domain
stringclasses 40
values | framework
stringclasses 20
values | functionality
stringclasses 181
values | api_name
stringlengths 4
87
| api_call
stringlengths 15
216
| api_arguments
stringlengths 0
495
| python_environment_requirements
stringlengths 0
190
| example_code
stringlengths 0
3.35k
| performance
stringlengths 22
1.36k
| description
stringlengths 35
1.11k
|
---|---|---|---|---|---|---|---|---|---|
Reinforcement Learning | Unity ML-Agents | Train and play SoccerTwos | Raiden-1001/poca-Soccerv7.1 | mlagents-load-from-hf --repo-id='Raiden-1001/poca-Soccerv7.1' --local-dir='./downloads' | ['your_configuration_file_path.yaml', 'run_id'] | ['ml-agents'] | mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume | {'dataset': 'SoccerTwos', 'accuracy': 'Not provided'} | A trained model of a poca agent playing SoccerTwos using the Unity ML-Agents Library. |
Reinforcement Learning | Stable-Baselines3 | CartPole-v1 | sb3/ppo-CartPole-v1 | load_from_hub(repo_id='sb3/ppo-CartPole-v1') | ['algo', 'env', 'f'] | ['rl_zoo3', 'stable-baselines3', 'stable-baselines3-contrib'] | python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/ | {'dataset': 'CartPole-v1', 'accuracy': '500.00 +/- 0.00'} | This is a trained model of a PPO agent playing CartPole-v1 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. |
Reinforcement Learning | Stable-Baselines3 | LunarLander-v2 | araffin/dqn-LunarLander-v2 | DQN.load('araffin/dqn-LunarLander-v2') | {'checkpoint': 'araffin/dqn-LunarLander-v2', 'kwargs': {'target_update_interval': 30}} | ['huggingface_sb3', 'stable_baselines3'] | {'load_model': 'from huggingface_sb3 import load_from_hub\nfrom stable_baselines3 import DQN\nfrom stable_baselines3.common.env_util import make_vec_env\nfrom stable_baselines3.common.evaluation import evaluate_policy\n\ncheckpoint = load_from_hub(araffin/dqn-LunarLander-v2, dqn-LunarLander-v2.zip)\n\nkwargs = dict(target_update_interval=30)\n\nmodel = DQN.load(checkpoint, **kwargs)\nenv = make_vec_env(LunarLander-v2, n_envs=1)', 'evaluate': 'mean_reward, std_reward = evaluate_policy(\n model,\n env,\n n_eval_episodes=20,\n deterministic=True,\n)\nprint(fMean reward = {mean_reward:.2f} +/- {std_reward:.2f})'} | {'dataset': 'LunarLander-v2', 'accuracy': '280.22 +/- 13.03'} | This is a trained model of a DQN agent playing LunarLander-v2 using the stable-baselines3 library. |
Reinforcement Learning | Stable-Baselines3 | CartPole-v1 | dqn-CartPole-v1 | load_from_hub(repo_id='sb3/dqn-CartPole-v1') | ['algo', 'env', 'logs'] | ['rl_zoo3', 'stable-baselines3', 'stable-baselines3-contrib'] | python train.py --algo dqn --env CartPole-v1 -f logs/ | {'dataset': 'CartPole-v1', 'accuracy': '500.00 +/- 0.00'} | This is a trained model of a DQN agent playing CartPole-v1 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. |
Reinforcement Learning | Stable-Baselines3 | deep-reinforcement-learning | td3-Ant-v3 | load_from_hub(repo_id='sb3/td3-Ant-v3') | ['algo', 'env', 'f'] | ['RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo', 'SB3: https://github.com/DLR-RM/stable-baselines3', 'SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib'] | ['python -m rl_zoo3.load_from_hub --algo td3 --env Ant-v3 -orga sb3 -f logs/', 'python enjoy.py --algo td3 --env Ant-v3 -f logs/', 'python train.py --algo td3 --env Ant-v3 -f logs/', 'python -m rl_zoo3.push_to_hub --algo td3 --env Ant-v3 -f logs/ -orga sb3'] | {'dataset': 'Ant-v3', 'accuracy': '5822.96 +/- 93.33'} | This is a trained model of a TD3 agent playing Ant-v3 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. |
Reinforcement Learning | Hugging Face Transformers | Transformers | edbeeching/decision-transformer-gym-hopper-expert | AutoModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert') | {'mean': [1.3490015, -0.11208222, -0.5506444, -0.13188992, -0.00378754, 2.6071432, 0.02322114, -0.01626922, -0.06840388, -0.05183131, 0.04272673], 'std': [0.15980862, 0.0446214, 0.14307782, 0.17629202, 0.5912333, 0.5899924, 1.5405099, 0.8152689, 2.0173461, 2.4107876, 5.8440027]} | ['transformers', 'torch'] | See our Blog Post, Colab notebook or Example Script for usage. | {'dataset': 'Gym Hopper environment', 'accuracy': 'Not provided'} | Decision Transformer model trained on expert trajectories sampled from the Gym Hopper environment |
Reinforcement Learning | Hugging Face Transformers | Transformers | edbeeching/decision-transformer-gym-halfcheetah-expert | AutoModel.from_pretrained('edbeeching/decision-transformer-gym-halfcheetah-expert') | {'mean': [-0.04489148, 0.03232588, 0.06034835, -0.17081226, -0.19480659, -0.05751596, 0.09701628, 0.03239211, 11.047426, -0.07997331, -0.32363534, 0.36297753, 0.42322603, 0.40836546, 1.1085187, -0.4874403, -0.0737481], 'std': [0.04002118, 0.4107858, 0.54217845, 0.41522816, 0.23796624, 0.62036866, 0.30100912, 0.21737163, 2.2105937, 0.572586, 1.7255033, 11.844218, 12.06324, 7.0495934, 13.499867, 7.195647, 5.0264325]} | ['transformers'] | See our Blog Post, Colab notebook or Example Script for usage. | {'dataset': 'Gym HalfCheetah environment', 'accuracy': 'Not specified'} | Decision Transformer model trained on expert trajectories sampled from the Gym HalfCheetah environment |
Reinforcement Learning | ML-Agents | SoccerTwos | Raiden-1001/poca-Soccerv7 | mlagents-load-from-hf --repo-id='Raiden-1001/poca-Soccerv7.1' --local-dir='./downloads' | ['your_configuration_file_path.yaml', 'run_id'] | ['unity-ml-agents', 'deep-reinforcement-learning', 'ML-Agents-SoccerTwos'] | Step 1: Write your model_id: Raiden-1001/poca-Soccerv7
Step 2: Select your .nn /.onnx file
Click on Watch the agent play 👀 | {'dataset': 'SoccerTwos', 'accuracy': 'Not provided'} | This is a trained model of a poca agent playing SoccerTwos using the Unity ML-Agents Library. |
Reinforcement Learning | Unity ML-Agents Library | Train and play SoccerTwos | poca-SoccerTwosv2 | mlagents-load-from-hf --repo-id='Raiden-1001/poca-SoccerTwosv2' --local-dir='./downloads' | ['your_configuration_file_path.yaml', 'run_id'] | ['ml-agents'] | mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume | {'dataset': 'SoccerTwos', 'accuracy': 'Not provided'} | A trained model of a poca agent playing SoccerTwos using the Unity ML-Agents Library. |
Reinforcement Learning Robotics | Hugging Face | Inference API | Antheia/Hanna | pipeline('robotics', model='Antheia/Hanna') | model | transformers | {'dataset': 'openai/webgpt_comparisons', 'accuracy': ''} | Antheia/Hanna is a reinforcement learning model for robotics tasks, trained on the openai/webgpt_comparisons dataset. |
|
Reinforcement Learning Robotics | Hugging Face Transformers | EmbodiedAI tasks | VC1_BASE_NAME | model_utils.load_model('model_utils.VC1_BASE_NAME') | img | from vc_models.models.vit import model_utils | model,embd_size,model_transforms,model_info = model_utils.load_model(model_utils.VC1_BASE_NAME)
img = your_function_here ...
transformed_img = model_transforms(img)
embedding = model(transformed_img) | {'dataset': 'CortexBench', 'accuracy': 'Mean Success: 68.7%'} | The VC-1 model is a vision transformer (ViT) pre-trained on over 4,000 hours of egocentric videos from 7 different sources, together with ImageNet. The model is trained using Masked Auto-Encoding (MAE) and is available in two sizes: ViT-B and ViT-L. The model is intended for use for EmbodiedAI tasks, such as object manipulation and indoor navigation. |
Reinforcement Learning Robotics | Hugging Face | 6D grasping | camusean/grasp_diffusion | AutoModel.from_pretrained('camusean/grasp_diffusion') | N/A | transformers | N/A | {'dataset': 'N/A', 'accuracy': 'N/A'} | Trained Models for Grasp SE(3) DiffusionFields. Check SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion for additional details. |
Reinforcement Learning Robotics | Hugging Face Transformers | EmbodiedAI tasks, such as object manipulation and indoor navigation | facebook/vc1-large | model_utils.load_model('model_utils.VC1_BASE_NAME') | img | from vc_models.models.vit import model_utils | model,embd_size,model_transforms,model_info = model_utils.load_model(model_utils.VC1_BASE_NAME)
img = your_function_here ...
transformed_img = model_transforms(img)
embedding = model(transformed_img) | {'dataset': 'CortexBench', 'accuracy': '68.7 (Mean Success)'} | The VC-1 model is a vision transformer (ViT) pre-trained on over 4,000 hours of egocentric videos from 7 different sources, together with ImageNet. The model is trained using Masked Auto-Encoding (MAE) and is available in two sizes: ViT-B and ViT-L. The model is intended for use for EmbodiedAI tasks, such as object manipulation and indoor navigation. |
Reinforcement Learning | Stable-Baselines3 | deep-reinforcement-learning | ppo-BreakoutNoFrameskip-v4 | load_from_hub(repo_id='sb3/ppo-BreakoutNoFrameskip-v4') | ['algo', 'env', 'orga', 'f'] | ['rl_zoo3', 'stable-baselines3', 'stable-baselines3-contrib'] | ['python -m rl_zoo3.load_from_hub --algo ppo --env BreakoutNoFrameskip-v4 -orga sb3 -f logs/', 'python enjoy.py --algo ppo --env BreakoutNoFrameskip-v4 -f logs/', 'python train.py --algo ppo --env BreakoutNoFrameskip-v4 -f logs/', 'python -m rl_zoo3.push_to_hub --algo ppo --env BreakoutNoFrameskip-v4 -f logs/ -orga sb3'] | {'dataset': 'BreakoutNoFrameskip-v4', 'accuracy': '398.00 +/- 16.30'} | This is a trained model of a PPO agent playing BreakoutNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. |
Natural Language Processing Text Classification | Hugging Face Transformers | Sentiment Analysis | bert-base-multilingual-uncased-sentiment | pipeline('sentiment-analysis') | ['text'] | ['transformers'] | result = sentiment_pipeline('I love this product!') | {'dataset': [{'language': 'English', 'accuracy': {'exact': '67%', 'off-by-1': '95%'}}, {'language': 'Dutch', 'accuracy': {'exact': '57%', 'off-by-1': '93%'}}, {'language': 'German', 'accuracy': {'exact': '61%', 'off-by-1': '94%'}}, {'language': 'French', 'accuracy': {'exact': '59%', 'off-by-1': '94%'}}, {'language': 'Italian', 'accuracy': {'exact': '59%', 'off-by-1': '95%'}}, {'language': 'Spanish', 'accuracy': {'exact': '58%', 'off-by-1': '95%'}}]} | This a bert-base-multilingual-uncased model finetuned for sentiment analysis on product reviews in six languages: English, Dutch, German, French, Spanish and Italian. It predicts the sentiment of the review as a number of stars (between 1 and 5). |
Natural Language Processing Text Classification | Hugging Face Transformers | Transformers | sentiment_analysis_generic_dataset | pipeline('text-classification') | [] | ['transformers'] | sentiment_analysis('I love this product!') | {'dataset': 'generic_dataset', 'accuracy': 'Not specified'} | This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text classification. |
Natural Language Processing Text Generation | Transformers | Text Generation | distilgpt2 | pipeline('text-generation') | ['model'] | ['from transformers import pipeline, set_seed'] | set_seed(42)
generator(Hello, I’m a language model, max_length=20, num_return_sequences=5) | {'dataset': 'WikiText-103', 'accuracy': '21.100'} | DistilGPT2 is an English-language model pre-trained with the supervision of the 124 million parameter version of GPT-2. With 82 million parameters, it was developed using knowledge distillation and designed to be a faster, lighter version of GPT-2. It can be used for text generation, writing assistance, creative writing, entertainment, and more. |
Natural Language Processing Zero-Shot Classification | Hugging Face Transformers | Zero-Shot Image Classification | laion/CLIP-ViT-B-32-laion2B-s34B-b79K | pipeline('zero-shot-classification') | {'image': 'path/to/image', 'class_names': ['class1', 'class2', 'class3']} | {'transformers': '>=4.0.0'} | from transformers import pipeline; classifier = pipeline('zero-shot-classification', model='laion/CLIP-ViT-B-32-laion2B-s34B-b79K'); classifier(image='path/to/image', class_names=['class1', 'class2', 'class3']) | {'dataset': 'ImageNet-1k', 'accuracy': 66.6} | A CLIP ViT-B/32 model trained with the LAION-2B English subset of LAION-5B using OpenCLIP. It enables researchers to better understand and explore zero-shot, arbitrary image classification. The model can be used for zero-shot image classification, image and text retrieval, among others. |
Natural Language Processing Translation | Transformers | Text-to-Text Generation | optimum/t5-small | pipeline('translation') | ['text'] | ['transformers', 'optimum.onnxruntime'] | from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained(optimum/t5-small)
model = ORTModelForSeq2SeqLM.from_pretrained(optimum/t5-small)
translator = pipeline(translation_en_to_fr, model=model, tokenizer=tokenizer)
results = translator(My name is Eustache and I have a pet raccoon)
print(results) | {'dataset': 'c4', 'accuracy': 'N/A'} | T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. It can be used for translation, text-to-text generation, and summarization. |
Audio Audio Classification | Hugging Face Transformers | Audio Classification | ast-finetuned-audioset-10-10-0.4593 | pipeline('audio-classification') | transformers | {'dataset': 'AudioSet', 'accuracy': ''} | Audio Spectrogram Transformer (AST) model fine-tuned on AudioSet. It was introduced in the paper AST: Audio Spectrogram Transformer by Gong et al. and first released in this repository. The Audio Spectrogram Transformer is equivalent to ViT, but applied on audio. Audio is first turned into an image (as a spectrogram), after which a Vision Transformer is applied. The model gets state-of-the-art results on several audio classification benchmarks. |
||
Audio Automatic Speech Recognition | Hugging Face Transformers | Transformers | tiny-wav2vec2-stable-ln | pipeline('automatic-speech-recognition') | None | ['transformers'] | None | {'dataset': None, 'accuracy': None} | A tiny wav2vec2 model for Automatic Speech Recognition |
Natural Language Processing Text Generation | Hugging Face Transformers | Conversational | pygmalion-350m | pipeline('conversational') | N/A | transformers | N/A | {'dataset': 'The Pile', 'accuracy': 'N/A'} | This is a proof-of-concept fine-tune of Facebook's OPT-350M model optimized for dialogue, to be used as a stepping stone to higher parameter models. Disclaimer: NSFW data was included in the fine-tuning of this model. Although SFW inputs will usually result in SFW outputs, you are advised to chat at your own risk. This model is not suitable for use by minors. |
Computer Vision Depth Estimation | Hugging Face Transformers | Depth Estimation | glpn-nyu-finetuned-diode | pipeline('depth-estimation') | [] | ['transformers'] | {'dataset': 'diode-subset', 'accuracy': {'Loss': 0.4359, 'Rmse': 0.4276}} | This model is a fine-tuned version of vinvino02/glpn-nyu on the diode-subset dataset. |
|
Multimodal Document Question Answer | Hugging Face Transformers | vision-encoder-decoder | naver-clova-ix/donut-base-finetuned-docvqa | pipeline('document-question-answering') | {'image': 'path_to_image', 'question': 'your_question'} | Transformers | from transformers import pipeline
# Initialize the pipeline
doc_qa = pipeline('document-question-answering', model='naver-clova-ix/donut-base-finetuned-docvqa')
# Load an image and ask a question
image_path = 'path_to_image'
question = 'your_question'
# Get the answer
answer = doc_qa({'image': image_path, 'question': question})
print(answer) | {'dataset': 'DocVQA', 'accuracy': 'Not provided'} | Donut model fine-tuned on DocVQA. It was introduced in the paper OCR-free Document Understanding Transformer by Geewok et al. and first released in this repository. Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. |
Natural Language Processing Fill-Mask | Transformers | Masked Language Modeling, Next Sentence Prediction | bert-base-uncased | pipeline('fill-mask') | ['text'] | ['transformers'] | from transformers import pipeline
unmasker = pipeline('fill-mask', model='bert-base-uncased')
unmasker(Hello I'm a [MASK] model.) | {'dataset': 'GLUE', 'accuracy': 79.6} | BERT base model (uncased) is a transformer model pretrained on a large corpus of English data using a masked language modeling (MLM) objective. It can be used for masked language modeling, next sentence prediction, and fine-tuning on downstream tasks such as sequence classification, token classification, or question answering. |
Computer Vision Image Classification | Hugging Face Transformers | Image Classification | martinezomg/vit-base-patch16-224-diabetic-retinopathy | pipeline('image-classification') | {'model_name': 'martinezomg/vit-base-patch16-224-diabetic-retinopathy'} | {'transformers': '4.28.1', 'pytorch': '2.0.0+cu118', 'datasets': '2.11.0', 'tokenizers': '0.13.3'} | from transformers import pipeline
image_classifier = pipeline('image-classification', 'martinezomg/vit-base-patch16-224-diabetic-retinopathy')
result = image_classifier('path/to/image.jpg') | {'dataset': 'None', 'accuracy': 0.7744} | This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It is designed for image classification tasks, specifically for diabetic retinopathy detection. |
Computer Vision Image Segmentation | Hugging Face Transformers | Transformers | clipseg-rd64-refined | pipeline('image-segmentation') | {'model': 'CIDAS/clipseg-rd64-refined'} | transformers | {'dataset': '', 'accuracy': ''} | CLIPSeg model with reduce dimension 64, refined (using a more complex convolution). It was introduced in the paper Image Segmentation Using Text and Image Prompts by Lüddecke et al. and first released in this repository. This model is intended for zero-shot and one-shot image segmentation. |
|
Multimodal Image-to-Text | Hugging Face Transformers | Image Captioning | microsoft/git-base | pipeline('image-to-text') | image | transformers | git_base(image) | {'dataset': ['COCO', 'Conceptual Captions (CC3M)', 'SBU', 'Visual Genome (VG)', 'Conceptual Captions (CC12M)', 'ALT200M'], 'accuracy': 'Refer to the paper for evaluation results'} | GIT (short for GenerativeImage2Text) model, base-sized version. It was introduced in the paper GIT: A Generative Image-to-text Transformer for Vision and Language by Wang et al. and first released in this repository. The model is trained using 'teacher forcing' on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. This allows the model to be used for tasks like image and video captioning, visual question answering (VQA) on images and videos, and even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). |
Natural Language Processing Token Classification | Transformers | Named Entity Recognition | dslim/bert-base-NER-uncased | pipeline('ner') | {} | {'transformers': '>=4.0.0'} | nlp('My name is John and I live in New York.') | {'dataset': '', 'accuracy': ''} | A pretrained BERT model for Named Entity Recognition (NER) on uncased text. It can be used to extract entities such as person names, locations, and organizations from text. |
Computer Vision Object Detection | Hugging Face Transformers | Transformers | microsoft/table-transformer-structure-recognition | pipeline('object-detection') | transformers | {'dataset': 'PubTables1M', 'accuracy': ''} | Table Transformer (DETR) model trained on PubTables1M for detecting the structure (like rows, columns) in tables. |
||
Multimodal Document Question Answer | Hugging Face Transformers | Document Question Answering | impira/layoutlm-document-qa | pipeline('question-answering') | ['image_url', 'question'] | ['PIL', 'pytesseract', 'PyTorch', 'transformers'] | nlp(https://templates.invoicehome.com/invoice-template-us-neat-750px.png, What is the invoice number?) | {'dataset': ['SQuAD2.0', 'DocVQA'], 'accuracy': 'Not provided'} | A fine-tuned version of the multi-modal LayoutLM model for the task of question answering on documents. |
Natural Language Processing Summarization | Hugging Face Transformers | Text Summarization | facebook/bart-large-cnn | pipeline('summarization') | ['ARTICLE', 'max_length', 'min_length', 'do_sample'] | ['transformers'] | from transformers import pipeline
summarizer = pipeline(summarization, model=facebook/bart-large-cnn)
ARTICLE = ...
print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False)) | {'dataset': 'cnn_dailymail', 'accuracy': {'ROUGE-1': 42.949, 'ROUGE-2': 20.815, 'ROUGE-L': 30.619, 'ROUGE-LSUM': 40.038}} | BART (large-sized model), fine-tuned on CNN Daily Mail. BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs. |
Natural Language Processing Table Question Answering | Transformers | Table Question Answering | google/tapas-large-finetuned-wtq | pipeline('table-question-answering') | {'model': 'google/tapas-large-finetuned-wtq', 'task': 'table-question-answering'} | transformers | from transformers import pipeline
qa_pipeline = pipeline('table-question-answering', model='google/tapas-large-finetuned-wtq')
result = qa_pipeline(table=table, query=query) | {'dataset': 'wikitablequestions', 'accuracy': 0.5097} | TAPAS large model fine-tuned on WikiTable Questions (WTQ). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned in a chain on SQA, WikiSQL and finally WTQ. It uses relative position embeddings (i.e. resetting the position index at every cell of the table). |
Natural Language Processing Text2Text Generation | Transformers | Text Generation | google/t5-v1_1-base | pipeline('text2text-generation') | {'model': 'google/t5-v1_1-base'} | {'transformers': '>=4.0.0'} | from transformers import pipeline
t5 = pipeline('text2text-generation', model='google/t5-v1_1-base')
t5('translate English to French: Hugging Face is a great company') | {'dataset': 'c4', 'accuracy': 'Not provided'} | Google's T5 Version 1.1 is a state-of-the-art text-to-text transformer model that achieves high performance on various NLP tasks such as summarization, question answering, and text classification. It is pre-trained on the Colossal Clean Crawled Corpus (C4) and fine-tuned on downstream tasks. |
Natural Language Processing Token Classification | Hugging Face Transformers | Transformers | kredor/punctuate-all | pipeline('token-classification') | [] | ['transformers'] | {'dataset': 'multilingual', 'accuracy': 0.98} | A finetuned xlm-roberta-base model for punctuation prediction on twelve languages: English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Slovenian. |
|
Multimodal Visual Question Answering | Hugging Face Transformers | Transformers | microsoft/git-base-vqav2 | pipeline('visual-question-answering') | image, question | ['transformers'] | vqa(image='path/to/image.jpg', question='What is in the image?') | {'dataset': 'VQAv2', 'accuracy': 'Refer to the paper for evaluation results'} | GIT (short for GenerativeImage2Text) model, base-sized version, fine-tuned on VQAv2. It was introduced in the paper GIT: A Generative Image-to-text Transformer for Vision and Language by Wang et al. and first released in this repository. |