <li><a href="terminal/index.html">Terminal</a><br><small>Incomplete</small></li> <li><a href="#">Text Edition</a><br><small><a href="textedition.png">What does it look like?</a></small></li> <li><a href="https://linktr.ee/i4kthetf1thingy">Download Progresswire Coo 1 (Linktree)</a><br><small>The project that started it all.</small></li> <li><a href="ProgresswireCoo.wav">Download the Progresswire Coo music</a><br><small>If you want to listen to the Progresswire Coo music, click here.</small></li> <li><a href="bootstrapver.html">Bootstrap version</a><br><small>This design is still supported along with this one.</small></li> </ul> </body> </html>
d306b0348aa86348b527a0ac486c96a4
{ "intermediate": 0.2883540689945221, "beginner": 0.3006053864955902, "expert": 0.4110405147075653 }
48,184
Merge these 2 CSS's into one. Reference: @import url('https://fonts.googleapis.com/css2?family=Overpass&display=swap'); @import url('https://fonts.googleapis.com/css2?family=Overpass:wght@700&display=swap'); body { background-color: #f0f0f0; font-family: "Overpass", sans-serif; color: #333; } header { color: #fff; text-align: center; padding: 50px; margin: 20px; } h1 { color: #447db7; } h2 { color: #23558c; } ul { list-style: none; padding: 0; display: grid; grid-template-columns: 1fr 1fr; grid-gap: 10px; } li { border: 1px solid #ddd; padding: 10px; } a { color: #447db7; text-decoration: none; } a:hover { color: #23558c; } small { color: #666; } main { margin: 0px 4in; } CSS to be mixed with: body { font-family: system-ui; padding: 20px; background-color: #242424; color: #fff; } h1 { text-align: center; } img { display: block; margin: 0 auto; width: 200px; } p { text-align: center; } a { color: #fff; text-decoration: none; } hr { border-color: #fff; margin: 2rem 0; } p a:hover { text-decoration: underline; } p a:visited { color: #fff; } p a:focus, p a:active { color: #ccc; } p img { max-width: 100%; }
f1256952d3724651b72454ff301cd630
{ "intermediate": 0.41566428542137146, "beginner": 0.3311455547809601, "expert": 0.25319015979766846 }
48,185
write java code: Create concurrent Refinable Hashset data structure with 1 Million nodes and perform the basic operations (contains, insert, and remove) by varying the number of threads from 1 to 20 (i.e., 1, 2, 4, 6, 8, 10, 12 ... 20) and for different workloads (100C-0I-0D, 90C-9I-1D, 50C-25I-25D, 30C-35I-35D, 0C-50I-50D). Prefill the data structure with 50% of elements and duration of each run is 10 seconds. To measure the throghput, consider the average of FIVE runs and also measure the cache misses per 1000 operations using perf tool
e56b717dea27dab30bc5288384174fb1
{ "intermediate": 0.5024796724319458, "beginner": 0.24879270792007446, "expert": 0.24872764945030212 }
48,186
Сдейлай лаконичный пересказ на английском языке, рассказывающий об истоии The Teck Turquoise Tiara "The incredible Gloucester tiara collection includes multiple pieces inherited from Queen Mary, including the Teck Turquoise Tiara. Combining turquoises with diamonds in an intricate design, the tiara has been worn by two generations of Gloucester duchesses. The suite from the Illustrated London News drawings of Queen Mary’s wedding gifts, 1893 The piece was originally made for Princess Mary Adelaide of Cambridge, a granddaughter of George III, who married Prince Francis, Duke of Teck. The tiara was a part of a parure of turquoise jewelry that was made for Mary Adelaide around 1850; the set also originally included a necklace, earrings, and three brooches. (Eventually, additional turquoise pieces were added to the suite of jewels.) Queen Mary wears the tiara before its 1912 renovation In 1893, the Duke and Duchess of Teck gave the parure to Princess Mary as a wedding present. Her new husband was, of course, the future King George V, meaning that the turquoises would adorn a British queen consort. Always tinkering with her jewels, the turquoise tiara didn’t escape Mary’s eye for adaptation. The tiara was originally taller, but Mary had its size reduced in 1912 by E. Wolff and Co., who often did work for Garrard. The tiara and is accompanying jewels are displayed with Princess Alice’s wedding gifts Two decades on, she gave the entire set to her new daughter-in-law, Alice, as a wedding present, echoing her own parents’ gift. The suite was included in the elaborate display of Alice’s wedding gifts, which you can learn more about here! Princess Alice, Duchess of Gloucester wears the tiara and jewels at the Dorchester Hotel, 15 November 1955 (Keystone Pictures USA/Alamy) Alice wore the tiara often, and even posed in it for a famous series of photographs taken by Cecil Beaton. Here, she wears the tiara and jewels in 1955 in London for a fashion show at the Dorchester Hotel. Alice wears the tiara, with Prince William of Gloucester and the Queen Mother, during the Dutch state visit, 13 April 1972 (PA Images/Alamy) She continued to wear the tiara throughout her life as a working royal. Above, Alice wears the suite in April 1972 during a state visit from Queen Juliana of the Netherlands. Also pictured here: the Queen Mother (more on her jewels from this occasion here) and Alice’s elder son, Prince William of Gloucester. William died only four months later in a plane crash. JUSTIN TALLIS/AFP/Getty Images Today, the set is worn by Alice’s daughter-in-law, Birgitte, the wife of the current Duke of Gloucester. It’s not her most-worn tiara (that prize probably goes to the Honeysuckle Tiara, another legacy from Queen Mary), but it pops up now and again, as it did in March 2015 for the Guildhall banquet during the Mexican state visit. You’ll recognize quite a few pieces from the parure on Birgitte in the image above, taken during that banquet."
03a89106f759ce77f3e2db4c203bfc58
{ "intermediate": 0.17757540941238403, "beginner": 0.5293183326721191, "expert": 0.2931062579154968 }
48,187
120/120 - 39s - 329ms/step - accuracy: 0.7124 - loss: 0.6110 - val_accuracy: 0.6900 - val_loss: 1.2085 Epoch 2/20 120/120 - 34s - 286ms/step - accuracy: 0.7751 - loss: 0.4634 - val_accuracy: 0.6900 - val_loss: 0.9913 Epoch 3/20 120/120 - 33s - 272ms/step - accuracy: 0.8211 - loss: 0.3980 - val_accuracy: 0.6200 - val_loss: 0.8050 Epoch 4/20 120/120 - 39s - 321ms/step - accuracy: 0.8294 - loss: 0.3657 - val_accuracy: 0.5900 - val_loss: 0.7533 Epoch 5/20 120/120 - 38s - 318ms/step - accuracy: 0.8771 - loss: 0.2988 - val_accuracy: 0.6000 - val_loss: 0.9564 Epoch 6/20 120/120 - 41s - 340ms/step - accuracy: 0.8821 - loss: 0.2879 - val_accuracy: 0.6900 - val_loss: 0.7461 Epoch 7/20 120/120 - 40s - 330ms/step - accuracy: 0.9030 - loss: 0.2489 - val_accuracy: 0.7200 - val_loss: 0.8114 Epoch 8/20 120/120 - 38s - 319ms/step - accuracy: 0.9089 - loss: 0.2373 - val_accuracy: 0.7000 - val_loss: 0.7795 Epoch 9/20 120/120 - 33s - 275ms/step - accuracy: 0.9381 - loss: 0.1824 - val_accuracy: 0.6900 - val_loss: 0.7876 Epoch 10/20 120/120 - 37s - 308ms/step - accuracy: 0.9323 - loss: 0.1813 - val_accuracy: 0.4800 - val_loss: 1.4136 Epoch 11/20 120/120 - 39s - 321ms/step - accuracy: 0.9515 - loss: 0.1505 - val_accuracy: 0.5200 - val_loss: 1.1952 Epoch 12/20 120/120 - 41s - 341ms/step - accuracy: 0.9482 - loss: 0.1518 - val_accuracy: 0.6300 - val_loss: 0.9851 Epoch 13/20 120/120 - 38s - 318ms/step - accuracy: 0.9624 - loss: 0.1264 - val_accuracy: 0.5100 - val_loss: 1.5504 Epoch 14/20 120/120 - 40s - 336ms/step - accuracy: 0.9640 - loss: 0.1234 - val_accuracy: 0.6100 - val_loss: 0.9077 Epoch 15/20 120/120 - 40s - 330ms/step - accuracy: 0.9548 - loss: 0.1379 - val_accuracy: 0.6000 - val_loss: 0.9919 Epoch 16/20 120/120 - 50s - 417ms/step - accuracy: 0.9615 - loss: 0.1096 - val_accuracy: 0.6400 - val_loss: 1.0118 Epoch 17/20 120/120 - 48s - 400ms/step - accuracy: 0.9783 - loss: 0.0867 - val_accuracy: 0.6300 - val_loss: 1.1686 Epoch 18/20 120/120 - 43s - 359ms/step - accuracy: 0.9808 - loss: 0.0797 - val_accuracy: 0.6900 - val_loss: 1.1012 Epoch 19/20 120/120 - 43s - 355ms/step - accuracy: 0.9666 - loss: 0.0974 - val_accuracy: 0.6600 - val_loss: 1.0525 Epoch 20/20 120/120 - 44s - 364ms/step - accuracy: 0.9916 - loss: 0.0558 - val_accuracy: 0.6400 - val_loss: 1.1115 <keras.src.callbacks.history.History at 0x142531a2490>
50347eec55f21ce1f8e92bbdce4cbfca
{ "intermediate": 0.26877427101135254, "beginner": 0.4403032064437866, "expert": 0.29092252254486084 }
48,188
what are this model can do that other LLMs cant do like chatGPT?
3fff2bc5732058a6c44b059d71f08873
{ "intermediate": 0.2707754373550415, "beginner": 0.12431307137012482, "expert": 0.6049114465713501 }
48,189
what are the free to use openai models using API?
5d90fec581cc2ae42bf035c7b0dca11f
{ "intermediate": 0.3350169062614441, "beginner": 0.1075458899140358, "expert": 0.5574371814727783 }
48,190
add channel as header in http request
1e16db83c0f9729b7b072ad734cb38b8
{ "intermediate": 0.2882600724697113, "beginner": 0.3026033341884613, "expert": 0.409136563539505 }
48,191
convert python lang grammar to ebnf
74282c3cd2c38af278c216b6d219172a
{ "intermediate": 0.25920674204826355, "beginner": 0.4904835820198059, "expert": 0.25030967593193054 }