row_id
int64
0
48.4k
init_message
stringlengths
1
342k
conversation_hash
stringlengths
32
32
scores
dict
46,787
in this javascript for leafletjs I want to add an event listener for the buyRoads button with the condition if money >= 50,000 console log 'buy roads' - 'var popupContent2 = ` <br/>Buy the land around ${secondCity} Station to start earning rent every day<br/> <button id="stationtwo" class="trainbutton">Buy Land for £100,000</button> <br/>Buy roads for ${secondCity} Station to start earning road tax every day<br/> <button id="buyRoads" class="trainbutton">Buy Roads for £5,000</button> `; // Add a popup to the greenCircleMarker2 greenCircleMarker2.bindPopup(popupContent2).openPopup(); // Event listener for the ‘Buy Land’ button in the popup greenCircleMarker2.on("popupopen", function () { document .getElementById("stationtwo") .addEventListener("click", function () { if (money >= 100000) { money -= 100000; dailybonus += 50000; menuElement.textContent = `Daily Income: £${dailybonus}`; // Check if the building data is already fetched if (buildingData2) { // Process the existing building data to create polylines with green color buildingData2.elements.forEach((element) => { if (element.type === "way") { const coordinates = element.nodes.map( (nodeId) => { const node = buildingData2.elements.find( (node) => node.id === nodeId ); return [node.lat, node.lon]; } ); // Create a polyline for the building footprint with green color const polyline = L.polyline(coordinates, { color: "green", weight: 1, fillColor: "green", // Set the fill color to green fillOpacity: 0.5, }).addTo(map); } }); } } }); });'
325a339334e0d738a1b83a46c06f1863
{ "intermediate": 0.3737408220767975, "beginner": 0.4375252425670624, "expert": 0.18873390555381775 }
46,788
how can i check my tensorflow version
beec08b4b0cfd5ac7dce8b87c114954c
{ "intermediate": 0.4028242826461792, "beginner": 0.15463542938232422, "expert": 0.44254034757614136 }
46,789
// // Source code recreated from a .class file by IntelliJ IDEA // (powered by FernFlower decompiler) // package org.springframework.batch.core; import java.io.IOException; import java.io.ObjectInputStream; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Date; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashSet; import java.util.List; import java.util.Set; import java.util.concurrent.CopyOnWriteArrayList; import org.springframework.batch.item.ExecutionContext; import org.springframework.lang.Nullable; public class JobExecution extends Entity { private final JobParameters jobParameters; private JobInstance jobInstance; private volatile Collection<StepExecution> stepExecutions; private volatile BatchStatus status; private volatile Date startTime; private volatile Date createTime; private volatile Date endTime; private volatile Date lastUpdated; private volatile ExitStatus exitStatus; private volatile ExecutionContext executionContext; private transient volatile List<Throwable> failureExceptions; private final String jobConfigurationName; public JobExecution(JobExecution original) { this.stepExecutions = Collections.synchronizedSet(new LinkedHashSet()); this.status = BatchStatus.STARTING; this.startTime = null; this.createTime = new Date(System.currentTimeMillis()); this.endTime = null; this.lastUpdated = null; this.exitStatus = ExitStatus.UNKNOWN; this.executionContext = new ExecutionContext(); this.failureExceptions = new CopyOnWriteArrayList(); this.jobParameters = original.getJobParameters(); this.jobInstance = original.getJobInstance(); this.stepExecutions = original.getStepExecutions(); this.status = original.getStatus(); this.startTime = original.getStartTime(); this.createTime = original.getCreateTime(); this.endTime = original.getEndTime(); this.lastUpdated = original.getLastUpdated(); this.exitStatus = original.getExitStatus(); this.executionContext = original.getExecutionContext(); this.failureExceptions = original.getFailureExceptions(); this.jobConfigurationName = original.getJobConfigurationName(); this.setId(original.getId()); this.setVersion(original.getVersion()); } public JobExecution(JobInstance job, Long id, @Nullable JobParameters jobParameters, String jobConfigurationName) { super(id); this.stepExecutions = Collections.synchronizedSet(new LinkedHashSet()); this.status = BatchStatus.STARTING; this.startTime = null; this.createTime = new Date(System.currentTimeMillis()); this.endTime = null; this.lastUpdated = null; this.exitStatus = ExitStatus.UNKNOWN; this.executionContext = new ExecutionContext(); this.failureExceptions = new CopyOnWriteArrayList(); this.jobInstance = job; this.jobParameters = jobParameters == null ? new JobParameters() : jobParameters; this.jobConfigurationName = jobConfigurationName; } public JobExecution(JobInstance job, JobParameters jobParameters, String jobConfigurationName) { this(job, (Long)null, jobParameters, jobConfigurationName); } public JobExecution(Long id, JobParameters jobParameters, String jobConfigurationName) { this((JobInstance)null, id, jobParameters, jobConfigurationName); } public JobExecution(JobInstance job, JobParameters jobParameters) { this(job, (Long)null, jobParameters, (String)null); } public JobExecution(Long id, JobParameters jobParameters) { this((JobInstance)null, id, jobParameters, (String)null); } public JobExecution(Long id) { this((JobInstance)null, id, (JobParameters)null, (String)null); } public JobParameters getJobParameters() { return this.jobParameters; } public Date getEndTime() { return this.endTime; } public void setJobInstance(JobInstance jobInstance) { this.jobInstance = jobInstance; } public void setEndTime(Date endTime) { this.endTime = endTime; } public Date getStartTime() { return this.startTime; } public void setStartTime(Date startTime) { this.startTime = startTime; } public BatchStatus getStatus() { return this.status; } public void setStatus(BatchStatus status) { this.status = status; } public void upgradeStatus(BatchStatus status) { this.status = this.status.upgradeTo(status); } public Long getJobId() { return this.jobInstance != null ? this.jobInstance.getId() : null; } public void setExitStatus(ExitStatus exitStatus) { this.exitStatus = exitStatus; } public ExitStatus getExitStatus() { return this.exitStatus; } public JobInstance getJobInstance() { return this.jobInstance; } public Collection<StepExecution> getStepExecutions() { return Collections.unmodifiableList(new ArrayList(this.stepExecutions)); } public StepExecution createStepExecution(String stepName) { StepExecution stepExecution = new StepExecution(stepName, this); this.stepExecutions.add(stepExecution); return stepExecution; } public boolean isRunning() { return this.startTime != null && this.endTime == null; } public boolean isStopping() { return this.status == BatchStatus.STOPPING; } /** @deprecated */ @Deprecated public void stop() { Iterator var1 = this.stepExecutions.iterator(); while(var1.hasNext()) { StepExecution stepExecution = (StepExecution)var1.next(); stepExecution.setTerminateOnly(); } this.status = BatchStatus.STOPPING; } public void setExecutionContext(ExecutionContext executionContext) { this.executionContext = executionContext; } public ExecutionContext getExecutionContext() { return this.executionContext; } public Date getCreateTime() { return this.createTime; } public void setCreateTime(Date createTime) { this.createTime = createTime; } public String getJobConfigurationName() { return this.jobConfigurationName; } void addStepExecution(StepExecution stepExecution) { this.stepExecutions.add(stepExecution); } public Date getLastUpdated() { return this.lastUpdated; } public void setLastUpdated(Date lastUpdated) { this.lastUpdated = lastUpdated; } public List<Throwable> getFailureExceptions() { return this.failureExceptions; } public synchronized void addFailureException(Throwable t) { this.failureExceptions.add(t); } public synchronized List<Throwable> getAllFailureExceptions() { Set<Throwable> allExceptions = new HashSet(this.failureExceptions); Iterator var2 = this.stepExecutions.iterator(); while(var2.hasNext()) { StepExecution stepExecution = (StepExecution)var2.next(); allExceptions.addAll(stepExecution.getFailureExceptions()); } return new ArrayList(allExceptions); } private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); this.failureExceptions = new ArrayList(); } public String toString() { return super.toString() + String.format(", startTime=%s, endTime=%s, lastUpdated=%s, status=%s, exitStatus=%s, job=[%s], jobParameters=[%s]", this.startTime, this.endTime, this.lastUpdated, this.status, this.exitStatus, this.jobInstance, this.jobParameters); } public void addStepExecutions(List<StepExecution> stepExecutions) { if (stepExecutions != null) { this.stepExecutions.removeAll(stepExecutions); this.stepExecutions.addAll(stepExecutions); } } } package com.mns.oms.batch.domain; import java.time.LocalDateTime; import java.util.Date; import java.util.List; import org.springframework.data.annotation.CreatedDate; import org.springframework.data.annotation.Id; import org.springframework.data.annotation.LastModifiedDate; import org.springframework.data.mongodb.core.mapping.Document; import com.mns.oms.batch.model.JobStepDetails; import lombok.Data; /** * @author Mrinmoy Mandal * * Module: WISMR * */ @Data @Document(collection = "job-statistics") public class JobStatistics { @Id private String id; private Long jobId; private String jobName; private String jobStatus; private String jobExitStatus; private String jobExitDescription; private List<JobStepDetails> stepDetails; private List<String> fileList; private LocalDateTime startTime; private Date testStartTime; private LocalDateTime endTime; @CreatedDate private LocalDateTime createdDate; @LastModifiedDate private LocalDateTime lastModifieDate; } below here ......jobStats.setTestStartTime(inn);.....is working but this code is giving jobStats.setTestStartTime(jobExecution.getStartTime());....incompatible types: java.time.LocalDateTime cannot be converted to java.util.Date Date inn = new Date(); jobStats.setTestStartTime(inn); jobStats.setTestStartTime(jobExecution.getStartTime()); how to fix this issue in jobStats.setTestStartTime(jobExecution.getStartTime());
5e41d03eb096d2b09036f74be3dbb07f
{ "intermediate": 0.33688443899154663, "beginner": 0.4590712785720825, "expert": 0.20404428243637085 }
46,790
write a c code for this "w24fz size1 size2 o The serverw24 must return to the client temp.tar.gz that contains all the files in the directory tree rooted at its ~ whose file-size in bytes is >=size1 and <=size2  size1 < = size2 (size1>= 0 and size2>=0) o If none of the files of the specified size are present, the serverw24 sends “No file found” to the client (which is then printed on the client terminal by the client) o Ex: client24$ w24fz 1240 12450"
63674e6bc412c3fbb58e3f022e4575c5
{ "intermediate": 0.39427173137664795, "beginner": 0.31679484248161316, "expert": 0.2889333963394165 }
46,791
C:\Users\arisa>python3 -m pip install tensorflow[and-cuda] Python was not found; run without arguments to install from the Microsoft Store, or disable this shortcut from Settings > Manage App Execution Aliases.
625257b44d6b4fe928ce76ebaa6789ac
{ "intermediate": 0.41257598996162415, "beginner": 0.17179465293884277, "expert": 0.4156293272972107 }
46,792
i installed followings in conda: conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 how can i uninstall them
c80616965e61b1b7f2c31fbbca7ed911
{ "intermediate": 0.521062433719635, "beginner": 0.22611132264137268, "expert": 0.2528262436389923 }
46,793
corrige ce code en faisant en sorte que il est deux inputs : # Import necessary modules and packages from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Masking from tensorflow.keras.optimizers import Adam # Define hyperparameters embedding_dim = 200 lstm_units = 512 vocab_size_en = len(en_vocab) + len(reserved_tokens) vocab_size_fr = len(fr_vocab) + len(reserved_tokens) encoder_inputs = Input(shape=(200,)) # None indicates variable-length sequences encoder_embedding = Embedding(input_dim=vocab_size_en, output_dim=embedding_dim, mask_zero=True)(encoder_inputs) encoder_outputs, state_h, state_c = LSTM(lstm_units, return_state=True)(encoder_embedding) encoder_states = [state_h, state_c] decoder_embedding = Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(encoder_outputs) decoder_lstm = LSTM(lstm_units, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states) decoder_dense = Dense(200, activation='softmax') x= Embedding(200, output_dim=200, mask_zero=True) decoder_outputs = (decoder_outputs) # Define the complete model that combines the encoder and decoder model = Model(encoder_inputs, decoder_outputs) # Compile the model with the specified optimizer, loss function, and metrics model.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Summarize the model architecture model.summary()
1d644ae1e453864c06d60a270ffa3490
{ "intermediate": 0.3025532364845276, "beginner": 0.15775826573371887, "expert": 0.5396884083747864 }
46,794
// // Source code recreated from a .class file by IntelliJ IDEA // (powered by FernFlower decompiler) // package org.springframework.batch.core; import java.io.IOException; import java.io.ObjectInputStream; import java.time.LocalDateTime; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashSet; import java.util.List; import java.util.Set; import java.util.concurrent.CopyOnWriteArrayList; import org.springframework.batch.item.ExecutionContext; import org.springframework.lang.Nullable; public class JobExecution extends Entity { private final JobParameters jobParameters; private JobInstance jobInstance; private volatile Collection<StepExecution> stepExecutions; private volatile BatchStatus status; private volatile LocalDateTime startTime; private volatile LocalDateTime createTime; private volatile LocalDateTime endTime; private volatile LocalDateTime lastUpdated; private volatile ExitStatus exitStatus; private volatile ExecutionContext executionContext; private transient volatile List<Throwable> failureExceptions; public JobExecution(JobExecution original) { this.stepExecutions = Collections.synchronizedSet(new LinkedHashSet()); this.status = BatchStatus.STARTING; this.startTime = null; this.createTime = LocalDateTime.now(); this.endTime = null; this.lastUpdated = null; this.exitStatus = ExitStatus.UNKNOWN; this.executionContext = new ExecutionContext(); this.failureExceptions = new CopyOnWriteArrayList(); this.jobParameters = original.getJobParameters(); this.jobInstance = original.getJobInstance(); this.stepExecutions = original.getStepExecutions(); this.status = original.getStatus(); this.startTime = original.getStartTime(); this.createTime = original.getCreateTime(); this.endTime = original.getEndTime(); this.lastUpdated = original.getLastUpdated(); this.exitStatus = original.getExitStatus(); this.executionContext = original.getExecutionContext(); this.failureExceptions = original.getFailureExceptions(); this.setId(original.getId()); this.setVersion(original.getVersion()); } public JobExecution(JobInstance job, Long id, @Nullable JobParameters jobParameters) { super(id); this.stepExecutions = Collections.synchronizedSet(new LinkedHashSet()); this.status = BatchStatus.STARTING; this.startTime = null; this.createTime = LocalDateTime.now(); this.endTime = null; this.lastUpdated = null; this.exitStatus = ExitStatus.UNKNOWN; this.executionContext = new ExecutionContext(); this.failureExceptions = new CopyOnWriteArrayList(); this.jobInstance = job; this.jobParameters = jobParameters == null ? new JobParameters() : jobParameters; } public JobExecution(JobInstance job, JobParameters jobParameters) { this(job, (Long)null, jobParameters); } public JobExecution(Long id, JobParameters jobParameters) { this((JobInstance)null, id, jobParameters); } public JobExecution(Long id) { this((JobInstance)null, id, (JobParameters)null); } public JobParameters getJobParameters() { return this.jobParameters; } @Nullable public LocalDateTime getEndTime() { return this.endTime; } public void setJobInstance(JobInstance jobInstance) { this.jobInstance = jobInstance; } public void setEndTime(LocalDateTime endTime) { this.endTime = endTime; } @Nullable public LocalDateTime getStartTime() { return this.startTime; } public void setStartTime(LocalDateTime startTime) { this.startTime = startTime; } public BatchStatus getStatus() { return this.status; } public void setStatus(BatchStatus status) { this.status = status; } public void upgradeStatus(BatchStatus status) { this.status = this.status.upgradeTo(status); } public Long getJobId() { return this.jobInstance != null ? this.jobInstance.getId() : null; } public void setExitStatus(ExitStatus exitStatus) { this.exitStatus = exitStatus; } public ExitStatus getExitStatus() { return this.exitStatus; } public JobInstance getJobInstance() { return this.jobInstance; } public Collection<StepExecution> getStepExecutions() { return List.copyOf(this.stepExecutions); } public StepExecution createStepExecution(String stepName) { StepExecution stepExecution = new StepExecution(stepName, this); this.stepExecutions.add(stepExecution); return stepExecution; } public boolean isRunning() { return this.status.isRunning(); } public boolean isStopping() { return this.status == BatchStatus.STOPPING; } public void setExecutionContext(ExecutionContext executionContext) { this.executionContext = executionContext; } public ExecutionContext getExecutionContext() { return this.executionContext; } public LocalDateTime getCreateTime() { return this.createTime; } public void setCreateTime(LocalDateTime createTime) { this.createTime = createTime; } void addStepExecution(StepExecution stepExecution) { this.stepExecutions.add(stepExecution); } @Nullable public LocalDateTime getLastUpdated() { return this.lastUpdated; } public void setLastUpdated(LocalDateTime lastUpdated) { this.lastUpdated = lastUpdated; } public List<Throwable> getFailureExceptions() { return this.failureExceptions; } public synchronized void addFailureException(Throwable t) { this.failureExceptions.add(t); } public synchronized List<Throwable> getAllFailureExceptions() { Set<Throwable> allExceptions = new HashSet(this.failureExceptions); Iterator var2 = this.stepExecutions.iterator(); while(var2.hasNext()) { StepExecution stepExecution = (StepExecution)var2.next(); allExceptions.addAll(stepExecution.getFailureExceptions()); } return new ArrayList(allExceptions); } private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); this.failureExceptions = new ArrayList(); } public String toString() { String var10000 = super.toString(); return var10000 + String.format(", startTime=%s, endTime=%s, lastUpdated=%s, status=%s, exitStatus=%s, job=[%s], jobParameters=[%s]", this.startTime, this.endTime, this.lastUpdated, this.status, this.exitStatus, this.jobInstance, this.jobParameters); } public void addStepExecutions(List<StepExecution> stepExecutions) { if (stepExecutions != null) { this.stepExecutions.removeAll(stepExecutions); this.stepExecutions.addAll(stepExecutions); } } }.....................package com.mns.oms.batch.domain; import java.time.LocalDateTime; import java.util.List; import org.springframework.data.annotation.CreatedDate; import org.springframework.data.annotation.Id; import org.springframework.data.annotation.LastModifiedDate; import org.springframework.data.mongodb.core.mapping.Document; import com.mns.oms.batch.model.JobStepDetails; import lombok.Data; /** * @author Mrinmoy Mandal * * Module: WISMR * */ @Data @Document(collection = "job-statistics") public class JobStatistics { @Id private String id; private Long jobId; private String jobName; private String jobStatus; private String jobExitStatus; private String jobExitDescription; private List<JobStepDetails> stepDetails; private List<String> fileList; private LocalDateTime startTime; private LocalDateTime endTime; @CreatedDate private LocalDateTime createdDate; @LastModifiedDate private LocalDateTime lastModifieDate; } .........jobStats.setStartTime(jobExecution.getStartTime().toInstant().atZone(ZoneId.systemDefault()).toLocalDateTime());.....giving compile time issue.....fix it
504f5b51493d39cd3c2104cd87b9d641
{ "intermediate": 0.3504513204097748, "beginner": 0.4806583821773529, "expert": 0.16889025270938873 }
46,795
The kernel failed to start as 'TypeAliasType' could not be imported from 'c:\Users\arisa\AppData\Local\Programs\Python\Python310\lib\site-packages\typing_extensions.py'. Click here for more info.
72a281af466e5d0057dccd07e2d07ce1
{ "intermediate": 0.3358921408653259, "beginner": 0.31427884101867676, "expert": 0.3498290181159973 }
46,796
import matplotlib.pyplot as plt from tensorflow.keras.utils import plot_model # Create the model encoder_inputs = Input(shape=(200,)) encoder_embedding = Embedding(input_dim=vocab_size_en, output_dim=embedding_dim, mask_zero=True)(encoder_inputs) encoder_outputs, state_h, state_c = LSTM(lstm_units, return_state=True)(encoder_embedding) encoder_states = [state_h, state_c] decoder_inputs = Input(shape=(200,)) decoder_embedding = Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(decoder_inputs) decoder_lstm = LSTM(lstm_units, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states) decoder_dense = Dense(vocab_size_fr, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) model = Model([encoder_inputs, decoder_inputs], decoder_outputs) model.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() history = model.fit([x_train,x2_train], y_train, epochs=10, batch_size=2)
723aee6d5c77296b58c0766305be5cdb
{ "intermediate": 0.3867577612400055, "beginner": 0.26395630836486816, "expert": 0.34928590059280396 }
46,797
How do i install wine on astra linux?
c20cedf1b7cfdf0a49943b75eddc177f
{ "intermediate": 0.5421147346496582, "beginner": 0.24283619225025177, "expert": 0.21504908800125122 }
46,798
porter_stemmer =PorterStemmer() #-------------------------------------- def fn_preprocess_question(question): return ' '.join([porter_stemmer.stem(word) for word in question.split()]) dict_predefined_answers ={ "Who are you":"I am the SAMS bot, your Virtual Sales Assistant. I’m here to help you navigate through SAMS databases and provide the information you need.", "Hi":"Hello, Welcome to SAMS Virtual Sales Assistant. I am designed to assist you in retrieving information from various SAMS databases. Please feel free to ask your queries, such as, 'What is the total sellout across India for July 16, 2022? among others.", "What can you do":"I am equipped to offer you comprehensive insights and data from SAMS databases. Whether you need sales figures or specific reports, just ask, and I’ll provide the most accurate information available.Although my training is still going on.", "How can I use this service":"Using this service is simple. Just type in your query about any sales or database-related information, like ‘Show the sales trend for product XYZ during the last month,' and I'll fetch the details for you.", "I'm not sure what to ask.":"No problem at all. You can start with general queries like 'What were the top-selling products last month?'' or 'Update me on the current monthly sales report.' I am here to guide you through accessing the precise information you need.", "Thank you":"You're most welcome! If you have any more questions or need further assistance, I'm here to help. Your success is my priority.", "Goodbye":"Farewell! If you ever require any assistance or have more queries in the future, don't hesitate to reach out. Have a great day ahead!", "Bye":"Farewell! If you ever require any assistance or have more queries in the future, don't hesitate to reach out. Have a great day ahead!", "How are you":"I am good,Please ask anything related to SAMS and I will try to provide you best possible solution.Thanks" } def generate(tokenizer,prompt): eos_token_id = tokenizer.convert_tokens_to_ids(["
66d2be6c59f536b467ad40734e6d6dd4
{ "intermediate": 0.41154348850250244, "beginner": 0.32434946298599243, "expert": 0.2641070485115051 }
46,799
Добавь в этот код возможность использовать прокси: param ( [Parameter(Mandatory=$true)] [string]$UrlListFilePath ) if (-not $UrlListFilePath) { Write-Host "Path to the file is not provided." exit 1 } if (-not (Test-Path -Path $UrlListFilePath)) { Write-Host "File not found: $UrlListFilePath" exit 1 } function Fetch-Url { param ( [string]$Url ) try { $response = Invoke-WebRequest -Uri $Url -TimeoutSec 10 Write-Host "URL: $Url -> Status code: $($response.StatusCode)" } catch { Write-Host "URL: $Url -> Failed to fetch. Error: $($_.Exception.Message)" } } while ($true) { Get-Content -Path $UrlListFilePath | ForEach-Object { Fetch-Url -Url $_ } }
a6d7ffde00e30905c8934ed81b051ef0
{ "intermediate": 0.40210750699043274, "beginner": 0.454921156167984, "expert": 0.14297132194042206 }
46,800
Hi! Come up with fully working c++ program which uses djikstra algorithm with priority queue using binary heap as implementation. You are not allowed to use external libraries. You laso have to implement class graph, edge, vertex and priority queue with binary heap. Task: Given an oriented graph, determine if it has a cycle of negative weight and print it (if exists). Input Input's first line has number N (1 ≤ N ≤ 100) — number of vertices in the graph. Each of the next N lines contains N numbers — all representing an adjacency matrix. All weights are strictly less than 10000 by absolute value. If there is no edge, corresponding value will be exactly 100000. Output First line should YES if there exists a negative cycle, or NO otherwise. If the cycle exists, second line should should contain the number of vertices in that cycle and third line should contain indices of those vertices (in cycle order). Example inputCopy 2 0 -1 -1 0 outputCopy YES 2 2 1
1449636314679fb90993d93442d1e02c
{ "intermediate": 0.42127564549446106, "beginner": 0.2429807037115097, "expert": 0.33574363589286804 }
46,801
In typescript, the type Record<K, T> represents an object type with property keys that are K. But I fail to see how you could use anything else but string or number for this, or some subset of these two types. What would it even mean for an object to have keys that are of type, say Foo: {one: number, two: string}? Is my understanding correct here?
570e4438e2e0eeea4e9d3c38fed0db17
{ "intermediate": 0.5337580442428589, "beginner": 0.2312050759792328, "expert": 0.23503687977790833 }
46,802
I am making a SDL based C++ game engine, and I need help on transforming all my SDL raw pointers into smart pointers. 1) How is the format for creating them? - TTF_Font* font; transform into std::unique_ptr<TTF_Font, TTF_CloseFont> font; ? - SDL_Texture* texture; transform into ??? - SDL_Window* window; transform into ??? - SDL_Renderer* renderer; transform into ??? And my own object which doesn't relate to an SDL so doesn't have a Close method but uses it's destructor, how would that transform into? Rect* srcRect;
aefae869020456376d032f195779866f
{ "intermediate": 0.6915609836578369, "beginner": 0.1801348179578781, "expert": 0.12830419838428497 }
46,803
split the audio file of wav file in most quality into vocals, guitar, drums , piano etc without loss
0d28fe187792c0f3dbfe15328737aafa
{ "intermediate": 0.39845338463783264, "beginner": 0.20206958055496216, "expert": 0.3994770646095276 }
46,804
import pandas as pd from pymystem3 import Mystem import re data = pd.read_table('SMSSpamCollection',sep='\t') data.reset_index(inplace = True) data = data.rename(columns = {'index': 'ham'}) corpus = data['text'].values.astype('U')
c0e2e167af3bbec6a7e1ee3e7d59d212
{ "intermediate": 0.4843616485595703, "beginner": 0.2938971221446991, "expert": 0.221741184592247 }
46,805
напиши покупку, регистрацию и отмену билетов from tkinter import * # Паспорт пассажира class Passport: def __init__(self, name, surname, series, number): self.__series = series self.__number = number self.__name = name self.__surname = surname # Геттер серии паспорта @property def series(self): return self.__series # Геттер номера паспорта @property def number(self): return self.__number # Геттер имени @property def name(self): return self.__name # Геттер фамилии @property def surname(self): return self.__surname # Пассажир class Passenger: def __init__(self, passport, phone_number, email): self.__passport = passport self.__phone_number = phone_number self.__email = email # Геттер телефона пассажира @property def phone_number(self): return self.__phone_number # Геттер почты пассажира @property def email(self): return self.__email # Геттер имени пассажира @property def name(self): return self.__passport.name # Геттер фамилии пассажира @property def surname(self): return self.__passport.surname # Геттер серии паспорта @property def series(self): return self.__passport.series # Геттер номера паспорта @property def number(self): return self.__passport.number # Место в самолете class Seat: def __init__(self, price, boarding_group): self.__boarding_group = boarding_group self.__price = price self.__status = 0 # Геттер цены места @property def price(self): return self.__price # Геттер посадочной группы места @property def boarding_group(self): return self.__boarding_group # Геттер статуса места (0 - свободно, 1 - куплено, 2 - зарегестрировано) @property def status(self): return self.__status # Сеттер статуса места @status.setter def status(self, val): if val in (0, 1, 2): self.__status = val else: print("Недопустимый статус.") # Аэропорт class Airport: def __init__(self): self.__flights = [] # Список рейсов # Удаление рейса из списка def cancel_flight(self, flight): if flight in self.__flights: self.__flights.remove(flight) print(f"Рейс номер {flight.flight_number} отменён.") else: print("Рейс не найден.") # Добавление рейса в список def add_flight(self, flight): self.__flights.append(flight) print(f"Рейс номер {flight.flight_number} добавлен.") # Вывод текущих рейсов def display_flights(self): if self.__flights: for flight in self.__flights: print(f"Рейс номер: {flight.flight_number} - Назначение: " f"{flight.destination} - Время отправления: {flight.departure_time} - Свободные места: " f"{flight.available_seats}") # Самолёт class Flight: def __init__(self, flight_number, destination, departure_time, total_seats): self.__flight_number = flight_number # Номер рейса self.__destination = destination # Место назначения self.__departure_time = departure_time # Время отправки self.__total_seats = total_seats # Всего мест в самолете self.__available_seats = total_seats # Доступных мест self.__occupied_seats = 0 # Занятых мест self.__registered_seats = 0 # Зарегестрированных мест self.__passengers = [] # Список пассажиров # Регистрация пассажира def register_passenger(self, passenger): print(f"Пассажир {passenger.name} зарегестрирован на рейс номер {self.__flight_number}.") # Покупка билета def buy_ticket(self, passenger, seat_price, boarding_group): print(f"Билет куплен {passenger.name} на рейс номер {self.__flight_number}.") # Возврат билета def cancel_ticket(self, passenger): print(f"Возврат билета пассажиром {passenger.name}.") # Геттер номера рейса @property def flight_number(self): return self.__flight_number # Геттер времени отправления @property def departure_time(self): return self.__departure_time # Геттер количества свободных мест @property def available_seats(self): return self.__available_seats # Геттер места прибытия @property def destination(self): return self.__destination # Геттер общего количества мест @property def total_seats(self): return self.__total_seats # Геттер количества занятых мест @property def occupied_seats(self): return self.__occupied_seats # Геттер количества зарегестрированных мест @property def registered_seats(self): return self.__registered_seats class Interface: airport = Airport mainscreen = Tk() # def __init__(self): # Пример passport1 = Passport("Боб", "Боб", "4517", "357645") # Содание объекта паспорт passenger1 = Passenger(passport1, "89131331224", "bob@gmail.com") # Создание объекта пассажир airport = Airport() # Создание объекта аэропорт flight1 = Flight("F123", "Москва", "12:00", 100) # Создание объекта самолёт flight2 = Flight("A200", "Новосибирск", "09:00", 300) # Создание объекта самолёт airport.add_flight(flight1) # Добавление самолёта в список рейсов airport.add_flight(flight2) # Добавление самолёта в список рейсов flight1.buy_ticket(passenger1, 200, "Group A") # Покупка билета flight1.register_passenger(passenger1) # Регистрация билета flight1.cancel_ticket(passenger1) # Отмена билета airport.display_flights() # Отображение всех рейсов airport.cancel_flight(flight1) # Отмена рейса airport.display_flights() # Отображение всех рейсов
8a675fbe7f04114e898eaa223d6393f7
{ "intermediate": 0.20966340601444244, "beginner": 0.6283963322639465, "expert": 0.16194027662277222 }
46,807
Hi! Please, adjust my program for the given task. You have to implement Djikstra algorithm using Priority queue which is implemented using binary heap. You are not allowed to use additional libraries. Task: Given an oriented graph, determine if it has a cycle of negative weight and print it (if exists). Input Input's first line has number N (1 ≤ N ≤ 100) — number of vertices in the graph. Each of the next N lines contains N numbers — all representing an adjacency matrix. All weights are strictly less than 10000 by absolute value. If there is no edge, corresponding value will be exactly 100000. Output First line should YES if there exists a negative cycle, or NO otherwise. If the cycle exists, second line should should contain the number of vertices in that cycle and third line should contain indices of those vertices (in cycle order). Example inputCopy 2 0 -1 -1 0 outputCopy YES 2 2 1 Program to be adjusted: #include <iostream> #include <vector> #include <list> template<typename T, typename V> class Edge; template<typename T, typename V> class Vertex { private: T label; bool visited; std::list<Edge<T, V>*> adjacentList; public: Vertex(T _label) : label(_label), visited(false) {} int getDegree() const { return this->adjacentList.size(); } T getLabel() const { return this->label; } void addEdge(Edge<T, V>* edge) { this->adjacentList.push_back(edge); } const std::list<Edge<T, V>*>& getAdjacentList() const { return this->adjacentList; } bool isVisited() const { return this->visited; } void setVisited(bool visited) { this->visited = visited; } }; template<typename T, typename V> class Edge { private: Vertex<T, V>& sVertex; Vertex<T, V>& dVertex; V weight; bool visited; public: Edge(Vertex<T, V>& _sVertex, Vertex<T, V>& _dVertex, V _weight) : sVertex(_sVertex), dVertex(_dVertex), weight(_weight), visited(false) {} const Vertex<T, V>& getAdjacentVertex(const Vertex<T, V>& vertex) const { return (vertex.getLabel() != sVertex.getLabel()) ? sVertex : dVertex; } bool operator>(const Edge<T, V>& other) const { return this->weight > other.weight; } T getLabelSource() const { return sVertex.getLabel(); } T getLabelDest() const { return dVertex.getLabel(); } V getWeight() const { return this->weight; } bool isVisited() const { return this->visited; } void setVisited(bool val) { this->visited = val; } }; template<typename T, typename V> class Graph : public virtual iDisjointSet<T> { private: int numOfVertices; std::list<Vertex<T, V>*> vertices; std::list<Edge<T, V>*> edges; std::list<std::list<Edge<T, V>*>> trees; std::list<int> degrees; std::vector<int> parents; int singleVertices; void depthFirstSearch(Vertex<T, V>* vertex, std::list<Edge<T, V>*>& tree) { vertex->setVisited(true); const std::list<Edge<T, V>*>& adjEdges = vertex->getAdjacentList(); for (Edge<T, V>* adjEdge : adjEdges) { Vertex<T, V>* adjacentVertex = const_cast<Vertex<T, V>*>(&adjEdge->getAdjacentVertex(*vertex)); if (!adjEdge->isVisited()) { tree.push_back(adjEdge); } adjEdge->setVisited(true); if (!adjacentVertex->isVisited()) { depthFirstSearch(adjacentVertex, tree); } } } void getTrees() { for (Vertex<T, V>* vertex : vertices) { if (!vertex->isVisited()) { std::list<Edge<T, V>*> tree; depthFirstSearch(vertex, tree); if (!tree.empty()) { trees.push_back(tree); } } } } void sortEdges(std::list<Edge<T,V>*>& edges) { if (edges.empty()) { return; } V minWeight = std::numeric_limits<V>::max(); V maxWeight = std::numeric_limits<V>::min(); for (auto edge : edges) { minWeight = std::min(minWeight, edge->getWeight()); maxWeight = std::max(maxWeight, edge->getWeight()); } std::vector<int> count(maxWeight - minWeight + 1, 0); for (Edge<T,V>* edge : edges) { count[edge->getWeight() - minWeight]++; } for (int i = 1; i < count.size(); i++) count[i] += count[i - 1]; std::vector<Edge<T,V>*> sortedEdges(edges.size()); for (auto it = edges.rbegin(); it != edges.rend(); ++it) { sortedEdges[count[(*it)->getWeight() - minWeight] - 1] = *it; count[(*it)->getWeight() - minWeight]--; } edges.clear(); for (Edge<T,V>* edge : sortedEdges) { edges.push_back(edge); } } std::list<Edge<T, V>*> getMinimumSpanningTree(std::list<Edge<T, V>*>& listOfEdges) { std::list<Edge<T, V>*> minimumSpanningTree; sortEdges(listOfEdges); for (Edge<T, V>* edge : listOfEdges) { int setStart = find(edge->getLabelSource()); int setEnd = find(edge->getLabelDest()); if (setStart != setEnd) { makeUnion(setStart, setEnd); minimumSpanningTree.push_back(edge); } } return minimumSpanningTree; } T find(int index) { if (this->parents[index] == 0) { return index; } this->parents[index] = find(this->parents[index]); return this->parents[index]; } void makeUnion(int indexStart, int indexEnd) { this->parents[find(indexStart)] = find(indexEnd); } T getNumberOfVertices(std::list<Edge<T, V>*>& tree) { std::vector<T> labels(100000, 0); for (Edge<T, V>* edge : tree) { T v1 = edge->getLabelSource(); T v2 = edge->getLabelDest(); labels[v1] = 1; labels[v2] = 1; } T sum = 0; for (auto i : labels) { sum += i; } return sum; } void buildMinimumSpanningForest() { getTrees(); std::cout << this->trees.size() + this->singleVertices << std::endl; for (std::list<Edge<T, V>*>& tree : trees) { Edge<T, V>* firstEdge = *tree.begin(); std::cout << getNumberOfVertices(tree) << ' ' << firstEdge->getLabelDest() << std::endl; std::list<Edge<T, V>*> mst = getMinimumSpanningTree(tree); for (Edge<T, V>* edge : mst) { if (edge != nullptr) std::cout << edge->getLabelSource() << " " << edge->getLabelDest() << " " << edge->getWeight() << std::endl; } } } public: Graph(int _numOfVertices) : numOfVertices(_numOfVertices) { this->parents.resize(100000); this->singleVertices = 0; } Graph() = default; std::list<std::list<Edge<T, V>*>>& decomposeGraph() { getTrees(); return this->trees; } Vertex<T, V>* addVertex(T label) { Vertex<T, V>* newVertex = new Vertex<T, V>(label); vertices.push_back(newVertex); return newVertex; } Edge<T, V>* addEdge(Vertex<T, V>& sVertex, Vertex<T, V>& dVertex, V weight) { Edge<T, V>* newEdge = new Edge<T, V>(sVertex, dVertex, weight); edges.push_back(newEdge); sVertex.addEdge(newEdge); dVertex.addEdge(newEdge); return newEdge; } void minimumSpanningForest() { buildMinimumSpanningForest(); } void addSingleVertex() { this->singleVertices++; } }; int main(void) { int numOfVertices, temp; const int LIMIT = 100000; std::cin >> numOfVertices; Graph<int, int> graph(numOfVertices); for (int i = 0; i < numOfVertices; i++) { for (int j = 0; j < numOfVertices; j++) { std::cin >> temp; if (temp != 0) { Vertex<int, int>* v1 = graph.addVertex(i + 1); Vertex<int, int>* v2 = graph.addVertex(j + 1); graph.addEdge(*v1, *v2, temp); } } } return 0; }
2082ec04245889ed4027497627c47450
{ "intermediate": 0.413147896528244, "beginner": 0.35242441296577454, "expert": 0.23442766070365906 }
46,808
onuploadprogress axios typescript example
8c62f016ea2e97311baac4e40cae2cf6
{ "intermediate": 0.23916547000408173, "beginner": 0.43786683678627014, "expert": 0.3229677081108093 }
46,809
Defaulting to user installation because normal site-packages is not writeable ERROR: Could not find a version that satisfies the requirement tensorflow<2.11 (from versions: 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.12.1, 2.13.0rc0, 2.13.0rc1, 2.13.0rc2, 2.13.0, 2.13.1, 2.14.0rc0, 2.14.0rc1, 2.14.0, 2.14.1, 2.15.0rc0, 2.15.0rc1, 2.15.0, 2.15.1, 2.16.0rc0, 2.16.1) ERROR: No matching distribution found for tensorflow<2.11
859d95d14b189f7df982e75566ced4f8
{ "intermediate": 0.3208305835723877, "beginner": 0.3705481290817261, "expert": 0.30862125754356384 }
46,810
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "3UeycYCyxDfE" }, "source": [ "# TRANSLATOR" ] }, { "cell_type": "markdown", "metadata": { "id": "8BfUjVxBcz5N" }, "source": [ "## instalation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WXqM38xBRHu2" }, "outputs": [], "source": [ "%%time\n", "!pip install -q -U tensorflow-text\n", "!pip install datasets\n", "!pip install -q tensorflow_datasets\n", "!pip install pydot\n", "!cd /content\n", "!clear" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "Ukvs1XfMG7aG" }, "outputs": [], "source": [ "import tensorflow as tf\n", "import tensorflow_text as tf_text\n", "import tensorflow_datasets as tfds\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import requests\n", "import functools\n", "import collections\n", "import os\n", "import pathlib\n", "import re\n", "import string\n", "import tempfile\n", "import time\n", "import matplotlib.pyplot as plt\n", "import os\n", "import re\n", "import shutil\n", "import string\n", "import tensorflow as tf\n", "\n", "from tensorflow.keras import layers\n", "from tensorflow.keras import losses\n", "import pydot" ] }, { "cell_type": "markdown", "metadata": { "id": "7V7igFwpc6Hs" }, "source": [ "## dataset" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "ZaMtoUtAREzs", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "67fb1777-9e10-4197-88dc-1187b08082ac" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Nombre de phrases en français : 127085\n", "Nombre de phrases en anglais : 127085\n" ] } ], "source": [ "from datasets import load_dataset\n", "\n", "dataset = load_dataset("Helsinki-NLP/opus_books", "en-fr")\n", "data = dataset["train"]\n", "\n", "french_sentences = [example["fr"] for example in data["translation"][:127085]]\n", "english_sentences = [example["en"] for example in data["translation"][:127085]]\n", "dataset = tf.data.Dataset.from_tensor_slices((french_sentences, english_sentences))\n", "\n", "french_sentences_decoded = []\n", "english_sentences_decoded = []\n", "\n", "for french_sentence, english_sentence in dataset.take(127085):\n", " french_sentences_decoded.append("b '"+french_sentence.numpy().decode('utf-8'))\n", " english_sentences_decoded.append("b '"+english_sentence.numpy().decode('utf-8'))\n", "\n", "print("Nombre de phrases en français :", len(french_sentences_decoded))\n", "print("Nombre de phrases en anglais :", len(english_sentences_decoded))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "2tb7H5uFQoBA" }, "outputs": [], "source": [ "train_fr = french_sentences\n", "train_en = english_sentences" ] }, { "cell_type": "markdown", "metadata": { "id": "NzS8h0budHWv" }, "source": [ "## vocab" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "72uMXsQhFIx8" }, "outputs": [], "source": [ "from tensorflow_text.tools.wordpiece_vocab import bert_vocab_from_dataset as bert_vocab\n", "\n", "bert_tokenizer_params = dict(lower_case=True)\n", "reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]\n", "\n", "bert_vocab_args = {\n", " 'vocab_size': 8000,\n", " 'reserved_tokens': reserved_tokens,\n", " 'bert_tokenizer_params': bert_tokenizer_params,\n", " 'learn_params': {},\n", "}\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "q6f3mrA-DK0n" }, "outputs": [], "source": [ "%%time\n", "en_vocab = bert_vocab.bert_vocab_from_dataset(\n", " tf.data.Dataset.from_tensor_slices(english_sentences).batch(1000).prefetch(2),\n", " **bert_vocab_args\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "EJZzz1x5YY0x", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "1e627917-410a-479f-d27d-ca31480d12bb" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "CPU times: user 3min 38s, sys: 1.51 s, total: 3min 39s\n", "Wall time: 3min 40s\n" ] } ], "source": [ "%%time\n", "fr_vocab = bert_vocab.bert_vocab_from_dataset(\n", " tf.data.Dataset.from_tensor_slices(french_sentences).batch(1000).prefetch(2),\n", " **bert_vocab_args\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "1hmXuHHNcBHg" }, "outputs": [], "source": [ "def write_vocab_file(filepath, vocab):\n", " with open(filepath, 'w') as f:\n", " for token in vocab:\n", " print(token, file=f)\n", "write_vocab_file('en_vocab.txt', en_vocab)\n", "write_vocab_file('fr_vocab.txt', fr_vocab)" ] }, { "cell_type": "markdown", "metadata": { "id": "kLTf_mEvfNR9" }, "source": [ "#TOKENIZER\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "jGshnQ2idy8I" }, "outputs": [], "source": [ "fr_tokenizer = tf_text.BertTokenizer('fr_vocab.txt', **bert_tokenizer_params)\n", "en_tokenizer = tf_text.BertTokenizer('en_vocab.txt', **bert_tokenizer_params)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "bbQyYKhHkkDe", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "ef58d907-9286-471c-e286-2fa1cda19af9" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[3092, 501, 202, 151, 107, 2890, 177, 4626]\n" ] } ], "source": [ "# Tokenize the examples -> (batch, word, word-piece)\n", "en_tokenizere = en_tokenizer.tokenize("hello how are you Vadim")\n", "# Merge the word and word-piece axes -> (batch, tokens)\n", "en_tokenizere= en_tokenizere.merge_dims(-2,-1)\n", "\n", "for ex in en_tokenizere.to_list():\n", " print(ex)\n" ] }, { "cell_type": "code", "source": [ "words = en_tokenizer.detokenize(token_batch)\n", "tf.strings.reduce_join(words, separator=' ', axis=-1)" ], "metadata": { "id": "k0m1461Gwy3e" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## model" ], "metadata": { "id": "BjoPdwoxBWw2" } }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "7OqoDOybbwi6" }, "outputs": [], "source": [ "max_length = 200\n", "\n", "fr_sequences = [fr_tokenizer.tokenize(french_sentence.numpy().decode('utf-8')).merge_dims(-2,-1)\n", " for french_sentence, _ in dataset.take(1000)]\n", "fr_ragged = tf.ragged.stack(fr_sequences)\n", "fr_padded = fr_ragged.to_tensor(default_value=0, shape=[None, None, max_length])\n", "\n", "fr_sequencesdeocde = [fr_tokenizer.tokenize("[START]"+french_sentence.numpy().decode('utf-8')+"[END]").merge_dims(-2,-1)\n", " for french_sentence, _ in dataset.take(1000)]\n", "fr_raggeddecode = tf.ragged.stack(fr_sequences)\n", "fr_paddeddecode = fr_ragged.to_tensor(default_value=0, shape=[None, None, max_length])\n", "\n", "en_sequences = [en_tokenizer.tokenize(english_sentence.numpy().decode('utf-8')).merge_dims(-2,-1)\n", " for _, english_sentence in dataset.take(1000)]\n", "en_ragged = tf.ragged.stack(en_sequences)\n", "en_padded = en_ragged.to_tensor(default_value=0, shape=[None, None, max_length])\n", "\n", "x_train = fr_padded\n", "x2_train = fr_paddeddecode\n", "y_train = en_padded\n", "\n" ] }, { "cell_type": "code", "source": [ "inputs = tf.keras.Input(shape=(1,200))\n", "embedding_dim = 200\n", "lstm_units = 512\n", "vocab_size_en = len(en_vocab) + len(reserved_tokens)\n", "vocab_size_fr = len(fr_vocab) + len(reserved_tokens)\n", "\n", "x = layers.LSTM(200, return_sequences=True)(inputs)\n", "x = layers.Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(x)\n", "x = layers.LSTM(200, return_sequences=True)(x)\n", "x = layers.LSTM(1024, return_sequences=True)(x)\n", "x = layers.LSTM(500, return_sequences=True)(x)\n", "x = layers.LSTM(400, return_sequences=True)(x)\n", "x = layers.LSTM(300, return_sequences=True)(x)\n", "outputs = layers.Dense(200)(x)\n", "\n", "model = tf.keras.Model(inputs=inputs, outputs=outputs)\n", "model.summary()" ], "metadata": { "id": "NFo9fU5lw2IR" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "X--5AeJ7GgPp" }, "outputs": [], "source": [ "model.compile(tf.keras.optimizers.Adam(beta_1=0.9, beta_2=0.98,\n", " epsilon=1e-9),\n", " loss='categorical_crossentropy',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "source": [ "inputs = tf.keras.Input(shape=(1,200))\n", "embedding_dim = 200\n", "lstm_units = 512\n", "vocab_size_en = len(en_vocab) + len(reserved_tokens)\n", "vocab_size_fr = len(fr_vocab) + len(reserved_tokens)\n", "\n", "encoder_inputs = tf.keras.layers.Input(shape=(200,))\n", "encoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_en, output_dim=embedding_dim, mask_zero=True)(encoder_inputs)\n", "encoder_outputs, state_h, state_c = tf.keras.layers.LSTM(lstm_units, return_state=True)(encoder_embedding)\n", "encoder_states = [state_h, state_c]\n", "\n", "decoder_inputs = tf.keras.layers.Input(shape=(200,))\n", "decoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(decoder_inputs)\n", "decoder_lstm = tf.keras.layers.LSTM(lstm_units, return_sequences=True, return_state=True)\n", "decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)\n", It looks like you're building a sequence-to-sequence model for English to French translation using TensorFlow and Keras. Here are a few suggestions to complete the model: Add a dense output layer to the decoder to generate the predicted French words: decoder_dense = tf.keras.layers.Dense(vocab_size_fr, activation='softmax')(decoder_outputs) Define the model inputs and outputs: model = tf.keras.models.Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_dense) Compile the model with an appropriate loss function and optimizer: model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) Prepare the training data: Convert the English and French sentences to integer sequences using the respective tokenizers. Pad the sequences to a fixed length. Split the data into training and validation sets. Train the model: model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2) Evaluate the model on a test set and calculate metrics like BLEU score to assess the translation quality. Use the trained model for inference: Tokenize and encode the input English sentence. Use the encoder to generate the initial states for the decoder. Iteratively predict the French words using the decoder until an end token is generated or a maximum length is reached. Decode the predicted French sequence back to text. Here's an example of how the inference step could look: def translate_sentence(sentence): # Tokenize and encode the input sentence input_seq = en_tokenizer.tokenize(sentence).merge_dims(-2,-1) input_seq = input_seq.to_tensor(default_value=0, shape=[None, max_length]) # Generate the initial states for the decoder states_value = encoder_model.predict(input_seq) # Initialize the decoder input with the start token target_seq = np.zeros((1, 1)) target_seq[0, 0] = fr_tokenizer.tokenize('[START]')[0] stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict([target_seq] + states_value) sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_token = fr_tokenizer.detokenize([sampled_token_index]) if sampled_token == '[END]' or len(decoded_sentence.split()) > max_length: stop_condition = True else: decoded_sentence += sampled_token.numpy().decode('utf-8') + ' ' target_seq = np.zeros((1, 1)) target_seq[0, 0] = sampled_token_index states_value = [h, c] return decoded_sentence These are the main steps to complete your English to French translation model. Make sure to handle text preprocessing, tokenization, and padding appropriately. Experiment with different model architectures, hyperparameters, and training strategies to improve the translation quality. what i should replace by this cells ? : inputs = tf.keras.Input(shape=(1,200)) embedding_dim = 200 lstm_units = 512 vocab_size_en = len(en_vocab) + len(reserved_tokens) vocab_size_fr = len(fr_vocab) + len(reserved_tokens) encoder_inputs = tf.keras.layers.Input(shape=(200,)) encoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_en, output_dim=embedding_dim, mask_zero=True)(encoder_inputs) encoder_outputs, state_h, state_c = tf.keras.layers.LSTM(lstm_units, return_state=True)(encoder_embedding) encoder_states = [state_h, state_c] decoder_inputs = tf.keras.layers.Input(shape=(200,)) decoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(decoder_inputs) decoder_lstm = tf.keras.layers.LSTM(lstm_units, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states) decoder_dense = tf.keras.layers.Dense(vocab_size_fr, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) model = tf.keras.Model([encoder_inputs, decoder_inputs], decoder_outputs) model.compile(optimizer=tf.keras.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() Based on the code you provided, it seems like you have already implemented the necessary changes I suggested. Let's go through the code and make sure everything is in place: You have defined the encoder inputs, embedding layer, and LSTM layer: encoder_inputs = tf.keras.layers.Input(shape=(200,)) encoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_en, output_dim=embedding_dim, mask_zero=True)(encoder_inputs) encoder_outputs, state_h, state_c = tf.keras.layers.LSTM(lstm_units, return_state=True)(encoder_embedding) encoder_states = [state_h, state_c] You have defined the decoder inputs, embedding layer, LSTM layer, and dense output layer: decoder_inputs = tf.keras.layers.Input(shape=(200,)) decoder_embedding = tf.keras.layers.Embedding(input_dim=vocab_size_fr, output_dim=embedding_dim, mask_zero=True)(decoder_inputs) decoder_lstm = tf.keras.layers.LSTM(lstm_units, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states) decoder_dense = tf.keras.layers.Dense(vocab_size_fr, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) You have defined the model inputs and outputs: model = tf.keras.Model([encoder_inputs, decoder_inputs], decoder_outputs) You have compiled the model with the appropriate loss function and optimizer: model.compile(optimizer=tf.keras.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) You have printed the model summary: model.summary() The code you provided looks good and follows the necessary steps to build the sequence-to-sequence model for translation. You don't need to replace anything in these cells. The next steps would be to prepare your training data, train the model, evaluate its performance, and use it for inference as described in my previous response. Remember to preprocess and tokenize your training data, pad the sequences to a fixed length, and split the data into training and validation sets before training the model. You can use the fit() method to train the model and pass the appropriate input and target data. After training, you can evaluate the model on a test set and calculate metrics like BLEU score to assess the translation quality. Finally, you can use the trained model for inference by following the steps outlined in the previous response to translate new English sentences to French. history = model.fit([x_train,x2_train], y_train, epochs=10, batch_size=2) Epoch 1/10 ValueError Traceback (most recent call last) in <cell line: 1>() ----> 1 history = model.fit([x_train,x2_train], y_train, epochs=10, batch_size=2) 1 frames /usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py in error_handler(*args, **kwargs) 120 # To get the full stack trace, call: 121 # keras.config.disable_traceback_filtering() --> 122 raise e.with_traceback(filtered_tb) from None 123 finally: 124 del filtered_tb /usr/local/lib/python3.10/dist-packages/keras/src/layers/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name) 243 if spec_dim is not None and dim is not None: 244 if spec_dim != dim: --> 245 raise ValueError( 246 f'Input {input_index} of layer "{layer_name}" is ' 247 "incompatible with the layer: " ValueError: Input 0 of layer "functional_3" is incompatible with the layer: expected shape=(None, 200), found shape=(2, 1, 200) The error message suggests that there is a mismatch between the expected input shape of the model and the actual shape of the input data you are providing. The model expects the input shape to be (None, 200), but the shape of x_train is (2, 1, 200). It seems like x_train has an extra dimension of size 1. To resolve this issue, you can try reshaping x_train and x2_train to remove the extra dimension. You can use the reshape() function from NumPy to do this: x_train = x_train.reshape((x_train.shape[0], x_train.shape[-1])) x2_train = x2_train.reshape((x2_train.shape[0], x2_train.shape[-1])) This will reshape x_train and x2_train to have the shape (num_samples, 200), which should match the expected input shape of the model. After reshaping the input data, you can try running the fit() method again: history = model.fit([x_train, x2_train], y_train, epochs=10, batch_size=2) Make sure that y_train also has the appropriate shape (num_samples, 200) and matches the output shape of the model. If you still encounter any shape mismatch errors, double-check the shapes of your input and target data and ensure they align with the model's expected shapes. Additionally, ensure that the number of samples in x_train, x2_train, and y_train are the same. If the issue persists, please provide more information about the shapes of your input and target data, and I'll be happy to assist you further. no can you change the model for accepted data like x1 and x2 now
5371ec069a20efac38d207a4e1a1694b
{ "intermediate": 0.3376249372959137, "beginner": 0.42616572976112366, "expert": 0.23620924353599548 }
46,811
make it 1 liner for session, session_info in sessions.items(): if session_info[‘posts sent’]: length_with_posts+=1
2dc721306e48612a34075619a613ec47
{ "intermediate": 0.27735060453414917, "beginner": 0.5434809923171997, "expert": 0.17916841804981232 }
46,812
pip install sklearn Collecting sklearn Downloading sklearn-0.0.post12.tar.gz (2.6 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [15 lines of output] The 'sklearn' PyPI package is deprecated, use 'scikit-learn' rather than 'sklearn' for pip commands. Here is how to fix this error in the main use cases: - use 'pip install scikit-learn' rather than 'pip install sklearn' - replace 'sklearn' by 'scikit-learn' in your pip requirements files (requirements.txt, setup.py, setup.cfg, Pipfile, etc ...) - if the 'sklearn' package is used by one of your dependencies, it would be great if you take some time to track which package uses 'sklearn' instead of 'scikit-learn' and report it to their issue tracker - as a last resort, set the environment variable SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True to avoid this error More information is available at https://github.com/scikit-learn/sklearn-pypi-package [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details.
4f1326d445089b9afa0ac3581b1f5639
{ "intermediate": 0.30493244528770447, "beginner": 0.336834579706192, "expert": 0.35823291540145874 }
46,813
Given the following byte stream represented in binary: 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 Assuming that the above bytes constitute a valid UTF-8 byte stream, how many Unicode characters does it contain? 6. 7. 5. 8. 4.
105855430fef51cce3785a1559534af7
{ "intermediate": 0.41113999485969543, "beginner": 0.333779513835907, "expert": 0.25508052110671997 }
46,814
which type response must be function uploadFile(){ if(state.selectedFiles !== undefined){ let currentFile = state.selectedFiles[0]; setState({ ...state, progress: 0, currentFile: currentFile, }) upload(currentFile, (event) => { setState({ ...state, progress: Math.round((100 * event.loaded || 1) / (event.total || 1)), }) }).then(response){ } } }
56f9c0035c3179853c0fda85338e6386
{ "intermediate": 0.37335050106048584, "beginner": 0.3539656400680542, "expert": 0.2726838290691376 }
46,815
python extract filename from filepath
398cc71e89239bf74472622b56910f89
{ "intermediate": 0.44093990325927734, "beginner": 0.20821142196655273, "expert": 0.3508486747741699 }
46,816
how to see directories in path system variable on windows on terminal?
75c43ae8ec1ffd084cd37f8162a8c24e
{ "intermediate": 0.38917994499206543, "beginner": 0.345529705286026, "expert": 0.2652903199195862 }
46,817
create auto login python script for a site, this is the source : <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=9"><title>LOGIN</title><link rel="stylesheet" type="text/css" href="main.css"><script src="main.js" type="text/javascript"></script><STYLE> .othd {border-width: 3px; border-style: solid; border-spacing:0px; padding:0px; margin:10px; width:254px; position: relative; display: inline-table;margin-right:0px; } table.othd thead tr{color:black; font-family:arial; height: 30px; font-size:14px; font-weight:bold; padding-left:5px; background: RGB(180,203,214);vertical-align:middle; } table.othd thead td{padding-left:5px; border: 1px solid RGB(100,150,170); padding-right: 25px; } table.othd tfoot td{padding-left:0px; height:10px; vertical-align: bottom; } table.othd tbody td{background-color: #E7EEF1; padding-left: 5px; color:red; font-family:arial; font-size:13px; font-weight:bold; border: 1px solid RGB(100,150,170); border-top: 0px; } table.othd thead img {background-image: url("3round_16x16.png"); background-repeat: no-repeat;width:16px;height:16px;position:absolute;right:10px;top:10px;} table.othd thead A{text-decoration:none;color:blue;}table.othd thead A:hover{text-decoration:underline;}.oth_ok { background-position: 0px 0px; } .oth_err { background-position: -32px 0px; } .oth_xxx { background-position: -16px 0px; } table.othd tfoot img {background-image: url("2xtrikampiai.png"); width:9px;height:5px;background-repeat: no-repeat; display: flex; margin-left:auto; margin-right: auto;cursor:pointer;} .trikampis1 { background-position: 0px 0px; } .trikampis2 { background-position: -9px 0px; } #OthContainer {text-align:left; float:left;width:820px;margin-top:20px;font-family:arial;font-size:13px;border: 0px dashed RGB(100,150,170); border-top-width: 1px; padding: 0px; padding-top: 10px;}</STYLE> <SCRIPT> function expand_msg(Item, IP) { var OnOff = 0; if (Item.className=="trikampis1") { OnOff = 1; } GetAjaxSync("ajax.cgi", "cmd=othd&ip="+IP+"&on="+OnOff); } </SCRIPT></head><BODY><FORM ACTION="run.cgi" METHOD=POST style="width: 100%; text-align: center;"><INPUT TYPE=hidden NAME="cmd" VALUE="login"><INPUT TYPE=hidden NAME="id" VALUE="1"><TABLE CLASS="groupbox3" style="margin-top: 100px;"><THEAD><TR><TD COLSPAN=2>Login</TD></TR></THEAD><TBODY><TR><TD><DIV CLASS="paramTitle">Username:</DIV></TD><TD COLSPAN=1><INPUT TYPE=text CLASS="inpdig" NAME="usr" MAXLENGTH="15" VALUE=""></TD></TR><TR><TD><DIV CLASS="paramTitle">Password:</DIV></TD><TD COLSPAN=1><INPUT TYPE=password CLASS="inpdig" NAME="psw" maxlength="15"></TD></TR><TFOOT><TR class="bglightgray"><TD COLSPAN=2 STYLE="text-align:center;"><INPUT TYPE=submit CLASS="msg_buttons" VALUE="Login"></TD></TR></TFOOT></TABLE></FORM></BODY> <script type="text/javascript"> if (document.title != "LOGIN") {ddlevelsmenu.setup("ddtopmenubar", "topbar");} </script></HTML>
28e1417e9ebd4b1c33aaca60e9f0b9e8
{ "intermediate": 0.30604150891304016, "beginner": 0.4853309690952301, "expert": 0.20862749218940735 }
46,818
I have a list of columns. I want to extqract the columns of df that are not in that list
790e8baa775541a7a2be0c0bb66b95f2
{ "intermediate": 0.39271867275238037, "beginner": 0.26389360427856445, "expert": 0.34338775277137756 }
46,819
When getting rid of a hard drive, is it better to write it full of zeroes or random data?
83b5d56830c4b99e3b2e8765466796f2
{ "intermediate": 0.3166959285736084, "beginner": 0.28032997250556946, "expert": 0.40297406911849976 }
46,820
# Step 1: Ensure you’ve got the necessary packages installed and loaded: if (!require(quadprog)) install.packages("quadprog") if (!require(PerformanceAnalytics)) install.packages("PerformanceAnalytics") library(quadprog) library(PerformanceAnalytics) # Step 2: Prepare your data based on the selected assets from both strategies. # For demonstration purposes, let's assume selected_returns1 and selected_returns2 are data frames of daily returns for the selected assets under Strategy 1 and Strategy 2, respectively. # You should replace these placeholders with your own data as obtained from previous steps. # Step 3: Implement Global Minimum Variance Portfolio without short selling: calculate_GMVP <- function(returns) { Dmat <- 2 * cov(returns) dvec <- rep(0, ncol(returns)) Amat <- rbind(c(1, rep(0, ncol(returns))), diag(ncol(returns))) bvec <- c(1, rep(0, ncol(returns))) meq <- 1 solve.QP(Dmat, dvec, Amat, bvec, meq)$solution } calculate_GMVP <- function(returns) { # This is a placeholder, adjust according to the actual function definition # Ensure this function is capable of calculating and returning the GMVP weights based on returns } # Calculate for both strategies weights_GMVP1 <- calculate_GMVP(selected_returns1) weights_GMVP2 <- calculate_GMVP(selected_returns2) # Step 4: Implement Tangency Portfolio with short selling: calculate_tangency_portfolio <- function(returns) { avg_returns <- colMeans(returns) inv_cov_matrix <- solve(cov(returns)) ones_vector <- rep(1, ncol(returns)) portfolio_weights <- inv_cov_matrix %*% avg_returns portfolio_weights <- portfolio_weights / (ones_vector %*% inv_cov_matrix %*% avg_returns) return(portfolio_weights) } calculate_tangency_portfolio <- function(selected_returns) { avg_returns <- colMeans(selected_returns) cov_matrix <- cov(selected_returns) inv_cov_matrix <- solve(cov_matrix) ones_vector <- matrix(1, nrow = ncol(selected_returns), ncol = 1) numerator <- inv_cov_matrix %% avg_returns denominator <- t(ones_vector) %% inv_cov_matrix %*% avg_returns weights <- numerator / denominator return(weights) } # Calculate for both strategies weights_TP1 <- calculate_tangency_portfolio(selected_returns1) weights_TP2 <- calculate_tangency_portfolio(selected_returns2) # Step 5: Output the weight allocations and optionally calculate portfolio return and risk measures. cat("Global Minimum Variance Portfolio Weights (Strategy 1):", weights_GMVP1, "\n") cat("Tangency Portfolio Weights (Strategy 1):", weights_TP1, "\n") cat("Global Minimum Variance Portfolio Weights (Strategy 2):", weights_GMVP2, "\n") cat("Tangency Portfolio Weights (Strategy 2):", weights_TP2, "\n") # Optional: Calculate Portfolio Return and Risk for a demonstration portfolio_return_GMVP1 <- sum(colMeans(selected_returns1) * weights_GMVP1) portfolio_risk_GMVP1 <- sqrt(t(weights_GMVP1) %*% cov(selected_returns1) %*% weights_GMVP1) cat("Portfolio Return (GMVP Strategy 1):", portfolio_return_GMVP1, "\n") cat("Portfolio Risk (GMVP Strategy 1):", portfolio_risk_GMVP1, "\n") # Calculate for both strategies > weights_TP1 <- calculate_tangency_portfolio(selected_returns1) Error in t(ones_vector)%%inv_cov_matrix : non-conformable arrays >
5c114eaeefba7b4e07654a719e16317f
{ "intermediate": 0.40354013442993164, "beginner": 0.32102280855178833, "expert": 0.27543705701828003 }
46,821
User is their any way in R studio to find out how the table in enviorment was created ?
16c683f1a7ebd09ad5f02999b7eba3d0
{ "intermediate": 0.4673639237880707, "beginner": 0.1454220414161682, "expert": 0.3872140347957611 }
46,822
How to use ocrmypdf?
bd3493b9b96c0eebd3c1af18eceee17f
{ "intermediate": 0.23292656242847443, "beginner": 0.14065755903720856, "expert": 0.6264158487319946 }
46,823
my code: # %% from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from tensorflow import keras def calculate_features_scaling_params(file_path, features_to_drop): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk.drop(features_to_drop, axis=1) scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ def calculate_targets_scaling_params(file_path): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ # %% import tensorflow as tf if tf.test.gpu_device_name(): print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) else: print('Please install GPU version of TF') # %% file_path = r"C:\Users\arisa\Desktop\combined_day.csv" batch_size = 128 # %% features_to_drop = ['Date', 'Symbol', 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'] f_mean_, f_var_ = calculate_features_scaling_params(file_path, features_to_drop) t_mean_, t_var_ = calculate_targets_scaling_params(file_path) # %% # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) # %% # %% row_counter = 0 # %% def data_generator(file_path, batch_size, data_type, x_scaler, y_scaler): chunksize = batch_size total_rows = 301617 # Adjust with your dataset's actual number of rows split_ratio = 0.92 # Assuming 80% for train, 20% for validation train_rows = int(total_rows * split_ratio) while True: # Loop forever, so the generator never terminates for chunk in pd.read_csv(file_path, chunksize=chunksize): if data_type == 'train' and row_counter >= train_rows: continue # Skip the rest if we are fetching training data but have reached the end of the train set elif data_type == 'val' and row_counter < train_rows: row_counter += len(chunk) continue # Skip this chunk if we are fetching validation data but are still in the train range # Assuming your CSV has headers that match features/targets # Normalizing the features filtered_c = chunk.drop(['Date', 'Symbol'], axis=1) feature_data = filtered_c.drop([ 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1) target_data = filtered_c[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] feature_data_scaled = pd.DataFrame(x_scaler.transform(feature_data), columns=feature_data.columns) # Assuming target_data also needs to be scaled, apply scaler separately target_data_scaled = pd.DataFrame(y_scaler.transform(target_data), columns=target_data.columns) # Now, feature_data_scaled and target_data_scaled are both DataFrames, scaled and ready to use yield feature_data_scaled.values, target_data_scaled.values row_counter += len(chunk) # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Input import tensorflow as tf def build_model(): input_shape = (6427,) model = Sequential([ Dense(6427, activation='relu', input_shape = input_shape), Dropout(0.25), Dense(3200, activation='relu'), Dropout(0.20), Dense(1800, activation='relu'), Dropout(0.15), Dense(1024, activation='relu'), Dropout(0.10), Dense(512, activation='relu'), Dropout(0.05), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(64, activation='relu'), Dense(32, activation='relu'), Dense(12), ]) model.compile(optimizer='adam', loss='mse', # Use Mean Squared Error for regression metrics=['mae']) # Mean Absolute Error as an additional metric return model # %% # Instantiate the model model = build_model() model.summary() # %% train_generator = data_generator(file_path, batch_size, 'train',x_scaler=x_scaler,y_scaler=y_scaler) val_generator = data_generator(file_path, batch_size, 'val',x_scaler=x_scaler,y_scaler=y_scaler) total_samples = 301617 # Assuming same example size train_samples = int(total_samples * 0.92) val_samples = total_samples - train_samples steps_per_epoch = train_samples // batch_size validation_steps = val_samples // batch_size # Modify the model fitting call to include validation data model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=1000, validation_data=val_generator, validation_steps=validation_steps ) error: { "name": "UnboundLocalError", "message": "local variable 'row_counter' referenced before assignment", "stack": "--------------------------------------------------------------------------- UnboundLocalError Traceback (most recent call last) Cell In[21], line 12 9 validation_steps = val_samples // batch_size 11 # Modify the model fitting call to include validation data ---> 12 model.fit( 13 train_generator, 14 steps_per_epoch=steps_per_epoch, 15 epochs=1000, 16 validation_data=val_generator, 17 validation_steps=validation_steps 18 ) File c:\\Users\\arisa\\.conda\\envs\\tf\\lib\\site-packages\\keras\\utils\\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb Cell In[20], line 9, in data_generator(file_path, batch_size, data_type, x_scaler, y_scaler) 6 while True: # Loop forever, so the generator never terminates 7 for chunk in pd.read_csv(file_path, chunksize=chunksize): ----> 9 if data_type == 'train' and row_counter >= train_rows: 10 continue # Skip the rest if we are fetching training data but have reached the end of the train set 11 elif data_type == 'val' and row_counter < train_rows: UnboundLocalError: local variable 'row_counter' referenced before assignment" }
f749471a106353a7713789073a8c06a9
{ "intermediate": 0.2623293101787567, "beginner": 0.37518081068992615, "expert": 0.36248987913131714 }
46,824
File "C:\Users\Administrator.DESKTOP-3HB1DA0\AppData\Local\Programs\Python\Python312\Lib\site-packages\langchain_community\tools\yahoo_finance_news.py", line 9, in <module> from langchain_community.document_loaders.web_base import WebBaseLoader File "C:\Users\Administrator.DESKTOP-3HB1DA0\AppData\Local\Programs\Python\Python312\Lib\site-packages\langchain_community\document_loaders\__init__.py", line 163, in <module> from langchain_community.document_loaders.pebblo import PebbloSafeLoader File "C:\Users\Administrator.DESKTOP-3HB1DA0\AppData\Local\Programs\Python\Python312\Lib\site-packages\langchain_community\document_loaders\pebblo.py", line 5, in <module> import pwd ModuleNotFoundError: No module named 'pwd'
99a361cfcad6757ea99ec0c338a83922
{ "intermediate": 0.4206558167934418, "beginner": 0.3226172924041748, "expert": 0.25672686100006104 }
46,825
can i attach multiple textures framebuffer
fdb0f8c5ae2214ff9fcdee00ab7655fb
{ "intermediate": 0.4652262330055237, "beginner": 0.23398855328559875, "expert": 0.30078527331352234 }
46,826
i have a 3070 gpu im training a NN model using tensorflow gpu, but only 10% of the gpu is engaged during training how can i use full capacity of my gpu? here is my code: # %% from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from tensorflow import keras def calculate_features_scaling_params(file_path, features_to_drop): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk.drop(features_to_drop, axis=1) scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ def calculate_targets_scaling_params(file_path): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ # %% import tensorflow as tf if tf.test.gpu_device_name(): print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) else: print('Please install GPU version of TF') # %% file_path = r"C:\Users\arisa\Desktop\combined_day.csv" batch_size = 128 # %% features_to_drop = ['Date', 'Symbol', 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'] f_mean_, f_var_ = calculate_features_scaling_params(file_path, features_to_drop) t_mean_, t_var_ = calculate_targets_scaling_params(file_path) # %% # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) # %% def data_generator(file_path, batch_size, data_type, x_scaler, y_scaler): global row_counter chunksize = batch_size total_rows = 301617 # Adjust with your dataset's actual number of rows split_ratio = 0.92 # Assuming 80% for train, 20% for validation train_rows = int(total_rows * split_ratio) while True: # Loop forever, so the generator never terminates for chunk in pd.read_csv(file_path, chunksize=chunksize): if data_type == 'train' and row_counter >= train_rows: continue # Skip the rest if we are fetching training data but have reached the end of the train set elif data_type == 'val' and row_counter < train_rows: row_counter += len(chunk) continue # Skip this chunk if we are fetching validation data but are still in the train range # Assuming your CSV has headers that match features/targets # Normalizing the features filtered_c = chunk.drop(['Date', 'Symbol'], axis=1) feature_data = filtered_c.drop([ 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1) target_data = filtered_c[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] feature_data_scaled = pd.DataFrame(x_scaler.transform(feature_data), columns=feature_data.columns) # Assuming target_data also needs to be scaled, apply scaler separately target_data_scaled = pd.DataFrame(y_scaler.transform(target_data), columns=target_data.columns) # Now, feature_data_scaled and target_data_scaled are both DataFrames, scaled and ready to use yield feature_data_scaled.values, target_data_scaled.values row_counter += len(chunk) # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Input import tensorflow as tf def build_model(): input_shape = (6427,) model = Sequential([ Dense(6427, activation='relu', input_shape = input_shape), Dropout(0.25), Dense(3200, activation='relu'), Dropout(0.20), Dense(1800, activation='relu'), Dropout(0.15), Dense(1024, activation='relu'), Dropout(0.10), Dense(512, activation='relu'), Dropout(0.05), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(64, activation='relu'), Dense(32, activation='relu'), Dense(12), ]) model.compile(optimizer='adam', loss='mse', # Use Mean Squared Error for regression metrics=['mae']) # Mean Absolute Error as an additional metric return model # %% # Instantiate the model model = build_model() model.summary() # %% train_generator = data_generator(file_path, batch_size, 'train',x_scaler=x_scaler,y_scaler=y_scaler) val_generator = data_generator(file_path, batch_size, 'val',x_scaler=x_scaler,y_scaler=y_scaler) total_samples = 301617 # Assuming same example size train_samples = int(total_samples * 0.92) val_samples = total_samples - train_samples steps_per_epoch = train_samples // batch_size validation_steps = val_samples // batch_size # Modify the model fitting call to include validation data model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=100, validation_data=val_generator, validation_steps=validation_steps )
d3fbe09a22b848cbf4bab2f1cb782199
{ "intermediate": 0.25347429513931274, "beginner": 0.4146735370159149, "expert": 0.3318521976470947 }
46,827
i have following code to train a NN model on my data : # %% from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from tensorflow import keras def calculate_features_scaling_params(file_path, features_to_drop): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk.drop(features_to_drop, axis=1) scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ def calculate_targets_scaling_params(file_path): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ # %% import tensorflow as tf if tf.test.gpu_device_name(): print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) else: print('Please install GPU version of TF') # %% file_path = r"C:\Users\arisa\Desktop\combined_day.csv" batch_size = 128 # %% features_to_drop = ['Date', 'Symbol', 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'] f_mean_, f_var_ = calculate_features_scaling_params(file_path, features_to_drop) t_mean_, t_var_ = calculate_targets_scaling_params(file_path) # %% # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) # %% def data_generator(file_path, batch_size, data_type, x_scaler, y_scaler): global row_counter chunksize = batch_size total_rows = 301617 # Adjust with your dataset's actual number of rows split_ratio = 0.92 # Assuming 80% for train, 20% for validation train_rows = int(total_rows * split_ratio) while True: # Loop forever, so the generator never terminates for chunk in pd.read_csv(file_path, chunksize=chunksize): if data_type == 'train' and row_counter >= train_rows: continue # Skip the rest if we are fetching training data but have reached the end of the train set elif data_type == 'val' and row_counter < train_rows: row_counter += len(chunk) continue # Skip this chunk if we are fetching validation data but are still in the train range # Assuming your CSV has headers that match features/targets # Normalizing the features filtered_c = chunk.drop(['Date', 'Symbol'], axis=1) feature_data = filtered_c.drop([ 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1) target_data = filtered_c[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] feature_data_scaled = pd.DataFrame(x_scaler.transform(feature_data), columns=feature_data.columns) # Assuming target_data also needs to be scaled, apply scaler separately target_data_scaled = pd.DataFrame(y_scaler.transform(target_data), columns=target_data.columns) # Now, feature_data_scaled and target_data_scaled are both DataFrames, scaled and ready to use yield feature_data_scaled.values, target_data_scaled.values row_counter += len(chunk) # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Input import tensorflow as tf def build_model(): input_shape = (6427,) model = Sequential([ Dense(6427, activation='relu', input_shape = input_shape), Dropout(0.25), Dense(3200, activation='relu'), Dropout(0.20), Dense(1800, activation='relu'), Dropout(0.15), Dense(1024, activation='relu'), Dropout(0.10), Dense(512, activation='relu'), Dropout(0.05), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(64, activation='relu'), Dense(32, activation='relu'), Dense(12), ]) model.compile(optimizer='adam', loss='mse', # Use Mean Squared Error for regression metrics=['mae']) # Mean Absolute Error as an additional metric return model # %% # Instantiate the model model = build_model() model.summary() # %% train_generator = data_generator(file_path, batch_size, 'train',x_scaler=x_scaler,y_scaler=y_scaler) val_generator = data_generator(file_path, batch_size, 'val',x_scaler=x_scaler,y_scaler=y_scaler) total_samples = 301617 # Assuming same example size train_samples = int(total_samples * 0.92) val_samples = total_samples - train_samples steps_per_epoch = train_samples // batch_size validation_steps = val_samples // batch_size # Modify the model fitting call to include validation data model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=100, validation_data=val_generator, validation_steps=validation_steps ) change the code so i can train a XGBoost ensmble decision tree instead of current NN model
2256aa604db13c6798716c04e1a218e7
{ "intermediate": 0.23331570625305176, "beginner": 0.44527754187583923, "expert": 0.3214067220687866 }
46,828
My code is not working, the canvas is not plotting the analyser data, help me out: analyser.fftSize = 2048; const bufferLength = analyser.frequencyBinCount; const dataArray = new Uint8Array(bufferLength); const canvas = document.getElementById("canvas"); const canvasCtx = canvas.getContext("2d"); canvasCtx.clearRect(0, 0, 300, 300); function draw(){ const drawVisual = requestAnimationFrame(draw); analyser.getByteTimeDomainData(dataArray); canvasCtx.fillStyle = "rgb(200 200 200)"; canvasCtx.fillRect(0, 0, 300, 300); canvasCtx.lineWidth = 2; canvasCtx.strokeStyle = "rgb(0 0 0)"; canvasCtx.beginPath(); const sliceWidth = 300 / bufferLength; let x = 0; for (let i = 0; i < bufferLength; i++) { const v = dataArray[i] / 128.0; const y = v * (300 / 2); if (i === 0) { canvasCtx.moveTo(x, y); } else { canvasCtx.lineTo(x, y); } x += sliceWidth; } } draw();
9373bcb8bf6ce25542c716dfa538373f
{ "intermediate": 0.6800503134727478, "beginner": 0.17430134117603302, "expert": 0.14564840495586395 }
46,829
i have following code to train a NN model on my data : # %% from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from tensorflow import keras def calculate_features_scaling_params(file_path, features_to_drop): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk.drop(features_to_drop, axis=1) scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ def calculate_targets_scaling_params(file_path): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk[[‘y_High_1d’ , ‘y_Low_1d’, ‘y_Priority_1d’, ‘y_High_2d’, ‘y_Low_2d’, ‘y_Priority_2d’, ‘y_High_3d’, ‘y_Low_3d’, ‘y_Priority_3d’, ‘y_High_5d’, ‘y_Low_5d’, ‘y_Priority_5d’ ]] scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ # %% import tensorflow as tf if tf.test.gpu_device_name(): print(‘Default GPU Device: {}’.format(tf.test.gpu_device_name())) else: print(‘Please install GPU version of TF’) # %% file_path = r"C:\Users\arisa\Desktop\combined_day.csv" batch_size = 128 # %% features_to_drop = [‘Date’, ‘Symbol’, ‘y_High_1d’, ‘y_Low_1d’, ‘y_Priority_1d’, ‘y_High_2d’, ‘y_Low_2d’, ‘y_Priority_2d’, ‘y_High_3d’, ‘y_Low_3d’, ‘y_Priority_3d’, ‘y_High_5d’, ‘y_Low_5d’, ‘y_Priority_5d’] f_mean_, f_var_ = calculate_features_scaling_params(file_path, features_to_drop) t_mean_, t_var_ = calculate_targets_scaling_params(file_path) # %% # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) # %% def data_generator(file_path, batch_size, data_type, x_scaler, y_scaler): global row_counter chunksize = batch_size total_rows = 301617 # Adjust with your dataset’s actual number of rows split_ratio = 0.92 # Assuming 80% for train, 20% for validation train_rows = int(total_rows * split_ratio) while True: # Loop forever, so the generator never terminates for chunk in pd.read_csv(file_path, chunksize=chunksize): if data_type == ‘train’ and row_counter >= train_rows: continue # Skip the rest if we are fetching training data but have reached the end of the train set elif data_type == ‘val’ and row_counter < train_rows: row_counter += len(chunk) continue # Skip this chunk if we are fetching validation data but are still in the train range # Assuming your CSV has headers that match features/targets # Normalizing the features filtered_c = chunk.drop([‘Date’, ‘Symbol’], axis=1) feature_data = filtered_c.drop([ ‘y_High_1d’, ‘y_Low_1d’, ‘y_Priority_1d’, ‘y_High_2d’, ‘y_Low_2d’, ‘y_Priority_2d’, ‘y_High_3d’, ‘y_Low_3d’, ‘y_Priority_3d’, ‘y_High_5d’, ‘y_Low_5d’, ‘y_Priority_5d’], axis=1) target_data = filtered_c[[‘y_High_1d’ , ‘y_Low_1d’, ‘y_Priority_1d’, ‘y_High_2d’, ‘y_Low_2d’, ‘y_Priority_2d’, ‘y_High_3d’, ‘y_Low_3d’, ‘y_Priority_3d’, ‘y_High_5d’, ‘y_Low_5d’, ‘y_Priority_5d’ ]] feature_data_scaled = pd.DataFrame(x_scaler.transform(feature_data), columns=feature_data.columns) # Assuming target_data also needs to be scaled, apply scaler separately target_data_scaled = pd.DataFrame(y_scaler.transform(target_data), columns=target_data.columns) # Now, feature_data_scaled and target_data_scaled are both DataFrames, scaled and ready to use yield feature_data_scaled.values, target_data_scaled.values row_counter += len(chunk) # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Input import tensorflow as tf def build_model(): input_shape = (6427,) model = Sequential([ Dense(6427, activation=‘relu’, input_shape = input_shape), Dropout(0.25), Dense(3200, activation=‘relu’), Dropout(0.20), Dense(1800, activation=‘relu’), Dropout(0.15), Dense(1024, activation=‘relu’), Dropout(0.10), Dense(512, activation=‘relu’), Dropout(0.05), Dense(256, activation=‘relu’), Dense(128, activation=‘relu’), Dense(64, activation=‘relu’), Dense(32, activation=‘relu’), Dense(12), ]) model.compile(optimizer=‘adam’, loss=‘mse’, # Use Mean Squared Error for regression metrics=[‘mae’]) # Mean Absolute Error as an additional metric return model # %% # Instantiate the model model = build_model() model.summary() # %% train_generator = data_generator(file_path, batch_size, ‘train’,x_scaler=x_scaler,y_scaler=y_scaler) val_generator = data_generator(file_path, batch_size, ‘val’,x_scaler=x_scaler,y_scaler=y_scaler) total_samples = 301617 # Assuming same example size train_samples = int(total_samples * 0.92) val_samples = total_samples - train_samples steps_per_epoch = train_samples // batch_size validation_steps = val_samples // batch_size # Modify the model fitting call to include validation data model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=100, validation_data=val_generator, validation_steps=validation_steps ) change the code to train a XGBoost ensmble decision tree instead of current NN model, keep other prats the same just make necessary changes to train xgboost instead of NN
a037aad3b841a4a5590b4b3c6619b1eb
{ "intermediate": 0.40946394205093384, "beginner": 0.36811649799346924, "expert": 0.22241954505443573 }
46,830
why is this changing my self.list variable? list_a = [{'a':'z',},{'a':'zz',},{'a':'zzz',}] class Test: def __init__(self, list): self.list = list def update(self): self.element = random.choice(self.list) for element in self.list: print(element['a']) list_b = ['1','2','3'] self.element['a'] = self.element['a'] + random.choice(list_b) test = Test(list_a) for i in range(10): test.update() time.sleep(5)
1d0407ed7d2408ca248af4942a11e836
{ "intermediate": 0.2580011487007141, "beginner": 0.5805413126945496, "expert": 0.16145753860473633 }
46,831
# Assuming ‘price_data’ is a data frame with the first column as ‘Date’ and the rest as asset prices. # Converting price data to log returns for individual assets prices <- as.matrix(price_data[,-1]) # Exclude ‘Date’ column and convert to a matrix log_returns <- diff(log(prices)) # Calculate log returns # Handling missing values if present returns_data <- na.omit(log_returns) # Remove NAs from returns data # Calculate the index returns as the average of all asset log returns per time period # This assumes an equally weighted index index_log_returns <- rowMeans(returns_data, na.rm = TRUE) # Mean log return of all assets # Adding index returns to the matrix of returns for analysis # Ensure that ‘index_log_returns’ is properly formatted to match dimensions # It should be a single column matrix to bind with ‘returns_data’ index_log_returns_matrix <- matrix(index_log_returns, ncol = 1) # Adding the index returns as a new column in ‘returns_data’ all_returns_data <- cbind(returns_data, index_log_returns_matrix) # Providing appropriate column names, especially for the newly added index colnames(all_returns_data) <- c(colnames(returns_data), "Index Returns") # Ensure all_returns_data is in a format acceptable by fPortfolio::basicStats library(fPortfolio) if (!is.timeSeries(all_returns_data)) { all_returns_data <- as.timeSeries(all_returns_data) } # Estimate Summary Statistics for the Returns (Both Individual Assets and the “Market Index”) summary_stats <- basicStats(all_returns_data) print(summary_stats) Above code i have done is for Estimate the Summary Statistics for the Returns (Index and Asset) and comment on it. Note, the answer must state clearly which return measure you are using and the reason for opting that measure as an estimate for return. Insert the code chunk below. this question And the case was Case Begins: You have recently joined as a Portfolio Manager at Morgan Stanley. The first task assigned to you is to create a portfolio for a client who is interested in investing 1 million Euro in secondary markets. He wants the money to be "fully-invested", but he is not aware of weight allocation in a scientific manner. Your employer has given you the responsibility to not only select the bunch of asset class for investment, but also allocate weight so as to garner more returns with limited risk. After analyzing the market trends, you are bullish in your approach and have narrowed down to the three asset classes for selection of Portfolio Universe. 1. Stocks - Google, Tesla, Pfizer, Shell, AT&T 2. Forex - USDINR, EURUSD, USDCAD, USDCHF, NZDUSD 3. Commodities - Crude, Natural Gas, Gold, Wheat, Ethanol Asset Tickr Google GOOGL Tesla TSLA Pfizer PFE Shell SHEL AT&T T USDINR USDINR EURUSD EURUSD USDCAD USDCAD USDCHF USDCHF NZDUSD NZDUSD Crude WTI Natural Gas NG Gold XAU Wheat W1 Ethanol EH Note: Portfolio constraints from your supervisor 1. Portfolio should consist of 5 assets 2. Atleast one from Commodity and one from Forex Now my second question is Portfolio Universe Selection Since, you have to make a Portfolio constituting of five assets only, you select the assets based on the basis of two strategies as shared below. Strategy 1: Step 1: Calculate the Reward to Risk - (Median Return/Standard Deviation) Step 2: Rank the Reward to Risk for Assets, then choose the top five asset while maintaining the constraint (Atleast one Commodity and one Forex) Note: In case of tie, you choose the asset with higher mean return. Strategy 2: Based on Price/Earning Ratio while maintaining the constraint (Atleast one Commodity and one Forex) Note: After filtering the 5 assets, export the file either as .csv or .xlsx.............................Can you please give me codes for second question
8c58480c332a6c5c81c50844bc4e900e
{ "intermediate": 0.3548296093940735, "beginner": 0.38910555839538574, "expert": 0.25606486201286316 }
46,832
I have log_returns calculated but for all 15 assets If you already have log_returns calculated for all 15 assets but need to apply optimizations for subsets defined by strategy1_selection and strategy2_selection, your task is now to filter log_returns to match these subsets and then proceed with the optimization processes for each. ### Step 1: Filter Log Returns for Each Strategy Assuming log_returns is a data frame (or a matrix) where rows represent dates/time periods, and columns represent assets, and you have a column naming convention that matches the tickers used in your strategy selections, you can do the following: # Assuming ‘log_returns’ is your data frame and ‘strategy1_selectionTicker' and 'strategy2_selection Ticker’ # contain the asset tickers for each strategy’s selected assets # Filter log_returns for strategy1 assets log_returns_strategy1 <- log_returns[, colnames(log_returns) %in% strategy1_selection$Ticker] # Filter log_returns for strategy2 assets log_returns_strategy2 <- log_returns[, colnames(log_returns) %in% strategy2_selection.................Can you continue this
dd910c30212418fabfad00ec1f525169
{ "intermediate": 0.2869262993335724, "beginner": 0.18534153699874878, "expert": 0.5277321934700012 }
46,833
I have log_returns calculated but for all 15 assets If you already have log_returns calculated for all 15 assets but need to apply optimizations for subsets defined by strategy1_selection and strategy2_selection, your task is now to filter log_returns to match these subsets and then proceed with the optimization processes for each. ### Step 1: Filter Log Returns for Each Strategy Assuming log_returns is a data frame (or a matrix) where rows represent dates/time periods, and columns represent assets, and you have a column naming convention that matches the tickers used in your strategy selections, you can do the following: # Assuming ‘log_returns’ is your data frame and ‘strategy1_selectionTicker’ and 'strategy2_selection Ticker’ # contain the asset tickers for each strategy’s selected assets # Filter log_returns for strategy1 assets log_returns_strategy1 <- log_returns[, colnames(log_returns) %in% strategy1_selection$Ticker] # Filter log_returns for strategy2 assets log_returns_strategy2 <- log_returns[, colnames(log_returns) %in% strategy2_selection…Can you continue this
e1a2c273645b79bc9997033c35c0ce83
{ "intermediate": 0.2793777585029602, "beginner": 0.17567184567451477, "expert": 0.5449503660202026 }
46,834
I have log_returns calculated but for all 15 assets If you already have log_returns calculated for all 15 assets but need to apply optimizations for subsets defined by strategy1_selection and strategy2_selection, your task is now to filter log_returns to match these subsets and then proceed with the optimization processes for each. ### Step 1: Filter Log Returns for Each Strategy Assuming log_returns is a data frame (or a matrix) where rows represent dates/time periods, and columns represent assets, and you have a column naming convention that matches the tickers used in your strategy selections, you can do the following: # Assuming ‘log_returns’ is your data frame and ‘strategy1_selectionTicker’ and 'strategy2_selection Ticker’ # contain the asset tickers for each strategy’s selected assets # Filter log_returns for strategy1 assets log_returns_strategy1 <- log_returns[, colnames(log_returns) %in% strategy1_selection$Ticker] # Filter log_returns for strategy2 assets log_returns_strategy2 <- log_returns[, colnames(log_returns) %in% strategy2_selection…Can you continue this
504c76075ae0661903afceab16cf3fe0
{ "intermediate": 0.2793777585029602, "beginner": 0.17567184567451477, "expert": 0.5449503660202026 }
46,835
log_returns_strategy1 <- log_returns[, colnames(log_returns) %in% strategy1_selection$Ticker] I ran the above for strategy 1 which has 5 assets but after the above table got created their is only 4 assets ....What to do?
7fd67e1d3630aeccd3f2cedec9098fc8
{ "intermediate": 0.35487499833106995, "beginner": 0.30430811643600464, "expert": 0.340816855430603 }
46,836
From the beginning to the end, there should be an English sentence and a Persian sentence on the right side, and put the Persian and English text side by side in the table. .The English legal system also applies to Wales and is often closely followed in Northern Ireland. It has two types of law: "(a) Common law: the basic principles of law as applied in past cases (case law) where Parliament has not made any special rulings or Acts. The existence of common law means that a judge does not have to refer to Parliament when an unfamiliar case comes up. Instead, be looks for precedents (past cases of a similar kind) and for general principles; (b) Statute law: specific laws passed as acts of Parliament. Statute law takes priority aver common law so far as it covers the case being heard. If it does not give specific guidance (e.g. in a new type of case which was not envisaged when the law was passed), then judges apply the common law, trying as far as possible to do what they think Parliament would have wanted them to, if it had known about the case in hand." Extracts from an Article published in The International Business Topics", collected by D. Cotton, 1984, Bell and Hyman Publications, p. 133. 7 This system gives a lot of power to judges. They do not, however, have an entirely free hand. They are always bound by the decisions of more important courts than their own- and the most powerful court in the country is Parliament. Judges need not give the same verdict as a higher court; that would be too vague a rule and would lead to bad decisions. They must, however, apply the law in the same way and adopt the higher court's reasoning in their own consideration of the case.نظام حقوقی انگلستان نظام حقوقی انگلستان در ولز نیز اعمال شده و اغلب به دقت در ایرلند شمالی متابعت می شود. این نظام دارای دو نوع حقوق است: ۲ (الف) كامن لا: " كامن لا عبارت از اصول اساسی حقوق است که در دعاوی گذشته رویه قضایی که مجلس قواعد یا قوانین ۱۰ خاصی مقرر نکرده، بکار رفته است وجود کامن لا بدین معنی است که به هنگام آمدن یک پرونده متفاوت با پرونده های قبلی قاضی مجبور نیست به [مصوبات مجلس رجوع کند؛ بلکه به جای آن در سابقه قضایی (پرونده های قبلی از نوع مشابه و اصول کلی ۱۱ کنکاش به عمل می آورد؛ پیش(ب) حقوق موضوعه حقوق موضوعه عبارت از قوانین خاصی است که تحت عنوان قوانین مجلس به تصویب رسیده اند. حقوق موضوعه بركا من لا اولویت مییابد تا جایی که پرونده های تحت بررسی راهم در بر میگیرد. در صورتی که حقوق موضوعه راه حل معینی ارائه ندهد برای مثال در نوع جدیدی از دعوی که در زمان تصویب قانون پیش بینی نشده است ،قضات کامن لا را اعمال میکنند | و در این راستا تا جای ممکن تلاش میکنند تا آنچه را که تصور میکنند مجلس در صورت آگاهی از پرونده تحت رسیدگی از آنان طلب میکرد انجام دهند. این نظام حقوقی قدرت زیادی به قضات ۷ اعطا می.کند با اینحال دست آنها کاملاً باز نیست. آنها همواره مقید به آرای دادگاههای مهمتر از خود و قدرتمندترین دادگاه کشور که مجلس است میباشند. قضات لازم نیست همان حکمی ۱۰ را که دادگاه بالاتر داده است صادر کنند ۱۱ این ،آمر ،قاعده بسیار مبهمی ۱۲ بوده و منجر به آرای نامطلوبی خواهد شد. [اما] به هر حال قضات باید قانون را به همان طریق اعمال نموده و استدلال ۱۳ دادگاه بالاتر ۱۴ را در بررسی خود نسبت به پرونده، اتخاذ نمایند.
83b63ce35511bd602ee337ce258b8af8
{ "intermediate": 0.22441741824150085, "beginner": 0.699193000793457, "expert": 0.07638955861330032 }
46,837
From the beginning to the end, there should be an English sentence and a Persian sentence on the right side, and put the Persian and English text side by side in the table. .The English legal system also applies to Wales and is often closely followed in Northern Ireland. It has two types of law: "(a) Common law: the basic principles of law as applied in past cases (case law) where Parliament has not made any special rulings or Acts. The existence of common law means that a judge does not have to refer to Parliament when an unfamiliar case comes up. Instead, be looks for precedents (past cases of a similar kind) and for general principles; (b) Statute law: specific laws passed as acts of Parliament. Statute law takes priority aver common law so far as it covers the case being heard. If it does not give specific guidance (e.g. in a new type of case which was not envisaged when the law was passed), then judges apply the common law, trying as far as possible to do what they think Parliament would have wanted them to, if it had known about the case in hand." Extracts from an Article published in The International Business Topics", collected by D. Cotton, 1984, Bell and Hyman Publications, p. 133. 7 This system gives a lot of power to judges. They do not, however, have an entirely free hand. They are always bound by the decisions of more important courts than their own- and the most powerful court in the country is Parliament. Judges need not give the same verdict as a higher court; that would be too vague a rule and would lead to bad decisions. They must, however, apply the law in the same way and adopt the higher court's reasoning in their own consideration of the case.نظام حقوقی انگلستان نظام حقوقی انگلستان در ولز نیز اعمال شده و اغلب به دقت در ایرلند شمالی متابعت می شود. این نظام دارای دو نوع حقوق است: ۲ (الف) كامن لا: " كامن لا عبارت از اصول اساسی حقوق است که در دعاوی گذشته رویه قضایی که مجلس قواعد یا قوانین ۱۰ خاصی مقرر نکرده، بکار رفته است وجود کامن لا بدین معنی است که به هنگام آمدن یک پرونده متفاوت با پرونده های قبلی قاضی مجبور نیست به [مصوبات مجلس رجوع کند؛ بلکه به جای آن در سابقه قضایی (پرونده های قبلی از نوع مشابه و اصول کلی ۱۱ کنکاش به عمل می آورد؛ پیش(ب) حقوق موضوعه حقوق موضوعه عبارت از قوانین خاصی است که تحت عنوان قوانین مجلس به تصویب رسیده اند. حقوق موضوعه بركا من لا اولویت مییابد تا جایی که پرونده های تحت بررسی راهم در بر میگیرد. در صورتی که حقوق موضوعه راه حل معینی ارائه ندهد برای مثال در نوع جدیدی از دعوی که در زمان تصویب قانون پیش بینی نشده است ،قضات کامن لا را اعمال میکنند | و در این راستا تا جای ممکن تلاش میکنند تا آنچه را که تصور میکنند مجلس در صورت آگاهی از پرونده تحت رسیدگی از آنان طلب میکرد انجام دهند. این نظام حقوقی قدرت زیادی به قضات ۷ اعطا می.کند با اینحال دست آنها کاملاً باز نیست. آنها همواره مقید به آرای دادگاههای مهمتر از خود و قدرتمندترین دادگاه کشور که مجلس است میباشند. قضات لازم نیست همان حکمی ۱۰ را که دادگاه بالاتر داده است صادر کنند ۱۱ این ،آمر ،قاعده بسیار مبهمی ۱۲ بوده و منجر به آرای نامطلوبی خواهد شد. [اما] به هر حال قضات باید قانون را به همان طریق اعمال نموده و استدلال ۱۳ دادگاه بالاتر ۱۴ را در بررسی خود نسبت به پرونده، اتخاذ نمایند.
e4e46d238b5c5da2ee7cc721ef2604c7
{ "intermediate": 0.22441741824150085, "beginner": 0.699193000793457, "expert": 0.07638955861330032 }
46,838
Create a ROBLOX game called “Super Why!: Super Readers to the Rescue!” where the game takes place in the land of Storybrook Village, a place where all Fairytale characters reside together in a loving, peaceful community. Whyatt will begin the show by greeting the viewers when he suddenly gets a call from someone who needs help. After investigating the problem at hand, Whyatt then summons the other super readers by sending out a call. Whyatt, Pig, Red Riding Hood, and Princess Pea then each appear at the Book Club before going inside as Whyatt then uploads the problem into the Super Duper Computer by plugging his PDA-like device into it. The character with the problem then stands behind a small lectern made of dominos and explains their situation. After discussion, Princess Pea then casts a spell to summon the appropriate book. Whyatt then reads the title of the book as they then transform and fly inside of it. Upon landing, Super Why will begin to read a few sentences of the book with the viewer, asking them to read along. It's then a parallel is drawn in which the character with a problem notices how the book characters face the same problem as they are right now. The goal of the Super Readers is to follow the storyline to solve the problem. As they progress through the events of the story, they encounter obstacles, which can be solved by applying their literacy skills to change the story. As they overcome these obstacles, they are rewarded with red glittery "Super Letters" that are then eventually uploaded back onto the Super Duper Computer to spell out the word that makes up the solution to the characters problem. After collecting the Super Letters and uploading them onto the Super Duper Computer in order to get the Super Story answer, Whyatt will then ask why that word in particular is the right word. Someone else will then explain it before everybody then goes on their own to do what they had been doing previously. Except for Whyatt, who then goes to the problem directly in order to see how it went.
5eda68c32491cd9c45bbce56299edee0
{ "intermediate": 0.4363112151622772, "beginner": 0.3709159195423126, "expert": 0.19277285039424896 }
46,839
Heres how: Enable asahi-krun copr: https://copr.fedorainfracloud.org/coprs/slp/asahi-krun/ Install krunvm Enter these commands: sudo dnf remove libkrunfw libkrun, sudo dnf install libkrunfw-4.0.0~asahikrun-1.fc39 libkrun-1.6.0~asahikrun-3.fc39 Clone virglrenderer repo with asahi-native context: git clone https://gitlab.freedesktop.org/slp/virglrenderer.git cd virglrenderer git checkout asahi-native-context-wip Run: meson setup build -Ddrm-asahi-experimental=true Then do cd build then run sudo ninja install now do buildah unshare, and run: krunvm create --cpus 6 --mem 6144 --name asahi-krun quay.io/slopezpa/asahi-krun then do krunvm start asahi-krun /bin/bash now run dhclient, then dnf install 'dnf-command(copr)' then add the asahi-mesa copr: dnf copr enable slp/asahi-mesa then install the packages necessary: dnf install mesa-libGL-devel mesa-vulkan-drivers mesa-libOSMesa mesa-libEGL mesa-libglapi mesa-va-drivers mesa-libGL mesa-dri-drivers mesa-vdpau-drivers mesa-libgbm-devel mesa-libgbm mesa-omx-drivers mesa-libd3d mesa-libxatracker-devel then exit then enter the vm: krunvm start asahi-krun how do I do this on aarch64 fedora linux? I dont have any build tools installed either so i need those too
14d1b39bfb590bd9a4e0b613d7ea1d3e
{ "intermediate": 0.6258096694946289, "beginner": 0.1468244045972824, "expert": 0.22736597061157227 }
46,840
How do I setup a gl framebuffer so I can visualize the stencil buffer?
62d9973fa532e34c742233c5b903abff
{ "intermediate": 0.49672335386276245, "beginner": 0.1842087209224701, "expert": 0.31906798481941223 }
46,841
void main() { FragColor = vec4(vec3(gl_FragCoord.z), 1.0); } You can do this to visualize the depth buffer, but how do I visualize a stencil buffer?
9b206bc25958359d62e5f6df64f1099f
{ "intermediate": 0.6474024057388306, "beginner": 0.10054154694080353, "expert": 0.2520561218261719 }
46,842
void main() { FragColor = vec4(vec3(gl_FragCoord.z), 1.0); } You can do this to visualize a depth buffer, but how do you visualize a stencil buffer/
8242c53096ff4de0eb938e92fde6b9cd
{ "intermediate": 0.5959963202476501, "beginner": 0.14033736288547516, "expert": 0.2636662423610687 }
46,843
[root@asahi-krun /]# curl -OL https://mirrors.cloud.tencent.com/rpmfusion/nonfree/fedora/steam/38/x86_64/s/steam-1.0.0.78-1.fc38.i686.rpm % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 159 100 159 0 0 162 0 --:--:-- --:--:-- --:--:-- 162 [root@asahi-krun /]# rpm2cpio steam-1.0.0.78-1.fc38.i686.rpm | cpio -idvmargument is not an RPM package cpio: premature end of archive [root@asahi-krun /]#
c953b148bf44537ee1be972e7e6e1544
{ "intermediate": 0.3498469889163971, "beginner": 0.3491653501987457, "expert": 0.3009876608848572 }
46,844
[root@asahi-krun /]# curl -OL https://mirrors.cloud.tencent.com/rpmfusion/nonfree/fedora/steam/38/x86_64/s/steam-1.0.0.78-1.fc38.i686.rpm % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 159 100 159 0 0 162 0 --:--:-- --:--:-- --:--:-- 162 [root@asahi-krun /]# rpm2cpio steam-1.0.0.78-1.fc38.i686.rpm | cpio -idvmargument is not an RPM package cpio: premature end of archive [root@asahi-krun /]#
1ab7eb70f635baaabef47f3b46aefd45
{ "intermediate": 0.3498469889163971, "beginner": 0.3491653501987457, "expert": 0.3009876608848572 }
46,845
[root@asahi-krun /]# curl -OL https://mirrors.cloud.tencent.com/rpmfusion/nonfree/fedora/steam/38/x86_64/s/steam-1.0.0.78-1.fc38.i686.rpm % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 159 100 159 0 0 162 0 --:--:-- --:--:-- --:--:-- 162 [root@asahi-krun /]# rpm2cpio steam-1.0.0.78-1.fc38.i686.rpm | cpio -idvmargument is not an RPM package cpio: premature end of archive [root@asahi-krun /]#
189778af2b5417243cba8b411fe2790d
{ "intermediate": 0.3498469889163971, "beginner": 0.3491653501987457, "expert": 0.3009876608848572 }
46,846
Im storing stencil here: glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, getWidth(), getHeight()); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, getRenderbuffer()); How do I draw thestencil values to the screen for debugging?
dde0474db56165bae420d88771302e40
{ "intermediate": 0.8379887342453003, "beginner": 0.06071774661540985, "expert": 0.10129353404045105 }
46,847
Is it possible to establish peer to peer tcp connection if both these peers are behind NAT?
11a80a31ad66dc5574c4cb36a7ac7c4e
{ "intermediate": 0.42646482586860657, "beginner": 0.23952484130859375, "expert": 0.33401036262512207 }
46,848
Can I have a depth buffer with no stencil ina renderbuffer opengl
68753f84e853ae7818e5523d070d4fc7
{ "intermediate": 0.4190022051334381, "beginner": 0.17926809191703796, "expert": 0.4017297625541687 }
46,849
does liner layer really linear?
7702e60beaa2bdf77ad1dee955ebd55b
{ "intermediate": 0.24359922111034393, "beginner": 0.18169622123241425, "expert": 0.5747045278549194 }
46,850
Let's say I have the output from a GPT2LMHeadModel, where I have a tensor of shape (2x2x50257). The issue I now need to sample this tensor using TopPLogitsWarper which expects size (batch_size, 50257). How Do I perform top p sampling?
97262df0728843a27a1ccced00bd1e23
{ "intermediate": 0.399284303188324, "beginner": 0.055464256554841995, "expert": 0.5452514290809631 }
46,851
Hey chatgpt, I'm having an issue where I need to apply top p sampling to the logits of GPT2LMHeadModel. How would I go about this, if it is even possible?
cd4a9ae1565d80b22b2530380750e5c1
{ "intermediate": 0.4458897113800049, "beginner": 0.09450651705265045, "expert": 0.45960381627082825 }
46,852
what is the best cad software for linux for aircraft and mechanical design?
db5eeb9d9e67035bb7fc3219c15ba4b9
{ "intermediate": 0.2313954383134842, "beginner": 0.25406309962272644, "expert": 0.5145414471626282 }
46,853
Hello Chatgpt, I have a problem. I am attempting to manually apply a TopPLogitsWarper to the output of a GPT2LMHeadModel. My code is as below for the external part of my code which extracts the LM's logits. with torch.no_grad(): out_logits = model(encoded_batch, attention_mask=attn_mask).logits # torch.save(out_logits, "outlogits.pt") from transformers import TopPLogitsWarper logits_warp = TopPLogitsWarper(0.9) shift_logits = out_logits[..., :-1, :].contiguous() out_logits = logits_warp.__call__(input_ids=None, scores = shift_logits) .... However, when attempting to use the TopPLogitsWarper, with the code below, it gives the following error at the line 'indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)' where it states ' [86,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. Below is the code for __call__: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: sorted_logits, sorted_indices = torch.sort(scores, descending=False) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p) # Keep at least min_tokens_to_keep sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores can you please help me?
9a73c842975a50e12ac2c2c563a129fd
{ "intermediate": 0.5247091054916382, "beginner": 0.10414484888315201, "expert": 0.371146023273468 }
46,854
# Form implementation generated from reading ui file '.\linkage\home_page_ui.ui' # # Created by: PyQt6 UI code generator 6.6.1 # # WARNING: Any manual changes made to this file will be lost when pyuic6 is # run again. Do not edit this file unless you know what you are doing. from PyQt6 import QtCore, QtGui, QtWidgets class Ui_HomePageWindow(object): def setupUi(self, HomePageWindow): HomePageWindow.setObjectName("HomePageWindow") HomePageWindow.resize(800, 600) self.centralwidget = QtWidgets.QWidget(parent=HomePageWindow) self.centralwidget.setObjectName("centralwidget") self.frame_page_home = QtWidgets.QFrame(parent=self.centralwidget) self.frame_page_home.setGeometry(QtCore.QRect(0, 0, 801, 571)) self.frame_page_home.setFrameShape(QtWidgets.QFrame.Shape.StyledPanel) self.frame_page_home.setFrameShadow(QtWidgets.QFrame.Shadow.Raised) self.frame_page_home.setObjectName("frame_page_home") HomePageWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(parent=HomePageWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 25)) self.menubar.setObjectName("menubar") self.document = QtWidgets.QMenu(parent=self.menubar) self.document.setObjectName("document") self.web_html = QtWidgets.QMenu(parent=self.menubar) self.web_html.setObjectName("web_html") HomePageWindow.setMenuBar(self.menubar) self.statusBar = QtWidgets.QStatusBar(parent=HomePageWindow) self.statusBar.setObjectName("statusBar") HomePageWindow.setStatusBar(self.statusBar) self.doc_manager = QtGui.QAction(parent=HomePageWindow) self.doc_manager.setObjectName("doc_manager") self.doc_qa = QtGui.QAction(parent=HomePageWindow) self.doc_qa.setObjectName("doc_qa") self.web_manager = QtGui.QAction(parent=HomePageWindow) self.web_manager.setObjectName("web_manager") self.web_qa = QtGui.QAction(parent=HomePageWindow) self.web_qa.setObjectName("web_qa") self.document.addSeparator() self.document.addAction(self.doc_manager) self.document.addSeparator() self.document.addAction(self.doc_qa) self.web_html.addSeparator() self.web_html.addAction(self.web_manager) self.web_html.addSeparator() self.web_html.addAction(self.web_qa) self.menubar.addAction(self.document.menuAction()) self.menubar.addAction(self.web_html.menuAction()) self.retranslateUi(HomePageWindow) QtCore.QMetaObject.connectSlotsByName(HomePageWindow) def retranslateUi(self, HomePageWindow): _translate = QtCore.QCoreApplication.translate HomePageWindow.setWindowTitle(_translate("HomePageWindow", "MainWindow")) self.document.setTitle(_translate("HomePageWindow", "文档")) self.web_html.setTitle(_translate("HomePageWindow", "网页")) self.doc_manager.setText(_translate("HomePageWindow", "文档管理")) self.doc_qa.setText(_translate("HomePageWindow", "文档问答")) self.web_manager.setText(_translate("HomePageWindow", "网页管理")) self.web_qa.setText(_translate("HomePageWindow", "网页问答")) 这是一个主界面UI, 其中点击菜单栏(如点击文档管理)self.frame_page_home 怎么嵌入文档管理界面,这样做是否合理
719ad60747452b5d4b8a36c3695b0000
{ "intermediate": 0.24063339829444885, "beginner": 0.5938680171966553, "expert": 0.1654985547065735 }
46,855
i have calculated two scalers as : # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) how can i save them?
da5002d5ca63f29ed45e7e0a9a001f7b
{ "intermediate": 0.3348543643951416, "beginner": 0.3518921434879303, "expert": 0.3132534623146057 }
46,856
#INCLUDE <sys/ioctl.h>// find the terminal width of the laptop being used int getTerminalWidth() { struct winsize size; // Get the size of the terminal window using ioctl system call ioctl(STDOUT_FILENO, TIOCGWINSZ, &size); int terminalWidth = size.ws_col; return terminalWidth; } make this compatible for windows in CPP
3c599fbc2fc83f5ff5884fa2419ba9e6
{ "intermediate": 0.39456185698509216, "beginner": 0.3972199857234955, "expert": 0.2082180380821228 }
46,857
lua script fps counter defold engine
fec99d8d1845ff7bc16cb2fdb810cadf
{ "intermediate": 0.2869197726249695, "beginner": 0.3992342948913574, "expert": 0.3138459026813507 }
46,858
lua script that show FPS (defold engine)
8d2ff135e009333fd9c383b23690d9fc
{ "intermediate": 0.363330215215683, "beginner": 0.2944985628128052, "expert": 0.34217119216918945 }
46,859
i am training a model on my dataset my code for training the model is : # %% from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from tensorflow import keras def calculate_features_scaling_params(file_path, features_to_drop): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk.drop(features_to_drop, axis=1) scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ def calculate_targets_scaling_params(file_path): scaler = StandardScaler() for chunk in pd.read_csv(file_path, chunksize=10000): # Adjust chunksize based on your memory capacity filtered_chunk = chunk[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] scaler.partial_fit(filtered_chunk) # Accumulate means and variances return scaler.mean_, scaler.var_ # %% import tensorflow as tf if tf.test.gpu_device_name(): print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) else: print('Please install GPU version of TF') # %% file_path = r"C:\Users\arisa\Desktop\combined_day.csv" batch_size = 128 # %% features_to_drop = ['Date', 'Symbol', 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'] f_mean_, f_var_ = calculate_features_scaling_params(file_path, features_to_drop) t_mean_, t_var_ = calculate_targets_scaling_params(file_path) # %% # Suppose mean_ and var_ have been obtained as above x_scaler = StandardScaler() x_scaler.mean_ = f_mean_ x_scaler.var_ = f_var_ x_scaler.scale_ = np.sqrt(f_var_) y_scaler = StandardScaler() y_scaler.mean_ = t_mean_ y_scaler.var_ = t_var_ y_scaler.scale_ = np.sqrt(t_var_) # %% row_counter = 0 # %% def data_generator(file_path, batch_size, data_type, x_scaler, y_scaler): global row_counter chunksize = batch_size total_rows = 301617 # Adjust with your dataset's actual number of rows split_ratio = 0.92 # Assuming 80% for train, 20% for validation train_rows = int(total_rows * split_ratio) while True: # Loop forever, so the generator never terminates for chunk in pd.read_csv(file_path, chunksize=chunksize): if data_type == 'train' and row_counter >= train_rows: continue # Skip the rest if we are fetching training data but have reached the end of the train set elif data_type == 'val' and row_counter < train_rows: row_counter += len(chunk) continue # Skip this chunk if we are fetching validation data but are still in the train range # Assuming your CSV has headers that match features/targets # Normalizing the features filtered_c = chunk.drop(['Date', 'Symbol'], axis=1) feature_data = filtered_c.drop([ 'y_High_1d', 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d'], axis=1) target_data = filtered_c[['y_High_1d' , 'y_Low_1d', 'y_Priority_1d', 'y_High_2d', 'y_Low_2d', 'y_Priority_2d', 'y_High_3d', 'y_Low_3d', 'y_Priority_3d', 'y_High_5d', 'y_Low_5d', 'y_Priority_5d' ]] feature_data_scaled = pd.DataFrame(x_scaler.transform(feature_data), columns=feature_data.columns) # Assuming target_data also needs to be scaled, apply scaler separately target_data_scaled = pd.DataFrame(y_scaler.transform(target_data), columns=target_data.columns) # Now, feature_data_scaled and target_data_scaled are both DataFrames, scaled and ready to use yield feature_data_scaled.values, target_data_scaled.values row_counter += len(chunk) # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Input import tensorflow as tf def build_model(): input_shape = (6427,) model = Sequential([ Dense(6427, activation='relu', input_shape = input_shape), Dropout(0.25), Dense(3200, activation='relu'), Dropout(0.20), Dense(1800, activation='relu'), Dropout(0.15), Dense(1024, activation='relu'), Dropout(0.10), Dense(512, activation='relu'), Dropout(0.05), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(64, activation='relu'), Dense(32, activation='relu'), Dense(12), ]) model.compile(optimizer='adam', loss='mse', # Use Mean Squared Error for regression metrics=['mae']) # Mean Absolute Error as an additional metric return model # %% # Instantiate the model model = build_model() model.summary() # %% import warnings warnings.filterwarnings(action='ignore', message='X has feature names, but StandardScaler was fitted without feature names') train_generator = data_generator(file_path, batch_size, 'train',x_scaler=x_scaler,y_scaler=y_scaler) val_generator = data_generator(file_path, batch_size, 'val',x_scaler=x_scaler,y_scaler=y_scaler) total_samples = 301617 # Assuming same example size train_samples = int(total_samples * 0.92) val_samples = total_samples - train_samples steps_per_epoch = train_samples // batch_size validation_steps = val_samples // batch_size # Modify the model fitting call to include validation data model.fit( train_generator, steps_per_epoch=steps_per_epoch, epochs=75, validation_data=val_generator, validation_steps=validation_steps ) the first epoch runs ok but when second epoch starts the process is not procced and the step not updates the code not throws any error or anything but the step and epoch not changes : like after 10 hours of running this is the output : Epoch 1/75 2167/2167 [==============================] - 932s 429ms/step - loss: 0.9483 - mae: 0.6670 - val_loss: 0.8434 - val_mae: 0.6839 Epoch 2/75 1/2167 [..............................] - ETA: 9:27 - loss: 1.2611 - mae: 0.7980 first epoch completed in 10 minutes but after that(for almost 10 hours) not procceding on epoch 2/75
68260904b5fb3fa0ffaea3d5f2575467
{ "intermediate": 0.19747671484947205, "beginner": 0.45991817116737366, "expert": 0.3426051139831543 }
46,860
def f(n): k = to_5(n) k == k[::-1] k = int(k, 5) res = abs(k - n) return res print(min(n for n in range(0,5000) if f(n) == 100)) почему мне выдает ошибку
e905872550352d5ea5cd5431ae7f1266
{ "intermediate": 0.1534869223833084, "beginner": 0.7177849411964417, "expert": 0.12872816622257233 }
46,861
Hi
aa120b89ada7344cb3d3c8d5b9931cb1
{ "intermediate": 0.33010533452033997, "beginner": 0.26984941959381104, "expert": 0.400045245885849 }
46,862
I would like to know the best method to write fields to a custom table, using a run script within workflow editor. Here is an example of my run script var dr = new GlideRecord('u_direct_enterprise_software'); dr.addQuery('u_record_number', workflow.scratchpad.newRecID); dr.query(); while (dr.next()) { var cvar = current.variables; dr.u_is_the_vendor_on_a_sactioned_list = cvar.is_the_vendor_on_a_sactioned_list; dr.u_has_the_vendor_or_software_been_breached_in_the_past_3_years = cvar._has_the_vendor_or_software_been_breached_in_the_past_3_years; dr.u_vendor_website = cvar.vendor_website; dr.u_vendor_headquarters = cvar.vendor_headquarters; dr.u_vendor_locations = cvar.vendor_locations; dr.u_company_officers = cvar.company_officers; dr.u_vendor_status_from_securityscorecard = cvar.vendor_status_from_securityscorecard; dr.u_fedramp_level_if_applicable = cvar.fedramp_level_if_applicable; dr.u_cve_mitre_vulnerabilities_noted = cvar.cve_mitre_vulnerabilities_noted; dr.u_virus_total_results = cvar.virus_total_results; dr.u_data_stored_in_the_software = cvar.data_stored_in_the_software; dr.u_us_developed = cvar.us_developed; dr.update(); } Essentially, The catalog task is created -> it gets completed (the new fields are filled out on the catalog task by the user) -> runs through the approval stage -> after approval, the fields that are filled out on the catalog task get written to a record on the custom table u_direct_enterprise_software At the moment, I currently have all functionality working besides the fields writing to the record on the table.
815fd23d1c3ceca31f8979200fb08759
{ "intermediate": 0.4899115562438965, "beginner": 0.2657182514667511, "expert": 0.24437017738819122 }
46,863
Test Key & IV value details – Algorithm = AES-256-CBC Enc_key= X5mUl3J1jneCd0adISoHWDTj7U8Rnhvd iv= 1111111245683783 create a js function to do this we will pass a json object to function and that function should encrypt using above details and return the encrypted base64 data { "tid":"0011111A", "amount":"10", "organization_code":"Retail", "additional_attribute1":"attribute1", "additional_attribute2":"attribute2", "additional_attribute3":"attribute3", "invoiceNumber":"", "rrn":"", "type":"SALE", "cb_amt":"", "app_code":"", "tokenisedValue":"35454564", "actionId":"1" }
b54f8973e429005bbc2a6c3198c8c318
{ "intermediate": 0.43849971890449524, "beginner": 0.2409685105085373, "expert": 0.3205317556858063 }
46,864
grid background design html css login page and grids have neon property
90e1d905151834c6fc37c5ba5bd82f88
{ "intermediate": 0.4210916757583618, "beginner": 0.2684181332588196, "expert": 0.3104901909828186 }
46,865
Public Shared Function IsAscending(values As ReadOnlySpan(Of Integer)) As Boolean For i = 1 To values.Length - 1 If values(i) < values(i - 1) Then Return False End If Next Return True End Function Public Shared Function TransformIndexByStrides(index As Integer, sourceStrides As Integer(), sourceReverseStride As Boolean, transformStrides As Integer()) As Integer Debug.Assert(index >= 0) Debug.Assert(If(sourceReverseStride, IsAscending(sourceStrides), IsDescending(sourceStrides)), "Index decomposition requires ordered strides") Debug.Assert(sourceStrides.Length = transformStrides.Length) ' scalar tensor If sourceStrides.Length = 0 Then Debug.Assert(index = 0, "Index has to be zero for a scalar tensor") Return 0 End If Dim transformIndex = 0 Dim remainder = index For i = 0 To sourceStrides.Length - 1 ' reverse the index for reverseStride so that we divide by largest stride first Dim nIndex = If(sourceReverseStride, sourceStrides.Length - 1 - i, i) Dim sourceStride = sourceStrides(nIndex) Dim transformStride = transformStrides(nIndex) transformIndex += transformStride * (remainder / sourceStride) remainder = remainder Mod sourceStride Next Return transformIndex End Function 请根据上面代码上下文解决下面这段代码中“Debug.Assert(If(sourceReverseStride, IsAscending(sourceStrides), IsDescending(sourceStrides)), "Index decomposition requires ordered strides")”这一行代码出现的问题:类型“Integer()”的值无法转换为“ML.OnnxRuntime.Tensors.ReadOnlySpan(Of Integer)”。 Public Shared Function TransformIndexByStrides(index As Integer, sourceStrides As Integer(), sourceReverseStride As Boolean, transformStrides As Integer()) As Integer Debug.Assert(index >= 0) Debug.Assert(If(sourceReverseStride, IsAscending(sourceStrides), IsDescending(sourceStrides)), "Index decomposition requires ordered strides") Debug.Assert(sourceStrides.Length = transformStrides.Length) ' scalar tensor If sourceStrides.Length = 0 Then Debug.Assert(index = 0, "Index has to be zero for a scalar tensor") Return 0 End If Dim transformIndex = 0 Dim remainder = index For i = 0 To sourceStrides.Length - 1 ' reverse the index for reverseStride so that we divide by largest stride first Dim nIndex = If(sourceReverseStride, sourceStrides.Length - 1 - i, i) Dim sourceStride = sourceStrides(nIndex) Dim transformStride = transformStrides(nIndex) transformIndex += transformStride * (remainder / sourceStride) remainder = remainder Mod sourceStride Next Return transformIndex End Function
5375648966191a47f9b7127ff8adf9f8
{ "intermediate": 0.323280930519104, "beginner": 0.4456549286842346, "expert": 0.23106414079666138 }
46,866
the following is my code: import { Box, Typography, styled } from "@mui/material"; import CustomerProfile from "./components/CustomerProfile"; import InfoCard from "./components/InfoCard"; import FeedIcon from "@mui/icons-material/Feed"; import LocationOnIcon from "@mui/icons-material/LocationOn"; import AccountCircleIcon from "@mui/icons-material/AccountCircle"; const Container = styled(Box)(({ theme }) => ({ display: "flex", flexDirection: "column", padding: theme.spacing(4), gap: theme.spacing(4), })); const InfoCardContainer = styled(Box)(({ theme }) => ({ display: "flex", width: "100%", gap: theme.spacing(4), })); const ContentContainer = styled(Box)(({ theme }) => ({ display: "flex", justifyContent: "space-around", gap: theme.spacing(2), padding: theme.spacing(4), })); const ContentColumn = styled(Box)(({ theme }) => ({ flex: 1, display: "flex", flexDirection: "column", gap: theme.spacing(1), })); const ContentTitle = styled(Typography)({ color: "#8f9daf", }); const ContentSubtitle = styled(Typography)( ({ theme, green = false, red = false }) => ({ color: green ? "#41beb0" : red ? "#ff7a7d" : theme.palette.primary.main, fontWeight: "bold", }) ); const EmploymentInformation = () => { return ( <ContentContainer> <ContentColumn> <ContentTitle>Occupation:</ContentTitle> <ContentSubtitle>Office Administration</ContentSubtitle> <ContentTitle>Approved Employer:</ContentTitle> <ContentSubtitle green>Yes</ContentSubtitle> <ContentTitle>Salary Transferred:</ContentTitle> <ContentSubtitle red>No</ContentSubtitle> </ContentColumn> <ContentColumn> <ContentTitle>Organization:</ContentTitle> <ContentSubtitle>KFMC</ContentSubtitle> <ContentTitle>Place:</ContentTitle> <ContentSubtitle>Riyadh</ContentSubtitle> </ContentColumn> </ContentContainer> ); }; const AddressInformation = () => { return ( <ContentContainer> <ContentColumn> <ContentTitle>Street:</ContentTitle> <ContentSubtitle>Ahmed bin Khaled St.</ContentSubtitle> <ContentTitle>Building No.</ContentTitle> <ContentSubtitle>1234</ContentSubtitle> <ContentTitle>City:</ContentTitle> <ContentSubtitle>Riyadh</ContentSubtitle> </ContentColumn> <ContentColumn> <ContentTitle>District:</ContentTitle> <ContentSubtitle>Al-Olaya</ContentSubtitle> <ContentTitle>Secondary No.</ContentTitle> <ContentSubtitle>Riyadh</ContentSubtitle> <ContentTitle>Postal Code:</ContentTitle> <ContentSubtitle>11452</ContentSubtitle> </ContentColumn> </ContentContainer> ); }; const IdInformation = () => { return ( <ContentContainer> <ContentColumn> <ContentTitle>ID Type:</ContentTitle> <ContentSubtitle>Saudi ID</ContentSubtitle> <ContentTitle>Date of Birth:</ContentTitle> <ContentSubtitle>15, June 1996</ContentSubtitle> </ContentColumn> <ContentColumn> <ContentTitle>ID Number:</ContentTitle> <ContentSubtitle>1091182301</ContentSubtitle> <ContentTitle>Date of Expiry:</ContentTitle> <ContentSubtitle>30, Dec 2025</ContentSubtitle> </ContentColumn> </ContentContainer> ); }; const employmentInfo = { title: "Employment Information", icon: <FeedIcon color="white" />, content: <EmploymentInformation />, }; const addressInfo = { title: "Address Information", icon: <LocationOnIcon color="white" />, content: <AddressInformation />, }; const idInfo = { title: "ID Information", icon: <AccountCircleIcon color="white" />, content: <IdInformation />, }; const Home = () => { return ( <Container> <CustomerProfile /> <InfoCardContainer> <InfoCard info={employmentInfo} /> <InfoCard info={addressInfo} /> <InfoCard info={idInfo} /> </InfoCardContainer> </Container> ); }; export default Home; The following is the error: Warning: Received `true` for a non-boolean attribute `green`. Can you please edit the code to solve the error?
a31d564dca8acb4037dc2b784fc235f4
{ "intermediate": 0.35369664430618286, "beginner": 0.44285476207733154, "expert": 0.2034486085176468 }
46,867
根据代码上下文编写dimensions变量 vb Public Class DenseTensor(Of T) Friend Sub New(ByVal fromArray As Array, Optional ByVal reverseStride As Boolean = False) MyBase.New() ' Copy initial array Dim backingArray(fromArray.Length - 1) As T Dim index As Integer = 0 If reverseStride Then ' Array is always row-major Dim sourceStrides() As Integer = ArrayUtilities.GetStrides(dimensions) For Each item In fromArray Dim destIndex As Integer = ArrayUtilities.TransformIndexByStrides(index, sourceStrides, False, strides) backingArray(destIndex) = DirectCast(item, T) index += 1 Next Else For Each item In fromArray backingArray(index) = DirectCast(item, T) index += 1 Next End If memory = backingArray End Sub End Class Public Class ArrayUtilities Public Shared Function GetStrides(dimensions As ReadOnlySpan(Of Integer), Optional reverseStride As Boolean = False) As Integer() Dim strides = New Integer(dimensions.Length - 1) {} If dimensions.Length = 0 Then Return strides End If Dim stride = 1 If reverseStride Then For i = 0 To strides.Length - 1 strides(i) = stride stride *= dimensions(i) Next Else For i = strides.Length - 1 To 0 Step -1 strides(i) = stride stride *= dimensions(i) Next End If Return strides End Function End Class
abb68d7d4bf3669fdf575836b6531d77
{ "intermediate": 0.23892399668693542, "beginner": 0.5390737652778625, "expert": 0.22200226783752441 }
46,868
根据代码上下文编写dimensions变量并赋值 vb Public Class DenseTensor(Of T) Friend Sub New(ByVal fromArray As Array, Optional ByVal reverseStride As Boolean = False) MyBase.New() ' Copy initial array Dim backingArray(fromArray.Length - 1) As T Dim index As Integer = 0 If reverseStride Then ' Array is always row-major Dim sourceStrides() As Integer = ArrayUtilities.GetStrides(dimensions) For Each item In fromArray Dim destIndex As Integer = ArrayUtilities.TransformIndexByStrides(index, sourceStrides, False, strides) backingArray(destIndex) = DirectCast(item, T) index += 1 Next Else For Each item In fromArray backingArray(index) = DirectCast(item, T) index += 1 Next End If memory = backingArray End Sub End Class Public Class ArrayUtilities Public Shared Function GetStrides(dimensions As ReadOnlySpan(Of Integer), Optional reverseStride As Boolean = False) As Integer() Dim strides = New Integer(dimensions.Length - 1) {} If dimensions.Length = 0 Then Return strides End If Dim stride = 1 If reverseStride Then For i = 0 To strides.Length - 1 strides(i) = stride stride *= dimensions(i) Next Else For i = strides.Length - 1 To 0 Step -1 strides(i) = stride stride *= dimensions(i) Next End If Return strides End Function End Class
c3e9f49742282ed69f8c3a3c19593000
{ "intermediate": 0.2505733072757721, "beginner": 0.5157487392425537, "expert": 0.2336779534816742 }
46,869
根据代码上下文编写dimensions变量并赋值 vb Public Class DenseTensor(Of T) Friend Sub New(ByVal fromArray As Array, Optional ByVal reverseStride As Boolean = False) MyBase.New() ' Copy initial array Dim backingArray(fromArray.Length - 1) As T Dim index As Integer = 0 If reverseStride Then ' Array is always row-major Dim sourceStrides() As Integer = ArrayUtilities.GetStrides(dimensions) For Each item In fromArray Dim destIndex As Integer = ArrayUtilities.TransformIndexByStrides(index, sourceStrides, False, strides) backingArray(destIndex) = DirectCast(item, T) index += 1 Next Else For Each item In fromArray backingArray(index) = DirectCast(item, T) index += 1 Next End If memory = backingArray End Sub End Class Public Class ArrayUtilities Public Shared Function GetStrides(dimensions As ReadOnlySpan(Of Integer), Optional reverseStride As Boolean = False) As Integer() Dim strides = New Integer(dimensions.Length - 1) {} If dimensions.Length = 0 Then Return strides End If Dim stride = 1 If reverseStride Then For i = 0 To strides.Length - 1 strides(i) = stride stride *= dimensions(i) Next Else For i = strides.Length - 1 To 0 Step -1 strides(i) = stride stride *= dimensions(i) Next End If Return strides End Function End Class
91674567405a1ceb35e2f4a76d1e1d05
{ "intermediate": 0.2505733072757721, "beginner": 0.5157487392425537, "expert": 0.2336779534816742 }
46,870
How to setup zebra printer that way that before each print job a certain zpl command is executed on printer
2340fb6c9a3ee9b2972fb0cc6d92deb6
{ "intermediate": 0.3588191568851471, "beginner": 0.17328469455242157, "expert": 0.46789613366127014 }
46,871
How to detect if printer was connected with python
14fdafb6dc5a30853782ccb401b6d4d5
{ "intermediate": 0.26209643483161926, "beginner": 0.16485187411308289, "expert": 0.5730516314506531 }
46,872
i have a csv file that contains many columns and has a large size(27GB) i want to remove all the columns except the ones that: A.The columns which their names that contains: Open, High, Low, Close,macd,sma,wma,ema,rsi,cci,stoch,_short,_ichimoku,_dr B.The columns which their names that ends whith: volume_base, volume_crypto, _tradecount C.The columns after y_High_1d(including y_High_1d itself)
95ad505219d32c986206f0f61bf69e15
{ "intermediate": 0.3243207037448883, "beginner": 0.34848347306251526, "expert": 0.32719582319259644 }
46,873
Запустил docker контейнер с freepbx а он при запуске пишет это: 2024-04-16.05:51:29 [NOTICE] ** [monitoring] Container configured for monitoring with 'zabbix modern' 2024-04-16.05:51:30 [NOTICE] ** [scheduling] Container configured for scheduled tasks with 'cron' 2024-04-16.05:51:30 [INFO] ** [fail2ban] Starting Fail2ban 2024-04-16.05:52:00 [NOTICE] ** [messaging] Container configured to route mail via SMTP to 'postfix-relay' 2024-04-16.05:52:00 [INFO] ** [mariadb] No embedded database detected, skip.. 2024-04-16.05:52:06 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (5 seconds so far) 2024-04-16.05:52:11 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (10 seconds so far) 2024-04-16.05:52:16 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (15 seconds so far) 2024-04-16.05:52:21 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (20 seconds so far) 2024-04-16.05:52:26 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (25 seconds so far) 2024-04-16.05:52:31 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (30 seconds so far) 2024-04-16.05:52:36 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (35 seconds so far) 2024-04-16.05:52:41 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (40 seconds so far) 2024-04-16.05:52:46 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (45 seconds so far) 2024-04-16.05:52:51 [WARN] ** [freepbx] MySQL/MariaDB Server 'mariadb' is not accessible, retrying.. (50 seconds so far)
86983fa8fa53fa47de59c74f7cd3ba28
{ "intermediate": 0.34504425525665283, "beginner": 0.32307398319244385, "expert": 0.33188170194625854 }
46,874
Entity Framework core 6 many to many with join table
6e1c17dfe58b88f06fa7d3db78596703
{ "intermediate": 0.6050905585289001, "beginner": 0.2542107105255127, "expert": 0.14069868624210358 }
46,875
i have bunch of csv files i have following code to merge them: import pandas as pd import os # Directory where all your CSV files are located csv_directory = r"C:\Users\arisa\Desktop\day_spot" # List all CSV files in the given directory csv_files = [file for file in os.listdir(csv_directory) if file.endswith('.csv')] # Placeholder for storing the data frames data_frames = [] # Loop over the list of csv files for csv_file in csv_files: # Read the CSV file and append it to the list of data frames file_path = os.path.join(csv_directory, csv_file) df = pd.read_csv(file_path) data_frames.append(df) # Concatenate all data frames to create a single data frame combined_df = pd.concat(data_frames, ignore_index=True) # Save the combined data frame to a new CSV file combined_csv_path = r'C:\Users\arisa\Desktop\combined_day.csv' combined_df.to_csv(combined_csv_path, index=False) print(f'Combined CSV created at: {combined_csv_path}') i want to update the code so that in final file: i want to remove all the columns except the ones that: A.The columns which their names that contains: Open, High, Low, Close,macd,sma,wma,ema,rsi,cci,stoch,_short,_ichimoku,_dr B.The columns which their names that ends whith: volume_base, volume_crypto, tradecount C.The columns after y_High_1d(including y_High_1d itself)
cdeb1b9b752be31c85fb350d2a849f62
{ "intermediate": 0.3468990623950958, "beginner": 0.4228151738643646, "expert": 0.23028579354286194 }
46,876
how to write Gtest for the following function static void sdl_egl_destroy(struct graphics_opengl_platform *egl) { if (egl->eglwindow) { SDL_GL_DeleteContext(egl->eglcontext); SDL_DestroyWindow(egl->eglwindow); } g_free(egl); SDL_Quit(); }
c85b7637f5383b542b88d6a1fef13240
{ "intermediate": 0.5509567856788635, "beginner": 0.2970137298107147, "expert": 0.15202954411506653 }
46,877
i have a large dataset as csv file (27GB size) i want to train an ensmble decision tree on it for each row i have 3 y value columns named as yq1 yq2 yq3 that need to be predicted and model should predict them give me proper python code to implement it
3b33f263636c24f78df7555f781f8f70
{ "intermediate": 0.4408280849456787, "beginner": 0.09490528702735901, "expert": 0.4642665982246399 }
46,878
hi
f5efa459e0d9beef8fe9326448e77577
{ "intermediate": 0.3246487081050873, "beginner": 0.27135494351387024, "expert": 0.40399640798568726 }
46,879
I would like to know the best method to write fields to a custom table, using a run script within workflow editor in servicenow. Essentially, The catalog task is created -> it gets completed (the new fields are filled out on the catalog task by the user) -> runs through the approval stage -> after approval, the fields that are filled out on the catalog task get written to a record on the custom table u_direct_enterprise_software. At the moment, I currently have all functionality working besides the fields writing to the record on the table. correct he workflow script if possible They simply do not populate to the table and I do not know why. Here is an example of my run script var dr = new GlideRecord('u_direct_enterprise_software'); dr.addQuery('u_record_number', workflow.scratchpad.newRecID); dr.query(); while (dr.next()) { var cvar = current.variables; dr.u_is_the_vendor_on_a_sactioned_list = cvar.is_the_vendor_on_a_sactioned_list; dr.u_has_the_vendor_or_software_been_breached_in_the_past_3_years = cvar._has_the_vendor_or_software_been_breached_in_the_past_3_years; dr.u_vendor_website = cvar.vendor_website; dr.u_vendor_headquarters = cvar.vendor_headquarters; dr.u_vendor_locations = cvar.vendor_locations; dr.u_company_officers = cvar.company_officers; dr.u_vendor_status_from_securityscorecard = cvar.vendor_status_from_securityscorecard; dr.u_fedramp_level_if_applicable = cvar.fedramp_level_if_applicable; dr.u_cve_mitre_vulnerabilities_noted = cvar.cve_mitre_vulnerabilities_noted; dr.u_virus_total_results = cvar.virus_total_results; dr.u_data_stored_in_the_software = cvar.data_stored_in_the_software; dr.u_us_developed = cvar.us_developed; dr.update(); }
0fb99c7dcc6094ad43582d2f77886f9a
{ "intermediate": 0.5438546538352966, "beginner": 0.28026512265205383, "expert": 0.17588016390800476 }
46,880
Hi, I want to work with Powershell ISE, please give me short answers, as best only the source code i want with an comment. pls do not answer on this message, this is just an info for you
5531d2f27a5fc1f87d0dbe4346e8f25c
{ "intermediate": 0.36739861965179443, "beginner": 0.29752984642982483, "expert": 0.3350715935230255 }
46,881
Hi, I want to work with Powershell ISE, please give me short answers, as best only the source code i want with an comment. pls do not answer on this message, this is just an info for you
45dabe87ee4c8e10207468cc74892a39
{ "intermediate": 0.36739861965179443, "beginner": 0.29752984642982483, "expert": 0.3350715935230255 }
46,882
Is MVC a design pattern?
a7defc7a1df61ad390e9b95d9ad9bea8
{ "intermediate": 0.2757970094680786, "beginner": 0.26499542593955994, "expert": 0.45920753479003906 }
46,883
Hi how to create an text file in powershell, pls show only code with an comment
766efe76d936972cfcec8d91cbe8ebf7
{ "intermediate": 0.3191577196121216, "beginner": 0.4297395348548889, "expert": 0.2511027157306671 }
46,884
Hi, pls give me short answers, with only source code for powershell and an comment. Show an prompt with "OK" after that pressed, the code should continue
0682b7f3b4815f7519dfe0171ac20311
{ "intermediate": 0.29088959097862244, "beginner": 0.3673631250858307, "expert": 0.34174731373786926 }
46,885
Configure many to many relationships with same table entity framework core 6
020278a74111c04afc6efcfbde5c4b2b
{ "intermediate": 0.499287486076355, "beginner": 0.17046476900577545, "expert": 0.33024775981903076 }
46,886
i a django application we created a class named "db_validator" that on initialisation is going to load all the django model and their data ( rows ) in self.tables which is a dictionary of pd dataframes where the key is the table / model name and the values are the dataframes , write the class
5149d93da2366eb612997321a55e330a
{ "intermediate": 0.5017939805984497, "beginner": 0.23618288338184357, "expert": 0.26202306151390076 }
46,887
in this javascript why is the command 'instructionsElement.appendChild(newStation);' not working - ' script.js Remix Share new-train-game Settings Assets Files script.js PRETTIER }); ​ //24 hour clock display ​ const TIME_MULTIPLIER = 60 * 10; // 10 minutes = 600 seconds ​ // Function to format time in 24-hour format with leading zeros function formatTime(hours, minutes) { // Handle the case where minutes reach 60 (should display the next hour) if (minutes === 60) { hours++; minutes = 0; } return `${hours.toString().padStart(2, "0")}:${minutes .toString() .padStart(2, "0")}`; } ​ // Function to update the clock display and handle daily bonus function updateClock() { const currentTime = new Date(); ​ // Simulate game time by multiplying actual time with multiplier const gameTime = new Date(currentTime.getTime() * TIME_MULTIPLIER); ​ // Get hours and minutes in 24-hour format let hours = gameTime.getHours(); // Get minutes and force them to the nearest multiple of 10 (ending in 0) let minutes = Math.floor(gameTime.getMinutes() / 10) * 10; // Format the time string with fixed minute handling const formattedTime = formatTime(hours, minutes); ​ // Update the content of the div with the formatted time document.getElementById("timedisplay").textContent = formattedTime; ​ // Check if it's midnight (00:00) if (hours === 0 && minutes === 0) { // Generate random daily bonus (modify as needed) money += cafeOneBonus + cafeTwoBonus + hotelOneBonus; const moneyDisplay = document.getElementById("moneydisplay"); const moneyString = `£${money}`; moneyDisplay.textContent = moneyString; console.log( `Daily bonus of ${ cafeOneBonus + cafeTwoBonus + hotelOneBonus + hotelTwoBonus } added! Total money: ${money}` ); // You can replace console.log with your desired action } } ​ // Call the updateClock function initially updateClock(); ​ // Update the clock every second to simulate smooth time progression setInterval(updateClock, 1000); ​ //add a new station ​ const newStation = document.createElement("button"); newStation.id = "trainbutton"; newStation.textContent = "Place New Station"; ​ newStation.addEventListener("click", () => { if (money > 150000) { } else { console.log(`You need £150,000 to add a new stations`); } }); STATUS LOGS TERMINAL TOOLS PREVIEW '
39da4405eab5f1077306da4d30c0a894
{ "intermediate": 0.4191504716873169, "beginner": 0.2957295775413513, "expert": 0.2851199209690094 }