Query Text
stringlengths
10
40.4k
Ranking 1
stringlengths
12
40.4k
Ranking 2
stringlengths
12
36.2k
Ranking 3
stringlengths
10
36.2k
Ranking 4
stringlengths
13
40.4k
Ranking 5
stringlengths
12
36.2k
Ranking 6
stringlengths
13
36.2k
Ranking 7
stringlengths
10
40.4k
Ranking 8
stringlengths
12
36.2k
Ranking 9
stringlengths
12
36.2k
Ranking 10
stringlengths
12
36.2k
Ranking 11
stringlengths
20
6.21k
Ranking 12
stringlengths
14
8.24k
Ranking 13
stringlengths
28
4.03k
score_0
float64
1
1.25
score_1
float64
0
0.25
score_2
float64
0
0.25
score_3
float64
0
0.25
score_4
float64
0
0.25
score_5
float64
0
0.25
score_6
float64
0
0.25
score_7
float64
0
0.24
score_8
float64
0
0.2
score_9
float64
0
0.03
score_10
float64
0
0
score_11
float64
0
0
score_12
float64
0
0
score_13
float64
0
0
An Intelligent Optimization Method for Optimal Virtual Machine Allocation in Cloud Data Centers A cloud computing paradigm has quickly developed and been applied widely for more than ten years. In a cloud data center, cloud service providers offer many kinds of cloud services, such as virtual machines (VMs), to users. How to achieve the optimized allocation of VMs for users to satisfy the requirements of both users and providers is an important problem. To make full use of VMs for providers and ensure low makespan of user tasks, we formulate an optimal allocation model of VMs and develop an improved differential evolution (IDE) method to solve this optimization problem, given a batch of user tasks. We compare the proposed method with several existing methods, such as round-robin (RR), min–min, and differential evolution. The experimental results show that it can more efficiently decrease the cost of cloud service providers while achieving lower makespan of user tasks than its three peers. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Note to Practitioners</italic> —VM allocation is one of the challenging problems in cloud computing systems, especially when user task makespan and cost of cloud service providers have to be considered together. We propose an IDE approach to solve this problem. To show its performance, this article compares the commonly used methods, i.e., RR and min–min, as well as the classic differential evolution method. A cloud simulation platform called CloudSim is used to test these methods. The experimental results show that the proposed one can well outperform its compared ones, and its VM allocation results can achieve the highest satisfaction of both users and providers. The proposed method can be readily applicable to industrial cloud computing systems.
Multiobjective Optimization Models for Locating Vehicle Inspection Stations Subject to Stochastic Demand, Varying Velocity and Regional Constraints Deciding an optimal location of a transportation facility and automotive service enterprise is an interesting and important issue in the area of facility location allocation (FLA). In practice, some factors, i.e., customer demands, allocations, and locations of customers and facilities, are changing, and thus, it features with uncertainty. To account for this uncertainty, some researchers have addressed the stochastic time and cost issues of FLA. A new FLA research issue arises when decision makers want to minimize the transportation time of customers and their transportation cost while ensuring customers to arrive at their desired destination within some specific time and cost. By taking the vehicle inspection station as a typical automotive service enterprise example, this paper presents a novel stochastic multiobjective optimization to address it. This work builds two practical stochastic multiobjective programs subject to stochastic demand, varying velocity, and regional constraints. A hybrid intelligent algorithm integrating stochastic simulation and multiobjective teaching-learning-based optimization algorithm is proposed to solve the proposed programs. This approach is applied to a real-world location problem of a vehicle inspection station in Fushun, China. The results show that this is able to produce satisfactory Pareto solutions for an actual vehicle inspection station location problem.
Intrinsic dimension estimation: Advances and open problems. •The paper reviews state-of-the-art of the methods of Intrinsic Dimension (ID) Estimation.•The paper defines the properties that an ideal ID estimator should have.•The paper reviews, under the above mentioned framework, the major ID estimation methods underlining their advances and the open problems.
Alignment-Supervised Bidimensional Attention-Based Recursive Autoencoders for Bilingual Phrase Representation. Exploiting semantic interactions between the source and target linguistic items at different levels of granularity is crucial for generating compact vector representations for bilingual phrases. To achieve this, we propose alignment-supervised bidimensional attention-based recursive autoencoders (ABattRAE) in this paper. ABattRAE first individually employs two recursive autoencoders to recover hierarchical tree structures of bilingual phrase, and treats the subphrase covered by each node on the tree as a linguistic item. Unlike previous methods, ABattRAE introduces a bidimensional attention network to measure the semantic matching degree between linguistic items of different languages, which enables our model to integrate information from all nodes by dynamically assigning varying weights to their corresponding embeddings. To ensure the accuracy of the generated attention weights in the attention network, ABattRAE incorporates word alignments as supervision signals to guide the learning procedure. Using the general stochastic gradient descent algorithm, we train our model in an end-to-end fashion, where the semantic similarity of translation equivalents is maximized while the semantic similarity of nontranslation pairs is minimized. Finally, we incorporate a semantic feature based on the learned bilingual phrase representations into a machine translation system for better translation selection. Experimental results on NIST Chinese–English and WMT English–German test sets show that our model achieves substantial improvements of up to 2.86 and 1.09 BLEU points over the baseline, respectively. Extensive in-depth analyses demonstrate the superiority of our model in learning bilingual phrase embeddings.
Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization Recently, dynamic optimization has received much attention from the swarm and evolutionary computation community. However, few studies have investigated data-driven evolutionary dynamic optimization, and most algorithms for evolutionary dynamic optimization are based on analytical mathematical functions. In this paper, we investigate data-driven evolutionary dynamic optimization. First, we develop a surrogate-assisted evolutionary framework for solving data-driven dynamic optimization problems (DD-DOPs). Second, we employ a benchmark based on the typical dynamic optimization problems set in order to verify the performance of the proposed framework. The experimental results demonstrate that the proposed framework is effective for solving DD-DOPs.
Biobjective Task Scheduling for Distributed Green Data Centers The industry of data centers is the fifth largest energy consumer in the world. Distributed green data centers (DGDCs) consume 300 billion kWh per year to provide different types of heterogeneous services to global users. Users around the world bring revenue to DGDC providers according to actual quality of service (QoS) of their tasks. Their tasks are delivered to DGDCs through multiple Internet service providers (ISPs) with different bandwidth capacities and unit bandwidth price. In addition, prices of power grid, wind, and solar energy in different GDCs vary with their geographical locations. Therefore, it is highly challenging to schedule tasks among DGDCs in a high-profit and high-QoS way. This work designs a multiobjective optimization method for DGDCs to maximize the profit of DGDC providers and minimize the average task loss possibility of all applications by jointly determining the split of tasks among multiple ISPs and task service rates of each GDC. A problem is formulated and solved with a simulated-annealing-based biobjective differential evolution (SBDE) algorithm to obtain an approximate Pareto-optimal set. The method of minimum Manhattan distance is adopted to select a knee solution that specifies the Pareto-optimal task service rates and task split among ISPs for DGDCs in each time slot. Real-life data-based experiments demonstrate that the proposed method achieves lower task loss of all applications and larger profit than several existing scheduling algorithms. Note to Practitioners-This work aims to maximize the profit and minimize the task loss for DGDCs powered by renewable energy and smart grid by jointly determining the split of tasks among multiple ISPs. Existing task scheduling algorithms fail to jointly consider and optimize the profit of DGDC providers and QoS of tasks. Therefore, they fail to intelligently schedule tasks of heterogeneous applications and allocate infrastructure resources within their response time bounds. In this work, a new method that tackles drawbacks of existing algorithms is proposed. It is achieved by adopting the proposed SBDE algorithm that solves a multiobjective optimization problem. Simulation experiments demonstrate that compared with three typical task scheduling approaches, it increases profit and decreases task loss. It can be readily and easily integrated and implemented in real-life industrial DGDCs. The future work needs to investigate the real-time green energy prediction with historical data and further combine prediction and task scheduling together to achieve greener and even net-zero-energy data centers.
A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. Integrating data-driven surrogate models and simulation models of different accuracies (or fidelities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include: (1) development of a new multi-fidelity surrogate-model-based optimization framework, which substantially improves reliability and efficiency of optimization compared to many existing methods, and (2) development of a data mining method to address the discrepancy between the low- and high-fidelity simulation models. A new efficient global optimization method is then proposed, referred to as multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution. Its advantages are verified by mathematical benchmark problems and a real-world antenna design automation problem. Crown Copyright (c) 2015 Published by Elsevier B.V. All rights reserved.
Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems. Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a...
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Social navigation support in a course recommendation system The volume of course-related information available to students is rapidly increasing. This abundance of information has created the need to help students find, organize, and use resources that match their individual goals, interests, and current knowledge. Our system, CourseAgent, presented in this paper, is an adaptive community-based hypermedia system, which provides social navigation course recommendations based on students’ assessment of course relevance to their career goals. CourseAgent obtains students’ explicit feedback as part of their natural interactivity with the system. This work presents our approach to eliciting explicit student feedback and then evaluates this approach.
A Certificateless Authenticated Key Agreement Protocol for Digital Rights Management System.
Device self-calibration in location systems using signal strength histograms Received signal strength RSS fingerprinting is an attractive solution for indoor positioning using Wireless Local Area Network WLAN due to the wide availability of WLAN access points and the ease of monitoring RSS measurements on WLAN-enabled mobile devices. Fingerprinting systems rely on a radiomap collected using a reference device inside the localisation area; however, a major limitation is that the quality of the location information can be degraded if the user carries a different device. This is because diverse devices tend to report the RSS values very differently for a variety of reasons. To ensure compatibility with the existing radiomap, we propose a self-calibration method that attains a good mapping between the reference and user devices using RSS histograms. We do so by relating the RSS histogram of the reference device, which is deduced from the radiomap, and the RSS histogram of the user device, which is updated concurrently with positioning. Unlike other approaches, our calibration method does not require any user intervention, e.g. collecting calibration data using the new device prior to positioning. Experimental results with five smartphones in a real indoor environment demonstrate the effectiveness of the proposed method and indicate that it is more robust to device diversity compared with other calibration methods in the literature.
Substituting Motion Effects with Vibrotactile Effects for 4D Experiences. In this paper, we present two methods to substitute motion effects using vibrotactile effects in order to improve the 4D experiences of viewers. This work was motivated by the needs of more affordable 4D systems for individual users. Our sensory substitution algorithms convert motion commands to vibrotactile commands to a grid display that uses multiple actuators. While one method is based on the fundamental principle of vestibular feedback, the other method makes use of intuitive visually-based mapping from motion to vibrotactile stimulation. We carried out a user study and could confirm the effectiveness of our substitution methods in improving 4D experiences. To our knowledge, this is the first study that investigated the feasibility of replacing motion effects using much simpler and less expensive vibrotactile effects.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0.033333
0
0
0
0
0
0
On Dynamic Network Equilibrium of a Coupled Power and Transportation Network The increasing prevalence of electric vehicles (EVs) has intensified the coupling between power distribution networks (PDNs) and transportation networks (TNs) in both temporal and spatial dimensions. In order to accurately model the coupled network, this paper studies the dynamic network equilibrium to capture the temporally-dynamic interactions between PDNs and TNs. This equilibrium encapsulates the driver’s choices of route, departure time, and charging location, and the electricity price. In the TN, a dynamic traffic model with point queues is proposed to describe the spatial and temporal evolution of traffic flows that is congruent with established user equilibrium choices. In particular, the queues formed at charging stations are, for the first time, modeled by a point queue. In the PDN, the electricity prices are accurately determined from a second-order conic program with a guarantee of strong duality. After theoretically proving the existence of an equilibrium solution, an improved fixed-point algorithm based on extrapolation is also proposed to solve the equilibrium problem efficiently. Numerical results show that the dynamic network equilibrium can be efficiently solved to capture the temporally variant nature of traffic flows, queues, and electricity prices.
Computational difficulties of bilevel linear programming We show, using small examples, that two algorithms previously published for the Bilevel Linear Programming problem BLP may fail to find the optimal solution and thus must be considered to be heuris...
Competitive charging station pricing for plug-in electric vehicles This paper considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs). Every PEV needs to select a charging station by considering the charging prices, waiting times, and travel distances. Each charging station optimizes its charging price based on the prediction of the PEVs' charging station selection decisions, in an attempt to maximize its profit. To obtain insights of such a highly coupled system, we consider a one-dimensional system with two charging stations and Poisson arriving PEVs. We propose a multi-leader-multi-follower Stackelberg game model, in which the charging stations (leaders) announce their charging prices in Stage I, and the PEVs (followers) make their charging station selections in Stage II. We show that there always exists a unique charging station selection equilibrium in Stage II, and such equilibrium depends on the price difference between the charging stations. We then characterize the sufficient conditions for the existence and uniqueness of the pricing equilibrium in Stage I. Unfortunately, it is hard to compute the pricing equilibrium in closed form. To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricing equilibrium and the subgame perfect equilibrium of our Stackelberg game with no information exchange.
Placement of EV Charging Stations - Balancing Benefits Among Multiple Entities. This paper studies the problem of multistage placement of electric vehicle (EV) charging stations with incremental EV penetration rates. A nested logit model is employed to analyze the charging preference of the individual consumer (EV owner) and predict the aggregated charging demand at the charging stations. The EV charging industry is modeled as an oligopoly where the entire market is dominated...
An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations In this paper, we investigate the price competition among electric vehicle charging stations (EVCSs) with renewable power generators (RPGs). Both a large-sized EVCS (L-EVCS) and small-sized EVCSs (S-EVCSs), which have different capacities, are considered. Moreover, the price elasticity of electric vehicles (EVs), the effect of the distance between an EV and the EVCSs, and the impact of the number ...
PEV Fast-Charging Station Sizing and Placement in Coupled Transportation-Distribution Networks Considering Power Line Conditioning Capability The locations and sizes of plug-in electric vehicle fast-charging stations (PEVFCS) can affect traffic flow in the urban transportation network (TN) and operation indices in the electrical energy distribution network (DN). PEVFCSs are supplied by the DNs, generally using power electronic devices. Thus, PEVFCSs could be used as power line conditioners, especially as active filters (for mitigating harmonic pollutions) and reactive power compensators. Accordingly, this paper proposes a mixed-integer linear programming model taking into account the traffic impacts and power line conditioning capabilities of PEVFCSs to determine optimal locations and sizes of PEVFCSs. Various load profile patterns and the variation of charging demand during the planning horizon are included in this model to consider different operation states of DN and TN. The proposed model is implemented in GAMS and applied to two standard test systems. Numerical results are provided for the case studies and various scenarios. The results confirm the ability and efficiency of the proposed model and its superiority to the existing models.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
An online mechanism for multi-unit demand and its application to plug-in hybrid electric vehicle charging We develop an online mechanism for the allocation of an expiring resource to a dynamic agent population. Each agent has a non-increasing marginal valuation function for the resource, and an upper limit on the number of units that can be allocated in any period. We propose two versions on a truthful allocation mechanism. Each modifies the decisions of a greedy online assignment algorithm by sometimes cancelling an allocation of resources. One version makes this modification immediately upon an allocation decision while a second waits until the point at which an agent departs the market. Adopting a prior-free framework, we show that the second approach has better worst-case allocative efficiency and is more scalable. On the other hand, the first approach (with immediate cancellation) may be easier in practice because it does not need to reclaim units previously allocated. We consider an application to recharging plug-in hybrid electric vehicles (PHEVs). Using data from a real-world trial of PHEVs in the UK, we demonstrate higher system performance than a fixed price system, performance comparable with a standard, but non-truthful scheduling heuristic, and the ability to support 50% more vehicles at the same fuel cost than a simple randomized policy.
Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. The Internet of Things (IoT) is stepping out of its infancy into full maturity and establishing itself as a part of the future Internet. One of the technical challenges of having billions of devices deployed worldwide is the ability to manage them. Although access management technologies exist in IoT, they are based on centralized models which introduce a new variety of technical limitations to ma...
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. In this paper, a novel optimal control design scheme is proposed for continuous-time nonaffine nonlinear dynamic systems with unknown dynamics by adaptive dynamic programming (ADP). The proposed methodology iteratively updates the control policy online by using the state and input information without identifying the system dynamics. An ADP algorithm is developed, and can be applied to a general class of nonlinear control design problems. The convergence analysis for the designed control scheme is presented, along with rigorous stability analysis for the closed-loop system. The effectiveness of this new algorithm is illustrated by two simulation examples.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Adaptive online mobile charging for node failure avoidance in wireless rechargeable sensor networks. Recent breakthrough progress of wireless energy transfer technology and rechargeable lithium battery technology emerge the Wireless Rechargeable Sensor Networks (WRSNs). To avoid sensor node failure, how to schedule the Mobile Charger (MC) to recharge sensor nodes in WRSNs is very challenging. Previous works that predetermining the charging path of MC cannot adapt to the diversity and dynamic energy consumption of sensors in actual environment and may lead to problematic schedules. Many online charging schemes are proposed to overcome the challenges, but they still get performance limitation due to leaving out of consideration about the energy depletion issue resulted from not timely and/or unfair charging response. Particularly, the node failure problem will be worse when there are a large number of charging requirements in the network. In this paper, we address the node failure avoidance mobile charing for WRSNs, which aims to minimize the number of invalid nodes due to sensor node energy depletion in the charging process. We first consider the dynamic energy consumption rate of the node based on both its history statistics and real time energy consumption. Then we propose two efficient online charging algorithms named PA and INMA, respectively. PA selects the next charging node according to the charging probability of the requesting nodes, whereas INMA always chooses the nodes which make the least number of other requesting nodes suffer from energy depletion as the charging candidates. Furthermore, to achieve high charging efficiency, the node with the shortest time to finish the charging will be selected as the next charging node if there are multiple nodes in the candidate set. Simulation results demonstrate that the proposed algorithms can effectively solve the node energy depletion problem with lower charging latency and charging cost in comparison with other current existing online charging schemes.
Double warning thresholds for preemptive charging scheduling in Wireless Rechargeable Sensor Networks. Wireless power transfer technique provides new alternatives for solving the limited power capacity problem for ubiquitous mobile wireless devices, and makes wireless rechargeable sensor networks (WRSNs) promising. However, mainly due to the underestimate of unbalanced influences of spatial and temporal constraints posed by charging requests, traditional scheduling strategies achieve rather low charging request throughput and success rate, posing as a major bottleneck for further improvement. In this paper, we propose a Double Warning thresholds with Double Preemption (DWDP) charging scheme, in which double warning thresholds are used when residual energy levels of sensor nodes fall below certain thresholds. By introducing specific comparison rules, warning thresholds can be used to adjust charging priorities of different sensors, warn the upcoming recharge deadlines, as well as support preemptive scheduling. Then DWDP is extended to where multiple Wireless Charging Vehicles (WCVs) are employed, and a Collaborative Charging DWDP, namely CCDWDP is proposed. Finally, we conduct extensive simulations to manifest the advantages of DWDP as well as CCDWDP. Simulation results reveal that DWDP can achieve better performance in guaranteeing the successful scheduling of the high-priority task and improving stability of the system. CCDWDP outperforms in terms of high charging throughput and short charging delay.
A Coverage-Aware Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks Constant energy supply for sensor nodes is essential for the development of the green Internet of Things (IoT). Recently, WRSNs have been proposed to resolve the energy limitations of nodes, aiming to realize continuous functioning. In this article, a coverage-aware hierarchical charging algorithm in WRSNs is proposed, considering energy consumption and the degree of node coverage. The algorithm first performs network clustering using the K-means algorithm. In addition, nodes are classified into multiple levels in each cluster to calculate respective anchor points based on the energy consumption rate and coverage degree of nodes. Then, the anchor points converge to an optimized anchor point in each cluster. To reduce charging latency, the optimized anchor points form two disjoint internal and external polygons. Next, mobile chargers travel along the internal and external polygons, respectively. Experimental results indicate that the proposed algorithm can improve charging efficiency and reduce charging latency substantially.
Periodic charging planning for a mobile WCE in wireless rechargeable sensor networks based on hybrid PSO and GA algorithm. Previous studies of periodic charging planning in Wireless Rechargeable Sensor Networks (WRSNs) assumed that the traveling energy of a mobile Wireless Charging Equipment (WCE) has sufficient energy for charging travel and the energy depletion rate at each sensor is identical. These assumptions, however, are not realistic. In fact, the traveling energy of the WCE is limited by the energy capacity of the WCE and the energy consumptions at different sensor nodes are imbalanced. In this paper, a periodic charging planning for a mobile WCE with limited traveling energy is proposed. With the optimization objective of maximizing the the docking time ratio, this periodic charging planning ensures that the energy of the nodes in the WRSN varies periodically and that nodes perpetually fail to die. To deal with the problem, a Hybrid Particle Swarm Optimization Genetic Algorithm (HPSOGA) is proposed due to the NP-Hard of the problem. Extensive simulations have been conducted, the experimental results indicate that the proposed periodic charging planning can avoid node deaths and keep the energy of sensor nodes varying periodically. Compared with the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), the algorithm HPSOGA outperforms both of these two algorithms empirically.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential health concerns arising due to high power applications, have caused limitations in their further developments. Due to tremendous energy consumption growth with ever-increasing connected devices, alt...
Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey With the growing number of deployments of Internet of Things (IoT) infrastructure for a wide variety of applications, the battery maintenance has become a major limitation for the sustainability of such infrastructure. To overcome this problem, energy harvesting offers a viable alternative to autonomously power IoT devices, resulting in a number of battery-less energy harvesting IoTs (or EH-IoTs) ...
A Survey on Mobile Anchor Node Assisted Localization in Wireless Sensor Networks. Localization is one of the key technologies in Wireless Sensor Networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints on cost and power consumption make it infeasible to equip each sensor node in the network with a Global Position System (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use mobile anchor nodes (MANs), which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. A considerable body of research has addressed the Mobile Anchor Node Assisted Localization (MANAL) problem. However to the best of our knowledge, no updated surveys on MAAL reflecting recent advances in the field have been presented in the past few years. This survey presents a review of the most successful MANAL algorithms, focusing on the achievements made in the past decade, and aims to become a starting point for researchers who are initiating their endeavors in MANAL research field. In addition, we seek to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful advances in this research field.
Minimizing Charging Delay for Directional Charging in Wireless Rechargeable Sensor Networks The discovery of Wireless Power Transfer (WPT) technologies makes charging more convenient and reliable. Among all the existing WPT technologies, directional WPT is more efficient and has been successfully applied to supply energy for wireless rechargeable sensor networks (WRSNs). However, the state-of-the-art methods ignore the anisotropic energy receiving property of rechargeable sensors, resulting in energy wastage. In order to address this issue, in this paper, we point out that the received energy of a sensor is not only relative to the distance, but also relative to the angle between the sensor and the charger’s orientation in directional WPT. Towards this end, we derive a pragmatic energy transfer model verified by experiments. In particular, we focus on a Minimal chArging Delay (MAD) problem to reduce chArging delays. To obtain the optimal solution, we formulate the problem as a linear programming problem. Moreover, we introduce a method of charging power discretization, which significantly reduces the search space and bounds the performance gap to the optimal one with a $\displaystyle \frac{1}{1-\epsilon^{2}}$ approximation ratio. Besides, a merging method is introduced for a more practical application scenario. Finally, we demonstrate that our methods outperform the Set Cover baseline method by an average of 34.2% through simulations and experiments.
Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices. Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.
Parametrization and Range of Motion of the Ball-and-Socket Joint The ball-and-socket joint model is used to represent articulations with three rotational degrees of free- dom (DOF), such as the human shoulder and the hip. The goal of this paper is to discuss two related prob- lems: the parametrization and the definition of realistic joint boundaries for ball-and-socket joints. Doing this accurately is difficult, yet important for motion generators (such as inverse kinematics and dynamics engines) and for motion manipulators (such as motion retargeting), since the resulting motions should satisfy the anatomic constraints. The difficulty mainly comes from the complex nature of 3D orientations and of human articulations. The underlying question of parametrization must be addressed before realis- tic and meaningful boundaries can be defined over the set of 3D orientations. In this paper, we review and compare several known methods, and advocate the use of the swing-and-twist parametrization, that parti- tions an arbitrary orientation into two meaningful components. The related problem of induced twist is discussed. Finally, we review some joint boundaries representations based on this decomposition, and show an example.
Discrete Signal Processing on Graphs In social settings, individuals interact through webs of relationships. Each individual is a node in a complex network (or graph) of interdependencies and generates data, lots of data. We label the data by its source, or formally stated, we index the data by the nodes of the graph. The resulting signals (data indexed by the nodes) are far removed from time or image signals indexed by well ordered time samples or pixels. DSP, discrete signal processing, provides a comprehensive, elegant, and efficient methodology to describe, represent, transform, analyze, process, or synthesize these well ordered time or image signals. This paper extends to signals on graphs DSP and its basic tenets, including filters, convolution, $z$-transform, impulse response, spectral representation, Fourier transform, frequency response, and illustrates DSP on graphs by classifying blogs, linear predicting and compressing data from irregularly located weather stations, or predicting behavior of customers of a mobile service provider.
Ear recognition: More than a survey. Automatic identity recognition from ear images represents an active field of research within the biometric community. The ability to capture ear images from a distance and in a covert manner makes the technology an appealing choice for surveillance and security applications as well as other application domains. Significant contributions have been made in the field over recent years, but open research problems still remain and hinder a wider (commercial) deployment of the technology. This paper presents an overview of the field of automatic ear recognition (from 2D images) and focuses specifically on the most recent, descriptor-based methods proposed in this area. Open challenges are discussed and potential research directions are outlined with the goal of providing the reader with a point of reference for issues worth examining in the future. In addition to a comprehensive review on ear recognition technology, the paper also introduces a new, fully unconstrained dataset of ear images gathered from the web and a toolbox implementing several state-of-the-art techniques for ear recognition. The dataset and toolbox are meant to address some of the open issues in the field and are made publicly available to the research community.
Human–Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues, and Opportunities Human–Machine Interaction (HMI) in Intelligent and Connected Vehicles (ICVs) has drawn great attention in recent years due to its potentially significant positive impacts on the automotive revolution and travel experience. In this paper, we conduct an in-depth review of HMI in ICVs. Firstly, research and application development status are pointed out through the discussion on the cutting-edge technology classification, achievements, and challenges of the HMI technologies in ICVs, including recognition technology, multi-dimensional human vehicle interface, and emerging in-vehicle intelligent units. Then, the human factors issues of ICVs are discussed from three aspects: ICV acceptance, interaction quality of ICVs, and user experience of ICVs. Besides, based on the interaction technology and the mapping of the above issues, we conducted a visual analysis of the literature to realize the reflective thinking of the current HMI in ICVs. Finally, the challenges of HMI technology in ICVs are summarized. Moreover, the promising future opportunities are proposed from three aspects: utility optimization, experience reconfiguration, and value acquisition, to gaining insight into advanced and pleasant HMI in ICVs.
1.071111
0.073333
0.073333
0.071111
0.066667
0.066667
0.066667
0.04
0.015556
0
0
0
0
0
Distributed Consensus Observer for Multi-Agent Systems With High-Order Integrator Dynamics This article presents a distributed consensus observer for multiagent systems with high-order integrator dynamics to estimate the leader state. Stability analysis is carefully studied to explore the convergence properties under undirected and directed communication, respectively. Using Lyapunov functions, fixed-time (resp. finite-time) stability is guaranteed for the undirected (resp. directed) interaction topology. Finally, simulation results are presented to demonstrate the theoretical findings.
Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach A new practical fixed-time consensus framework for integrator-type multi-agent systems is developed by using a time base generator (TBG). For both leaderless and leader-following consensus, new TBG-based protocols are proposed for the multi-agent systems. The resulting settling time can be pre-designated without dependence on initial states. Different from some conventional fixed-time consensus strategies, where the magnitude of initial control input is large, the proposed TBG-based protocols significantly reduce the magnitude, which is demonstrated through comparison studies using illustrative examples.
Constrained Interaction and Coordination in Proximity-Limited Multiagent Systems In this paper, we consider the problem of controlling the interactions of a group of mobile agents, subject to a set of topological constraints. Assuming proximity-limited interagent communication, we leverage mobility, unlike prior work, to enable adjacent agents to interact discriminatively, i.e., to actively retain or reject communication links on the basis of constraint satisfaction. Specifically, we propose a distributed scheme that consists of hybrid controllers with discrete switching for link discrimination, coupled with attractive and repulsive potentials fields for mobility control, where constraint violation predicates form the basis for discernment. We analyze the application of constrained interaction to two canonical coordination objectives, i.e., aggregation and dispersion, with maximum and minimum node degree constraints, respectively. For each task, we propose predicates and control potentials, and examine the dynamical properties of the resulting hybrid systems. Simulation results demonstrate the correctness of our proposed methods and the ability of our framework to generate topology-aware coordinated behavior.
Collision-free consensus in multi-agent networks: A monotone systems perspective This paper addresses the collision-free consensus problem in a network of agents with single-integrator dynamics. Distributed algorithms with local interactions are proposed to achieve consensus while guaranteeing collision-free among agents during the evolution of the multi-agent networks. The novelty of the proposed algorithms lies in the definition of neighbors for each agent, which is different from the usual sense that neighbors are selected by the distance between agents in the state space. In the proposed strategies, the neighbor set for each agent is determined by the distance or difference between agents in the index space after ordering and labeling all agents according to certain ordering rules including weighted order and lexicographic order. The consensus analysis of the proposed algorithms is presented with some existing results on algebraic graph theory and matrix analysis. Meanwhile, by realizing the relations between order preservation and collision-free, a systematic analysis framework on order preservation and hence collision-free for agents in arbitrary dimension is provided based on tools from monotone systems theory. Illustrated numerical examples are presented to validate the effectiveness of the proposed strategies.
Fixed-Time Event-Triggered Consensus for Nonlinear Multiagent Systems Without Continuous Communications In this paper, we study the fixed-time event-triggered consensus problem of the uncertain nonlinear multiagent systems. Two fixed-time event-triggered consensus controllers are proposed. In contrast to finite-time results, the convergence time of fixed-time results is independent of initial conditions. Furthermore, continuous communications can be avoided both in the update of controllers and in the triggering condition monitoring. It is proved that there is no Zeno behavior under the fixed-time event-triggered consensus control strategies. The availability of the control algorithms is verified by numerical simulations.
A novel class of distributed fixed-time consensus protocols for second-order nonlinear and disturbed multi-agent systems The fixed-time consensus problem is considered in this paper for second-order multi-agent systems (MASs) with inherent nonlinear dynamics and disturbances under a detail-balanced network in both leaderless and leader-following cases. The fixed-time consensus means that MASs reach consensus in finite time and the settling time is uniformly bounded with respect to initial states. Based on the bi-limit homogeneity method, a novel class of distributed consensus protocols are proposed to handle different models. First, when there is no disturbance, some new continuous distributed control protocols are presented which make a group of agents reach consensus within a fixed time for both leaderless and leader-following MASs. Then, if there exist disturbances, the sliding mode control method is utilized to design discontinuous consensus protocols for both leaderless and leader-following MASs, respectively. Finally, several simulation examples are given to illustrate the effectiveness of the theoretical results.
Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. This paper focuses on the semi-globally practical finite-time tracking control problem for a class of nonlinear systems with non-strict feedback structure. Inspired by prescribed performance control (PPC), a new performance function called finite-time performance function (FTPF) is defined for the first time. With the aid of neural networks and backstepping, an adaptive finite-time tracking controller is properly designed. Different from the existing finite-time results, the proposed method can guarantee that the tracking error converges to an arbitrarily small region at any settling time and all the signals in the closed-loop system are semi-globally practical finite-time stable (SGPF-stable). Two simulation examples are given to exhibit the effectiveness and superiority of the presented technique.
Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks The positioning methods based on received signal strength (RSS) measurements, link the RSS values to the position of the mobile station(MS) to be located. Their accuracy depends on the suitability of the propagation models used for the actual propagation conditions. In indoor wireless networks, these propagation conditions are very difficult to predict due to the unwieldy and dynamic nature of the RSS. In this paper, we present a novel method which dynamically estimates the propagation models that best fit the propagation environments, by using only RSS measurements obtained in real time. This method is based on maximizing compatibility of the MS to access points (AP) distance estimates. Once the propagation models are estimated in real time, it is possible to accurately determine the distance between the MS and each AP. By means of these distance estimates, the location of the MS can be obtained by trilateration. The method proposed coupled with simulations and measurements in a real indoor environment, demonstrates its feasibility and suitability, since it outperforms conventional RSS-based indoor location methods without using any radio map information nor a calibration stage.
Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems. The vehicular edge computing system integrates the computing resources of vehicles, and provides computing services for other vehicles and pedestrians with task offloading. However, the vehicular task offloading environment is dynamic and uncertain, with fast varying network topologies, wireless channel states, and computing workloads. These uncertainties bring extra challenges to task offloading. In this paper, we consider the task offloading among vehicles, and propose a solution that enables vehicles to learn the offloading delay performance of their neighboring vehicles while offloading computation tasks. We design an adaptive learning based task offloading (ALTO) algorithm based on the multi-armed bandit theory, in order to minimize the average offloading delay. ALTO works in a distributed manner without requiring frequent state exchange, and is augmented with input-awareness and occurrence-awareness to adapt to the dynamic environment. The proposed algorithm is proved to have a sublinear learning regret. Extensive simulations are carried out under both synthetic scenario and realistic highway scenario, and results illustrate that the proposed algorithm achieves low delay performance, and decreases the average delay up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$30\%$</tex-math></inline-formula> compared with the existing upper confidence bound based learning algorithm.
Trust in Automation: Designing for Appropriate Reliance. Automation is often problematic because people fail to rely upon it appropriately. Because people respond to technology socially, trust influences reliance on automation. In particular, trust guides reliance when complexity and unanticipated situations make a complete understanding of the automation impractical. This review considers trust from the organizational, sociological, interpersonal, psychological, and neurological perspectives. It considers how the context, automation characteristics, and cognitive processes affect the appropriateness of trust. The context in which the automation is used influences automation performance and provides a goal-oriented perspective to assess automation characteristics along a dimension of attributional abstraction. These characteristics can influence trust through analytic, analogical, and affective processes. The challenges of extrapolating the concept of trust in people to trust in automation are discussed. A conceptual model integrates research regarding trust in automation and describes the dynamics of trust, the role of context, and the influence of display characteristics. Actual or potential applications of this research include improved designs of systems that require people to manage imperfect automation.
Optimal distributed interference avoidance: potential game and learning. This article studies the problem of distributed interference avoidance (IA) through channel selection for distributed wireless networks, where mutual interference only occurs among nearby users. First, an interference graph is used to characterise the limited range of interference, and then the distributed IA problem is formulated as a graph colouring problem. Because solving the graph colouring problem is non-deterministic polynomial hard even in a centralised manner, the task of obtaining the optimal channel selection profile distributively is challenging. We formulate this problem as a channel selection game, which is proved to be an exact potential game with the weighted aggregate interference serving as the potential function. On the basis of this, a distributed learning algorithm is proposed to achieve the optimal channel selection profile that constitutes an optimal Nash equilibrium point of the channel selection game. The proposed learning algorithm is fully distributed because it needs information about neither the network topology nor the actions and the experienced interference of others. Simulation results show that the proposed potential game theoretic IA algorithm outperforms the existing algorithm because it minimises the aggregate weighted interference and achieves higher network rate. Copyright (c) 2012 John Wiley & Sons, Ltd.
Collaborative Mobile Charging The limited battery capacity of sensor nodes has become one of the most critical impediments that stunt the deployment of wireless sensor networks (WSNs). Recent breakthroughs in wireless energy transfer and rechargeable lithium batteries provide a promising alternative to power WSNs: mobile vehicles/robots carrying high volume batteries serve as mobile chargers to periodically deliver energy to sensor nodes. In this paper, we consider how to schedule multiple mobile chargers to optimize energy usage effectiveness, such that every sensor will not run out of energy. We introduce a novel charging paradigm, collaborative mobile charging, where mobile chargers are allowed to intentionally transfer energy between themselves. To provide some intuitive insights into the problem structure, we first consider a scenario that satisfies three conditions, and propose a scheduling algorithm, PushWait, which is proven to be optimal and can cover a one-dimensional WSN of infinite length. Then, we remove the conditions one by one, investigating chargers' scheduling in a series of scenarios ranging from the most restricted one to a general 2D WSN. Through theoretical analysis and simulations, we demonstrate the advantages of the proposed algorithms in energy usage effectiveness and charging coverage.
Gender Bias in Coreference Resolution. We present an empirical study of gender bias in coreference resolution systems. We first introduce a novel, Winograd schema-style set of minimal pair sentences that differ only by pronoun gender. With these Winogender schemas, we evaluate and confirm systematic gender bias in three publicly-available coreference resolution systems, and correlate this bias with real-world and textual gender statistics.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.084444
0.084444
0.066667
0.066667
0.066667
0.066667
0.008889
0
0
0
0
0
0
0
Robust Online Algorithms for Peak-Minimizing EV Charging Under Multistage Uncertainty. In this paper, we study how to utilize forecasts to design online electrical vehicle (EV) charging algorithms that can attain strong performance guarantees. We consider the scenario of an aggregator serving a large number of EVs together with its background load, using both its own renewable energy (for free) and the energy procured from the external grid. The goal of the aggregator is to minimize its peak procurement from the grid, subject to the constraint that each EV has to be fully charged before its deadline. Further, the aggregator can predict the future demand and the renewable energy supply with some levels of uncertainty. We show that such prediction can be very effective in reducing the competitive ratios of online control algorithms, and even allow online algorithms to achieve close-to-offline-optimal peak. Specifically, we first propose a 2-level increasing precision model (2-IPM), to model forecasts with different levels of accuracy. We then develop a powerful computational approach that can compute the optimal competitive ratio under 2-IPM over any online algorithm, and also online algorithms that can achieve the optimal competitive ratio. Simulation results show that, even with up to 20% day-ahead prediction errors, our online algorithms still achieve competitive ratios fairly close to 1, which are much better than the classic results in the literature with a competitive ratio of e. The second contribution of this paper is that we solve a dilemma for online algorithm design, e.g., an online algorithm with good competitive ratio may exhibit poor average-case performance. We propose a new Algorithm-Robustification procedure that can convert an online algorithm with good average-case performance to one with both the optimal competitive ratio and good average-case performance. We demonstrate via trace-based simulations the superior performance of the robustified version of a well-known heuristic algorithm based on model predictive control.
Smoothed Least-laxity-first Algorithm for EV Charging. We formulate EV charging as a feasibility problem that meets all EVs' energy demands before departure under charging rate constraints and total power constraint. We propose an online algorithm, the smoothed least-laxity-first (sLLF) algorithm, that decides on the current charging rates based on only the information up to the current time. We characterize the performance of the sLLF algorithm analytically and numerically. Numerical experiments with real-world data show that it has significantly higher rate of generating feasible EV charging than several other common EV charging algorithms.
Optimal Scheduling for Electric Vehicle Charging With Discrete Charging Levels in Distribution Grid. To accommodate the increasing electric vehicle (EV) penetration in distribution grid, coordinated EV charging has been extensively studied in the literature. However, most of the existing works optimistically consider the EV charging rate as a continuous variable and implicitly ignore the capacity limitation in distribution transformers, which both have great impact on the efficiency and stability...
Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learning Initial DR studies mainly adopt model predictive control and thus require accurate models of the control problem (e.g., a customer behavior model), which are to a large extent uncertain for the EV scenario. Hence, model-free approaches, especially based on reinforcement learning (RL) are an attractive alternative. In this paper, we propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of EV charging stations. State-of-the-art algorithms either focus on a single EV, or perform the control of an aggregate of EVs in multiple steps (e.g., aggregate load decisions in one step, then a step translating the aggregate decision to individual connected EVs). On the contrary, we propose an RL approach to jointly control the whole set of EVs at once. We contribute a new MDP formulation, with a scalable state representation that is independent of the number of EV charging stations. Further, we use a batch reinforcement learning algorithm, i.e., an instance of fitted Q-iteration, to learn the optimal charging policy. We analyze its performance using simulation experiments based on a real-world EV charging data. More specifically, we (i) explore the various settings in training the RL policy (e.g., duration of the period with training data), (ii) compare its performance to an oracle all-knowing benchmark (which provides an upper bound for performance, relying on information that is not available or at least imperfect in practice), (iii) analyze performance over time, over the course of a full year to evaluate possible performance fluctuations (e.g, across different seasons), and (iv) demonstrate the generalization capacity of a learned control policy to larger sets of charging stations.
ACN-Data - Analysis and Applications of an Open EV Charging Dataset. We are releasing ACN-Data, a dynamic dataset of workplace EV charging which currently includes over 30,000 sessions with more added daily. In this paper we describe the dataset, as well as some interesting user behavior it exhibits. To demonstrate the usefulness of the dataset, we present three examples, learning and predicting user behavior using Gaussian mixture models, optimally sizing on-site solar generation for adaptive electric vehicle charging, and using workplace charging to smooth the net demand Duck Curve.
Hierarchical Electric Vehicle Charging Aggregator Strategy Using Dantzig-Wolfe Decomposition. This article focuses on reducing a charging cost for electric vehicles (EVs). A charging strategy is proposed to minimize the charging cost of EVs within the charging station constraints.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
Long short-term memory. Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Toward Integrating Vehicular Clouds with IoT for Smart City Services Vehicular ad hoc networks, cloud computing, and the Internet of Things are among the emerging technology enablers offering a wide array of new application possibilities in smart urban spaces. These applications consist of smart building automation systems, healthcare monitoring systems, and intelligent and connected transportation, among others. The integration of IoT-based vehicular technologies will enrich services that are eventually going to ignite the proliferation of exciting and even more advanced technological marvels. However, depending on different requirements and design models for networking and architecture, such integration needs the development of newer communication architectures and frameworks. This work proposes a novel framework for architectural and communication design to effectively integrate vehicular networking clouds with IoT, referred to as VCoT, to materialize new applications that provision various IoT services through vehicular clouds. In this article, we particularly put emphasis on smart city applications deployed, operated, and controlled through LoRaWAN-based vehicular networks. LoraWAN, being a new technology, provides efficient and long-range communication possibilities. The article also discusses possible research issues in such an integration including data aggregation, security, privacy, data quality, and network coverage. These issues must be addressed in order to realize the VCoT paradigm deployment, and to provide insights for investors and key stakeholders in VCoT service provisioning. The article presents deep insights for different real-world application scenarios (i.e., smart homes, intelligent traffic light, and smart city) using VCoT for general control and automation along with their associated challenges. It also presents initial insights, through preliminary results, regarding data and resource management in IoT-based resource constrained environments through vehicular clouds.
Distributed multirobot localization In this paper, we present a new approach to the problem of simultaneously localizing a group of mobile robots capable of sensing one another. Each of the robots collects sensor data regarding its own motion and shares this information with the rest of the team during the update cycles. A single estimator, in the form of a Kalman filter, processes the available positioning information from all the members of the team and produces a pose estimate for every one of them. The equations for this centralized estimator can be written in a decentralized form, therefore allowing this single Kalman filter to be decomposed into a number of smaller communicating filters. Each of these filters processes the sensor data collected by its host robot. Exchange of information between the individual filters is necessary only when two robots detect each other and measure their relative pose. The resulting decentralized estimation schema, which we call collective localization, constitutes a unique means for fusing measurements collected from a variety of sensors with minimal communication and processing requirements. The distributed localization algorithm is applied to a group of three robots and the improvement in localization accuracy is presented. Finally, a comparison to the equivalent decentralized information filter is provided.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Big data and its technical challenges Exploring the inherent technical challenges in realizing the potential of Big Data.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
A survey on machine learning for data fusion. •We sum up a group of main challenges that data fusion might face.•We propose a thorough list of requirements to evaluate data fusion methods.•We review the literature of data fusion based on machine learning.•We comment on how a machine learning method can ameliorate fusion performance.•We present significant open issues and valuable future research directions.
Spatio-temporal autocorrelation of road network data. Modelling autocorrelation structure among space–time observations is crucial in space–time modelling and forecasting. The aim of this research is to examine the spatio-temporal autocorrelation structure of road networks in order to determine likely requirements for building a suitable space–time forecasting model. Exploratory space–time autocorrelation analysis is carried out using journey time data collected on London’s road network. Through the use of both global and local autocorrelation measures, the autocorrelation structure of the road network is found to be dynamic and heterogeneous in both space and time. It reveals that a global measure of autocorrelation is not sufficient to explain the network structure. Dynamic and local structures must be accounted for space–time modelling and forecasting. This has broad implications for space–time modelling and network complexity.
Predicting Taxi–Passenger Demand Using Streaming Data Informed driving is increasingly becoming a key feature for increasing the sustainability of taxi companies. The sensors that are installed in each vehicle are providing new opportunities for automatically discovering knowledge, which, in return, delivers information for real-time decision making. Intelligent transportation systems for taxi dispatching and for finding time-saving routes are already exploring these sensing data. This paper introduces a novel methodology for predicting the spatial distribution of taxi–passengers for a short-term time horizon using streaming data. First, the information was aggregated into a histogram time series. Then, three time-series forecasting techniques were combined to originate a prediction. Experimental tests were conducted using the online data that are transmitted by 441 vehicles of a fleet running in the city of Porto, Portugal. The results demonstrated that the proposed framework can provide effective insight into the spatiotemporal distribution of taxi–passenger demand for a 30-min horizon.
Wireless sensor network survey A wireless sensor network (WSN) has important applications such as remote environmental monitoring and target tracking. This has been enabled by the availability, particularly in recent years, of sensors that are smaller, cheaper, and intelligent. These sensors are equipped with wireless interfaces with which they can communicate with one another to form a network. The design of a WSN depends significantly on the application, and it must consider factors such as the environment, the application's design objectives, cost, hardware, and system constraints. The goal of our survey is to present a comprehensive review of the recent literature since the publication of [I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Communications Magazine, 2002]. Following a top-down approach, we give an overview of several new applications and then review the literature on various aspects of WSNs. We classify the problems into three different categories: (1) internal platform and underlying operating system, (2) communication protocol stack, and (3) network services, provisioning, and deployment. We review the major development in these three categories and outline new challenges.
iSAM2: Incremental smoothing and mapping using the Bayes tree We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.
A Robot that Approaches Pedestrians When robots serve in urban areas such as shopping malls, they will often be required to approach people in order to initiate service. This paper presents a technique for human–robot interaction that enables a robot to approach people who are passing through an environment. For successful approach, our proposed planner first searches for a target person at public distance zones anticipating his/her future position and behavior. It chooses a person who does not seem busy and can be reached from a frontal direction. Once the robot successfully approaches the person within the social distance zone, it identifies the person's reaction and provides a timely response by coordinating its body orientation. The system was tested in a shopping mall and compared with a simple approaching method. The result demonstrates a significant improvement in approaching performance; the simple method was only 35.1% successful, whereas the proposed technique showed a success rate of 55.9%.
Training and Testing Object Detectors with Virtual Images. In the area of computer vision, deep learning has produced a variety of state-of-the-art models that rely on massive labeled data. However, collecting and annotating images from the real world is too demanding in terms of labor and money investments, and is usually inflexible to build datasets with specific characteristics, such as small area of objects and high occlusion level. Under the framewor...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.043265
0.04
0.04
0.04
0.04
0.04
0.04
0.006667
0.000471
0
0
0
0
0
Quality-aware online task assignment mechanisms using latent topic model Crowdsourcing has been proven to be a useful tool for the tasks which are hard for computers. Unfortunately, workers with uneven expertise are likely to provide low-quality or even deliberately wrong data. A reliability model that precisely describes workers' performance on the tasks can benefit the development of both task assignment mechanism and truth discovery method. However, existing methods cannot model workers' fine-grained reliability levels accurately. In this paper, we consider dividing tasks into clusters (i.e., topics) based on workers' behaviors and propose a novel latent topic model to describe the topic structure and workers' topical-level expertise. Then, we develop two online task assignment mechanisms that dynamically assign each incoming worker a set of tasks where he can achieve the Maximum Expected Gain (MEG) or Maximum Expected and Potential Gain (MEPG). The experimental results demonstrate that our methods can significantly decrease the number of task assignments and achieve higher accuracy and macro-averaging F1-score than the state-of-the-art approaches.
Weakly Supervised Joint Sentiment-Topic Detection from Text Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Twitter in academic events: A study of temporal usage, communication, sentimental and topical patterns in 16 Computer Science conferences •Analysis of Twitter on 16 CS conferences over five years.•Over time, users increase informational use and decrease conversational usage.•LDA allows conference clustering, unveiling shared areas of interest.•Sentiment analysis exposes differences between research communities.•Model of user participation explains the importance of different social features.
A Continuous Representation of Ad Hoc Ridesharing Potential. Interacting with ridesharing systems is a complex spatiotemporal task. Traditional approaches rely on the full disclosure of a client's trip information to perform ride matching. However during poor service conditions of low supply or high demand, this requirement may mean that a client cannot find any ride matching their intentions. To address this within real-world road networks, we extend our map-based opportunistic client user interface concept, i.e., launch pads, from a discrete to a continuous space–time representation of vehicle accessibility to provide a client with a more realistic choice set. To examine this extension under different conditions, we conduct two computational experiments. First, we extend our previous investigation into the effects of varying vehicle flexibility and population size on launch pads and a client's probability of pick-up, describing the increased opportunity. Second, observing launch pads within a real-world road network, we analyze aspects of choice and propose necessary architecture improvements. The communication of ride share potential using launch pads provides a client with a simple yet flexible means of interfacing with on-demand transportation.
Tracking urban geo-topics based on dynamic topic model •The proposed system can track spatial, temporal and semantic dynamics of urban geo-topics at fine grains of space and time.•The tracking system improves Dynamic Topic Model by embedding spatial factors of pairwise distances between tweets.•The system uses radius of gyration and a trajectory pattern mining approach to trace spatial changes of geo-topics.•The data preprocessing module can filter out robotic tweets, remove trivial information, and normalize and translate texts.•The application of the system in three disaster cases reveals differing patterns of emergency geo-topics and non-emergency ones.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
JPEG Error Analysis and Its Applications to Digital Image Forensics JPEG is one of the most extensively used image formats. Understanding the inherent characteristics of JPEG may play a useful role in digital image forensics. In this paper, we introduce JPEG error analysis to the study of image forensics. The main errors of JPEG include quantization, rounding, and truncation errors. Through theoretically analyzing the effects of these errors on single and double JPEG compression, we have developed three novel schemes for image forensics including identifying whether a bitmap image has previously been JPEG compressed, estimating the quantization steps of a JPEG image, and detecting the quantization table of a JPEG image. Extensive experimental results show that our new methods significantly outperform existing techniques especially for the images of small sizes. We also show that the new method can reliably detect JPEG image blocks which are as small as 8 × 8 pixels and compressed with quality factors as high as 98. This performance is important for analyzing and locating small tampered regions within a composite image.
Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.
Efficient Signature Generation by Smart Cards We present a new public-key signature scheme and a corresponding authentication scheme that are based on discrete logarithms in a subgroup of units in Zp where p is a sufficiently large prime, e.g., p = 2512. A key idea is to use for the base of the discrete logarithm an integer a in Zp such that the order of a is a sufficiently large prime q, e.g., q = 2140. In this way we improve the ElGamal signature scheme in the speed of the procedures for the generation and the verification of signatures and also in the bit length of signatures. We present an efficient algorithm that preprocesses the exponentiation of a random residue modulo p.
Stabilizing a linear system by switching control with dwell time The use of networks in control systems to connect controllers and sensors/actuators has become common practice in many applications. This new technology has also posed a theoretical control problem of how to use the limited data rate of the network effectively. We consider a system where its sensor and actuator are connected by a finite data rate channel. A design method to stabilize a continuous-time, linear plant using a switching controller is proposed. In particular, to prevent the actuator from fast switching, or chattering, which can not only increase the necessary data rate but also damage the system, we employ a dwell-time switching scheme. It is shown that a systematic partition of the state-space enables us to reduce the complexity of the design problem
Empirical Modelling of Genetic Algorithms This paper addresses the problem of reliably setting genetic algorithm parameters for consistent labelling problems. Genetic algorithm parameters are notoriously difficult to determine. This paper proposes a robust empirical framework, based on the analysis of factorial experiments. The use of a graeco-latin square permits an initial study of a wide range of parameter settings. This is followed by fully crossed factorial experiments with narrower ranges, which allow detailed analysis by logistic regression. The empirical models derived can be used to determine optimal algorithm parameters and to shed light on interactions between the parameters and their relative importance. Re-fined models are produced, which are shown to be robust under extrapolation to up to triple the problem size.
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
Diversity-Based Cooperative Multi-Vehicle Path Planning for Risk Management in Costmap Environments This paper focuses on developing new navigation algorithms for cooperative unmanned vehicles in costmap environments. The vehicles need to plan optimal paths subject to mutual diversity. We first propose three algorithms that can find optimal paths in costmap environments with improved computational efficiency. The proposed algorithms include 1) the scaled A*; 2) the A* plus-plus; and 3) the A* plus-plus with reconstruction. The heuristics of the three algorithms are proved admissible. Then, a diversity-based path planning algorithm is proposed based on the new A star variant algorithms for multiple vehicles to plan diverse paths for risk management. In particular, we propose an iterative segment planner, which generates a set of spatially diverse paths by iteratively planning segments of all paths in a sequential manner. To prevent the generation of spatially close paths, the iterative segment planner utilizes a penalty function to increase the cost of paths that lie near the route(s) assigned to other vehicles. By varying the penalty gains, different degrees of path diversity can be achieved. Some illustrative examples are provided to compare the performance of the proposed algorithms with the standard A* and Dijkstra's algorithms, and show the effectiveness of the proposed diversity-based path planning algorithm.
Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments In this survey, the currently available ultra-wideband-based non-line-of-sight (NLOS) identification and error mitigation methods are presented. They are classified into several categories and their comparison is presented in two tables: one each for NLOS identification and error mitigation. NLOS identification methods are classified based on range estimates, channel statistics, and the actual maps of the building and environment. NLOS error mitigation methods are categorized based on direct path and statistics-based detection.
Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles Vehicle-type recognition based on images is a challenging task. This paper comparatively studied two feature extraction methods for image description, i.e., the Gabor wavelet transform and the Pyramid Histogram of Oriented Gradients (PHOG). The Gabor transform has been widely adopted to extract image features for various vision tasks. PHOG has the superiority in its description of more discriminating information. A highly reliable classification scheme was proposed by cascade classifier ensembles with reject option to accommodate the situations where no decision should be made if there exists adequate ambiguity. The first ensemble is heterogeneous, consisting of several classifiers, including $k$-nearest neighbors (kNNs), multiple-layer perceptrons (MLPs), support vector machines (SVMs), and random forest. The classification reliability is further enhanced by a second classifier ensemble, which is composed of a set of base MLPs coordinated by an ensemble metalearning method called rotation forest (RF). For both of the ensembles, rejection option is accomplished by relating the consensus degree from majority voting to a confidence measure and by abstaining to classify ambiguous samples if the consensus degree is lower than a threshold. The final class label is assigned by dual majority voting from the two ensembles. Experimental results using more than 600 images from a variety of 21 makes of cars and vans demonstrated the effectiveness of the proposed approach. The cascade ensembles produce consistently reliable results. With a moderate ensemble size of 25 in the second ensemble, the two-stage classification scheme offers 98.65% accuracy with a rejection rate of 2.5%, exhibiting promising potential for real-world applications.
A fusion strategy for reliable vehicle positioning utilizing RFID and in-vehicle sensors. RFID is introduced as a virtual sensor for vehicle positioning.LSSVM algorithm is proposed to obtain the distance between RFID tags and reader.In-vehicle sensors are employed to fuse with RFID to achieve vehicle positioning.An LSSVM-MM (multiple models) filter is proposed to realize the global fusion. In recent years, RFID has become a viable solution to provide object's location information. However, the RFID-based positioning algorithms in the literature have disadvantages such as low accuracy, low output frequency and the lack of speed or attitude information. To overcome these problems, this paper proposes a RFID/in-vehicle sensors fusion strategy for vehicle positioning in completely GPS-denied environments such as tunnels. The low-cost in-vehicle sensors including electronic compass and wheel speed sensors are introduced to be fused with RFID. The strategy adopts a two-step approach, i.e., the calculation of the distances between the RFID tags and the reader, and then the global fusion estimation of vehicle position. First, a Least Square Support Vector Machine (LSSVM) algorithm is developed to obtain the distances. Further, a novel LSSVM Multiple Model (LMM) algorithm is designed to fuse the data obtained from RFID and in-vehicle sensors. Contrarily to other multiple model algorithms, the LMM is more suitable for current driving conditions because the model probabilities can be calculated according to the operating state of the vehicle by using the LSSVM decision model. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy. This paper proposes a RFID/in-vehicle sensors fusion strategy for vehicle positioning in completely GPS-denied environments such as tunnels. The low-cost in-vehicle sensors including electronic compass and wheel speed sensors are introduced to be fused with RFID. The strategy adopts a two-step approach, i.e., the calculation of the distances between the RFID tags and the reader, and then the global fusion estimation of vehicle position. First, a least square support vector machine (LSSVM) algorithm is developed to obtain the distance. Further, a novel LSSVM multiple model (LMM) algorithm is designed to fuse the data obtained from RFID and in-vehicle sensors. Contrarily to other multiple models algorithms, LMM is more suitable for current driving conditions because the model probabilities can be calculated according to the operating state of the vehicle by using the LSSVM decision model. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.Display Omitted
Novel EKF-Based Vision/Inertial System Integration for Improved Navigation. With advances in computing power, stereo vision has become an essential part of navigation applications. However, there may be instances wherein insufficient image data precludes the estimation of navigation parameters. Earlier, a novel vision-based velocity estimation method was developed by the authors, which suffered from the aforementioned drawback. In this paper, the vision-based navigation m...
Ground vehicle navigation in GNSS-challenged environments using signals of opportunity and a closed-loop map-matching approach A ground vehicle navigation approach in a global navigation satellite system (GNSS)-challenged environments is developed, which uses signals of opportunity (SOPs) in a closed-loop map-matching fashion. The proposed navigation approach employs a particle filter that estimates the ground vehicle&#39;s state by fusing pseudoranges drawn from ambient SOP transmitters with road data stored in commercial ma...
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
Very Deep Convolutional Networks for Large-Scale Image Recognition. In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
A novel full structure optimization algorithm for radial basis probabilistic neural networks. In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.
Understanding Taxi Service Strategies From Taxi GPS Traces Taxi service strategies, as the crowd intelligence of massive taxi drivers, are hidden in their historical time-stamped GPS traces. Mining GPS traces to understand the service strategies of skilled taxi drivers can benefit the drivers themselves, passengers, and city planners in a number of ways. This paper intends to uncover the efficient and inefficient taxi service strategies based on a large-scale GPS historical database of approximately 7600 taxis over one year in a city in China. First, we separate the GPS traces of individual taxi drivers and link them with the revenue generated. Second, we investigate the taxi service strategies from three perspectives, namely, passenger-searching strategies, passenger-delivery strategies, and service-region preference. Finally, we represent the taxi service strategies with a feature matrix and evaluate the correlation between service strategies and revenue, informing which strategies are efficient or inefficient. We predict the revenue of taxi drivers based on their strategies and achieve a prediction residual as less as 2.35 RMB/h,1 which demonstrates that the extracted taxi service strategies with our proposed approach well characterize the driving behavior and performance of taxi drivers.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit The intention-detection strategy used to drive an exosuit is fundamental to evaluate the effectiveness and acceptability of the device. Yet, current literature on wearable soft robotics lacks evidence on the comparative performance of different control approaches for online intention-detection. In the present work, we compare two different and complementary controllers on a wearable robotic suit, previously formulated and tested by our group; a model-based myoelectric control ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> ), which estimates the joint torque from the activation of target muscles, and a force control that estimates human torques using an inverse dynamics model ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> ). We test them on a cohort of healthy participants performing tasks replicating functional activities of daily living involving a wide range of dynamic movements. Our results suggest that both controllers are robust and effective in detecting human–motor interaction, and show comparable performance for augmenting muscular activity. In particular, the biceps brachii activity was reduced by up to 74% under the assistance of the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> and up to 47% under the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to a no-suit condition. However, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> outperformed the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> in promptness and assistance during movements that involve high dynamics. The exosuit work normalized with respect to the overall work was <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$68.84 \pm 3.81\%$</tex-math></inline-formula> when it was ran by the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$45.29 \pm 7.71\%$</tex-math></inline-formula> during the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> condition. The reliability and accuracy of motor intention detection strategies in wearable device is paramount for both the efficacy and acceptability of this technology. In this article, we offer a detailed analysis of the two most widely used control approaches, trying to highlight their intrinsic structural differences and to discuss their different and complementary performance.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Nonlinear Output Feedback Finite-Time Control for Vehicle Active Suspension Systems In this paper, an output feedback finite-time control method is investigated for stabilizing the perturbed vehicle active suspension system to improve the suspension performance. Since physical suspension systems always exist in the phenomenon of uncertainty or external disturbance, a novel disturbance compensator with finite-time convergence performance is proposed for efficiently compensating the unknown external disturbance. Moreover, the presented compensator is advantageous over the existing ones since it is continuous and can completely remove the matched disturbance. From the viewpoint of practical implementation, continuous control law will not lead to chattering, which is desirable for electrical and mechanical systems. For the nominal suspension system without disturbance, a homogeneous controller with a simple filter is constructed to achieve a finite-time convergence property, where the filter is applied to obtain the unknown velocity signal. Thus, the nominal controller combines a disturbance compensator into an overall continuous control law, which provides two independent parts with a separate design unit and a high flexibility for selecting the control gains. According to the geometric homogeneity and finite-time separation principle, it can be shown that the active suspension is finite-time stabilized. A designed example is given to illustrate the effectiveness of the presented controller for improving the vehicle ride performance.
Network-Induced Constraints in Networked Control Systems—A Survey Networked control systems (NCSs) have, in recent years, brought many innovative impacts to control systems. However, great challenges are also met due to the network-induced imperfections. Such network-induced imperfections are handled as various constraints, which should appropriately be considered in the analysis and design of NCSs. In this paper, the main methodologies suggested in the literature to cope with typical network-induced constraints, namely time delays, packet losses and disorder, time-varying transmission intervals, competition of multiple nodes accessing networks, and data quantization are surveyed; the constraints suggested in the literature on the first two types of constraints are updated in different categorizing ways; and those on the latter three types of constraints are extended.
Gateway Framework for In-Vehicle Networks based on CAN, FlexRay and Ethernet This paper proposes a gateway framework for in-vehicle networks based on CAN, FlexRay, and Ethernet. The proposed gateway framework is designed to be easy to reuse and verify, in order to reduce development costs and time. The gateway framework can be configured, and its verification environment is automatically generated by a program with a dedicated graphical user interface. The gateway framework provides state of the art functionalities that include parallel reprogramming, diagnostic routing, network management, dynamic routing update, multiple routing configuration, and security. The proposed gateway framework was developed, and its performance was analyzed and evaluated.
Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence. For parameter identifications of robot systems, most existing works have focused on the estimation veracity, but few works of literature are concerned with the convergence speed. In this paper, we developed a robot control/identification scheme to identify the unknown robot kinematic and dynamic parameters with enhanced convergence rate. Superior to the traditional methods, the information of para...
Finite-Time H ∞ Estimator Design for Switched Discrete-Time Delayed Neural Networks With Event-Triggered Strategy This article is concerned with the event-triggered finite-time $H_{\infty }$ estimator design for a class of discrete-time switched neural networks (SNNs) with mixed time delays and packet dropouts. To further reduce the data transmission, both the measured information of system outputs and switching signal of the SNNs are on...
An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems. Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in e...
A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. In this work a Generalized type-2 Fuzzy Logic System (GT2FLS) approach for dynamic parameter adaptation in metaheuristics and for optimal fuzzy controller design is presented. In these two cases, the efficiency of the GT2FLS approach is verified with simulation results. In the first case, the GT2FLS provides an approach to dynamically find the optimal values of the heuristic parameters that are a critical part of the Bee Colony Optimization (BCO) algorithm performance. In the second case, the GT2FLS approach provides the basis for building a Generalized type-2 Fuzzy Logic Controller (GT2FLC), which can be optimized with the traditional BCO, specifically to find the optimal design of the Membership Functions (MFs) in the Fuzzy Controller. In both cases, the GT2FLS approach shows advantages in the optimization of the solutions to the problems. For both cases, we can considered them as hybrid systems combining GT2FLS and BCO although the combination is made in a different way, and it can be noted that a GT2FLS presents better stability in the minimization of the errors when applied to benchmark control problems. Simulation results illustrate that the implementation of the Generalized type-2 Fuzzy Logic Controller (GT2FLC) approach improves its performance when using the BCO algorithm and the stability of the fuzzy controller is better when compared with respect to a type-1 Fuzzy Logic Controller (T1FLC) and an Interval type-2 Fuzzy Logic Controller (IT2FLC).
Fuzzy Logic in Dynamic Parameter Adaptation of Harmony Search Optimization for Benchmark Functions and Fuzzy Controllers. Nowadays the use of fuzzy logic has been increasing in popularity, and this is mainly due to the inference mechanism that allows simulating human reasoning in knowledge-based systems. The main contribution of this work is using the concepts of fuzzy logic in a method for dynamically adapting the main parameters of the harmony search algorithm during execution. Dynamical adaptation of parameters in metaheuristics has been shown to improve performance and accuracy in a wide range of applications. For this reason, we propose and approach for fuzzy adaptation of parameters in harmony search. Two case studies are considered for testing the proposed approach, the optimization of mathematical functions, which are unimodal, multimodal, hybrid, and composite functions and a control problem without noise and when noise is considered. A statistical comparison between the harmony search algorithm and the fuzzy harmony search algorithm is presented to verify the advantages of the proposed approach.
Massive MIMO for next generation wireless systems Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
A logic for reasoning about time and reability We present a logic for stating properties such as, "after a request for service there is at least a 98\045 probability that the service will be carried out within 2 seconds". The logic extends the temporal logic CTL by Emerson, Clarke and Sistla with time and probabil- ities. Formulas are interpreted over discrete time Markov chains. We give algorithms for checking that a given Markov chain satis- fies a formula in the logic. The algorithms require a polynomial number of arithmetic operations, in size of both the formula and\003This research report is a revised and extended version of a paper that has appeared under the title "A Framework for Reasoning about Time and Reliability" in the Proceeding of the 10thIEEE Real-time Systems Symposium, Santa Monica CA, December 1989. This work was partially supported by the Swedish Board for Technical Development (STU) as part of Esprit BRA Project SPEC, and by the Swedish Telecommunication Administration.1the Markov chain. A simple example is included to illustrate the algorithms.
Mathematical Evaluation of Environmental Monitoring Estimation Error through Energy-Efficient Wireless Sensor Networks In this paper, the estimation of a scalar field over a bidimensional scenario (e.g., the atmospheric pressure in a wide area) through a self-organizing wireless sensor network (WSN) with energy constraints is investigated. The sensor devices (denoted as nodes) are randomly distributed; they transmit samples to a supervisor by using a clustered network. This paper provides a mathematical framework to analyze the interdependent aspects of WSN communication protocol and signal processing design. Channel modelling and connectivity issues, multiple access control and routing, and the role of distributed digital signal processing (DDSP) techniques are accounted for. The possibility that nodes perform DDSP is studied through a distributed compression technique based on signal resampling. The DDSP impact on network energy efficiency is compared through a novel mathematical approach to the case where the processing is performed entirely by the supervisor. The trade-off between energy conservation (i.e., network lifetime) and estimation error is discussed and a design criterion is proposed as well. Comparison to simulation outcomes validates the model. As an example result, the required node density is found as a trade-off between estimation quality and network lifetime for different system parameters and scalar field characteristics. It is shown that both the DDSP technique and the MAC protocol choice have a relevant impact on the performance of a WSN.
An efficient two phase approach for solving reliability-redundancy allocation problem using artificial bee colony technique The main goal of the present paper is to present a two phase approach for solving the reliability-redundancy allocation problems (RRAP) with nonlinear resource constraints. In the first phase of the proposed approach, an algorithm based on artificial bee colony (ABC) is developed to solve the allocation problem while in the second phase an improvement of the solution as obtained by this algorithm is made. Four benchmark problems in the reliability-redundancy allocation and two reliability optimization problems have been taken to demonstrate the approach and it is shown by comparison that the solutions by the new proposed approach are better than the solutions available in the literature.
Privacy-preserving Naive Bayes classifiers secure against the substitution-then-comparison attack. Naive Bayes (NB) is a simple but highly practical classifier, with a wide range of applications including spam filters, cancer diagnosis and face recognition, to name a few examples only. Consider a situation where a user requests a classification service from a NB classifier server, both the user and the server do not want to reveal their private data to each other. This paper focuses on constructing a privacy-preserving NB classifier that is resistant to an easy-to-perform, but difficult-to-detect attack, which we call the substitution-then-comparison (STC) attack. Without resorting to fully homomorphic encryptions, which has a high computational overhead, we propose a scheme which avoids information leakage under the STC attack. Our key technique involves the use of a “double-blinding” technique, and we show how to combine it with additively homomorphic encryptions and oblivious transfer to hide both parties’ privacy. Furthermore, a completed evaluation shows that the construction is highly practical - most of the computations are in the server’s offline phase, and the overhead of online computation and communication is small for both parties.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.11
0.1
0.1
0.1
0.1
0.026667
0.02
0.01
0
0
0
0
0
0
Network Under Limited Mobile Devices: A New Technique for Mobile Charging Scheduling With Multiple Sinks. Recently, many studies have investigated scheduling mobile devices to recharge and collect data from sensors in wireless rechargeable sensor networks (WRSNs) such that the network lifetime is prolonged. In reality, because mobile devices are more powerful and expensive than sensors, the cost of the mobile devices often consumes a high portion of the budget. Due to a limited budget, the number of m...
IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. The use of the Internet is growing in this day and age, so another area has developed to use the Internet, called Internet of Things (IoT). It facilitates the machines and objects to communicate, compute and coordinate with each other. It is an enabler for the intelligence affixed to several essential features of the modern world, such as homes, hospitals, buildings, transports and cities. The security and privacy are some of the critical issues related to the wide application of IoT. Therefore, these issues prevent the wide adoption of the IoT. In this paper, we are presenting an overview about different layered architectures of IoT and attacks regarding security from the perspective of layers. In addition, a review of mechanisms that provide solutions to these issues is presented with their limitations. Furthermore, we have suggested a new secure layered architecture of IoT to overcome these issues.
A Multicharger Cooperative Energy Provision Algorithm Based On Density Clustering In The Industrial Internet Of Things Wireless sensor networks (WSNs) are an important core of the Industrial Internet of Things (IIoT). Wireless rechargeable sensor networks (WRSNs) are sensor networks that are charged by mobile chargers (MCs), and can achieve self-sufficiency. Therefore, the development of WRSNs has begun to attract widespread attention in recent years. Most of the existing energy replenishment algorithms for MCs use one or more MCs to serve the whole network in WRSNs. However, a single MC is not suitable for large-scale network environments, and multiple MCs make the network cost too high. Thus, this paper proposes a collaborative charging algorithm based on network density clustering (CCA-NDC) in WRSNs. This algorithm uses the mean-shift algorithm based on density to cluster, and then the mother wireless charger vehicle (MWCV) carries multiple sub wireless charger vehicles (SWCVs) to charge the nodes in each cluster by using a gradient descent optimization algorithm. The experimental results confirm that the proposed algorithm can effectively replenish the energy of the network and make the network more stable.
Dynamic Charging Scheme Problem With Actor–Critic Reinforcement Learning The energy problem is one of the most important challenges in the application of sensor networks. With the development of wireless charging technology and intelligent mobile charger (MC), the energy problem can be solved by the wireless charging strategy. In the practical application of wireless rechargeable sensor networks (WRSNs), the energy consumption rate of nodes is dynamically changed due to many uncertainties, such as the death and different transmission tasks of sensor nodes. However, existing works focus on on-demand schemes, which not fully consider real-time global charging scheduling. In this article, a novel dynamic charging scheme (DCS) in WRSN based on the actor-critic reinforcement learning (ACRL) algorithm is proposed. In the ACRL, we introduce gated recurrent units (GRUs) to capture the relationships of charging actions in time sequence. Using the actor network with one GRU layer, we can pick up an optimal or near-optimal sensor node from candidates as the next charging target more quickly and speed up the training of the model. Meanwhile, we take the tour length and the number of dead nodes as the reward signal. Actor and critic networks are updated by the error criterion function of R and V. Compared with current on-demand charging scheduling algorithms, extensive simulations show that the proposed ACRL algorithm surpasses heuristic algorithms, such as the Greedy, DP, nearest job next with preemption, and TSCA in the average lifetime and tour length, especially against the size and complexity increasing of WRSNs.
Adaptive Wireless Power Transfer in Mobile Ad Hoc Networks. We investigate the interesting impact of mobility on the problem of efficient wireless power transfer in ad hoc networks. We consider a set of mobile agents (consuming energy to perform certain sensing and communication tasks), and a single static charger (with finite energy) which can recharge the agents when they get in its range. In particular, we focus on the problem of efficiently computing the appropriate range of the charger with the goal of prolonging the network lifetime. We first demonstrate (under the realistic assumption of fixed energy supplies) the limitations of any fixed charging range and, therefore, the need for (and power of) a dynamic selection of the charging range, by adapting to the behavior of the mobile agents which is revealed in an online manner. We investigate the complexity of optimizing the selection of such an adaptive charging range, by showing that two simplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
Research on Cost-Balanced Mobile Energy Replenishment Strategy for Wireless Rechargeable Sensor Networks In order to maximize the utilization rate of the Mobile Wireless Chargers (MWCs) and reduce the recharging delay in large-scale Rechargeable Wireless Sensor Networks (WRSNs), a type of <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</underline> ost- <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</underline> alanced <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</underline> obile <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</underline> nergy <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R</underline> eplenishment <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</underline> trategy (CBMERS) is proposed in this paper. Firstly, nodes are assigned into groups according to their remaining lifetime, which ensures that only the ones with lower residual energy are recharged in each time slot. Then, to balance energy consumption among multiple MWCs, the moving distance as well as the power cost of the MWC are taken as constraints to get the optimal trajectory allocation scheme. Moreover, by further adjusting the amount of energy being replenished to some sensor nodes, it ensures that the MWC have enough energy to fulfill the recharging task and return back to the base station. Experiment results show that, compared with the Periodic recharging strategy and the <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</underline> luster based <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</underline> ultiple <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</underline> harges <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</underline> oordination algorithm (C-MCC), the proposed method can improve the recharging efficiency of MWCs by about 48.22% and 43.35%, and the average waiting time of nodes is also reduced by about 55.72% and 30.7%, respectively.
A Periodic Multinode Charging and Data Collection Scheme With Optimal Traveling Path in WRSNs To deal with the problem of energy shortage in wireless sensor networks, wireless power transfer is a promising technology. Using a mobile device (MD) to charge multiple sensor nodes simultaneously is a more efficient way to meet the requirements from a large-scale network. In this article, a periodic multinode charging and data collection scheme based on MD is proposed to maintain a perpetual network operation, in which the network is divided into multiple cells, and the MD periodically traverses each cell to charge and collect data for the sensor nodes with the objective of maximizing the amount of data collected by the unit energy of the MD. To realize a multinode charging, an anchor optimization strategy to optimize the position of anchor point in the cell is proposed. Then, in order to solve the path planning problem of MD, a discrete fireworks algorithm (DFWA) based on population entropy (PE-FWA) is proposed. Compared with MD scheduling algorithm and DFWA, experimental results show that PE-FWA has better performance.
A Mobile Platform for Wireless Charging and Data Collection in Sensor Networks Wireless energy transfer (WET) is a new technology that can be used to charge the batteries of sensor nodes without wires. Although wireless, WET does require a charging station to be brought to within reasonable range of a sensor node so that a good energy transfer efficiency can be achieved. On the other hand, it has been well recognized that data collection with a mobile base station has significant advantages over a static one. Given that a mobile platform is required for WET, a natural approach is to employ the same mobile platform to carry the base station for data collection. In this paper, we study the interesting problem of co-locating a wireless charger (for WET) and a mobile base station on the same mobile platform – the wireless charging vehicle (WCV). The WCV travels along a preplanned path inside the sensor network. Our goal is to minimize energy consumption of the entire system while ensuring that (i) each sensor node is charged in time so that it will never run out of energy, and (ii) all data collected from the sensor nodes are relayed to the mobile base station. We develop a mathematical model for this problem (OPT-t), which is timedependent. Instead of solving OPT-t directly, we show that it is sufficient to study a special subproblem (OPT-s) which only involves space-dependent variables. Subsequently, we develop a provably near-optimal solution to OPT-s. Our results offer a solution on how to use a single mobile platform to address both WET and data collection in sensor networks.
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures The potentially measurable effects of Faraday rotation on linearly polarized backscatter measurements from space are addressed. Single-polarized, dual-polarized, and quad-polarized backscatter measurements subject to Faraday rotation are first modeled. Then, the impacts are assessed using L-band polarimetric synthetic aperture radar (SAR) data. Due to Faraday rotation, the received signal will inc...
Network-scale traffic modeling and forecasting with graphical lasso and neural networks Traffic flow forecasting, especially the short-term case, is an important topic in intelligent transportation systems (ITS). This paper researches network-scale modeling and forecasting of short-term traffic flows. First, the concepts of single-link and multilink models of traffic flow forecasting are proposed. Secondly, four prediction models are constructed by combining the two models with single-task learning (STL) and multitask learning (MTL). The combination of the multilink model and multitask learning not only improves the experimental efficiency but also improves the prediction accuracy. Moreover, a new multilink, single-task approach that combines graphical lasso (GL) with neural network (NN) is proposed. GL provides a general methodology for solving problems involving lots of variables. Using L1 regularization, GL builds a sparse graphical model, making use of the sparse inverse covariance matrix. Gaussian process regression (GPR) is a classic regression algorithm in Bayesian machine learning. Although there is wide research on GPR, there are few applications of GPR in traffic flow forecasting. In this paper, GPR is applied to traffic flow forecasting, and its potential is shown. Through sufficient experiments, all of the proposed approaches are compared, and an overall assessment is made. DOI: 10.1061/(ASCE)TE.1943-5436.0000435. (C) 2012 American Society of Civil Engineers.
Squeezed Convolutional Variational AutoEncoder for unsupervised anomaly detection in edge device industrial Internet of Things In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.
Methods for Flexible Management of Blockchain-Based Cryptocurrencies in Electricity Markets and Smart Grids The growing trend in the use of blockchain-based cryptocurrencies in modern communities provides several advantages, but also imposes several challenges to energy markets and power systems, in general. This paper aims at providing recommendations for efficient use of digital cryptocurrencies in today's and future smart power systems, in order to face the challenging aspects of this new technology. In this paper, existing issues and challenges of smart grids in the presence of blockchain-based cryptocurrencies are presented and some innovative approaches for efficient integration and management of blockchain-based cryptocurrencies in smart grids are proposed. Also some recommendations are given for improving the smart grids performance in the presence of digital cryptocurrencies and some future research directions are highlighted.
1.073333
0.08
0.08
0.08
0.08
0.066667
0.066667
0.048889
0.017556
0
0
0
0
0
Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. This paper addresses classification tasks on a particular target domain in which labeled training data are only available from source domains different from (but related to) the target. Two closely related frameworks, domain adaptation and domain generalization, are concerned with such tasks, where the only difference between those frameworks is the availability of the unlabeled target data: domai...
Episodic Training For Domain Generalization Domain generalization (DG) is the challenging and topical problem of learning models that generalize to novel testing domains with different statistics than a set of known training domains. The simple approach of aggregating data from all source domains and training a single deep neural network end-to-end on all the data provides a surprisingly strong baseline that surpasses many prior published methods. In this paper we build on this strong baseline by designing an episodic training procedure that trains a single deep network in a way that exposes it to the domain shift that characterises a novel domain at runtime. Specifically, we decompose a deep network into feature extractor and classifier components, and then train each component by simulating it interacting with a partner who is badly tuned for the current domain. This makes both components more robust, ultimately leading to our networks producing state-of-the-art performance on three DG benchmarks. Furthermore, we consider the pervasive workflow of using an ImageNet trained CNN as a fixed feature extractor for downstream recognition tasks. Using the Visual Decathlon benchmark, we demonstrate that our episodic-DG training improves the performance of such a general purpose feature extractor by explicitly training a feature for robustness to novel problems. This shows that DG training can benefit standard practice in computer vision.
Diversity in Machine Learning. Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a totally good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though diversity plays an important role in the machine learning process, there is no systematical analysis of the diversification in the machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work. Our analysis provides a deeper understanding of the diversity technology in machine learning tasks and hence can help design and learn more effective models for real-world applications.
Universal Domain Adaptation Domain adaptation aims to transfer knowledge in the presence of the domain gap. Existing domain adaptation methods rely on rich prior knowledge about the relationship between the label sets of source and target domains, which greatly limits their application in the wild. This paper introduces Universal Domain Adaptation (UDA) that requires no prior knowledge on the label sets. For a given source label set and a target label set, they may contain a common label set and hold a private label set respectively, bringing up an additional category gap. UDA requires a model to either (1) classify the target sample correctly if it is associated with a label in the common label set, or (2) mark it as "unknown'' otherwise. More importantly, a UDA model should work stably against a wide spectrum of commonness (the proportion of the common label set over the complete label set) so that it can handle real-world problems with unknown target label sets. To solve the universal domain adaptation problem, we propose Universal Adaptation Network (UAN). It quantifies sample-level transferability to discover the common label set and the label sets private to each domain, thereby promoting the adaptation in the automatically discovered common label set and recognizing the "unknown'' samples successfully. A thorough evaluation shows that UAN outperforms the state of the art closed set, partial and open set domain adaptation methods in the novel UDA setting.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Image analogies This paper describes a new framework for processing images by example, called “image analogies.” The framework involves two stages: a design phase, in which a pair of images, with one image purported to be a “filtered” version of the other, is presented as “training data”; and an application phase, in which the learned filter is applied to some new target image in order to create an “analogous” filtered result. Image analogies are based on a simple multi-scale autoregression, inspired primarily by recent results in texture synthesis. By choosing different types of source image pairs as input, the framework supports a wide variety of “image filter” effects, including traditional image filters, such as blurring or embossing; improved texture synthesis, in which some textures are synthesized with higher quality than by previous approaches; super-resolution, in which a higher-resolution image is inferred from a low-resolution source; texture transfer, in which images are “texturized” with some arbitrary source texture; artistic filters, in which various drawing and painting styles are synthesized based on scanned real-world examples; and texture-by-numbers, in which realistic scenes, composed of a variety of textures, are created using a simple painting interface.
Cyber warfare: steganography vs. steganalysis For every clever method and tool being developed to hide information in multimedia data, an equal number of clever methods and tools are being developed to detect and reveal its secrets.
Efficient and reliable low-power backscatter networks There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors. This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality --i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.
Internet of Things for Smart Cities The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Quaternion polar harmonic Fourier moments for color images. •Quaternion polar harmonic Fourier moments (QPHFM) is proposed.•Complex Chebyshev-Fourier moments (CHFM) is extended to quaternion QCHFM.•Comparison experiments between QPHFM and QZM, QPZM, QOFMM, QCHFM and QRHFM are conducted.•QPHFM performs superbly in image reconstruction and invariant object recognition.•The importance of phase information of QPHFM in image reconstruction are discussed.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.1
0.1
0.033333
0.016667
0
0
0
0
0
0
0
0
0
Hierarchical Electric Vehicle Charging Aggregator Strategy Using Dantzig-Wolfe Decomposition. This article focuses on reducing a charging cost for electric vehicles (EVs). A charging strategy is proposed to minimize the charging cost of EVs within the charging station constraints.
Smoothed Least-laxity-first Algorithm for EV Charging. We formulate EV charging as a feasibility problem that meets all EVs' energy demands before departure under charging rate constraints and total power constraint. We propose an online algorithm, the smoothed least-laxity-first (sLLF) algorithm, that decides on the current charging rates based on only the information up to the current time. We characterize the performance of the sLLF algorithm analytically and numerically. Numerical experiments with real-world data show that it has significantly higher rate of generating feasible EV charging than several other common EV charging algorithms.
Robust Online Algorithms for Peak-Minimizing EV Charging Under Multistage Uncertainty. In this paper, we study how to utilize forecasts to design online electrical vehicle (EV) charging algorithms that can attain strong performance guarantees. We consider the scenario of an aggregator serving a large number of EVs together with its background load, using both its own renewable energy (for free) and the energy procured from the external grid. The goal of the aggregator is to minimize its peak procurement from the grid, subject to the constraint that each EV has to be fully charged before its deadline. Further, the aggregator can predict the future demand and the renewable energy supply with some levels of uncertainty. We show that such prediction can be very effective in reducing the competitive ratios of online control algorithms, and even allow online algorithms to achieve close-to-offline-optimal peak. Specifically, we first propose a 2-level increasing precision model (2-IPM), to model forecasts with different levels of accuracy. We then develop a powerful computational approach that can compute the optimal competitive ratio under 2-IPM over any online algorithm, and also online algorithms that can achieve the optimal competitive ratio. Simulation results show that, even with up to 20% day-ahead prediction errors, our online algorithms still achieve competitive ratios fairly close to 1, which are much better than the classic results in the literature with a competitive ratio of e. The second contribution of this paper is that we solve a dilemma for online algorithm design, e.g., an online algorithm with good competitive ratio may exhibit poor average-case performance. We propose a new Algorithm-Robustification procedure that can convert an online algorithm with good average-case performance to one with both the optimal competitive ratio and good average-case performance. We demonstrate via trace-based simulations the superior performance of the robustified version of a well-known heuristic algorithm based on model predictive control.
Multi-Tenant Cross-Slice Resource Orchestration: A Deep Reinforcement Learning Approach. In a software-defined radio access network (RAN), a major challenge lies in how to support diverse services for mobile users (MUs) over a common physical network infrastructure. Network slicing is a promising solution to tailor the network to match such service requests. This paper considers a software-defined RAN, where a limited number of channels are auctioned across scheduling slots to MUs of multiple service providers (SPs) (i.e., the tenants). Each SP behaves selfishly to maximize the expected long-term payoff from competition with other SPs for the orchestration of channel access opportunities over its MUs, which request both mobile-edge computing and traditional cellular services in the slices. This problem is modelled as a stochastic game, in which the decision makings of a SP depend on the network dynamics as well as the control policies of its competitors. We propose an abstract stochastic game to approximate the Nash equilibrium. The selfish behaviours of a SP can then be characterized by a single-agent Markov decision process (MDP). To simplify decision makings, we linearly decompose the per-SP MDP and derive an online scheme based on deep reinforcement learning to approach the optimal abstract control policies. Numerical experiments show significant performance gains from our scheme.
Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging AbstractWe introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.
Online EV Scheduling Algorithms for Adaptive Charging Networks with Global Peak Constraints This paper tackles online scheduling of electric vehicles (EVs) in an adaptive charging network (ACN) with local and global peak constraints. Given the aggregate charging demand of the EVs and the peak constraints of the ACN, it might be infeasible to fully charge all the EVs according to their charging demand. Two alternatives in such resource-limited scenarios are to maximize the social welfare by partially charging the EVs (fractional model) or selecting a subset of EVs and fully charge them (integral model). The technical challenge is the need for online solution design since in practical scenarios the scheduler has no or limited information of future arrivals in a time-coupled underlying problem. For the fractional model, we devise both offline and online algorithms. We prove that the offline algorithm is optimal. Using competitive ratio as the performance measure, we prove the online algorithm achieves a competitive ratio of 2. The integral model, however, is more challenging since the underlying problem is strongly NP-hard due to 0/1 selection criteria of EVs. Hence, efficient solution design is challenging even in offline setting. For offline setting, we devise a low-complexity primal-dual scheduling algorithm that achieves a bounded approximation ratio. Built upon the offline approximate algorithm, we propose an online algorithm and analyze its competitive ratio in special cases. Extensive trace-driven experimental results show that the performance of the proposed online algorithms is close to the offline optimum, and outperform the existing solutions.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
Long short-term memory. Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Toward Integrating Vehicular Clouds with IoT for Smart City Services Vehicular ad hoc networks, cloud computing, and the Internet of Things are among the emerging technology enablers offering a wide array of new application possibilities in smart urban spaces. These applications consist of smart building automation systems, healthcare monitoring systems, and intelligent and connected transportation, among others. The integration of IoT-based vehicular technologies will enrich services that are eventually going to ignite the proliferation of exciting and even more advanced technological marvels. However, depending on different requirements and design models for networking and architecture, such integration needs the development of newer communication architectures and frameworks. This work proposes a novel framework for architectural and communication design to effectively integrate vehicular networking clouds with IoT, referred to as VCoT, to materialize new applications that provision various IoT services through vehicular clouds. In this article, we particularly put emphasis on smart city applications deployed, operated, and controlled through LoRaWAN-based vehicular networks. LoraWAN, being a new technology, provides efficient and long-range communication possibilities. The article also discusses possible research issues in such an integration including data aggregation, security, privacy, data quality, and network coverage. These issues must be addressed in order to realize the VCoT paradigm deployment, and to provide insights for investors and key stakeholders in VCoT service provisioning. The article presents deep insights for different real-world application scenarios (i.e., smart homes, intelligent traffic light, and smart city) using VCoT for general control and automation along with their associated challenges. It also presents initial insights, through preliminary results, regarding data and resource management in IoT-based resource constrained environments through vehicular clouds.
Distributed multirobot localization In this paper, we present a new approach to the problem of simultaneously localizing a group of mobile robots capable of sensing one another. Each of the robots collects sensor data regarding its own motion and shares this information with the rest of the team during the update cycles. A single estimator, in the form of a Kalman filter, processes the available positioning information from all the members of the team and produces a pose estimate for every one of them. The equations for this centralized estimator can be written in a decentralized form, therefore allowing this single Kalman filter to be decomposed into a number of smaller communicating filters. Each of these filters processes the sensor data collected by its host robot. Exchange of information between the individual filters is necessary only when two robots detect each other and measure their relative pose. The resulting decentralized estimation schema, which we call collective localization, constitutes a unique means for fusing measurements collected from a variety of sensors with minimal communication and processing requirements. The distributed localization algorithm is applied to a group of three robots and the improvement in localization accuracy is presented. Finally, a comparison to the equivalent decentralized information filter is provided.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Online learning environments in higher education: Connectivism vs. dissociation Over the last decade online education has emerged as a way for students and faculty to collaborate more freely, attain greater flexibility, and utilize new media to learn. The burning debate lies in whether online educational options are harmful to traditional education or offer endless benefits necessary to accommodate a 21st century learner. Supporters of virtual learning environments suggest that 21st century learners require the construction and creation capabilities offered through Web 2.0 to succeed while critics suggest that asynchronous interactions are not engaging and rigorous enough for higher education. A balanced online environment should provide a blend of both asynchronous and synchronous opportunities, which promote communication and collaboration among classmates and instructors.
A Comparative Study of Distributed Learning Environments on Learning Outcomes Advances in information and communication technologies have fueled rapid growth in the popularity of technology-supported distributed learning (DL). Many educational institutions, both academic and corporate, have undertaken initiatives that leverage the myriad of available DL technologies. Despite their rapid growth in popularity, however, alternative technologies for DL are seldom systematically evaluated for learning efficacy. Considering the increasing range of information and communication technologies available for the development of DL environments, we believe it is paramount for studies to compare the relative learning outcomes of various technologies.In this research, we employed a quasi-experimental field study approach to investigate the relative learning effectiveness of two collaborative DL environments in the context of an executive development program. We also adopted a framework of hierarchical characteristics of group support system (GSS) technologies, outlined by DeSanctis and Gallupe (1987), as the basis for characterizing the two DL environments.One DL environment employed a simple e-mail and listserv capability while the other used a sophisticated GSS (herein referred to as Beta system). Interestingly, the learning outcome of the e-mail environment was higher than the learning outcome of the more sophisticated GSS environment. The post-hoc analysis of the electronic messages indicated that the students in groups using the e-mail system exchanged a higher percentage of messages related to the learning task. The Beta system users exchanged a higher level of technology sense-making messages. No significant difference was observed in the students' satisfaction with the learning process under the two DL environments.
The Representation of Virtual Reality in Education Students' opinions about the opportunities and the implications of VR in instruction were investigated by administering a questionnaire to humanities and engineering undergraduates. The questionnaire invited participants to rate a series of statements concerning motivation and emotion, skills, cognitive styles, benefits and learning outcomes associated with the use of VR in education. The representation which emerged was internally consistent and articulated into specific dimensions. It was not affected by gender, by the previous use of VR software, or by the knowledge of the main topics concerning the introduction of IT in instruction. Also the direct participation in a training session based on an immersive VR experience did not influence such a representation, which was partially modulated by the kind of course attended by students.
e-Learning, online learning, and distance learning environments: Are they the same? It is not uncommon that researchers face difficulties when performing meaningful cross-study comparisons for research. Research associated with the distance learning realm can be even more difficult to use as there are different environments with a variety of characteristics. We implemented a mixed-method analysis of research articles to find out how they define the learning environment. In addition, we surveyed 43 persons and discovered that there was inconsistent use of terminology for different types of delivery modes. The results reveal that there are different expectations and perceptions of learning environment labels: distance learning, e-Learning, and online learning.
Beat the Fear of Public Speaking: Mobile 360° Video Virtual Reality Exposure Training in Home Environment Reduces Public Speaking Anxiety. With this article, we aim to increase our understanding of how mobile virtual reality exposure therapy (VRET) can help reduce speaking anxiety. Using the results of a longitudinal study, we examined the effect of a new VRET strategy (Public Speech Trainer, PST), that incorporates 360 degrees live recorded VR environments, on the reduction of public speaking anxiety. The PST was developed as a 360 degrees smartphone application for a VR head-mounted device that participants could use at home. Realistic anxiety experiences were created by means of live 360 degrees video recordings of a lecture hall containing three training sessions based on graded exposure framework; empty classroom (a) and with a small (b) and large audience (c). Thirty-five students participated in all sessions using PST. Anxiety levels were measured before and after each session over a period of 4 weeks. As expected, speaking anxiety significantly decreased after the completion of all PST sessions, and the decrement was the strongest in participants with initially high speaking anxiety baseline levels. Results also revealed that participants with moderate and high speaking anxiety baseline level differ in the anxiety state pattern over time. Conclusively and in line with habituation theory, the results supported the notion that VRET is more effective when aimed at reducing high-state anxiety levels. Further implications for future research and improvement of current VRET strategies are discussed.
Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments The main objective of this study was to examine the effectiveness of immersive virtual reality (VR) as a medium for delivering laboratory safety training. We specifically compare an immersive VR simulation, a desktop VR simulation, and a conventional safety manual. The sample included 105 first year undergraduate engineering students (56 females). We include five types of learning outcomes including post-test enjoyment ratings; pre- to post-test changes in intrinsic motivation and self-efficacy; a post-test multiple choice retention test; and two behavioral transfer tests. Results indicated that the groups did not differ on the immediate retention test, suggesting that all three media were equivalent in conveying the basic knowledge. However, significant differences were observed favoring the immersive VR group compared to the text group on the two transfer tests involving the solving problems in a physical lab setting (d = 0.54, d = 0.57), as well as enjoyment (d = 1.44) and increases in intrinsic motivation (d = 0.69) and self-efficacy (d = 0.60). The desktop VR group scored significantly higher than the text group on one transfer test (d = 0.63) but not the other (d= 0.11), as well as enjoyment (d =1.11) and intrinsic motivation (d =0.83).
Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills The purpose of this review article is to present state-of-the-art approaches and examples of virtual reality/augmented reality (VR/AR) systems, applications and experiences which improve student learning and the generalization of skills to the real world. Thus, we provide a brief, representative and non-exhaustive review of the current research studies, in order to examine the effects, as well as the impact of VR/AR technologies on K-12, higher and tertiary education students’ twenty-first century skills and their overall learning. According to the literature, there are promising results indicating that VR/AR environments improve learning outcomes and present numerous advantages of investing time and financial resources in K-12, higher and tertiary educational settings. Technological tools such as VR/AR improve digital-age literacy, creative thinking, communication, collaboration and problem solving ability, which constitute the so-called twenty-first century skills, necessary to transform information rather than just receive it. VR/AR enhances traditional curricula in order to enable diverse learning needs of students. Research and development relative to VR/AR technology is focused on a whole ecosystem around smart phones, including applications and educational content, games and social networks, creating immersive three-dimensional spatial experiences addressing new ways of human–computer interaction. Raising the level of engagement, promoting self-learning, enabling multi-sensory learning, enhancing spatial ability, confidence and enjoyment, promoting student-centered technology, combination of virtual and real objects in a real setting and decreasing cognitive load are some of the pedagogical advantages discussed. Additionally, implications of a growing VR/AR industry investment in educational sector are provided. It can be concluded that despite the fact that there are various barriers and challenges in front of the adoption of virtual reality on educational practices, VR/AR applications provide an effective tool to enhance learning and memory, as they provide immersed multimodal environments enriched by multiple sensory features.
Constrained Kalman filtering for indoor localization of transport vehicles using floor-installed HF RFID transponders Localization of transport vehicles is an important issue for many intralogistics applications. The paper presents an inexpensive solution for indoor localization of vehicles. Global localization is realized by detection of RFID transponders, which are integrated in the floor. The paper presents a novel algorithm for fusing RFID readings with odometry using Constraint Kalman filtering. The paper presents experimental results with a Mecanum based omnidirectional vehicle on a NaviFloor® installation, which includes passive HF RFID transponders. The experiments show that the proposed Constraint Kalman filter provides a similar localization accuracy compared to a Particle filter but with much lower computational expense.
Reliable Computation Offloading for Edge-Computing-Enabled Software-Defined IoV Internet of Vehicles (IoV) has drawn great interest recent years. Various IoV applications have emerged for improving the safety, efficiency, and comfort on the road. Cloud computing constitutes a popular technique for supporting delay-tolerant entertainment applications. However, for advanced latency-sensitive applications (e.g., auto/assisted driving and emergency failure management), cloud computing may result in excessive delay. Edge computing, which extends computing and storage capabilities to the edge of the network, emerges as an attractive technology. Therefore, to support these computationally intensive and latency-sensitive applications in IoVs, in this article, we integrate mobile-edge computing nodes (i.e., mobile vehicles) and fixed edge computing nodes (i.e., fixed road infrastructures) to provide low-latency computing services cooperatively. For better exploiting these heterogeneous edge computing resources, the concept of software-defined networking (SDN) and edge-computing-aided IoV (EC-SDIoV) is conceived. Moreover, in a complex and dynamic IoV environment, the outage of both processing nodes and communication links becomes inevitable, which may have life-threatening consequences. In order to ensure the completion with high reliability of latency-sensitive IoV services, we introduce both partial computation offloading and reliable task allocation with the reprocessing mechanism to EC-SDIoV. Since the optimization problem is nonconvex and NP-hard, a heuristic algorithm, fault-tolerant particle swarm optimization algorithm is designed for maximizing the reliability (FPSO-MR) with latency constraints. Performance evaluation results validate that the proposed scheme is indeed capable of reducing the latency as well as improving the reliability of the EC-SDIoV.
Trust in Automation: Designing for Appropriate Reliance. Automation is often problematic because people fail to rely upon it appropriately. Because people respond to technology socially, trust influences reliance on automation. In particular, trust guides reliance when complexity and unanticipated situations make a complete understanding of the automation impractical. This review considers trust from the organizational, sociological, interpersonal, psychological, and neurological perspectives. It considers how the context, automation characteristics, and cognitive processes affect the appropriateness of trust. The context in which the automation is used influences automation performance and provides a goal-oriented perspective to assess automation characteristics along a dimension of attributional abstraction. These characteristics can influence trust through analytic, analogical, and affective processes. The challenges of extrapolating the concept of trust in people to trust in automation are discussed. A conceptual model integrates research regarding trust in automation and describes the dynamics of trust, the role of context, and the influence of display characteristics. Actual or potential applications of this research include improved designs of systems that require people to manage imperfect automation.
A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning Designers and evaluators of immersive virtual reality systems have many ideas concerning how virtual reality can facilitate learning. However, we have little information concerning which of virtual reality's features provide the most leverage for enhancing understanding or how to customize those affordances for different learning environments. In part, this reflects the truly complex nature of learning. Features of a learning environment do not act in isolation; other factors such as the concepts or skills to be learned, individual characteristics, the learning experience, and the interaction experience all play a role in shaping the learning process and its outcomes. Through Project Science Space, we have been trying to identify, use, and evaluate immersive virtual reality's affordances as a means to facilitate the mastery of complex, abstract concepts. In doing so, we are beginning to understand the interplay between virtual reality's features and other important factors in shaping the learning process and learning outcomes for this type of material. In this paper, we present a general model that describes how we think these factors work together and discuss some of the lessons we are learning about virtual reality's affordances in the context of this model for complex conceptual learning.
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
An attention-based decision fusion scheme for multimedia information retrieval In this paper, we proposed a novel decision fusion scheme based on the psychological observations on human beings' visual and aural attention characteristics, which combines a set of decisions obtained from different data sources or features to generate better decision result. Based on studying of the “heterogeneity” and “monotonicity” properties of certain types of decision fusion issues, a set of so-called Attention Fusion Functions are devised, which are able to obtain more reasonable fusion results than typical fusion schemes. Preliminary experiment on image retrieval shows the effectiveness of the proposed fusion scheme.
Subjective and Objective Video Quality Assessment of 3D Synthesized Views With Texture/Depth Compression Distortion The quality assessment for synthesized video with texture/depth compression distortion is important for the design, optimization, and evaluation of the multi-view video plus depth (MVD)-based 3D video system. In this paper, the subjective and objective studies for synthesized view assessment are both conducted. First, a synthesized video quality database with texture/depth compression distortion i...
Security of MVD-based 3D video in 3D-HEVC using data hiding and encryption To safely transmit secret data and protect three-dimensional (3D) videos, a novel jointly data hiding and encryption method for multi-view video plus depth based 3D video is proposed. Both data hiding and encryption are all format complaint for the 3D high-efficiency video coding (3D-HEVC), which obtains a real-time requirement. Since the depth map is not used for viewing but for rendering the virtual view, it is used to embed data by modulating the quantization parameter value of the largest encoding unit (LCU) block. According to the edge information of the depth map and the texture of the colour video, LCU blocks of the depth map are classified into four types. Different types of LCU blocks allow different embedding strength considering the quality of the rendered virtual view and the stable bitrate. Moreover, the colour video is encrypted using codeword substitution for 3D-HEVC format compliance without changing the bitrate. Experimental results demonstrate that the proposed method keeps the good quality of the virtual view after embedding data, protects the video contents efficiently, and has a limited influence on the bitrate.
Semi-automatic synthetic depth map generation for video using random walks We present a method for easily generating depth maps from monoscopic (i.e. “2D”) video footage in order to convert them into stereoscopic, or “3D”, footage. Our method uses user-defined strokes for a number of keyframes in the original footage and interpolates between the keyframes to provide a sparse labelling for each frame. We then apply the Random Walks algorithm to the footage to provide depth estimates based on the input provided by the user. These depth maps can then be used to generate novel views through depth-based image rendering.
Novel robust zero-watermarking scheme for digital rights management of 3D videos. Digital watermarking is an effective technique for the digital rights management (DRM) of three-dimensional (3D) videos, which is still a crucial issue in the field of 3D televisions. The current watermarking schemes for 3D videos can be classified into two main categories: One embeds watermarks into 2D video frames, and the other embeds watermarks into depth maps. The former causes irreversible distortions to synthesized 3D videos whereas the latter is insufficiently robust against some of normal video attacks. Moreover, because these watermarking schemes only embed watermarks into either 2D video frames or depth maps of 3D videos, none of them can protect the copyrights of these two parts simultaneously and independently. To address those problems, a novel robust zero-watermarking scheme for the DRM of 3D videos is proposed in this study. In the proposed scheme, master shares are first generated by extracting features from temporally informative representative images (TIRIs) of both the 2D video frames and depth maps. Then, ownership shares, which denote the relationships between copyright information and master shares, are generated based on the Visual Secret Sharing (VSS) scheme and stored for copyright identification. Finally, copyright ownerships are identified by stacking master shares and ownership shares. The experiment results demonstrate that the proposed scheme outperforms the current state-of-the-art watermarking schemes because it does not cause any distortion to the synthesized 3D videos, exhibits strong robustness against various video attacks, and protects the copyrights of 2D video frames and depth maps of 3D videos simultaneously and independently. A robust lossless zero-watermarking scheme for the digital rights management (DRM) of DIBR-based 3D videos is proposed.The proposed scheme is based on Visual Secret Sharing and fully utilizes the robust content-based features of both 2D frames and depth maps of 3D videos.The copyrights of 2D video frames and depth maps of 3D videos are protected simultaneously and independently by designing a flexible copyright identification mechanism to fully satisfy the DRM requirements of different DIBR-based 3D videos.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Massive MIMO for next generation wireless systems Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Communication theory of secrecy systems THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Implementing Vehicle Routing Algorithms
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
Robust Sparse Linear Discriminant Analysis Linear discriminant analysis (LDA) is a very popular supervised feature extraction method and has been extended to different variants. However, classical LDA has the following problems: 1) The obtained discriminant projection does not have good interpretability for features. 2) LDA is sensitive to noise. 3) LDA is sensitive to the selection of number of projection directions. In this paper, a novel feature extraction method called robust sparse linear discriminant analysis (RSLDA) is proposed to solve the above problems. Specifically, RSLDA adaptively selects the most discriminative features for discriminant analysis by introducing the l2;1 norm. An orthogonal matrix and a sparse matrix are also simultaneously introduced to guarantee that the extracted features can hold the main energy of the original data and enhance the robustness to noise, and thus RSLDA has the potential to perform better than other discriminant methods. Extensive experiments on six databases demonstrate that the proposed method achieves the competitive performance compared with other state-of-the-art feature extraction methods. Moreover, the proposed method is robust to the noisy data. IEEE
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.1
0.066667
0
0
0
0
0
0
0
0
0
Multi-target tracking method based on improved firefly algorithm optimized particle filter. Joint probabilistic data association-particle filter (JPDA-PF) algorithm is often used to solve the problem of data association in multi-target tracking, it has the advantages of particle filter in dealing with nonlinear and non-Gaussian systems, but at the same time, the resampling process of particle filter will lead to the problem of particle impoverishment, which will affect the tracking accuracy. In this article, a new multi-target tracking method based on particle filter optimized by improved firefly algorithm is proposed. To solve the problem of weight degradation and avoid the problem of particle impoverishment, the improved firefly algorithm replaces the traditional resampling method and optimizes the distribution of particles in particle filter. According to the simulation results, the improved algorithm has better tracking accuracy than JPDA-PF as the number of particles is equal.
Multi-stage genetic programming: A new strategy to nonlinear system modeling This paper presents a new multi-stage genetic programming (MSGP) strategy for modeling nonlinear systems. The proposed strategy is based on incorporating the individual effect of predictor variables and the interactions among them to provide more accurate simulations. According to the MSGP strategy, an efficient formulation for a problem comprises different terms. In the first stage of the MSGP-based analysis, the output variable is formulated in terms of an influencing variable. Thereafter, the error between the actual and the predicted value is formulated in terms of a new variable. Finally, the interaction term is derived by formulating the difference between the actual values and the values predicted by the individually developed terms. The capabilities of MSGP are illustrated by applying it to the formulation of different complex engineering problems. The problems analyzed herein include the following: (i) simulation of pH neutralization process, (ii) prediction of surface roughness in end milling, and (iii) classification of soil liquefaction conditions. The validity of the proposed strategy is confirmed by applying the derived models to the parts of the experimental results that were not included in the analyses. Further, the external validation of the models is verified using several statistical criteria recommended by other researchers. The MSGP-based solutions are capable of effectively simulating the nonlinear behavior of the investigated systems. The results of MSGP are found to be more accurate than those of standard GP and artificial neural network-based models.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. •Four hybrid feature selection methods for classification task are proposed.•Our hybrid method combines Whale Optimization Algorithm with simulated annealing.•Eighteen UCI datasets were used in the experiments.•Our approaches result a higher accuracy by using less number of features.
Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization. •Put forward an improved artificial bee colony algorithm based on ranking selection and elite guidance.•Put forward 4 rule-based heuristic factors: Wc, Rc, TRc and TRcL.•The heuristic factors are used in population initialization to improve the quality of the initial solutions in DWTA solving.•The heuristic factor initialization method is combined with the improved ABC algorithm to solve the DWTA problem.
A monarch butterfly optimization-based neural network simulator for prediction of siro-spun yarn tenacity Yarn tenacity directly affects the winding and knitting efficiency as well as warp and weft breakages during weaving process and therefore, is considered as the most important parameter to be controlled during yarn spinning process. Yarn tenacity is dependent on fiber properties and process parameters. Exploring the relationship between fiber properties, process parameters and yarn tenacity is very important to optimize the selection of raw materials and improve yarn quality. In this study, an efficient monarch butterfly optimization-based neural network simulator called MBONN was developed to predict the tenacity of siro-spun yarns from some process parameters and fiber properties. To this end, an experimental dataset was obtained with fiber fineness, yarn twist factor, yarn linear density and strand spacing as the input variables and yarn tenacity as the output parameter. In the proposed MBONN, a monarch butterfly optimization algorithm is applied as a global search method to evolve weights of a multilayer perception (MLP) neural network. The prediction accuracy of the MBONN was compared with that of a MLP neural network trained with back propagation algorithm, MLP neural network trained with genetic algorithms and linear regression model. The results indicated that the prediction accuracy of the proposed MBONN is statistically superior to that of other models. The effect of fiber fineness, yarn linear density, twist factor and strand spacing on yarn tenacity was investigated using the proposed MBONN. Additionally, the observed trends in variation of yarn tenacity with fiber and process parameters were discussed with reference to the yarn internal structure. It was established that higher migration parameters result in increasing the siro-spun yarn tenacity. It was found that the yarns with higher migration parameters benefit from a more coherent self-locking structure which severely restricts fiber slippage, thereby increasing the yarn tenacity.
Cooperation Search Algorithm: A Novel Metaheuristic Evolutionary Intelligence Algorithm For Numerical Optimization And Engineering Optimization Problems This paper develops a novel population-based evolutionary method called cooperation search algorithm (CSA) to address the complex global optimization problem. Inspired by the team cooperation behaviors in modern enterprise, the CSA method randomly generates a set of candidate solutions in the problem space, and then three operators are repeatedly executed until the stopping criterion is met: the team communication operator is used to improve the global exploration and determine the promising search area; the reflective learning operator is used to achieve a comprise between exploration and exploitation; the internal competition operator is used to choose solutions with better performances for the next cycle. Firstly, three kinds of mathematical optimization problems (including 24 famous test functions, 25 CEC2005 test problems and 30 CEC2014 test problems) are used to test the convergence speed and search accuracy of the CSA method. Then, several famous engineering optimization problems (like Gear train design, Welded beam design and Speed reducer design) are chosen to testify the engineering practicality of the CSA method. The results in different scenarios demonstrate that as compared with several existing evolutionary algorithms, the CSA method can effectively explore the decision space and produce competitive results in terms of various performance evaluation indicators. Thus, an effective tool is provided for solving the complex global optimization problems. (C) 2020 Elsevier B.V. All rights reserved.
On the security of public key protocols Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
QoE-Driven Edge Caching in Vehicle Networks Based on Deep Reinforcement Learning The Internet of vehicles (IoV) is a large information interaction network that collects information on vehicles, roads and pedestrians. One of the important uses of vehicle networks is to meet the entertainment needs of driving users through communication between vehicles and roadside units (RSUs). Due to the limited storage space of RSUs, determining the content cached in each RSU is a key challenge. With the development of 5G and video editing technology, short video systems have become increasingly popular. Current widely used cache update methods, such as partial file precaching and content popularity- and user interest-based determination, are inefficient for such systems. To solve this problem, this paper proposes a QoE-driven edge caching method for the IoV based on deep reinforcement learning. First, a class-based user interest model is established. Compared with the traditional file popularity- and user interest distribution-based cache update methods, the proposed method is more suitable for systems with a large number of small files. Second, a quality of experience (QoE)-driven RSU cache model is established based on the proposed class-based user interest model. Third, a deep reinforcement learning method is designed to address the QoE-driven RSU cache update issue effectively. The experimental results verify the effectiveness of the proposed algorithm.
Image information and visual quality Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.
Stabilization of switched continuous-time systems with all modes unstable via dwell time switching Stabilization of switched systems composed fully of unstable subsystems is one of the most challenging problems in the field of switched systems. In this brief paper, a sufficient condition ensuring the asymptotic stability of switched continuous-time systems with all modes unstable is proposed. The main idea is to exploit the stabilization property of switching behaviors to compensate the state divergence made by unstable modes. Then, by using a discretized Lyapunov function approach, a computable sufficient condition for switched linear systems is proposed in the framework of dwell time; it is shown that the time intervals between two successive switching instants are required to be confined by a pair of upper and lower bounds to guarantee the asymptotic stability. Based on derived results, an algorithm is proposed to compute the stability region of admissible dwell time. A numerical example is proposed to illustrate our approach.
Software-Defined Networking: A Comprehensive Survey The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms - with a focus on aspects such as resiliency, scalability, performance, security, and dependability - as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.
An ID-Based Linearly Homomorphic Signature Scheme and Its Application in Blockchain. Identity-based cryptosystems mean that public keys can be directly derived from user identifiers, such as telephone numbers, email addresses, and social insurance number, and so on. So they can simplify key management procedures of certificate-based public key infrastructures and can be used to realize authentication in blockchain. Linearly homomorphic signature schemes allow to perform linear computations on authenticated data. And the correctness of the computation can be publicly verified. Although a series of homomorphic signature schemes have been designed recently, there are few homomorphic signature schemes designed in identity-based cryptography. In this paper, we construct a new ID-based linear homomorphic signature scheme, which avoids the shortcomings of the use of public-key certificates. The scheme is proved secure against existential forgery on adaptively chosen message and ID attack under the random oracle model. The ID-based linearly homomorphic signature schemes can be applied in e-business and cloud computing. Finally, we show how to apply it to realize authentication in blockchain.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
Unsupervised Object Detection With Scene-Adaptive Concept Learning Object detection is one of the hottest research directions in computer vision, has already made impressive progress in academia, and has many valuable applications in the industry. However, the mainstream detection methods still have two shortcomings: (1) even a model that is well trained using large amounts of data still cannot generally be used across different kinds of scenes; (2) once a model is deployed, it cannot autonomously evolve along with the accumulated unlabeled scene data. To address these problems, and inspired by visual knowledge theory, we propose a novel scene-adaptive evolution unsupervised video object detection algorithm that can decrease the impact of scene changes through the concept of object groups. We first extract a large number of object proposals from unlabeled data through a pre-trained detection model. Second, we build the visual knowledge dictionary of object concepts by clustering the proposals, in which each cluster center represents an object prototype. Third, we look into the relations between different clusters and the object information of different groups, and propose a graph-based group information propagation strategy to determine the category of an object concept, which can effectively distinguish positive and negative proposals. With these pseudo labels, we can easily fine-tune the pre-trained model. The effectiveness of the proposed method is verified by performing different experiments, and the significant improvements are achieved.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Cooperative channel assignment for VANETs based on multiagent reinforcement learning. Dynamic channel assignment (DCA) plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion. However, channel assignment under vehicular direct communication scenarios faces mutual influence of large-scale nodes, the lack of centralized coordination, unknown global state information, and other challenges. To solve this problem, a multiagent reinforcement learning (RL) based cooperative DCA (RL-CDCA) mechanism is proposed. Specifically, each vehicular node can successfully learn the proper strategies of channel selection and backoff adaptation from the real-time channel state information (CSI) using two cooperative RL models. In addition, neural networks are constructed as nonlinear Q-function approximators, which facilitates the mapping of the continuously sensed input to the mixed policy output. Nodes are driven to locally share and incorporate their individual rewards such that they can optimize their policies in a distributed collaborative manner. Simulation results show that the proposed multiagent RL-CDCA can better reduce the one-hop packet delay by no less than 73.73%, improve the packet delivery ratio by no less than 12.66% on average in a highly dense situation, and improve the fairness of the global network resource allocation.
Reinforcement learning based data fusion method for multi-sensors In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion (RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications FSA (artificial fish-swarm algorithm) is one of the best methods of optimization among the swarm intelligence algorithms. This algorithm is inspired by the collective movement of the fish and their various social behaviors. Based on a series of instinctive behaviors, the fish always try to maintain their colonies and accordingly demonstrate intelligent behaviors. Searching for food, immigration and dealing with dangers all happen in a social form and interactions between all fish in a group will result in an intelligent social behavior.This algorithm has many advantages including high convergence speed, flexibility, fault tolerance and high accuracy. This paper is a review of AFSA algorithm and describes the evolution of this algorithm along with all improvements, its combination with various methods as well as its applications. There are many optimization methods which have a affinity with this method and the result of this combination will improve the performance of this method. Its disadvantages include high time complexity, lack of balance between global and local search, in addition to lack of benefiting from the experiences of group members for the next movements.
Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning The literature on short-term traffic flow forecasting has undergone great development recently. Many works, describing a wide variety of different approaches, which very often share similar features and ideas, have been published. However, publications presenting new prediction algorithms usually employ different settings, data sets, and performance measurements, making it difficult to infer a clear picture of the advantages and limitations of each model. The aim of this paper is twofold. First, we review existing approaches to short-term traffic flow forecasting methods under the common view of probabilistic graphical models, presenting an extensive experimental comparison, which proposes a common baseline for their performance analysis and provides the infrastructure to operate on a publicly available data set. Second, we present two new support vector regression models, which are specifically devised to benefit from typical traffic flow seasonality and are shown to represent an interesting compromise between prediction accuracy and computational efficiency. The SARIMA model coupled with a Kalman filter is the most accurate model; however, the proposed seasonal support vector regressor turns out to be highly competitive when performing forecasts during the most congested periods.
TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks. The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a temporal-spatial charging scheduling algorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.
A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems In this paper, to eliminate the tracking error by using adaptive dynamic programming (ADP) algorithms, a novel formulation of the value function is presented for the optimal tracking problem (TP) of nonlinear discrete-time systems. Unlike existing ADP methods, this formulation introduces the control input into the tracking error, and ignores the quadratic form of the control input directly, which makes the boundedness and convergence of the value function independent of the discount factor. Based on the proposed value function, the optimal control policy can be deduced without considering the reference control input. Value iteration (VI) and policy iteration (PI) methods are applied to prove the optimality of the obtained control policy, and derived the monotonicity property and convergence of the iterative value function. Simulation examples realized with neural networks and the actor–critic structure are provided to verify the effectiveness of the proposed ADP algorithm.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
Statistical tools for digital forensics A digitally altered photograph, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic photograph. As a result, photographs no longer hold the unique stature as a definitive recording of events. We describe several statistical techniques for detecting traces of digital tampering in the absence of any digital watermark or signature. In particular, we quantify statistical correlations that result from specific forms of digital tampering, and devise detection schemes to reveal these correlations.
An Effective Method for Detecting Double JPEG Compression With the Same Quantization Matrix Detection of double JPEG compression plays an important role in digital image forensics. Some successful approaches have been proposed to detect double JPEG compression when the primary and secondary compressions have different quantization matrices. However, detecting double JPEG compression with the same quantization matrix is still a challenging problem. In this paper, an effective error-based statistical feature extraction scheme is presented to solve this problem. First, a given JPEG file is decompressed to form a reconstructed image. An error image is obtained by computing the differences between the inverse discrete cosine transform coefficients and pixel values in the reconstructed image. Two classes of blocks in the error image, namely, rounding error block and truncation error block, are analyzed. Then, a set of features is proposed to characterize the statistical differences of the error blocks between single and double JPEG compressions. Finally, the support vector machine classifier is employed to identify whether a given JPEG image is doubly compressed or not. Experimental results on three image databases with various quality factors have demonstrated that the proposed method can significantly outperform the state-of-the-art method.
Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Nowadays, it is extremely simple to manipulate the content of digital images without leaving perceptual clues due to the availability of powerful image editing tools. Image tampering can easily devastate the credibility of images as a medium for personal authentication and a record of events. With the daily upload of millions of pictures to the Internet and the move towards paperless workplaces and e-government services, it becomes essential to develop automatic tampering detection techniques with reliable results. This paper proposes an enhanced technique for blind detection of image splicing. It extracts and combines Markov features in spatial and Discrete Cosine Transform domains to detect the artifacts introduced by the tampering operation. To reduce the computational complexity due to high dimensionality, Principal Component Analysis is used to select the most relevant features. Then, an optimized support vector machine with radial-basis function kernel is built to classify the image as being tampered or authentic. The proposed technique is evaluated on a publicly available image splicing dataset using cross validation. The results showed that the proposed technique outperforms the state-of-the-art splicing detection methods.
Exposing Splicing Forgery in Realistic Scenes Using Deep Fusion Network Creating fake pictures becomes more accessible than ever, but tampered images are more harmful because the Internet propagates misleading information so rapidly. Reliable digital forensic tools are therefore strongly needed. Traditional methods based on hand-crafted features are only useful when tampered images meet specific requirements, and the low detection accuracy prevents them from using in realistic scenes. Recently proposed learning-based methods improve the accuracy, but neural networks usually require to be trained on large labeled databases. This is because commonly used deep and narrow neural networks extract high-level visual features and neglect low-level features where there are abundant forensic cues. To solve the problem, we propose a novel neural network which concentrates on learning low-level forensic features and consequently can detect splicing forgery although the network is trained on a small automatically generated splicing dataset. Furthermore, our fusion network can be easily extended to support new forensic hypotheses without any changes in the network structure. The experimental results show that our method achieves state-of-the-art performance on several benchmark datasets and shows superior generalization capability: our fusion network can work very well even it never sees any pictures in test databases. Therefore, our method can detect splicing forgery in realistic scenes.
Feature Pyramid Network For Diffusion-Based Image Inpainting Detection Inpainting is a technique that can be employed to tamper with the content of images. In this paper, we propose a novel forensics analysis method for diffusion-based image inpainting based on a feature pyramid network (FPN). Our method features an improved u-shaped net to migrate FPN for multi-scale inpainting feature extraction. In addition, a stagewise weighted cross-entropy loss function is designed to take advantage of both the general loss and the weighted loss to improve the prediction rate of inpainted regions of all sizes. The experimental results demonstrate that the proposed method outperforms several state-of-the-art methods, especially when the size of the inpainted region is small. (c) 2021 Elsevier Inc. All rights reserved.
Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis The quick advance in image/video editing techniques has enabled people to synthesize realistic images/videos conveniently. Some legal issues may arise when a tampered image cannot be distinguished from a real one by visual examination. In this paper, we focus on JPEG images and propose detecting tampered images by examining the double quantization effect hidden among the discrete cosine transform (DCT) coefficients. To our knowledge, our approach is the only one to date that can automatically locate the tampered region, while it has several additional advantages: fine-grained detection at the scale of 8x8 DCT blocks, insensitivity to different kinds of forgery methods (such as alpha matting and inpainting, in addition to simple image cut/paste), the ability to work without fully decompressing the JPEG images, and the fast speed. Experimental results on JPEG images are promising.
Image tamper detection based on demosaicing artifacts In this paper, we introduce tamper detection techniques based on artifacts created by Color Filter Array (CFA) processing in most digital cameras. The techniques are based on computing a single feature and a simple threshold based classifier. The efficacy of the approach was tested over thousands of authentic, tampered, and computer generated images. Experimental results demonstrate reasonably low error rates.
Very Deep Convolutional Networks for Large-Scale Image Recognition. In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
A Tutorial On Visual Servo Control This article provides a tutorial introduction to visual servo control of robotic manipulators, Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework, We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process, We then present a taxonomy of visual servo control systems, The two major classes of systems, position-based and image-based systems, are then discussed in detail, Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking, We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
A General Equilibrium Model for Industries with Price and Service Competition This paper develops a stochastic general equilibrium inventory model for an oligopoly, in which all inventory constraint parameters are endogenously determined. We propose several systems of demand processes whose distributions are functions of all retailers' prices and all retailers' service levels. We proceed with the investigation of the equilibrium behavior of infinite-horizon models for industries facing this type of generalized competition, under demand uncertainty.We systematically consider the following three competition scenarios. (1) Price competition only: Here, we assume that the firms' service levels are exogenously chosen, but characterize how the price and inventory strategy equilibrium vary with the chosen service levels. (2) Simultaneous price and service-level competition: Here, each of the firms simultaneously chooses a service level and a combined price and inventory strategy. (3) Two-stage competition: The firms make their competitive choices sequentially. In a first stage, all firms simultaneously choose a service level; in a second stage, the firms simultaneously choose a combined pricing and inventory strategy with full knowledge of the service levels selected by all competitors. We show that in all of the above settings a Nash equilibrium of infinite-horizon stationary strategies exists and that it is of a simple structure, provided a Nash equilibrium exists in a so-called reduced game.We pay particular attention to the question of whether a firm can choose its service level on the basis of its own (input) characteristics (i.e., its cost parameters and demand function) only. We also investigate under which of the demand models a firm, under simultaneous competition, responds to a change in the exogenously specified characteristics of the various competitors by either: (i) adjusting its service level and price in the same direction, thereby compensating for price increases (decreases) by offering improved (inferior) service, or (ii) adjusting them in opposite directions, thereby simultaneously offering better or worse prices and service.
On (k, n)*-visual cryptography scheme Let P = {1, 2, . . . , n} be a set of elements called participants. In this paper we construct a visual cryptography scheme (VCS) for the strong access structure specified by the set Γ0 of all minimal qualified sets, where $${\Gamma_0=\{S: S\subseteq P, 1\in S}$$ and |S| = k}. Any VCS for this strong access structure is called a (k, n)*-VCS. We also obtain bounds for the optimal pixel expansion and optimal relative contrast for a (k, n)*-VCS.
A Fully Distributed Algorithm for Dynamic Channel Adaptation in Canonical Communication Networks In this letter, a low-complexity, fully distributed algorithm is designed for dynamic channel adaptation in a canonical communication network, where each player can independently update its action without any information exchange. Both the static and dynamic channel environments are studied. The proposed algorithm converges to a set of correlated equilibria with probability one. Moreover, the optimality property of the problem is analyzed. Simulation results demonstrate that the proposed algorithm achieves a near-optimal performance for interference mitigation.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.024223
0.019927
0.019927
0.019927
0.019927
0.007623
0.005134
0.00036
0
0
0
0
0
0
Multi-region Coverage Path Planning for Heterogeneous Unmanned Aerial Vehicles Systems Recently unmanned aerial vehicles (UAVs) have been widely adopted by military and civilian applications due to their strong autonomies and adaptabilities. Although UAVs can achieve effective cost reduction and flexibility enhancement in the development of systems with search or surveillance missions, they result in a complex path planning problem. Especially in region coverage systems, coverage path planning problem, which seeks a path that covers all regions of interest, has a NP-Hard computational complexity and is difficult to solve. In this paper, we study the coverage path planning problem for heterogeneous UAVs in multiple region systems. First, with the models of UAVs and regions, an exact formulation based on mixed integer linear programming is presented to produce an optimal coverage path. Then taking into account both the scanning time on regions and the flight time between regions, an efficient heuristic is proposed to assign regions and to obtain coverage orders for UAVs. Finally, experiments are conducted to show the reliability and efficiency of the proposed heuristic from several aspects.
Touring a sequence of polygons Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. If the polygons are disjoint and convex, we give an algorithm running in time O(kn log (n/k)), where n is the total number of vertices specifying the polygons. We also extend our results to a case in which the convex polygons are arbitrarily intersecting and the subpath between any two consecutive polygons is constrained to lie within a simply connected region; the algorithm uses O(nk2 log n) time. Our methods are simple and allow shortest path queries from s to a query point t to be answered in time O(k log n + m), where m is the combinatorial path length. We show that for nonconvex polygons this "touring polygons" problem is NP-hard.The touring polygons problem is a strict generalization of some classic problems in computational geometry, including the safari problem, the zoo-keeper problem, and the watchman route problem in a simple polygon. Our new results give an order of magnitude improvement in the running times of the safari problem and the watchman route problem: We solve the safari problem in O(n2 log n) time and the watchman route problem (through a fixed point s) in time O(n3 log n), compared with the previous time bounds of O(n3) and O(n4), respectively.
Numerical Comparison of Some Penalty-Based Constraint Handling Techniques in Genetic Algorithms We study five penalty function-based constraint handling techniques to be used with genetic algorithms in global optimization. Three of them, the method of superiority of feasible points, the method of parameter free penalties and the method of adaptive penalties have already been considered in the literature. In addition, we introduce two new modifications of these methods. We compare all the five methods numerically in 33 test problems and report and analyze the results obtained in terms of accuracy, efficiency and reliability. The method of adaptive penalties turned out to be most efficient while the method of parameter free penalties was the most reliable.
Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an ${\cal NP}$-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985--1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem---A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87--143].
Rich Vehicle Routing Problem: Survey The Vehicle Routing Problem (VRP) is a well-known research line in the optimization research community. Its different basic variants have been widely explored in the literature. Even though it has been studied for years, the research around it is still very active. The new tendency is mainly focused on applying this study case to real-life problems. Due to this trend, the Rich VRP arises: combining multiple constraints for tackling realistic problems. Nowadays, some studies have considered specific combinations of real-life constraints to define the emerging Rich VRP scopes. This work surveys the state of the art in the field, summarizing problem combinations, constraints defined, and approaches found.
Finding shortest safari routes in simple polygons Let P be a simple polygon, and let P be a set of disjoint convex polygons inside P, each sharing one edge with P. The safari route problem asks for a shortest route inside P that visits each polygon in P. In this paper, we first present a dynamic programming algorithm with running time O(n3) for computing the shortest safari route in the case that a starting point on the route is given, where n is the total number of vertices of P and polygons in P. (Ntafos in [Comput. Geom. 1 (1992) 149-170] claimed a more efficient solution, but as shown in Appendix A of this paper, the time analysis of Ntafos' algorithm is erroneous and no time bound is guaranteed for his algorithm.) The restriction of giving a starting point is then removed by a brute-force algorithm, which requires O(n4) time. The solution of the safari route problem finds applications in watchman routes under limited visibility.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Sequence to Sequence Learning with Neural Networks. Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Cognitive Cars: A New Frontier for ADAS Research This paper provides a survey of recent works on cognitive cars with a focus on driver-oriented intelligent vehicle motion control. The main objective here is to clarify the goals and guidelines for future development in the area of advanced driver-assistance systems (ADASs). Two major research directions are investigated and discussed in detail: 1) stimuli–decisions–actions, which focuses on the driver side, and 2) perception enhancement–action-suggestion–function-delegation, which emphasizes the ADAS side. This paper addresses the important achievements and major difficulties of each direction and discusses how to combine the two directions into a single integrated system to obtain safety and comfort while driving. Other related topics, including driver training and infrastructure design, are also studied.
Biologically-inspired soft exosuit. In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.
Inter-class sparsity based discriminative least square regression Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
Development Of Optimum Watermarking Algorithm For Radiography Images The fusion of captured multi-focus radiography images using the same scene is essential for adaptation of image information. Besides, transmission of secure radiography image between practitioners with keeping all image details is a challenge. These issues are handled using three dependent goals that include fusion amongst neutron and x-ray radiography images, watermarking of fused radiography images and optimization of watermarked images. The watermarking algorithms are analyzed and evaluated under various attacks. Development of optimization technique is an essential purpose for higher robustness with acceptable imperceptibility and negligible image distortion of radiography images. Backtracking search optimization algorithm(BSA) is functionalized for this target. Paired objective functions are suggested for the BSA algorithm to achieve simultaneously high robustness and imperceptibility. It is fulfilled that proficient results with respect to quality fitness function(FF) are realized with proposed ridgelet watermarking. Consequently, secure transmission of multi-focus radiography images within industrial and medical applications can be fulfilled.
A feature-based robust digital image watermarking scheme A robust digital image watermarking scheme that combines image feature extraction and image normalization is proposed. The goal is to resist both geometric distortion and signal processing attacks. We adopt a feature extraction method called Mexican hat wavelet scale interaction. The extracted feature points can survive a variety of attacks and be used as reference points for both watermark embedding and detection. The normalized image of an image (object) is nearly invariant with respect to rotations. As a result, the watermark detection task can be much simplified when it is applied to the normalized image. However, because image normalization is sensitive to image local variation, we apply image normalization to nonoverlapped image disks separately. The disks are centered at the extracted feature points. Several copies of a 16-bit watermark sequence are embedded in the original image to improve the robustness of watermarks. Simulation results show that our scheme can survive low-quality JPEG compression, color reduction, sharpening, Gaussian filtering, median filtering, row or column removal, shearing, rotation, local warping, cropping, and linear geometric transformations.
Imperceptible visible watermarking based on postcamera histogram operation real-world scene captured via digital devices, such as a digital still camera, video recorder and mobile device, is a common behavior in recent decades. With the increasing availability, reproduction and sharing of media, the intellectual property of digital media is incapable of guaranty. To claim the ownership of digital camera media, the imperceptible visible watermarking (IVW) mechanism was designed based on the observation that most camera devices contain the postcamera histogram operation. The IVW approach can achieve advantages both the content readability of invisible watermarking methodology and the visual ownership identification of visible watermarking methodology. The computational complexity of IVW is low and can be effectively applied to almost any of the digital electronic devices when capturing the real-world scene without additional instruments. The following results and analysis demonstrate the novel scheme is effective and applicable for versatile images and videos captured.
Digital watermarking: Applicability for developing trust in medical imaging workflows state of the art review. Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation.
Medical image region based watermarking for secured telemedicine. Exchange of Medical images over public networks entail a methodology to offer secrecy for the image along with confirmation for image integrity. In this paper, a region-based Firefly optimized algorithm and hybridization of DWT and Schur transforms in conjunction with multiple watermarking is recommended to endow with security requisites such as authenticity of the ownership of medical image besides origin of source for interchange of medical images in telemedicine applications. Secrecy and authenticity are offered by inserting robust multiple watermarks in the region-of-noninterest (RONI) of the medical image by means of a blind method in the discrete wavelet transform and Schur transform (DWT-Schur). The capability of imperceptibility, robustness and payload are the main parameters for the assessment of watermarking algorithm, with MRI, Ultrasound plus X-ray gray-scale medical image modalities. Simulation results make obvious the efficacy of the projected algorithm in offering the essential security benefits for applications allied to telemedicine.
An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics This paper presents a new intelligent image watermarking scheme based on discrete wavelet transform (DWT) and singular values decomposition (SVD) using human visual system (HVS) and particle swarm optimization (PSO). The cover image is transformed by one-level (DWT) and subsequently the LL sub-band of (DWT) transformed image is chosen for embedding. To achieve the highest possible visual quality, the embedding regions are selected based on (HVS). After applying (SVD) on the selected regions, every two watermark bits are embedded indirectly into the U and $$V^{t}$$ components of SVD decomposition of the selected regions, instead of embedding one watermark bit into the U component and compensating on the $$V^{t}$$ component that results in twice capacity and reasonable imperceptibility. In addition, for increasing the robustness without losing the transparency, the scaling factors are chosen automatically by (PSO) based on the attacks test results and predefined conditions, instead of using fixed or manually set scaling factors for all different cover images. Experimental and comparative results demonstrated the stability and improved performance of the proposed scheme compared to its parents watermarking schemes. Moreover, the proposed scheme is free of false positive detection error.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
Sequence to Sequence Learning with Neural Networks. Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Toward Integrating Vehicular Clouds with IoT for Smart City Services Vehicular ad hoc networks, cloud computing, and the Internet of Things are among the emerging technology enablers offering a wide array of new application possibilities in smart urban spaces. These applications consist of smart building automation systems, healthcare monitoring systems, and intelligent and connected transportation, among others. The integration of IoT-based vehicular technologies will enrich services that are eventually going to ignite the proliferation of exciting and even more advanced technological marvels. However, depending on different requirements and design models for networking and architecture, such integration needs the development of newer communication architectures and frameworks. This work proposes a novel framework for architectural and communication design to effectively integrate vehicular networking clouds with IoT, referred to as VCoT, to materialize new applications that provision various IoT services through vehicular clouds. In this article, we particularly put emphasis on smart city applications deployed, operated, and controlled through LoRaWAN-based vehicular networks. LoraWAN, being a new technology, provides efficient and long-range communication possibilities. The article also discusses possible research issues in such an integration including data aggregation, security, privacy, data quality, and network coverage. These issues must be addressed in order to realize the VCoT paradigm deployment, and to provide insights for investors and key stakeholders in VCoT service provisioning. The article presents deep insights for different real-world application scenarios (i.e., smart homes, intelligent traffic light, and smart city) using VCoT for general control and automation along with their associated challenges. It also presents initial insights, through preliminary results, regarding data and resource management in IoT-based resource constrained environments through vehicular clouds.
Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis Existing time-series models that are used for short-term traffic condition forecasting are mostly univariate in nature. Generally, the extension of existing univariate time-series models to a multivariate regime involves huge computational complexities. A different class of time-series models called structural time-series model (STM) (in its multivariate form) has been introduced in this paper to develop a parsimonious and computationally simple multivariate short-term traffic condition forecasting algorithm. The different components of a time-series data set such as trend, seasonal, cyclical, and calendar variations can separately be modeled in STM methodology. A case study at the Dublin, Ireland, city center with serious traffic congestion is performed to illustrate the forecasting strategy. The results indicate that the proposed forecasting algorithm is an effective approach in predicting real-time traffic flow at multiple junctions within an urban transport network.
State resetting for bumpless switching in supervisory control In this paper the realization and implementation of a multi-controller scheme made of a finite set of linear single-input-single-output controllers, possibly having different state dimensions, is studied. The supervisory control framework is considered, namely a minimal parameter dependent realization of the set of controllers such that all controllers share the same state space is used. A specific state resetting strategy based on the behavioral approach to system theory is developed in order to master the transient upon controller switching.
G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. In this paper, to remedy the joint-angle drift phenomenon for manipulation of two redundant robot arms, a novel scheme for simultaneous repetitive motion planning and control (SRMPC) at the joint-acceleration level is proposed, which consists of two subschemes. To do so, the performance index of each SRMPC subscheme is derived and designed by employing the gradient dynamics twice, of which a convergence theorem and its proof are presented. In addition, for improving the accuracy of the motion planning and control, position error, and velocity, error feedbacks are incorporated into the forward kinematics equation and analyzed via Zhang neural-dynamics method. Then the two subschemes are simultaneously reformulated as two quadratic programs (QPs), which are finally unified into one QP problem. Furthermore, a piecewise-linear projection equation-based neural network (PLPENN) is used to solve the unified QP problem, which can handle the strictly convex QP problem in an inverse-free manner. More importantly, via such a unified QP formulation and the corresponding PLPENN solver, the synchronism of two redundant robot arms is guaranteed. Finally, two given tasks are fulfilled by 2 three-link and 2 five-link planar robot arms, respectively. Computer-simulation results validate the efficacy and accuracy of the SRMPC scheme and the corresponding PLPENN solver for synchronous manipulation of two redundant robot arms.
Modeling taxi driver anticipatory behavior. As part of a wider behavioral agent-based model that simulates taxi drivers' dynamic passenger-finding behavior under uncertainty, we present a model of strategic behavior of taxi drivers in anticipation of substantial time varying demand at locations such as airports and major train stations. The model assumes that, considering a particular decision horizon, a taxi driver decides to transfer to such a destination based on a reward function. The dynamic uncertainty of demand is captured by a time dependent pick-up probability, which is a cumulative distribution function of waiting time. The model allows for information learning by which taxi drivers update their beliefs from past experiences. A simulation on a real road network, applied to test the model, indicates that the formulated model dynamically improves passenger-finding strategies at the airport. Taxi drivers learn when to transfer to the airport in anticipation of the time-varying demand at the airport to minimize their waiting time.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
An Implemented Theory of Mind to Improve Human-Robot Shared Plans Execution. When a robot has to execute a shared plan with a human, a number of unexpected situations and contingencies can happen due, essentially, to human initiative. For instance, a temporary absence or inattention of the human can entail a partial, and potentially not sufficient, knowledge about the current situation. To ensure a successful and fluent execution of the shared plan the robot might need to detect such situations and be able to provide the information to its human partner about what he missed without being annoying or intrusive. To do so, we have developed a framework which allows a robot to estimate the other agents mental states not only about the environment but also about the state of goals, plans and actions and to take them into account when executing human-robot shared plans.
Embodiment and Human-Robot Interaction: A Task-Based Perspective In this work, we further test the hypothesis that physical embodiment has a measurable effect on performance and impression of social interactions. Support for this hypothesis would suggest fundamental differences between virtual agents and robots from a social standpoint and would have significan t implications for human-robot interaction. We have refined our task-based metrics to give a measure- ment, not only of the participant's immediate impressions o f a coach for a task, but also of the participant's performance i n a given task. We measure task performance and participants' impression of a robot's social abilities in a structured tas k based on the Towers of Hanoi puzzle. Our experiment compares aspects of embodiment by evaluating: (1) the difference between a physical robot and a simulated one; and (2) the effect of physical presence through a co-located robot versus a remote, tele-present robot. With a participant pool (n=21) of roboticists and non- roboticists, we were able to show that participants felt that an embodied robot was more appealing and perceptive of the world than non-embodied robots. A larger pool of participants (n=32) also demonstrated that the embodied robot was seen as most helpful, watchful, and enjoyable when compared to a remote tele-present robot and a simulated robot.
Modeling Aspects of Theory of Mind with Markov Random Fields We propose Markov random fields (MRFs) as a probabilistic mathematical model for incorporating the in- ternal states of other agents, both human and robotic, into ro- bot decision making. By using estimates of Theory of Mind (ToM), the mental states of other agents can be incorporated into decision making through statistical inference, allowing robots to balance their own goals and internal objectives with those of other collaborating agents. The MRF model is well-suited to domains in which the joint probability over latent (action) and observed (perceived) variables can be factored into pairwise interactions between these variables. Specifically, these interactions occur through functions that evaluate "local evidence" between an observed and latent variable and "compatibility" between a pair of latent vari- ables. We will describe how experimental findings from the ToM literature can be explained using MRF models, and then show how this framework can be applied to a social robotics task. We will also describe how to use belief prop- agation on a multi-robot MRF as a novel approach to multi- robot coordination, with parallels to human collaboration
Help Me Please: Robot Politeness Strategies for Soliciting Help From Humans. Robots that can leverage help from people could accomplish much more than robots that cannot. We present the results of two experiments that examine how robots can more effectively request help from people. Study 1 is a video prototype experiment (N=354), investigating the effectiveness of four linguistic politeness strategies as well as the effects of social status (equal, low), size of request (large, small), and robot familiarity (high, low) on people's willingness to help a robot. The results of this study largely support Politeness Theory and the Computers as Social Actors paradigm. Study 2 is a physical human-robot interaction experiment (N=48), examining the impact of source orientation (autonomous, single operator, multiple operators) on people's behavioral willingness to help the robot. People were nearly 50% faster to help the robot if they perceived it to be autonomous rather than being teleoperated. Implications for research design, theory, and methods are discussed.
Deal or No Deal? End-to-End Learning of Negotiation Dialogues. Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an interesting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each otheru0027s reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available (this https URL).
No fair!!: an interaction with a cheating robot Using a humanoid robot and a simple children's game, we examine the degree to which variations in behavior result in attributions of mental state and intentionality. Participants play the well-known children's game ¿rock-paper-scissors¿ against a robot that either plays fairly, or that cheats in one of two ways. In the ¿verbal cheat¿ condition, the robot announces the wrong outcome on several rounds which it loses, declaring itself the winner. In the ¿action cheat¿ condition, the robot changes its gesture after seeing its opponent's play. We find that participants display a greater level of social engagement and make greater attributions of mental state when playing against the robot in the conditions in which it cheats.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
Evolutionary computation: comments on the history and current state Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete
Supporting social navigation on the World Wide Web This paper discusses a navigation behavior on Internet information services, in particular the World Wide Web, which is characterized by pointing out of information using various communication tools. We call this behavior social navigation as it is based on communication and interaction with other users, be that through email, or any other means of communication. Social navigation phenomena are quite common although most current tools (like Web browsers or email clients) offer very little support for it. We describe why social navigation is useful and how it can be better supported in future systems. We further describe two prototype systems that, although originally not designed explicitly as tools for social navigation, provide features that are typical for social navigation systems. One of these systems, the Juggler system, is a combination of a textual virtual environment and a Web client. The other system is a prototype of a Web- hotlist organizer, called Vortex. We use both systems to describe fundamental principles of social navigation systems.
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an extended Kalman filter designed for real-time estimation of the orientation of human limb segments. The filter processes data from small inertial/magnetic sensor modules containing triaxial angular rate sensors, accelerometers, and magnetometers. The filter represents rotation using quaternions rather than Euler angles or axis/angle pairs. Preprocessing of the acceleration and magnetometer measurements using the Quest algorithm produces a computed quaternion input for the filter. This preprocessing reduces the dimension of the state vector and makes the measurement equations linear. Real-time implementation and testing results of the quaternion-based Kalman filter are presented. Experimental results validate the filter design, and show the feasibility of using inertial/magnetic sensor modules for real-time human body motion tracking
Switching Stabilization for a Class of Slowly Switched Systems In this technical note, the problem of switching stabilization for slowly switched linear systems is investigated. In particular, the considered systems can be composed of all unstable subsystems. Based on the invariant subspace theory, the switching signal with mode-dependent average dwell time (MDADT) property is designed to exponentially stabilize the underlying system. Furthermore, sufficient condition of stabilization for switched systems with all stable subsystems under MDADT switching is also given. The correctness and effectiveness of the proposed approaches are illustrated by a numerical example.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.1
0.04
0
0
0
0
0
0
0
0
Multiple Lyapunov Functions Analysis Approach for Discrete-Time-Switched Piecewise-Affine Systems Under Dwell-Time Constraints. In this technical note, the asymptotic stability analysis and state-feedback control design are investigated for a class of discrete-time switched nonlinear systems via the smooth approximation technique. The modal dwell-time switching property is considered to constrain switchings between nonlinear subsystems. A kind of autonomous switchings, i.e., state-partition-dependent switching, is introduc...
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Localization of JPEG double compression through multi-domain convolutional neural networks. When an attacker wants to falsify an image, in most of cases she/he will perform a JPEG recompression. Different techniques have been developed based on diverse theoretical assumptions but very effective solutions have not been developed yet. Recently, machine learning based approaches have been started to appear in the field of image forensics to solve diverse tasks such as acquisition source identification and forgery detection. In this last case, the aim ahead would be to get a trained neural network able, given a to-be-checked image, to reliably localize the forged areas. With this in mind, our paper proposes a step forward in this direction by analyzing how a single or double JPEG compression can be revealed and localized using convolutional neural networks (CNNs). Different kinds of input to the CNN have been taken into consideration, and various experiments have been carried out trying also to evidence potential issues to be further investigated.
Movie2Comics: Towards a Lively Video Content Presentation a type of artwork, comics is prevalent and popular around the world. However, despite the availability of assistive software and tools, the creation of comics is still a labor-intensive and time-consuming process. This paper proposes a scheme that is able to automatically turn a movie clip to comics. Two principles are followed in the scheme: 1) optimizing the information preservation of the movie; and 2) generating outputs following the rules and the styles of comics. The scheme mainly contains three components: script-face mapping, descriptive picture extraction, and cartoonization. The script-face mapping utilizes face tracking and recognition techniques to accomplish the mapping between characters' faces and their scripts. The descriptive picture extraction then generates a sequence of frames for presentation. Finally, the cartoonization is accomplished via three steps: panel scaling, stylization, and comics layout design. Experiments are conducted on a set of movie clips and the results have demonstrated the usefulness and the effectiveness of the scheme.
View-Based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper, we propose a discriminative probabilistic object modeling approach. It builds probabilistic models for each object based on the distribution of its views, and the distance between two objects is defined as the upper bound of the Kullback–Leibler divergence of the corresponding probabilistic models. 3D object retrieval and recognition is accomplished based on the distance measures. We first learn models for each object by the adaptation from a set of global models with a maximum likelihood principle. A further adaption step is then performed to enhance the discriminative ability of the models. We conduct experiments on the ETH 3D object dataset, the National Taiwan University 3D model dataset, and the Princeton Shape Benchmark. We compare our approach with different methods, and experimental results demonstrate the superiority of our approach.
DADNet: Dilated-Attention-Deformable ConvNet for Crowd Counting Most existing CNN-based methods for crowd counting always suffer from large scale variation in objects of interest, leading to density maps of low quality. In this paper, we propose a novel deep model called Dilated-Attention-Deformable ConvNet (DADNet), which consists of two schemes: multi-scale dilated attention and deformable convolutional DME (Density Map Estimation). The proposed model explores a scale-aware attention fusion with various dilation rates to capture different visual granularities of crowd regions of interest, and utilizes deformable convolutions to generate a high-quality density map. There are two merits as follows: (1) varying dilation rates can effectively identify discriminative regions by enlarging the receptive fields of convolutional kernels upon surrounding region cues, and (2) deformable CNN operations promote the accuracy of object localization in the density map by augmenting the spatial object location sampling with adaptive offsets and scalars. DADNet not only excels at capturing rich spatial context of salient and tiny regions of interest simultaneously, but also keeps a robustness to background noises, such as partially occluded objects. Extensive experiments on benchmark datasets verify that DADNet achieves the state-of-the-art performance. Visualization results of the multi-scale attention maps further validate the remarkable interpretability achieved by our solution.
Context-Aware Graph Inference With Knowledge Distillation for Visual Dialog Visual dialog is a challenging task that requires the comprehension of the semantic dependencies among implicit visual and textual contexts. This task can refer to the relational inference in a graphical model with sparse contextual subjects (nodes) and unknown graph structure (relation descriptor); how to model the underlying context-aware relational inference is critical. To this end, we propose a novel context-aware graph (CAG) neural network. We focus on the exploitation of fine-grained relational reasoning with object-level dialog-historical co-reference nodes. The graph structure (relation in dialog) is iteratively updated using an adaptive top- <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula> message passing mechanism. To eliminate sparse useless relations, each node has dynamic relations in the graph (different related <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula> neighbor nodes), and only the most relevant nodes are attributive to the context-aware relational graph inference. In addition, to avoid negative performance caused by linguistic bias of history, we propose a pure visual-aware knowledge distillation mechanism named CAG-Distill, in which image-only visual clues are used to regularize the joint dialog-historical contextual awareness at the object-level. Experimental results on VisDial v0.9 and v1.0 datasets show that both CAG and CAG-Distill outperform comparative methods. Visualization results further validate the remarkable interpretability of our graph inference solution.
Noiseprint: a CNN-based camera model fingerprint. Forensic analyses of digital images rely heavily on the traces of in-camera and out-camera processes left on the acquired images. Such traces represent a sort of camera fingerprint. If one is able to recover them, by suppressing the high-level scene content and other disturbances, a number of forensic tasks can be easily accomplished. A notable example is the PRNU pattern, which can be regarded as a device fingerprint, and has received great attention in multimedia forensics. In this paper, we propose a method to extract a camera <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">model</italic> fingerprint, called noiseprint, where the scene content is largely suppressed and model-related artifacts are enhanced. This is obtained by means of a Siamese network, which is trained with pairs of image patches coming from the same (label +1) or different (label −1) cameras. Although the noiseprints can be used for a large variety of forensic tasks, in this paper we focus on image forgery localization. Experiments on several datasets widespread in the forensic community show noiseprint-based methods to provide state-of-the-art performance.
Weakly-Supervised Video Object Grounding by Exploring Spatio-Temporal Contexts Grounding objects in visual context from natural language queries is a crucial yet challenging vision-and-language task, which has gained increasing attention in recent years. Existing work has primarily investigated this task in the context of still images. Despite their effectiveness, these methods cannot be directly migrated into the video context, mainly due to 1) the complex spatio-temporal structure of videos and 2) the scarcity of fine-grained annotations of videos. To effectively ground objects in videos is profoundly more challenging and less explored. To fill the research gap, this paper presents a weakly-supervised framework for linking objects mentioned in a sentence with the corresponding regions in videos. It mainly considers two types of video characteristics: 1) objects are dynamically distributed across multiple frames and have diverse temporal durations, and 2) object regions in videos are spatially correlated with each other. Specifically, we propose a weakly-supervised video object grounding approach which mainly consists of three modules: 1) a temporal localization module to model the latent relation between queried objects and frames with a temporal attention network, 2) a spatial interaction module to capture feature correlation among object regions for learning context-aware region representation, and 3) a hierarchical video multiple instance learning algorithm to estimate the sentence-segment grounding score for discriminative training. Extensive experiments demonstrate that our method can achieve consistent improvement over the state-of-the-arts.
The 'Dresden Image Database' for benchmarking digital image forensics This paper introduces and documents a novel image database specifically built for the purpose of development and bench-marking of camera-based digital forensic techniques. More than 14,000 images of various indoor and outdoor scenes have been acquired under controlled and thus widely comparable conditions from altogether 73 digital cameras. The cameras were drawn from only 25 different models to ensure that device-specific and model-specific characteristics can be disentangled and studied separately, as validated with results in this paper. In addition, auxiliary images for the estimation of device-specific sensor noise pattern were collected for each camera. Another subset of images to study model-specific JPEG compression algorithms has been compiled for each model. The 'Dresden Image Database' will be made freely available for scientific purposes when this accompanying paper is presented. The database is intended to become a useful resource for researchers and forensic investigators. Using a standard database as a benchmark not only makes results more comparable and reproducible, but it is also more economical and avoids potential copyright and privacy issues that go along with self-sampled benchmark sets from public photo communities on the Internet.
On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on ...
Cooperative Cleaners: A Study in Ant Robotics In the world of living creatures, simple-minded animals often cooperate to achieve common goals with amazing performance. One can consider this idea in the context of robotics, and suggest models for programming goal-oriented behavior into the members of a group of simple robots lacking global supervision. This can be done by controlling the local interactions between the robot agents, to have them jointly carry out a given mission. As a test case we analyze the problem of many simple robots cooperating to clean the dirty floor of a non-convex region in Z2, using the dirt on the floor as the main means of inter-robot communication.
Surrogate-assisted evolutionary computation: Recent advances and future challenges Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted evolutionary computation has found successful applications not only in solving computationally expensive single- or multi-objective optimization problems, but also in addressing dynamic optimization problems, constrained optimization problems and multi-modal optimization problems. This paper provides a concise overview of the history and recent developments in surrogate-assisted evolutionary computation and suggests a few future trends in this research area.
An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS. Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks. We propose syntactically controlled paraphrase networks (SCPNs) and use them to generate adversarial examples. Given a sentence and a target syntactic form (e.g., a constituency parse), SCPNs are trained to produce a paraphrase of the sentence with the desired syntax. We show it is possible to create training data for this task by first doing backtranslation at a very large scale, and then using a parser to label the syntactic transformations that naturally occur during this process. Such data allows us to train a neural encoder-decoder model with extra inputs to specify the target syntax. A combination of automated and human evaluations show that SCPNs generate paraphrases that follow their target specifications without decreasing paraphrase quality when compared to baseline (uncontrolled) paraphrase systems. Furthermore, they are more capable of generating syntactically adversarial examples that both (1) fool pretrained models and (2) improve the robustness of these models to syntactic variation when used to augment their training data.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.112
0.1
0.1
0.1
0.1
0.062
0.033333
0.000167
0
0
0
0
0
0
Event-Separation Properties of Event-Triggered Control Systems. In this paper, we study fundamental properties of minimum inter-event times for several event-triggered control architectures, both in the absence and presence of external disturbances and/or measurement noise. This analysis reveals, amongst others, that for several popular event-triggering mechanisms no positive minimum inter-event time can be guaranteed in the presence of arbitrary small external disturbances or measurement noise. This clearly shows that it is essential to include the effects of external disturbances and measurement noise in the analysis of the computation/communication properties of event-triggered control systems. In fact, this paper also identifies event-triggering mechanisms that do exhibit these important event-separation properties.
Self-triggered coordination of robotic networks for optimal deployment This paper studies a deployment problem for a group of robots where individual agents operate with outdated information about each other's locations. Our objective is to understand to what extent outdated information is still useful and at which point it becomes essential to obtain new, up-to-date information. We propose a self-triggered coordination algorithm based on spatial partitioning techniques with uncertain information. We analyze its correctness in synchronous and asynchronous scenarios, and establish the same convergence guarantees that a synchronous algorithm with perfect information at all times would achieve. The technical approach combines computational geometry, set-valued stability analysis, and event-based systems.
Robust Control for Mobility and Wireless Communication in Cyber-Physical Systems With Application to Robot Teams. In this paper, a system architecture to provide end-to-end network connectivity for autonomous teams of robots is discussed. The core of the proposed system is a cyber-physical controller whose goal is to ensure network connectivity as robots move to accomplish their assigned tasks. Due to channel quality uncertainties inherent to wireless propagation, we adopt a stochastic model where achievable ...
Consensus Control Under Communication Delay in a Three-Robot System: Design and Experiments A consensus-control protocol is designed and implemented here on a three-robot system arranged on a horizontal platform, in which a camera system is used to track robot positions, and a personal computer broadcasts commands to the robots based on this protocol via a Bluetooth connection, where such commands are affected by time delays. The design involves some salient features of this protocol based on a graph-based approach, an input–output linearization scheme, and addressing uncertainties in the control problem. By implementing this design on experiments, we show that consensus of the robots can be successfully achieved, and their speed of reaching consensus can be systematically improved. Experimental results also strongly agree with those obtained from nonlinear simulations.
Cooperative Robot Localization Using Event-Triggered Estimation This paper describes a novel communication-spare cooperative localization algorithm for a team of mobile unmanned robotic vehicles. Exploiting an event-based estimation paradigm, robots only send measurements to neighbors when the expected innovation for state estimation is high. Because agents know the event-triggering condition for measurements to be sent, the lack of a measurement is thus also informative and fused into state estimates. The robots use a covariance intersection mechanism to occasionally synchronize their local estimates of the full network state. In addition, heuristic balancing dynamics on the robots' covariance-intersection-triggering thresholds ensure that, in large-diameter networks, the local error covariances remains below desired bounds across the network. Simulations on both linear and nonlinear dynamics/measurement models show that the event-triggering approach achieves nearly optimal state estimation performance in a wide range of operating conditions, even when using only a fraction of the communication cost required by conventional full data sharing. The robustness of the proposed approach to lossy communications as well as the relationship between network topology and covariance-intersection-based synchronization requirements are also examined.
A Probabilistic Approach to Collaborative Multi-Robot Localization This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The technique has been implemented and tested using two mobile robots equipped with cameras and laser range-finders for detecting other robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization. A further experiment demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots collaborate during localization.
Designing Fully Distributed Consensus Protocols for Linear Multi-Agent Systems With Directed Graphs This technical note addresses the distributed consensus protocol design problem for multi-agent systems with general linear dynamics and directed communication graphs. Existing works usually design consensus protocols using the smallest real part of the nonzero eigenvalues of the Laplacian matrix associated with the communication graph, which however is global information. In this technical note, based on only the agent dynamics and the relative states of neighboring agents, a distributed adaptive consensus protocol is designed to achieve leader-follower consensus in the presence of a leader with a zero input for any communication graph containing a directed spanning tree with the leader as the root node. The proposed adaptive protocol is independent of any global information of the communication graph and thereby is fully distributed. Extensions to the case with multiple leaders are further studied.
Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi–Sugeno fuzzy systems This paper provides simple and effective linear matrix inequality (LMI) characterizations for the stability and stabilization conditions of discrete-time Takagi–Sugeno (T–S) fuzzy systems. To do this, more general classes of non-parallel distributed compensation (non-PDC) control laws and non-quadratic Lyapunov functions are presented. Unlike the conventional non-quadratic approaches using only current-time normalized fuzzy weighting functions, we consider not only the current-time fuzzy weighting functions but also the l-step-past (l⩾0) and one-step-ahead ones when constructing the control laws and Lyapunov functions. Consequently, by introducing additional decision variables, it can be shown that the proposed conditions include the existing ones found in the literature as particular cases. Examples are given to demonstrate the effectiveness of the approaches.
Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices. Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.
Cooperative Cleaners: A Study in Ant Robotics In the world of living creatures, simple-minded animals often cooperate to achieve common goals with amazing performance. One can consider this idea in the context of robotics, and suggest models for programming goal-oriented behavior into the members of a group of simple robots lacking global supervision. This can be done by controlling the local interactions between the robot agents, to have them jointly carry out a given mission. As a test case we analyze the problem of many simple robots cooperating to clean the dirty floor of a non-convex region in Z2, using the dirt on the floor as the main means of inter-robot communication.
Surrogate-assisted evolutionary computation: Recent advances and future challenges Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted evolutionary computation has found successful applications not only in solving computationally expensive single- or multi-objective optimization problems, but also in addressing dynamic optimization problems, constrained optimization problems and multi-modal optimization problems. This paper provides a concise overview of the history and recent developments in surrogate-assisted evolutionary computation and suggests a few future trends in this research area.
A recent survey of reversible watermarking techniques. The art of secretly hiding and communicating information has gained immense importance in the last two decades due to the advances in generation, storage, and communication technology of digital content. Watermarking is one of the promising solutions for tamper detection and protection of digital content. However, watermarking can cause damage to the sensitive information present in the cover work. Therefore, at the receiving end, the exact recovery of cover work may not be possible. Additionally, there exist certain applications that may not tolerate even small distortions in cover work prior to the downstream processing. In such applications, reversible watermarking instead of conventional watermarking is employed. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the cover work. For the last few years, reversible watermarking techniques are gaining popularity because of its increasing applications in some important and sensitive areas, i.e., military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different reversible watermarking schemes are discussed on the basis of various characteristics of watermarking. However, the major focus of this survey is on prediction-error expansion based reversible watermarking techniques, whereby the secret information is hidden in the prediction domain through error expansion. Comparison of the different reversible watermarking techniques is provided in tabular form, and an analysis is carried out. Additionally, experimental comparison of some of the recent reversible watermarking techniques, both in terms of watermarking properties and computational time, is provided on a dataset of 300 images. Future directions are also provided for this potentially important field of watermarking.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.12
0.12
0.12
0.12
0.12
0.02
0.004
0.0008
0
0
0
0
0
0
Lateral Control in Precision Docking Using RTK-GNSS/INS and LiDAR for Localization This article describes the design of a lateral control method for precision docking using GNSS/INS and LiDAR for localization. The aim of this study is to verify whether an automated driving bus can achieve the requirement of standard deviation of the lateral error (1.25 cm) using onboard sensors without additional infrastructure. To design the controller and decide the conditions of pilot tests on public roads, the vehicle dynamics, steering system, sensor dynamics, and disturbances are modelled. The steering system of the vehicle can be approximated as a second-order system, and the measuring time of the sensors are considered, which cause reduction of damping ratio in lateral dynamics. The numerical analysis revealed that the vehicle speed should be reduced to under 4.2 m/s (15 km/h) before precision docking starts, to make the lateral motion of the vehicle more stable. Experimental results show that the standard deviation of lateral error in precision docking using LiDAR for localization is 1.2 cm, which is slightly under the criterion threshold. The results also verify that the vehicle and sensor model describes the vehicle lateral motion appropriately.
PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. The code is available at https://github.com/sshaoshuai/PointRCNN.
IoU Loss for 2D/3D Object Detection In the 2D/3D object detection task, Intersection-over-Union (IoU) has been widely employed as an evaluation metric to evaluate the performance of different detectors in the testing stage. However, during the training stage, the common distance loss (e.g, L_1 or L_2) is often adopted as the loss function to minimize the discrepancy between the predicted and ground truth Bounding Box (Bbox). To eliminate the performance gap between training and testing, the IoU loss has been introduced for 2D object detection in [1] and [2]. Unfortunately, all these approaches only work for axis-aligned 2D Boxes, which cannot be applied for more general object detection task with rotated Boxes. To resolve this issue, we investigate the IoU computation for two rotated Boxes first and then implement a unified framework, IoU loss layer for both 2D and 3D object detection tasks. By integrating the implemented IoU loss into several state-of-the-art 3D object detectors, consistent improvements have been achieved for both bird-eye-view 2D detection and point cloud 3D detection on the public KITTI [3] benchmark.
Single image enhancement in sandstorm weather via tensor least square In this paper, we present a tensor least square based model for sand/sandstorm removal in images. The main contributions of this paper are as follows. First, an important intrinsic natural feature of outdoor scenes free of sand/sandstorm is found that the outlines in RGB channels are somewise similar, which discloses the physical validation using the tensor instead of the matrix. Second, a tensor least square optimization model is presented for the decomposition of edge-preserving base layers and details. This model not only decomposes the color image (taken as an inseparable indivisibility) in X, Y directions, but also in Z direction, which meets the statistical feature of natural scenes and can physically disclose the intrinsic color information. The model's advantages are twofold: one is the decomposition of edge-preserving base layers and details that can be employed for contrast enhancement without artificial halos, and the other one is the color driving ability that makes the enhanced images as close to natural images as possible via the inherent color structure. Thirdly, the tensor least square optimization model based image enhancement scheme is discussed for the sandstorm weather images. Finally, the experiments and comparisons with the stateof-the-art methods on real degraded images under sandstorm weather are shown to verify our method's efficiency.
Modular Lightweight Network for Road Object Detection Using a Feature Fusion Approach This article presents a modular lightweight network model for road objects detection, such as car, pedestrian, and cyclist, especially when they are far away from the camera and their sizes are small. Great advances have been made for the deep networks, but small objects detection is still a challenging task. In order to solve this problem, a majority of existing methods utilize complicated network or bigger image size, which generally leads to higher computation cost. The proposed network model is referred to as modular feature fusion detector (MFFD), using a fast and efficient network architecture for detecting small objects. The contribution lies in the following aspects: 1) two base modules have been designed for efficient computation: a) Front module reduces the information loss from raw input images and b) Tinier module decreases the model size and computation cost, while ensuring the detection accuracy; 2) by stacking the base modules, we design a context features fusion framework for multiscale object detection; and 3) the proposed method is efficient in terms of model size and computation cost, which is applicable for resource-limited devices, such as embedded systems for advanced driver-assistance systems (ADASs). Comparisons with the state-of-the-art on the challenging KITTI dataset reveal the superiority of the proposed method. Especially, 100 ft/s can be achieved on the embedded GPUs such as Jetson TX2.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Latent dirichlet allocation We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive coupling, magnetic resonate coupling, and electromagnetic (EM) radiation, for short-/mid-/long-range applications, respectively. In this paper, we consider the EM or radio signal enabled WPT in particular. Since radio signals can carry energy as well as information at the same time, a unified study on simultaneous wireless information and power transfer (SWIPT) is pursued. Specifically, this paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas. Two scenarios are examined, in which the information receiver and energy receiver are separated and see different MIMO channels from the transmitter, or co-located and see the identical MIMO channel from the transmitter. For the case of separated receivers, we derive the optimal transmission strategy to achieve different tradeoffs for maximal information rate versus energy transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. For the case of co-located receivers, we show an outer bound for the achievable R-E region due to the potential limitation that practical energy harvesting receivers are not yet able to decode information directly. Under this constraint, we investigate two practical designs for the co-located receiver case, namely time switching and power splitting, and characterize their achievable R-E regions in comparison to the outer bound.
Passive Image-Splicing Detection by a 2-D Noncausal Markov Model In this paper, a 2-D noncausal Markov model is proposed for passive digital image-splicing detection. Different from the traditional Markov model, the proposed approach models an image as a 2-D noncausal signal and captures the underlying dependencies between the current node and its neighbors. The model parameters are treated as the discriminative features to differentiate the spliced images from the natural ones. We apply the model in the block discrete cosine transformation domain and the discrete Meyer wavelet transform domain, and the cross-domain features are treated as the final discriminative features for classification. The support vector machine which is the most popular classifier used in the image-splicing detection is exploited in our paper for classification. To evaluate the performance of the proposed method, all the experiments are conducted on public image-splicing detection evaluation data sets, and the experimental results have shown that the proposed approach outperforms some state-of-the-art methods.
A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. In this paper, a blind image watermarking scheme based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. In this scheme, DWT is applied on ROI (region of interest) of the medical image to get different frequency subbands of its wavelet decomposition. On the low frequency subband LL of the ROI, block-SVD is applied to get different singular matrices. A pair of elements with similar values is identified from the left singular value matrix of these selected blocks. The values of these pairs are modified using certain threshold to embed a bit of watermark content. Appropriate threshold is chosen to achieve the imperceptibility and robustness of medical image and watermark contents respectively. For authentication and identification of original medical image, one watermark image (logo) and other text watermark have been used. The watermark image provides authentication whereas the text data represents electronic patient record (EPR) for identification. At receiving end, blind recovery of both watermark contents is performed by a similar comparison scheme used during the embedding process. The proposed algorithm is applied on various groups of medical images like X-ray, CT scan and mammography. This scheme offers better visibility of watermarked image and recovery of watermark content due to DWT-SVD combination. Moreover, use of Hamming error correcting code (ECC) on EPR text bits reduces the BER and thus provides better recovery of EPR. The performance of proposed algorithm with EPR data coding by Hamming code is compared with the BCH error correcting code and it is found that later one perform better. A result analysis shows that imperceptibility of watermarked image is better as PSNR is above 43 dB and WPSNR is above 52 dB for all set of images. In addition, robustness of the scheme is better than existing scheme for similar set of medical images in terms of normalized correlation coefficient (NCC) and bit-error-rate (BER). An analysis is also carried out to verify the performance of the proposed scheme for different size of watermark contents (image and EPR data). It is observed from analysis that the proposed scheme is also appropriate for watermarking of color image. Using proposed scheme, watermark contents are extracted successfully under various noise attacks like JPEG compression, filtering, Gaussian noise, Salt and pepper noise, cropping, filtering and rotation. Performance comparison of proposed scheme with existing schemes shows proposed scheme has better robustness against different types of attacks. Moreover, the proposed scheme is also robust under set of benchmark attacks known as checkmark attacks.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
RTRobMultiAxisControl: A Framework for Real-Time Multiaxis and Multirobot Control This paper presents the challenges met in the development of a new framework for multiaxis and multirobot control. The increasing demand for multirobot collaboration and robotic assistance, both in industry and service applications, has raised the level of interactions between robots and humans in a shared environment with real-time constraints. Some scientific and technological issues need to be unlocked to ensure safe human–robot interactions: to guarantee the response time during the robot perception–action process, to cope with dynamic interactions with the robot environment, to secure the collaborations between several machines and humans, and to improve the integration of the robots at home and in open zones of production lines. The specifications of a new hardware and software framework are set with respect to these observations. The framework will meet complex research and industrial issues for the future of multiaxis and multirobot control. Before introducing our approach, a brief survey of existing frameworks and robotic middleware is given. The foundations of our approach are based on the following requirements: the framework must be real time, transferable, maintainable, and multimanufacturer. The framework design has also to guarantee the robustness of the machine interactions in a dynamic and collaborative environment. To evaluate the feasibility of our design strategy and assess its performance, we have developed mechatronic devices with a high level of human–machine collaboration. This paper outlines two robotic applications which require multirobot real-time synchronization and are based on the proposed framework. A temporal analysis demonstrates its robustness for multiaxis and multirobot control. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Note to Practitioners</italic> —This paper was motivated by the problem of proposing a transferable framework dedicated to real-time multiaxis and multirobot control. Most of the existing middleware solutions do not unify accesses to the axis level and to the robot control level with a common programming approach and with real-time capability. This is a key problem for achieving multirobot synchronization and reaction times compatible with dynamic collaboration. Our framework is based on open robotics and object-oriented programming and implements the industrial standards for motion control. Multirobots control experiments with a high number of synchronized axis and heterogeneous hardware demonstrate the efficiency of the approach.
On NCP-Functions In this paper we reformulate several NCP-functionsfor the nonlinear complementarityproblem (NCP) from their merit function forms and studysome important properties of these NCP-functions. We point out thatsome of these NCP-functions have all the nice properties investigated by Chen, Chen and Kanzow [2] fora modified Fischer-Burmeister function, while some other NCP-functionsmay lose one or several of these properties. We alsoprovide a modified normal map and a smoothing technique toovercome the limitation of these NCP-functions. A numerical comparisonfor the behaviour of various NCP-functions is provided.
Two k-winners-take-all networks with discontinuous activation functions. This paper presents two k-winners-take-all (k-WTA) networks with discontinuous activation functions. The k-WTA operation is first converted equivalently into linear and quadratic programming problems. Then two k-winners-take-all networks are designed based on the linear and quadratic programming formulations. The networks are theoretically guaranteed to be capable of performing the k-WTA operation in real time. Simulation results show the effectiveness and performance of the networks.
Distributed Task Allocation of Multiple Robots: A Control Perspective. The problem of dynamic task allocation in a distributed network of redundant robot manipulators for pathtracking with limited communications is investigated in this paper, where k fittest ones in a group of n redundant robot manipulators with n k are allocated to execute an object tracking task. The problem is essentially challenging in view of the interplay of manipulator kinematics and the dynam...
A Data-Driven Cyclic-Motion Generation Scheme for Kinematic Control of Redundant Manipulators Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation (CMG) task, to some extent. Inspired by this problem, this article proposes a data-driven CMG scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously to complete the kinematic control of manipulators with model unknown. It is worth mentioning that the proposed method is capable of accurately estimating the Jacobian matrix in order to obtain the structure information of the manipulator and theoretically eliminates the tracking errors. Theoretical analyses prove the convergence of the learning and control parts under the necessary noise conditions. Computer simulation results and comparisons of different controllers illustrate the reliability and superior performance of the proposed method with strong learning ability and control ability. This article is greatly significant for redundancy resolution of redundant manipulators with unknown models or unknown loads in practice.
Development of a Novel Robust Control Method for Formation of Heterogeneous Multiple Mobile Robots With Autonomous Docking Capability Multiple mobile robots in formation are often required to dock to each other to overcome the limitations, such as battery failure, transportation capacity, and maneuverability on rough terrains; however, it is challenging to design a single controller that navigates the robots to dock to each other, maintains the other robots in formation, and is applicable to both docked and nondocked robots, while it is also robust to uncertainties and disturbances. This article proposes a novel robust subsumption architecture for nonholonomic mobile robots in formation with docking capability. In addition to docking, the robots, i.e., all the nondocked robots and the front-docked robots, maintain a formation that can also be switched automatically to other configurations when necessary and avoid collisions with other robots and dynamic obstacles. The proposed subsumption control architecture takes into account each follower’s desired goal as well as its docking condition to synthesize a control law as a velocity control signal that is then used to determine the robust input torque for each follower using the robots’ dynamics. The Lyapunov stability of the controller is also proved. We also develop strategies for efficient centralized motion planning of the followers to achieve various goals, e.g., formation keeping/switching, docking, and collision avoidance. The effectiveness of our proposed methodology was verified in simulations as well as implementations on a virtual robot environment. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Note to Practitioners</italic> —Multiple mobile robots, especially when operating as a formation, are able to perform tasks that are beyond the capabilities of individual robots. Existing formation control approaches neglect some realistic limitations of mobile robots, such as battery failure, limited transportation capacity, and maneuverability, to name a few. This article was motivated by these realistic limitations of mobile robots when operating in formation, and it suggests a new approach for navigation of such robots by docking some (or all) of these robots to each other and pursue a variety of goals. The goal includes autonomous docking, formation keeping/switching, and collision avoidance in dynamic environments. We include robot dynamics and system uncertainties in our algorithm and provide a robust control methodology. Therefore, the developed methodologies in this article can be adopted in real applications that require robots to be supplied with sufficient battery or having a large payload capacity, e.g., agricultural robotics.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Sequence to Sequence Learning with Neural Networks. Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
State resetting for bumpless switching in supervisory control In this paper the realization and implementation of a multi-controller scheme made of a finite set of linear single-input-single-output controllers, possibly having different state dimensions, is studied. The supervisory control framework is considered, namely a minimal parameter dependent realization of the set of controllers such that all controllers share the same state space is used. A specific state resetting strategy based on the behavioral approach to system theory is developed in order to master the transient upon controller switching.
An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
A unified improvement of the AES algorithm Symmetric cryptography is widely used in information exchange and storage. The advanced encryption standard (AES) is one of the most important symmetric ciphers. Based on the AES algorithm, this paper designs a new symmetric cipher, called unified algorithm. In the unified algorithm, the secret key is 256-bit long and the plaintext and cipher-text are both 128-bit long. The unified algorithm is composed of the modules and their improved versions of AES and a sequence-flip module, and has the same encryption and decryption processes. The simulation results show that the unified algorithm has the same processing speed as AES, and its single-thread running speed in Mathematica can reach up to 1.6570Mbps. Meanwhile, the unified algorithm has the same encryption intensity as AES, and its relative errors of system sensitivity index are less than 0.5%. The unified algorithm can be applied to various secure communication occasions to replace the AES algorithm. In addition, due to the encryption and decryption sharing the same module, the unified algorithm can save the hardware resources and simplify the secure communication protocol effectively.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The Optimal Charging in Wireless Rechargeable Sensor Networks Recent years have witnessed several new promising technologies to power the wireless sensor networks, which motivate some key topics to be revisited. By integrating sensing and computation capabilities to the traditional RFID tags, the Wireless Identification and Sensing Platform (WISP) is an opensource platform acting as a pioneering experimental platform of wireless rechargeable sensor networks. Different from traditional tags, a RFID-based wireless rechargeable sensor node needs to charge its onboard energy storage above a threshold in order to power its sensing, computation and communication components. Consequently, such charging delay imposes a unique design challenge for deploying wireless rechargeable sensor networks. In this paper, we tackle this problem by planning the optimal movement strategy of the mobile RFID reader, such that the time to charge all nodes in the network above their energy threshold is minimized. We first propose an optimal solution using the linear programming method. To further reduce the computational complexity, we then introduce a heuristic solution with a provable approximation ratio of (1 + )=(1 ") by discretizing the charging power on a two-dimensional space. Through extensive evaluations, we demonstrate that our design outperforms the set-cover-based design by an average of 24:7% while the computational complexity is O((N=")2). Finally, we consider two practical issues in system implementation and provide guidelines for parameter setting.
Double warning thresholds for preemptive charging scheduling in Wireless Rechargeable Sensor Networks. Wireless power transfer technique provides new alternatives for solving the limited power capacity problem for ubiquitous mobile wireless devices, and makes wireless rechargeable sensor networks (WRSNs) promising. However, mainly due to the underestimate of unbalanced influences of spatial and temporal constraints posed by charging requests, traditional scheduling strategies achieve rather low charging request throughput and success rate, posing as a major bottleneck for further improvement. In this paper, we propose a Double Warning thresholds with Double Preemption (DWDP) charging scheme, in which double warning thresholds are used when residual energy levels of sensor nodes fall below certain thresholds. By introducing specific comparison rules, warning thresholds can be used to adjust charging priorities of different sensors, warn the upcoming recharge deadlines, as well as support preemptive scheduling. Then DWDP is extended to where multiple Wireless Charging Vehicles (WCVs) are employed, and a Collaborative Charging DWDP, namely CCDWDP is proposed. Finally, we conduct extensive simulations to manifest the advantages of DWDP as well as CCDWDP. Simulation results reveal that DWDP can achieve better performance in guaranteeing the successful scheduling of the high-priority task and improving stability of the system. CCDWDP outperforms in terms of high charging throughput and short charging delay.
A Coverage-Aware Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks Constant energy supply for sensor nodes is essential for the development of the green Internet of Things (IoT). Recently, WRSNs have been proposed to resolve the energy limitations of nodes, aiming to realize continuous functioning. In this article, a coverage-aware hierarchical charging algorithm in WRSNs is proposed, considering energy consumption and the degree of node coverage. The algorithm first performs network clustering using the K-means algorithm. In addition, nodes are classified into multiple levels in each cluster to calculate respective anchor points based on the energy consumption rate and coverage degree of nodes. Then, the anchor points converge to an optimized anchor point in each cluster. To reduce charging latency, the optimized anchor points form two disjoint internal and external polygons. Next, mobile chargers travel along the internal and external polygons, respectively. Experimental results indicate that the proposed algorithm can improve charging efficiency and reduce charging latency substantially.
Joint Charging Tour Planning and Depot Positioning for Wireless Sensor Networks Using Mobile Chargers. Recent breakthrough in wireless energy transfer technology has enabled wireless sensor networks (WSNs) to operate with zero-downtime through the use of mobile energy chargers (MCs), that periodically replenish the energy supply of the sensor nodes. Due to the limited battery capacity of the MCs, a significant number of MCs and charging depots are required to guarantee perpetual operations in large...
Multi-Antenna NOMA for Computation Offloading in Multiuser Mobile Edge Computing Systems This paper studies a multiuser mobile edge computing (MEC) system in which one base station (BS) serves multiple users with intensive computation tasks. We exploit the multi-antenna non-orthogonal multiple access (NOMA) technique for multiuser computation offloading, such that different users can simultaneously offload their computation tasks to the multi-antenna BS over the same time/frequency resources, and the BS can employ successive interference cancelation (SIC) to efficiently decode all users’ offloaded tasks for remote execution. In particular, we pursue energy-efficient MEC designs by considering two cases with partial and binary offloading, respectively. We aim to minimize the weighted sum-energy consumption at all users subject to their computation latency constraints, by jointly optimizing the communication and computation resource allocation as well as the BS’s decoding order for SIC. For the case with partial offloading, the weighted sum-energy minimization is a convex optimization problem, for which an efficient algorithm based on the Lagrange duality method is presented to obtain the globally optimal solution. For the case with binary offloading, the weighted sum-energy minimization corresponds to a mixed Boolean convex optimization problem that is generally more difficult to be solved. We first use the branch-and-bound (BnB) method to obtain the globally optimal solution and then develop two low-complexity algorithms based on the greedy method and the convex relaxation, respectively, to find suboptimal solutions with high quality in practice. Via numerical results, it is shown that the proposed NOMA-based computation offloading design significantly improves the energy efficiency of the multiuser MEC system as compared to other benchmark schemes. It is also shown that for the case with binary offloading, the proposed greedy method performs close to the optimal BnB-based solution, and the convex relaxation-based solution achieves a suboptimal performance but with lower implementation complexity.
Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing. Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.
Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects The rechargeable battery is the conventional power source for mobile devices. However, limited battery capacity and frequent recharging requires further research to find new ways to deliver power without the hassle of connecting cables. Novel wireless power supply methods, such as energy harvesting and wireless power transfer, are currently receiving considerable attention. In this article, an overview of recent advances in wireless power supply is provided, and several promising applications are presented to show the future trends. In addition, to efficiently schedule the harvested energy, an energy scheduling scheme in the EH-powered D2D relay network is proposed as a case study. To be specific, we first formulate an optimization problem for energy scheduling, and then propose a modified two stage directional water filling algorithm to resolve it.
Design of Self-sustainable Wireless Sensor Networks with Energy Harvesting and Wireless Charging AbstractEnergy provisioning plays a key role in the sustainable operations of Wireless Sensor Networks (WSNs). Recent efforts deploy multi-source energy harvesting sensors to utilize ambient energy. Meanwhile, wireless charging is a reliable energy source not affected by spatial-temporal ambient dynamics. This article integrates multiple energy provisioning strategies and adaptive adjustment to accomplish self-sustainability under complex weather conditions. We design and optimize a three-tier framework with the first two tiers focusing on the planning problems of sensors with various types and distributed energy storage powered by environmental energy. Then we schedule the Mobile Chargers (MC) between different charging activities and propose an efficient, 4-factor approximation algorithm. Finally, we adaptively adjust the algorithms to capture real-time energy profiles and jointly optimize those correlated modules. Our extensive simulations demonstrate significant improvement of network lifetime (\(\)), increase of harvested energy (15%), reduction of network cost (30%), and the charging capability of MC by 100%.
Mobile-to-mobile energy replenishment in mission-critical robotic sensor networks Recently, much research effort has been devoted to employing mobile chargers for energy replenishment of the robots in robotic sensor networks. Observing the discrepancy between the charging latency of robots and charger travel distance, we propose a novel tree-based charging schedule for the charger, which minimizes its travel distance without causing the robot energy depletion. We analytically evaluate its performance and show its closeness to the optimal solutions. Furthermore, through a queue-based approach, we provide theoretical guidance on the setting of the remaining energy threshold at which the robots request energy replenishment. This guided setting guarantees the feasibility of the tree-based schedule to return a depletion-free charging schedule. The performance of the tree-based charging schedule is evaluated through extensive simulations. The results show that the charger travel distance can be reduced by around 20%, when compared with the schedule that only considers the robot charging latency.
Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.
Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features Viewpoint invariant pedestrian recognition is an important yet under-addressed problem in computer vision. This is likely due to the difficulty in matching two objects with unknown viewpoint and pose. This paper presents a method of performing viewpoint invariant pedestrian recognition using an efficiently and intelligently designed object representation, the ensemble of localized features (ELF). Instead of designing a specific feature by hand to solve the problem, we define a feature space using our intuition about the problem and let a machine learning algorithm find the best representation. We show how both an object class specific representation and a discriminative recognition model can be learned using the AdaBoost algorithm. This approach allows many different kinds of simple features to be combined into a single similarity function. The method is evaluated using a viewpoint invariant pedestrian recognition dataset and the results are shown to be superior to all previous benchmarks for both recognition and reacquisition of pedestrians.
Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid Distributed energy resources (DERs), like electric vehicles (EVs), can offer valuable services to power systems, such as enabling renewable energy to the electricity producer and providing ancillary services to the system operator. However, these new DERs may challenge the distribution grid due to insufficient capacity in peak hours. This paper aims to coordinate the valuable services and operation constraints of three actors: the EV owner, the Fleet operator (FO) and the Distribution system operator (DSO), considering the individual EV owner's driving requirement, the charging cost of EV and thermal limits of cables and transformers in the proposed market framework. Firstly, a theoretical market framework is described. Within this framework, FOs who represent their customer's (EV owners) interests will centrally guarantee the EV owners' driving requirements and procure the energy for their vehicles with lower cost. The congestion problem will be solved by a coordination between DSO and FOs through a distribution grid capacity market scheme. Then, a mathematical formulation of the market scheme is presented. Further, some case studies are shown to illustrate the effectiveness of the proposed solutions.
Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection. Road detection from the perspective of moving vehicles is a challenging issue in autonomous driving. Recently, many deep learning methods spring up for this task, because they can extract high-level local features to find road regions from raw RGB data, such as convolutional neural networks and fully convolutional networks (FCNs). However, how to detect the boundary of road accurately is still an ...
Learning Interpretable Deep State Space Model for Probabilistic Time Series Forecasting. Probabilistic time series forecasting involves estimating the distribution of future based on its history, which is essential for risk management in downstream decision-making. We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks and the dependency is modeled by recurrent neural nets. We take the automatic relevance determination (ARD) view and devise a network to exploit the exogenous variables in addition to time series. In particular, our ARD network can incorporate the uncertainty of the exogenous variables and eventually helps identify useful exogenous variables and suppress those irrelevant for forecasting. The distribution of multi-step ahead forecasts are approximated by Monte Carlo simulation. We show in experiments that our model produces accurate and sharp probabilistic forecasts. The estimated uncertainty of our forecasting also realistically increases over time, in a spontaneous manner.
1.021328
0.022167
0.022167
0.019135
0.017143
0.015714
0.014286
0.014286
0.007479
0.000003
0
0
0
0
Interactive systems based on electrical muscle stimulation We provide attendees with a hands-on demonstration of several our interactive systems based on electrical muscle stimulation. These wearable devices allow attendees, for example, to transform their arms in interactive plotters, physically learn how to manipulate objects they never seen before, feel walls and forces in virtual reality, and so forth.
Adding Force Feedback to Mixed Reality Experiences and Games using Electrical Muscle Stimulation. We present a mobile system that enhances mixed reality experiences and games with force feedback by means of electrical muscle stimulation (EMS). The benefit of our approach is that it adds physical forces while keeping the users' hands free to interact unencumbered-not only with virtual objects, but also with physical objects, such as props and appliances. We demonstrate how this supports three classes of applications along the mixed-reality continuum: (1) entirely virtual objects, such as furniture with EMS friction when pushed or an EMS-based catapult game. (2) Virtual objects augmented via passive props with EMS-constraints, such as a light control panel made tangible by means of a physical cup or a balance-the-marble game with an actuated tray. (3) Augmented appliances with virtual behaviors, such as a physical thermostat dial with EMS-detents or an escape-room that repurposes lamps as levers with detents. We present a user-study in which participants rated the EMS-feedback as significantly more realistic than a no-EMS baseline.
Real-time simulation of three-dimensional shoulder girdle and arm dynamics. Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate the performance and mechanical behavior of a real-time, dynamic model of the arm and shoulder girdle. The model comprises seven segments linked by eleven degrees of freedom and actuated by 138 muscle elements. Polynomials were generated to describe the muscle lines of action to reduce computation time, and an implicit, first-order Rosenbrock formulation of the equations of motion was used to increase simulation step-size. The model simulated flexion of the arm faster than real time, simulation time being 92% of actual movement time on standard desktop hardware. Modeled maximum isometric torque values agreed well with values from the literature, showing that the model simulates the moment-generating behavior of a real human arm. The speed of the model enables experiments where the user controls the virtual arm and receives visual feedback in real time. The ability to optimize potential solutions in simulation greatly reduces the burden on the user during development.
Human-in-the-Loop Assessment of an Ultralight, Low-Cost Body Posture Tracking Device. In rehabilitation, assistive and space robotics, the capability to track the body posture of a user in real time is highly desirable. In more specific cases, such as teleoperated extra-vehicular activity, prosthetics and home service robotics, the ideal posture-tracking device must also be wearable, light and low-power, while still enforcing the best possible accuracy. Additionally, the device must be targeted at effective human-machine interaction. In this paper, we present and test such a device based upon commercial inertial measurement units: it weighs 575 g in total, lasts up to 10.5 h of continual operation, can be donned and doffed in under a minute and costs less than 290 EUR. We assess the attainable performance in terms of error in an online trajectory-tracking task in Virtual Reality using the device through an experiment involving 10 subjects, showing that an average user can attain a precision of 0.66 cm during a static precision task and 6.33 cm while tracking a moving trajectory, when tested in the full peri-personal space of a user.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
On the security of public key protocols Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
A Tutorial On Visual Servo Control This article provides a tutorial introduction to visual servo control of robotic manipulators, Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework, We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process, We then present a taxonomy of visual servo control systems, The two major classes of systems, position-based and image-based systems, are then discussed in detail, Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking, We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices. Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.
Parameter tuning for configuring and analyzing evolutionary algorithms In this paper we present a conceptual framework for parameter tuning, provide a survey of tuning methods, and discuss related methodological issues. The framework is based on a three-tier hierarchy of a problem, an evolutionary algorithm (EA), and a tuner. Furthermore, we distinguish problem instances, parameters, and EA performance measures as major factors, and discuss how tuning can be directed to algorithm performance and/or robustness. For the survey part we establish different taxonomies to categorize tuning methods and review existing work. Finally, we elaborate on how tuning can improve methodology by facilitating well-funded experimental comparisons and algorithm analysis.
Cyber warfare: steganography vs. steganalysis For every clever method and tool being developed to hide information in multimedia data, an equal number of clever methods and tools are being developed to detect and reveal its secrets.
Efficient and reliable low-power backscatter networks There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors. This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality --i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.
Internet of Things for Smart Cities The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Quaternion polar harmonic Fourier moments for color images. •Quaternion polar harmonic Fourier moments (QPHFM) is proposed.•Complex Chebyshev-Fourier moments (CHFM) is extended to quaternion QCHFM.•Comparison experiments between QPHFM and QZM, QPZM, QOFMM, QCHFM and QRHFM are conducted.•QPHFM performs superbly in image reconstruction and invariant object recognition.•The importance of phase information of QPHFM in image reconstruction are discussed.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
0
ASPE: attribute-based secure policy enforcement in vehicular ad hoc networks Vehicular ad hoc networks (VANETs) are usually operated among vehicles moving at high speeds, and thus their communication relations can be changed frequently. In such a highly dynamic environment, establishing trust among vehicles is difficult. To solve this problem, we propose a flexible, secure and decentralized attribute based secure key management framework for VANETs. Our solution is based on attribute based encryption (ABE) to construct an attribute based security policy enforcement (ASPE) framework. ASPE considers various road situations as attributes. These attributes are used as encryption keys to secure the transmitted data. ASPE is flexible in that it can dynamically change encryption keys depending on the VANET situations. At the same time, ASPE naturally incorporates data access control policies on the transmitted data. ASPE provides an integrated solution to involve data access control, key management, security policy enforcement, and secure group formation in highly dynamic vehicular communication environments. Our performance evaluations show that ASPE is efficient and it can handle large amount of data encryption/decryption flows in VANETs.
SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing. With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.
Secure data sharing scheme for VANETs based on edge computing The development of information technology and the abundance of problems related to vehicular traffic have led to extensive studies on vehicular ad hoc networks (VANETs) to meet various aspects of vehicles, including safety, efficiency, management, and entertainment. In addition to the security applications provided by VANETs, vehicles can take advantage of other services and users who have subscribed to multiple services can migrate between different wireless network areas. Traditionally, roadside units (RSUs) have been used by vehicles to enjoy cross-domain services. This results in significant delays and large loads on the RSUs. To solve these problems, this paper introduces a scheme to share data among different domains. First, a few vehicles called edge computing vehicles (ECVs) are selected to act as edge computing nodes in accordance with the concept of edge computing. Next, the data to be shared are forwarded by the ECVs to the vehicle that has requested the service. This method results in low latency and load on the RSUs. Meanwhile, ciphertext-policy attribute-based encryption and elliptic curve cryptography are used to ensure the confidentiality of the information.
Attribute-Based Encryption With Parallel Outsourced Decryption For Edge Intelligent Iov Edge intelligence is an emerging concept referring to processes in which data are collected and analyzed and insights are delivered close to where the data are captured in a network using a selection of advanced intelligent technologies. As a promising solution to solve the problems of insufficient computing capacity and transmission latency, the edge intelligence-empowered Internet of Vehicles (IoV) is being widely investigated in both academia and industry. However, data sharing security in edge intelligent IoV is a challenge that should be solved with priority. Although attribute-based encryption (ABE) is capable of addressing this challenge, many time-consuming modular exponential operations and bilinear pair operations as well as serial computing cause ABE to have a slow decryption speed. Consequently, it cannot address the response time requirement of edge intelligent IoV. Given this problem, an ABE model with parallel outsourced decryption for edge intelligent IoV, called ABEM-POD, is proposed. It includes a generic parallel outsourced decryption method for ABE based on Spark and MapReduce. This method is applicable to all ABE schemes with a tree access structure and can be applied to edge intelligent IoV. Any ABE scheme based on the proposed model not only supports parallel outsourced decryption but also has the same security as the original scheme. In this paper, ABEM-POD has been applied to three representative ABE schemes, and the experiments show that the proposed ABEM-POD is efficient and easy to use. This approach can significantly improve the speed of outsourced decryption to address the response time requirement for edge intelligent IoV.
Secure message classification services through identity-based signcryption with equality test towards the Internet of vehicles To provide a classification function that has the ability to promote the management of signcrypted messages transmitted by the numerous vehicles in the IoV system, in this paper, we construct an identity-based signcryption with equality test scheme (IBSC-ET) for the first time. Our scheme not only ensures the integrity, confidentiality as well as authentication of messages, but also enables the cloud server to execute the equality test between two ciphertexts signcrypted by the same or different public keys to decide whether the same plaintext is contained, which is counted as the essential factor contributing to the classification. Besides, the identity-based mechanism greatly improves the efficiency since the certificate management problem is avoided. Furthermore, the security of the introduced scheme can be proved in the random oracle model under the Computational Diffie-Hellman Assumption (CDHA) as well as the Bilinear Diffie-Hellman Assumption (BDHA). In the end, the feasibility and efficiency of our proposed are demonstrated through the performance analysis.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Image analogies This paper describes a new framework for processing images by example, called “image analogies.” The framework involves two stages: a design phase, in which a pair of images, with one image purported to be a “filtered” version of the other, is presented as “training data”; and an application phase, in which the learned filter is applied to some new target image in order to create an “analogous” filtered result. Image analogies are based on a simple multi-scale autoregression, inspired primarily by recent results in texture synthesis. By choosing different types of source image pairs as input, the framework supports a wide variety of “image filter” effects, including traditional image filters, such as blurring or embossing; improved texture synthesis, in which some textures are synthesized with higher quality than by previous approaches; super-resolution, in which a higher-resolution image is inferred from a low-resolution source; texture transfer, in which images are “texturized” with some arbitrary source texture; artistic filters, in which various drawing and painting styles are synthesized based on scanned real-world examples; and texture-by-numbers, in which realistic scenes, composed of a variety of textures, are created using a simple painting interface.
Noninterference for a Practical DIFC-Based Operating System The Flume system is an implementation of decentralized information flow control (DIFC) at the operating system level. Prior work has shown Flume can be implemented as a practical extension to the Linux operating system, allowing real Web applications to achieve useful security guarantees. However, the question remains if the Flume system is actually secure. This paper compares Flume with other recent DIFC systems like Asbestos, arguing that the latter is inherently susceptible to certain wide-bandwidth covert channels, and proving their absence in Flume by means of a noninterference proof in the communicating sequential processes formalism.
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art In the nearly six decades since researchers began to explore methods of creating them, exoskeletons have progressed from the stuff of science fiction to nearly commercialized products. While there are still many challenges associated with exoskeleton development that have yet to be perfected, the advances in the field have been enormous. In this paper, we review the history and discuss the state-of-the-art of lower limb exoskeletons and active orthoses. We provide a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature, and end with a discussion of the major advances that have been made and hurdles yet to be overcome.
Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation. The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR) approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ)-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU) and acceleration gradient update (AGU). MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10 degrees after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy.
Inter-class sparsity based discriminative least square regression Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.11
0.1
0.1
0.1
0.05
0
0
0
0
0
0
0
0
0
UAV-enabled Data Collection for mMTC Networks: AEM Modeling and Energy-Efficient Trajectory Design Massive machine-type communications (mMTC) is a new key feature of 5G cellular and is expected to be further improved in future evolutions of the cellular standards. Data collection from machine-type communication devices (MTCDs), which can be achieved by various approaches, is important to operation of mMTC networks. This work studies data collection for mMTC networks enabled by unmanned aerial vehicle (UAV) stations moving in the air. Consider the limitation in battery lifetime at both the MTCDs and the UAV station, the UAV trajectory design problem is investigated from an energy efficiency perspective. In a generalized model where the target MTCDs are grouped into multiple clusters, the UAV station travels across the clusters and collect data from each cluster while hovering above the cluster. The corresponding MTCD clustering strategy, UAV hovering strategy and UAV flying strategy all have impacts on the energy consumption of the system, which results in a strongly coupled energy minimization problem that is difficult to solve. The sub-problems obtained through decomposition are decoupled in the proposed solution approach. Clustering of the MTCDs is done by a greedy learning clustering (GLC) algorithm. A novel modeling technique based on the idea of artificial energy map (AEM) is proposed to find the optimal hovering position within a cluster. The flying strategy that minimizes the energy consumption is equivalently transformed into a classic travelling salesman problem that is readily solved by the genetic algorithm (GA). Through alternating iterative optimization of the clustering and hovering strategies, the communication energy consumption and the UAV hovering energy consumption are monotonically decreasing until convergence.
Energy-Efficient UAV Trajectory Planning for Data Collection and Computation in mMTC Networks As one of the three main scenarios of 5G, massive machine-type communications (mMTC) is expected to play an essential role within future 5G system. Unmanned aerial vehicles (UAVs) also attracts more attentions these years. However, the limited battery of both MTC devices (MTCDs) and UAVs constrains the deployment. Besides, the limited computation capacity of MTCDs also impacts the network optimization in mMTC networks. In this paper, UAV-based aerial base station is deployed to collect data and provide computing service for MTCDs. We introduce a non-service-tolerant parameter and propose a hybrid hovering positions selection (HHPS) algorithm. The hovering positions of UAV with the minimum power consumption of MTCDs are selected. Furthermore, We propose a trajectory planning method based on Cuckoo Search (CS) algorithm. The energy consumption and the throughput of UAV, the latency of MTCD tasks and collecting and computing efficiency with different priorities are optimized. Simulations are carried out to illustrate that the proposed HHPS algorithm and trajectory planning algorithm have superior performances compared with existing works.
AoI-Minimal Trajectory Planning and Data Collection in UAV-Assisted Wireless Powered IoT Networks This article investigates the unmanned aerial vehicle (UAV)-assisted wireless powered Internet-of-Things system, where a UAV takes off from a data center, flies to each of the ground sensor nodes (SNs) in order to transfer energy and collect data from the SNs, and then returns to the data center. For such a system, an optimization problem is formulated to minimize the average Age of Information (AoI) of the data collected from all ground SNs. Since the average AoI depends on the UAV's trajectory, the time required for energy harvesting (EH) and data collection for each SN, these factors need to be optimized jointly. Moreover, instead of the traditional linear EH model, we employ a nonlinear model because the behavior of the EH circuits is nonlinear by nature. To solve this nonconvex problem, we propose to decompose it into two subproblems, i.e., a joint energy transfer and data collection time allocation problem and a UAV's trajectory planning problem. For the first subproblem, we prove that it is convex and give an optimal solution by using Karush-Kuhn-Tucker (KKT) conditions. This solution is used as the input for the second subproblem, and we solve optimally it by designing dynamic programming (DP) and ant colony (AC) heuristic algorithms. The simulation results show that the DP-based algorithm obtains the minimal average AoI of the system, and the AC-based heuristic finds solutions with near-optimal average AoI. The results also reveal that the average AoI increases as the flying altitude of the UAV increases and linearly with the size of the collected data at each ground SN.
UAV-Assisted Dynamic Coverage in a Heterogeneous Cellular System. The growing popularity of mobile Internet and massive MTC with special traffic characteristics and locations have imposed huge challenges to current cellular networks. Deploying new base stations, however, becomes difficult and expensive, especially for complicated urban scenarios and MTC traffic. The UAV-assisted heterogeneous cellular solution is proposed in this article. It utilizes UAV-based floating relay (FR) to deploy FR cells inside the macrocell, and thus achieves dynamic and adaptive coverage. Comprehensive analyses on FR cells' deployment including frequency reuse, interference, backhaul resource allocation, and coverage are given.
Uplink Coverage and Capacity Analysis of mMTC in Ultra-Dense Networks In this paper, we investigate the uplink coverage and ergodic capacity of massive Machine-Type Communication (mMTC) considering an Ultra-Dense Network (UDN) environment. In MTC, devices equipped with sensing, computation, and communication capabilities connect to the Internet providing what is known as Internet-of-Things (IoT). A dense network would provide an all-in-one solution where scalable connectivity, high capacity, and uniform deep coverage are byproducts. To account for short link distances, the path loss is modeled as stretched exponential path loss (SEPL). Moreover, the fading is modeled as a general <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\alpha -\mu)$</tex-math></inline-formula> channel, where tractable and insightful results are derived for the Rayleigh fading special case. We consider the direct MTC access mode where mMTC nodes connect directly to the small cell. The analytical results disclose the impact of the system parameters and propagation environment parameters on the network performance. In particular, our results reveal that significant coverage enhancements and high uplink capacity are achievable at moderate cell densities, low transmission power, and moderate bandwidth. Moreover, the uplink network performance is independent of the maximum transmission power in the considered dense network scenario, allowing for longer battery lifetime of future IoT devices. The accuracy of the derived analytical results is assessed via extensive simulations.
A Scalable and Energy-Efficient Anomaly Detection Scheme in Wireless SDN-Based mMTC Networks for IoT As a typical Internet-of-Things (IoT) scenario, massive machine-type communications (mMTC) services are expected to grow exponentially and create a multibillion-dollar industry spanning a broad range of vertical sectors. In literature, wireless software-defined network (SDN) is viewed as a promising approach to facilitate the degree of reconfigurability on extended sets of mMTC devices via centralized software updates. However, most of the current anomaly detection scheme (ADS) in SDN suffers from the high risk of overwhelming of the controller as well as excessive energy consumption if directly applied in the network with enormous devices. To address the scalability issues in centralized ADS, we propose a localized ADS scheme, called scalable and energy-efficient anomaly detection scheme (SEE-ADS), comprising of a detection activation module, a lightweight predetection module, a heavyweight anomaly detection module, and a dynamic strategy selection module. Through the cooperation among these modules, the proposed ADS is capable of detecting attacks dynamically and effectively without the risk of energy depletion via discontinuous activation of the heavyweight detection. The lower complexity is fulfilled by developing a localized and adaptive heavyweight detection module, called a localized evolving semisupervised learning-based anomaly detection scheme (LESLA). Besides, the proposed scheme makes full use of feedback from the previous heavyweight activation and the indication of predetection on each packet. The simulation results show that the proposed scheme greatly reduces the overall energy consumption over heavyweight detection. Furthermore, the proposed scheme shows higher sensitivity on abnormal packets and similar false alarm compared with the literature work.
Engineering Radio Map for Wireless Resource Management. The term 'radio map' in general refers to the geographical signal power spectrum density, formed by the superposition of concurrent wireless transmissions, as a function of location, frequency and time. It contains rich and useful information regarding the spectral activities and propagation channels in wireless networks. Such information can be leveraged to not only improve the performance of existing wireless services (e.g., via proactive resource provisioning) but also enable new applications, such as wireless spectrum surveillance. However, practical implementation of radio maps in wireless communication is often difficult due to the heterogeneity of modern wireless networks and the sheer amount of wireless data to be collected, stored, and processed. In this article, we provide an overview of the state-of-the-art techniques for constructing radio maps as well as applying them to achieve efficient and secure resource management in wireless networks. Some key research challenges are highlighted to motivate future investigation.
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems Mobile Edge Computing (MEC) is a promising architecture to reduce the energy consumption of mobile devices and provide satisfactory quality-of-service to time-sensitive services. How to jointly optimize task offloading and resource allocation to minimize the energy consumption subject to the latency requirement remains an open problem, which motivates this paper. When the latency constraint is tak...
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz In this paper, large-scale fading and temporal fading characteristics of the industrial radio channel at 900, 2400, and 5200 MHz are determined. In contrast to measurements performed in houses and in office buildings, few attempts have been made until now to model propagation in industrial environments. In this paper, the industrial environment is categorized into different topographies. Industrial topographies are defined separately for large-scale and temporal fading, and their definition is based upon the specific physical characteristics of the local surroundings affecting both types of fading. Large-scale fading is well expressed by a one-slope path-loss model and excellent agreement with a lognormal distribution is obtained. Temporal fading is found to be Ricean and Ricean K-factors have been determined. Ricean K-factors are found to follow a lognormal distribution.
Placing Virtual Machines to Optimize Cloud Gaming Experience Optimizing cloud gaming experience is no easy task due to the complex tradeoff between gamer quality of experience (QoE) and provider net profit. We tackle the challenge and study an optimization problem to maximize the cloud gaming provider's total profit while achieving just-good-enough QoE. We conduct measurement studies to derive the QoE and performance models. We formulate and optimally solve the problem. The optimization problem has exponential running time, and we develop an efficient heuristic algorithm. We also present an alternative formulation and algorithms for closed cloud gaming services with dedicated infrastructures, where the profit is not a concern and overall gaming QoE needs to be maximized. We present a prototype system and testbed using off-the-shelf virtualization software, to demonstrate the practicality and efficiency of our algorithms. Our experience on realizing the testbed sheds some lights on how cloud gaming providers may build up their own profitable services. Last, we conduct extensive trace-driven simulations to evaluate our proposed algorithms. The simulation results show that the proposed heuristic algorithms: (i) produce close-to-optimal solutions, (ii) scale to large cloud gaming services with 20,000 servers and 40,000 gamers, and (iii) outperform the state-of-the-art placement heuristic, e.g., by up to 3.5 times in terms of net profits.
Time-Varying Delay Compensation for a Class of Nonlinear Control Systems Over Network via $H_{\infty }$ Adaptive Fuzzy Controller This paper introduces a robust H adaptive fuzzy controller for a class of unknown nonlinear systems over network. There are two main problems in the networked control systems, the time-varying networked-induced delay and the data packet dropouts. The time-varying networked-induced delays cause degradation for the system performance that controlled over network and also the system can be unstable. Moreover, the delay problem is aggravated when packet losses occur during the transmission of data. The proposed controller has a filtered error to handle the networked-induced delays. Furthermore, it is robust to overcome some packet losses. The unknown nonlinear functions of the system are approximated using fuzzy logic systems. The robustness of the proposed controller is achieved by combining the adaptive fuzzy controller with H control technique. The Lyapunov stability analysis is used to prove that the proposed controller is asymptotically stable. Stability of the whole closed loop system is guaranteed via the proposed controller in the presence of bounded external disturbance, data packet dropouts and time-varying networked-induced delays. An extensive example of an inverted pendulum system is studied in detail to verify the effectiveness of the proposed controller based on TrueTime toolbox with comparative results.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.1
0.1
0.1
0.1
0.1
0.05
0.007692
0
0
0
0
0
0
0
User authentication schemes for wireless sensor networks: A review. Wireless sensor networks (WSNs) are applicable in versatile domains ranging from very common to those which demand crucial security concerns. The deployment of WSNs in unattended environments and the resource-constrained nature of the constituent sensor nodes give rise to an open challenge to ensure that only authorized access to the information is available through the sensor nodes. Many researchers have made considerable efforts to meet this challenge by designing secure and dependable user authentication mechanisms. Every proposed scheme, with its advantages and disadvantages is cryptanalyzed to measure its respective strength and shortcomings. In this study, we first present twenty two features that a reliable user authentication scheme for WSNs should possess. We then evaluate seven of the available schemes against these twenty two features. A common tendency among all the available schemes is their failure to resist gateway node bypass attack, node capture attack and user impersonation attack. There is hardly any scheme that provides user anonymity and reparability in case of smart card loss or theft. Further mutual establishment of a session key between the three participating entities namely user, gateway node and sensor node is achieved in only one scheme; it is an integral characteristic to achieve the confidentiality of messages transmitted over open channels. The mutual authentication between the participating entities is another important aspect which is somewhat fulfilled by only two schemes; only one scheme resists denial of service attack and provides security to gateway node secret parameter. It is time to take halt, ponder upon the acquired objectives and set new goals to equip the contemporary state of art in this field with more viable and promising approaches. We review the state of art in this area; our goal is to explore the course of action for future proposals resulting in protocols with greater potential of usage in industry, military and other purposes. We opine that researchers should develop authentication schemes which take into account the desirable features discussed in this paper. We also discuss future path with some key issues and challenges in the area.
Tabu search based multi-watermarks embedding algorithm with multiple description coding Digital watermarking is a useful solution for digital rights management systems, and it has been a popular research topic in the last decade. Most watermarking related literature focuses on how to resist deliberate attacks by applying benchmarks to watermarked media that assess the effectiveness of the watermarking algorithm. Only a few papers have concentrated on the error-resilient transmission of watermarked media. In this paper, we propose an innovative algorithm for vector quantization (VQ) based image watermarking, which is suitable for error-resilient transmission over noisy channels. By incorporating watermarking with multiple description coding (MDC), the scheme we propose to embed multiple watermarks can effectively overcome channel impairments while retaining the capability for copyright and ownership protection. In addition, we employ an optimization technique, called tabu search, to optimize both the watermarked image quality and the robustness of the extracted watermarks. We have obtained promising simulation results that demonstrate the utility and practicality of our algorithm. (C) 2011 Elsevier Inc. All rights reserved.
On Deployment of Wireless Sensors on 3-D Terrains to Maximize Sensing Coverage by Utilizing Cat Swarm Optimization With Wavelet Transform. In this paper, a deterministic sensor deployment method based on wavelet transform (WT) is proposed. It aims to maximize the quality of coverage of a wireless sensor network while deploying a minimum number of sensors on a 3-D surface. For this purpose, a probabilistic sensing model and Bresenham's line of sight algorithm are utilized. The WT is realized by an adaptive thresholding approach for the generation of the initial population. Another novel aspect of the paper is that the method followed utilizes a Cat Swarm Optimization (CSO) algorithm, which mimics the behavior of cats. We have modified the CSO algorithm so that it can be used for sensor deployment problems on 3-D terrains. The performance of the proposed algorithm is compared with the Delaunay Triangulation and Genetic Algorithm based methods. The results reveal that CSO based sensor deployment which utilizes the wavelet transform method is a powerful and successful method for sensor deployment on 3-D terrains.
FPGA-Based Parallel Metaheuristic PSO Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation This paper presents a field-programmable gate array (FPGA)-based parallel metaheuristic particle swarm optimization algorithm (PPSO) and its application to global path planning for autonomous robot navigating in structured environments with obstacles. This PPSO consists of three parallel PSOs along with a communication operator in one FPGA chip. The parallel computing architecture takes advantages of maintaining better population diversity and inhibiting premature convergence in comparison with conventional PSOs. The collision-free discontinuous path generated from the PPSO planner is then smoothed using the cubic B-spline and system-on-a-programmable-chip (SoPC) technology. Experimental results are conducted to show the merit of the proposed FPGA-based PPSO path planner and smoother for global path planning of autonomous mobile robot navigation.
EHCR-FCM: Energy Efficient Hierarchical Clustering and Routing using Fuzzy C-Means for Wireless Sensor Networks Wireless Sensor Network (WSN) is a part of Internet of Things (IoT), and has been used for sensing and collecting the important information from the surrounding environment. Energy consumption in this process is the most important issue, which primarily depends on the clustering technique and packet routing strategy. In this paper, we propose an Energy efficient Hierarchical Clustering and Routing using Fuzzy C-Means (EHCR-FCM) which works on three-layer structure, and depends upon the centroid of the clusters and grids, relative Euclidean distances and residual energy of the nodes. This technique is useful for the optimal usage of energy by employing grid and cluster formation in a dynamic manner and energy-efficient routing. The fitness value of the nodes have been used in this proposed work to decide that whether it may work as the Grid Head (GH) or Cluster Head (CH). The packet routing strategy of all the GHs depend upon the relative Euclidean distances among them, and also on their residual energy. In addition to this, we have also performed the energy consumption analysis, and found that our proposed approach is more energy efficient, better in terms of the number of cluster formation, network lifetime, and it also provides better coverage.
Hybrid Bird Swarm Optimized Quasi Affine Algorithm Based Node Location in Wireless Sensor Networks Wireless sensor networks (WSN) with the Internet of Things (IoT) play a vital key concept while performing the information transmission process. The WSN with IoT has been effectively utilized in different research contents such as network protocol selection, topology control, node deployment, location technology and network security, etc. Among that, node location is one of the crucial problems that need to be resolved to improve communication. The node location is directly influencing the network performance, lifetime and data sense. Therefore, this paper introduces the Bird Swarm Optimized Quasi-Affine Evolutionary Algorithm (BSOQAEA) to fix the node location problem in sensor networks. The proposed algorithm analyzes the node location, and incorporates the dynamic shrinking space process is to save time. The introduced evolutionary algorithm optimizes the node centroid location performed according to the received signal strength indications (RSSI). The created efficiency in the system is determined using high node location accuracy, minimum distance error, and location error.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Adam: A Method for Stochastic Optimization. We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Untangling Blockchain: A Data Processing View of Blockchain Systems. Blockchain technologies are gaining massive momentum in the last few years. Blockchains are distributed ledgers that enable parties who do not fully trust each other to maintain a set of global states. The parties agree on the existence, values, and histories of the states. As the technology landscape is expanding rapidly, it is both important and challenging to have a firm grasp of what the core ...
Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis Existing time-series models that are used for short-term traffic condition forecasting are mostly univariate in nature. Generally, the extension of existing univariate time-series models to a multivariate regime involves huge computational complexities. A different class of time-series models called structural time-series model (STM) (in its multivariate form) has been introduced in this paper to develop a parsimonious and computationally simple multivariate short-term traffic condition forecasting algorithm. The different components of a time-series data set such as trend, seasonal, cyclical, and calendar variations can separately be modeled in STM methodology. A case study at the Dublin, Ireland, city center with serious traffic congestion is performed to illustrate the forecasting strategy. The results indicate that the proposed forecasting algorithm is an effective approach in predicting real-time traffic flow at multiple junctions within an urban transport network.
A novel full structure optimization algorithm for radial basis probabilistic neural networks. In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.
G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. In this paper, to remedy the joint-angle drift phenomenon for manipulation of two redundant robot arms, a novel scheme for simultaneous repetitive motion planning and control (SRMPC) at the joint-acceleration level is proposed, which consists of two subschemes. To do so, the performance index of each SRMPC subscheme is derived and designed by employing the gradient dynamics twice, of which a convergence theorem and its proof are presented. In addition, for improving the accuracy of the motion planning and control, position error, and velocity, error feedbacks are incorporated into the forward kinematics equation and analyzed via Zhang neural-dynamics method. Then the two subschemes are simultaneously reformulated as two quadratic programs (QPs), which are finally unified into one QP problem. Furthermore, a piecewise-linear projection equation-based neural network (PLPENN) is used to solve the unified QP problem, which can handle the strictly convex QP problem in an inverse-free manner. More importantly, via such a unified QP formulation and the corresponding PLPENN solver, the synchronism of two redundant robot arms is guaranteed. Finally, two given tasks are fulfilled by 2 three-link and 2 five-link planar robot arms, respectively. Computer-simulation results validate the efficacy and accuracy of the SRMPC scheme and the corresponding PLPENN solver for synchronous manipulation of two redundant robot arms.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
A Hybrid Approach to Privacy-Preserving Federated Learning. Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions.
Performance of Massive MIMO Uplink with Zero-Forcing receivers under Delayed Channels. In this paper, we analyze the performance of the uplink communication of massive multicell multiple-input multiple-output (MIMO) systems under the effects of pilot contamination and delayed channels because of terminal mobility. The base stations (BSs) estimate the channels through the uplink training and then use zero-forcing (ZF) processing to decode the transmit signals from the users. The prob...
Recent Trends in Deep Learning Based Natural Language Processing [Review Article]. Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NLP t...
Massive MIMO Detection Techniques: A Survey Massive multiple-input multiple-output (MIMO) is a key technology to meet the user demands in performance and quality of services (QoS) for next generation communication systems. Due to a large number of antennas and radio frequency (RF) chains, complexity of the symbol detectors increased rapidly in a massive MIMO uplink receiver. Thus, the research to find the perfect massive MIMO detection algorithm with optimal performance and low complexity has gained a lot of attention during the past decade. A plethora of massive MIMO detection algorithms has been proposed in the literature. The aim of this paper is to provide insights on such algorithms to a generalist of wireless communications. We garner the massive MIMO detection algorithms and classify them so that a reader can find a distinction between different algorithms from a wider range of solutions. We present optimal and near-optimal detection principles specifically designed for the massive MIMO system such as detectors based on a local search, belief propagation and box detection. In addition, we cover detectors based on approximate inversion, which has gained popularity among the VLSI signal processing community due to their deterministic dataflow and low complexity. We also briefly explore several nonlinear small-scale MIMO (2-4 antenna receivers) detectors and their applicability in the massive MIMO context. In addition, we present recent advances of detection algorithms which are mostly based on machine learning or sparsity based algorithms. In each section, we also mention the related implementations of the detectors. A discussion of the pros and cons of each detector is provided.
UAV-Assisted Communication Efficient Federated Learning in the Era of the Artificial Intelligence of Things Artificial Intelligence (AI) based models are increasingly deployed in the Internet of Things (IoT), paving the evolution of the IoT into the AI of things (AIoT). Currently, the predominant approach for AI model training is cloud-centric and involves the sharing of data with external parties. To preserve privacy while enabling collaborative model training across distributed IoT devices, the machin...
Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, machine learning (ML) model training, and wireless communications. However, due to the privacy concerns of devices and limited computation or communication resource of UAVs, it is impractical to send raw data of devices to UAV servers for model training. Moreover, due to the dynamic...
Broadband Analog Aggregation for Low-Latency Federated Edge Learning To leverage rich data distributed at the network edge, a new machine-learning paradigm, called edge learning, has emerged where learning algorithms are deployed at the edge for providing intelligent services to mobile users. While computing speeds are advancing rapidly, the communication latency is becoming the bottleneck of fast edge learning. To address this issue, this work is focused on designing a low-latency multi-access scheme for edge learning. To this end, we consider a popular privacy-preserving framework, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">federated edge learning</italic> (FEEL), where a global AI-model at an edge-server is updated by aggregating (averaging) local models trained at edge devices. It is proposed that the updates simultaneously transmitted by devices over broadband channels should be analog aggregated “over-the-air” by exploiting the waveform-superposition property of a multi-access channel. Such <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">broadband analog aggregation</italic> (BAA) results in dramatical communication-latency reduction compared with the conventional orthogonal access (i.e., OFDMA). In this work, the effects of BAA on learning performance are quantified targeting a single-cell random network. First, we derive two tradeoffs between communication-and-learning metrics, which are useful for network planning and optimization. The power control (“truncated channel inversion”) required for BAA results in a tradeoff between the update-reliability [as measured by the receive <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">signal-to-noise ratio</italic> (SNR)] and the expected update-truncation ratio. Consider the scheduling of cell-interior devices to constrain path loss. This gives rise to the other tradeoff between the receive SNR and fraction of data exploited in learning. Next, the latency-reduction ratio of the proposed BAA with respect to the traditional OFDMA scheme is proved to scale almost linearly with the device population. Experiments based on a neural network and a real dataset are conducted for corroborating the theoretical results.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
A Private and Efficient Mechanism for Data Uploading in Smart Cyber-Physical Systems. To provide fine-grained access to different dimensions of the physical world, the data uploading in smart cyber-physical systems suffers novel challenges on both energy conservation and privacy preservation. It is always critical for participants to consume as little energy as possible for data uploading. However, simply pursuing energy efficiency may lead to extreme disclosure of private informat...
Statistical tools for digital forensics A digitally altered photograph, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic photograph. As a result, photographs no longer hold the unique stature as a definitive recording of events. We describe several statistical techniques for detecting traces of digital tampering in the absence of any digital watermark or signature. In particular, we quantify statistical correlations that result from specific forms of digital tampering, and devise detection schemes to reveal these correlations.
Toward Social Learning Environments We are teaching a new generation of students, cradled in technologies, communication and abundance of information. The implications are that we need to focus the design of learning technologies to support social learning in context. Instead of designing technologies that “teach” the learner, the new social learning technologies will perform three main roles: 1) support the learner in finding the right content (right for the context, for the particular learner, for the specific purpose of the learner, right pedagogically); 2) support learners to connect with the right people (again right for the context, learner, purpose, educational goal etc.), and 3) motivate / incentivize people to learn. In the pursuit of such environments, new areas of sciences become relevant as a source of methods and techniques: social psychology, economic / game theory, multi-agent systems. The paper illustrates how social learning technologies can be designed using some existing and emerging technologies: ontologies vs. social tagging, exploratory search, collaborative vs. self-managed social recommendations, trust and reputation mechanisms, mechanism design and social visualization.
An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS. Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.
TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation. Interacting with relational databases through natural language helps users of any background easily query and analyze a vast amount of data. This requires a system that understands usersu0027 questions and converts them to SQL queries automatically. In this paper we present a novel approach, TypeSQL, which views this problem as a slot filling task. Additionally, TypeSQL utilizes type information to better understand rare entities and numbers in natural language questions. We test this idea on the WikiSQL dataset and outperform the prior state-of-the-art by 5.5% in much less time. We also show that accessing the content of databases can significantly improve the performance when usersu0027 queries are not well-formed. TypeSQL gets 82.6% accuracy, a 17.5% absolute improvement compared to the previous content-sensitive model.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.055
0.05
0.05
0.05
0.05
0.025
0.003667
0
0
0
0
0
0
0
Output-Based Periodic Event-Triggered Control for Nonlinear Plants: An Approximate-Model Method This article studies periodic event-triggered control for nonlinear systems with multiple outputs and disturbances. First, an approximate-model method is introduced to discretize nonlinear plants with a family of controllers parameterized by verification periods. Then, a novel summation-based event-triggering condition is designed to ensure input-to-state practical stability of closed-loop systems. It is shown that the proposed event-triggering condition can admit a positive lower bound of interevent times for a family of controllers. Furthermore, an improved event-triggering condition is given to maximize the ranges of allowable parameters. Finally, numerical simulations are provided to illustrate the efficiency and feasibility of the obtained results.
Adaptive Backstepping Control of Nonlinear Uncertain Systems with Quantized States This paper investigates the stabilization problem for uncertain nonlinear systems with quantized states. All states in the system are quantized by a static bounded quantizer, including uniform quantizer, hysteresis-uniform quantizer, and logarithmic-uniform quantizer as examples. An adaptive backstepping-based control algorithm, which can handle discontinuity, resulted from the state quantization ...
Adaptive Neural Quantized Control for a Class of MIMO Switched Nonlinear Systems With Asymmetric Actuator Dead-Zone. This paper concentrates on the adaptive state-feedback quantized control problem for a class of multiple-input-multiple-output (MIMO) switched nonlinear systems with unknown asymmetric actuator dead-zone. In this study, we employ different quantizers for different subsystem inputs. The main challenge of this study is to deal with the coupling between the quantizers and the dead-zone nonlinearities...
Neural-Network Approximation-Based Adaptive Periodic Event-Triggered Output-Feedback Control of Switched Nonlinear Systems This study considers an adaptive neural-network (NN) periodic event-triggered control (PETC) problem for switched nonlinear systems (SNSs). In the system, only the system output is available at sampling instants. A novel adaptive law and a state observer are constructed by using only the sampled system output. A new output-feedback adaptive NN PETC strategy is developed to reduce the usage of communication resources; it includes a controller that only uses event-sampling information and an event-triggering mechanism (ETM) that is only intermittently monitored at sampling instants. The proposed adaptive NN PETC strategy does not need restrictions on nonlinear functions reported in some previous studies. It is proven that all states of the closed-loop system (CLS) are semiglobally uniformly ultimately bounded (SGUUB) under arbitrary switchings by choosing an allowable sampling period. Finally, the proposed scheme is applied to a continuous stirred tank reactor (CSTR) system and a numerical example to verify its effectiveness.
Adaptive Asymptotic Tracking With Global Performance for Nonlinear Systems With Unknown Control Directions This article presents a global adaptive asymptotic tracking control method, capable of guaranteeing prescribed transient behavior for uncertain strict-feedback nonlinear systems with arbitrary relative degree and unknown control directions. Unlike most existing funnel controls that are built upon time-varying feedback gains, the proposed method is derived from a tracking error-dependent normalized...
Event-Triggered Fuzzy Bipartite Tracking Control for Network Systems Based on Distributed Reduced-Order Observers This article studies the distributed observer-based event-triggered bipartite tracking control problem for stochastic nonlinear multiagent systems with input saturation. First, different from conventional observers, we construct a novel distributed reduced-order observer to estimate unknown states for the stochastic nonlinear systems. Then, an event-triggered mechanism with relative threshold is i...
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
Microsoft Coco: Common Objects In Context We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
On controller initialization in multivariable switching systems We consider a class of switched systems which consists of a linear MIMO and possibly unstable process in feedback interconnection with a multicontroller whose dynamics switch. It is shown how one can achieve significantly better transient performance by selecting the initial condition for every controller when it is inserted into the feedback loop. This initialization is obtained by performing the minimization of a quadratic cost function of the tracking error, controlled output, and control signal. We guarantee input-to-state stability of the closed-loop system when the average number of switches per unit of time is smaller than a specific value. If this is not the case then stability can still be achieved by adding a mild constraint to the optimization. We illustrate the use of our results in the control of a flexible beam actuated in torque. This system is unstable with two poles at the origin and contains several lightly damped modes, which can be easily excited by controller switching.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
A robust medical image watermarking against salt and pepper noise for brain MRI images. The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. During the transmission of medical images between hospitals or specialists through the network, the main priority is to protect a patient's documents against any act of tampering by unauthorised individuals. Because of this, there is a need for medical image authentication scheme to enable proper diagnosis on patient. In addition, medical images are also susceptible to salt and pepper impulse noise through the transmission in communication channels. This noise may also be intentionally used by the invaders to corrupt the embedded watermarks inside the medical images. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this work addresses the issue of designing a new watermarking method that can withstand high density of salt and pepper noise for brain MRI images. For this purpose, combination of a spatial domain watermarking method, channel coding and noise filtering schemes are used. The region of non-interest (RONI) of MRI images from five different databases are used as embedding area and electronic patient record (EPR) is considered as embedded data. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER).
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
0
0
Blockchainized Internet of Minds: A New Opportunity for Cyber-Physical-Social Systems. Welcome to the last issue of the IEEE Transactions on Computational Social Systems (IEEE TCSS) in 2018. Starting from the first issue next year, our Transactions will be a bimonthly publication, entering a new stage for the IEEE TCSS.
Competitive Analysis of Bidding Behavior on Sponsored Search Advertising Markets. Online advertisers bidding in sponsored search auctions through Web search engines are experiencing unprecedentedly fierce competition in recent years, resulting in an obvious upward trend in bids submitted by advertisers. This bid inflation phenomenon poses significant threat to the overall stability and the effectiveness of sponsored search markets. Existing research efforts, however, do not yet...
Research on the Selection Strategies of Blockchain Mining Pools. Since the increasing popularization of the emerging blockchain technology, blockchain mining has attracted more and more attention. Due to the difficulty of solo mining, typically miners choose to join a mining pool. As there are many mining pools and different mining pools may adopt different reward mechanisms, how to choose the appropriate mining pool has become one of the most important issues ...
From Intelligent Vehicles to Smart Societies: A Parallel Driving Approach. Welcome to the third issue of the IEEE Transactions on Computational Social Systems (TCSS) for 2018.
Cyber-Physical-Social Systems: The State of the Art and Perspectives. This paper is to discuss the state, trend, and frontiers of development of cyber-physical-social systems (CPSSs) in China. The demand for developing CPSS is discussed in detail, followed by the Artificial societies, Computational experiments, Parallel execution (ACP) approach for CPSS and knowledge automation. The development of ACP based on CPSS in transportation, energy, information, Internet of...
Fuzzy logic in control systems: fuzzy logic controller. I.
Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks The positioning methods based on received signal strength (RSS) measurements, link the RSS values to the position of the mobile station(MS) to be located. Their accuracy depends on the suitability of the propagation models used for the actual propagation conditions. In indoor wireless networks, these propagation conditions are very difficult to predict due to the unwieldy and dynamic nature of the RSS. In this paper, we present a novel method which dynamically estimates the propagation models that best fit the propagation environments, by using only RSS measurements obtained in real time. This method is based on maximizing compatibility of the MS to access points (AP) distance estimates. Once the propagation models are estimated in real time, it is possible to accurately determine the distance between the MS and each AP. By means of these distance estimates, the location of the MS can be obtained by trilateration. The method proposed coupled with simulations and measurements in a real indoor environment, demonstrates its feasibility and suitability, since it outperforms conventional RSS-based indoor location methods without using any radio map information nor a calibration stage.
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Image analogies This paper describes a new framework for processing images by example, called “image analogies.” The framework involves two stages: a design phase, in which a pair of images, with one image purported to be a “filtered” version of the other, is presented as “training data”; and an application phase, in which the learned filter is applied to some new target image in order to create an “analogous” filtered result. Image analogies are based on a simple multi-scale autoregression, inspired primarily by recent results in texture synthesis. By choosing different types of source image pairs as input, the framework supports a wide variety of “image filter” effects, including traditional image filters, such as blurring or embossing; improved texture synthesis, in which some textures are synthesized with higher quality than by previous approaches; super-resolution, in which a higher-resolution image is inferred from a low-resolution source; texture transfer, in which images are “texturized” with some arbitrary source texture; artistic filters, in which various drawing and painting styles are synthesized based on scanned real-world examples; and texture-by-numbers, in which realistic scenes, composed of a variety of textures, are created using a simple painting interface.
Communication in reactive multiagent robotic systems Multiple cooperating robots are able to complete many tasks more quickly and reliably than one robot alone. Communication between the robots can multiply their capabilities and effectiveness, but to what extent? In this research, the importance of communication in robotic societies is investigated through experiments on both simulated and real robots. Performance was measured for three different types of communication for three different tasks. The levels of communication are progressively more complex and potentially more expensive to implement. For some tasks, communication can significantly improve performance, but for others inter-agent communication is apparently unnecessary. In cases where communication helps, the lowest level of communication is almost as effective as the more complex type. The bulk of these results are derived from thousands of simulations run with randomly generated initial conditions. The simulation results help determine appropriate parameters for the reactive control system which was ported for tests on Denning mobile robots.
Gravity-Balancing Leg Orthosis and Its Performance Evaluation In this paper, we propose a device to assist persons with hemiparesis to walk by reducing or eliminating the effects of gravity. The design of the device includes the following features: 1) it is passive, i.e., it does not include motors or actuators, but is only composed of links and springs; 2) it is safe and has a simple patient-machine interface to accommodate variability in geometry and inertia of the subjects. A number of methods have been proposed in the literature to gravity-balance a machine. Here, we use a hybrid method to achieve gravity balancing of a human leg over its range of motion. In the hybrid method, a mechanism is used to first locate the center of mass of the human limb and the orthosis. Springs are then added so that the system is gravity-balanced in every configuration. For a quantitative evaluation of the performance of the device, electromyographic (EMG) data of the key muscles, involved in the motion of the leg, were collected and analyzed. Further experiments involving leg-raising and walking tasks were performed, where data from encoders and force-torque sensors were used to compute joint torques. These experiments were performed on five healthy subjects and a stroke patient. The results showed that the EMG activity from the rectus femoris and hamstring muscles with the device was reduced by 75%, during static hip and knee flexion, respectively. For leg-raising tasks, the average torque for static positioning was reduced by 66.8% at the hip joint and 47.3% at the knee joint; however, if we include the transient portion of the leg-raising task, the average torque at the hip was reduced by 61.3%, and at the knee was increased by 2.7% at the knee joints. In the walking experiment, there was a positive impact on the range of movement at the hip and knee joints, especially for the stroke patient: the range of movement increased by 45% at the hip joint and by 85% at the knee joint. We believe that this orthosis can be potentially used to desig- - n rehabilitation protocols for patients with stroke
Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks Because of the complicity of consensus control of nonlinear multiagent systems in state time-delay, most of previous works focused only on linear systems with input time-delay. An adaptive neural network (NN) consensus control method for a class of nonlinear multiagent systems with state time-delay is proposed in this paper. The approximation property of radial basis function neural networks (RBFNNs) is used to neutralize the uncertain nonlinear dynamics in agents. An appropriate Lyapunov-Krasovskii functional, which is obtained from the derivative of an appropriate Lyapunov function, is used to compensate the uncertainties of unknown time delays. It is proved that our proposed approach guarantees the convergence on the basis of Lyapunov stability theory. The simulation results of a nonlinear multiagent time-delay system and a multiple collaborative manipulators system show the effectiveness of the proposed consensus control algorithm.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.066667
0.05
0.05
0.044444
0.026667
0
0
0
0
0
0
0
0
0
Network virtualization for disaster resilience of cloud services Today's businesses and consumer applications are becoming increasingly dependent on cloud solutions, making them vulnerable to service outages that can result in a loss of communication or access to business-critical services and data. Are we really prepared for such failure scenarios? Given that failures can occur on both the network and data center sides, is it possible to have efficient end-to-end recovery? The answer is mostly negative due to the separate operation of these domains. This article offers a solution to this problem based on network virtualization, and discusses the necessary architecture and algorithm details. It also answers the question of whether it is better to provide resilience in the virtual or physical layer from a cost effectiveness and failure coverage perspective.
Measuring the survivability of networks to geographic correlated failures Wide area backbone communication networks are subject to a variety of hazards that can result in network component failures. Hazards such as power failures and storms can lead to geographical correlated failures. Recently there has been increasing interest in determining the ability of networks to survive geographic correlated failures and a number of measures to quantify the effects of failures have appeared in the literature. This paper proposes the use of weighted spectrum to evaluate network survivability regarding geographic correlated failures. Further we conduct a comparative analysis by finding the most vulnerable geographic cuts or nodes in the network though solving an optimization problem to determine the cut with the largest impact for a number of measures in the literature as well as weighted spectrum. Numerical results on several sample network topologies show that the worst-case geographic cuts depend on the measure used in an unweighted or a weighted graph. The proposed weighted spectrum measure is shown to be more versatile than other measures in both unweighted and weighted graphs.
Diverse Routing in Networks With Probabilistic Failures We develop diverse routing schemes for dealing with multiple, possibly correlated, failures. While disjoint path protection can effectively deal with isolated single link failures, recovering from multiple failures is not guaranteed. In particular, events such as natural disasters or intentional attacks can lead to multiple correlated failures, for which recovery mechanisms are not well understood. We take a probabilistic view of network failures where multiple failure events can occur simultaneously, and develop algorithms for finding diverse routes with minimum joint failure probability. Moreover, we develop a novel Probabilistic Shared Risk Link Group (PSRLG) framework for modeling correlated failures. In this context, we formulate the problem of finding two paths with minimum joint failure probability as an integer nonlinear program (INLP) and develop approximations and linear relaxations that can find nearly optimal solutions in most cases.
Max-flow min-cut theorem and faster algorithms in a circular disk failure model Fault-tolerance is one of the most important factors in designing networks. Failures in networks are sometimes caused by an event occurring in specific geographical regions such as hurricanes, earthquakes, bomb attacks, and Electromagnetic Pulse (EMP) attacks. In INFOCOM 2012, Neumayer et al. introduced geographical variants of max-flow min-cut problems in a circular disk failure model, in which each failure is represented by a disk with a predetermined size. In this paper, we solve two open problems in this model: we give a first polynomial-time algorithm for the geographic max-flow problem, and prove a conjecture of Neumayer et al. on a relationship between the geographic max-flow and the geographic min-cut.
Vulnerable Regions of Networks on Sphere Several recent works shed light on the vulnerability of networks against regional failures, which are failures of multiple equipments in a geographical region as a result of a natural disaster. In order to enhance the preparedness of a given network to natural disasters, regional failures and associated Shared Risk Link Groups (SRLGs) should be first identified. For simplicity, most of the previous works assume the network is embedded on an Euclidean plane. Nevertheless, since real networks are embedded on the Earth surface, this assumption causes distortion. In this work, we generalize some of the related results on plane to sphere. In particular, we focus on algorithms for listing SRLGs as a result of regional failures of circular shape.
Probabilistic Shared Risk Link Groups Modeling Correlated Resource Failures Caused by Disasters To evaluate the expected availability of a backbone network service, the administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single component failures is often insufficient. This paper builds a stochastic model of geographically correlated link failures caused by disasters to estimate the hazards an optical backbone network may be prone to and to understand the complex correlation between possible link failures. We first consider link failures only and later extend our model also to capture node failures. With such a model, one can quickly extract essential information such as the probability of an arbitrary set of network resources to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a disaster. Furthermore, we introduce standard data structures and a unified terminology on Probabilistic Shared Risk Link Groups (PSRLGs), along with a pre-computation process, which represents the failure probability of a set of resources succinctly. In particular, we generate a quasilinear-sized data structure in polynomial time, which allows the efficient computation of the cumulative failure probability of any set of network elements. Our evaluation is based on carefully pre-processed seismic hazard data matched to real-world optical backbone network topologies.
Probabilistic region failure-aware data center network and content placement. Data center network (DCN) and content placement with the consideration of potential large-scale region failure is critical to minimize the DCN loss and disruptions under such catastrophic scenario. This paper considers the optimal placement of DCN and content for DCN failure probability minimization against a region failure. Given a network for DCN placement, a general probabilistic region failure model is adopted to capture the key features of a region failure and to determine the failure probability of a node/link in the network under the region failure. We then propose a general grid partition-based scheme to flexibly define the global nonuniform distribution of potential region failure in terms of its occurring probability and intensity. Such grid partition scheme also helps us to evaluate the vulnerability of a given network under a region failure and thus to create a \"vulnerability map\" for DCN and content placement in the network. With the help of the \"vulnerability map\", we further develop an integer linear program (ILP)-based theoretical framework to identify the optimal placement of DCN and content, which leads to the minimum DCN failure probability against a region failure. A heuristic is also suggested to make the overall placement problem more scalable for large-scale networks. Finally, an example and extensive numerical results are provided to illustrate the proposed DCN and content placement.
Crowd sensing of traffic anomalies based on human mobility and social media The advances in mobile computing and social networking services enable people to probe the dynamics of a city. In this paper, we address the problem of detecting and describing traffic anomalies using crowd sensing with two forms of data, human mobility and social media. Traffic anomalies are caused by accidents, control, protests, sport events, celebrations, disasters and other events. Unlike existing traffic-anomaly-detection methods, we identify anomalies according to drivers' routing behavior on an urban road network. Here, a detected anomaly is represented by a sub-graph of a road network where drivers' routing behaviors significantly differ from their original patterns. We then try to describe the detected anomaly by mining representative terms from the social media that people posted when the anomaly happened. The system for detecting such traffic anomalies can benefit both drivers and transportation authorities, e.g., by notifying drivers approaching an anomaly and suggesting alternative routes, as well as supporting traffic jam diagnosis and dispersal. We evaluate our system with a GPS trajectory dataset generated by over 30,000 taxicabs over a period of 3 months in Beijing, and a dataset of tweets collected from WeiBo, a Twitter-like social site in China. The results demonstrate the effectiveness and efficiency of our system.
Mobile Edge Computing: A Survey. Mobile edge computing (MEC) is an emergent architecture where cloud computing services are extended to the edge of networks leveraging mobile base stations. As a promising edge technology, it can be applied to mobile, wireless, and wireline scenarios, using software and hardware platforms, located at the network edge in the vicinity of end-users. MEC provides seamless integration of multiple appli...
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
Segmentation-Based Image Copy-Move Forgery Detection Scheme In this paper, we propose a scheme to detect the copy-move forgery in an image, mainly by extracting the keypoints for comparison. The main difference to the traditional methods is that the proposed scheme first segments the test image into semantically independent patches prior to keypoint extraction. As a result, the copy-move regions can be detected by matching between these patches. The matching process consists of two stages. In the first stage, we find the suspicious pairs of patches that may contain copy-move forgery regions, and we roughly estimate an affine transform matrix. In the second stage, an Expectation-Maximization-based algorithm is designed to refine the estimated matrix and to confirm the existence of copy-move forgery. Experimental results prove the good performance of the proposed scheme via comparing it with the state-of-the-art schemes on the public databases.
A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Data collection through mobile sink (MS) in wireless sensor networks (WSNs) is an effective solution to the hot-spot or sink-hole problem caused by multi-hop routing using the static sink. Rendezvous point (RP) based MS path design is a common and popular technique used in this regard. However, design of the optimal path is a well-known NP-hard problem. Therefore, an evolutionary approach like multi-objective particle swarm optimization (MOPSO) can prove to be a very promising and reasonable approach to solve the same. In this paper, we first present a Linear Programming formulation for the stated problem and then, propose an MOPSO-based algorithm to design an energy efficient trajectory for the MS. The algorithm is presented with an efficient particle encoding scheme and derivation of a proficient multi-objective fitness function. We use Pareto dominance in MOPSO for obtaining both local and global best guides for each particle. We carry out rigorous simulation experiments on the proposed algorithm and compare the results with two existing algorithms namely, tree cluster based data gathering algorithm (TCBDGA) and energy aware sink relocation (EASR). The results demonstrate that the proposed algorithm performs better than both of them in terms of various performance metrics. The results are also validated through the statistical test, analysis of variance (ANOVA) and its least significant difference (LSD) post hoc analysis.
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.071111
0.071111
0.066667
0.066667
0.066667
0.044444
0.002667
0
0
0
0
0
0
0
SUPERMAN: Security Using Pre-Existing Routing for Mobile Ad hoc Networks. The flexibility and mobility of Mobile Ad hoc Networks (MANETs) have made them increasingly popular in a wide range of use cases. To protect these networks, security protocols have been developed to protect routing and application data. However, these protocols only protect routes or communication, not both. Both secure routing and communication security protocols must be implemented to provide full protection. The use of communication security protocols originally developed for wireline and WiFi networks can also place a heavy burden on the limited network resources of a MANET. To address these issues, a novel secure framework (SUPERMAN) is proposed. The framework is designed to allow existing network and routing protocols to perform their functions, whilst providing node authentication, access control, and communication security mechanisms. This paper presents a novel security framework for MANETs, SUPERMAN. Simulation results comparing SUPERMAN with IPsec, SAODV, and SOLSR are provided to demonstrate the proposed frameworks suitability for wireless communication security.
Multiple QoS Parameters-Based Routing for Civil Aeronautical Ad Hoc Networks. Aeronautical ad hoc network (AANET) can be applied as in-flight communication systems to allow aircraft to communicate with the ground, in complement to other existing communication systems to support Internet of Things. However, the unique features of civil AANETs present a great challenge to provide efficient and reliable data delivery in such environments. In this paper, we propose a multiple q...
Performance Improvement of Cluster-Based Routing Protocol in VANET. Vehicular ad-hoc NETworks (VANETs) have received considerable attention in recent years, due to its unique characteristics, which are different from mobile ad-hoc NETworks, such as rapid topology change, frequent link failure, and high vehicle mobility. The main drawback of VANETs network is the network instability, which yields to reduce the network effciency. In this paper, we propose three algorithms: cluster-based life-time routing (CBLTR) protocol, Intersection dynamic VANET routing (IDVR) protocol, and control overhead reduction algorithm (CORA). The CBLTR protocol aims to increase the route stability and average throughput in a bidirectional segment scenario. The cluster heads (CHs) are selected based on maximum lifetime among all vehicles that are located within each cluster. The IDVR protocol aims to increase the route stability and average throughput, and to reduce end-to-end delay in a grid topology. The elected intersection CH receives a set of candidate shortest routes (SCSR) closed to the desired destination from the software defined network. The IDVR protocol selects the optimal route based on its current location, destination location, and the maximum of the minimum average throughput of SCSR. Finally, the CORA algorithm aims to reduce the control overhead messages in the clusters by developing a new mechanism to calculate the optimal numbers of the control overhead messages between the cluster members and the CH. We used SUMO traffic generator simulators and MATLAB to evaluate the performance of our proposed protocols. These protocols significantly outperform many protocols mentioned in the literature, in terms of many parameters.
A Delay-Sensitive Multicast Protocol for Network Capacity Enhancement in Multirate MANETs. Due to significant advances in wireless modulation technologies, some MAC standards such as 802.11a, 802.11b, and 802.11g can operate with multiple data rates for QoS-constrained multimedia communication to utilize the limited resources of MANETs more efficiently. In this paper, by means of measuring the busy/idle ratio of the shared radio channel, a method for estimating one-hop delay is first su...
Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey In recent years, the explosive growth of multimedia applications and services has required further improvements in mobile systems to meet transfer speed requirements. Mobile Ad-hoc Network was formed in the 1970s. It is a set of mobile devices that have self-configuring capable to establish parameters to transmit data without relying on an pre-installed infrastructure systems. Today, MANET is strongly applied in many fields such as healthcare, military, smart agriculture, and disaster prevention. In the transportation area, in order to meet the unique characteristics of the vehicle network, such as movement pattern, high mobility with the support of RSUs, MANET has evolved into Vehicle Ad-hoc Networks, also called VANET. Due to the mobility of the nodes, like MANET, ​​the performance of VANET is relatively low and depends on the communication technologies. Designing more flexible, reliable, and smarter routing protocols to improve VANET performance for smart urban is a significant challenge. In this study, we conduct a survey of communication solutions for VANET in recent years. The results indicated a common framework for designing VANET communication solutions based on three main approaches: multi-metric, UAV/Cloud/Internet, and Intelligent. Moreover, with each proposed solution, we also analyse to show the focus of the research and the results achieved. Finally, we discuss and point out possible future research directions. We hope that the research results in this work will be important guidelines for future research in the communication area for VANET.
A Network Lifetime Extension-Aware Cooperative MAC Protocol for MANETs With Optimized Power Control. In this paper, a cooperative medium access control (CMAC) protocol, termed network lifetime extension-aware CMAC (LEA-CMAC) for mobile ad-hoc networks (MANETs) is proposed. The main feature of the LEA-CMAC protocol is to enhance the network performance through the cooperative transmission to achieve a multi-objective target orientation. The unpredictable nature of wireless communication links results in the degradation of network performance in terms of throughput, end-to-end delay, energy efficiency, and network lifetime of MANETs. Through cooperative transmission, the network performance of MANETs can be improved, provided a beneficial cooperation is satisfied and design parameters are carefully selected at the MAC layer. To achieve a multi-objective target-oriented CMAC protocol, we formulated an optimization problem to extend the network lifetime of MANETs. The optimization solution led to the investigation of symmetric and asymmetric transmit power policies. We then proposed a distributed relay selection process to select the best retransmitting node among the qualified relays, with consideration on a transmit power, a sufficient residual energy after cooperation, and a high cooperative gain. The simulation results show that the LEA-CMAC protocol can achieve a multi-objective target orientation by exploiting an asymmetric transmit power policy to improve the network performance.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
A communication robot in a shopping mall This paper reports our development of a communication robot for use in a shopping mall to provide shopping information, offer route guidance, and build rapport. In the development, the major difficulties included sensing human behaviors, conversation in a noisy daily environment, and the needs of unexpected miscellaneous knowledge in the conversation. We chose a networkrobot system approach, where a single robot's poor sensing capability and knowledge are supplemented by ubiquitous sensors and a human operator. The developed robot system detects a person with floor sensors to initiate interaction, identifies individuals with radio-frequency identification (RFID) tags, gives shopping information while chatting, and provides route guidance with deictic gestures. The robotwas partially teleoperated to avoid the difficulty of speech recognition as well as to furnish a new kind of knowledge that only humans can flexibly provide. The information supplied by a human operator was later used to increase the robot's autonomy. For 25 days in a shopping mall, we conducted a field trial and gathered 2642 interactions. A total of 235 participants signed up to use RFID tags and, later, provided questionnaire responses. The questionnaire results are promising in terms of the visitors' perceived acceptability as well as the encouragement of their shopping activities. The results of the teleoperation analysis revealed that the amount of teleoperation gradually decreased, which is also promising.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. In this paper, a novel optimal control design scheme is proposed for continuous-time nonaffine nonlinear dynamic systems with unknown dynamics by adaptive dynamic programming (ADP). The proposed methodology iteratively updates the control policy online by using the state and input information without identifying the system dynamics. An ADP algorithm is developed, and can be applied to a general class of nonlinear control design problems. The convergence analysis for the designed control scheme is presented, along with rigorous stability analysis for the closed-loop system. The effectiveness of this new algorithm is illustrated by two simulation examples.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles. Many use cases of UAVs require beyond visual LOS communications. Mobile networks offer wide-area, high-speed, and secure wireless connectivity, which can enhance control and safety of UAV operations and enable beyond visual LOS use cases. In this article, we share some of our experience in LTE connectivity for low-altitude small UAVs. We first identify the typical airborne connectivity requirement...
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
The Internet of Things: A survey This paper addresses the Internet of Things. Main enabling factor of this promising paradigm is the integration of several technologies and communications solutions. Identification and tracking technologies, wired and wireless sensor and actuator networks, enhanced communication protocols (shared with the Next Generation Internet), and distributed intelligence for smart objects are just the most relevant. As one can easily imagine, any serious contribution to the advance of the Internet of Things must necessarily be the result of synergetic activities conducted in different fields of knowledge, such as telecommunications, informatics, electronics and social science. In such a complex scenario, this survey is directed to those who want to approach this complex discipline and contribute to its development. Different visions of this Internet of Things paradigm are reported and enabling technologies reviewed. What emerges is that still major issues shall be faced by the research community. The most relevant among them are addressed in details.
Resource Allocation for Wireless-Powered IoT Networks With Short Packet Communication Internet-of-Things (IoT) is a promising technology to connect massive machines and devices in the future communication networks. In this paper, we study a wireless-powered IoT network (WPIN) with short packet communication (SPC), in which a hybrid access point (HAP) first transmits power to the IoT devices wirelessly, then the devices in turn transmit their short data packets achieved by finite blocklength codes to the HAP using the harvested energy. Different from the long packet communication in conventional wireless network, SPC suffers from transmission rate degradation and a significant packet error rate. Thus, conventional resource allocation in the existing literature based on Shannon capacity achieved by the infinite blocklength codes is no longer optimal. In this paper, to enhance the transmission efficiency and reliability, we first define <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">effective-throughput</italic> and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">effective-amount-of-information</italic> as the performance metrics to balance the transmission rate and the packet error rate, and then jointly optimize the transmission time and packet error rate of each user to maximize the total effective-throughput or minimize the total transmission time subject to the users’ individual effective-amount-of-information requirements. To overcome the non-convexity of the formulated problems, we develop efficient algorithms to find high-quality suboptimal solutions for them. The simulation results show that the proposed algorithms can achieve similar performances as that of the optimal solution via exhaustive search, and outperform the benchmark schemes.
3D Trajectory and Transmit Power Optimization for UAV-Enabled Multi-Link Relaying Systems Unmanned aerial vehicles (UAVs) have the advantages of high mobility, remarkable versatility, and on-demand deployment, which lead to their wide applications in various industries. In disasters or other emergency events, UAV-enabled relaying can provide a temporary wireless connection for the affected area. Thus, a UAV-enabled multi-link relaying system is considered in this article, where multiple sources communicate with their destinations via multiple UAV relays at the same time sharing the same spectrum. Considering the interference between any two source-UAV relay-destination links, we propose to maximize the minimum throughput of all links by jointly optimizing the UAV relays' three-dimension (3D) trajectories and the sources and UAV relays' transmit power levels. As the considered problem is non-convex, we propose an iterative algorithm to solve it by applying the block coordinate ascent technique, which optimizes the UAV trajectories and the transmit power alternately until reaching convergence. Numerical results show that the proposed algorithm significantly outperforms the benchmark algorithms in terms of all links' minimum throughput, and demonstrate the necessity of jointly optimizing the 3D UAV trajectories and transmit power for interference mitigation in a UAV-enabled multi-link relaying system.
Placement Optimization of UAV-Mounted Mobile Base Stations. In terrestrial communication networks without fixed infrastructure, unmanned aerial vehicle-mounted mobile base stations (MBSs) provide an efficient solution to achieve wireless connectivity. This letter aims to minimize the number of MBSs needed to provide wireless coverage for a group of distributed ground terminals (GTs), ensuring that each GT is within the communication range of at least one MBS. We propose a polynomial-time algorithm with successive MBS placement, where the MBSs are placed sequentially starting on the area perimeter of the uncovered GTs along a spiral path toward the center, until all GTs are covered. Numerical results show that the proposed algorithm performs favorably compared with other schemes in terms of the number of required MBSs as well as time complexity.
Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications. In this paper, the efficient deployment and mobility of multiple unmanned aerial vehicles (UAVs), used as aerial base stations to collect data from ground Internet of Things (IoT) devices, are investigated. In particular, to enable reliable uplink communications for the IoT devices with a minimum total transmit power, a novel framework is proposed for jointly optimizing the 3D placement and the mo...
Tabu Search - Part I
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Touring a sequence of polygons Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. If the polygons are disjoint and convex, we give an algorithm running in time O(kn log (n/k)), where n is the total number of vertices specifying the polygons. We also extend our results to a case in which the convex polygons are arbitrarily intersecting and the subpath between any two consecutive polygons is constrained to lie within a simply connected region; the algorithm uses O(nk2 log n) time. Our methods are simple and allow shortest path queries from s to a query point t to be answered in time O(k log n + m), where m is the combinatorial path length. We show that for nonconvex polygons this "touring polygons" problem is NP-hard.The touring polygons problem is a strict generalization of some classic problems in computational geometry, including the safari problem, the zoo-keeper problem, and the watchman route problem in a simple polygon. Our new results give an order of magnitude improvement in the running times of the safari problem and the watchman route problem: We solve the safari problem in O(n2 log n) time and the watchman route problem (through a fixed point s) in time O(n3 log n), compared with the previous time bounds of O(n3) and O(n4), respectively.
A Nonconservative LMI Condition for Stability of Switched Systems With Guaranteed Dwell Time. Ensuring stability of switched linear systems with a guaranteed dwell time is an important problem in control systems. Several methods have been proposed in the literature to address this problem, but unfortunately they provide sufficient conditions only. This technical note proposes the use of homogeneous polynomial Lyapunov functions in the non-restrictive case where all the subsystems are Hurwitz, showing that a sufficient condition can be provided in terms of an LMI feasibility test by exploiting a key representation of polynomials. Several properties are proved for this condition, in particular that it is also necessary for a sufficiently large degree of these functions. As a result, the proposed condition provides a sequence of upper bounds of the minimum dwell time that approximate it arbitrarily well. Some examples illustrate the proposed approach.
A recent survey of reversible watermarking techniques. The art of secretly hiding and communicating information has gained immense importance in the last two decades due to the advances in generation, storage, and communication technology of digital content. Watermarking is one of the promising solutions for tamper detection and protection of digital content. However, watermarking can cause damage to the sensitive information present in the cover work. Therefore, at the receiving end, the exact recovery of cover work may not be possible. Additionally, there exist certain applications that may not tolerate even small distortions in cover work prior to the downstream processing. In such applications, reversible watermarking instead of conventional watermarking is employed. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the cover work. For the last few years, reversible watermarking techniques are gaining popularity because of its increasing applications in some important and sensitive areas, i.e., military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different reversible watermarking schemes are discussed on the basis of various characteristics of watermarking. However, the major focus of this survey is on prediction-error expansion based reversible watermarking techniques, whereby the secret information is hidden in the prediction domain through error expansion. Comparison of the different reversible watermarking techniques is provided in tabular form, and an analysis is carried out. Additionally, experimental comparison of some of the recent reversible watermarking techniques, both in terms of watermarking properties and computational time, is provided on a dataset of 300 images. Future directions are also provided for this potentially important field of watermarking.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.068753
0.066667
0.066667
0.066667
0.066667
0.034057
0.016286
0.000002
0
0
0
0
0
0
Cooperative Ramp Merging Design and Field Implementation: A Digital Twin Approach Based on Vehicle-to-Cloud Communication Ramp merging is considered as one of the most difficult driving scenarios due to the chaotic nature in both longitudinal and lateral driver behaviors (namely lack of effective coordination) in the merging area. In this study, we have designed a cooperative ramp merging system for connected vehicles, allowing merging vehicles to cooperate with others prior to arriving at the merging zone. Different...
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Cooperative channel assignment for VANETs based on multiagent reinforcement learning. Dynamic channel assignment (DCA) plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion. However, channel assignment under vehicular direct communication scenarios faces mutual influence of large-scale nodes, the lack of centralized coordination, unknown global state information, and other challenges. To solve this problem, a multiagent reinforcement learning (RL) based cooperative DCA (RL-CDCA) mechanism is proposed. Specifically, each vehicular node can successfully learn the proper strategies of channel selection and backoff adaptation from the real-time channel state information (CSI) using two cooperative RL models. In addition, neural networks are constructed as nonlinear Q-function approximators, which facilitates the mapping of the continuously sensed input to the mixed policy output. Nodes are driven to locally share and incorporate their individual rewards such that they can optimize their policies in a distributed collaborative manner. Simulation results show that the proposed multiagent RL-CDCA can better reduce the one-hop packet delay by no less than 73.73%, improve the packet delivery ratio by no less than 12.66% on average in a highly dense situation, and improve the fairness of the global network resource allocation.
Combined EEG-Gyroscope-tDCS Brain Machine Interface System for Early Management of Driver Drowsiness. In this paper, we present the design and implementation of a wireless, wearable brain machine interface (BMI) system dedicated to signal sensing and processing for driver drowsiness detection (DDD). Owing to the importance of driver drowsiness and the possibility for brainwaves-based DDD, many electroencephalogram (EEG)-based approaches have been proposed. However, few studies focus on the early d...
Shared Steering Control Using Safe Envelopes for Obstacle Avoidance and Vehicle Stability. Steer-by-wire technology enables vehicle safety systems to share control with a driver through augmentation of the driver&#39;s steering commands. Advances in sensing technologies empower these systems further with real-time information about the surrounding environment. Leveraging these advancements in vehicle actuation and sensing, the authors present a shared control framework for obstacle avoidanc...
Stabilizing a linear system by switching control with dwell time The use of networks in control systems to connect controllers and sensors/actuators has become common practice in many applications. This new technology has also posed a theoretical control problem of how to use the limited data rate of the network effectively. We consider a system where its sensor and actuator are connected by a finite data rate channel. A design method to stabilize a continuous-time, linear plant using a switching controller is proposed. In particular, to prevent the actuator from fast switching, or chattering, which can not only increase the necessary data rate but also damage the system, we employ a dwell-time switching scheme. It is shown that a systematic partition of the state-space enables us to reduce the complexity of the design problem
Ergonomics of exoskeletons: Objective performance metrics In this paper it is shown how variation of the kinematic structure of an exoskeleton and variation of its fixation strength on the human limb influences objective task performance metrics, such as interface load, tracking error and voluntary range of motion in a signal tracking experiment.
Clickers In The Flipped Classroom: Bring Your Own Device (Byod) To Promote Student Learning Flipped classrooms continue to grow in popularity across all levels of education. Following this pedagogical trend, the present study aimed to enhance the face-to-face instruction in flipped classrooms with the use of clickers. A game-like clicker application was implemented through a bring your own device (BYOD) model to gamify classroom dynamics in the spirit of question-and-answer competitions. A series of flipped learning lessons were created for the study, with clickers integrated into question-and-answer activities associated with each of the lessons as formative assessments to assist students in the learning of English as a foreign language. In this quasi-experimental research, the data were gathered using a summative assessment, a perception survey, and individual interviews. The collected data were then analyzed to compare the students' flipped learning experiences, with or without clicker use. The results indicated that the gamified use of clickers had positive influences on student learning, with regard to their performance, perceptions, and preferences. This study thus suggests that the emerging generation of clicker technology allows for a cost-effective BYOD integration model in flipped classrooms, through which it is possible to seamlessly bridge pre-class and in-class activities and to effectively promote student learning.
AoI-Inspired Collaborative Information Collection for AUV-Assisted Internet of Underwater Things In order to better explore the ocean, autonomous underwater vehicles (AUVs) have been widely applied to facilitate the information collection. However, considering the extremely large-scale deployment of sensor nodes in the Internet of Underwater Things (IoUT), a homogeneous AUV-enabled information collection system cannot support timely and reliable information collection considering the time-var...
1.11
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.05
0.003333
0
0
0
0
Research on enterprise knowledge service based on semantic reasoning and data fusion In the era of big data, the field of enterprise risk is facing considerable challenges brought by massive multisource heterogeneous information sources. In view of the proliferation of multisource and heterogeneous enterprise risk information, insufficient knowledge fusion capabilities, and the low level of intelligence in risk management, this article explores the application process of enterprise knowledge service models for rapid responses to risk incidents from the perspective of semantic reasoning and data fusion and clarifies the elements of the knowledge service model in the field of risk management. Based on risk data, risk decision making as the standard, risk events as the driving force, and knowledge graph analysis methods as the power, the risk domain knowledge service process is decomposed into three stages: prewarning, in-event response, and postevent summary. These stages are combined with the empirical knowledge of risk event handling to construct a three-level knowledge service model of risk domain knowledge acquisition-organization-application. This model introduces the semantic reasoning and data fusion method to express, organize, and integrate the knowledge needs of different stages of risk events; provide enterprise managers with risk management knowledge service solutions; and provide new growth points for the innovation of interdisciplinary knowledge service theory.
Efficiency evaluation research of a regional water system based on a game cross-efficiency model To solve the problem of regional water system evaluation, this paper proposes a system efficiency evaluation method based on the game cross-efficiency model and conducts an empirical analysis. First, autopoiesis is introduced as the theoretical basis. The characteristics of the authigenic system are combined with a regional water system, and the connotation and characteristics of the regional water system are defined. Second, based on the competitive relationship between regional water systems, the existing game crossover efficiency model is improved. A crossover efficiency model of other games is proposed to evaluate the efficiency of regional water systems. Then, the Pearl River Delta urban agglomeration is selected as the research object. The effects of four systematic evaluation methods based on the DEA method are compared horizontally to find the optimal system efficiency evaluation method. Finally, the characteristics of the regional water system in the Pearl River Delta are systematically analysed through the evaluation results, and the present situation of the regional water system is fully explained.
Automatic analysis of DIFC systems using noninterference with declassification Information flow control (IFC) can effectively resist Trojans and viruses that steal information from systems, and is usually adopted to protect the confidentiality of systems with a high security level. However, covert channel attacks can bypass IFC by exploiting its implementation defects. Thus, it is crucial to verify the system security and identify potential covert channels. Decentralized IFC (DIFC) is a key innovation that provides new flexible mechanisms, including decentralized declassification and taint tracking. However, the flexibility of DIFC systems also brings security risks. At present, there is a lack of a systematic and automatic security analysis approach for complex DIFC systems. In this paper, we propose a formal and automatic method to analyze the security of DIFC systems by using the FDR2 tool. We provide a new definition of noninterference, based on which the security analysis is performed. The analysis results indicate that our approach can both effectively detect covert channels in DIFC systems and accommodate conditional declassification information. The proposed method is more efficient and accurate than existing manual methods of covert channel detection.
Exploring real-time fault detection of high-speed train traction motor based on machine learning and wavelet analysis The implementation of real-time fault detection technology for key components of high-speed train traction electromechanical system is of great significance for improving train motor reliability and reducing guarantee costs. It has become an inevitable trend. Machine learning is a new and powerful means of researching fault detection technology. Based on machine learning, this paper conducts real-time fault detection technology research on the electromechanical actuators of the key components of electromechanical systems. A model of the electromechanical actuator is established, and the mechanism, influence and fault injection method of the three faults of the electromechanical actuator motor shaft jamming, gear broken tooth, excessive ball screw clearance and two faults of internal leakage are analyzed. On this basis, a fault simulation model of the traction motor of a high-speed train was built to obtain simulation fault data. At the same time, based on wavelet packet decomposition and reconstruction, the fault simulation data of electromechanical actuators and hydraulic pumps are analyzed, the wavelet packet energy distribution is calculated, and time-domain statistics are combined to extract energy feature vectors that can reflect component fault characteristics. This paper proposes a fault diagnosis method for electromechanical actuators based on machine learning, designs, and improves the neural network learning algorithm and network parameters, and improves the classification effect of the neural network; proposes a fault diagnosis method based on the GA-SVM algorithm, using real values. The coded genetic algorithm improves the parameter optimization of the support vector machine, and improves the classification speed of the support vector machine. Finally, the effectiveness and superiority of the two fault diagnosis methods designed in this paper are verified on their respective objects.
Spatial–temporal grid clustering method based on frequent stay point recognition In order to identify geolocation of defaulter and extract travel information from trajectory data, spatial–temporal grid clustering method are adopted to analysis massive trajectory data. Firstly, the trajectory data are preprocessed, and the spacetime cluster method is applied to detect the travelers’ geolocation information based on the information the travel segments are extracted. Secondly, for the recognition of frequent stay point, we proposed the spatial–temporal grid clustering model with smooth trajectory division algorithm and which improve the efficiency of processing a large amount of trajectory data. Thirdly, we proposed the spatial–temporal grid clustering method based on frequent stay point recognition. The experiment results of stationary trajectory division indicate that the frequent stay point and frequent paths can be effectively excavated under the condition of small information loss. These results demonstrate convincingly the effectiveness of the proposed method.
Edge computing clone node recognition system based on machine learning Edge computing is an important cornerstone for the construction of 5G networks, but with the development of Internet technology, the computer nodes are extremely vulnerable in attacks, especially clone attacks, causing casualties. The principle of clonal node attack is that the attacker captures the legitimate nodes in the network and obtains all their legitimate information, copies several nodes with the same ID and key information, and puts these clonal nodes in different locations in the network to attack the edge computing devices, resulting in network paralysis. How to quickly and efficiently identify clone nodes and isolate them becomes the key to prevent clone node attacks and improve the security of edge computing. In order to improve the degree of protection of edge computing and identify clonal nodes more quickly and accurately, based on edge computing of machine learning, this paper uses case analysis method, the literature analysis method, and other methods to collect data from the database, and uses parallel algorithm to build a model of clonal node recognition. The results show that the edge computing based on machine learning can greatly improve the efficiency of clonal node recognition, the recognition speed is more than 30% faster than the traditional edge computing, and the recognition accuracy reaches 0.852, which is about 50% higher than the traditional recognition. The results show that the edge computing clonal node method based on machine learning can improve the detection success rate of clonal nodes and reduce the energy consumption and transmission overhead of nodes, which is of great significance to the detection of clonal nodes.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
Evolutionary computation: comments on the history and current state Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete
Supporting social navigation on the World Wide Web This paper discusses a navigation behavior on Internet information services, in particular the World Wide Web, which is characterized by pointing out of information using various communication tools. We call this behavior social navigation as it is based on communication and interaction with other users, be that through email, or any other means of communication. Social navigation phenomena are quite common although most current tools (like Web browsers or email clients) offer very little support for it. We describe why social navigation is useful and how it can be better supported in future systems. We further describe two prototype systems that, although originally not designed explicitly as tools for social navigation, provide features that are typical for social navigation systems. One of these systems, the Juggler system, is a combination of a textual virtual environment and a Web client. The other system is a prototype of a Web- hotlist organizer, called Vortex. We use both systems to describe fundamental principles of social navigation systems.
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an ${\cal NP}$-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985--1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem---A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87--143].
A competitive swarm optimizer for large scale optimization. In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Communication-Efficient Federated Learning Over MIMO Multiple Access Channels Communication efficiency is of importance for wireless federated learning systems. In this paper, we propose a communication-efficient strategy for federated learning over multiple-input multiple-output (MIMO) multiple access channels (MACs). The proposed strategy comprises two components. When sending a locally computed gradient, each device compresses a high dimensional local gradient to multiple lower-dimensional gradient vectors using block sparsification. When receiving a superposition of the compressed local gradients via a MIMO-MAC, a parameter server (PS) performs a joint MIMO detection and the sparse local-gradient recovery. Inspired by the turbo decoding principle, our joint detection-and-recovery algorithm accurately recovers the high-dimensional local gradients by iteratively exchanging their beliefs for MIMO detection and sparse local gradient recovery outputs. We then analyze the reconstruction error of the proposed algorithm and its impact on the convergence rate of federated learning. From simulations, our gradient compression and joint detection-and-recovery methods diminish the communication cost significantly while achieving identical classification accuracy for the case without any compression.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Deepfashion: Powering Robust Clothes Recognition And Retrieval With Rich Annotations Recent advances in clothes recognition have been driven by the construction of clothes datasets. Existing datasets are limited in the amount of annotations and are difficult to cope with the various challenges in real-world applications. In this work, we introduce DeepFashion(1), a large-scale clothes dataset with comprehensive annotations. It contains over 800,000 images, which are richly annotated with massive attributes, clothing landmarks, and correspondence of images taken under different scenarios including store, street snapshot, and consumer. Such rich annotations enable the development of powerful algorithms in clothes recognition and facilitating future researches. To demonstrate the advantages of DeepFashion, we propose a new deep model, namely FashionNet, which learns clothing features by jointly predicting clothing attributes and landmarks. The estimated landmarks are then employed to pool or gate the learned features. It is optimized in an iterative manner. Extensive experiments demonstrate the effectiveness of FashionNet and the usefulness of DeepFashion.
Space-time super-resolution. We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By "temporal super-resolution," we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in "slow-motion." The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial "ringing" effect?
Transient attributes for high-level understanding and editing of outdoor scenes We live in a dynamic visual world where the appearance of scenes changes dramatically from hour to hour or season to season. In this work we study \"transient scene attributes\" -- high level properties which affect scene appearance, such as \"snow\", \"autumn\", \"dusk\", \"fog\". We define 40 transient attributes and use crowdsourcing to annotate thousands of images from 101 webcams. We use this \"transient attribute database\" to train regressors that can predict the presence of attributes in novel images. We demonstrate a photo organization method based on predicted attributes. Finally we propose a high-level image editing method which allows a user to adjust the attributes of a scene, e.g. change a scene to be \"snowy\" or \"sunset\". To support attribute manipulation we introduce a novel appearance transfer technique which is simple and fast yet competitive with the state-of-the-art. We show that we can convincingly modify many transient attributes in outdoor scenes.
Semantic Understanding of Scenes through the ADE20K Dataset. Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.
Flymap: Interacting With Maps Projected From A Drone Interactive maps have become ubiquitous in our daily lives, helping us reach destinations and discovering our surroundings. Yet, designing map interactions is not straightforward and depends on the device being used. As mobile devices evolve and become independent from users, such as with robots and drones, how will we interact with the maps they provide? We propose FlyMap as a novel user experience for drone-based interactive maps. We designed and developed three interaction techniques for FlyMap's usage scenarios. In a comprehensive indoor study (N = 16), we show the strengths and weaknesses of two techniques on users' cognition, task load, and satisfaction. FlyMap was then pilot tested with the third technique outdoors in real world conditions with four groups of participants (N = 13). We show that FlyMap's interactivity is exciting to users and opens the space for more direct interactions with drones.
Maskgan: Towards Diverse And Interactive Facial Image Manipulation Facial image manipulation has achieved great progress in recent years. However; previous methods either operate on a predefined set of face attributes or leave users little freedom to interactively manipulate images. To overcome these drawbacks, we propose a novel framework termed MaskGAN, enabling diverse and interactive face manipulation. Our key insight is that semantic masks serve as a suitable intermediate representation for flexible face manipulation with fidelity preservation. MaskGAN has two main components: 1) Dense Mapping Network (DMN) and 2) Editing Behavior Simulated Training (EBST). Specifically, DMN learns style mapping between a free-form user modified mask and a target image, enabling diverse generation results. EBST models the user editing behavior on the source mask, making the overall framework more robust to various manipulated inputs. Specifically, it introduces dual-editing consistency as the auxiliary supervision signal. To facilitate extensive studies, we construct a large-scale high-resolution face dataset with fine-grained mask annotations named CelebAMask-HQ. MaskGAN is comprehensively evaluated on two challenging tasks: attribute transfer and style copy, demonstrating superior performance over other state-of-the-art methods. The code, models, and dataset are available at https://github.com/switchablenorms/CeleAMask-HQ.
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution We show that pre-trained Generative Adversarial Networks (GANs), e.g., StyleGAN, can be used as a latent bank to improve the restoration quality of large-factor image super-resolution (SR). While most existing SR approaches attempt to generate realistic textures through learning with adversarial loss, our method, Generative LatEnt bANk (GLEAN), goes beyond existing practices by directly leveraging rich and diverse priors encapsulated in a pre-trained GAN. But unlike prevalent GAN inversion methods that require expensive image-specific optimization at runtime, our approach only needs a single forward pass to generate the upscaled image. GLEAN can be easily incorporated in a simple encoder-bank-decoder architecture with multi-resolution skip connections. Switching the bank allows the method to deal with images from diverse categories, e.g., cat, building, human face, and car. Images upscaled by GLEAN show clear improvements in terms of fidelity and texture faithfulness in comparison to existing methods as shown in Fig. 1.
End-To-End Time-Lapse Video Synthesis From A Single Outdoor Image Time-lapse videos usually contain visually appealing content but are often difficult and costly to create. In this paper, we present an end-to-end solution to synthesize a time-lapse video from a single outdoor image using deep neural networks. Our key idea is to train a conditional generative adversarial network based on existing datasets of time-lapse videos and image sequences. We propose a multi-frame joint conditional generation framework to effectively learn the correlation between the illumination change of an outdoor scene and the time of the day. We further present a multi-domain training scheme for robust training of our generative models from two datasets with different distributions and missing timestamp labels. Compared to alternative time-lapse video synthesis algorithms, our method uses the timestamp as the control variable and does not require a reference video to guide the synthesis of the final output. We conduct ablation studies to validate our algorithm and compare with state-of-the-art techniques both qualitatively and quantitatively.
Sequence to Sequence Learning with Neural Networks. Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
A General Equilibrium Model for Industries with Price and Service Competition This paper develops a stochastic general equilibrium inventory model for an oligopoly, in which all inventory constraint parameters are endogenously determined. We propose several systems of demand processes whose distributions are functions of all retailers' prices and all retailers' service levels. We proceed with the investigation of the equilibrium behavior of infinite-horizon models for industries facing this type of generalized competition, under demand uncertainty.We systematically consider the following three competition scenarios. (1) Price competition only: Here, we assume that the firms' service levels are exogenously chosen, but characterize how the price and inventory strategy equilibrium vary with the chosen service levels. (2) Simultaneous price and service-level competition: Here, each of the firms simultaneously chooses a service level and a combined price and inventory strategy. (3) Two-stage competition: The firms make their competitive choices sequentially. In a first stage, all firms simultaneously choose a service level; in a second stage, the firms simultaneously choose a combined pricing and inventory strategy with full knowledge of the service levels selected by all competitors. We show that in all of the above settings a Nash equilibrium of infinite-horizon stationary strategies exists and that it is of a simple structure, provided a Nash equilibrium exists in a so-called reduced game.We pay particular attention to the question of whether a firm can choose its service level on the basis of its own (input) characteristics (i.e., its cost parameters and demand function) only. We also investigate under which of the demand models a firm, under simultaneous competition, responds to a change in the exogenously specified characteristics of the various competitors by either: (i) adjusting its service level and price in the same direction, thereby compensating for price increases (decreases) by offering improved (inferior) service, or (ii) adjusting them in opposite directions, thereby simultaneously offering better or worse prices and service.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Eye-vergence visual servoing enhancing Lyapunov-stable trackability Visual servoing methods for hand---eye configuration are vulnerable for hand's dynamical oscillation, since nonlinear dynamical effects of whole manipulator stand against the stable tracking ability (trackability). Our proposal to solve this problem is that the controller for visual servoing of the hand and the one for eye-vergence should be separated independently based on decoupling each other, where the trackability is verified by Lyapunov analysis. Then the effectiveness of the decoupled hand and eye-vergence visual servoing method is evaluated through simulations incorporated with actual dynamics of 7-DoF robot with additional 3-DoF for eye-vergence mechanism by amplitude and phase frequency analysis.
An improved E-DRM scheme for mobile environments. With the rapid development of information science and network technology, Internet has become an important platform for the dissemination of digital content, which can be easily copied and distributed through the Internet. Although convenience is increased, it causes significant damage to authors of digital content. Digital rights management system (DRM system) is an access control system that is designed to protect digital content and ensure illegal users from maliciously spreading digital content. Enterprise Digital Rights Management system (E-DRM system) is a DRM system that prevents unauthorized users from stealing the enterprise's confidential data. User authentication is the most important method to ensure digital rights management. In order to verify the validity of user, the biometrics-based authentication protocol is widely used due to the biological characteristics of each user are unique. By using biometric identification, it can ensure the correctness of user identity. In addition, due to the popularity of mobile device and Internet, user can access digital content and network information at anytime and anywhere. Recently, Mishra et al. proposed an anonymous and secure biometric-based enterprise digital rights management system for mobile environment. Although biometrics-based authentication is used to prevent users from being forged, the anonymity of users and the preservation of digital content are not ensured in their proposed system. Therefore, in this paper, we will propose a more efficient and secure biometric-based enterprise digital rights management system with user anonymity for mobile environments.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
Spatiotemporal Trident Networks: Detection and Localization of Object Removal Tampering in Video Passive Forensics With the development of video and image processing technology, the field of video tampering forensics is facing enormous challenges. Specifically, as the fundamental basis of judicial forensics, passive forensics for object removal video forgery is particularly essential. To extract tampering traces in video more sufficiently, the author proposed a spatiotemporal trident network based on the spati...
VISION: a video and image dataset for source identification. Forensic research community keeps proposing new techniques to analyze digital images and videos. However, the performance of proposed tools are usually tested on data that are far from reality in terms of resolution, source device, and processing history. Remarkably, in the latest years, portable devices became the preferred means to capture images and videos, and contents are commonly shared through social media platforms (SMPs, for example, Facebook, YouTube, etc.). These facts pose new challenges to the forensic community: for example, most modern cameras feature digital stabilization, that is proved to severely hinder the performance of video source identification technologies; moreover, the strong re-compression enforced by SMPs during upload threatens the reliability of multimedia forensic tools. On the other hand, portable devices capture both images and videos with the same sensor, opening new forensic opportunities. The goal of this paper is to propose the VISION dataset as a contribution to the development of multimedia forensics. The VISION dataset is currently composed by 34,427 images and 1914 videos, both in the native format and in their social version (Facebook, YouTube, and WhatsApp are considered), from 35 portable devices of 11 major brands. VISION can be exploited as benchmark for the exhaustive evaluation of several image and video forensic tools.
Deep High-Resolution Representation Learning for Visual Recognition High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), ...
Sequential and Patch Analyses for Object Removal Video Forgery Detection and Localization In recent years, video surveillance has become essential for security applications used to monitor many organizations and locations, and it is therefore important to ensure the reliability of these surveillance videos. Unfortunately, surveillance videos can be forged with little effort by deleting an object from a video scene while leaving no visible traces. A fundamental challenge in video security is to determine whether or not an object has been removed from a video. This task is particularly challenging due to the lack of ground truth bases that can be used to verify the originality and integrity of video contents. In this paper, we propose a novel approach based on sequential and patch analyses to detect object removal forgery and to localize forged regions in videos. Sequential analysis is performed by modeling video sequences as stochastic processes, where changes in the parameters of these processes are used to detect a video forgery. Patch analysis is performed by modeling video sequences as a mixture model of normal and anomalous patches, with the aim to separate these patches by identifying the distribution of each patch. We localize forged regions by visualizing the movement of removed objects using anomalous patches. We conduct our experiments at both pixel and video levels to determine the effectiveness and efficiency of our approach to detection of video forgery. The experimental results show that our approach achieves excellent detection performance with low-computational complexity and leads to robust results for compressed and low-resolution videos.
A PatchMatch-based Dense-field Algorithm for Video Copy-Move Detection and Localization. We propose a new algorithm for the reliable detection and localization of video copy–move forgeries. Discovering well-crafted video copy–moves may be very difficult, especially when some uniform background is copied to occlude foreground objects. To reliably detect both additive and occlusive copy–moves, we use a dense-field approach, with invariant features that guarantee robustness to several postprocessing operations. To limit complexity, a suitable video-oriented version of PatchMatch is used, with a multiresolution search strategy, and a focus on volumes of interest. Performance assessment relies on a new dataset, designed <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ad hoc</italic> , with realistic copy–moves and a wide variety of challenging situations. Experimental results show the proposed method to detect and localize video copy–moves with good accuracy even in adverse conditions.
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection •DeepFakes and beyond: types of facial manipulations.•Facial manipulation techniques.•Databases for research in face manipulation and fake detection.•Key benchmarks for technology evaluation of fake detection methods.•Summary of fake detection results for each facial manipulation group.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
A communication robot in a shopping mall This paper reports our development of a communication robot for use in a shopping mall to provide shopping information, offer route guidance, and build rapport. In the development, the major difficulties included sensing human behaviors, conversation in a noisy daily environment, and the needs of unexpected miscellaneous knowledge in the conversation. We chose a networkrobot system approach, where a single robot's poor sensing capability and knowledge are supplemented by ubiquitous sensors and a human operator. The developed robot system detects a person with floor sensors to initiate interaction, identifies individuals with radio-frequency identification (RFID) tags, gives shopping information while chatting, and provides route guidance with deictic gestures. The robotwas partially teleoperated to avoid the difficulty of speech recognition as well as to furnish a new kind of knowledge that only humans can flexibly provide. The information supplied by a human operator was later used to increase the robot's autonomy. For 25 days in a shopping mall, we conducted a field trial and gathered 2642 interactions. A total of 235 participants signed up to use RFID tags and, later, provided questionnaire responses. The questionnaire results are promising in terms of the visitors' perceived acceptability as well as the encouragement of their shopping activities. The results of the teleoperation analysis revealed that the amount of teleoperation gradually decreased, which is also promising.
Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Rapid arm-reaching movements serve as an excellent test bed for any theory about trajectory formation. How are these movements planned? A minimum acceleration criterion has been examined in the past, and the solution obtained, based on the Euler-Poisson equation, failed to predict that the hand would begin and end the movement at rest (i.e., with zero acceleration). Therefore, this criterion was rejected in favor of the minimum jerk, which was proved to be successful in describing many features of human movements. This letter follows an alternative approach and solves the minimum acceleration problem with constraints using Pontryagin's minimum principle. We use the minimum principle to obtain minimum acceleration trajectories and use the jerk as a control signal. In order to find a solution that does not include nonphysiological impulse functions, constraints on the maximum and minimum jerk values are assumed. The analytical solution provides a three-phase piecewise constant jerk signal (bang-bang control) where the magnitude of the jerk and the two switching times depend on the magnitude of the maximum and minimum available jerk values. This result fits the observed trajectories of reaching movements and takes into account both the extrinsic coordinates and the muscle limitations in a single framework. The minimum acceleration with constraints principle is discussed as a unifying approach for many observations about the neural control of movements.
An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. In this paper, a blind image watermarking scheme based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. In this scheme, DWT is applied on ROI (region of interest) of the medical image to get different frequency subbands of its wavelet decomposition. On the low frequency subband LL of the ROI, block-SVD is applied to get different singular matrices. A pair of elements with similar values is identified from the left singular value matrix of these selected blocks. The values of these pairs are modified using certain threshold to embed a bit of watermark content. Appropriate threshold is chosen to achieve the imperceptibility and robustness of medical image and watermark contents respectively. For authentication and identification of original medical image, one watermark image (logo) and other text watermark have been used. The watermark image provides authentication whereas the text data represents electronic patient record (EPR) for identification. At receiving end, blind recovery of both watermark contents is performed by a similar comparison scheme used during the embedding process. The proposed algorithm is applied on various groups of medical images like X-ray, CT scan and mammography. This scheme offers better visibility of watermarked image and recovery of watermark content due to DWT-SVD combination. Moreover, use of Hamming error correcting code (ECC) on EPR text bits reduces the BER and thus provides better recovery of EPR. The performance of proposed algorithm with EPR data coding by Hamming code is compared with the BCH error correcting code and it is found that later one perform better. A result analysis shows that imperceptibility of watermarked image is better as PSNR is above 43 dB and WPSNR is above 52 dB for all set of images. In addition, robustness of the scheme is better than existing scheme for similar set of medical images in terms of normalized correlation coefficient (NCC) and bit-error-rate (BER). An analysis is also carried out to verify the performance of the proposed scheme for different size of watermark contents (image and EPR data). It is observed from analysis that the proposed scheme is also appropriate for watermarking of color image. Using proposed scheme, watermark contents are extracted successfully under various noise attacks like JPEG compression, filtering, Gaussian noise, Salt and pepper noise, cropping, filtering and rotation. Performance comparison of proposed scheme with existing schemes shows proposed scheme has better robustness against different types of attacks. Moreover, the proposed scheme is also robust under set of benchmark attacks known as checkmark attacks.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.1
0.05
0
0
0
0
0
0
0
0
Energy-Aware 3D Unmanned Aerial Vehicle Deployment for Network Throughput Optimization Introducing mobile small cells to next generation cellular networks is nowadays a pervasive and cost-effective way to fulfill the ever-increasing mobile broadband traffic. Being agile and resilient, unmanned aerial vehicles (UAVs) mounting small cells are deemed emerging platforms for the provision of wireless services. As the residual battery capacity available to UAVs determines the lifetime of an airborne network, it is essential to account for the energy expenditure on various flying actions in a flight plan. The focus of this paper is therefore on studying the 3D deployment problem for a swarm of UAVs, with the goal of maximizing the total amount of data transmitted by UAVs. In particular, we address an interesting trade-off among flight altitude, energy expense and travel time. We formulate the problem as a non-convex non-linear optimization problem and propose an energy-aware 3D deployment algorithm to resolve it with the aid of Lagrangian dual relaxation, interior-point and subgradient projection methods. Afterwards, we prove the optimality of a special case derived from the convexification transformation. We then conduct a series of simulations to evaluate the performance of our proposed algorithm. Simulation results manifest that our proposed algorithm can benefit from the proper treatment of the trade-off.
IoT-U: Cellular Internet-of-Things Networks Over Unlicensed Spectrum. In this paper, we consider an uplink cellular Internet-of-Things (IoT) network, where a cellular user (CU) can serve as the mobile data aggregator for a cluster of IoT devices. To be specific, the IoT devices can either transmit the sensory data to the base station (BS) directly by cellular communications, or first aggregate the data to a CU through machine-to-machine (M2M) communications before t...
Cognitive Capacity Harvesting Networks: Architectural Evolution Toward Future Cognitive Radio Networks. Cognitive radio technologies enable users to opportunistically access unused licensed spectrum and are viewed as a promising way to deal with the current spectrum crisis. Over the last 15 years, cognitive radio technologies have been extensively studied from algorithmic design to practical implementation. One pressing and fundamental problem is how to integrate cognitive radios into current wirele...
Chinese Remainder Theorem-Based Sequence Design for Resource Block Assignment in Relay-Assisted Internet-of-Things Communications. Terminal relays are expected to play a key role in facilitating the communication between base stations and low-cost power-constrained cellular Internet of Things (IoT) devices. However, these mobile relays require a mechanism by which they can autonomously assign the available resource blocks (RBs) to their assisted IoT devices in the absence of channel state information (CSI) and with minimal as...
A Bio-Inspired Solution to Cluster-Based Distributed Spectrum Allocation in High-Density Cognitive Internet of Things With the emergence of Internet of Things (IoT), where any device is able to connect to the Internet and monitor/control physical elements, several applications were made possible, such as smart cities, smart health care, and smart transportation. The wide range of the requirements of these applications drives traditional IoT to cognitive IoT (CIoT) that supports smart resource allocation, automatic network operation and intelligent service provisioning. To enable CIoT, there is a need for flexible and reliable wireless communication. In this paper, we propose to combine cognitive radio (CR) with a biological mechanism called reaction–diffusion to provide efficient spectrum allocation for CIoT. We first formulate the quantization of qualitative connectivity-flexibility tradeoff problem to determine the optimal cluster size (i.e., number of cluster members) that maximizes clustered throughput but minimizes communication delay. Then, we propose a bio-inspired algorithm which is used by CIoT devices to form cluster distributedly. We compute the optimal values of the algorithm’s parameters (e.g., contention window) of the proposed algorithm to increase the network’s adaption to different scenarios (e.g., spectrum homogeneity and heterogeneity) and to decrease convergence time, communication overhead, and computation complexity. We conduct a theoretical analysis to validate the correctness and effectiveness of proposed bio-inspired algorithm. Simulation results show that the proposed algorithm can achieve excellent clustering performance in different scenarios.
Energy Minimization of Multi-cell Cognitive Capacity Harvesting Networks with Neighbor Resource Sharing In this paper, we investigate the energy minimization problem for a cognitive capacity harvesting network (CCHN), where secondary users (SUs) without cognitive radio (CR) capability communicate with CR routers via device-to-device (D2D) transmissions, and CR routers connect with base stations (BSs) via CR links. Different from traditional D2D networks that D2D transmissions share the resource of c...
Wireless sensor networks: a survey This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.
ImageNet Classification with Deep Convolutional Neural Networks. We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called \"dropout\" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Efficient Scheduling of Multiple Mobile Chargers for Wireless Sensor Networks. In this paper, we study the deployment of multiple mobile charging vehicles to charge sensors in a large-scale wireless sensor network for a given monitoring period so that none of the sensors will run out of energy, where sensors can be charged by the charging vehicles with wireless energy transfer. To minimize the network operational cost, we first formulate a charging scheduling problem of disp...
ESync: Energy Synchronized Mobile Charging in Rechargeable Wireless Sensor Networks Recent years have witnessed many new promising technologies to power the wireless sensor networks, which motivate some fundamental topics to be revisited. Different from energy harvesting which generates dynamic energy supplies, the mobile charger is able to provide stable and reliable energy supply for sensor nodes, and thus enables sustainable system operations. While previous mobile charging protocols either focus on the charger travel distance or the charging delay of sensor nodes, in this work we propose a novel Energy Synchronized Mobile Charging (ESync) protocol, which simultaneously reduces both of them. Observing the limitation of the Traveling Salesman Problem (TSP)-based solutions when nodes energy consumptions are diverse, we construct a set of nested TSP tours based on their energy consumptions, and only nodes with low remaining energy are involved in each charging round. Furthermore, we propose the concept of energy synchronization to synchronize the charging requests sequence of nodes with their sequence on the TSP tours. Experiment and simulation demonstrate ESync can reduce charger travel distance and nodes charging delay by about 30% and 40% respectively.
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
OPPC: An Optimal Path Planning Charging Scheme Based on Schedulability Evaluation for WRSNs. The lack of schedulability evaluation of previous charging schemes in wireless rechargeable sensor networks (WRSNs) degrades the charging efficiency, leading to node exhaustion. We propose an Optimal Path Planning Charging scheme, namely OPPC, for the on-demand charging architecture. OPPC evaluates the schedulability of a charging mission, which makes charging scheduling predictable. It provides an optimal charging path which maximizes charging efficiency. When confronted with a non-schedulable charging mission, a node discarding algorithm is developed to enable the schedulability. Experimental simulations demonstrate that OPPC can achieve better performance in successful charging rate as well as charging efficiency.
Machine learning algorithms for wireless sensor networks: A survey. •The survey of machine learning algorithms for WSNs from the period 2014 to March 2018.•Machine learning (ML) for WSNs with their advantages, features and limitations.•A statistical survey of ML-based algorithms for WSNs.•Reasons to choose a ML techniques to solve issues in WSNs.•The survey proposes a discussion on open issues.
Task Scheduling for Energy-Harvesting-Based IoT: A Survey and Critical Analysis The Internet of Things (IoT) has important applications in our daily lives, including health and fitness tracking, environmental monitoring, and transportation. However, sensor nodes in IoT suffer from the limited lifetime of batteries resulting from their finite energy availability. A promising solution is to harvest energy from environmental sources, such as solar, kinetic, thermal, and radio-fr...
Hierarchical, collaborative wireless energy transfer in sensor networks with multiple Mobile Chargers. Wireless energy transfer is used to fundamentally address energy management problems in Wireless Rechargeable Sensor Networks (WRSNs). In such networks mobile entities traverse the network and wirelessly replenish the energy of sensor nodes. In recent research on collaborative wireless charging, the mobile entities are also allowed to charge each other.
A Mobile Platform for Wireless Charging and Data Collection in Sensor Networks Wireless energy transfer (WET) is a new technology that can be used to charge the batteries of sensor nodes without wires. Although wireless, WET does require a charging station to be brought to within reasonable range of a sensor node so that a good energy transfer efficiency can be achieved. On the other hand, it has been well recognized that data collection with a mobile base station has significant advantages over a static one. Given that a mobile platform is required for WET, a natural approach is to employ the same mobile platform to carry the base station for data collection. In this paper, we study the interesting problem of co-locating a wireless charger (for WET) and a mobile base station on the same mobile platform – the wireless charging vehicle (WCV). The WCV travels along a preplanned path inside the sensor network. Our goal is to minimize energy consumption of the entire system while ensuring that (i) each sensor node is charged in time so that it will never run out of energy, and (ii) all data collected from the sensor nodes are relayed to the mobile base station. We develop a mathematical model for this problem (OPT-t), which is timedependent. Instead of solving OPT-t directly, we show that it is sufficient to study a special subproblem (OPT-s) which only involves space-dependent variables. Subsequently, we develop a provably near-optimal solution to OPT-s. Our results offer a solution on how to use a single mobile platform to address both WET and data collection in sensor networks.
UAV-Assisted Heterogeneous Networks for Capacity Enhancement. Modern day wireless networks have tremendously evolved driven by a sharp increase in user demands, continuously requesting more data and services. This puts significant strain on infrastructure-based macro cellular networks due to the inefficiency in handling these traffic demands, cost effectively. A viable solution is the use of unmanned aerial vehicles (UAVs) as intermediate aerial nodes betwee...
Breath: An Adaptive Protocol for Industrial Control Applications Using Wireless Sensor Networks An energy-efficient, reliable and timely data transmission is essential for Wireless Sensor Networks (WSNs) employed in scenarios where plant information must be available for control applications. To reach a maximum efficiency, cross-layer interaction is a major design paradigm to exploit the complex interaction among the layers of the protocol stack. This is challenging because latency, reliability, and energy are at odds, and resource-constrained nodes support only simple algorithms. In this paper, the novel protocol Breath is proposed for control applications. Breath is designed for WSNs where nodes attached to plants must transmit information via multihop routing to a sink. Breath ensures a desired packet delivery and delay probabilities while minimizing the energy consumption of the network. The protocol is based on randomized routing, medium access control, and duty-cycling jointly optimized for energy efficiency. The design approach relies on a constrained optimization problem, whereby the objective function is the energy consumption and the constraints are the packet reliability and delay. The challenging part is the modeling of the interactions among the layers by simple expressions of adequate accuracy, which are then used for the optimization by in-network processing. The optimal working point of the protocol is achieved by a simple algorithm, which adapts to traffic variations and channel conditions with negligible overhead. The protocol has been implemented and experimentally evaluated on a testbed with off-the-shelf wireless sensor nodes, and it has been compared with a standard IEEE 802.15.4 solution. Analytical and experimental results show that Breath is tunable and meets reliability and delay requirements. Breath exhibits a good distribution of the working load, thus ensuring a long lifetime of the network. Therefore, Breath is a good candidate for efficient, reliable, and timely data gathering for control applications.
Mining network data for intrusion detection through combining SVMs with ant colony networks. In this paper, we introduce a new machine-learning-based data classification algorithm that is applied to network intrusion detection. The basic task is to classify network activities (in the network log as connection records) as normal or abnormal while minimizing misclassification. Although different classification models have been developed for network intrusion detection, each of them has its strengths and weaknesses, including the most commonly applied Support Vector Machine (SVM) method and the Clustering based on Self-Organized Ant Colony Network (CSOACN). Our new approach combines the SVM method with CSOACNs to take the advantages of both while avoiding their weaknesses. Our algorithm is implemented and evaluated using a standard benchmark KDD99 data set. Experiments show that CSVAC (Combining Support Vectors with Ant Colony) outperforms SVM alone or CSOACN alone in terms of both classification rate and run-time efficiency.
Leader-following control of high-order multi-agent systems under directed graphs: Pre-specified finite time approach. In this work we address the full state finite-time distributed consensus control problem for high-order multi-agent systems (MAS) under directed communication topology. Existing protocols for finite time consensus of MAS are normally based on the signum function or fractional power state feedback, and the finite convergence time is contingent upon the initial conditions and other design parameters. In this paper, by using regular local state feedback only, we present a distributed and smooth finite time control scheme to achieve leader–follower consensus under the communication topology containing a directed spanning tree. The proposed control consists of a finite time observer and a finite time compensator. The salient feature of the proposed method is that both the finite time intervals for observing leader states and for reaching consensus are independent of initial conditions and any other design parameters, thus can be explicitly pre-specified. Leader-following problem of MAS with both single and multiple leaders are studied.
Methods for Flexible Management of Blockchain-Based Cryptocurrencies in Electricity Markets and Smart Grids The growing trend in the use of blockchain-based cryptocurrencies in modern communities provides several advantages, but also imposes several challenges to energy markets and power systems, in general. This paper aims at providing recommendations for efficient use of digital cryptocurrencies in today's and future smart power systems, in order to face the challenging aspects of this new technology. In this paper, existing issues and challenges of smart grids in the presence of blockchain-based cryptocurrencies are presented and some innovative approaches for efficient integration and management of blockchain-based cryptocurrencies in smart grids are proposed. Also some recommendations are given for improving the smart grids performance in the presence of digital cryptocurrencies and some future research directions are highlighted.
1.027726
0.025758
0.022222
0.022222
0.022222
0.022222
0.022222
0.015705
0.007412
0
0
0
0
0
STGMN: A gated multi-graph convolutional network framework for traffic flow prediction Accurate traffic flow prediction is crucial for the development of intelligent transportation. It can not only effectively avoid traffic congestion and other traffic problems, but also provide a data basis for other complex tasks. The rapid development of social technology and the increasingly complex traffic environment lead to the emergence of massive traffic data. Traffic flow prediction as a spatial-temporal prediction problem has been widely concerned, but the traditional forecasting methods often ignore the spatial-temporal dependence, difficult to meet the prediction requirements. Therefore, this paper proposes a novel spatial-temporal model based on an attention one-dimension convolutional neural network (1D-CNN) and a gated interpretable framework, which models historical traffic data from the perspectives of time and space respectively. The core of the model proposed in this paper is to construct spatial-temporal blocks. First, a 1D-CNN based on channel attention mechanism and “inception” structure is proposed to extract temporal correlation. Then, considering the complexity of the actual traffic network, an interpretable multi-graph gated graph convolution framework is proposed to extract the spatial correlation. Finally, extensive experiments are carried out on real data sets, which prove the effectiveness of the proposed model, and it is very competitive compared with some state-of-the-art methods.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Traffic speed prediction for intelligent transportation system based on a deep feature fusion model Currently, many types of traffic data from different advanced data collection techniques are available. Plenty of effort has been spent to take full advantage of the heterogeneous data to enhance the prediction accuracy of the model in the advanced travel information system. The objective of this study is to build a deep feature fusion model to predict space–mean–speed using heterogeneous data. The temporal and spatial features are defined as the raw input which are extracted and trained by stacked autoencoders in the first step. Then, the extracted representative features from the data are fused. Finally, prediction models can be developed to capture the correlations. Therefore, the prediction model can consider both temporal–spatial correlation and correlation of heterogeneous data. Using the real-world data, some machine learning models including artificial neural network, support vector regression, regression tree and k-nearest neighbor are implemented and compared. The best result can be obtained when deep feature fusion model and support vector regression are jointly applied. Moreover, we compare the new proposed deep feature–level fusion method with the widely used data–level fusion method. The results indicate that proposed deep feature fusion model can achieve a better performance.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
Optimizing Itinerary Selection and Charging Association for Mobile Chargers. Wireless power transfer provides a promising way to extend the battery lifetime of our energy-hungry rechargeable devices. Previous studies have envisioned using mobile vehicles/robots/drones equipped with high capacity batteries as mobile chargers to replenish those devices, and they mainly focus on maximizing network lifetime, optimizing efficiency of charging scheduling, minimizing total charging delay, etc. However, existing methods may be insufficient and inflexible when the energy consumption of rechargeable devices fluctuates overtime, or when rechargeable devices are sparse. In this paper, we consider how to efficiently provide flexible wireless charging using pre-planned charging itineraries. We present the Itinerary Selection and Charging Association (ISCA) problem: given a set of rechargeable devices and a set of candidate charging itineraries, how can we select itineraries and determine a corresponding charging association to minimize the amount of energy which is due to mobile chargers' movement and wireless charging loss, so that every device gets its required energy. We prove that ISCA is NP-complete by reducing the set cover problem to it. We start solving this problem by first looking at the case in which an itinerary can only be used once, and we propose an algorithm with approximation ratio of O (lnM) and a practical heuristic algorithm, where M is the number of devices. For the general case in which an itinerary may be used multiple times, we propose an approximation algorithm of factor 10 using the Primal-Dual schema. Evaluations results from real field experiments and extensive simulations show that the proposed algorithms have near-optimal performance and PDA reduces the amount of wasted energy by up to 65 percent compared with a set cover-based algorithm.
A Grid-Based Joint Routing and Charging Algorithm for Industrial Wireless Rechargeable Sensor Networks Wireless charging techniques provide a more flexible and promising way to solve the energy constraint problem in industrial wireless rechargeable sensor networks (IWRSNs). Although considerable research has been done on wireless charging algorithms, most of it only focuses on passively replenishing nodes having insufficient energy. In this paper, we propose a grid-based joint routing and charging algorithm for IWRSNs to solve the charging problem in a proactive way. On the one hand, a new routing protocol is designed according to charging characteristics of the charger to achieve local energy balance. On the other hand, different charging times are allocated at different charging points on the basis of energy consumption caused by the routing process to achieve global energy balance. Simulation results verify superiority of our proposed algorithm in solving the balancing energy problem and improving survival rates of nodes.
Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks. The application of wireless charging technology in traditional battery-powered wireless sensor networks (WSNs) grows rapidly recently. Although previous studies indicate that the technology can deliver energy reliably, it still faces regulatory mandate to provide high power density without incurring health risks. In particular, in clustered WSNs there exists a mismatch between the high energy demands from cluster heads and the relatively low energy supplies from wireless chargers. Fortunately, solar energy harvesting can provide high power density without health risks. However, its reliability is subject to weather dynamics. In this paper, we propose a hybrid framework that combines the two technologies - cluster heads are equipped with solar panels to scavenge solar energy and the rest of nodes are powered by wireless charging. We divide the network into three hierarchical levels. On the first level, we study a discrete placement problem of how to deploy solar-powered cluster heads that can minimize overall cost and propose a distributed 1:61(1+) 2 -approximation algorithm for the placement. Then, we extend the discrete problem into continuous space and develop an iterative algorithm based on the Weiszfeld algorithm. On the second level, we establish an energy balance in the network and explore how to maintain such balance for wireless-powered nodes when sunlight is unavailable. We also propose a distributed cluster head re-selection algorithm. On the third level, we first consider the tour planning problem by combining wireless charging with mobile data gathering in a joint tour. We then propose a polynomial-time scheduling algorithm to find appropriate hitting points on sensors' transmission boundaries for data gathering. For wireless charging, we give the mobile chargers more flexibility by allowing partial recharge when energy demands are high. The problem turns out to be a Linear Program. By exploiting its particular structure, we propose an efficient algorithm that can achieve near-optimal solutions. Our extensive simulation results demonstrate that the hybrid framework can reduce battery depletion by 20 percent and save vehicles' moving cost by 25 percent compared to previous works. By allowing partial recharge, battery depletion can be further reduced at a slightly increased cost. The results also suggest that we can reduce the number of high-cost mobile chargers by deploying more low-cost solar-powered sensors.
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
Collaborative mobile charging policy for perpetual operation in large-scale wireless rechargeable sensor networks. In this paper, we present a mobile charging policy for perpetual operation of large-scale wireless rechargeable sensor networks (WRSNs). In these networks, dedicated mobile chargers (MCs) move throughout the network and supply energy for power-limited sensors. The MCs not only charge the sensors but also charge each other. We develop a hop-based mobile charging policy (HMCP) minimizing the number of required MCs. The HMCP considers both the sensors’ unbalanced energy consumption rate and the MCs’ limited energy capacity. The minimum number of MCs is is formulated as an integer programming problem. We first verify the existence of an optimal solution, and later design an algorithm to obtain the optimal solution. Based on HMCP, we propose HMCP+ for the case that only one MC can recharge sensors in each region. HMCP+ plans MCs’ paths to decrease mobile energy consumption by MCs. Finally, performance of the proposed polices is validated through the simulation results.
Near optimal bounded route association for drone-enabled rechargeable WSNs. This paper considers the multi-drone wireless charging scheme in large scale wireless sensor networks, where sensors can be charged by the charging drone with wireless energy transfer. As existing studies rarely focus on the route association issue with limited energy capacity, we consider this fundamental issue and study how to optimize the route association to maximize the overall charging coverage utility, when charging routes and associated nodes should be jointly selected. We first formulate a bounded route association problem which is proven to be NP-hard. Then we cast it as maximizing a monotone submodular function subject to matroid constraints and devise an efficient and accessible algorithm with a 13α approximation ratio, where α is the bound of Fully Polynomial-Time Approximation Scheme (FPTAS) solving a knapsack problem. Extensive numerical evaluations and trace-driven evaluations have been carried out to validate our theoretical effect, and the results show that our algorithm has near-optimal performance covering at most 85.3% and 70.5% of the surrogate-optimal solution achieved by CPLEX toolbox, respectively.
Joint Optimization of Charging Location and Time for Network Lifetime Extension in WRSNs Wireless rechargeable sensor networks (WRSNs) have emerged as a potential solution to solve the challenge of prolonging battery-powered sensor networks’ lifetime. In a WRSN, a mobile charger moves around and charges the rechargeable sensors when stopping at charging spots. This paper newly considers a joint optimization of the charging location and the charging time to avoid node failure in WRSNs. We formulate the optimization and propose a solution for that. The proposal includes an algorithm to find a list of potential charging locations and their associated optimal charging time. Moreover, the Q-learning technique is adopted to determine the optimal next charging location among the candidates. We implement the algorithm and conduct experiments to compare it to the related works. The results show that the proposed algorithm outperforms the others in terms of network lifetime. Specifically, the highest performance gap of our proposal to the best algorithm among the others is 8.29 times.
Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. Wireless Sensor Networks (WSNs) are crucial in supporting continuous environmental monitoring, where sensor nodes are deployed and must remain operational to collect and transfer data from the environment to a base-station. However, sensor nodes have limited energy in their primary power storage unit, and this energy may be quickly drained if the sensor node remains operational over long periods of time. Therefore, the idea of harvesting ambient energy from the immediate surroundings of the deployed sensors, to recharge the batteries and to directly power the sensor nodes, has recently been proposed. The deployment of energy harvesting in environmental field systems eliminates the dependency of sensor nodes on battery power, drastically reducing the maintenance costs required to replace batteries. In this article, we review the state-of-the-art in energy-harvesting WSNs for environmental monitoring applications, including Animal Tracking, Air Quality Monitoring, Water Quality Monitoring, and Disaster Monitoring to improve the ecosystem and human life. In addition to presenting the technologies for harvesting energy from ambient sources and the protocols that can take advantage of the harvested energy, we present challenges that must be addressed to further advance energy-harvesting-based WSNs, along with some future work directions to address these challenges.
P2S: A Primary and Passer-By Scheduling Algorithm for On-Demand Charging Architecture in Wireless Rechargeable Sensor Networks. As the interdiscipline of wireless communication and control engineering, the cooperative charging issue in wireless rechargeable sensor networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles to sensors, providing a new paradigm to prolong the network lifetime. However, existing techn...
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We in- vestigate a simple event-triggered scheduler based on this feedback para- digm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements. Small embedded microprocessors are quickly becoming an essen- tial part of the most diverse applications. A particularly interesting ex- ample are physically distributed sensor/actuator networks responsible for collecting and processing information, and to react to this infor- mation through actuation. The embedded microprocessors forming the computational core of these networks are required to execute a variety of tasks comprising the relay of information packets in multihop com- munication schemes, monitoring physical quantities, and computation of feedback control laws. Since we are dealing with resource-limited microprocessors, it becomes important to assess to what extent we can increase the functionality of these embedded devices through novel real-time scheduling algorithms based on event-triggered rather than time-triggered execution of control tasks. We investigate in this note a very simple event-triggered scheduling algorithm that preempts running tasks to execute the control task when- ever a certain error becomes large when compared with the state norm. This idea is an adaptation to the scheduling context of several tech- niques used to study problems of control under communication con- straints (6), (11), (18). We take explicitly into account the response time of the control task and show that the proposed scheduling policy guarantees semi-global asymptotical stability. We also show existence of a minimal time between consecutive executions of the control task under the proposed event-triggered scheduling policy. This time, when regarded as a lower bound on release times of the control task, suggests that periodic implementations of control tasks can be relaxed to more flexible aperiodic or event-triggered real-time implementations while guaranteeing desired levels of performance. The proposed approach is illustrated with simulation results. Real-time scheduling of control tasks has received renewed interest from the academic community in the past years (2), (5), (8)-(10), (14), (22). Common to all these approaches, that followed from the initial work of Seto and co-authors (23), is the underlying principle that better control performance is achieved by providing more CPU time to control tasks. This can be accomplished in two different ways: letting control
Routing Optimization In Vehicular Networks: A New Approach Based On Multiobjective Metrics And Minimum Spanning Tree Recently, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. As many other distributed networks, routing operations assume a crucial importance in system optimization, especially when considering dense urban areas, where interference effects cannot be neglected. In this paper a new routing protocol for VANETs and a new scheme of multichannel management are proposed. In particular, an interference-aware routing scheme, for multiradio vehicular networks, wherein each node is equipped with a multichannel radio interface is investigated. NS-2 has been used to validate the proposed Multiobjective routing protocol (MO-RP) protocol in terms of packet delivery ratio, throughput, end-to-end delay, and overhead.
SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning. Synthesizing SQL queries from natural language is a long-standing open problem and has been attracting considerable interest recently. Toward solving the problem, the de facto approach is to employ a sequence-to-sequence-style model. Such an approach will necessarily require the SQL queries to be serialized. Since the same SQL query may have multiple equivalent serializations, training a sequence-to-sequence-style model is sensitive to the choice from one of them. This phenomenon is documented as the order-matters problem. Existing state-of-the-art approaches rely on reinforcement learning to reward the decoder when it generates any of the equivalent serializations. However, we observe that the improvement from reinforcement learning is limited. In this paper, we propose a novel approach, i.e., SQLNet, to fundamentally solve this problem by avoiding the sequence-to-sequence structure when the order does not matter. In particular, we employ a sketch-based approach where the sketch contains a dependency graph, so that one prediction can be done by taking into consideration only the previous predictions that it depends on. In addition, we propose a sequence-to-set model as well as the column attention mechanism to synthesize the query based on the sketch. By combining all these novel techniques, we show that SQLNet can outperform the prior art by 9% to 13% on the WikiSQL task.
Design and Experimental Validation of a Distributed Cooperative Transportation Scheme Leveraging explicit communication and cooperation of multiple robots brings about multiple advantages in the solution of tasks with autonomous robotic agents. For this reason, to the end of transporting polygonal objects with a group of mobile robots, the aim of this article is to develop a fully distributed decision-making and control scheme that lets the robots cooperate as equals, without any k...
1.053393
0.051786
0.051191
0.05
0.05
0.05
0.05
0.0275
0.011399
0
0
0
0
0
Creating 360° educational video: a case study. The application of virtual reality (VR) to education has been documented for over half a century. During this time studies investigating its use have demonstrated positive findings ranging from increased time on task, to enjoyment, motivation and retention. Despite this, VR systems have never achieved widespread adoption in education. This is arguably due to both limitations of the VR technologies themselves, and the overhead incurred by both content developers and users. In this paper we describe a case study of an alternative approach to creating educational VR content. Instead of using computer graphics, we used a spherical camera in conjunction with a VR head-mounted display to provide 360° educational lectures. The content creation process, as well as issues we encountered during this study are explained, before we conclude by discussing the viability of this approach.
A Comparative Study of Distributed Learning Environments on Learning Outcomes Advances in information and communication technologies have fueled rapid growth in the popularity of technology-supported distributed learning (DL). Many educational institutions, both academic and corporate, have undertaken initiatives that leverage the myriad of available DL technologies. Despite their rapid growth in popularity, however, alternative technologies for DL are seldom systematically evaluated for learning efficacy. Considering the increasing range of information and communication technologies available for the development of DL environments, we believe it is paramount for studies to compare the relative learning outcomes of various technologies.In this research, we employed a quasi-experimental field study approach to investigate the relative learning effectiveness of two collaborative DL environments in the context of an executive development program. We also adopted a framework of hierarchical characteristics of group support system (GSS) technologies, outlined by DeSanctis and Gallupe (1987), as the basis for characterizing the two DL environments.One DL environment employed a simple e-mail and listserv capability while the other used a sophisticated GSS (herein referred to as Beta system). Interestingly, the learning outcome of the e-mail environment was higher than the learning outcome of the more sophisticated GSS environment. The post-hoc analysis of the electronic messages indicated that the students in groups using the e-mail system exchanged a higher percentage of messages related to the learning task. The Beta system users exchanged a higher level of technology sense-making messages. No significant difference was observed in the students' satisfaction with the learning process under the two DL environments.
The Representation of Virtual Reality in Education Students' opinions about the opportunities and the implications of VR in instruction were investigated by administering a questionnaire to humanities and engineering undergraduates. The questionnaire invited participants to rate a series of statements concerning motivation and emotion, skills, cognitive styles, benefits and learning outcomes associated with the use of VR in education. The representation which emerged was internally consistent and articulated into specific dimensions. It was not affected by gender, by the previous use of VR software, or by the knowledge of the main topics concerning the introduction of IT in instruction. Also the direct participation in a training session based on an immersive VR experience did not influence such a representation, which was partially modulated by the kind of course attended by students.
e-Learning, online learning, and distance learning environments: Are they the same? It is not uncommon that researchers face difficulties when performing meaningful cross-study comparisons for research. Research associated with the distance learning realm can be even more difficult to use as there are different environments with a variety of characteristics. We implemented a mixed-method analysis of research articles to find out how they define the learning environment. In addition, we surveyed 43 persons and discovered that there was inconsistent use of terminology for different types of delivery modes. The results reveal that there are different expectations and perceptions of learning environment labels: distance learning, e-Learning, and online learning.
Beat the Fear of Public Speaking: Mobile 360° Video Virtual Reality Exposure Training in Home Environment Reduces Public Speaking Anxiety. With this article, we aim to increase our understanding of how mobile virtual reality exposure therapy (VRET) can help reduce speaking anxiety. Using the results of a longitudinal study, we examined the effect of a new VRET strategy (Public Speech Trainer, PST), that incorporates 360 degrees live recorded VR environments, on the reduction of public speaking anxiety. The PST was developed as a 360 degrees smartphone application for a VR head-mounted device that participants could use at home. Realistic anxiety experiences were created by means of live 360 degrees video recordings of a lecture hall containing three training sessions based on graded exposure framework; empty classroom (a) and with a small (b) and large audience (c). Thirty-five students participated in all sessions using PST. Anxiety levels were measured before and after each session over a period of 4 weeks. As expected, speaking anxiety significantly decreased after the completion of all PST sessions, and the decrement was the strongest in participants with initially high speaking anxiety baseline levels. Results also revealed that participants with moderate and high speaking anxiety baseline level differ in the anxiety state pattern over time. Conclusively and in line with habituation theory, the results supported the notion that VRET is more effective when aimed at reducing high-state anxiety levels. Further implications for future research and improvement of current VRET strategies are discussed.
Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments The main objective of this study was to examine the effectiveness of immersive virtual reality (VR) as a medium for delivering laboratory safety training. We specifically compare an immersive VR simulation, a desktop VR simulation, and a conventional safety manual. The sample included 105 first year undergraduate engineering students (56 females). We include five types of learning outcomes including post-test enjoyment ratings; pre- to post-test changes in intrinsic motivation and self-efficacy; a post-test multiple choice retention test; and two behavioral transfer tests. Results indicated that the groups did not differ on the immediate retention test, suggesting that all three media were equivalent in conveying the basic knowledge. However, significant differences were observed favoring the immersive VR group compared to the text group on the two transfer tests involving the solving problems in a physical lab setting (d = 0.54, d = 0.57), as well as enjoyment (d = 1.44) and increases in intrinsic motivation (d = 0.69) and self-efficacy (d = 0.60). The desktop VR group scored significantly higher than the text group on one transfer test (d = 0.63) but not the other (d= 0.11), as well as enjoyment (d =1.11) and intrinsic motivation (d =0.83).
Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills The purpose of this review article is to present state-of-the-art approaches and examples of virtual reality/augmented reality (VR/AR) systems, applications and experiences which improve student learning and the generalization of skills to the real world. Thus, we provide a brief, representative and non-exhaustive review of the current research studies, in order to examine the effects, as well as the impact of VR/AR technologies on K-12, higher and tertiary education students’ twenty-first century skills and their overall learning. According to the literature, there are promising results indicating that VR/AR environments improve learning outcomes and present numerous advantages of investing time and financial resources in K-12, higher and tertiary educational settings. Technological tools such as VR/AR improve digital-age literacy, creative thinking, communication, collaboration and problem solving ability, which constitute the so-called twenty-first century skills, necessary to transform information rather than just receive it. VR/AR enhances traditional curricula in order to enable diverse learning needs of students. Research and development relative to VR/AR technology is focused on a whole ecosystem around smart phones, including applications and educational content, games and social networks, creating immersive three-dimensional spatial experiences addressing new ways of human–computer interaction. Raising the level of engagement, promoting self-learning, enabling multi-sensory learning, enhancing spatial ability, confidence and enjoyment, promoting student-centered technology, combination of virtual and real objects in a real setting and decreasing cognitive load are some of the pedagogical advantages discussed. Additionally, implications of a growing VR/AR industry investment in educational sector are provided. It can be concluded that despite the fact that there are various barriers and challenges in front of the adoption of virtual reality on educational practices, VR/AR applications provide an effective tool to enhance learning and memory, as they provide immersed multimodal environments enriched by multiple sensory features.
Constrained Kalman filtering for indoor localization of transport vehicles using floor-installed HF RFID transponders Localization of transport vehicles is an important issue for many intralogistics applications. The paper presents an inexpensive solution for indoor localization of vehicles. Global localization is realized by detection of RFID transponders, which are integrated in the floor. The paper presents a novel algorithm for fusing RFID readings with odometry using Constraint Kalman filtering. The paper presents experimental results with a Mecanum based omnidirectional vehicle on a NaviFloor® installation, which includes passive HF RFID transponders. The experiments show that the proposed Constraint Kalman filter provides a similar localization accuracy compared to a Particle filter but with much lower computational expense.
Reliable Computation Offloading for Edge-Computing-Enabled Software-Defined IoV Internet of Vehicles (IoV) has drawn great interest recent years. Various IoV applications have emerged for improving the safety, efficiency, and comfort on the road. Cloud computing constitutes a popular technique for supporting delay-tolerant entertainment applications. However, for advanced latency-sensitive applications (e.g., auto/assisted driving and emergency failure management), cloud computing may result in excessive delay. Edge computing, which extends computing and storage capabilities to the edge of the network, emerges as an attractive technology. Therefore, to support these computationally intensive and latency-sensitive applications in IoVs, in this article, we integrate mobile-edge computing nodes (i.e., mobile vehicles) and fixed edge computing nodes (i.e., fixed road infrastructures) to provide low-latency computing services cooperatively. For better exploiting these heterogeneous edge computing resources, the concept of software-defined networking (SDN) and edge-computing-aided IoV (EC-SDIoV) is conceived. Moreover, in a complex and dynamic IoV environment, the outage of both processing nodes and communication links becomes inevitable, which may have life-threatening consequences. In order to ensure the completion with high reliability of latency-sensitive IoV services, we introduce both partial computation offloading and reliable task allocation with the reprocessing mechanism to EC-SDIoV. Since the optimization problem is nonconvex and NP-hard, a heuristic algorithm, fault-tolerant particle swarm optimization algorithm is designed for maximizing the reliability (FPSO-MR) with latency constraints. Performance evaluation results validate that the proposed scheme is indeed capable of reducing the latency as well as improving the reliability of the EC-SDIoV.
Trust in Automation: Designing for Appropriate Reliance. Automation is often problematic because people fail to rely upon it appropriately. Because people respond to technology socially, trust influences reliance on automation. In particular, trust guides reliance when complexity and unanticipated situations make a complete understanding of the automation impractical. This review considers trust from the organizational, sociological, interpersonal, psychological, and neurological perspectives. It considers how the context, automation characteristics, and cognitive processes affect the appropriateness of trust. The context in which the automation is used influences automation performance and provides a goal-oriented perspective to assess automation characteristics along a dimension of attributional abstraction. These characteristics can influence trust through analytic, analogical, and affective processes. The challenges of extrapolating the concept of trust in people to trust in automation are discussed. A conceptual model integrates research regarding trust in automation and describes the dynamics of trust, the role of context, and the influence of display characteristics. Actual or potential applications of this research include improved designs of systems that require people to manage imperfect automation.
A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning Designers and evaluators of immersive virtual reality systems have many ideas concerning how virtual reality can facilitate learning. However, we have little information concerning which of virtual reality's features provide the most leverage for enhancing understanding or how to customize those affordances for different learning environments. In part, this reflects the truly complex nature of learning. Features of a learning environment do not act in isolation; other factors such as the concepts or skills to be learned, individual characteristics, the learning experience, and the interaction experience all play a role in shaping the learning process and its outcomes. Through Project Science Space, we have been trying to identify, use, and evaluate immersive virtual reality's affordances as a means to facilitate the mastery of complex, abstract concepts. In doing so, we are beginning to understand the interplay between virtual reality's features and other important factors in shaping the learning process and learning outcomes for this type of material. In this paper, we present a general model that describes how we think these factors work together and discuss some of the lessons we are learning about virtual reality's affordances in the context of this model for complex conceptual learning.
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
STAN: Spatio-Temporal Attention Network for Next Location Recommendation ABSTRACT The next location recommendation is at the core of various location-based applications. Current state-of-the-art models have attempted to solve spatial sparsity with hierarchical gridding and model temporal relation with explicit time intervals, while some vital questions remain unsolved. Non-adjacent locations and non-consecutive visits provide non-trivial correlations for understanding a user’s behavior but were rarely considered. To aggregate all relevant visits from user trajectory and recall the most plausible candidates from weighted representations, here we propose a Spatio-Temporal Attention Network (STAN) for location recommendation. STAN explicitly exploits relative spatiotemporal information of all the check-ins with self-attention layers along the trajectory. This improvement allows a point-to-point interaction between non-adjacent locations and non-consecutive check-ins with explicit spatio-temporal effect. STAN uses a bi-layer attention architecture that firstly aggregates spatiotemporal correlation within user trajectory and then recalls the target with consideration of personalized item frequency (PIF). By visualization, we show that STAN is in line with the above intuition. Experimental results unequivocally show that our model outperforms the existing state-of-the-art methods by 9-17%.
Location awareness through trajectory prediction Location-aware computing is a type of ubiquitous computing that uses user’s location information as an essential parameter for providing services and application-related optimization. Location management plays an important role in location-aware computing because the provision of services requires convenient access to dynamic location and location-dependent information. Many existing location management strategies are passive since they rely on system capability to periodically record current location information. In contrast, active strategies predict user movement through trajectories and locations. Trajectory prediction provides richer location and context information and facilitates the means for adapting to future locations. In this paper, we present two models for trajectory prediction, namely probability-based model and learning-based model. We analyze these two models and conduct experiments to test their performances in location-aware systems.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Time-Location-Relationship Combined Service Recommendation Based on Taxi Trajectory Data. Recently, urban traffic management has encountered a paradoxical situation which is the empty carrying phenomenon for taxi drivers and the difficulty of taking a taxi for passengers. In this paper, through analyzing the quantitative relationship between passengers&#39; getting on and off taxis, we propose a time-location-relationship (TLR) combined taxi service recommendation model to improve taxi dri...
Geography-Aware Sequential Location Recommendation Sequential location recommendation plays an important role in many applications such as mobility prediction, route planning and location-based advertisements. In spite of evolving from tensor factorization to RNN-based neural networks, existing methods did not make effective use of geographical information and suffered from the sparsity issue. To this end, we propose a Geography-aware sequential recommender based on the Self-Attention Network (GeoSAN for short) for location recommendation. On the one hand, we propose a new loss function based on importance sampling for optimization, to address the sparsity issue by emphasizing the use of informative negative samples. On the other hand, to make better use of geographical information, GeoSAN represents the hierarchical gridding of each GPS point with a self-attention based geography encoder. Moreover, we put forward geography-aware negative samplers to promote the informativeness of negative samples. We evaluate the proposed algorithm with three real-world LBSN datasets, and show that GeoSAN outperforms the state-of-the-art sequential location recommenders by 34.9%. The experimental results further verify significant effectiveness of the new loss function, geography encoder, and geography-aware negative samplers.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
Microsoft Coco: Common Objects In Context We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an extended Kalman filter designed for real-time estimation of the orientation of human limb segments. The filter processes data from small inertial/magnetic sensor modules containing triaxial angular rate sensors, accelerometers, and magnetometers. The filter represents rotation using quaternions rather than Euler angles or axis/angle pairs. Preprocessing of the acceleration and magnetometer measurements using the Quest algorithm produces a computed quaternion input for the filter. This preprocessing reduces the dimension of the state vector and makes the measurement equations linear. Real-time implementation and testing results of the quaternion-based Kalman filter are presented. Experimental results validate the filter design, and show the feasibility of using inertial/magnetic sensor modules for real-time human body motion tracking
Switching Stabilization for a Class of Slowly Switched Systems In this technical note, the problem of switching stabilization for slowly switched linear systems is investigated. In particular, the considered systems can be composed of all unstable subsystems. Based on the invariant subspace theory, the switching signal with mode-dependent average dwell time (MDADT) property is designed to exponentially stabilize the underlying system. Furthermore, sufficient condition of stabilization for switched systems with all stable subsystems under MDADT switching is also given. The correctness and effectiveness of the proposed approaches are illustrated by a numerical example.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.033333
0
0
0
0
0
0
0
0
Joint Optimization of Trajectory and Communication Resource Allocation for Unmanned Surface Vehicle Enabled Maritime Wireless Networks In maritime wireless communications, unmanned surface vehicles (USVs) can improve coverage and transmission performance due to their agile maneuverability and flexible deployment. This paper considers a USV-enabled maritime wireless network, where a USV is employed to assist the communication between the terrestrial base station and ships. Considering the maritime environment characteristics and e...
Energy- and Spectral-Efficiency Tradeoff for Distributed Antenna Systems with Proportional Fairness Energy efficiency(EE) has caught more and more attention in future wireless communications due to steadily rising energy costs and environmental concerns. In this paper, we propose an EE scheme with proportional fairness for the downlink multiuser distributed antenna systems (DAS). Our aim is to maximize EE, subject to constraints on overall transmit power of each remote access unit (RAU), bit-error rate (BER), and proportional data rates. We exploit multi-criteria optimization method to systematically investigate the relationship between EE and spectral efficiency (SE). Using the weighted sum method, we first convert the multi-criteria optimization problem, which is extremely complex, into a simpler single objective optimization problem. Then an optimal algorithm is developed to allocate the available power to balance the tradeoff between EE and SE. We also demonstrate the effectiveness of the proposed scheme and illustrate the fundamental tradeoff between energy- and spectral-efficient transmission through computer simulation.
Efficient multi-task allocation and path planning for unmanned surface vehicle in support of ocean operations. Presently, there is an increasing interest in the deployment of unmanned surface vehicles (USVs) to support complex ocean operations. In order to carry out these missions in a more efficient way, an intelligent hybrid multi-task allocation and path planning algorithm is required and has been proposed in this paper. In terms of the multi-task allocation, a novel algorithm based upon a self-organising map (SOM) has been designed and developed. The main contribution is that an adaptive artificial repulsive force field has been constructed and integrated into the SOM to achieve collision avoidance capability. The new algorithm is able to fast and effectively generate a sequence for executing multiple tasks in a cluttered maritime environment involving numerous obstacles. After generating an optimised task execution sequence, a path planning algorithm based upon fast marching square (FMS) is utilised to calculate the trajectories. Because of the introduction of a safety parameter, the FMS is able to adaptively adjust the dimensional influence of an obstacle and accordingly generate the paths to ensure the safety of the USV. The algorithms have been verified and evaluated through a number of computer based simulations and has been proven to work effectively in both simulated and practical maritime environments. (C) 2017 Elsevier B.V. All rights reserved.
Cooperative Internet of UAVs: Distributed Trajectory Design by Multi-Agent Deep Reinforcement Learning Due to the advantages of flexible deployment and extensive coverage, unmanned aerial vehicles (UAVs) have significant potential for sensing applications in the next generation of cellular networks, which will give rise to a cellular Internet of UAVs. In this article, we consider a cellular Internet of UAVs, where the UAVs execute sensing tasks through cooperative sensing and transmission to minimize the age of information (AoI). However, the cooperative sensing and transmission is tightly coupled with the UAVs' trajectories, which makes the trajectory design challenging. To tackle this challenge, we propose a distributed sense-and-send protocol, where the UAVs determine the trajectories by selecting from a discrete set of tasks and a continuous set of locations for sensing and transmission. Based on this protocol, we formulate the trajectory design problem for AoI minimization and propose a compound-action actor-critic (CA2C) algorithm to solve it based on deep reinforcement learning. The CA2C algorithm can learn the optimal policies for actions involving both continuous and discrete variables and is suited for the trajectory design. Our simulation results show that the CA2C algorithm outperforms four baseline algorithms. Also, we show that by dividing the tasks, cooperative UAVs can achieve a lower AoI compared to non-cooperative UAVs.
Disturbance Compensating Model Predictive Control With Application to Ship Heading Control. To address the constraint violation and feasibility issues of model predictive control (MPC) for ship heading control in wave fields, a novel disturbance compensating MPC (DC-MPC) algorithm has been proposed to satisfy the state constraints in the presence of environmental disturbances. The capability of the novel DC-MPC algorithm is first analyzed. Then, the proposed DC-MPC algorithm is applied to solve the ship heading control problem, and its performance is compared with a modified MPC controller, which considers the estimated disturbance in the optimization directly. The simulation results show good performance of the proposed controller in terms of reducing heading error and satisfying yaw velocity and actuator saturation constraints. The DC-MPC algorithm has the potential to be applied to other motion control problems with environmental disturbances, such as flight, automobile, and robotics control.
MagicNet: The Maritime Giant Cellular Network Recently, the development of marine industries has increasingly attracted attention from all over the world. A wide-area and seamless maritime communication network has become a critical supporting approach. In this article, we propose a novel architecture named the maritime giant cellular network (MagicNet) relying on seaborne floating towers deployed in a honeycomb topology. The tower-borne gian...
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
Microsoft Coco: Common Objects In Context We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
Modeling taxi driver anticipatory behavior. As part of a wider behavioral agent-based model that simulates taxi drivers' dynamic passenger-finding behavior under uncertainty, we present a model of strategic behavior of taxi drivers in anticipation of substantial time varying demand at locations such as airports and major train stations. The model assumes that, considering a particular decision horizon, a taxi driver decides to transfer to such a destination based on a reward function. The dynamic uncertainty of demand is captured by a time dependent pick-up probability, which is a cumulative distribution function of waiting time. The model allows for information learning by which taxi drivers update their beliefs from past experiences. A simulation on a real road network, applied to test the model, indicates that the formulated model dynamically improves passenger-finding strategies at the airport. Taxi drivers learn when to transfer to the airport in anticipation of the time-varying demand at the airport to minimize their waiting time.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.1
0.066667
0
0
0
0
0
0
0
0
Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs Paraphrase generation plays an essential role in natural language process (NLP), and it has many downstream applications. However, training supervised paraphrase models requires many annotated paraphrase pairs, which are usually costly to obtain. On the other hand, the paraphrases generated by existing unsupervised approaches are usually syntactically similar to the source sentences and are limited in diversity. In this paper, we demonstrate that it is possible to generate syntactically various paraphrases without the need for annotated paraphrase pairs. We propose Syntactically controlled Paraphrase Generator (SynPG), an encoder-decoder based model that learns to disentangle the semantics and the syntax of a sentence from a collection of unannotated texts. The disentanglement enables SynPG to control the syntax of output paraphrases by manipulating the embedding in the syntactic space. Extensive experiments using automatic metrics and human evaluation show that SynPG performs better syntactic control than unsupervised baselines, while the quality of the generated paraphrases is competitive. We also demonstrate that the performance of SynPG is competitive or even better than supervised models when the unannotated data is large. Finally, we show that the syntactically controlled paraphrases generated by SynPG can be utilized for data augmentation to improve the robustness of NLP models.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Effects of Robot Clothing on First Impressions, Gender, Human-Likeness, and Suitability of a Robot for Occupations Clothing is often used as a way to communicate about one’s identity. It can provide information about characteristics such as gender, age, occupation, and status as well as more subjective attributes such as trustworthiness and friendliness. In this paper we report on exploratory research that we conducted by means of three studies to investigate the effects of clothing on a Pepper robot. Three outfits that varied in style and colour were compared with each other and the robot without clothing. Findings from an online survey suggest that gender perception but not human-likeness can be manipulated by clothing. We also found that first impressions on expertise and likeability may vary with clothing style and may induce stereotypical job associations. In a second study, we interviewed experts which were all familiar with the Pepper platform to obtain a more qualitative perspective on robot clothing. The interviews made clear that specific features of clothing may trigger strong associations with, for example, occupations, and that features such as headdress may make an outfit look more like a uniform. Finally, we conducted a field experiment comparing two clothing conditions for a receptionist robot in a natural setting and found that a robot with uniform appears to be more engaging. Our findings suggest that robot clothing may have an effect on first impressions, gender perception, and engagement in interactions with users in the wild.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A Digital Twin Approach for Self-optimization of Mobile Networks Most of the methods in operators&#39; current 5G networks use expert knowledge assisted by machine learning algorithms to generate optimization decisions. However, these methods are inadaptive to the dynamic changes of high-dimensional network states, thus the result is often suboptimal. Reinforcement learning can better cope with high-dimensional network state space and parameter space. However, when...
Software Defined Space-Air-Ground Integrated Vehicular Networks: Challenges and Solutions. This article proposes a software defined spaceair- ground integrated network architecture for supporting diverse vehicular services in a seamless, efficient, and cost-effective manner. First, the motivations and challenges for integration of space-air-ground networks are reviewed. Second, a software defined network architecture with a layered structure is presented. To protect the legacy services ...
Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate and Movement Speed Since 5G new radio comes with non-standalone (NSA) and standalone (SA) versions in 3GPP, research on 6G has been on schedule by academics and industries. Though 6G is supposed to have much higher capabilities than 5G, yet there is no clear description about what 6G is. In this article, a comprehensive discussion of 6G is given based on the review of 5G developments, covering visions and requiremen...
Network Emulation As A Service (Neaas): Towards A Cloud-Based Network Emulation Platform Network emulation is an essential method to test network architecture, protocol and application software during a network's entire life-cycle. Compared with simulation and test-bed methods, network emulation possesses the advantages of accuracy and cost-efficiency. However, legacy network emulators are typically restricted in scalability, agility, and extensibility, which builds barriers to prevent them from being widely used. In this paper, we introduce the currently prevalent cloud computing and the related technologies including resource virtualization, NFV (network functional virtualization), SDN (software-defined networking), traffic control and flow steering to the network emulation domain. We design and implement an innovative cloud-based network emulation platform, aiming at providing users Network Emulation as a Service (NEaaS), which can be conveniently deployed on both public and private clouds. In order to emulate networks of much larger scale, and to reduce the hardware cost of the proposed platform, a representative light-weighted virtualization technology, namely Docker container is adopted as a supplement to virtual machine (VM) to emulate networking nodes in a hybrid manner. We carried out a comprehensive performance evaluation with in-depth discussions for this emulation platform. It turns out, our platform can significantly outperform legacy network emulators regarding to scalability, agility, and extensibility in large scale emulation scenarios, with much lower costs. Finally, a case study of applying the proposed platform to emulate a typical space-ground integrated network (SGIN) is given, which illustrates the platform's effectivity and efficiency.
6G: The Next Horizon: From Connected People and Things to Connected Intelligence
The Roadmap to 6G -- AI Empowered Wireless Networks. The recent upsurge of diversified mobile applications, especially those supported by Artificial Intelligence (AI), is spurring heated discussions on the future evolution of wireless communications. While 5G is being deployed around the world, efforts from industry and academia have started to look beyond 5G and conceptualize 6G. We envision 6G to undergo an unprecedented transformation that will make it substantially different from the previous generations of wireless cellular systems. In particular, 6G will go beyond mobile Internet and will be required to support ubiquitous AI services from the core to the end devices of the network. Meanwhile, AI will play a critical role in designing and optimizing 6G architectures, protocols, and operations. In this article, we discuss potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for 6G network design and optimization. Key trends in the evolution to 6G will also be discussed.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
Evolutionary computation: comments on the history and current state Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete
Supporting social navigation on the World Wide Web This paper discusses a navigation behavior on Internet information services, in particular the World Wide Web, which is characterized by pointing out of information using various communication tools. We call this behavior social navigation as it is based on communication and interaction with other users, be that through email, or any other means of communication. Social navigation phenomena are quite common although most current tools (like Web browsers or email clients) offer very little support for it. We describe why social navigation is useful and how it can be better supported in future systems. We further describe two prototype systems that, although originally not designed explicitly as tools for social navigation, provide features that are typical for social navigation systems. One of these systems, the Juggler system, is a combination of a textual virtual environment and a Web client. The other system is a prototype of a Web- hotlist organizer, called Vortex. We use both systems to describe fundamental principles of social navigation systems.
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an ${\cal NP}$-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985--1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem---A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87--143].
A competitive swarm optimizer for large scale optimization. In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.
A robust medical image watermarking against salt and pepper noise for brain MRI images. The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. During the transmission of medical images between hospitals or specialists through the network, the main priority is to protect a patient's documents against any act of tampering by unauthorised individuals. Because of this, there is a need for medical image authentication scheme to enable proper diagnosis on patient. In addition, medical images are also susceptible to salt and pepper impulse noise through the transmission in communication channels. This noise may also be intentionally used by the invaders to corrupt the embedded watermarks inside the medical images. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this work addresses the issue of designing a new watermarking method that can withstand high density of salt and pepper noise for brain MRI images. For this purpose, combination of a spatial domain watermarking method, channel coding and noise filtering schemes are used. The region of non-interest (RONI) of MRI images from five different databases are used as embedding area and electronic patient record (EPR) is considered as embedded data. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER).
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.04
0.04
0.04
0.04
0.04
0.006154
0
0
0
0
0
0
0
0
NTIRE 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study This paper introduces a novel large dataset for video de blurring, video super-resolution and studies the state-of-the-art as emerged from the NTIRE 2019 video restoration challenges. The video deblurring and video super-resolution challenges are each the first challenge of its kind, with 4 competitions, hundreds of participants and tens of proposed solutions. Our newly collected REalistic and Diverse Scenes dataset (REDS) was employed by the challenges. In our study, we compare the solutions from the challenges to a set of representative methods from the literature and evaluate them on our proposed REDS dataset. We find that the NTIRE 2019 challenges push the state-of-theart in video deblurring and super-resolution, reaching compelling performance on our newly proposed REDS dataset.
Space-time super-resolution. We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By "temporal super-resolution," we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in "slow-motion." The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial "ringing" effect?
Transient attributes for high-level understanding and editing of outdoor scenes We live in a dynamic visual world where the appearance of scenes changes dramatically from hour to hour or season to season. In this work we study \"transient scene attributes\" -- high level properties which affect scene appearance, such as \"snow\", \"autumn\", \"dusk\", \"fog\". We define 40 transient attributes and use crowdsourcing to annotate thousands of images from 101 webcams. We use this \"transient attribute database\" to train regressors that can predict the presence of attributes in novel images. We demonstrate a photo organization method based on predicted attributes. Finally we propose a high-level image editing method which allows a user to adjust the attributes of a scene, e.g. change a scene to be \"snowy\" or \"sunset\". To support attribute manipulation we introduce a novel appearance transfer technique which is simple and fast yet competitive with the state-of-the-art. We show that we can convincingly modify many transient attributes in outdoor scenes.
Semantic Understanding of Scenes through the ADE20K Dataset. Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.
Sync-DRAW: Automatic Video Generation using Deep Recurrent Attentive Architectures. This paper introduces a novel approach for generating videos called Synchronized Deep Recurrent Attentive Writer (Sync-DRAW). Sync-DRAW can also perform text-to-video generation which, to the best of our knowledge, makes it the first approach of its kind. It combines a Variational Autoencoder(VAE) with a Recurrent Attention Mechanism in a novel manner to create a temporally dependent sequence of frames that are gradually formed over time. The recurrent attention mechanism in Sync-DRAW attends to each individual frame of the video in sychronization, while the VAE learns a latent distribution for the entire video at the global level. Our experiments with Bouncing MNIST, KTH and UCF-101 suggest that Sync-DRAW is efficient in learning the spatial and temporal information of the videos and generates frames with high structural integrity, and can generate videos from simple captions on these datasets.
Dynamic Facial Expression Generation on Hilbert Hypersphere With Conditional Wasserstein Generative Adversarial Nets In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, w...
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution We show that pre-trained Generative Adversarial Networks (GANs), e.g., StyleGAN, can be used as a latent bank to improve the restoration quality of large-factor image super-resolution (SR). While most existing SR approaches attempt to generate realistic textures through learning with adversarial loss, our method, Generative LatEnt bANk (GLEAN), goes beyond existing practices by directly leveraging rich and diverse priors encapsulated in a pre-trained GAN. But unlike prevalent GAN inversion methods that require expensive image-specific optimization at runtime, our approach only needs a single forward pass to generate the upscaled image. GLEAN can be easily incorporated in a simple encoder-bank-decoder architecture with multi-resolution skip connections. Switching the bank allows the method to deal with images from diverse categories, e.g., cat, building, human face, and car. Images upscaled by GLEAN show clear improvements in terms of fidelity and texture faithfulness in comparison to existing methods as shown in Fig. 1.
End-To-End Time-Lapse Video Synthesis From A Single Outdoor Image Time-lapse videos usually contain visually appealing content but are often difficult and costly to create. In this paper, we present an end-to-end solution to synthesize a time-lapse video from a single outdoor image using deep neural networks. Our key idea is to train a conditional generative adversarial network based on existing datasets of time-lapse videos and image sequences. We propose a multi-frame joint conditional generation framework to effectively learn the correlation between the illumination change of an outdoor scene and the time of the day. We further present a multi-domain training scheme for robust training of our generative models from two datasets with different distributions and missing timestamp labels. Compared to alternative time-lapse video synthesis algorithms, our method uses the timestamp as the control variable and does not require a reference video to guide the synthesis of the final output. We conduct ablation studies to validate our algorithm and compare with state-of-the-art techniques both qualitatively and quantitatively.
Sequence to Sequence Learning with Neural Networks. Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
A General Equilibrium Model for Industries with Price and Service Competition This paper develops a stochastic general equilibrium inventory model for an oligopoly, in which all inventory constraint parameters are endogenously determined. We propose several systems of demand processes whose distributions are functions of all retailers' prices and all retailers' service levels. We proceed with the investigation of the equilibrium behavior of infinite-horizon models for industries facing this type of generalized competition, under demand uncertainty.We systematically consider the following three competition scenarios. (1) Price competition only: Here, we assume that the firms' service levels are exogenously chosen, but characterize how the price and inventory strategy equilibrium vary with the chosen service levels. (2) Simultaneous price and service-level competition: Here, each of the firms simultaneously chooses a service level and a combined price and inventory strategy. (3) Two-stage competition: The firms make their competitive choices sequentially. In a first stage, all firms simultaneously choose a service level; in a second stage, the firms simultaneously choose a combined pricing and inventory strategy with full knowledge of the service levels selected by all competitors. We show that in all of the above settings a Nash equilibrium of infinite-horizon stationary strategies exists and that it is of a simple structure, provided a Nash equilibrium exists in a so-called reduced game.We pay particular attention to the question of whether a firm can choose its service level on the basis of its own (input) characteristics (i.e., its cost parameters and demand function) only. We also investigate under which of the demand models a firm, under simultaneous competition, responds to a change in the exogenously specified characteristics of the various competitors by either: (i) adjusting its service level and price in the same direction, thereby compensating for price increases (decreases) by offering improved (inferior) service, or (ii) adjusting them in opposite directions, thereby simultaneously offering better or worse prices and service.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Eye-vergence visual servoing enhancing Lyapunov-stable trackability Visual servoing methods for hand---eye configuration are vulnerable for hand's dynamical oscillation, since nonlinear dynamical effects of whole manipulator stand against the stable tracking ability (trackability). Our proposal to solve this problem is that the controller for visual servoing of the hand and the one for eye-vergence should be separated independently based on decoupling each other, where the trackability is verified by Lyapunov analysis. Then the effectiveness of the decoupled hand and eye-vergence visual servoing method is evaluated through simulations incorporated with actual dynamics of 7-DoF robot with additional 3-DoF for eye-vergence mechanism by amplitude and phase frequency analysis.
An improved E-DRM scheme for mobile environments. With the rapid development of information science and network technology, Internet has become an important platform for the dissemination of digital content, which can be easily copied and distributed through the Internet. Although convenience is increased, it causes significant damage to authors of digital content. Digital rights management system (DRM system) is an access control system that is designed to protect digital content and ensure illegal users from maliciously spreading digital content. Enterprise Digital Rights Management system (E-DRM system) is a DRM system that prevents unauthorized users from stealing the enterprise's confidential data. User authentication is the most important method to ensure digital rights management. In order to verify the validity of user, the biometrics-based authentication protocol is widely used due to the biological characteristics of each user are unique. By using biometric identification, it can ensure the correctness of user identity. In addition, due to the popularity of mobile device and Internet, user can access digital content and network information at anytime and anywhere. Recently, Mishra et al. proposed an anonymous and secure biometric-based enterprise digital rights management system for mobile environment. Although biometrics-based authentication is used to prevent users from being forged, the anonymity of users and the preservation of digital content are not ensured in their proposed system. Therefore, in this paper, we will propose a more efficient and secure biometric-based enterprise digital rights management system with user anonymity for mobile environments.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State Analysis The driver&#39;s cognitive and physiological states affect his/her ability to control the vehicle. Thus, these driver states are essential to the safety of automobiles. The design of advanced driver assistance systems (ADAS) or autonomous vehicles will depend on their ability to interact effectively with the driver. A deeper understanding of the driver state is, therefore, paramount. Electroencephalog...
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Deep convolutional neural network-based Bernoulli heatmap for head pose estimation Head pose estimation is a crucial problem for many tasks, such as driver attention, fatigue detection, and human behaviour analysis. It is well known that neural networks are better at handling classification problems than regression problems. It is an extremely nonlinear process to let the network output the angle value directly for optimization learning, and the weight constraint of the loss function will be relatively weak. This paper proposes a novel Bernoulli heatmap for head pose estimation from a single RGB image. Our method can achieve the positioning of the head area while estimating the angles of the head. The Bernoulli heatmap makes it possible to construct fully convolutional neural networks without fully connected layers and provides a new idea for the output form of head pose estimation. A deep convolutional neural network (CNN) structure with multiscale representations is adopted to maintain high-resolution information and low-resolution information in parallel. This kind of structure can maintain rich, high-resolution representations. In addition, channelwise fusion is adopted to make the fusion weights learnable instead of simple addition with equal weights. As a result, the estimation is spatially more precise and potentially more accurate. The effectiveness of the proposed method is empirically demonstrated by comparing it with other state-of-the-art methods on public datasets.
Reinforcement learning based data fusion method for multi-sensors In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion (RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications FSA (artificial fish-swarm algorithm) is one of the best methods of optimization among the swarm intelligence algorithms. This algorithm is inspired by the collective movement of the fish and their various social behaviors. Based on a series of instinctive behaviors, the fish always try to maintain their colonies and accordingly demonstrate intelligent behaviors. Searching for food, immigration and dealing with dangers all happen in a social form and interactions between all fish in a group will result in an intelligent social behavior.This algorithm has many advantages including high convergence speed, flexibility, fault tolerance and high accuracy. This paper is a review of AFSA algorithm and describes the evolution of this algorithm along with all improvements, its combination with various methods as well as its applications. There are many optimization methods which have a affinity with this method and the result of this combination will improve the performance of this method. Its disadvantages include high time complexity, lack of balance between global and local search, in addition to lack of benefiting from the experiences of group members for the next movements.
Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning The literature on short-term traffic flow forecasting has undergone great development recently. Many works, describing a wide variety of different approaches, which very often share similar features and ideas, have been published. However, publications presenting new prediction algorithms usually employ different settings, data sets, and performance measurements, making it difficult to infer a clear picture of the advantages and limitations of each model. The aim of this paper is twofold. First, we review existing approaches to short-term traffic flow forecasting methods under the common view of probabilistic graphical models, presenting an extensive experimental comparison, which proposes a common baseline for their performance analysis and provides the infrastructure to operate on a publicly available data set. Second, we present two new support vector regression models, which are specifically devised to benefit from typical traffic flow seasonality and are shown to represent an interesting compromise between prediction accuracy and computational efficiency. The SARIMA model coupled with a Kalman filter is the most accurate model; however, the proposed seasonal support vector regressor turns out to be highly competitive when performing forecasts during the most congested periods.
TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks. The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a temporal-spatial charging scheduling algorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.
A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems In this paper, to eliminate the tracking error by using adaptive dynamic programming (ADP) algorithms, a novel formulation of the value function is presented for the optimal tracking problem (TP) of nonlinear discrete-time systems. Unlike existing ADP methods, this formulation introduces the control input into the tracking error, and ignores the quadratic form of the control input directly, which makes the boundedness and convergence of the value function independent of the discount factor. Based on the proposed value function, the optimal control policy can be deduced without considering the reference control input. Value iteration (VI) and policy iteration (PI) methods are applied to prove the optimality of the obtained control policy, and derived the monotonicity property and convergence of the iterative value function. Simulation examples realized with neural networks and the actor–critic structure are provided to verify the effectiveness of the proposed ADP algorithm.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
Model Controlled Prediction: A Reciprocal Alternative of Model Predictive Control Dear editor, This letter presents a reciprocal alternative to model predictive control (MPC), called model controlled prediction. More specifically, in order to integrate dynamic control signals into the transportation prediction models, a new fundamental theory of machine learning based prediction models is proposed. The model can not only learn potential patterns from historical data, but also make optimal predictions based on dynamic external control signals. The model can be used in two typical scenarios: 1) For low real-time control signals (e.g., subway timetable), we use a transfer learning method, so that the prediction models obtained from training data under the old control strategy can be predicted accurately under the new control strategy. 2) For dynamic control signals with high real-time (e.g., online ride-hailing dispatching instructions), we establish a simulation environment, design a control algorithm based on reinforcement learning (RL), and then let the model learn the mapping relationship among dynamic control signals, data, and output in the simulation environment. The experimental results show that the reasonable modeling of control signals can significantly improve the performance of the traffic prediction model.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Pors: proofs of retrievability for large files In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety. A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes. In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work. We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.
Scalable and efficient provable data possession. Storage outsourcing is a rising trend which prompts a number of interesting security issues, many of which have been extensively investigated in the past. However, Provable Data Possession (PDP) is a topic that has only recently appeared in the research literature. The main issue is how to frequently, efficiently and securely verify that a storage server is faithfully storing its client's (potentially very large) outsourced data. The storage server is assumed to be untrusted in terms of both security and reliability. (In other words, it might maliciously or accidentally erase hosted data; it might also relegate it to slow or off-line storage.) The problem is exacerbated by the client being a small computing device with limited resources. Prior work has addressed this problem using either public key cryptography or requiring the client to outsource its data in encrypted form. In this paper, we construct a highly efficient and provably secure PDP technique based entirely on symmetric key cryptography, while not requiring any bulk encryption. Also, in contrast with its predecessors, our PDP technique allows outsourcing of dynamic data, i.e, it efficiently supports operations, such as block modification, deletion and append.
Provable data possession at untrusted stores We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the server, which drastically reduces I/O costs. The client maintains a constant amount of metadata to verify the proof. The challenge/response protocol transmits a small, constant amount of data, which minimizes network communication. Thus, the PDP model for remote data checking supports large data sets in widely-distributed storage system. We present two provably-secure PDP schemes that are more efficient than previous solutions, even when compared with schemes that achieve weaker guarantees. In particular, the overhead at the server is low (or even constant), as opposed to linear in the size of the data. Experiments using our implementation verify the practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by cryptographic computation.
Witness indistinguishable and witness hiding protocols
Concurrency and Privacy with Payment-Channel Networks. Permissionless blockchains protocols such as Bitcoin are inherently limited in transaction throughput and latency. Current efforts to address this key issue focus on off-chain payment channels that can be combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without requiring to access the blockchain other than to register the initial and final capacity of each channel. While this approach paves the way for low latency and high throughput of payments, its deployment in practice raises several privacy concerns as well as technical challenges related to the inherently concurrent nature of payments that have not been sufficiently studied so far. In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition in the Universal Composability framework as well as practical and provably secure solutions. In particular, we present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable privacy guarantees for PCNs and is fully compatible with the Bitcoin scripting system. However, Fulgor is a blocking protocol and therefore prone to deadlocks of concurrent payments as in currently available PCNs. Instead, Rayo is the first protocol for PCNs that enforces non-blocking progress (i.e., at least one of the concurrent payments terminates). We show through a new impossibility result that non-blocking progress necessarily comes at the cost of weaker privacy. At the core of Fulgor and Rayo is Multi-Hop HTLC, a new smart contract, compatible with the Bitcoin scripting system, that provides conditional payments while reducing running time and communication overhead with respect to previous approaches. Our performance evaluation of Fulgor and Rayo shows that a payment with 10 intermediate users takes as few as 5 seconds, thereby demonstrating their feasibility to be deployed in practice.
RapidChain: Scaling Blockchain via Full Sharding. A major approach to overcoming the performance and scalability limitations of current blockchain protocols is to use sharding which is to split the overheads of processing transactions among multiple, smaller groups of nodes. These groups work in parallel to maximize performance while requiring significantly smaller communication, computation, and storage per node, allowing the system to scale to large networks. However, existing sharding-based blockchain protocols still require a linear amount of communication (in the number of participants) per transaction, and hence, attain only partially the potential benefits of sharding. We show that this introduces a major bottleneck to the throughput and latency of these protocols. Aside from the limited scalability, these protocols achieve weak security guarantees due to either a small fault resiliency (e.g., 1/8 and 1/4) or high failure probability, or they rely on strong assumptions (e.g., trusted setup) that limit their applicability to mainstream payment systems. We propose RapidChain, the first sharding-based public blockchain protocol that is resilient to Byzantine faults from up to a 1/3 fraction of its participants, and achieves complete sharding of the communication, computation, and storage overhead of processing transactions without assuming any trusted setup. RapidChain employs an optimal intra-committee consensus algorithm that can achieve very high throughputs via block pipelining, a novel gossiping protocol for large blocks, and a provably-secure reconfiguration mechanism to ensure robustness. Using an efficient cross-shard transaction verification technique, our protocol avoids gossiping transactions to the entire network. Our empirical evaluations suggest that RapidChain can process (and confirm) more than 7,300 tx/sec with an expected confirmation latency of roughly 8.7 seconds in a network of 4,000 nodes with an overwhelming time-to-failure of more than 4,500 years.
On the Security and Performance of Proof of Work Blockchains. Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital cryptocurrencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature. This opens the question whether existing security analysis of Bitcoin's PoW applies to other implementations which have been instantiated with different consensus and/or network parameters. In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.
Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies. Besides attracting a billion dollar economy, Bitcoin revolutionized the field of digital currencies and influenced many adjacent areas. This also induced significant scientific interest. In this survey, we unroll and structure the manyfold results and research directions. We start by introducing the Bitcoin protocol and its building blocks. From there we continue to explore the design space by dis...
Digital games in the classroom? A contextual approach to teachers' adoption intention of digital games in formal education Interest in using digital games for formal education has steadily increased in the past decades. When it comes to actual use, however, the uptake of games in the classroom remains limited. Using a contextual approach, the possible influence of factors on a school (N=60) and teacher (N=409) level are analyzed. Findings indicate that there is no effect of factors on the school level whereas on a teacher level, a model is tested, explaining 68% of the variance in behavioral intention, in which curriculum-relatedness and previous experience function as crucial determinants of the adoption intention. These findings add to previous research on adoption determinants related to digital games in formal education. Furthermore, they provide insight into the relations between different adoption determinants and their association with behavioral intention.
Image information and visual quality Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.
Energy Provisioning in Wireless Rechargeable Sensor Networks Wireless rechargeable sensor networks (WRSNs) have emerged as an alternative to solving the challenges of size and operation time posed by traditional battery-powered systems. In this paper, we study a WRSN built from the industrial wireless identification and sensing platform (WISP) and commercial off-the-shelf RFID readers. The paper-thin WISP tags serve as sensors and can harvest energy from RF signals transmitted by the readers. This kind of WRSNs is highly desirable for indoor sensing and activity recognition and is gaining attention in the research community. One fundamental question in WRSN design is how to deploy readers in a network to ensure that the WISP tags can harvest sufficient energy for continuous operation. We refer to this issue as the energy provisioning problem. Based on a practical wireless recharge model supported by experimental data, we investigate two forms of the problem: point provisioning and path provisioning. Point provisioning uses the least number of readers to ensure that a static tag placed in any position of the network will receive a sufficient recharge rate for sustained operation. Path provisioning exploits the potential mobility of tags (e.g., those carried by human users) to further reduce the number of readers necessary: mobile tags can harvest excess energy in power-rich regions and store it for later use in power-deficient regions. Our analysis shows that our deployment methods, by exploiting the physical characteristics of wireless recharging, can greatly reduce the number of readers compared with those assuming traditional coverage models.
An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS. Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.
A robust medical image watermarking against salt and pepper noise for brain MRI images. The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. During the transmission of medical images between hospitals or specialists through the network, the main priority is to protect a patient's documents against any act of tampering by unauthorised individuals. Because of this, there is a need for medical image authentication scheme to enable proper diagnosis on patient. In addition, medical images are also susceptible to salt and pepper impulse noise through the transmission in communication channels. This noise may also be intentionally used by the invaders to corrupt the embedded watermarks inside the medical images. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this work addresses the issue of designing a new watermarking method that can withstand high density of salt and pepper noise for brain MRI images. For this purpose, combination of a spatial domain watermarking method, channel coding and noise filtering schemes are used. The region of non-interest (RONI) of MRI images from five different databases are used as embedding area and electronic patient record (EPR) is considered as embedded data. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER).
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.029221
0.029247
0.026102
0.020756
0.020756
0.01
0.004559
0.000013
0
0
0
0
0
0
Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle Swarm Optimization Based on fuzzy mathematics theory, this paper proposes a fuzzy multi-objective optimization model with related constraints to minimize the total economic cost and network loss of microgrid. Uncontrollable microsources are considered as negative load, and stochastic net load scenarios are generated for taking the uncertainty of their output power and load into account. Cooperating with storage devices of the optimal capacity controllable microsources are treated as variables in the optimization process with the consideration of their start and stop strategy. Chaos optimization algorithm is introduced into binary particle swarm optimization (BPSO) to propose chaotic BPSO (CBPSO). Search capability of BPSO is improved via the chaotic search approach of chaos optimization algorithm. Tests of four benchmark functions show that the proposed CBPSO has better convergence performance than BPSO. Simulation results validate the correctness of the proposed model and the effectiveness of CBPSO.
A Technical Approach to the Energy Blockchain in Microgrids. The present paper considers some technical issues related to the “energy blockchain” paradigm applied to microgrids. In particular, what appears from the study is that the superposition of energy transactions in a microgrid creates a variation of the power losses in all the branches of the microgrid. Traditional power losses allocation in distribution systems takes into account only generators whi...
Peer-to-Peer Energy Trading in a Prosumer-Based Community Microgrid: A Game-Theoretic Model This paper proposes a novel game-theoretic model for peer-to-peer (P2P) energy trading among the prosumers in a community. The buyers can adjust the energy consumption behavior based on the price and quantity of the energy offered by the sellers. There exist two separate competitions during the trading process: 1) price competition among the sellers; and 2) seller selection competition among the buyers. The price competition among the sellers is modeled as a noncooperative game. The evolutionary game theory is used to model the dynamics of the buyers for selecting sellers. Moreover, an M-leader and N-follower Stackelberg game approach is used to model the interaction between buyers and sellers. Two iterative algorithms are proposed for the implementation of the games such that an equilibrium state exists in each of the games. The proposed method is applied to a small community microgrid with photo-voltaic and energy storage systems. Simulation results show the convergence of the algorithms and the effectiveness of the proposed model to handle P2P energy trading. The results also show that P2P energy trading provides significant financial and technical benefits to the community, and it is emerging as an alternative to cost-intensive energy storage systems.
Distribution Network-Constrained Optimization of Peer-to-Peer Transactive Energy Trading Among Multi-Microgrids This article proposes a two-level network-constrained peer-to-peer (P2P) transactive energy for multi-microgrids (MGs), which guarantees the distribution power network security and allows MGs to trade energy with each other flexibly. At the lower level, a P2P transactive energy is employed for multi-MGs to trade energy with each other. A multi-leader multi-follower (MLMF) Stackelberg game approach is utilized to model the energy trading process among MGs. We prove the existence and the uniqueness of the Stackelberg equilibrium (SE) and provide the closed-form expression for SE. For privacy concerns, we provide several distributed algorithms to obtain SE. At the upper level, the distribution system operator (DSO) reconfigures the distribution network based on the P2P transactive energy trading results by applying the AC optimal power flow considering the distribution network reconfiguration. If there are any network violations, DSO requests trading adjustments at the lower level for network security. We reformulate the DSO operation problem in a mixed-integer second-order cone programming (MISOCP) model and ensure its solution accuracy. Numerical results for a 4-Microgrid system, a modified IEEE 33-bus and 123-bus distribution power system show the effectiveness of the proposed transactive model and its solution technique.
Energy-Efficient and Trustworthy Data Collection Protocol Based on Mobile Fog Computing in Internet of Things The tremendous growth of interconnected things/devices in the whole world advances to the new paradigm, i.e., Internet of Things (IoT). The IoT use sensor-based embedded systems to interact with others, providing a wide range of applications and services to upper-level users. Undoubtedly, the data collected by the underlying IoTs are the basis of the upper-layer decision and the foundation for all the applications, which requires efficient energy protocols. Moreover, if the collected data are erroneous and untrustworthy, the data protection and application becomes an unrealistic goal, which further leads to unnecessary energy cost. However, the traditional methods cannot solve this problem efficiently and trustworthily. To achieve this goal, in this paper we design a novel energy-efficient and trustworthy protocol based on mobile fog computing. By establishing a trust model on fog elements to evaluate the sensor nodes, the mobile data collection path with the largest utility value is generated, which can avoid visiting unnecessary sensors and collecting untrustworthy data. Theoretical analysis and experimental results validate that our proposed architecture and method outperform traditional data collection methods in both energy and delay.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Massive MIMO for next generation wireless systems Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Reaching Agreement in the Presence of Faults The problem addressed here concerns a set of isolated processors, some unknown subset of which may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private value of information that must be communicated to each other nonfaulty processor. Nonfaulty processors always communicate honestly, whereas faulty processors may lie. The problem is to devise an algorithm in which processors communicate their own values and relay values received from others that allows each nonfaulty processor to infer a value for each other processor. The value inferred for a nonfaulty processor must be that processor's private value, and the value inferred for a faulty one must be consistent with the corresponding value inferred by each other nonfaulty processor.It is shown that the problem is solvable for, and only for, n ≥ 3m + 1, where m is the number of faulty processors and n is the total number. It is also shown that if faulty processors can refuse to pass on information but cannot falsely relay information, the problem is solvable for arbitrary n ≥ m ≥ 0. This weaker assumption can be approximated in practice using cryptographic methods.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Implementing Vehicle Routing Algorithms
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming. In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The ...
An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. •The proposed watermarking scheme utilized improved discrete wavelet transformation (IDWT) to retrieve the invariant wavelet domain.•The entropy mechanism is used to identify the suitable region for insertion of watermark. This will improve the imperceptibility and robustness of the watermarking procedure.•The scaling factors such as PSNR and NC are considered for evaluation of the proposed method and the Particle Swarm Optimization is employed to optimize the scaling factors.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
A Measurement Study of Oculus 360 Degree Video Streaming. 360 degree video is anew generation of video streaming technology that promises greater immersiveness than standard video streams. This level of immersiveness is similar to that produced by virtual reality devices -- users can control the field of view using head movements rather than needing to manipulate external devices. Although 360 degree video could revolutionize streaming technology, large scale adoption is hindered by a number of factors. 360 degree video streams have larger bandwidth requirements, require faster responsiveness to user inputs, and users may be more sensitive to lower quality streams.; AB@In this paper, we review standard approaches toward 360 degree video encoding and compare these to a new, as yet unpublished, approach by Oculus which we refer to as the offset cubic projection. Compared to the standard cubic encoding, the offset cube encodes a distorted version of the spherical surface, devoting more information (i.e., pixels) to the view in a chosen direction. We estimate that the offset cube representation can produce better or similar visual quality while using less than 50% pixels under reasonable assumptions about user behavior, resulting in 5.6% to 16.4% average savings in video bitrate. During 360 degree video streaming, Oculus uses a combination of quality level adaptation and view orientation adaptation. We estimate that this combination of streaming adaptation in two dimensions can cause over 57% extra segments to be downloaded compared to an ideal downloading strategy, wasting 20% of the total downloading bandwidth.
A Comparative Study of Distributed Learning Environments on Learning Outcomes Advances in information and communication technologies have fueled rapid growth in the popularity of technology-supported distributed learning (DL). Many educational institutions, both academic and corporate, have undertaken initiatives that leverage the myriad of available DL technologies. Despite their rapid growth in popularity, however, alternative technologies for DL are seldom systematically evaluated for learning efficacy. Considering the increasing range of information and communication technologies available for the development of DL environments, we believe it is paramount for studies to compare the relative learning outcomes of various technologies.In this research, we employed a quasi-experimental field study approach to investigate the relative learning effectiveness of two collaborative DL environments in the context of an executive development program. We also adopted a framework of hierarchical characteristics of group support system (GSS) technologies, outlined by DeSanctis and Gallupe (1987), as the basis for characterizing the two DL environments.One DL environment employed a simple e-mail and listserv capability while the other used a sophisticated GSS (herein referred to as Beta system). Interestingly, the learning outcome of the e-mail environment was higher than the learning outcome of the more sophisticated GSS environment. The post-hoc analysis of the electronic messages indicated that the students in groups using the e-mail system exchanged a higher percentage of messages related to the learning task. The Beta system users exchanged a higher level of technology sense-making messages. No significant difference was observed in the students' satisfaction with the learning process under the two DL environments.
The Representation of Virtual Reality in Education Students' opinions about the opportunities and the implications of VR in instruction were investigated by administering a questionnaire to humanities and engineering undergraduates. The questionnaire invited participants to rate a series of statements concerning motivation and emotion, skills, cognitive styles, benefits and learning outcomes associated with the use of VR in education. The representation which emerged was internally consistent and articulated into specific dimensions. It was not affected by gender, by the previous use of VR software, or by the knowledge of the main topics concerning the introduction of IT in instruction. Also the direct participation in a training session based on an immersive VR experience did not influence such a representation, which was partially modulated by the kind of course attended by students.
e-Learning, online learning, and distance learning environments: Are they the same? It is not uncommon that researchers face difficulties when performing meaningful cross-study comparisons for research. Research associated with the distance learning realm can be even more difficult to use as there are different environments with a variety of characteristics. We implemented a mixed-method analysis of research articles to find out how they define the learning environment. In addition, we surveyed 43 persons and discovered that there was inconsistent use of terminology for different types of delivery modes. The results reveal that there are different expectations and perceptions of learning environment labels: distance learning, e-Learning, and online learning.
Isolation And Distinctiveness In The Design Of E-Learning Systems Influence User Preferences When faced with excessive detail in an online environment, typical users have difficulty processing all the elements of representation. This in turn creates cognitive overload, which narrows the user's focus to a few select items. In the context of e-learning, we translated this aspect as the learner's demand for a system that facilitates the retrieval of learning content - one in which the representation is easy to read and understand. We hypothesized that the representation of content in an e-learning system's design is an important antecedent for learner preferences. The aspects of isolation and distinctiveness were incorporated into the design of e-learning representation as an attempt to promote student cognition. Following its development, the model was empirically validated by conducting a survey of 300 university students. We found that isolation and distinctiveness in the design elements appeared to facilitate the ability of students to read and remember online learning content. This in turn was found to drive user preferences for using e-learning systems. The findings provide designers with managerial insights for enticing learners to continue using e-learning systems.
Virtual special issue computers in human behavior technology enhanced distance learning should not forget how learning happens.
Measuring and defining the experience of immersion in games Despite the word's common usage by gamers and reviewers alike, it is still not clear what immersion means. This paper explores immersion further by investigating whether immersion can be defined quantitatively, describing three experiments in total. The first experiment investigated participants' abilities to switch from an immersive to a non-immersive task. The second experiment investigated whether there were changes in participants' eye movements during an immersive task. The third experiment investigated the effect of an externally imposed pace of interaction on immersion and affective measures (state anxiety, positive affect, negative affect). Overall the findings suggest that immersion can be measured subjectively (through questionnaires) as well as objectively (task completion time, eye movements). Furthermore, immersion is not only viewed as a positive experience: negative emotions and uneasiness (i.e. anxiety) also run high.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
TripRes: Traffic Flow Prediction Driven Resource Reservation for Multimedia IoV with Edge Computing AbstractThe Internet of Vehicles (IoV) connects vehicles, roadside units (RSUs) and other intelligent objects, enabling data sharing among them, thereby improving the efficiency of urban traffic and safety. Currently, collections of multimedia content, generated by multimedia surveillance equipment, vehicles, and so on, are transmitted to edge servers for implementation, because edge computing is a formidable paradigm for accommodating multimedia services with low-latency resource provisioning. However, the uneven or discrete distribution of the traffic flow covered by edge servers negatively affects the service performance (e.g., overload and underload) of edge servers in multimedia IoV systems. Therefore, how to accurately schedule and dynamically reserve proper numbers of resources for multimedia services in edge servers is still challenging. To address this challenge, a traffic flow prediction driven resource reservation method, called TripRes, is developed in this article. Specifically, the city map is divided into different regions, and the edge servers in a region are treated as a “big edge server” to simplify the complex distribution of edge servers. Then, future traffic flows are predicted using the deep spatiotemporal residual network (ST-ResNet), and future traffic flows are used to estimate the amount of multimedia services each region needs to offload to the edge servers. With the number of services to be offloaded in each region, their offloading destinations are determined through latency-sensitive transmission path selection. Finally, the performance of TripRes is evaluated using real-world big data with over 100M multimedia surveillance records from RSUs in Nanjing China.
A new optimization method: big bang-big crunch Nature is the principal source for proposing new optimization methods such as genetic algorithms (GA) and simulated annealing (SA) methods. All traditional evolutionary algorithms are heuristic population-based search procedures that incorporate random variation and selection. The main contribution of this study is that it proposes a novel optimization method that relies on one of the theories of the evolution of the universe; namely, the Big Bang and Big Crunch Theory. In the Big Bang phase, energy dissipation produces disorder and randomness is the main feature of this phase; whereas, in the Big Crunch phase, randomly distributed particles are drawn into an order. Inspired by this theory, an optimization algorithm is constructed, which will be called the Big Bang-Big Crunch (BB-BC) method that generates random points in the Big Bang phase and shrinks those points to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. It is shown that the performance of the new (BB-BC) method demonstrates superiority over an improved and enhanced genetic search algorithm also developed by the authors of this study, and outperforms the classical genetic algorithm (GA) for many benchmark test functions.
Toward Social Learning Environments We are teaching a new generation of students, cradled in technologies, communication and abundance of information. The implications are that we need to focus the design of learning technologies to support social learning in context. Instead of designing technologies that “teach” the learner, the new social learning technologies will perform three main roles: 1) support the learner in finding the right content (right for the context, for the particular learner, for the specific purpose of the learner, right pedagogically); 2) support learners to connect with the right people (again right for the context, learner, purpose, educational goal etc.), and 3) motivate / incentivize people to learn. In the pursuit of such environments, new areas of sciences become relevant as a source of methods and techniques: social psychology, economic / game theory, multi-agent systems. The paper illustrates how social learning technologies can be designed using some existing and emerging technologies: ontologies vs. social tagging, exploratory search, collaborative vs. self-managed social recommendations, trust and reputation mechanisms, mechanism design and social visualization.
A review on interval type-2 fuzzy logic applications in intelligent control. A review of the applications of interval type-2 fuzzy logic in intelligent control has been considered in this paper. The fundamental focus of the paper is based on the basic reasons for using type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this review, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy controllers. We also mention alternative approaches to designing type-2 fuzzy controllers without optimization techniques.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.077778
0.066667
0.066667
0.066667
0.066667
0.066667
0.025
0
0
0
0
0
0
0
Interactive display robot: Projector robot with natural user interface Combining a hand-held small projector, a mobile robot, a RGB-D sensor and a pan/tilt device, interactive displaying robot can move freely in the indoor space and display on any surface. In addition, the user can manipulate the projector robot and projection direction through the natural user interface.
FreeTagpaper: a pen-and-paper-based collaboration system using visual tags printed on paper We propose a novel collaboration system using pen and paper. FreeTagpaper uses a camera set above a work table to recognize the visual tags printed on the paper to acquire the paper's ID and posture. From the paper ID, FreeTagpaper can retrieve the paper's size and format from a document management database. It then uses the format information to transmit images of handwritten notes to the other side and simultaneously projects the other side's handwritten notes onto this paper. Based on this mutual image sharing scheme, users can collaborate in real time using paper of any size, format, and posture. This report describes preliminary work on FreeTagpaper including the current implementation and essential experimental results.
A Tutorial On Visual Servo Control This article provides a tutorial introduction to visual servo control of robotic manipulators, Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework, We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process, We then present a taxonomy of visual servo control systems, The two major classes of systems, position-based and image-based systems, are then discussed in detail, Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking, We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Cooperative social robots to accompany groups of people This study proposes a new model for guiding people in urban settings using multiple robots that work cooperatively. More specifically, this investigation describes the circumstances in which people might stray from the formation when following different robots' instructions. To this end, we introduce a 'prediction and anticipation model' that predicts the position of the group using a particle filter, while determining the optimal robot behavior to help people stay in the group in areas where they may become distracted. As a result, this article presents a novel approach to locally optimizing the work performed by robots and people using the minimum robots' work criterion and determining human-friendly types of movements. The guidance missions were carried out in urban areas that included multiple conflict areas and obstacles. This study also provides an analysis of robots' behavioral reactions to people by simulating different situations in the locations that were used for the investigation. The method was tested through simulations that took into account the difficulties and technological constraints derived from real-life situations. Despite these problematic issues, we were able to demonstrate the robots' effect on people in real-life situations in terms of pushing and dragging forces.
A minimum energy cost hypothesis for human arm trajectories. .   Many tasks require the arm to move from its initial position to a specified target position, but leave us free to choose the trajectory between them. This paper presents and tests the hypothesis that trajectories are chosen to minimize metabolic energy costs. Costs are calculated for the range of possible trajectories, for movements between the end points used in previously published experiments. Calculated energy minimizing trajectories for a model with biarticular elbow muscles agree well with observed trajectories for fast movements. Good agreement is also obtained for slow movements if they are assumed to be performed by slower muscles. A model in which all muscles are uniarticular is less successful in predicting observed trajectories. The effects of loads and of reversing the direction of movement are investigated.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Semantic Image Synthesis With Spatially-Adaptive Normalization We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to "wash away" semantic information. To address the issue, we propose using the input layout. for modulating the activations in normalization layers through a spatially-adaptive,learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and align-ment with input layouts. Finally, our model allows user control over both semantic and style as synthesizing images.
Reaching Agreement in the Presence of Faults The problem addressed here concerns a set of isolated processors, some unknown subset of which may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private value of information that must be communicated to each other nonfaulty processor. Nonfaulty processors always communicate honestly, whereas faulty processors may lie. The problem is to devise an algorithm in which processors communicate their own values and relay values received from others that allows each nonfaulty processor to infer a value for each other processor. The value inferred for a nonfaulty processor must be that processor's private value, and the value inferred for a faulty one must be consistent with the corresponding value inferred by each other nonfaulty processor.It is shown that the problem is solvable for, and only for, n ≥ 3m + 1, where m is the number of faulty processors and n is the total number. It is also shown that if faulty processors can refuse to pass on information but cannot falsely relay information, the problem is solvable for arbitrary n ≥ m ≥ 0. This weaker assumption can be approximated in practice using cryptographic methods.
Noninterference for a Practical DIFC-Based Operating System The Flume system is an implementation of decentralized information flow control (DIFC) at the operating system level. Prior work has shown Flume can be implemented as a practical extension to the Linux operating system, allowing real Web applications to achieve useful security guarantees. However, the question remains if the Flume system is actually secure. This paper compares Flume with other recent DIFC systems like Asbestos, arguing that the latter is inherently susceptible to certain wide-bandwidth covert channels, and proving their absence in Flume by means of a noninterference proof in the communicating sequential processes formalism.
A three-network architecture for on-line learning and optimization based on adaptive dynamic programming In this paper, we propose a novel adaptive dynamic programming (ADP) architecture with three networks, an action network, a critic network, and a reference network, to develop internal goal-representation for online learning and optimization. Unlike the traditional ADP design normally with an action network and a critic network, our approach integrates the third network, a reference network, into the actor-critic design framework to automatically and adaptively build an internal reinforcement signal to facilitate learning and optimization overtime to accomplish goals. We present the detailed design architecture and its associated learning algorithm to explain how effective learning and optimization can be achieved in this new ADP architecture. Furthermore, we test the performance of our architecture both on the cart-pole balancing task and the triple-link inverted pendulum balancing task, which are the popular benchmarks in the community to demonstrate its learning and control performance over time.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Scalable and Privacy-Preserving Data Sharing Based on Blockchain. With the development of network technology and cloud computing, data sharing is becoming increasingly popular, and many scholars have conducted in-depth research to promote its flourish. As the scale of data sharing expands, its privacy protection has become a hot issue in research. Moreover, in data sharing, the data is usually maintained in multiple parties, which brings new challenges to protect the privacy of these multi-party data. In this paper, we propose a trusted data sharing scheme using blockchain. We use blockchain to prevent the shared data from being tampered, and use the Paillier cryptosystem to realize the confidentiality of the shared data. In the proposed scheme, the shared data can be traded, and the transaction information is protected by using the (p, t)-threshold Paillier cryptosystem. We conduct experiments in cloud storage scenarios and the experimental results demonstrate the efficiency and effectiveness of the proposed scheme.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.223
0.223
0.025593
0.012
0.000519
0.000009
0
0
0
0
0
0
0
0
Large-scale evaluation of splicing localization algorithms for web images. With the proliferation of smartphones and social media, journalistic practices are increasingly dependent on information and images contributed by local bystanders through Internet-based applications and platforms. Verifying the images produced by these sources is integral to forming accurate news reports, given that there is very little or no control over the type of user-contributed content, and hence, images found on the Web are always likely to be the result of image tampering. In particular, image splicing, i.e. the process of taking an area from one image and placing it in another is a typical such tampering practice, often used with the goal of misinforming or manipulating Internet users. Currently, the localization of splicing traces in images found on the Web is a challenging task. In this work, we present the first, to our knowledge, exhaustive evaluation of today's state-of-the-art algorithms for splicing localization, that is, algorithms attempting to detect which pixels in an image have been tampered with as the result of such a forgery. As our aim is the application of splicing localization on images found on the Web and social media environments, we evaluate a large number of algorithms aimed at this problem on datasets that match this use case, while also evaluating algorithm robustness in the face of image degradation due to JPEG recompressions. We then extend our evaluations to a large dataset we formed by collecting real-world forgeries that have circulated the Web during the past years. We review the performance of the implemented algorithms and attempt to draw broader conclusions with respect to the robustness of splicing localization algorithms for application in Web environments, their current weaknesses, and the future of the field. Finally, we openly share the framework and the corresponding algorithm implementations to allow for further evaluations and experimentation.
An Effective Method for Detecting Double JPEG Compression With the Same Quantization Matrix Detection of double JPEG compression plays an important role in digital image forensics. Some successful approaches have been proposed to detect double JPEG compression when the primary and secondary compressions have different quantization matrices. However, detecting double JPEG compression with the same quantization matrix is still a challenging problem. In this paper, an effective error-based statistical feature extraction scheme is presented to solve this problem. First, a given JPEG file is decompressed to form a reconstructed image. An error image is obtained by computing the differences between the inverse discrete cosine transform coefficients and pixel values in the reconstructed image. Two classes of blocks in the error image, namely, rounding error block and truncation error block, are analyzed. Then, a set of features is proposed to characterize the statistical differences of the error blocks between single and double JPEG compressions. Finally, the support vector machine classifier is employed to identify whether a given JPEG image is doubly compressed or not. Experimental results on three image databases with various quality factors have demonstrated that the proposed method can significantly outperform the state-of-the-art method.
Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Nowadays, it is extremely simple to manipulate the content of digital images without leaving perceptual clues due to the availability of powerful image editing tools. Image tampering can easily devastate the credibility of images as a medium for personal authentication and a record of events. With the daily upload of millions of pictures to the Internet and the move towards paperless workplaces and e-government services, it becomes essential to develop automatic tampering detection techniques with reliable results. This paper proposes an enhanced technique for blind detection of image splicing. It extracts and combines Markov features in spatial and Discrete Cosine Transform domains to detect the artifacts introduced by the tampering operation. To reduce the computational complexity due to high dimensionality, Principal Component Analysis is used to select the most relevant features. Then, an optimized support vector machine with radial-basis function kernel is built to classify the image as being tampered or authentic. The proposed technique is evaluated on a publicly available image splicing dataset using cross validation. The results showed that the proposed technique outperforms the state-of-the-art splicing detection methods.
Exposing Splicing Forgery in Realistic Scenes Using Deep Fusion Network Creating fake pictures becomes more accessible than ever, but tampered images are more harmful because the Internet propagates misleading information so rapidly. Reliable digital forensic tools are therefore strongly needed. Traditional methods based on hand-crafted features are only useful when tampered images meet specific requirements, and the low detection accuracy prevents them from using in realistic scenes. Recently proposed learning-based methods improve the accuracy, but neural networks usually require to be trained on large labeled databases. This is because commonly used deep and narrow neural networks extract high-level visual features and neglect low-level features where there are abundant forensic cues. To solve the problem, we propose a novel neural network which concentrates on learning low-level forensic features and consequently can detect splicing forgery although the network is trained on a small automatically generated splicing dataset. Furthermore, our fusion network can be easily extended to support new forensic hypotheses without any changes in the network structure. The experimental results show that our method achieves state-of-the-art performance on several benchmark datasets and shows superior generalization capability: our fusion network can work very well even it never sees any pictures in test databases. Therefore, our method can detect splicing forgery in realistic scenes.
Feature Pyramid Network For Diffusion-Based Image Inpainting Detection Inpainting is a technique that can be employed to tamper with the content of images. In this paper, we propose a novel forensics analysis method for diffusion-based image inpainting based on a feature pyramid network (FPN). Our method features an improved u-shaped net to migrate FPN for multi-scale inpainting feature extraction. In addition, a stagewise weighted cross-entropy loss function is designed to take advantage of both the general loss and the weighted loss to improve the prediction rate of inpainted regions of all sizes. The experimental results demonstrate that the proposed method outperforms several state-of-the-art methods, especially when the size of the inpainted region is small. (c) 2021 Elsevier Inc. All rights reserved.
Noiseprint: a CNN-based camera model fingerprint. Forensic analyses of digital images rely heavily on the traces of in-camera and out-camera processes left on the acquired images. Such traces represent a sort of camera fingerprint. If one is able to recover them, by suppressing the high-level scene content and other disturbances, a number of forensic tasks can be easily accomplished. A notable example is the PRNU pattern, which can be regarded as a device fingerprint, and has received great attention in multimedia forensics. In this paper, we propose a method to extract a camera <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">model</italic> fingerprint, called noiseprint, where the scene content is largely suppressed and model-related artifacts are enhanced. This is obtained by means of a Siamese network, which is trained with pairs of image patches coming from the same (label +1) or different (label −1) cameras. Although the noiseprints can be used for a large variety of forensic tasks, in this paper we focus on image forgery localization. Experiments on several datasets widespread in the forensic community show noiseprint-based methods to provide state-of-the-art performance.
Image forgery detection We are undoubtedly living in an age where we are exposed to a remarkable array of visual imagery. While we may have historically had confidence in the integrity of this imagery, today&#39;s digital technology has begun to erode this trust. From the tabloid magazines to the fashion industry and in mainstream media outlets, scientific journals, political campaigns, courtrooms, and the photo hoaxes that ...
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
Adam: A Method for Stochastic Optimization. We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Data MULEs: modeling and analysis of a three-tier architecture for sparse sensor networks This paper presents and analyzes a three-tier architecture for collecting sensor data in sparse sensor networks. Our approach exploits the presence of mobile entities (called MULEs) present in the environment. When in close range, MULEs pick up data from the sensors, buffer it, and deliver it to wired access points. This can lead to substantial power savings at the sensors as they only have to transmit over a short-range. This paper focuses on a simple analytical model for understanding performance as system parameters are scaled. Our model assumes a two-dimensional random walk for mobility and incorporates key system variables such as number of MULEs, sensors and access points. The performance metrics observed are the data success rate (the fraction of generated data that reaches the access points), latency and the required buffer capacities on the sensors and the MULEs. The modeling and simulation results can be used for further analysis and provide certain guidelines for deployment of such systems.
Millimeter Wave Cellular Wireless Networks: Potentials and Challenges. Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban e...
Internet of Things: A Survey on Enabling Technologies, Protocols and Applications This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.04986
0.049333
0.049333
0.049333
0.049333
0.0256
0.014197
0.001073
0
0
0
0
0
0
Scalable Processing History Detector for JPEG Images.
Forensics of image blurring and sharpening history based on NSCT domain Detection of multi-manipulated image has always been a more realistic direction for digital image forensic technologies, which extremely attracts interests of researchers. However, mutual affects of manipulations make it difficult to identify the process using existing single-manipulated detection methods. In this paper, a novel algorithm for detecting image manipulation history of blurring and sharpening is proposed based on non-subsampled contourlet transform (NSCT) domain. Two main sets of features are extracted from the NSCT domain: extremum feature and local directional similarity vector. Extremum feature includes multiple maximums and minimums of NSCT coefficients through every scale. Under the influence of blurring or sharpening manipulation, the extremum feature tends to gain ideal discrimination. Directional similarity feature represents the correlation of a pixel and its neighbors, which can also be altered by blurring or sharpening. For one pixel, the directional vector is composed of the coefficients from every directional subband at a certain scale. Local directional similarity vector is obtained through similarity calculation between the directional vector of one random selected pixel and the directional vectors of its 8-neighborhood pixels. With the proposed features, we are able to detect two particular operations and determine the processing order at the same time. Experiment results manifest that the proposed algorithm is effective and accurate.
Identification of Various Image Operations Using Residual-Based Features. Image forensics has attracted wide attention during the past decade. However, most existing works aim at detecting a certain operation, which means that their proposed features usually depend on the investigated image operation and they consider only binary classification. This usually leads to misleading results if irrelevant features and/or classifiers are used. For instance, a JPEG decompressed...
Non-uniform Watermark Sharing Based on Optimal Iterative BTC for Image Tampering Recovery. Self-embedding watermarking can be used for image tampering recovery. In this work, the authors proposed a new image self-embedding scheme based on optimal iterative block truncation coding and non-uniform watermark sharing. Experimental results demonstrate that the proposed scheme can achieve better performance of tampering recovery than some of state-of-the-art schemes.
Robust Median Filtering Forensics Using an Autoregressive Model In order to verify the authenticity of digital images, researchers have begun developing digital forensic techniques to identify image editing. One editing operation that has recently received increased attention is median filtering. While several median filtering detection techniques have recently been developed, their performance is degraded by JPEG compression. These techniques suffer similar degradations in performance when a small window of the image is analyzed, as is done in localized filtering or cut-and-paste detection, rather than the image as a whole. In this paper, we propose a new, robust median filtering forensic technique. It operates by analyzing the statistical properties of the median filter residual (MFR), which we define as the difference between an image in question and a median filtered version of itself. To capture the statistical properties of the MFR, we fit it to an autoregressive (AR) model. We then use the AR coefficients as features for median filter detection. We test the effectiveness of our proposed median filter detection techniques through a series of experiments. These results show that our proposed forensic technique can achieve important performance gains over existing methods, particularly at low false-positive rates, with a very small dimension of features.
Energy-based Generative Adversarial Network. We introduce the Energy-based Generative Adversarial Network model (EBGAN) which views the discriminator as an energy function that attributes low energies to the regions near the data manifold and higher energies to other regions. Similar to the probabilistic GANs, a generator is seen as being trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign high energies to these generated samples. Viewing the discriminator as an energy function allows to use a wide variety of architectures and loss functionals in addition to the usual binary classifier with logistic output. Among them, we show one instantiation of EBGAN framework as using an auto-encoder architecture, with the energy being the reconstruction error, in place of the discriminator. We show that this form of EBGAN exhibits more stable behavior than regular GANs during training. We also show that a single-scale architecture can be trained to generate high-resolution images.
Image Forgery Localization via Block-Grained Analysis of JPEG Artifacts In this paper, we propose a forensic algorithm to discriminate between original and forged regions in JPEG images, under the hypothesis that the tampered image presents a double JPEG compression, either aligned (A-DJPG) or nonaligned (NA-DJPG). Unlike previous approaches, the proposed algorithm does not need to manually select a suspect region in order to test the presence or the absence of double compression artifacts. Based on an improved and unified statistical model characterizing the artifacts that appear in the presence of both A-DJPG or NA-DJPG, the proposed algorithm automatically computes a likelihood map indicating the probability for each 8 $\times$ 8 discrete cosine transform block of being doubly compressed. The validity of the proposed approach has been assessed by evaluating the performance of a detector based on thresholding the likelihood map, considering different forensic scenarios. The effectiveness of the proposed method is also confirmed by tests carried on realistic tampered images. An interesting property of the proposed Bayesian approach is that it can be easily extended to work with traces left by other kinds of processing.
On the security of public key protocols Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. Mobile-edge computation offloading (MECO) off-loads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite cloud computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a mixed-integer problem. To solve this challenging problem and characterize its policy structure, a low-complexity sub-optimal algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance in simulation.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz In this paper, large-scale fading and temporal fading characteristics of the industrial radio channel at 900, 2400, and 5200 MHz are determined. In contrast to measurements performed in houses and in office buildings, few attempts have been made until now to model propagation in industrial environments. In this paper, the industrial environment is categorized into different topographies. Industrial topographies are defined separately for large-scale and temporal fading, and their definition is based upon the specific physical characteristics of the local surroundings affecting both types of fading. Large-scale fading is well expressed by a one-slope path-loss model and excellent agreement with a lognormal distribution is obtained. Temporal fading is found to be Ricean and Ricean K-factors have been determined. Ricean K-factors are found to follow a lognormal distribution.
A competitive swarm optimizer for large scale optimization. In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.
Collective feature selection to identify crucial epistatic variants. In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.213333
0.213333
0.213333
0.213333
0.106667
0.003333
0.000719
0
0
0
0
0
0
0
Investigating surrogate-assisted cooperative coevolution for large-Scale global optimization. Problems involving large-scale global optimization (LSGO) are becoming more and more frequent. For this reason, the last few years have seen an increasing number of researchers interested in improving optimization metaheuristics in such a way as to cope effectively with high-dimensional search domains. Among the techniques to enhance scalability, one of the most studied is Cooperative Coevolution (CC), an effective divide-and-conquer strategy for decomposing a large-scale problem into lower-dimensional subcomponents. However, despite the progress made in the LSGO field, one of such optimizations can still require a very high number of objective function evaluations. Therefore, when the evaluation of a candidate solution requires complex calculations, LSGO can become a challenging task. Nonetheless, to date few studies have investigated the application of optimization metaheuristics to objective functions that are simultaneously high-dimensional and computationally significant. To address such a research issue, this article investigates a surrogate-assisted CC (SACC) optimizer, in which fitness surrogates are exploited within the low-dimensional subcomponents resulting from the problem decomposition. The SACC algorithm is investigated on a rich test-bed composed of 1000-dimensional problems. According to the results, SACC is able to significantly boost the convergence of the CC optimizer, leading in many cases to a relevant computational gain.
Multiobjective Optimization Models for Locating Vehicle Inspection Stations Subject to Stochastic Demand, Varying Velocity and Regional Constraints Deciding an optimal location of a transportation facility and automotive service enterprise is an interesting and important issue in the area of facility location allocation (FLA). In practice, some factors, i.e., customer demands, allocations, and locations of customers and facilities, are changing, and thus, it features with uncertainty. To account for this uncertainty, some researchers have addressed the stochastic time and cost issues of FLA. A new FLA research issue arises when decision makers want to minimize the transportation time of customers and their transportation cost while ensuring customers to arrive at their desired destination within some specific time and cost. By taking the vehicle inspection station as a typical automotive service enterprise example, this paper presents a novel stochastic multiobjective optimization to address it. This work builds two practical stochastic multiobjective programs subject to stochastic demand, varying velocity, and regional constraints. A hybrid intelligent algorithm integrating stochastic simulation and multiobjective teaching-learning-based optimization algorithm is proposed to solve the proposed programs. This approach is applied to a real-world location problem of a vehicle inspection station in Fushun, China. The results show that this is able to produce satisfactory Pareto solutions for an actual vehicle inspection station location problem.
Intrinsic dimension estimation: Advances and open problems. •The paper reviews state-of-the-art of the methods of Intrinsic Dimension (ID) Estimation.•The paper defines the properties that an ideal ID estimator should have.•The paper reviews, under the above mentioned framework, the major ID estimation methods underlining their advances and the open problems.
Alignment-Supervised Bidimensional Attention-Based Recursive Autoencoders for Bilingual Phrase Representation. Exploiting semantic interactions between the source and target linguistic items at different levels of granularity is crucial for generating compact vector representations for bilingual phrases. To achieve this, we propose alignment-supervised bidimensional attention-based recursive autoencoders (ABattRAE) in this paper. ABattRAE first individually employs two recursive autoencoders to recover hierarchical tree structures of bilingual phrase, and treats the subphrase covered by each node on the tree as a linguistic item. Unlike previous methods, ABattRAE introduces a bidimensional attention network to measure the semantic matching degree between linguistic items of different languages, which enables our model to integrate information from all nodes by dynamically assigning varying weights to their corresponding embeddings. To ensure the accuracy of the generated attention weights in the attention network, ABattRAE incorporates word alignments as supervision signals to guide the learning procedure. Using the general stochastic gradient descent algorithm, we train our model in an end-to-end fashion, where the semantic similarity of translation equivalents is maximized while the semantic similarity of nontranslation pairs is minimized. Finally, we incorporate a semantic feature based on the learned bilingual phrase representations into a machine translation system for better translation selection. Experimental results on NIST Chinese–English and WMT English–German test sets show that our model achieves substantial improvements of up to 2.86 and 1.09 BLEU points over the baseline, respectively. Extensive in-depth analyses demonstrate the superiority of our model in learning bilingual phrase embeddings.
Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization Recently, dynamic optimization has received much attention from the swarm and evolutionary computation community. However, few studies have investigated data-driven evolutionary dynamic optimization, and most algorithms for evolutionary dynamic optimization are based on analytical mathematical functions. In this paper, we investigate data-driven evolutionary dynamic optimization. First, we develop a surrogate-assisted evolutionary framework for solving data-driven dynamic optimization problems (DD-DOPs). Second, we employ a benchmark based on the typical dynamic optimization problems set in order to verify the performance of the proposed framework. The experimental results demonstrate that the proposed framework is effective for solving DD-DOPs.
Biobjective Task Scheduling for Distributed Green Data Centers The industry of data centers is the fifth largest energy consumer in the world. Distributed green data centers (DGDCs) consume 300 billion kWh per year to provide different types of heterogeneous services to global users. Users around the world bring revenue to DGDC providers according to actual quality of service (QoS) of their tasks. Their tasks are delivered to DGDCs through multiple Internet service providers (ISPs) with different bandwidth capacities and unit bandwidth price. In addition, prices of power grid, wind, and solar energy in different GDCs vary with their geographical locations. Therefore, it is highly challenging to schedule tasks among DGDCs in a high-profit and high-QoS way. This work designs a multiobjective optimization method for DGDCs to maximize the profit of DGDC providers and minimize the average task loss possibility of all applications by jointly determining the split of tasks among multiple ISPs and task service rates of each GDC. A problem is formulated and solved with a simulated-annealing-based biobjective differential evolution (SBDE) algorithm to obtain an approximate Pareto-optimal set. The method of minimum Manhattan distance is adopted to select a knee solution that specifies the Pareto-optimal task service rates and task split among ISPs for DGDCs in each time slot. Real-life data-based experiments demonstrate that the proposed method achieves lower task loss of all applications and larger profit than several existing scheduling algorithms. Note to Practitioners-This work aims to maximize the profit and minimize the task loss for DGDCs powered by renewable energy and smart grid by jointly determining the split of tasks among multiple ISPs. Existing task scheduling algorithms fail to jointly consider and optimize the profit of DGDC providers and QoS of tasks. Therefore, they fail to intelligently schedule tasks of heterogeneous applications and allocate infrastructure resources within their response time bounds. In this work, a new method that tackles drawbacks of existing algorithms is proposed. It is achieved by adopting the proposed SBDE algorithm that solves a multiobjective optimization problem. Simulation experiments demonstrate that compared with three typical task scheduling approaches, it increases profit and decreases task loss. It can be readily and easily integrated and implemented in real-life industrial DGDCs. The future work needs to investigate the real-time green energy prediction with historical data and further combine prediction and task scheduling together to achieve greener and even net-zero-energy data centers.
MO4: A Many-Objective Evolutionary Algorithm for Protein Structure Prediction Protein structure prediction (PSP) problems are a major biocomputing challenge, owing to its scientific intrinsic that assists researchers to understand the relationship between amino acid sequences and protein structures, and to study the function of proteins. Although computational resources increased substantially over the last decade, a complete solution to PSP problems by computational methods has not yet been obtained. Using only one energy function is insufficient to characterize proteins because of their complexity. Diverse protein energy functions and evolutionary computation algorithms have been extensively studied to assist in the prediction of protein structures in different ways. Such algorithms are able to provide a better protein with less computational resources requirement than deep learning methods. For the first time, this study proposes a many-objective PSP (MaOPSP) problem with four types of objectives to alleviate the impact of imprecise energy functions for predicting protein structures. A many-objective evolutionary algorithm (MaOEA) is utilized to solve MaOPSP. The proposed method is compared with existing methods by examining 34 proteins. An analysis of the objectives demonstrates that our generated conformations are more reasonable than those generated by single/multiobjective optimization methods. Experimental results indicate that solving a PSP problem as an MaOPSP problem with four objectives yields better PSPs, in terms of both accuracy and efficiency. The source code of the proposed method can be found at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://toyamaailab.github.io/sourcedata.html</uri> .
Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems. Surrogate-assisted evolutionary algorithms have been commonly used in extremely expensive optimization problems. However, many existing algorithms are only effectively used in low-dimensional optimization problems and are easily trapped into a local optimum for medium scaled complex problems. An ensemble of surrogates assisted particle swarm optimization (EAPSO) algorithm is proposed in this paper to address this challenge. EAPSO algorithm uses multiple trial positions for each particle in the swarm and selects the promising positions by using the superiority and uncertainty of the ensemble simultaneously. Besides, a novel variable weight coefficient based on evolutionary state is proposed to balance exploration and exploitation. For faster convergence and avoiding wrong global attraction of models, optima of two surrogates (polynomial regression model and radial basis function model) are evaluated in the convergence state of particles. The strategies ensure large exploration space for the swarm and control the time to converge. Forty-two benchmark functions widely adopted in literatures are used to evaluate the proposed approach. Experimental results demonstrate the superiority of EAPSO algorithm compared with three popular algorithms.
A Low-Complexity Analytical Modeling for Cross-Layer Adaptive Error Protection in Video Over WLAN We find a low-complicity and accurate model to solve the problem of optimizing MAC-layer transmission of real-time video over wireless local area networks (WLANs) using cross-layer techniques. The objective in this problem is to obtain the optimal MAC retry limit in order to minimize the total packet loss rate. First, the accuracy of Fluid and M/M/1/K analytical models is examined. Then we derive a closed-form expression for service time in WLAN MAC transmission, and will use this in mathematical formulation of our optimization problem based on M/G/1 model. Subsequently we introduce an approximate and simple formula for MAC-layer service time, which leads to the M/M/1 model. Compared with M/G/1, we particularly show that our M/M/1-based model provides a low-complexity and yet quite accurate means for analyzing MAC transmission process in WLAN. Using our M/M/1 model-based analysis, we derive closed-form formulas for the packet overflow drop rate and optimum retry-limit. These closed-form expressions can be effectively invoked for analyzing adaptive retry-limit algorithms. Simulation results (network simulator-2) will verify the accuracy of our analytical models.
Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation In this paper we study the convergence of the Galerkin approximation method applied to the generalized Hamilton-Jacobi-Bellman (GHJB) equation over a compact set containing the origin. The GHJB equation gives the cost of an arbitrary control law and can be used to improve the performance of this control. The GHJB equation can also be used to successively approximate the Hamilton-Jacobi-Bellman equation. We state sufficient conditions that guarantee that the Galerkin approximation converges to the solution of the GHJB equation and that the resulting approximate control is stabilizing on the same region as the initial control. The method is demonstrated on a simple nonlinear system and is compared to a result obtained by using exact feedback linearization in conjunction with the LQR design method. (C) 1997 Elsevier Science Ltd. All rights reserved.
Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles This paper proposes an operating framework for aggregators of plug-in electric vehicles (PEVs). First, a minimum-cost load scheduling algorithm is designed, which determines the purchase of energy in the day-ahead market based on the forecast electricity price and PEV power demands. The same algorithm is applicable for negotiating bilateral contracts. Second, a dynamic dispatch algorithm is developed, used for distributing the purchased energy to PEVs on the operating day. Simulation results are used to evaluate the proposed algorithms, and to demonstrate the potential impact of an aggregated PEV fleet on the power system.
Sub-modularity and Antenna Selection in MIMO systems In this paper, we show that the optimal receive antenna subset selection problem for maximizing the mutual information in a point-to-point MIMO system is sub-modular. Consequently, a greedy step-wise optimization approach, where at each step, an antenna that maximizes the incremental gain is added to the existing antenna subset, is guaranteed to be within a (1-1/e)-fraction of the global optimal value independent of all parameters. For a single-antenna-equipped source and destination with multiple relays, we show that the relay antenna selection problem to maximize the mutual information is modular and a greedy step-wise optimization approach leads to an optimal solution.
Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure. Chaos-based image encryption algorithms have been widely studied since the permutation-diffusion structure (PDS) was proposed. However, the PDS is not secure from attacks, which may lead to security vulnerabilities of PDS based chaotic cryptosystems. In this study, the security problems of PDS are investigated. Then, a new PDS based chaotic image encryption scheme is cryptanalyzed. In the original scheme, a 3D bit matrix permutation was used to address the intrinsic deficiencies of traditional pixel/bit level permutation of image encryption. The double random position permutation provides a high security level. However, it is not unattackable. In this study, a novel attack method will be introduced where all the chaotic mappings or parameters which are functionally equivalent to the keys used in the permutation and diffusion stages of the original cryptosystem can fully be revealed. The encrypted images can then be completely recovered without knowing the secret keys. Both mathematical analysis and experimental results are given to illustrate the effectiveness of the proposed method.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.11
0.1
0.1
0.1
0.1
0.1
0.06
0.033333
0
0
0
0
0
0
Shared control of highly automated vehicles using steer-by-wire systems A shared control of highly automated Steer-by-Wire system is proposed for cooperative driving between the driver and vehicle in the face of driver ʼ s abnormal driving. A fault detection scheme is designed to detect the abnormal driving behaviour and transfer the control of the car to the automatic system designed based on a fault tolerant model predictive control ( MPC ) controller driving the vehicle along an optimal safe path. The proposed concept and control algorithm are tested in a number of scenarios representing intersection, lane change and different types of driver ʼ s abnormal behaviour. The simulation results show the feasibility and effectiveness of the proposed method.
A predictive controller for autonomous vehicle path tracking This paper presents a model predictive controller (MPC) structure for solving the path-tracking problem of terrestrial autonomous vehicles. To achieve the desired performance during high-speed driving, the controller architecture considers both the kinematic and the dynamic control in a cascade structure. Our study contains a comparative study between two kinematic linear predictive control strategies: The first strategy is based on the successive linearization concept, and the other strategy combines a local reference frame with an approaching path strategy. Our goal is to search for the strategy that best comprises the performance and hardware-cost criteria. For the dynamic controller, a decentralized predictive controller based on a linearized model of the vehicle is used. Practical experiments obtained using an autonomous "Mini-Baja" vehicle equipped with an embedded computing system are presented. These results confirm that the proposed MPC structure is the solution that better matches the target criteria.
An Efficient Visibility Enhancement Algorithm for Road Scenes Captured by Intelligent Transportation Systems The visibility of images of outdoor road scenes will generally become degraded when captured during inclement weather conditions. Drivers often turn on the headlights of their vehicles and streetlights are often activated, resulting in localized light sources in images capturing road scenes in these conditions. Additionally, sandstorms are also weather events that are commonly encountered when driving in some regions. In sandstorms, atmospheric sand has a propensity to irregularly absorb specific portions of a spectrum, thereby causing color-shift problems in the captured image. Traditional state-of-the-art restoration techniques are unable to effectively cope with these hazy road images that feature localized light sources or color-shift problems. In response, we present a novel and effective haze removal approach to remedy problems caused by localized light sources and color shifts, which thereby achieves superior restoration results for single hazy images. The performance of the proposed method has been proven through quantitative and qualitative evaluations. Experimental results demonstrate that the proposed haze removal technique can more effectively recover scene radiance while demanding fewer computational costs than traditional state-of-the-art haze removal techniques.
Automatic Detection and Classification of Road Lane Markings Using Onboard Vehicular Cameras This paper presents a new approach for road lane classification using an onboard camera. Initially, lane boundaries are detected using a linear–parabolic lane model, and an automatic on-the-fly camera calibration procedure is applied. Then, an adaptive smoothing scheme is applied to reduce noise while keeping close edges separated, and pairs of local maxima–minima of the gradient are used as cues to identify lane markings. Finally, a Bayesian classifier based on mixtures of Gaussians is applied to classify the lane markings present at each frame of a video sequence as dashed, solid, dashed solid, solid dashed, or double solid. Experimental results indicate an overall accuracy of over 96% using a variety of video sequences acquired with different devices and resolutions.
Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night. Pedestrian-vehicle accidents that occur at night are a major social problem worldwide. Advanced driver assistance systems that are equipped with cameras have been designed to automatically prevent such accidents. Among the various types of cameras used in such systems, far-infrared (FIR) cameras are favorable because they are invariant to illumination changes. Therefore, this paper focuses on a pedestrian nighttime tracking system with an FIR camera that is able to discern thermal energy and is mounted on the forward roof part of a vehicle. Since the temperature difference between the pedestrian and background depends on the season and the weather, we therefore propose two models to detect pedestrians according to the season and the weather, which are determined using Weber–Fechner's law. For tracking pedestrians, we perform real-time online learning to track pedestrians using boosted random ferns and update the trackers at each frame. In particular, we link detection responses to trajectories based on similarities in position, size, and appearance. There is no standard data set for evaluating the tracking performance using an FIR camera; thus, we created the Keimyung University tracking data set (KMUTD) by combining the KMU sudden pedestrian crossing (SPC) data set [21] for summer nights with additional tracking data for winter nights. The KMUTD contains video sequences involving a moving camera, moving pedestrians, sudden shape deformations, unexpected motion changes, and partial or full occlusions between pedestrians at night. The proposed algorithm is successfully applied to various pedestrian video sequences of the KMUTD; specifically, the proposed algorithm yields more accurate tracking performance than other existing methods.
Effects of Different Alcohol Dosages on Steering Behavior in Curve Driving. Objective: The aim of this article is to explore the detailed characteristics of steering behavior in curve driving at different alcohol dosages. Background: Improper operation of the steering wheel is a contributing factor to increased crash risks on curves. Method: The experiments were conducted using a driving simulator. Twenty-five licensed drivers were recruited to perform the experiments at the four different breath alcohol concentration (BrAC) levels. The steering angle (SA), steering speed (SS), steering reversal rate (SRR), and peak-to-peak value of the steering angle (PP) were used to characterize the steering behavior. The vehicle's speed and the number of lane exceedances per kilometer were also used to examine the driving performance. Results: The SSs on the 200 m (chi(2)(3) = 20.67, p < .001), 500 m (chi(2)(3) = 22.42, p < .001), and 800 m (chi(2)(3) = 22.86, p < .001) radius curves were significantly faster for drivers under the influence of alcohol compared with those given a placebo. There were significant effects of alcohol on the SRR and PP on the 200 m, 500 m, and 800 m radius curves. Conclusion: For all of the curves, the SS, SRR, and PP had a tendency to increase as the BrAC increased. The large PP at a high BrAC, accompanied by the high speed, SS, and SRR, resulted in a high probability of lane exceedance. The use of measures of SS, SRR, and PP aided in the improvement of the accuracy of the intoxication detection for the different types of curves. Application: The most important application is to provide guidance for detecting alcohol-impaired-driving.
Risky Driver Recognition Based on Vehicle Speed Time Series. Risky driving is a major cause of traffic accidents. In this paper, we propose a new method that recognizes risky driving behaviors purely based on vehicle speed time series. This method first retrieves the important distribution pattern of the sampled positive speed-change (value and duration) tuples for individual drivers within different speed ranges. Then, it identifies the risky drivers based...
Driver Fatigue Detection Systems: A Review Driver fatigue has been attributed to traffic accidents; therefore, fatigue-related traffic accidents have a higher fatality rate and cause more damage to the surroundings compared with accidents where the drivers are alert. Recently, many automobile companies have installed driver assistance technologies in vehicles for driver assistance. Third party companies are also manufacturing fatigue detection devices; however, much research is still required for improvement. In the field of driver fatigue detection, continuous research is being performed and several articles propose promising results in constrained environments, still much progress is required. This paper presents state-of-the-art review of recent advancement in the field of driver fatigue detection. Methods are categorized into five groups, i.e., subjective reporting, driver biological features, driver physical features, vehicular features while driving, and hybrid features depending on the features used for driver fatigue detection. Various approaches have been compared for fatigue detection, and areas open for improvements are deduced.
The ApolloScape Dataset for Autonomous Driving Scene parsing aims to assign a class (semantic) label for each pixel in an image. It is a comprehensive analysis of an image. Given the rise of autonomous driving, pixel-accurate environmental perception is expected to be a key enabling technical piece. However, providing a large scale dataset for the design and evaluation of scene parsing algorithms, in particular for outdoor scenes, has been difficult. The per-pixel labelling process is prohibitively expensive, limiting the scale of existing ones. In this paper, we present a large-scale open dataset, ApolloScape, that consists of RGB videos and corresponding dense 3D point clouds. Comparing with existing datasets, our dataset has the following unique properties. The first is its scale, our initial release contains over 140K images - each with its per-pixel semantic mask, up to 1M is scheduled. The second is its complexity. Captured in various traffic conditions, the number of moving objects averages from tens to over one hundred (Figure 1). And the third is the 3D attribute, each image is tagged with high-accuracy pose information at cm accuracy and the static background point cloud has mm relative accuracy. We are able to label these many images by an interactive and efficient labelling pipeline that utilizes the high-quality 3D point cloud. Moreover, our dataset also contains different lane markings based on the lane colors and styles. We expect our new dataset can deeply benefit various autonomous driving related applications that include but not limited to 2D/3D scene understanding, localization, transfer learning, and driving simulation.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.
Multimodal Feature-Based Surface Material Classification. When a tool is tapped on or dragged over an object surface, vibrations are induced in the tool, which can be captured using acceleration sensors. The tool-surface interaction additionally creates audible sound waves, which can be recorded using microphones. Features extracted from camera images provide additional information about the surfaces. We present an approach for tool-mediated surface clas...
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.
Sustainable and Efficient Data Collection from WSNs to Cloud. The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time becomes a b...
1.22
0.22
0.22
0.22
0.22
0.22
0.22
0.073333
0.0025
0
0
0
0
0
Physical-Virtual Collaboration Modeling for Intra- and Inter-Station Metro Ridership Prediction Due to the widespread applications in real-world scenarios, metro ridership prediction is a crucial but challenging task in intelligent transportation systems. However, conventional methods either ignore the topological information of metro systems or directly learn on physical topology, and cannot fully explore the patterns of ridership evolution. To address this problem, we model a metro system ...
A Real-Time Passenger Flow Estimation and Prediction Method for Urban Bus Transit Systems. Bus service is the most important function of public transportation. Besides the major goal of carrying passengers around, providing a comfortable travel experience for passengers is also a key business consideration. To provide a comfortable travel experience, effective bus scheduling is essential. Traditional approaches are based on fixed timetables. The wide adoptions of smart card fare collect...
Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends Transportation systems operate in a domain that is anything but simple. Many exhibit both spatial and temporal characteristics, at varying scales, under varying conditions brought on by external sources such as social events, holidays, and the weather. Yet, modeling the interplay of factors, devising generalized representations, and subsequently using them to solve a particular problem can be a challenging task. These situations represent only a fraction of the difficulties faced by modern intelligent transportation systems (ITS). In this paper, we present a survey that highlights the role modeling techniques within the realm of deep learning have played within ITS. We focus on how practitioners have formulated problems to address these various challenges, and outline both architectural and problem-specific considerations used to develop solutions. We hope this survey can help to serve as a bridge between the machine learning and transportation communities, shedding light on new domains and considerations in the future.
Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called “ResLSTM”) to forecast short-term passenger fl...
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
On the security of public key protocols Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
ImageNet Classification with Deep Convolutional Neural Networks. We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called \"dropout\" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
Markov games as a framework for multi-agent reinforcement learning In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsis-tic view, secondary agents can only be part of the environment and are therefore fixed in their behavior. The framework of Markov games allows us to widen this view to include multiple adaptive agents with interacting or competing goals. This paper considers a step in this direction in which exactly two agents with diametrically opposed goals share an environment. It describes a Q-learning-like algorithm for finding optimal policies and demonstrates its application to a simple two-player game in which the optimal policy is probabilistic.
Scalable and efficient provable data possession. Storage outsourcing is a rising trend which prompts a number of interesting security issues, many of which have been extensively investigated in the past. However, Provable Data Possession (PDP) is a topic that has only recently appeared in the research literature. The main issue is how to frequently, efficiently and securely verify that a storage server is faithfully storing its client's (potentially very large) outsourced data. The storage server is assumed to be untrusted in terms of both security and reliability. (In other words, it might maliciously or accidentally erase hosted data; it might also relegate it to slow or off-line storage.) The problem is exacerbated by the client being a small computing device with limited resources. Prior work has addressed this problem using either public key cryptography or requiring the client to outsource its data in encrypted form. In this paper, we construct a highly efficient and provably secure PDP technique based entirely on symmetric key cryptography, while not requiring any bulk encryption. Also, in contrast with its predecessors, our PDP technique allows outsourcing of dynamic data, i.e, it efficiently supports operations, such as block modification, deletion and append.
On controller initialization in multivariable switching systems We consider a class of switched systems which consists of a linear MIMO and possibly unstable process in feedback interconnection with a multicontroller whose dynamics switch. It is shown how one can achieve significantly better transient performance by selecting the initial condition for every controller when it is inserted into the feedback loop. This initialization is obtained by performing the minimization of a quadratic cost function of the tracking error, controlled output, and control signal. We guarantee input-to-state stability of the closed-loop system when the average number of switches per unit of time is smaller than a specific value. If this is not the case then stability can still be achieved by adding a mild constraint to the optimization. We illustrate the use of our results in the control of a flexible beam actuated in torque. This system is unstable with two poles at the origin and contains several lightly damped modes, which can be easily excited by controller switching.
A competitive swarm optimizer for large scale optimization. In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.
A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. In this paper, a blind image watermarking scheme based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. In this scheme, DWT is applied on ROI (region of interest) of the medical image to get different frequency subbands of its wavelet decomposition. On the low frequency subband LL of the ROI, block-SVD is applied to get different singular matrices. A pair of elements with similar values is identified from the left singular value matrix of these selected blocks. The values of these pairs are modified using certain threshold to embed a bit of watermark content. Appropriate threshold is chosen to achieve the imperceptibility and robustness of medical image and watermark contents respectively. For authentication and identification of original medical image, one watermark image (logo) and other text watermark have been used. The watermark image provides authentication whereas the text data represents electronic patient record (EPR) for identification. At receiving end, blind recovery of both watermark contents is performed by a similar comparison scheme used during the embedding process. The proposed algorithm is applied on various groups of medical images like X-ray, CT scan and mammography. This scheme offers better visibility of watermarked image and recovery of watermark content due to DWT-SVD combination. Moreover, use of Hamming error correcting code (ECC) on EPR text bits reduces the BER and thus provides better recovery of EPR. The performance of proposed algorithm with EPR data coding by Hamming code is compared with the BCH error correcting code and it is found that later one perform better. A result analysis shows that imperceptibility of watermarked image is better as PSNR is above 43 dB and WPSNR is above 52 dB for all set of images. In addition, robustness of the scheme is better than existing scheme for similar set of medical images in terms of normalized correlation coefficient (NCC) and bit-error-rate (BER). An analysis is also carried out to verify the performance of the proposed scheme for different size of watermark contents (image and EPR data). It is observed from analysis that the proposed scheme is also appropriate for watermarking of color image. Using proposed scheme, watermark contents are extracted successfully under various noise attacks like JPEG compression, filtering, Gaussian noise, Salt and pepper noise, cropping, filtering and rotation. Performance comparison of proposed scheme with existing schemes shows proposed scheme has better robustness against different types of attacks. Moreover, the proposed scheme is also robust under set of benchmark attacks known as checkmark attacks.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.1
0.066667
0.0125
0
0
0
0
0
0
0
0
Efficient and privacy-preserving traceable attribute-based encryption in blockchain Attribute-based encryption, especially ciphertext-policy attribute-based encryption, plays an important role in the data sharing. In the process of data sharing, the secret key does not contain the specific information of users, who may share his secret key with other users for benefits without being discovered. In addition, the attribute authority can generate the secret key from any attribute set. If the secret key is abused, it is difficult to judge whether the abused private key comes from users or the attribute authority. Besides, the access control structure usually leaks sensitive information in a distributed network, and the efficiency of attribute-based encryption is a bottleneck of its applications. Fortunately, blockchain technology can guarantee the integrity and non-repudiation of data. In view of the above issues, an efficient and privacy-preserving traceable attribute-based encryption scheme is proposed. In the proposed scheme, blockchain technologies are used to guarantee both integrity and non-repudiation of data, and the ciphertext can be quickly generated by using the pre-encryption technology. Moreover, attributes are hidden in anonymous access control structures by using the attribute bloom filter. When a secret key is abused, the source of the abused secret key can be audited. Security and performance analysis show that the proposed scheme is secure and efficient.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
A survey on machine learning for data fusion. •We sum up a group of main challenges that data fusion might face.•We propose a thorough list of requirements to evaluate data fusion methods.•We review the literature of data fusion based on machine learning.•We comment on how a machine learning method can ameliorate fusion performance.•We present significant open issues and valuable future research directions.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
Optimal Scheduling for Quality of Monitoring in Wireless Rechargeable Sensor Networks Wireless Rechargeable Sensor Network (WRSN) is an emerging technology to address the energy constraint in sensor networks. The protocol design in WRSN is extremely challenging due to the complicated interactions between rechargeable sensor nodes and readers, capable of mobility and functioning as energy distributors and data collectors. In this paper, we for the first time investigate the optimal scheduling problem in WRSN for stochastic event capture, i.e., how to jointly mobilize the readers for energy distribution and schedule sensor nodes for optimal quality of monitoring (QoM). We analyze the QoM for three application scenarios: i) the reader travels at a fixed speed to recharge sensor nodes and sensor nodes consume the collected energy in an aggressive way, ii) the reader stops to recharge sensor nodes for a predefined time during its periodic traveling and sensor nodes deplete energy aggressively, iii) the reader stops to recharge sensor nodes but sensor nodes can adopt optimal duty cycle scheduling for maximal QoM. We provide analytical results for achieving the optimal QoM under arbitrary parameter settings. Extensive simulation results are offered to demonstrate the correctness and effectiveness of our results.
Joint Mobile Data Gathering and Energy Provisioning in Wireless Rechargeable Sensor Networks The emerging wireless energy transfer technology enables charging sensor batteries in a wireless sensor network (WSN) and maintaining perpetual operation of the network. Recent breakthrough in this area has opened up a new dimension to the design of sensor network protocols. In the meanwhile, mobile data gathering has been considered as an efficient alternative to data relaying in WSNs. However, time variation of recharging rates in wireless rechargeable sensor networks imposes a great challenge in obtaining an optimal data gathering strategy. In this paper, we propose a framework of joint wireless energy replenishment and anchor-point based mobile data gathering (WerMDG) in WSNs by considering various sources of energy consumption and time-varying nature of energy replenishment. To that end, we first determine the anchor point selection strategy and the sequence to visit the anchor points. We then formulate the WerMDG problem into a network utility maximization problem which is constrained by flow, energy balance, link and battery capacity and the bounded sojourn time of the mobile collector. Furthermore, we present a distributed algorithm composed of cross-layer data control, scheduling and routing subalgorithms for each sensor node, and sojourn time allocation subalgorithm for the mobile collector at different anchor points. We also provide the convergence analysis of these subalgorithms. Finally, we implement the WerMDG algorithm in a distributed manner in the NS-2 simulator and give extensive numerical results to verify the convergence of the proposed algorithm and the impact of utility weight, link capacity and recharging rate on network performance.
Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor Networks Unmanned aerial vehicle (UAV)-aided Wireless Rechargeable Sensor Network (WRSN) is a promising application in providing sustainable power supply to the rechargeable sensor nodes (SNs). Constructing a trajectory for the UAV to traverse all SNs with the cheapest cost is an important issue in UAV-aided WRSN. Although some exact algorithms and heuristic methods have been proposed, they cannot achieve a superb result for the large-scale scene within the tolerable time. In this paper, we study the UAV‘s trajectory optimization problem from a novel viewpoint that the designed trajectory should maximize the UAV's energy utilization efficiency. The maximum UAV's energy utilization efficiency problem is decomposed as integer programming and non-convex optimization problems. For the problem that UAV‘s charging position is fixed, we have speeded the algorithm's performance by limiting the search direction, the initial search position, and the search space. In the other case, where the power transfer efficiency is unchangeable within a certain distance, a polynomial-time randomized approximation scheme (PRAS) is presented to find the approximate minimum number of hovering locations. We have presented TPA-FCP and TPA-ERC to solve the above problems, respectively. The numerical results verify that our proposed algorithms effectively reduce the length of optimal trajectory and the time complexity. Besides, the energy carried by the UAV for the specified task is predictable, which provides valuable information for arranging the UAV's flight task.
Impacts of traveling paths on energy provisioning for industrial wireless rechargeable sensor networks Traditional Industrial Wireless Sensor Networks (IWSNs) are constrained by limited battery energy. Recent breakthroughs in wireless power transfer have inspired the emergence of Industrial Wireless Rechargeable Sensor Networks (IWRSNs). IWRSNs usually contain one or more mobile chargers which can traverse the network to replenish energy supply for sensor nodes. The essential problem in mobile energy provisioning is to find the optimum path along which the mobile chargers travel to improve charging performance, prolong the battery lifespan of nodes and reduce the charging latency as much as possible. In this paper, we introduce and analyze the impacts of four traveling paths, namely, SCAN, HILBERT, S-CURVES(ad) and Z-curve on energy provisioning for IWRSNs. This evaluation aims to embody effective and essential properties that a superior traveling path should possess. Our simulations show that S-CURVES(ad) outperforms the other traveling paths in the lifetime of nodes and traveling efficiency. And at the same time, it has relatively small charging latency.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
Localization protocols for mobile wireless sensor networks: A survey. Wireless Sensor Networks (WSNs) were emerged with the recent advances in the field of micro-electronics and the emergence of wireless communication technology. Although, it has been shown that mobility alleviates several issues relating to sensor network like the coverage optimization and the connectivity. The need for node localization is one of the most important challenges when considering mobility. Localization in WSN means estimating the position or spatial coordinates of nodes. This paper addresses the various issues in localization and presents the state of the art of localization algorithms in Mobile WSNs (MWSNs). In this paper, we classified the localization algorithms based on the localization technique, the anchor based/cooperative, the nodes’ mobility state and the information state and, we presented a detailed analysis of the representative localization algorithms. Moreover, we compared the existing localization algorithms and we discussed some possible directions of future research for the localization algorithms in MWSNs.
A Fuzzy Logic-Based On-Demand Charging Algorithm for Wireless Rechargeable Sensor Networks With Multiple Chargers Mobile chargers have greatly promoted the wireless rechargeable sensor networks (WRSNs). While most recent works have focused on recharging the WRSNs in an on-demand fashion, little attention has been paid on joint consideration of multiple mobile chargers (MCs) and multi-node energy transfer for determining the charging schedule of energy-hungry nodes. Moreover, most of the schemes leave out the contemplation of multiple network attributes while making scheduling decisions and even they overlook the issue of ill-timed charging response to the nodes with uneven energy consumption rates. In this paper, we address the aforesaid issues together and propose a novel scheduling scheme for on-demand charging in WRSNs. We first present an efficient network partitioning method for distributing the MCs so as to evenly balance their workload. We next adopt the fuzzy logic which blends various network attributes for determining the charging schedule of the MCs. We also formulate an expression to determine the charging threshold for the nodes that vary depending on their energy consumption rate. Extensive simulations are conducted to demonstrate the effectiveness and competitiveness of our scheme. The comparison results reveal that the proposed scheme improves charging performance compared to the state-of-the-art schemes with respect to various performance metrics.
Network Under Limited Mobile Devices: A New Technique for Mobile Charging Scheduling With Multiple Sinks. Recently, many studies have investigated scheduling mobile devices to recharge and collect data from sensors in wireless rechargeable sensor networks (WRSNs) such that the network lifetime is prolonged. In reality, because mobile devices are more powerful and expensive than sensors, the cost of the mobile devices often consumes a high portion of the budget. Due to a limited budget, the number of m...
Distributed Segment-Based Anomaly Detection With Kullback–Leibler Divergence in Wireless Sensor Networks In this paper, we focus on detecting a special type of anomaly in wireless sensor network (WSN), which appears simultaneously in a collection of neighboring nodes and lasts for a significant period of time. Existing point-based techniques, in this context, are not very effective and efficient. With the proposed distributed segment-based recursive kernel density estimation, a global probability density function can be tracked and its difference between every two periods of time is continuously measured for decision making. Kullback–Leibler (KL) divergence is employed as the measure and, in order to implement distributed in-network estimation at a lower communication cost, several types of approximated KL divergence are proposed. In the meantime, an entropic graph-based algorithm that operates in the manner of centralized computing is realized, in comparison with the proposed KL divergence-based algorithms. Finally, the algorithms are evaluated using a real-world data set, which demonstrates that they are able to achieve a comparable performance at a much lower communication cost.
Random Forests Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, &ast;&ast;&ast;, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.
Information bounds and quick detection of parameter changes in stochastic systems By using information-theoretic bounds and sequential hypothesis testing theory, this paper provides a new approach to optimal detection of abrupt changes in stochastic systems. This approach not only generalizes previous work in the literature on optimal detection far beyond the relatively simple models treated but also suggests alternative performance criteria which are more tractable and more appropriate for general stochastic systems. In addition, it leads to detection rules which have manageable computational complexity for on-line implementation and yet are nearly optimal under the different performance criteria considered
Generalized EEG-Based Drowsiness Prediction System by Using a Self-Organizing Neural Fuzzy System A generalized EEG-based Neural Fuzzy system to predict driver's drowsiness was proposed in this study. Driver's drowsy state monitoring system has been implicated as a causal factor for the safety driving issue, especially when the driver fell asleep or distracted in driving. However, the difficulties in developing such a system are lack of significant index for detecting the driver's drowsy state in real-time and the interference of the complicated noise in a realistic and dynamic driving environment. In our past studies, we found that the electroencephalogram (EEG) power spectrum changes were highly correlated with the driver's behavior performance especially the occipital component. Different from presented subject-dependent drowsy state monitor systems, whose system performance may decrease rapidly when different subject applies with the drowsiness detection model constructed by others, in this study, we proposed a generalized EEG-based Self-organizing Neural Fuzzy system to monitor and predict the driver's drowsy state with the occipital area. Two drowsiness prediction models, subject-dependent and generalized cross-subject predictors, were investigated in this study for system performance analysis. Correlation coefficients and root mean square errors are showed as the experimental results and interpreted the performances of the proposed system significantly better than using other traditional Neural Networks ( p-value <;0.038). Besides, the proposed EEG-based Self-organizing Neural Fuzzy system can be generalized and applied in the subjects' independent sessions. This unique advantage can be widely used in the real-life applications.
Timely Wireless Flows With General Traffic Patterns: Capacity Region and Scheduling Algorithms. Most existing wireless networking solutions are best-effort and do not provide any delay guarantee required by important applications, such as mobile multimedia conferencing and real-time control of cyber-physical systems. Recently, Hou and Kumar provided a novel framework for analyzing and designing delay-guaranteed wireless networking solutions. While inspiring, their idle-time-based analysis ap...
Active Suspension Control of Quarter-Car System With Experimental Validation A reliable, efficient, and simple control is presented and validated for a quarter-car active suspension system equipped with an electro-hydraulic actuator. Unlike the existing techniques, this control does not use any function approximation, e.g., neural networks (NNs) or fuzzy-logic systems (FLSs), while the unmolded dynamics, including the hydraulic actuator behavior, can be accommodated effectively. Hence, the heavy computational costs and tedious parameter tuning phase can be remedied. Moreover, both the transient and steady-state suspension performance can be retained by incorporating prescribed performance functions (PPFs) into the control implementation. This guaranteed performance is particularly useful for guaranteeing the safe operation of suspension systems. Apart from theoretical studies, some practical considerations of control implementation and several parameter tuning guidelines are suggested. Experimental results based on a practical quarter-car active suspension test-rig demonstrate that this control can obtain a superior performance and has better computational efficiency over several other control methods.
1.020733
0.021789
0.021789
0.019165
0.015385
0.015385
0.015385
0.012648
0.006405
0.000003
0
0
0
0
A Hybrid Method For Traffic Flow Forecasting Using Multimodal Deep Learning Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial-temporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-dimensional convolutional neural networks (ID CNN) and gated recurrent units (GRU) with the attention mechanism. The former is to capture the local trend features and the latter is to capture the long temporal dependencies. Then, we design a hybrid multimodal deep learning framework for fusing share representation features of different modality traffic data by multiple CNN-GRU-Attention modules. The experimental results indicate that the proposed multimodal deep learning model is capable of dealing with complex nonlinear urban traffic flow forecasting with satisfying accuracy and effectiveness. (C) 2020 The Authors. Published by Atlantis Press SARL.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
A survey on machine learning for data fusion. •We sum up a group of main challenges that data fusion might face.•We propose a thorough list of requirements to evaluate data fusion methods.•We review the literature of data fusion based on machine learning.•We comment on how a machine learning method can ameliorate fusion performance.•We present significant open issues and valuable future research directions.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach. Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network a...
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
Witness indistinguishable and witness hiding protocols
Image saliency: From intrinsic to extrinsic context We propose a novel framework for automatic saliency estimation in natural images. We consider saliency to be an anomaly with respect to a given context that can be global or local. In the case of global context, we estimate saliency in the whole image relative to a large dictionary of images. Unlike in some prior methods, this dictionary is not annotated, i.e., saliency is assumed unknown. In the case of local context, we partition the image into patches and estimate saliency in each patch relative to a large dictionary of un-annotated patches from the rest of the image. We propose a unified framework that applies to both cases in three steps. First, given an input (image or patch) we extract k nearest neighbors from the dictionary. Then, we geometrically warp each neighbor to match the input. Finally, we derive the saliency map from the mean absolute error between the input and all its warped neighbors. This algorithm is not only easy to implement but also outperforms state-of-the-art methods.
Robust DT-CWT Watermarking for DIBR 3D Images The popularity of 3D content is on the rise since it provides an immersive experience to viewers. In this situation, depth-image-based rendering (DIBR) has taken on an important role in 3D technology due to its low bandwidth cost and ease of depth configuration. Noting that the viewer could record provided center view or synthesized views for illegal distribution, it is clear that copyright protection must be taken into account for the DIBR 3D content, including the possibility that one single view could be illegally distributed as 2D content. In this paper, we propose a robust watermarking scheme for DIBR 3D images by quantization on dual-tree complex wavelet transform (DT-CWT) coefficients with consideration of imperceptibility. To make the proposed scheme robust to DIBR process, two characteristics of DT-CWT are employed: approximate shift invariance and directional selectivity. We select certain coefficient sub-blocks and group the coefficient rows based on the properties of DIBR. On the extraction side, the threshold is carefully chosen with a low false positive rate. The simulation results show that the embedded watermark is stably extracted from the center view and the synthesized left and right views. In addition, even if the synthesized left and right views are distorted by general attacks, the watermark is successfully extracted. Furthermore, the proposed scheme is robust to pre-processing of the depth image and baseline adjusting, which are common processing on the DIBR system for better quality of 3D views.
SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing. With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.1055
0.1
0.1
0.1
0.1
0.1
0.1
0.02004
0.000003
0
0
0
0
0
Dynamic Deployment and Cost-Sensitive Provisioning for Elastic Mobile Cloud Services. As mobile customers gradually occupying the largest share of cloud service users, the effective and cost-sensitive provisioning of mobile cloud services quickly becomes a main theme in cloud computing. The key issues involved are much more than just enabling mobile users to access remote cloud resources through wireless networks. The resource limited and intermittent disconnection problems of mobile environments have intrinsic conflict with the continuous connection assumption of the cloud service usage patterns. We advocate that seamless service provisioning in mobile cloud can only be achieved with full exploitation of all available resources around mobile users. An elastic framework is proposed to automatically and dynamically deploy cloud services on data center, base stations, client units, even peer devices. The best deployment location is dynamically determined based on a context-aware and cost-sensitive evaluation model. To facilitate easy adoption of the proposed framework, a service development model and associated semi-automatic tools are provided such that cloud service developers can easily convert a service for execution on different platforms without porting. Prototype implementation and evaluation on the Google Cloud and Android platforms demonstrate that our mechanism can successfully maintain seamless services with very low overhead.
Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users move away from their serving edge clouds. To address this issue, this article investigates microservice coordination among edge clouds to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel conditions and edge cloud's computation capabilities required, which is hard to be obtained. Therefore, we reformulate the microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e., the Telecom's base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the achieved performance is close to the optimal performance obtained by the offline algorithm.
Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems Mobile Edge Computing (MEC) is a promising architecture to reduce the energy consumption of mobile devices and provide satisfactory quality-of-service to time-sensitive services. How to jointly optimize task offloading and resource allocation to minimize the energy consumption subject to the latency requirement remains an open problem, which motivates this paper. When the latency constraint is tak...
A placement architecture for a container as a service (CaaS) in a cloud environment Unlike a traditional virtual machine (VM), a container is an emerging lightweight virtualization technology that operates at the operating system level to encapsulate a task and its library dependencies for execution. The Container as a Service (CaaS) strategy is gaining in popularity and is likely to become a prominent type of cloud service model. Placing container instances on virtual machine instances is a classical scheduling problem. Previous research has focused separately on either virtual machine placement on physical machines (PMs) or container, or only tasks without containerization, placement on virtual machines. However, this approach leads to underutilized or overutilized PMs as well as underutilized or overutilized VMs. Thus, there is a growing research interest in developing a container placement algorithm that considers the utilization of both instantiated VMs and used PMs simultaneously. The goal of this study is to improve resource utilization, in terms of number of CPU cores and memory size for both VMs and PMs, and to minimize the number of instantiated VMs and active PMs in a cloud environment. The proposed placement architecture employs scheduling heuristics, namely, Best Fit (BF) and Max Fit (MF), based on a fitness function that simultaneously evaluates the remaining resource waste of both PMs and VMs. In addition, another meta-heuristic placement algorithm is proposed that uses Ant Colony Optimization based on Best Fit (ACO-BF) with the proposed fitness function. Experimental results show that the proposed ACO-BF placement algorithm outperforms the BF and MF heuristics and maintains significant improvement of the resource utilization of both VMs and PMs.
Edge-Computing-Enabled Smart Cities: A Comprehensive Survey Recent years have disclosed a remarkable proliferation of compute-intensive applications in smart cities. Such applications continuously generate enormous amounts of data which demand strict latency-aware computational processing capabilities. Although edge computing is an appealing technology to compensate for stringent latency-related issues, its deployment engenders new challenges. In this article, we highlight the role of edge computing in realizing the vision of smart cities. First, we analyze the evolution of edge computing paradigms. Subsequently, we critically review the state-of-the-art literature focusing on edge computing applications in smart cities. Later, we categorize and classify the literature by devising a comprehensive and meticulous taxonomy. Furthermore, we identify and discuss key requirements, and enumerate recently reported synergies of edge computing-enabled smart cities. Finally, several indispensable open challenges along with their causes and guidelines are discussed, serving as future research directions.
A Cooperative Resource Allocation Model For Iot Applications In Mobile Edge Computing With the advancement in the development of the Internet of Things (IoT) technology, as well as the industrial IoT, various applications and services are benefiting from this emerging technology such as smart healthcare systems, virtual realities applications, connected and autonomous vehicles, to name a few. However, IoT devices are known for being limited computation capacities which is crucial to the device's availability time. Traditional approaches used to offload the applications to the cloud to ease the burden on the end user's devices, however, greater latency and network traffic issues still persist. Mobile Edge Computing (MEC) technology has emerged to address these issues and enhance the survivability of cloud infrastructure. While a lot of attempts have been made to manage an efficient process of applications offload, many of which either focus on the allocation of computational or communication protocols without considering a cooperative solution. In addition, a single-user scenario was considered. Therefore, we study multi-user IoT applications offloading for a MEC system, which cooperatively considers to allocate both the resources of computation and communication. The proposed system focuses on minimizing the weighted overhead of local IoT devices, and minimize the offload measured by the delay and energy consumption. The mathematical formulation is a typical mixed integer nonlinear programming (MINP), and this is an NP-hard problem. We obtain the solution to the objective function by splitting the objective problem into three sub-problems. Extensive set of evaluations have been performed so as to get the evaluation of the proposed model. The collected results indicate that offloading decisions, energy consumption, latency, and the impact of the number of IoT devices have shown superior improvement over traditional models.
Probabilistic encryption A new probabilistic model of data encryption is introduced. For this model, under suitable complexity assumptions, it is proved that extracting any information about the cleartext from the cyphertext is hard on the average for an adversary with polynomially bounded computational resources. The proof holds for any message space with any probability distribution. The first implementation of this model is presented. The security of this implementation is proved under the interactability assumptin of deciding Quadratic Residuosity modulo composite numbers whose factorization is unknown.
A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.
Markov games as a framework for multi-agent reinforcement learning In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsis-tic view, secondary agents can only be part of the environment and are therefore fixed in their behavior. The framework of Markov games allows us to widen this view to include multiple adaptive agents with interacting or competing goals. This paper considers a step in this direction in which exactly two agents with diametrically opposed goals share an environment. It describes a Q-learning-like algorithm for finding optimal policies and demonstrates its application to a simple two-player game in which the optimal policy is probabilistic.
Scalable and efficient provable data possession. Storage outsourcing is a rising trend which prompts a number of interesting security issues, many of which have been extensively investigated in the past. However, Provable Data Possession (PDP) is a topic that has only recently appeared in the research literature. The main issue is how to frequently, efficiently and securely verify that a storage server is faithfully storing its client's (potentially very large) outsourced data. The storage server is assumed to be untrusted in terms of both security and reliability. (In other words, it might maliciously or accidentally erase hosted data; it might also relegate it to slow or off-line storage.) The problem is exacerbated by the client being a small computing device with limited resources. Prior work has addressed this problem using either public key cryptography or requiring the client to outsource its data in encrypted form. In this paper, we construct a highly efficient and provably secure PDP technique based entirely on symmetric key cryptography, while not requiring any bulk encryption. Also, in contrast with its predecessors, our PDP technique allows outsourcing of dynamic data, i.e, it efficiently supports operations, such as block modification, deletion and append.
Cognitive Cars: A New Frontier for ADAS Research This paper provides a survey of recent works on cognitive cars with a focus on driver-oriented intelligent vehicle motion control. The main objective here is to clarify the goals and guidelines for future development in the area of advanced driver-assistance systems (ADASs). Two major research directions are investigated and discussed in detail: 1) stimuli–decisions–actions, which focuses on the driver side, and 2) perception enhancement–action-suggestion–function-delegation, which emphasizes the ADAS side. This paper addresses the important achievements and major difficulties of each direction and discusses how to combine the two directions into a single integrated system to obtain safety and comfort while driving. Other related topics, including driver training and infrastructure design, are also studied.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Multiobjective Optimization Models for Locating Vehicle Inspection Stations Subject to Stochastic Demand, Varying Velocity and Regional Constraints Deciding an optimal location of a transportation facility and automotive service enterprise is an interesting and important issue in the area of facility location allocation (FLA). In practice, some factors, i.e., customer demands, allocations, and locations of customers and facilities, are changing, and thus, it features with uncertainty. To account for this uncertainty, some researchers have addressed the stochastic time and cost issues of FLA. A new FLA research issue arises when decision makers want to minimize the transportation time of customers and their transportation cost while ensuring customers to arrive at their desired destination within some specific time and cost. By taking the vehicle inspection station as a typical automotive service enterprise example, this paper presents a novel stochastic multiobjective optimization to address it. This work builds two practical stochastic multiobjective programs subject to stochastic demand, varying velocity, and regional constraints. A hybrid intelligent algorithm integrating stochastic simulation and multiobjective teaching-learning-based optimization algorithm is proposed to solve the proposed programs. This approach is applied to a real-world location problem of a vehicle inspection station in Fushun, China. The results show that this is able to produce satisfactory Pareto solutions for an actual vehicle inspection station location problem.
Intrinsic dimension estimation: Advances and open problems. •The paper reviews state-of-the-art of the methods of Intrinsic Dimension (ID) Estimation.•The paper defines the properties that an ideal ID estimator should have.•The paper reviews, under the above mentioned framework, the major ID estimation methods underlining their advances and the open problems.
Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals. Objective: An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashion. Methods: For telemonitoring purposes, reconstruction techniques of biomedical signals are largel...
Surrogate Model Assisted Cooperative Coevolution for Large Scale Optimization. It has been shown that cooperative coevolution (CC) can effectively deal with large scale optimization problems (LSOPs) through a ‘divide-and-conquer’ strategy. However, its performance is severely restricted by the current context-vector-based sub-solution evaluation method, since this method needs to invoke the original high dimensional simulation model when evaluating each sub-solution, thus requiring many computation resources. To alleviate this issue, this study proposes a novel surrogate model assisted cooperative coevolution (SACC) framework. SACC constructs a surrogate model for each sub-problem and employs it to evaluate corresponding sub-solutions. The original simulation model is only adopted to reevaluate a small number of promising sub-solutions selected by surrogate models, and these really evaluated sub-solutions will in turn be employed to update surrogate models. By this means, the computation cost could be greatly reduced without significantly sacrificing evaluation quality. By taking the radial basis function (RBF) and the success-history based adaptive differential evolution (SHADE) as surrogate model and optimizer, respectively, this study further designs a concrete SACC algorithm named RBF-SHADE-SACC. RBF and SHADE have only been proved to be effective on small and medium scale problems. This study scales them up to LSOPs under the SACC framework, where they are tailored to a certain extent for adapting to the characteristics of LSOPs and SACC. Empirical studies on IEEE CEC 2010 benchmark functions demonstrate that SACC can significantly enhance the sub-solution evaluation efficiency, and even with much fewer computation resources, RBF-SHADE-SACC can find much better solutions than traditional CC algorithms.
MOELS: Multiobjective Evolutionary List Scheduling for Cloud Workflows Cloud computing has nowadays become a dominant technology to reduce the computation cost by elastically providing resources to users on a pay-per-use basis. More and more scientific and business applications represented by workflows have been moved or are in active transition to cloud platforms. Therefore, efficient cloud workflow scheduling methods are in high demand. This paper investigates how to simultaneously optimize makespan and economical cost for workflow scheduling in clouds and proposes a multiobjective evolutionary list scheduling (MOELS) algorithm to address it. It embeds the classic list scheduling into a powerful multiobjective evolutionary algorithm (MOEA): a genome is represented by a scheduling sequence and a preference weight and is interpreted to a scheduling solution via a specifically designed list scheduling heuristic, and the genomes in the population are evolved through tailored genetic operators. The simulation experiments with the real-world data show that MOELS outperforms some state-of-the-art methods as it can always achieve a higher hypervolume (HV) value. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Note to Practitioners</italic> —This paper describes a novel method called MOELS for minimizing both costs and makespan when deploying a workflow into a cloud datacenter. MOELS seamlessly combines a list scheduling heuristic and an evolutionary algorithm to have complementary advantages. It is compared with two state-of-the-art algorithms MOHEFT (multiobjective heterogeneous earliest finish time) and EMS-C (evolutionary multiobjective scheduling for cloud) in the simulation experiments. The results show that the average hypervolume value from MOELS is 3.42% higher than that of MOHEFT, and 2.27% higher than that of EMS-C. The runtime that MOELS requires rises moderately as a workflow size increases.
Data-Driven Evolutionary Optimization: An Overview and Case Studies Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems.
A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. Integrating data-driven surrogate models and simulation models of different accuracies (or fidelities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include: (1) development of a new multi-fidelity surrogate-model-based optimization framework, which substantially improves reliability and efficiency of optimization compared to many existing methods, and (2) development of a data mining method to address the discrepancy between the low- and high-fidelity simulation models. A new efficient global optimization method is then proposed, referred to as multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution. Its advantages are verified by mathematical benchmark problems and a real-world antenna design automation problem. Crown Copyright (c) 2015 Published by Elsevier B.V. All rights reserved.
Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems. Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a...
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Social navigation support in a course recommendation system The volume of course-related information available to students is rapidly increasing. This abundance of information has created the need to help students find, organize, and use resources that match their individual goals, interests, and current knowledge. Our system, CourseAgent, presented in this paper, is an adaptive community-based hypermedia system, which provides social navigation course recommendations based on students’ assessment of course relevance to their career goals. CourseAgent obtains students’ explicit feedback as part of their natural interactivity with the system. This work presents our approach to eliciting explicit student feedback and then evaluates this approach.
A Certificateless Authenticated Key Agreement Protocol for Digital Rights Management System.
Device self-calibration in location systems using signal strength histograms Received signal strength RSS fingerprinting is an attractive solution for indoor positioning using Wireless Local Area Network WLAN due to the wide availability of WLAN access points and the ease of monitoring RSS measurements on WLAN-enabled mobile devices. Fingerprinting systems rely on a radiomap collected using a reference device inside the localisation area; however, a major limitation is that the quality of the location information can be degraded if the user carries a different device. This is because diverse devices tend to report the RSS values very differently for a variety of reasons. To ensure compatibility with the existing radiomap, we propose a self-calibration method that attains a good mapping between the reference and user devices using RSS histograms. We do so by relating the RSS histogram of the reference device, which is deduced from the radiomap, and the RSS histogram of the user device, which is updated concurrently with positioning. Unlike other approaches, our calibration method does not require any user intervention, e.g. collecting calibration data using the new device prior to positioning. Experimental results with five smartphones in a real indoor environment demonstrate the effectiveness of the proposed method and indicate that it is more robust to device diversity compared with other calibration methods in the literature.
Substituting Motion Effects with Vibrotactile Effects for 4D Experiences. In this paper, we present two methods to substitute motion effects using vibrotactile effects in order to improve the 4D experiences of viewers. This work was motivated by the needs of more affordable 4D systems for individual users. Our sensory substitution algorithms convert motion commands to vibrotactile commands to a grid display that uses multiple actuators. While one method is based on the fundamental principle of vestibular feedback, the other method makes use of intuitive visually-based mapping from motion to vibrotactile stimulation. We carried out a user study and could confirm the effectiveness of our substitution methods in improving 4D experiences. To our knowledge, this is the first study that investigated the feasibility of replacing motion effects using much simpler and less expensive vibrotactile effects.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0.033333
0
0
0
0
0
0
Byzantine Fault Tolerant Distributed Stochastic Gradient Descent Based on Over-the-Air Computation Wireless distributed machine learning is envisaged to facilitate advanced learning services and applications in wireless networks consisting of devices with limited computing capability. Distributed machine learning algorithms are more vulnerable in wireless systems since information exchange in learning is limited by wireless resources and channel conditions. Moreover, their performance can be significantly degraded by attacks of the Byzantine devices, and information distorted by channel fading can be treated as Byzantine attacks. Consequently, protection of wireless distributed machine learning from Byzantine devices is paramount. Leveraging over-the-air computation, we put forth a novel wireless distributed stochastic gradient descent system which is resilient to Byzantine attacks. The proposed learning system is underpinned by two novel and distinct features which enable more accurate and faster distributed machine learning resilient to Byzantine attacks: <xref ref-type="disp-formula" rid="deqn1-deqn2" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(1)</xref> collecting training data in the PS to obtain its own training results and <xref ref-type="disp-formula" rid="deqn1-deqn2" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(2)</xref> grouping the distributed devices. We derive upper bounds of the mean square error of the global parameter when the proposed algorithms are used in the cases with and without Byzantine devices, and prove the convergence of the proposed algorithms with the derived bounds. The effectiveness of the algorithms is validated by showing the accuracy and convergence speed.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Driver Mental Fatigue Detection Based on Head Posture Using New Modified reLU-BiLSTM Deep Neural Network Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behaviour is unpredictable that can suddenly change the nature of driving and dynamics under mental fatigue. This results in sudden variations in driver body posture and head movement, with consequent inattentive behaviour that can end in fatal accidents and crashes. In the process of delineating the different driving patterns of driver states while active or influenced by mental fatigue, this paper contributes to advancing direct measurement approaches. In the novel approach proposed in this paper, driver mental fatigue and drowsiness are measured by monitoring driver’s head posture motions using XSENS motion capture system. The experiments were conducted on 15 healthy subjects on a MATHWORKS driver-in-loop (DIL) simulator, interfaced with Unreal Engine 4 studio. A new modified bidirectional long short-term memory deep neural network, based on a rectified linear unit layer, was designed, trained and tested on 3D time-series head angular acceleration data for sequence-to-sequence classification. The results showed that the proposed classifier outperformed state-of-art approaches and conventional machine learning tools, and successfully recognised driver’s active, fatigue and transition states, with overall training accuracy of 99.2%, sensitivity of 97.54%, precision and F1 scores of 97.38% and 97.46%, respectively. The limitations of the current work and directions for future work are also explored.
A predictive controller for autonomous vehicle path tracking This paper presents a model predictive controller (MPC) structure for solving the path-tracking problem of terrestrial autonomous vehicles. To achieve the desired performance during high-speed driving, the controller architecture considers both the kinematic and the dynamic control in a cascade structure. Our study contains a comparative study between two kinematic linear predictive control strategies: The first strategy is based on the successive linearization concept, and the other strategy combines a local reference frame with an approaching path strategy. Our goal is to search for the strategy that best comprises the performance and hardware-cost criteria. For the dynamic controller, a decentralized predictive controller based on a linearized model of the vehicle is used. Practical experiments obtained using an autonomous "Mini-Baja" vehicle equipped with an embedded computing system are presented. These results confirm that the proposed MPC structure is the solution that better matches the target criteria.
An Efficient Visibility Enhancement Algorithm for Road Scenes Captured by Intelligent Transportation Systems The visibility of images of outdoor road scenes will generally become degraded when captured during inclement weather conditions. Drivers often turn on the headlights of their vehicles and streetlights are often activated, resulting in localized light sources in images capturing road scenes in these conditions. Additionally, sandstorms are also weather events that are commonly encountered when driving in some regions. In sandstorms, atmospheric sand has a propensity to irregularly absorb specific portions of a spectrum, thereby causing color-shift problems in the captured image. Traditional state-of-the-art restoration techniques are unable to effectively cope with these hazy road images that feature localized light sources or color-shift problems. In response, we present a novel and effective haze removal approach to remedy problems caused by localized light sources and color shifts, which thereby achieves superior restoration results for single hazy images. The performance of the proposed method has been proven through quantitative and qualitative evaluations. Experimental results demonstrate that the proposed haze removal technique can more effectively recover scene radiance while demanding fewer computational costs than traditional state-of-the-art haze removal techniques.
Automatic Detection and Classification of Road Lane Markings Using Onboard Vehicular Cameras This paper presents a new approach for road lane classification using an onboard camera. Initially, lane boundaries are detected using a linear–parabolic lane model, and an automatic on-the-fly camera calibration procedure is applied. Then, an adaptive smoothing scheme is applied to reduce noise while keeping close edges separated, and pairs of local maxima–minima of the gradient are used as cues to identify lane markings. Finally, a Bayesian classifier based on mixtures of Gaussians is applied to classify the lane markings present at each frame of a video sequence as dashed, solid, dashed solid, solid dashed, or double solid. Experimental results indicate an overall accuracy of over 96% using a variety of video sequences acquired with different devices and resolutions.
Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night. Pedestrian-vehicle accidents that occur at night are a major social problem worldwide. Advanced driver assistance systems that are equipped with cameras have been designed to automatically prevent such accidents. Among the various types of cameras used in such systems, far-infrared (FIR) cameras are favorable because they are invariant to illumination changes. Therefore, this paper focuses on a pedestrian nighttime tracking system with an FIR camera that is able to discern thermal energy and is mounted on the forward roof part of a vehicle. Since the temperature difference between the pedestrian and background depends on the season and the weather, we therefore propose two models to detect pedestrians according to the season and the weather, which are determined using Weber–Fechner's law. For tracking pedestrians, we perform real-time online learning to track pedestrians using boosted random ferns and update the trackers at each frame. In particular, we link detection responses to trajectories based on similarities in position, size, and appearance. There is no standard data set for evaluating the tracking performance using an FIR camera; thus, we created the Keimyung University tracking data set (KMUTD) by combining the KMU sudden pedestrian crossing (SPC) data set [21] for summer nights with additional tracking data for winter nights. The KMUTD contains video sequences involving a moving camera, moving pedestrians, sudden shape deformations, unexpected motion changes, and partial or full occlusions between pedestrians at night. The proposed algorithm is successfully applied to various pedestrian video sequences of the KMUTD; specifically, the proposed algorithm yields more accurate tracking performance than other existing methods.
Effects of Different Alcohol Dosages on Steering Behavior in Curve Driving. Objective: The aim of this article is to explore the detailed characteristics of steering behavior in curve driving at different alcohol dosages. Background: Improper operation of the steering wheel is a contributing factor to increased crash risks on curves. Method: The experiments were conducted using a driving simulator. Twenty-five licensed drivers were recruited to perform the experiments at the four different breath alcohol concentration (BrAC) levels. The steering angle (SA), steering speed (SS), steering reversal rate (SRR), and peak-to-peak value of the steering angle (PP) were used to characterize the steering behavior. The vehicle's speed and the number of lane exceedances per kilometer were also used to examine the driving performance. Results: The SSs on the 200 m (chi(2)(3) = 20.67, p < .001), 500 m (chi(2)(3) = 22.42, p < .001), and 800 m (chi(2)(3) = 22.86, p < .001) radius curves were significantly faster for drivers under the influence of alcohol compared with those given a placebo. There were significant effects of alcohol on the SRR and PP on the 200 m, 500 m, and 800 m radius curves. Conclusion: For all of the curves, the SS, SRR, and PP had a tendency to increase as the BrAC increased. The large PP at a high BrAC, accompanied by the high speed, SS, and SRR, resulted in a high probability of lane exceedance. The use of measures of SS, SRR, and PP aided in the improvement of the accuracy of the intoxication detection for the different types of curves. Application: The most important application is to provide guidance for detecting alcohol-impaired-driving.
Control Authority Transfer Method for Automated-to-Manual Driving Via a Shared Authority Mode. Although automation-initiated and driver-initiated control transfers from automated to manual driving may yield unstable steering activity even when the drivers are focused on the road environment ahead, there are few studies on the development of control transfer methods at an operational level after a request to intervene. Therefore, we propose a shared authority mode connecting the automated an...
Driver Fatigue Detection Systems: A Review Driver fatigue has been attributed to traffic accidents; therefore, fatigue-related traffic accidents have a higher fatality rate and cause more damage to the surroundings compared with accidents where the drivers are alert. Recently, many automobile companies have installed driver assistance technologies in vehicles for driver assistance. Third party companies are also manufacturing fatigue detection devices; however, much research is still required for improvement. In the field of driver fatigue detection, continuous research is being performed and several articles propose promising results in constrained environments, still much progress is required. This paper presents state-of-the-art review of recent advancement in the field of driver fatigue detection. Methods are categorized into five groups, i.e., subjective reporting, driver biological features, driver physical features, vehicular features while driving, and hybrid features depending on the features used for driver fatigue detection. Various approaches have been compared for fatigue detection, and areas open for improvements are deduced.
The ApolloScape Dataset for Autonomous Driving Scene parsing aims to assign a class (semantic) label for each pixel in an image. It is a comprehensive analysis of an image. Given the rise of autonomous driving, pixel-accurate environmental perception is expected to be a key enabling technical piece. However, providing a large scale dataset for the design and evaluation of scene parsing algorithms, in particular for outdoor scenes, has been difficult. The per-pixel labelling process is prohibitively expensive, limiting the scale of existing ones. In this paper, we present a large-scale open dataset, ApolloScape, that consists of RGB videos and corresponding dense 3D point clouds. Comparing with existing datasets, our dataset has the following unique properties. The first is its scale, our initial release contains over 140K images - each with its per-pixel semantic mask, up to 1M is scheduled. The second is its complexity. Captured in various traffic conditions, the number of moving objects averages from tens to over one hundred (Figure 1). And the third is the 3D attribute, each image is tagged with high-accuracy pose information at cm accuracy and the static background point cloud has mm relative accuracy. We are able to label these many images by an interactive and efficient labelling pipeline that utilizes the high-quality 3D point cloud. Moreover, our dataset also contains different lane markings based on the lane colors and styles. We expect our new dataset can deeply benefit various autonomous driving related applications that include but not limited to 2D/3D scene understanding, localization, transfer learning, and driving simulation.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.
Multimodal Feature-Based Surface Material Classification. When a tool is tapped on or dragged over an object surface, vibrations are induced in the tool, which can be captured using acceleration sensors. The tool-surface interaction additionally creates audible sound waves, which can be recorded using microphones. Features extracted from camera images provide additional information about the surfaces. We present an approach for tool-mediated surface clas...
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.
Sustainable and Efficient Data Collection from WSNs to Cloud. The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time becomes a b...
1.22
0.22
0.22
0.22
0.22
0.22
0.22
0.073333
0.0025
0
0
0
0
0
Educational virtual environments: A ten-year review of empirical research (1999-2009) This study is a ten-year critical review of empirical research on the educational applications of Virtual Reality (VR). Results show that although the majority of the 53 reviewed articles refer to science and mathematics, researchers from social sciences also seem to appreciate the educational value of VR and incorporate their learning goals in Educational Virtual Environments (EVEs). Although VR supports multisensory interaction channels, visual representations predominate. Few are the studies that incorporate intuitive interactivity, indicating a research trend in this direction. Few are the settings that use immersive EVEs reporting positive results on users' attitudes and learning outcomes, indicating that there is a need for further research on the capabilities of such systems. Features of VR that contribute to learning such as first order experiences, natural semantics, size, transduction, reification, autonomy and presence are exploited according to the educational context and content. Presence seems to play an important role in learning and it is a subject needing further and intensive studies. Constructivism seems to be the theoretical model the majority of the EVEs are based on. The studies present real world, authentic tasks that enable context and content dependent knowledge construction. They also provide multiple representations of reality by representing the natural complexity of the world. Findings show that collaboration and social negotiation are not only limited to the participants of an EVE, but exist between participants and avatars, offering a new dimension to computer assisted learning. Little can yet be concluded regarding the retention of the knowledge acquired in EVEs. Longitudinal studies are necessary, and we believe that the main outcome of this study is the future research perspectives it brings to light.
Supporting Precise Manual-handling Task using Visuo-haptic Interaction. Precise manual handling skills are necessary to create art and to paint models. However, these skills are difficult to learn. Some research has approached this issue using mechanical devices. However, mechanical systems have high costs and limit the user's degree-of-freedom. In our research, we propose a system using visuo-haptics to support accurate work without using any mechanical devices. We considered the principle that when a visuo-haptic force is generated on a user's hand in the opposite direction of a target path, the user moves her/his hand to the right direction reflexively to repel the force. Based on this idea, we created a system that can modify users' hand movement by showing a dummy hand using a mixed reality display, which supports precise manual-handling tasks. To demonstrate this, we performed experiments conducted with a video see-through system that uses a head mounted display (HMD). The results showed that an expansion of the deviation between the target route and the actual hand position improved accuracy up to 50%. We also saw a tendency for a lager expansion to give the most improvement in quality, but slow down working speed at the same time. According to experimental results, we find that a gain of about 2.5 gives an ideal balance between the working precision and the drawing speed.
A Case Study on Virtual Reality American Football Training. We present a study of American football training through the use of virtual reality. We developed a proprietary training software SIDEKIQ designed for professional training of student athletes in an immersive virtual reality environment, where trainees experience the football gameplays created by their coaches on desktop PCs, Oculus Rift or even CAVE-like facility. A user evaluation was conducted to quantify the effectiveness of the VR training over a 3-day training session. The result showed on average 30% overall improvement in the scores collected from the assessment.
Mulsemedia: State of the Art, Perspectives, and Challenges Mulsemedia—multiple sensorial media—captures a wide variety of research efforts and applications. This article presents a historic perspective on mulsemedia work and reviews current developments in the area. These take place across the traditional multimedia spectrum—from virtual reality applications to computer games—as well as efforts in the arts, gastronomy, and therapy, to mention a few. We also describe standardization efforts, via the MPEG-V standard, and identify future developments and exciting challenges the community needs to overcome.
Feel Effects: Enriching Storytelling with Haptic Feedback Despite a long history of use in communication, haptic feedback is a relatively new addition to the toolbox of special effects. Unlike artists who use sound or vision, haptic designers cannot simply access libraries of effects that map cleanly to media content, and they lack even guiding principles for creating such effects. In this article, we make progress toward both capabilities: we generate a foundational library of usable haptic vocabulary and do so with a methodology that allows ongoing additions to the library in a principled and effective way. We define a feel effect as an explicit pairing between a meaningful linguistic phrase and a rendered haptic pattern. Our initial experiment demonstrates that users who have only their intrinsic language capacities, and no haptic expertise, can generate a core set of feel effects that lend themselves via semantic inference to the design of additional effects. The resulting collection of more than 40 effects covers a wide range of situations (including precipitation, animal locomotion, striking, and pulsating events) and is empirically shown to produce the named sensation for the majority of our test users in a second experiment. Our experiments demonstrate a unique and systematic approach to designing a vocabulary of haptic sensations that are related in both the semantic and parametric spaces.
Motion Effects Synthesis for 4D Films. 4D film is an immersive entertainment system that presents various physical effects with a film in order to enhance viewers&#39; experiences. Despite the recent emergence of 4D theaters, production of 4D effects relies on manual authoring. In this paper, we present algorithms that synthesize three classes of motion effects from the audiovisual content of a film. The first class of motion effects is th...
Real-time perception-level translation from audio signals to vibrotactile effects In this paper, we propose a real-time perception-level audio-to-vibrotactile translation algorithm. Unlike previous signal-level conversion methods, our algorithm considers only perceptual characteristics, such as loudness and roughness, of audio and tactile stimuli. This perception-level approach allows for designing intuitive and explicit conversion models with clear understandings of their perceptual consequences. Our current implementation is tailored to accurate detection of special sound effects to provide well-synchronized audio-tactile feedback in immersive applications. We also assessed the performance of our translation algorithm in terms of the detection rate of special sound effects, computational performance, and user preference. All the experimental results supported that our algorithm works well as intended with better performance than the signal-level conversion methods, especially for games. Our algorithm can be easily realized in current products, including mobile devices, gaming devices, and 4D home theater systems, for richer user experience.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Touring a sequence of polygons Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. If the polygons are disjoint and convex, we give an algorithm running in time O(kn log (n/k)), where n is the total number of vertices specifying the polygons. We also extend our results to a case in which the convex polygons are arbitrarily intersecting and the subpath between any two consecutive polygons is constrained to lie within a simply connected region; the algorithm uses O(nk2 log n) time. Our methods are simple and allow shortest path queries from s to a query point t to be answered in time O(k log n + m), where m is the combinatorial path length. We show that for nonconvex polygons this "touring polygons" problem is NP-hard.The touring polygons problem is a strict generalization of some classic problems in computational geometry, including the safari problem, the zoo-keeper problem, and the watchman route problem in a simple polygon. Our new results give an order of magnitude improvement in the running times of the safari problem and the watchman route problem: We solve the safari problem in O(n2 log n) time and the watchman route problem (through a fixed point s) in time O(n3 log n), compared with the previous time bounds of O(n3) and O(n4), respectively.
J-RoC: A Joint Routing and Charging scheme to prolong sensor network lifetime The emerging wireless charging technology creates a controllable and perpetual energy source to provide wireless power over distance. Schemes have been proposed to make use of wireless charging to prolong the sensor network lifetime. Unfortunately, existing schemes only passively replenish sensors that are deficient in energy supply, and cannot fully leverage the strengths of this technology. To address the limitation, we propose J-RoC - a practical and efficient Joint Routing and Charging scheme. Through proactively guiding the routing activities in the network and delivering energy to where it is needed, J-RoC not only replenishes energy into the network but also effectively improves the network energy utilization, thus prolonging the network lifetime. To evaluate the performance of the J-RoC scheme, we conduct experiments in a small-scale testbed and simulations in large-scale networks. Evaluation results demonstrate that J-RoC significantly elongates the network lifetime compared to existing wireless charging based schemes.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
Collective feature selection to identify crucial epistatic variants. In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.054808
0.051201
0.051201
0.03
0.0175
0.0025
0.000833
0.000036
0
0
0
0
0
0
A Multi-Agent Deep Reinforcement Learning Approach for a Distributed Energy Marketplace in Smart Grids This paper presents a Reinforcement Learning (RL) based energy market for a prosumer dominated microgrid. The proposed market model facilitates a real-time and demand-dependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers. Furthermore, this market model enables the grid operator to leverage prosumers' storage capacity as a dispatchable asset for grid support applications. Simulation results based on the Deep Q-Network (DQN) framework demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the grid operator, as well as major reductions in grid reserve power utilization.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A Reliable Energy Efficient Dynamic Spectrum Sensing for Cognitive Radio IoT Networks The Internet of Things (IoT) that allows connectivity of network devices embedded with sensors undergoes severe data exchange interference as the unlicensed spectrum band becomes overcrowded. By applying cognitive radio (CR) capabilities to IoT, a novel cognitive radio IoT (CR-IoT) network arises as a promising solution to tackle the spectrum scarcity problem in conventional IoT network. CR is a form of wireless communication whereby a radio is dynamically programmed and configured to detect available spectrum channels. This enhances the spectrum utilization efficiency of radio frequency while avoiding interference and overcrowding to other users. Energy efficiency in CR-IoT network must be carefully formulated since the sensor nodes consume significant energy to support CR operations, such as in dynamic spectrum sensing and switching. In this paper, we study channel spectrum sensing to boost energy efficiency in clustered CR-IoT networks. We propose a two-way information exchange dynamic spectrum sensing algorithms to improve energy efficiency for data transmission in licensed channels. In addition, the concern of the energy consumption in dynamic spectrum sensing and switching, we propose an energy efficient optimal transmit power allocation technique to enhance the dynamic spectrum sensing and data throughput. Simulation results validate that the proposed dynamic spectrum sensing technique can significantly reduce the energy consumption in CR-IoT networks.
IoT-U: Cellular Internet-of-Things Networks Over Unlicensed Spectrum. In this paper, we consider an uplink cellular Internet-of-Things (IoT) network, where a cellular user (CU) can serve as the mobile data aggregator for a cluster of IoT devices. To be specific, the IoT devices can either transmit the sensory data to the base station (BS) directly by cellular communications, or first aggregate the data to a CU through machine-to-machine (M2M) communications before t...
Cognitive Capacity Harvesting Networks: Architectural Evolution Toward Future Cognitive Radio Networks. Cognitive radio technologies enable users to opportunistically access unused licensed spectrum and are viewed as a promising way to deal with the current spectrum crisis. Over the last 15 years, cognitive radio technologies have been extensively studied from algorithmic design to practical implementation. One pressing and fundamental problem is how to integrate cognitive radios into current wirele...
Chinese Remainder Theorem-Based Sequence Design for Resource Block Assignment in Relay-Assisted Internet-of-Things Communications. Terminal relays are expected to play a key role in facilitating the communication between base stations and low-cost power-constrained cellular Internet of Things (IoT) devices. However, these mobile relays require a mechanism by which they can autonomously assign the available resource blocks (RBs) to their assisted IoT devices in the absence of channel state information (CSI) and with minimal as...
A Bio-Inspired Solution to Cluster-Based Distributed Spectrum Allocation in High-Density Cognitive Internet of Things With the emergence of Internet of Things (IoT), where any device is able to connect to the Internet and monitor/control physical elements, several applications were made possible, such as smart cities, smart health care, and smart transportation. The wide range of the requirements of these applications drives traditional IoT to cognitive IoT (CIoT) that supports smart resource allocation, automatic network operation and intelligent service provisioning. To enable CIoT, there is a need for flexible and reliable wireless communication. In this paper, we propose to combine cognitive radio (CR) with a biological mechanism called reaction–diffusion to provide efficient spectrum allocation for CIoT. We first formulate the quantization of qualitative connectivity-flexibility tradeoff problem to determine the optimal cluster size (i.e., number of cluster members) that maximizes clustered throughput but minimizes communication delay. Then, we propose a bio-inspired algorithm which is used by CIoT devices to form cluster distributedly. We compute the optimal values of the algorithm’s parameters (e.g., contention window) of the proposed algorithm to increase the network’s adaption to different scenarios (e.g., spectrum homogeneity and heterogeneity) and to decrease convergence time, communication overhead, and computation complexity. We conduct a theoretical analysis to validate the correctness and effectiveness of proposed bio-inspired algorithm. Simulation results show that the proposed algorithm can achieve excellent clustering performance in different scenarios.
Energy Minimization of Multi-cell Cognitive Capacity Harvesting Networks with Neighbor Resource Sharing In this paper, we investigate the energy minimization problem for a cognitive capacity harvesting network (CCHN), where secondary users (SUs) without cognitive radio (CR) capability communicate with CR routers via device-to-device (D2D) transmissions, and CR routers connect with base stations (BSs) via CR links. Different from traditional D2D networks that D2D transmissions share the resource of c...
Wireless sensor networks: a survey This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.
ImageNet Classification with Deep Convolutional Neural Networks. We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called \"dropout\" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Analysis of Mixed-Integer Linear Programming Formulations for a Fuel-Constrained Multiple Vehicle Routing Problem This paper addresses a fuel-constrained, multiple vehicle routing problem (FCMVRP) in the presence of multiple refueling stations. We are given a set of targets, a set of refueling stations, and a depot where m vehicles are stationed. The vehicles are allowed to refuel at any refueling station, and the objective of the problem is to determine a route for each vehicle starting and terminating at the depot, such that each target is visited by at least one vehicle, the vehicles never run out of fuel while traversing their routes, and the total travel cost of all the routes is a minimum. We present four new mixed-integer linear programming (MILP) formulations for the problem. These formulations are compared both analytically and empirically, and a branch-and-cut algorithm is developed to compute an optimal solution. Extensive computational results on a large class of test instances that corroborate the effectiveness of the algorithm are also presented.
Touring a sequence of polygons Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. If the polygons are disjoint and convex, we give an algorithm running in time O(kn log (n/k)), where n is the total number of vertices specifying the polygons. We also extend our results to a case in which the convex polygons are arbitrarily intersecting and the subpath between any two consecutive polygons is constrained to lie within a simply connected region; the algorithm uses O(nk2 log n) time. Our methods are simple and allow shortest path queries from s to a query point t to be answered in time O(k log n + m), where m is the combinatorial path length. We show that for nonconvex polygons this "touring polygons" problem is NP-hard.The touring polygons problem is a strict generalization of some classic problems in computational geometry, including the safari problem, the zoo-keeper problem, and the watchman route problem in a simple polygon. Our new results give an order of magnitude improvement in the running times of the safari problem and the watchman route problem: We solve the safari problem in O(n2 log n) time and the watchman route problem (through a fixed point s) in time O(n3 log n), compared with the previous time bounds of O(n3) and O(n4), respectively.
Numerical Comparison of Some Penalty-Based Constraint Handling Techniques in Genetic Algorithms We study five penalty function-based constraint handling techniques to be used with genetic algorithms in global optimization. Three of them, the method of superiority of feasible points, the method of parameter free penalties and the method of adaptive penalties have already been considered in the literature. In addition, we introduce two new modifications of these methods. We compare all the five methods numerically in 33 test problems and report and analyze the results obtained in terms of accuracy, efficiency and reliability. The method of adaptive penalties turned out to be most efficient while the method of parameter free penalties was the most reliable.
Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an ${\cal NP}$-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985--1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem---A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87--143].
People detection and tracking from aerial thermal views Detection and tracking of people in visible-light images has been subject to extensive research in the past decades with applications ranging from surveillance to search-and-rescue. Following the growing availability of thermal cameras and the distinctive thermal signature of humans, research effort has been focusing on developing people detection and tracking methodologies applicable to this sensing modality. However, a plethora of challenges arise on the transition from visible-light to thermal images, especially with the recent trend of employing thermal cameras onboard aerial platforms (e.g. in search-and-rescue research) capturing oblique views of the scenery. This paper presents a new, publicly available dataset of annotated thermal image sequences, posing a multitude of challenges for people detection and tracking. Moreover, we propose a new particle filter based framework for tracking people in aerial thermal images. Finally, we evaluate the performance of this pipeline on our dataset, incorporating a selection of relevant, state-of-the-art methods and present a comprehensive discussion of the merits spawning from our study.
Integrated Production Inventory Routing Planning for Intelligent Food Logistics Systems An intelligent logistics system is an important branch of intelligent transportation systems. It is a great challenge to develop efficient technologies and methodologies to improve its performance in meeting customer requirements while this is highly related to people’s life quality. Its high efficiency can reduce food waste, improve food quality and safety, and enhance the competitiveness of food companies. In this paper, we investigate a new integrated planning problem for intelligent food logistics systems. Two objectives are considered: minimizing total production, inventory, and transportation cost and maximizing average food quality. For the problem, a bi-objective mixed integer linear programming model is formulated first. Then, a new method that combines an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon$ </tex-math></inline-formula> -constraint-based two-phase iterative heuristic and a fuzzy logic method is developed to solve it. Computational results on a case study and on 185 randomly generated instances with up to 100 retailers and 12 periods show the effectiveness and efficiency of the proposed method.
Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture We study two new informative path planning problems that are motivated by the use of aerial and ground robots in precision agriculture. The first problem, termed sampling traveling salesperson problem with neighborhoods (SAMPLINGTSPN), is motivated by scenarios in which unmanned ground vehicles (UGVs) are used to obtain time-consuming soil measurements. The input in SAMPLINGTSPN is a set of possib...
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
A Privacy-Preserving and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing. With the increasing importance of images in people’s daily life, content-based image retrieval (CBIR) has been widely studied. Compared with text documents, images consume much more storage space. Hence, its maintenance is considered to be a typical example for cloud storage outsourcing. For privacy-preserving purposes, sensitive images, such as medical and personal images, need to be encrypted before outsourcing, which makes the CBIR technologies in plaintext domain to be unusable. In this paper, we propose a scheme that supports CBIR over encrypted images without leaking the sensitive information to the cloud server. First, feature vectors are extracted to represent the corresponding images. After that, the pre-filter tables are constructed by locality-sensitive hashing to increase search efficiency. Moreover, the feature vectors are protected by the secure kNN algorithm, and image pixels are encrypted by a standard stream cipher. In addition, considering the case that the authorized query users may illegally copy and distribute the retrieved images to someone unauthorized, we propose a watermark-based protocol to deter such illegal distributions. In our watermark-based protocol, a unique watermark is directly embedded into the encrypted images by the cloud server before images are sent to the query user. Hence, when image copy is found, the unlawful query user who distributed the image can be traced by the watermark extraction. The security analysis and the experiments show the security and efficiency of the proposed scheme.
A new optimization method: big bang-big crunch Nature is the principal source for proposing new optimization methods such as genetic algorithms (GA) and simulated annealing (SA) methods. All traditional evolutionary algorithms are heuristic population-based search procedures that incorporate random variation and selection. The main contribution of this study is that it proposes a novel optimization method that relies on one of the theories of the evolution of the universe; namely, the Big Bang and Big Crunch Theory. In the Big Bang phase, energy dissipation produces disorder and randomness is the main feature of this phase; whereas, in the Big Crunch phase, randomly distributed particles are drawn into an order. Inspired by this theory, an optimization algorithm is constructed, which will be called the Big Bang-Big Crunch (BB-BC) method that generates random points in the Big Bang phase and shrinks those points to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. It is shown that the performance of the new (BB-BC) method demonstrates superiority over an improved and enhanced genetic search algorithm also developed by the authors of this study, and outperforms the classical genetic algorithm (GA) for many benchmark test functions.
Design and simulation of a joint-coupled orthosis for regulating FES-aided gait A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.
Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. In this paper, a novel optimal control design scheme is proposed for continuous-time nonaffine nonlinear dynamic systems with unknown dynamics by adaptive dynamic programming (ADP). The proposed methodology iteratively updates the control policy online by using the state and input information without identifying the system dynamics. An ADP algorithm is developed, and can be applied to a general class of nonlinear control design problems. The convergence analysis for the designed control scheme is presented, along with rigorous stability analysis for the closed-loop system. The effectiveness of this new algorithm is illustrated by two simulation examples.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.1
0.1
0.1
0.1
0.1
0.1
0.05
0
0
0
0
0
0
0
Smallest Enclosing Disks (Balls And Ellipsoids) A simple randomized algorithm is developed which computes the smallest enclosing disk of a finite set of points in the plane in expected linear time. The algorithm is based on Seidel's recent Linear Programming algorithm, and it can be generalized to computing smallest enclosing balls or ellipsoids of point sets in higher dimensions in a straightforward way. Experimental results of an implementation are presented.
Mean Shift, Mode Seeking, and Clustering Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a 驴shadow驴 kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization.
An effective implementation of the Lin–Kernighan traveling salesman heuristic This paper describes an implementation of the Lin–Kernighan heuristic, one of the most successful methods for generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality today).
SGCO: Stabilized Green Crosshaul Orchestration for Dense IoT Offloading Services. The next-generation mobile network anticipates integrated heterogeneous fronthaul and backhaul technologies referred to as a unified crosshaul architecture. The crosshaul enables a flexible and cost-efficient infrastructure for handling mobile data tsunami from dense Internet of things (IoT). However, stabilization, energy efficiency, and latency have not been jointly considered in the optimizatio...
Joint Distributed Link Scheduling and Power Allocation for Content Delivery in Wireless Caching Networks In wireless caching networks, the design of the content delivery method must consider random user requests, caching states, network topology, and interference management. In this article, we establish a general framework for content delivery in wireless caching networks without stringent assumptions that restrict the network structure and interference model. Based on the framework, we propose a dynamic and distributed link scheduling and power allocation scheme for content delivery that is assisted by belief-propagation (BP) algorithms. The proposed scheme achieves three critical purposes of wireless caching networks: 1) limiting the delay of user request satisfactions, 2) maintaining the power efficiency of caching nodes, and 3) managing interference among users. In addition, we address the intrinsic problem of the BP algorithm in our network model, proposing a matching algorithm for one-to-one link scheduling. Simulation results show that the proposed scheme provides almost the same delay performance as the optimal scheme found through an exhaustive search at the expense of a little additional power consumption and does not require a clustering method and orthogonal resources in a large-scale D2D network.
Adaptively Directional Wireless Power Transfer for Large-scale Sensor Networks Wireless power transfer (WPT) prolongs the lifetime of wireless sensor network by providing sustainable power supply to the distributed sensor nodes (SNs) via electromagnetic waves. To improve the energy transfer efficiency in a large WPT system, this paper proposes an adaptively directional WPT (AD-WPT) scheme, where the power beacons (PBs) adapt the energy beamforming strategy to SNs' locations by concentrating the transmit power on the nearby SNs within the efficient charging radius. With the aid of stochastic geometry, we derive the expressions of the distribution metrics of the aggregate received power at a typical SN. To design the charging radius for the optimal AD-WPT operation, we exploit the tradeoff between the power intensity of the energy beams and the number of SNs to be charged. Depending on different SN task requirements, the optimal AD-WPT can maximize the average received power or the active probability of the SNs, respectively. It is shown that both the maximum average received power and the maximum sensor active probability increase with the increased deployment density and transmit power of the PBs, and decrease with the increased density of the SNs and the energy beamwidth. Finally, we show that the optimal AD-WPT can significantly improve the energy transfer efficiency compared with the traditional omnidirectional WPT.
Energy Provisioning in Wireless Rechargeable Sensor Networks Wireless rechargeable sensor networks (WRSNs) have emerged as an alternative to solving the challenges of size and operation time posed by traditional battery-powered systems. In this paper, we study a WRSN built from the industrial wireless identification and sensing platform (WISP) and commercial off-the-shelf RFID readers. The paper-thin WISP tags serve as sensors and can harvest energy from RF signals transmitted by the readers. This kind of WRSNs is highly desirable for indoor sensing and activity recognition and is gaining attention in the research community. One fundamental question in WRSN design is how to deploy readers in a network to ensure that the WISP tags can harvest sufficient energy for continuous operation. We refer to this issue as the energy provisioning problem. Based on a practical wireless recharge model supported by experimental data, we investigate two forms of the problem: point provisioning and path provisioning. Point provisioning uses the least number of readers to ensure that a static tag placed in any position of the network will receive a sufficient recharge rate for sustained operation. Path provisioning exploits the potential mobility of tags (e.g., those carried by human users) to further reduce the number of readers necessary: mobile tags can harvest excess energy in power-rich regions and store it for later use in power-deficient regions. Our analysis shows that our deployment methods, by exploiting the physical characteristics of wireless recharging, can greatly reduce the number of readers compared with those assuming traditional coverage models.
Distributed Segment-Based Anomaly Detection With Kullback–Leibler Divergence in Wireless Sensor Networks In this paper, we focus on detecting a special type of anomaly in wireless sensor network (WSN), which appears simultaneously in a collection of neighboring nodes and lasts for a significant period of time. Existing point-based techniques, in this context, are not very effective and efficient. With the proposed distributed segment-based recursive kernel density estimation, a global probability density function can be tracked and its difference between every two periods of time is continuously measured for decision making. Kullback–Leibler (KL) divergence is employed as the measure and, in order to implement distributed in-network estimation at a lower communication cost, several types of approximated KL divergence are proposed. In the meantime, an entropic graph-based algorithm that operates in the manner of centralized computing is realized, in comparison with the proposed KL divergence-based algorithms. Finally, the algorithms are evaluated using a real-world data set, which demonstrates that they are able to achieve a comparable performance at a much lower communication cost.
Using mobile data collectors to improve network lifetime of wireless sensor networks with reliability constraints In this paper, we focus on maximizing network lifetime of a Wireless Sensor Network (WSN) using mobile Data Collectors (DCs) without compromising on the reliability requirements. We consider a heterogeneous WSN which consists of a large number of sensor nodes, a few DCs, and a static Base Station (BS). The sensor nodes are static and are deployed uniformly in the terrain. The DCs have locomotion capabilities and their movement can be controlled. Each sensor node periodically sends sensed event packets to its nearest DC. The DCs aggregate the event packets received from the sensor nodes and send these aggregate event packets to the static BS. We address the following problem: the DCs should send the aggregate event packets to the BS with a given reliability while avoiding the hotspot regions such that the network lifetime is improved. Reliability is achieved by sending each aggregate event packet via multiple paths to the BS. The network lifetime is maximized by moving the DCs in such a way that the forwarding load is distributed among the sensor nodes. We propose both centralized and distributed approaches for finding a movement strategy of the DCs. We show via simulations that the proposed approaches achieve the required reliability and also maximize the network lifetime compared to the existing approaches.
LMM: latency-aware micro-service mashup in mobile edge computing environment Internet of Things (IoT) applications introduce a set of stringent requirements (e.g., low latency, high bandwidth) to network and computing paradigm. 5G networks are faced with great challenges for supporting IoT services. The centralized cloud computing paradigm also becomes inefficient for those stringent requirements. Only extending spectrum resources cannot solve the problem effectively. Mobile edge computing offers an IT service environment at the Radio Access Network edge and presents great opportunities for the development of IoT applications. With the capability to reduce latency and offer an improved user experience, mobile edge computing becomes a key technology toward 5G. To achieve abundant sharing, complex IoT applications have been implemented as a set of lightweight micro-services that are distributed among containers over the mobile edge network. How to produce the optimal collocation of suitable micro-service for an application in mobile edge computing environment is an important issue that should be addressed. To address this issue, we propose a latency-aware micro-service mashup approach in this paper. Firstly, the problem is formulated into an integer nonlinear programming. Then, we prove the NP-hardness of the problem by reducing it into the delay constrained least cost problem. Finally, we propose an approximation latency-aware micro-service mashup approach to solve the problem. Experiment results show that the proposed approach achieves a substantial reduction in network resource consumption while still ensuring the latency constraint.
Dynamic surface control for a class of nonlinear systems A method is proposed for designing controllers with arbitrarily small tracking error for uncertain, mismatched nonlinear systems in the strict feedback form. This method is another "synthetic input technique," similar to backstepping and multiple surface control methods, but with an important addition, /spl tau/-1 low pass filters are included in the design where /spl tau/ is the relative degree of the output to be controlled. It is shown that these low pass filters allow a design where the model is not differentiated, thus ending the complexity arising due to the "explosion of terms" that has made other methods difficult to implement in practice. The backstepping approach, while suffering from the problem of "explosion of terms" guarantees boundedness of tracking errors globally; however, the proposed approach, while being simpler to implement, can only guarantee boundedness of tracking error semiglobally, when the nonlinearities in the system are non-Lipschitz.
Network design requirements for disaster resilience in IaaS clouds. Many corporations rely on disaster recovery schemes to keep their computing and network services running after unexpected situations, such as natural disasters and attacks. As corporations migrate their infrastructure to the cloud using the infrastructure as a service model, cloud providers need to offer disaster-resilient services. This article provides guidelines to design a data center network infrastructure to support a disaster-resilient infrastructure as a service cloud. These guidelines describe design requirements, such as the time to recover from disasters, and allow the identification of important domains that deserve further research efforts, such as the choice of data center site locations and disaster-resilient virtual machine placement.
A Delay-Sensitive Multicast Protocol for Network Capacity Enhancement in Multirate MANETs. Due to significant advances in wireless modulation technologies, some MAC standards such as 802.11a, 802.11b, and 802.11g can operate with multiple data rates for QoS-constrained multimedia communication to utilize the limited resources of MANETs more efficiently. In this paper, by means of measuring the busy/idle ratio of the shared radio channel, a method for estimating one-hop delay is first su...
Sustainable and Efficient Data Collection from WSNs to Cloud. The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time becomes a b...
1.111414
0.12
0.12
0.12
0.12
0.04
0.008607
0.001111
0.00022
0
0
0
0
0
Differentially private Naive Bayes learning over multiple data sources. For meeting diverse requirements of data analysis, the machine learning classifier has been provided as a tool to evaluate data in many applications. Due to privacy concerns of preventing disclosing sensitive information, data owners often suppress their data for an untrusted trainer to train a classifier. Some existing work proposed privacy-preserving solutions for learning algorithms, which allow a trainer to build a classifier over the data from a single owner. However, they cannot be directly used in the multi-owner setting where each owner is not totally trusted for each other. In this paper, we propose a novel privacy-preserving Naive Bayes learning scheme with multiple data sources. The proposed scheme enables a trainer to train a Naive Bayes classifier over the dataset provided jointly by different data owners, without the help of a trusted curator. The training result can achieve ϵ-differential privacy while the training will not break the privacy of each owner. We implement the prototype of the scheme and conduct corresponding experiment.
Witness indistinguishable and witness hiding protocols
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Publicly Verifiable Computation of Polynomials Over Outsourced Data With Multiple Sources. Among all types of computations, the polynomial function evaluation is a fundamental, yet an important one due to its wide usage in the engineering and scientific problems. In this paper, we investigate publicly verifiable outsourced computation for polynomial evaluation with the support of multiple data sources. Our proposed verification scheme is universally applicable to all types of polynomial...
Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing. Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.
Insight of the protection for data security under selective opening attacks. Data security and privacy protection issues are the primary restraints for adoption of cloud computing. Selective opening security (SOA security) focuses on such a scenario of cloud computing: Multiple senders encrypt their own data with the public key of a single receiver. Given the ciphertexts, the adversary is allowed to corrupt some of the senders, seeing not only their plaintexts but also the random coins used during the encryption. The security requirement of SOA security is that the privacy of the unopened data is preserved.
Fog computing and its role in the internet of things Fog Computing extends the Cloud Computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are: a) Low latency and location awareness; b) Wide-spread geographical distribution; c) Mobility; d) Very large number of nodes, e) Predominant role of wireless access, f) Strong presence of streaming and real time applications, g) Heterogeneity. In this paper we argue that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).
Probabilistic encryption A new probabilistic model of data encryption is introduced. For this model, under suitable complexity assumptions, it is proved that extracting any information about the cleartext from the cyphertext is hard on the average for an adversary with polynomially bounded computational resources. The proof holds for any message space with any probability distribution. The first implementation of this model is presented. The security of this implementation is proved under the interactability assumptin of deciding Quadratic Residuosity modulo composite numbers whose factorization is unknown.
A Game-Theoretical Approach for User Allocation in Edge Computing Environment Edge Computing provides mobile and Internet-of-Things (IoT) app vendors with a new distributed computing paradigm which allows an app vendor to deploy its app at hired edge servers distributed near app users at the edge of the cloud. This way, app users can be allocated to hired edge servers nearby to minimize network latency and energy consumption. A cost-effective edge user allocation (EUA) requires maximum app users to be served with minimum overall system cost. Finding a centralized optimal solution to this EUA problem is NP-hard. Thus, we propose EUAGame, a game-theoretic approach that formulates the EUA problem as a potential game. We analyze the game and show that it admits a Nash equilibrium. Then, we design a novel decentralized algorithm for finding a Nash equilibrium in the game as a solution to the EUA problem. The performance of this algorithm is theoretically analyzed and experimentally evaluated. The results show that the EUA problem can be solved effectively and efficiently.
Grey Wolf Optimizer. This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces.
Development of a UAV-LiDAR System with Application to Forest Inventory We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m(2)) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points per m(2), to 0.15 m when the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
A review on interval type-2 fuzzy logic applications in intelligent control. A review of the applications of interval type-2 fuzzy logic in intelligent control has been considered in this paper. The fundamental focus of the paper is based on the basic reasons for using type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this review, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy controllers. We also mention alternative approaches to designing type-2 fuzzy controllers without optimization techniques.
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.071853
0.068872
0.068872
0.068872
0.068872
0.025275
0.006934
0
0
0
0
0
0
0
Geometric attacks on image watermarking systems Synchronization errors can lead to significant performance loss in image watermarking methods, as the geometric attacks in the Stirmark benchmark software show. The authors describe the most common types of geometric attacks and survey proposed solutions.
Genetic Optimization Of Radial Basis Probabilistic Neural Networks This paper discusses using genetic algorithms (CA) to optimize the structure of radial basis probabilistic neural networks (RBPNN), including how to select hidden centers of the first hidden layer and to determine the controlling parameter of Gaussian kernel functions. In the process of constructing the genetic algorithm, a novel encoding method is proposed for optimizing the RBPNN structure. This encoding method can not only make the selected hidden centers sufficiently reflect the key distribution characteristic in the space of training samples set and reduce the hidden centers number as few as possible, but also simultaneously determine the optimum controlling parameters of Gaussian kernel functions matching the selected hidden centers. Additionally, we also constructively propose a new fitness function so as to make the designed RBPNN as simple as possible in the network structure in the case of not losing the network performance. Finally, we take the two benchmark problems of discriminating two-spiral problem and classifying the iris data, for example, to test and evaluate this designed GA. The experimental results illustrate that our designed CA can significantly reduce the required hidden centers number, compared with the recursive orthogonal least square algorithm (ROLSA) and the modified K-means algorithm (MKA). In particular, by means of statistical experiments it was proved that the optimized RBPNN by our designed GA, have still a better generalization performance with respect to the ones by the ROLSA and the MKA, in spite of the network scale having been greatly reduced. Additionally, our experimental results also demonstrate that our designed CA is also suitable for optimizing the radial basis function neural networks (RBFNN).
A novel data hiding for color images based on pixel value difference and modulus function This paper proposes a novel data hiding method using pixel-value difference and modulus function for color image with the large embedding capacity(hiding 810757 bits in a 512 512 host image at least) and a high-visual-quality of the cover image. The proposed method has fully taken into account the correlation of the R, G and B plane of a color image. The amount of information embedded the R plane and the B plane determined by the difference of the corresponding pixel value between the G plane and the median of G pixel value in each pixel block. Furthermore, two sophisticated pixel value adjustment processes are provided to maintain the division consistency and to solve underflow and overflow problems. The most importance is that the secret data are completely extracted through the mathematical theoretical proof.
High payload image steganography with reduced distortion using octonary pixel pairing scheme The crucial challenge that decides the success of any steganographic algorithm lies in simultaneously achieving the three contradicting objectives namely--higher payload capacity, with commendable perceptual quality and high statistical un-detectability. This work is motivated by the interest in developing such a steganographic scheme, which is aimed for establishing secure image covert channel in spatial domain using Octonary PVD scheme. The goals of this paper are to be realized through: (1) pairing a pixel with all of its neighbors in all the eight directions, to offer larger embedding capacity (2) the decision of the number of bits to be embedded in each pixel based on the nature of its region and not done universally same for all the pixels, to enhance the perceptual quality of the images (3) the re-adjustment phase, which sustains any modified pixel in the same level in the stego-image also, where the difference between a pixel and its neighbor in the cover image belongs to, for imparting the statistical un-detectability factor. An extensive experimental evaluation to compare the performance of the proposed system vs. other existing systems was conducted, on a database containing 3338 natural images, against two specific and four universal steganalyzers. The observations reported that the proposed scheme is a state-of-the-art model, offering high embedding capacity while concurrently sustaining the picture quality and defeating the statistical detection through steganalyzers.
Improved diagonal queue medical image steganography using Chaos theory, LFSR, and Rabin cryptosystem. In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.
Dual hybrid medical watermarking using walsh-slantlet transform A hybrid robust lossless data hiding algorithm is proposed in this paper by using the Singular Value Decomposition (SVD) with Fast Walsh Transform (FWT) and Slantlet Transform (SLT) for image authentication. These transforms possess good energy compaction with distinct filtering, which leads to higher embedding capacity from 1.8 bit per pixel (bpp) up to 7.5bpp. In the proposed algorithm, Artificial Neural Network (ANN) is applied for region of interest (ROI) detection and two different watermarks are created. Embedding is done after applying FWH by changing the SVD coefficients and by changing the highest coefficients of SLT subbands. In dual hybrid embedding first watermark is the ROI and another watermark consists of three parts, i.e., patients’ personal details, unique biometric ID and the key for encryption. Comparison of the proposed algorithm is done with the existing watermarking techniques for analyzing the performance. Experiments are simulated on the proposed algorithm by casting numerous attacks for testing the visibility, robustness, security, authenticity, integrity and reversibility. The resultant outcome proves that the watermarked image has an improved imperceptibility with a high level of payload, low time complexity and high Peak Signal to Noise Ratio (PSNR) against the existing approaches.
Multiscale Transform-Based Secured Joint Efficient Medical Image Compression-Encryption Using Symmetric Key Cryptography And Ebcot Encoding Technique Due to the huge advancement in technology, digitizing the multimedia content like text, images and videos has become easier. Everyday huge amounts of multimedia content are shared through the social networks using internet. Sometimes this multimedia content can be hacked by the hackers. This will lead to the misuse of the data. On the other hand, the medical content needs high security and privacy. Motivated by this, joint secured medical image compression-encryption mechanisms are proposed in this paper using multiscale transforms and symmetric key encryption techniques. The multiscale transforms involved in this paper are wavelet transform, bandelet transform and curvelet transform. The encryption techniques involved in this paper are international data encryption algorithm (IDEA), Rivest Cipher (RC5) and Blowfish. The encoding technique used in this paper is embedded block coding with truncation (EBCOT). Experimental results are done for the proposed works and evaluated by using various parameters like Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Image Quality Index (IQI) and Structural Similarity Index (SSIM), Average Difference (AD), Normalized Cross-correlation (NK), Structural Content (SC), Maximum difference (MD), Laplacian Mean Squared Error (LMSE) and Normalized Absolute Error (NAE). It is justified that the proposed approaches in this paper yield good results.
A New Efficient Medical Image Cipher Based On Hybrid Chaotic Map And Dna Code In this paper, we propose a novel medical image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a Secure Hash Algorithm SHA-2 and a new hybrid chaotic map. Our study uses DNA sequences and operations and the chaotic hybrid map to strengthen the cryptosystem. The significant advantages of this approach consist in improving the information entropy which is the most important feature of randomness, resisting against various typical attacks and getting good experimental results. The theoretical analysis and experimental results show that the algorithm improves the encoding efficiency, enhances the security of the ciphertext, has a large key space and a high key sensitivity, and is able to resist against the statistical and exhaustive attacks.
On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on ...
An effective implementation of the Lin–Kernighan traveling salesman heuristic This paper describes an implementation of the Lin–Kernighan heuristic, one of the most successful methods for generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality today).
Exoskeletons for human power augmentation The first load-bearing and energetically autonomous exoskeleton, called the Berkeley Lower Extremity Exoskeleton (BLEEX) walks at the average speed of two miles per hour while carrying 75 pounds of load. The project, funded in 2000 by the Defense Advanced Research Project Agency (DARPA) tackled four fundamental technologies: the exoskeleton architectural design, a control algorithm, a body LAN to host the control algorithm, and an on-board power unit to power the actuators, sensors and the computers. This article gives an overview of the BLEEX project.
Assist-As-Needed Training Paradigms For Robotic Rehabilitation Of Spinal Cord Injuries This paper introduces a new "assist-as-needed" (AAN) training paradigm for rehabilitation of spinal cord injuries via robotic training devices. In the pilot study reported in this paper, nine female adult Swiss-Webster mice were divided into three groups, each experiencing a different robotic training control strategy: a fixed training trajectory (Fixed Group, A), an AAN training method without interlimb coordination (Band Group, B), and an AAN training method with bilateral hindlimb coordination (Window Group, C). Fourteen days after complete transection at the mid-thoracic level, the mice were robotically trained to step in the presence of an acutely administered serotonin agonist, quipazine, for a period of six weeks. The mice that received AAN training (Groups B and C) show higher levels of recovery than Group A mice, as measured by the number, consistency, and periodicity of steps realized during testing sessions. Group C displays a higher incidence of alternating stepping than Group B. These results indicate that this training approach may be more effective than fixed trajectory paradigms in promoting robust post-injury stepping behavior. Furthermore, the constraint of interlimb coordination appears to be an important contribution to successful training.
An ID-Based Linearly Homomorphic Signature Scheme and Its Application in Blockchain. Identity-based cryptosystems mean that public keys can be directly derived from user identifiers, such as telephone numbers, email addresses, and social insurance number, and so on. So they can simplify key management procedures of certificate-based public key infrastructures and can be used to realize authentication in blockchain. Linearly homomorphic signature schemes allow to perform linear computations on authenticated data. And the correctness of the computation can be publicly verified. Although a series of homomorphic signature schemes have been designed recently, there are few homomorphic signature schemes designed in identity-based cryptography. In this paper, we construct a new ID-based linear homomorphic signature scheme, which avoids the shortcomings of the use of public-key certificates. The scheme is proved secure against existential forgery on adaptively chosen message and ID attack under the random oracle model. The ID-based linearly homomorphic signature schemes can be applied in e-business and cloud computing. Finally, we show how to apply it to realize authentication in blockchain.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.05
0
0
0
0
0
0
AoI-Energy-Aware UAV-Assisted Data Collection for IoT Networks: A Deep Reinforcement Learning Method Thanks to the inherent characteristics of flexible mobility and autonomous operation, unmanned aerial vehicles (UAVs) will inevitably be integrated into 5G/B5G cellular networks to assist remote sensing for real-time assessment and monitoring applications. Most existing UAV-assisted data collection schemes focus on optimizing energy consumption and data collection throughput, which overlook the te...
Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems. In this paper, we investigate the resource allocation algorithm design for multicarrier solar-powered unmanned aerial vehicle (UAV) communication systems. In particular, the UAV is powered by the solar energy enabling sustainable communication services to multiple ground users. We study the joint design of the 3D aerial trajectory and the wireless resource allocation for maximization of the system sum throughput over a given time period. As a performance benchmark, we first consider an off-line resource allocation design assuming non-causal knowledge of the channel gains. The algorithm design is formulated as a mixed-integer non-convex optimization problem taking into account the aerodynamic power consumption, solar energy harvesting, a finite energy storage capacity, and the quality-of-service requirements of the users. Despite the non-convexity of the optimization problem, we solve it optimally by applying monotonic optimization to obtain the optimal 3D-trajectory and the optimal power and subcarrier allocation policy. Subsequently, we focus on the online algorithm design that only requires real-time and statistical knowledge of the channel gains. The optimal online resource allocation algorithm is motivated by the off-line scheme and entails a high computational complexity. Hence, we also propose a low-complexity iterative suboptimal online scheme based on the successive convex approximation. Our simulation results reveal that both the proposed online schemes closely approach the performance of the benchmark off-line scheme and substantially outperform two baseline schemes. Furthermore, our results unveil the tradeoff between solar energy harvesting and power-efficient communication. In particular, the solar-powered UAV first climbs up to a high altitude to harvest a sufficient amount of solar energy and then descends again to a lower altitude to reduce the path loss of the communication links to the users it serves.
3D UAV Trajectory Design and Frequency Band Allocation for Energy-Efficient and Fair Communication: A Deep Reinforcement Learning Approach Unmanned Aerial Vehicle (UAV)-assisted communication has drawn increasing attention recently. In this paper, we investigate 3D UAV trajectory design and band allocation problem considering both the UAV's energy consumption and the fairness among the ground users (GUs). Specifically, we first formulate the energy consumption model of a quad-rotor UAV as a function of the UAV's 3D movement. Then, based on the fairness and the total throughput, the fair throughput is defined and maximized within limited energy. We propose a deep reinforcement learning (DRL)-based algorithm, named as EEFC-TDBA (energy-efficient fair communication through trajectory design and band allocation) that chooses the state-of-the-art DRL algorithm, deep deterministic policy gradient (DDPG), as its basis. EEFC-TDBA allows the UAV to: 1) adjust the flight speed and direction so as to enhance the energy efficiency and reach the destination before the energy is exhausted; and 2) allocate frequency band to achieve fair communication service. Simulation results are provided to demonstrate that EEFC-TDBA outperforms the baseline methods in terms of the fairness, the total throughput, as well as the minimum throughput.
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
Reconfigurable Antennas: Design and Applications The advancement in wireless communications requires the integration of multiple radios into a single platform to maximize connectivity. In this paper, the design process of reconfigurable antennas is discussed. Reconfigurable antennas are proposed to cover different wireless services that operate over a wide frequency range. They show significant promise in addressing new system requirements. They exhibit the ability to modify their geometries and behavior to adapt to changes in surrounding conditions. Reconfigurable antennas can deliver the same throughput as a multiantenna system. They use dynamically variable and adaptable single-antenna geometry without increasing the real estate required to accommodate multiple antennas. The optimization of reconfigurable antenna design and operation by removing unnecessary redundant switches to alleviate biasing issues and improve the system's performance is discussed. Controlling the antenna reconfiguration by software, using Field Programmable Gate Arrays (FPGAs) or microcontrollers is introduced herein. The use of Neural Networks and its integration with graph models on programmable platforms and its effect on the operation of reconfigurable antennas is presented. Finally, the applications of reconfigurable antennas for cognitive radio, Multiple Input Multiple Output (MIMO) channels, and space applications are highlighted.
Resource Allocation for Wireless-Powered IoT Networks With Short Packet Communication Internet-of-Things (IoT) is a promising technology to connect massive machines and devices in the future communication networks. In this paper, we study a wireless-powered IoT network (WPIN) with short packet communication (SPC), in which a hybrid access point (HAP) first transmits power to the IoT devices wirelessly, then the devices in turn transmit their short data packets achieved by finite blocklength codes to the HAP using the harvested energy. Different from the long packet communication in conventional wireless network, SPC suffers from transmission rate degradation and a significant packet error rate. Thus, conventional resource allocation in the existing literature based on Shannon capacity achieved by the infinite blocklength codes is no longer optimal. In this paper, to enhance the transmission efficiency and reliability, we first define <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">effective-throughput</italic> and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">effective-amount-of-information</italic> as the performance metrics to balance the transmission rate and the packet error rate, and then jointly optimize the transmission time and packet error rate of each user to maximize the total effective-throughput or minimize the total transmission time subject to the users’ individual effective-amount-of-information requirements. To overcome the non-convexity of the formulated problems, we develop efficient algorithms to find high-quality suboptimal solutions for them. The simulation results show that the proposed algorithms can achieve similar performances as that of the optimal solution via exhaustive search, and outperform the benchmark schemes.
Placement Optimization of UAV-Mounted Mobile Base Stations. In terrestrial communication networks without fixed infrastructure, unmanned aerial vehicle-mounted mobile base stations (MBSs) provide an efficient solution to achieve wireless connectivity. This letter aims to minimize the number of MBSs needed to provide wireless coverage for a group of distributed ground terminals (GTs), ensuring that each GT is within the communication range of at least one MBS. We propose a polynomial-time algorithm with successive MBS placement, where the MBSs are placed sequentially starting on the area perimeter of the uncovered GTs along a spiral path toward the center, until all GTs are covered. Numerical results show that the proposed algorithm performs favorably compared with other schemes in terms of the number of required MBSs as well as time complexity.
UAV-Assisted Heterogeneous Networks for Capacity Enhancement. Modern day wireless networks have tremendously evolved driven by a sharp increase in user demands, continuously requesting more data and services. This puts significant strain on infrastructure-based macro cellular networks due to the inefficiency in handling these traffic demands, cost effectively. A viable solution is the use of unmanned aerial vehicles (UAVs) as intermediate aerial nodes betwee...
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Social navigation support in a course recommendation system The volume of course-related information available to students is rapidly increasing. This abundance of information has created the need to help students find, organize, and use resources that match their individual goals, interests, and current knowledge. Our system, CourseAgent, presented in this paper, is an adaptive community-based hypermedia system, which provides social navigation course recommendations based on students’ assessment of course relevance to their career goals. CourseAgent obtains students’ explicit feedback as part of their natural interactivity with the system. This work presents our approach to eliciting explicit student feedback and then evaluates this approach.
Evolutionary dynamic optimization: A survey of the state of the art. Optimization in dynamic environments is a challenging but important task since many real-world optimization problems are changing over time. Evolutionary computation and swarm intelligence are good tools to address optimization problems in dynamic environments due to their inspiration from natural self-organized systems and biological evolution, which have always been subject to changing environments. Evolutionary optimization in dynamic environments, or evolutionary dynamic optimization (EDO), has attracted a lot of research effort during the last 20 years, and has become one of the most active research areas in the field of evolutionary computation. In this paper we carry out an in-depth survey of the state-of-the-art of academic research in the field of EDO and other meta-heuristics in four areas: benchmark problems/generators, performance measures, algorithmic approaches, and theoretical studies. The purpose is to for the first time (i) provide detailed explanations of how current approaches work; (ii) review the strengths and weaknesses of each approach; (iii) discuss the current assumptions and coverage of existing EDO research; and (iv) identify current gaps, challenges and opportunities in EDO.
Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form. This paper presents a distributed containment control approach for uncertain nonlinear strict-feedback systems with multiple dynamic leaders under a directed graph topology where the leaders are neighbors of only a subset of the followers. The strict-feedback followers with nonparametric uncertainties are considered and the local adaptive dynamic surface controller for each follower is designed using only neighbors’ information to guarantee that all followers converge to the dynamic convex hull spanned by the dynamic leaders where the derivatives of leader signals are not available to implement controllers, i.e., the position information of leaders is only required. The function approximation technique using neural networks is employed to estimate nonlinear uncertainty terms derived from the controller design procedure for the followers. It is shown that the containment control errors converge to an adjustable neighborhood of the origin.
A Covert Channel Over VoLTE via Adjusting Silence Periods. Covert channels represent unforeseen communication methods that exploit authorized overt communication as the carrier medium for covert messages. Covert channels can be a secure and effective means of transmitting confidential information hidden in overt traffic. For covert timing channel, the covert message is usually modulated into inter-packet delays (IPDs) of legitimate traffic, which is not suitable for voice over LTE (VoLTE) since the IPDs of VoLTE traffic are fixed to lose the possibility of being modulated. For this reason, we propose a covert channel via adjusting silence periods, which modulates covert message by the postponing or extending silence periods in VoLTE traffic. To keep the robustness, we employ the Gray code to encode the covert message to reduce the impact of packet loss. Moreover, the proposed covert channel enables the tradeoff between the robustness and voice quality which is an important performance indicator for VoLTE. The experiment results show that the proposed covert channel is undetectable by statistical tests and outperforms the other covert channels based on IPDs in terms of robustness.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.04
0.04
0.04
0.04
0.04
0.04
0.02
0.008
0
0
0
0
0
0
The Influence of Equatorial Scintillation on L-Band SAR Image Quality and Phase It is well known that many of the nighttime acquisitions of the L-band Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) instrument over equatorial regions show significant distortions of the image amplitude information. These distortions have the form of amplitude stripes that are roughly aligned with the local geomagnetic field. While ionospheric...
Measurement of Ionospheric Scintillation Parameters From SAR Images Using Corner Reflectors. Space-based low-frequency (L-band and below) synthetic aperture radar (SAR) is affected by the ionosphere. In particular, the phase scintillation causes the sidelobes to rise in a manner that can be predicted by an analytical theory of the point spread function (PSF). In this paper, the results of an experiment, in which a 5 m corner reflector on Ascension Island, was repeatedly imaged by PALSAR-2...
Performance Analysis of L-Band Geosynchronous SAR Imaging in the Presence of Ionospheric Scintillation. An L-band geosynchronous synthetic aperture radar (GEO SAR) will be inevitably affected by ionosphere scintillation because of its low carrier frequency. Meanwhile, compared with the low Earth orbit (LEO) SAR, a higher orbit of GEO SAR makes it have a longer integration time and a longer operation time within the susceptible regions of ionospheric scintillation. Thus, its imaging is more sensitive...
Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass. Biomass estimation performance using polarimetric interferometric synthetic aperture radar (PolInSAR) data is evaluated at L- and P-band frequencies over boreal forest. PolInSAR data are decomposed into ground and volume contributions, retrieving vertical forest structure and polarimetric layer characteristics. The sensitivity of biomass to the obtained parameters is analyzed, and a set of these p...
A New Analytical Model to Study the Ionospheric Effects on VHF/UHF Wideband SAR Imaging. With a view to detecting foliage-obscured/ground-obscured targets on a global scale, low frequency (i.e., very high frequency (VHF)/ultrahigh frequency (UHF) band) and wide bandwidth is a trend in future spaceborne synthetic aperture radar (SAR) system design. However, due to the dispersion of ionosphere, VHF/UHF wide bandwidth SAR signals inevitably experience adverse effects. In contrast to narr...
Comments on ``The Influence of Equatorial Scintillation on L-Band SAR Image Quality and Phase'' As was indicated in the mentioned paper, the ionospheric stripes, in general, aligned well with the orientation of the projected ambient geomagnetic field vector. However, it is shown in our study that the calculated striping heading is not only dependent upon the orientation of the projected ambient geomagnetic field vector, namely, the geomagnetic heading but also the geomagnetic inclination, th...
Probabilistic encryption A new probabilistic model of data encryption is introduced. For this model, under suitable complexity assumptions, it is proved that extracting any information about the cleartext from the cyphertext is hard on the average for an adversary with polynomially bounded computational resources. The proof holds for any message space with any probability distribution. The first implementation of this model is presented. The security of this implementation is proved under the interactability assumptin of deciding Quadratic Residuosity modulo composite numbers whose factorization is unknown.
A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.
Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions The ever-increasing number of resource-constrained machine-type communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced mobile broadband (eMBB), massive machine type communications (mMTCs), and ultra-reliable and low latency communications (URLLCs), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include quality of service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead, and radio access network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy random access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions toward addressing RAN congestion problem, and then identify potential advantages, challenges, and use cases for the applications of emerging machine learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning approach in the mMTC scenario along with the recent advances toward enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions.
Priced Oblivious Transfer: How to Sell Digital Goods We consider the question of protecting the privacy of customers buying digital goods. More specifically, our goal is to allow a buyer to purchase digital goods from a vendor without letting the vendor learn what, and to the extent possible also when and how much, it is buying. We propose solutions which allow the buyer, after making an initial deposit, to engage in an unlimited number of priced oblivious-transfer protocols, satisfying the following requirements: As long as the buyer's balance contains sufficient funds, it will successfully retrieve the selected item and its balance will be debited by the item's price. However, the buyer should be unable to retrieve an item whose cost exceeds its remaining balance. The vendor should learn nothing except what must inevitably be learned, namely, the amount of interaction and the initial deposit amount (which imply upper bounds on the quantity and total price of all information obtained by the buyer). In particular, the vendor should be unable to learn what the buyer's current balance is or when it actually runs out of its funds. The technical tools we develop, in the process of solving this problem, seem to be of independent interest. In particular, we present the first one-round (two-pass) protocol for oblivious transfer that does not rely on the random oracle model (a very similar protocol was independently proposed by Naor and Pinkas [21]). This protocol is a special case of a more general "conditional disclosure" methodology, which extends a previous approach from [11] and adapts it to the 2-party setting.
Cognitive Cars: A New Frontier for ADAS Research This paper provides a survey of recent works on cognitive cars with a focus on driver-oriented intelligent vehicle motion control. The main objective here is to clarify the goals and guidelines for future development in the area of advanced driver-assistance systems (ADASs). Two major research directions are investigated and discussed in detail: 1) stimuli–decisions–actions, which focuses on the driver side, and 2) perception enhancement–action-suggestion–function-delegation, which emphasizes the ADAS side. This paper addresses the important achievements and major difficulties of each direction and discusses how to combine the two directions into a single integrated system to obtain safety and comfort while driving. Other related topics, including driver training and infrastructure design, are also studied.
Wireless Networks with RF Energy Harvesting: A Contemporary Survey Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations, and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RFEHNs according to the network types, i.e., single-hop networks, multi-antenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.
A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Data collection through mobile sink (MS) in wireless sensor networks (WSNs) is an effective solution to the hot-spot or sink-hole problem caused by multi-hop routing using the static sink. Rendezvous point (RP) based MS path design is a common and popular technique used in this regard. However, design of the optimal path is a well-known NP-hard problem. Therefore, an evolutionary approach like multi-objective particle swarm optimization (MOPSO) can prove to be a very promising and reasonable approach to solve the same. In this paper, we first present a Linear Programming formulation for the stated problem and then, propose an MOPSO-based algorithm to design an energy efficient trajectory for the MS. The algorithm is presented with an efficient particle encoding scheme and derivation of a proficient multi-objective fitness function. We use Pareto dominance in MOPSO for obtaining both local and global best guides for each particle. We carry out rigorous simulation experiments on the proposed algorithm and compare the results with two existing algorithms namely, tree cluster based data gathering algorithm (TCBDGA) and energy aware sink relocation (EASR). The results demonstrate that the proposed algorithm performs better than both of them in terms of various performance metrics. The results are also validated through the statistical test, analysis of variance (ANOVA) and its least significant difference (LSD) post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.050387
0.040754
0.039259
0.033333
0.033333
0.033333
0
0
0
0
0
0
0
0
A meta-analysis and systematic literature review of virtual reality rehabilitation programs. A recent advancement in the study of physical rehabilitation is the application of virtual reality rehabilitation (VRR) programs, in which patients perform practice behaviors while interacting with the computer-simulation of an environment that imitates a physical presence in real or imagined worlds. Despite enthusiasm, much remains unknown about VRR programs. Particularly, two important research questions have been left unanswered: Are VRR programs effective? And, if so, why are VRR programs effective? A meta-analysis is performed in the current article to determine the efficacy of VRR programs, in general, as well as their ability to develop four specific rehabilitation outcomes: motor control, balance, gait, and strength. A systematic literature review is also performed to determine the mechanisms that may cause VRR program success or failure. The results demonstrate that VRR programs are more effective than traditional rehabilitation programs for physical outcome development. Further, three mechanisms have been proposed to cause these improved outcomes: excitement, physical fidelity, and cognitive fidelity; however, empirical research has yet to show that these mechanisms actually prompt better rehabilitation outcomes. The implications of these results and possible avenues for future research and practice are discussed. Virtual reality rehabilitation (VRR) programs are growing in popularity.VRR programs are more effective than traditional rehabilitation programs.Excitement, physical fidelity, and cognitive fidelity may cause VRR program success.More research is needed to better understand VRR programs.
Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. A novel nonlinear system identification scheme is proposed.A Hammerstein model has been trained using cuckoo search algorithm.The model is a cascade of a FLANN and an adaptive IIR filter.Simulation study shows enhanced modeling capacity of the proposed scheme.The new schemes offers lesser computational time over other methods studied. An attempt has been made in this paper to model a nonlinear system using a Hammerstein model. The Hammerstein model considered in this paper is a functional link artificial neural network (FLANN) in cascade with an adaptive infinite impulse response (IIR) filter. In order to avoid local optima issues caused by conventional gradient descent training strategies, the model has been trained using a cuckoo search algorithm (CSA), which is a recently proposed stochastic algorithm. Modeling accuracy of the proposed scheme has been compared with that obtained using other popular evolutionary computing algorithms for the Hammerstein model. Enhanced modeling capability of the CSA based scheme is evident from the simulation results.
On a cuckoo search optimization approach towards feedback system identification This paper presents a cuckoo search algorithm (CSA) based adaptive infinite impulse response (IIR) system identification scheme. The proposed scheme prevents the local minima problem encountered in conventional IIR modeling mechanisms. The performance of the new method has been compared with that obtained by other evolutionary computing algorithms like genetic algorithm (GA) and particle swarm optimization (PSO). The superior system identification capability of the proposed scheme is evident from the results obtained through an exhaustive simulation study.
The Complexity of Intransitive Noninterference The paper considers several definitions of information flow security for intransitive policies from the point of view of the complexity of verifying whether a finite-state system is secure. The results are as follows. Checking (i) P-security (Goguen and Meseguer), (ii) IP-security (Haigh and Young), and (iii) TA-security (van der Meyden) are all in PTIME, while checking TO-security (van der Meyden) is undecidable. The most important ingredients in the proofs of the PTIME upper bounds are new characterizations of the respective security notions, which also enable the algorithms to return simple counterexamples demonstrating insecurity. Our results for IP-security improve a previous doubly exponential bound of Hadj-Alouane et al.
Static Analysis of Non-interference in Expressive Low-Level Languages Early work in implicit information flow detection applied only to flat, procedureless languages with structured control-flow (e.g., if statements, while loops). These techniques have yet to be adequately extended and generalized to expressive languages with interprocedural, exceptional and irregular control-flow behavior. We present an implicit information flow analysis suitable for languages with conditional jumps, dynamically dispatched methods, and exceptions. We implement this analysis for the Dalvik bytecode format, the substrate for Android. In order to capture information flows across interprocedural and exceptional boundaries, this analysis uses a projection of a small-step abstract interpreter's rich state graph instead of the control-flow graph typically used for such purposes in weaker linguistic settings. We present a proof of termination-insensitive non-interference. To our knowledge, it is the first analysis capable of proving non-trivial non-interference in a language with this combination of features.
Response time in man-computer conversational transactions The literature concerning man-computer transactions abounds in controversy about the limits of "system response time" to a user's command or inquiry at a terminal. Two major semantic issues prohibit resolving this controversy. One issue centers around the question of "Response time to what?" The implication is that different human purposes and actions will have different acceptable or useful response times.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Long short-term memory. Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Toward Integrating Vehicular Clouds with IoT for Smart City Services Vehicular ad hoc networks, cloud computing, and the Internet of Things are among the emerging technology enablers offering a wide array of new application possibilities in smart urban spaces. These applications consist of smart building automation systems, healthcare monitoring systems, and intelligent and connected transportation, among others. The integration of IoT-based vehicular technologies will enrich services that are eventually going to ignite the proliferation of exciting and even more advanced technological marvels. However, depending on different requirements and design models for networking and architecture, such integration needs the development of newer communication architectures and frameworks. This work proposes a novel framework for architectural and communication design to effectively integrate vehicular networking clouds with IoT, referred to as VCoT, to materialize new applications that provision various IoT services through vehicular clouds. In this article, we particularly put emphasis on smart city applications deployed, operated, and controlled through LoRaWAN-based vehicular networks. LoraWAN, being a new technology, provides efficient and long-range communication possibilities. The article also discusses possible research issues in such an integration including data aggregation, security, privacy, data quality, and network coverage. These issues must be addressed in order to realize the VCoT paradigm deployment, and to provide insights for investors and key stakeholders in VCoT service provisioning. The article presents deep insights for different real-world application scenarios (i.e., smart homes, intelligent traffic light, and smart city) using VCoT for general control and automation along with their associated challenges. It also presents initial insights, through preliminary results, regarding data and resource management in IoT-based resource constrained environments through vehicular clouds.
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics. In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.12
0.07
0.046667
0.02
0.02
0.01
0.000215
0
0
0
0
0
0
0
Surviving wireless energy interference in RF-harvesting sensor networks: An empirical study Energy transfer through radio frequency (RF) waves enables battery-free operation for wireless sensor networks, while adversely impacting data communication. Thus, extending the lifetime for RF powered sensors comes at a cost of interference and reduced data throughput. This paper undertakes a systematic experimental study for both indoor and outdoor environments to quantify these tradeoffs. We demonstrate how separating the energy and data transfer frequencies gives rise to black (high loss), gray (moderate loss), and white (low loss) regions with respect to packet errors. We also measure the effect of the physical location of energy transmitters (ETs) and the impact of the spatial distribution of received interference power from the ETs, when these high power transmitters also charge the network. Our findings suggests leveraging the level of energy interference detected at the sensor node as a guiding metric to decide how best to separate the charging and communication functions in the frequency domain, as well as separating multiple ETs with slightly different center frequencies.
RFID-based techniques for human-activity detection The iBracelet and the Wireless Identification and Sensing Platform promise the ability to infer human activity directly from sensor readings.
Providing DoS resistance for signature-based broadcast authentication in sensor networks Recent studies have demonstrated that it is feasible to perform public key cryptographic operations on resource-constrained sensor platforms. However, the significant energy consumption introduced by public key operations makes any public key-based protocol an easy target of Denial-of-Service (DoS) attacks. For example, if digital signature schemes such as ECDSA are used directly for broadcast authentication without further protection, an attacker can simply broadcast fake messages and force the receiving nodes to perform a huge number of unnecessary signature verifications, eventually exhausting their battery power. This paper shows how to mitigate such DoS attacks when digital signatures are used for broadcast authentication in sensor networks. Specifically, this paper first presents two filtering techniques, the group-based filter and the key chain-based filter, to handle the DoS attacks against signature verification. Both methods can significantly reduce the number of unnecessary signature verifications when a sensor node is under DoS attacks. This paper then combines these two filters and proposes a hybrid solution to further improve the performance.
Wireless Power Transfer - An Overview. Due to limitations of low power density, high cost, heavy weight, etc., the development and application of battery-powered devices are facing with unprecedented technical challenges. As a novel pattern of energization, the wireless power transfer (WPT) offers a band new way to the energy acquisition for electric-driven devices, thus alleviating the over-dependence on the battery. This paper presen...
Fast Charging Scheduling under the Nonlinear Superposition Model with Adjustable Phases. Wireless energy transfer has been widely studied in recent decades, with existing works mainly focused on maximizing network lifetime, optimizing charging efficiency, and optimizing charging quality. All these works use a charging model with the linear superposition, which may not be the most accurate. We apply a nonlinear superposition model, and we consider the Fast Charging Scheduling problem (FCS): Given multiple chargers and a group of sensors, how can the chargers be optimally scheduled over the time dimension so that the total charging time is minimized and each sensor has at least energy E? We prove that FCS is NP-complete and propose a 2-approximation algorithm to solve it in one-dimensional (1D) line. In a 2D plane, we first consider a special case of FCS, where the initial phases of all chargers are the same, and propose an algorithm to solve it, which has a bound. Then we propose an algorithm to solve FCS in a general 2D plane. Unlike other algorithms, our algorithm does not need to calculate the combined energy of every possible combination of chargers in advance, which greatly reduces the complexity. Extensive simulations demonstrate that the performance of our algorithm performs almost as good as the optimal algorithm.
CoDoC: A Novel Attack for Wireless Rechargeable Sensor Networks through Denial of Charge Wireless rechargeable sensor networks (WRSNs), benefiting from recent breakthrough in wireless power transfer (WPT) technology, emerge as very promising for network lifetime extension. Traditional methods focus on scheduling algorithms and system optimization, and the issue of charging security/threat is ignored, causing it vulnerable to attacks. In this paper, we develop a novel attack for WRSN through Denial of Charge (DoC) aiming at maximizing destructiveness. At first, we form a generalized on-demand charging model, which provides fundamental basis for designing charging attacks. Then a request prediction method (RPM) is introduced for predicting the emergences of charging requests. Afterwards, a Collaborative DoC attacking algorithm (CoDoC) is developed, which tempers/modifies and generates fake charging requests, yielding normal nodes exhausted. Finally, to demonstrate the outperformed features of CoDoC, extensive simulations and test-bed experiments are conducted. The results show that, CoDoC outperforms in making sensor exhausted as well as causing missing events.
Fuzzy logic in control systems: fuzzy logic controller. I.
An introduction to ROC analysis Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
A communication robot in a shopping mall This paper reports our development of a communication robot for use in a shopping mall to provide shopping information, offer route guidance, and build rapport. In the development, the major difficulties included sensing human behaviors, conversation in a noisy daily environment, and the needs of unexpected miscellaneous knowledge in the conversation. We chose a networkrobot system approach, where a single robot's poor sensing capability and knowledge are supplemented by ubiquitous sensors and a human operator. The developed robot system detects a person with floor sensors to initiate interaction, identifies individuals with radio-frequency identification (RFID) tags, gives shopping information while chatting, and provides route guidance with deictic gestures. The robotwas partially teleoperated to avoid the difficulty of speech recognition as well as to furnish a new kind of knowledge that only humans can flexibly provide. The information supplied by a human operator was later used to increase the robot's autonomy. For 25 days in a shopping mall, we conducted a field trial and gathered 2642 interactions. A total of 235 participants signed up to use RFID tags and, later, provided questionnaire responses. The questionnaire results are promising in terms of the visitors' perceived acceptability as well as the encouragement of their shopping activities. The results of the teleoperation analysis revealed that the amount of teleoperation gradually decreased, which is also promising.
Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Rapid arm-reaching movements serve as an excellent test bed for any theory about trajectory formation. How are these movements planned? A minimum acceleration criterion has been examined in the past, and the solution obtained, based on the Euler-Poisson equation, failed to predict that the hand would begin and end the movement at rest (i.e., with zero acceleration). Therefore, this criterion was rejected in favor of the minimum jerk, which was proved to be successful in describing many features of human movements. This letter follows an alternative approach and solves the minimum acceleration problem with constraints using Pontryagin's minimum principle. We use the minimum principle to obtain minimum acceleration trajectories and use the jerk as a control signal. In order to find a solution that does not include nonphysiological impulse functions, constraints on the maximum and minimum jerk values are assumed. The analytical solution provides a three-phase piecewise constant jerk signal (bang-bang control) where the magnitude of the jerk and the two switching times depend on the magnitude of the maximum and minimum available jerk values. This result fits the observed trajectories of reaching movements and takes into account both the extrinsic coordinates and the muscle limitations in a single framework. The minimum acceleration with constraints principle is discussed as a unifying approach for many observations about the neural control of movements.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
A robust medical image watermarking against salt and pepper noise for brain MRI images. The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. During the transmission of medical images between hospitals or specialists through the network, the main priority is to protect a patient's documents against any act of tampering by unauthorised individuals. Because of this, there is a need for medical image authentication scheme to enable proper diagnosis on patient. In addition, medical images are also susceptible to salt and pepper impulse noise through the transmission in communication channels. This noise may also be intentionally used by the invaders to corrupt the embedded watermarks inside the medical images. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this work addresses the issue of designing a new watermarking method that can withstand high density of salt and pepper noise for brain MRI images. For this purpose, combination of a spatial domain watermarking method, channel coding and noise filtering schemes are used. The region of non-interest (RONI) of MRI images from five different databases are used as embedding area and electronic patient record (EPR) is considered as embedded data. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER).
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
Autoencoding Evolutionary Search With Learning Across Heterogeneous Problems. To enhance the search performance of evolutionary algorithms, reusing knowledge captured from past optimization experiences along the search process has been proposed in the literature, and demonstrated much promise. In the literature, there are generally three types of approaches for reusing knowledge from past search experiences, namely exact storage and reuse of past solutions, the reuse of mod...
Multiobjective Optimization Models for Locating Vehicle Inspection Stations Subject to Stochastic Demand, Varying Velocity and Regional Constraints Deciding an optimal location of a transportation facility and automotive service enterprise is an interesting and important issue in the area of facility location allocation (FLA). In practice, some factors, i.e., customer demands, allocations, and locations of customers and facilities, are changing, and thus, it features with uncertainty. To account for this uncertainty, some researchers have addressed the stochastic time and cost issues of FLA. A new FLA research issue arises when decision makers want to minimize the transportation time of customers and their transportation cost while ensuring customers to arrive at their desired destination within some specific time and cost. By taking the vehicle inspection station as a typical automotive service enterprise example, this paper presents a novel stochastic multiobjective optimization to address it. This work builds two practical stochastic multiobjective programs subject to stochastic demand, varying velocity, and regional constraints. A hybrid intelligent algorithm integrating stochastic simulation and multiobjective teaching-learning-based optimization algorithm is proposed to solve the proposed programs. This approach is applied to a real-world location problem of a vehicle inspection station in Fushun, China. The results show that this is able to produce satisfactory Pareto solutions for an actual vehicle inspection station location problem.
Intrinsic dimension estimation: Advances and open problems. •The paper reviews state-of-the-art of the methods of Intrinsic Dimension (ID) Estimation.•The paper defines the properties that an ideal ID estimator should have.•The paper reviews, under the above mentioned framework, the major ID estimation methods underlining their advances and the open problems.
Alignment-Supervised Bidimensional Attention-Based Recursive Autoencoders for Bilingual Phrase Representation. Exploiting semantic interactions between the source and target linguistic items at different levels of granularity is crucial for generating compact vector representations for bilingual phrases. To achieve this, we propose alignment-supervised bidimensional attention-based recursive autoencoders (ABattRAE) in this paper. ABattRAE first individually employs two recursive autoencoders to recover hierarchical tree structures of bilingual phrase, and treats the subphrase covered by each node on the tree as a linguistic item. Unlike previous methods, ABattRAE introduces a bidimensional attention network to measure the semantic matching degree between linguistic items of different languages, which enables our model to integrate information from all nodes by dynamically assigning varying weights to their corresponding embeddings. To ensure the accuracy of the generated attention weights in the attention network, ABattRAE incorporates word alignments as supervision signals to guide the learning procedure. Using the general stochastic gradient descent algorithm, we train our model in an end-to-end fashion, where the semantic similarity of translation equivalents is maximized while the semantic similarity of nontranslation pairs is minimized. Finally, we incorporate a semantic feature based on the learned bilingual phrase representations into a machine translation system for better translation selection. Experimental results on NIST Chinese–English and WMT English–German test sets show that our model achieves substantial improvements of up to 2.86 and 1.09 BLEU points over the baseline, respectively. Extensive in-depth analyses demonstrate the superiority of our model in learning bilingual phrase embeddings.
Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization Recently, dynamic optimization has received much attention from the swarm and evolutionary computation community. However, few studies have investigated data-driven evolutionary dynamic optimization, and most algorithms for evolutionary dynamic optimization are based on analytical mathematical functions. In this paper, we investigate data-driven evolutionary dynamic optimization. First, we develop a surrogate-assisted evolutionary framework for solving data-driven dynamic optimization problems (DD-DOPs). Second, we employ a benchmark based on the typical dynamic optimization problems set in order to verify the performance of the proposed framework. The experimental results demonstrate that the proposed framework is effective for solving DD-DOPs.
Biobjective Task Scheduling for Distributed Green Data Centers The industry of data centers is the fifth largest energy consumer in the world. Distributed green data centers (DGDCs) consume 300 billion kWh per year to provide different types of heterogeneous services to global users. Users around the world bring revenue to DGDC providers according to actual quality of service (QoS) of their tasks. Their tasks are delivered to DGDCs through multiple Internet service providers (ISPs) with different bandwidth capacities and unit bandwidth price. In addition, prices of power grid, wind, and solar energy in different GDCs vary with their geographical locations. Therefore, it is highly challenging to schedule tasks among DGDCs in a high-profit and high-QoS way. This work designs a multiobjective optimization method for DGDCs to maximize the profit of DGDC providers and minimize the average task loss possibility of all applications by jointly determining the split of tasks among multiple ISPs and task service rates of each GDC. A problem is formulated and solved with a simulated-annealing-based biobjective differential evolution (SBDE) algorithm to obtain an approximate Pareto-optimal set. The method of minimum Manhattan distance is adopted to select a knee solution that specifies the Pareto-optimal task service rates and task split among ISPs for DGDCs in each time slot. Real-life data-based experiments demonstrate that the proposed method achieves lower task loss of all applications and larger profit than several existing scheduling algorithms. Note to Practitioners-This work aims to maximize the profit and minimize the task loss for DGDCs powered by renewable energy and smart grid by jointly determining the split of tasks among multiple ISPs. Existing task scheduling algorithms fail to jointly consider and optimize the profit of DGDC providers and QoS of tasks. Therefore, they fail to intelligently schedule tasks of heterogeneous applications and allocate infrastructure resources within their response time bounds. In this work, a new method that tackles drawbacks of existing algorithms is proposed. It is achieved by adopting the proposed SBDE algorithm that solves a multiobjective optimization problem. Simulation experiments demonstrate that compared with three typical task scheduling approaches, it increases profit and decreases task loss. It can be readily and easily integrated and implemented in real-life industrial DGDCs. The future work needs to investigate the real-time green energy prediction with historical data and further combine prediction and task scheduling together to achieve greener and even net-zero-energy data centers.
Investigating surrogate-assisted cooperative coevolution for large-Scale global optimization. Problems involving large-scale global optimization (LSGO) are becoming more and more frequent. For this reason, the last few years have seen an increasing number of researchers interested in improving optimization metaheuristics in such a way as to cope effectively with high-dimensional search domains. Among the techniques to enhance scalability, one of the most studied is Cooperative Coevolution (CC), an effective divide-and-conquer strategy for decomposing a large-scale problem into lower-dimensional subcomponents. However, despite the progress made in the LSGO field, one of such optimizations can still require a very high number of objective function evaluations. Therefore, when the evaluation of a candidate solution requires complex calculations, LSGO can become a challenging task. Nonetheless, to date few studies have investigated the application of optimization metaheuristics to objective functions that are simultaneously high-dimensional and computationally significant. To address such a research issue, this article investigates a surrogate-assisted CC (SACC) optimizer, in which fitness surrogates are exploited within the low-dimensional subcomponents resulting from the problem decomposition. The SACC algorithm is investigated on a rich test-bed composed of 1000-dimensional problems. According to the results, SACC is able to significantly boost the convergence of the CC optimizer, leading in many cases to a relevant computational gain.
Surrogate-assisted hierarchical particle swarm optimization. Meta-heuristic algorithms, which require a large number of fitness evaluations before locating the global optimum, are often prevented from being applied to computationally expensive real-world problems where one fitness evaluation may take from minutes to hours, or even days. Although many surrogate-assisted meta-heuristic optimization algorithms have been proposed, most of them were developed for solving expensive problems up to 30 dimensions. In this paper, we propose a surrogate-assisted hierarchical particle swarm optimizer for high-dimensional problems consisting of a standard particle swarm optimization (PSO) algorithm and a social learning particle swarm optimization algorithm (SL-PSO), where the PSO and SL-PSO work together to explore and exploit the search space, and simultaneously enhance the global and local performance of the surrogate model. Our experimental results on seven benchmark functions of dimensions 30, 50 and 100 demonstrate that the proposed method is competitive compared with the state-of-the-art algorithms under a limited computational budget.
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator This paper discusses many of the key implementationdecisions, including the choice of triangulation algorithmsand data structures, the steps taken to create and refine amesh, a number of issues that arise in Ruppert's algorithm,and the use of exact arithmetic.
A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP
Who is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptance of Robots
Convexity of the cost functional in an optimal control problem for a class of positive switched systems. This paper deals with the optimal control of a class of positive switched systems. The main feature of this class is that switching alters only the diagonal entries of the dynamic matrix. The control input is represented by the switching signal itself and the optimal control problem is that of minimizing a positive linear combination of the final state variable. First, the switched system is embedded in the class of bilinear systems with control variables living in a simplex, for each time point. The main result is that the cost is convex with respect to the control variables. This ensures that any Pontryagin solution is optimal. Algorithms to find the optimal solution are then presented and an example, taken from a simplified model for HIV mutation mitigation is discussed.
An improved E-DRM scheme for mobile environments. With the rapid development of information science and network technology, Internet has become an important platform for the dissemination of digital content, which can be easily copied and distributed through the Internet. Although convenience is increased, it causes significant damage to authors of digital content. Digital rights management system (DRM system) is an access control system that is designed to protect digital content and ensure illegal users from maliciously spreading digital content. Enterprise Digital Rights Management system (E-DRM system) is a DRM system that prevents unauthorized users from stealing the enterprise's confidential data. User authentication is the most important method to ensure digital rights management. In order to verify the validity of user, the biometrics-based authentication protocol is widely used due to the biological characteristics of each user are unique. By using biometric identification, it can ensure the correctness of user identity. In addition, due to the popularity of mobile device and Internet, user can access digital content and network information at anytime and anywhere. Recently, Mishra et al. proposed an anonymous and secure biometric-based enterprise digital rights management system for mobile environment. Although biometrics-based authentication is used to prevent users from being forged, the anonymity of users and the preservation of digital content are not ensured in their proposed system. Therefore, in this paper, we will propose a more efficient and secure biometric-based enterprise digital rights management system with user anonymity for mobile environments.
Learning Feature Recovery Transformer for Occluded Person Re-Identification One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its k-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2% Rank- 1 accuracy and 7.2% mAP scores on the challenging Occluded-Duke dataset.
1.071456
0.066667
0.066667
0.066667
0.066667
0.066667
0.036667
0.014704
0.000053
0
0
0
0
0
Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering. •A coarse to refined network (C2RNet) is proposed for image forgery detection.•C2RNet is a progressive process deep neural network.•We replace the patch-level CNN with image-level CNN for time efficiency.•The proposed method achieves promising detection results.
An Effective Method for Detecting Double JPEG Compression With the Same Quantization Matrix Detection of double JPEG compression plays an important role in digital image forensics. Some successful approaches have been proposed to detect double JPEG compression when the primary and secondary compressions have different quantization matrices. However, detecting double JPEG compression with the same quantization matrix is still a challenging problem. In this paper, an effective error-based statistical feature extraction scheme is presented to solve this problem. First, a given JPEG file is decompressed to form a reconstructed image. An error image is obtained by computing the differences between the inverse discrete cosine transform coefficients and pixel values in the reconstructed image. Two classes of blocks in the error image, namely, rounding error block and truncation error block, are analyzed. Then, a set of features is proposed to characterize the statistical differences of the error blocks between single and double JPEG compressions. Finally, the support vector machine classifier is employed to identify whether a given JPEG image is doubly compressed or not. Experimental results on three image databases with various quality factors have demonstrated that the proposed method can significantly outperform the state-of-the-art method.
Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Nowadays, it is extremely simple to manipulate the content of digital images without leaving perceptual clues due to the availability of powerful image editing tools. Image tampering can easily devastate the credibility of images as a medium for personal authentication and a record of events. With the daily upload of millions of pictures to the Internet and the move towards paperless workplaces and e-government services, it becomes essential to develop automatic tampering detection techniques with reliable results. This paper proposes an enhanced technique for blind detection of image splicing. It extracts and combines Markov features in spatial and Discrete Cosine Transform domains to detect the artifacts introduced by the tampering operation. To reduce the computational complexity due to high dimensionality, Principal Component Analysis is used to select the most relevant features. Then, an optimized support vector machine with radial-basis function kernel is built to classify the image as being tampered or authentic. The proposed technique is evaluated on a publicly available image splicing dataset using cross validation. The results showed that the proposed technique outperforms the state-of-the-art splicing detection methods.
Exposing Splicing Forgery in Realistic Scenes Using Deep Fusion Network Creating fake pictures becomes more accessible than ever, but tampered images are more harmful because the Internet propagates misleading information so rapidly. Reliable digital forensic tools are therefore strongly needed. Traditional methods based on hand-crafted features are only useful when tampered images meet specific requirements, and the low detection accuracy prevents them from using in realistic scenes. Recently proposed learning-based methods improve the accuracy, but neural networks usually require to be trained on large labeled databases. This is because commonly used deep and narrow neural networks extract high-level visual features and neglect low-level features where there are abundant forensic cues. To solve the problem, we propose a novel neural network which concentrates on learning low-level forensic features and consequently can detect splicing forgery although the network is trained on a small automatically generated splicing dataset. Furthermore, our fusion network can be easily extended to support new forensic hypotheses without any changes in the network structure. The experimental results show that our method achieves state-of-the-art performance on several benchmark datasets and shows superior generalization capability: our fusion network can work very well even it never sees any pictures in test databases. Therefore, our method can detect splicing forgery in realistic scenes.
Feature Pyramid Network For Diffusion-Based Image Inpainting Detection Inpainting is a technique that can be employed to tamper with the content of images. In this paper, we propose a novel forensics analysis method for diffusion-based image inpainting based on a feature pyramid network (FPN). Our method features an improved u-shaped net to migrate FPN for multi-scale inpainting feature extraction. In addition, a stagewise weighted cross-entropy loss function is designed to take advantage of both the general loss and the weighted loss to improve the prediction rate of inpainted regions of all sizes. The experimental results demonstrate that the proposed method outperforms several state-of-the-art methods, especially when the size of the inpainted region is small. (c) 2021 Elsevier Inc. All rights reserved.
Multi-Scale Analysis Strategies in PRNU-Based Tampering Localization. Accurate unsupervised tampering localization is one of the most challenging problems in digital image forensics. In this paper, we consider a photo response non-uniformity analysis and focus on the detection of small forgeries. For this purpose, we adopt a recently proposed paradigm of multi-scale analysis and discuss various strategies for its implementation. First, we consider a multi-scale fusion approach, which involves combination of multiple candidate tampering probability maps into a single, more reliable decision map. The candidate maps are obtained with sliding windows of various sizes and thus allow to exploit the benefits of both the small- and large-scale analyses. We extend this approach by introducing modulated threshold drift and content-dependent neighborhood interactions, leading to improved localization performance with superior shape representation and easier detection of small forgeries. We also discuss two novel alternative strategies: a segmentation-guided approach, which contracts the decision statistic to a central segment within each analysis window and an adaptive-window approach, which dynamically chooses analysis window size for each location in the image. We perform extensive experimental evaluation on both synthetic and realistic forgeries and discuss in detail practical aspects of parameter selection. Our evaluation shows that the multi-scale analysis leads to significant performance improvement compared with the commonly used single-scale approach. The proposed multi-scale fusion strategy delivers stable results with consistent improvement in various test scenarios.
A Bayesian-MRF Approach for PRNU-Based Image Forgery Detection Graphics editing programs of the last generation provide ever more powerful tools, which allow for the retouching of digital images leaving little or no traces of tampering. The reliable detection of image forgeries requires, therefore, a battery of complementary tools that exploit different image properties. Techniques based on the photo-response non-uniformity (PRNU) noise are among the most valuable such tools, since they do not detect the inserted object but rather the absence of the camera PRNU, a sort of camera fingerprint, dealing successfully with forgeries that elude most other detection strategies. In this paper, we propose a new approach to detect image forgeries using sensor pattern noise. Casting the problem in terms of Bayesian estimation, we use a suitable Markov random field prior to model the strong spatial dependences of the source, and take decisions jointly on the whole image rather than individually for each pixel. Modern convex optimization techniques are then adopted to achieve a globally optimal solution and the PRNU estimation is improved by resorting to nonlocal denoising. Large-scale experiments on simulated and real forgeries show that the proposed technique largely improves upon the current state of the art, and that it can be applied with success to a wide range of practical situations.
Hiding Traces of Resampling in Digital Images Resampling detection has become a standard tool for forensic analyses of digital images. This paper presents new variants of image transformation operations which are undetectable by resampling detectors based on periodic variations in the residual signal of local linear predictors in the spatial domain. The effectiveness of the proposed method is supported with evidence from experiments on a large image database for various parameter settings. We benchmark detectability as well as the resulting image quality against conventional linear and bicubic interpolation and interpolation with a sinc kernel. These early findings on ldquocounter-forensicrdquo techniques put into question the reliability of known forensic tools against smart counterfeiters in general, and might serve as benchmarks and motivation for the development of much improved forensic techniques.
Digital games in the classroom? A contextual approach to teachers' adoption intention of digital games in formal education Interest in using digital games for formal education has steadily increased in the past decades. When it comes to actual use, however, the uptake of games in the classroom remains limited. Using a contextual approach, the possible influence of factors on a school (N=60) and teacher (N=409) level are analyzed. Findings indicate that there is no effect of factors on the school level whereas on a teacher level, a model is tested, explaining 68% of the variance in behavioral intention, in which curriculum-relatedness and previous experience function as crucial determinants of the adoption intention. These findings add to previous research on adoption determinants related to digital games in formal education. Furthermore, they provide insight into the relations between different adoption determinants and their association with behavioral intention.
Applying Interactive Open Learner Models to Learning Technical Terminology Our work explores an interactive open learner modelling (IOLM) approach where learner diagnosis is considered as an interactive process involving both a computer system and a learner that play symmetrical (to a certain extent) roles and construct together the learner model. The paper presents an application of IOLM for diagnosing and fostering a learner's conceptual understanding in a terminological domain. Based on an experimental study, we discuss computational and educational benefits of IOLM in terms of improving the quality of the obtained learner model and fostering reflective thinking.
Stability analysis of switched systems using variational principles: An introduction Many natural and artificial systems and processes encompass several modes of operation with a different dynamical behavior in each mode. Switched systems provide a suitable mathematical model for such processes, and their stability analysis is important for both theoretical and practical reasons. We review a specific approach for stability analysis based on using variational principles to characterize the ''most unstable'' solution of the switched system. We also discuss a link between the variational approach and the stability analysis of switched systems using Lie-algebraic considerations. Both approaches require the use of sophisticated tools from many different fields of applied mathematics. The purpose of this paper is to provide an accessible and self-contained review of these topics, emphasizing the intuitive and geometric underlying ideas.
A review on interval type-2 fuzzy logic applications in intelligent control. A review of the applications of interval type-2 fuzzy logic in intelligent control has been considered in this paper. The fundamental focus of the paper is based on the basic reasons for using type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this review, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy controllers. We also mention alternative approaches to designing type-2 fuzzy controllers without optimization techniques.
A robust medical image watermarking against salt and pepper noise for brain MRI images. The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. During the transmission of medical images between hospitals or specialists through the network, the main priority is to protect a patient's documents against any act of tampering by unauthorised individuals. Because of this, there is a need for medical image authentication scheme to enable proper diagnosis on patient. In addition, medical images are also susceptible to salt and pepper impulse noise through the transmission in communication channels. This noise may also be intentionally used by the invaders to corrupt the embedded watermarks inside the medical images. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this work addresses the issue of designing a new watermarking method that can withstand high density of salt and pepper noise for brain MRI images. For this purpose, combination of a spatial domain watermarking method, channel coding and noise filtering schemes are used. The region of non-interest (RONI) of MRI images from five different databases are used as embedding area and electronic patient record (EPR) is considered as embedded data. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER).
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.076444
0.08
0.08
0.08
0.08
0.04
0.019667
0.000167
0
0
0
0
0
0
A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem. •An improved discrete water cycle algorithm is presented for the TSP and ATSP.•This version includes inclination feature, enhancing exploration and exploitation.•33 datasets of the TSP/ATSP have been used for the experimentation.•Results have been compared with six different techniques.•Friedman's and Holm's post hoc statistical tests have been conducted.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Harmony search algorithm for solving Sudoku Harmony search (HS) algorithm was applied to solving Sudoku puzzle. The HS is an evolutionary algorithm which mimics musicians' behaviors such as random play, memory-based play, and pitch-adjusted play when they perform improvisation. Sudoku puzzles in this study were formulated as an optimization problem with number-uniqueness penalties. HS could successfully solve the optimization problem after 285 function evaluations, taking 9 seconds. Also, sensitivity analysis of HS parameters was performed to obtain a better idea of algorithm parameter values.
DEC: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. Identification of models from input-output data essentially requires estimation of appropriate cluster centers. In this paper, a new online evolving clustering approach for streaming data is proposed. Unlike other approaches that consider either the data density or distance from existing cluster centers, this approach uses cluster weight and distance before generating new clusters. To capture the dynamics of the data stream, the cluster weight is defined in both data and time space in such a way that it decays exponentially with time. It also applies concepts from computational geometry to determine the neighborhood information while forming clusters. A distinction is made between core and noncore clusters to effectively identify the real outliers. The approach efficiently estimates cluster centers upon which evolving Takagi-Sugeno models are developed. The experimental results with developed models show that the proposed approach attains results at par or better than existing approaches and significantly reduces the computational overhead, which makes it suitable for real-time applications.
An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). GWO is employed for solving optimization problems focused on the minimization of discrete-time objective functions defined as the weighted sum of the absolute value of the control error and of the squared output sensitivity function, and the vector variable consists of the tuning parameters of the T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of the process, solving these optimization problems is important as it leads to fuzzy control systems with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning approach. GWO algorithms applied with this regard are formulated in easily understandable terms for both vector and scalar operations, and discussions on stability, convergence, and parameter settings are offered. The controlled processes referred to in the course of this paper belong to a family of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead zone static nonlinearity. Experimental results concerning the angular position control of a laboratory servo system are included for validating the proposed method.
Evolutionary Wall-Following Hexapod Robot Using Advanced Multiobjective Continuous Ant Colony Optimized Fuzzy Controller. This paper proposes an evolutionary wall-following hexapod robot, where a new multiobjective evolutionary fuzzy control approach is proposed to control both walking orientation and speed of a hexapod robot for a wall-following task. According to the measurements of four distance sensors, a fuzzy controller (FC) controls the walking speed of the robot by changing the common swing angles of its six ...
Fuzzy Logic in Dynamic Parameter Adaptation of Harmony Search Optimization for Benchmark Functions and Fuzzy Controllers. Nowadays the use of fuzzy logic has been increasing in popularity, and this is mainly due to the inference mechanism that allows simulating human reasoning in knowledge-based systems. The main contribution of this work is using the concepts of fuzzy logic in a method for dynamically adapting the main parameters of the harmony search algorithm during execution. Dynamical adaptation of parameters in metaheuristics has been shown to improve performance and accuracy in a wide range of applications. For this reason, we propose and approach for fuzzy adaptation of parameters in harmony search. Two case studies are considered for testing the proposed approach, the optimization of mathematical functions, which are unimodal, multimodal, hybrid, and composite functions and a control problem without noise and when noise is considered. A statistical comparison between the harmony search algorithm and the fuzzy harmony search algorithm is presented to verify the advantages of the proposed approach.
Finite-Time Input-to-State Stability and Applications to Finite-Time Control Design This paper extends the well-known concept, Sontag's input-to-state stability (ISS), to finite-time control problems. In other words, a new concept, finite-time input-to-state stability (FTISS), is proposed and then is applied to both the analysis of finite-time stability and the design of finite-time stabilizing feedback laws of control systems. With finite-time stability, nonsmoothness has to be considered, and serious technical challenges arise in the design of finite-time controllers and the stability analysis of the closed-loop system. It is found that FTISS plays an important role as the conventional ISS in the context of asymptotic stability analysis and smooth feedback stabilization. Moreover, a robust adaptive controller is proposed to handle nonlinear systems with parametric and dynamic uncertainties by virtue of FTISS and related arguments.
Adam: A Method for Stochastic Optimization. We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems In this paper, we introduce some analysis tools for switched and hybrid systems. We first present work on stability analysis. We introduce multiple Lyapunov functions as a tool for analyzing Lyapunov stability and use iterated function systems (IFS) theory as a tool for Lagrange stability. We also discuss the case where the switched systems are indexed by an arbitrary compact set. Finally, we extend Bendixson's theorem to the case of Lipschitz continuous vector fields, allowing limit cycle analysis of a class of "continuous switched" systems.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
Software-Defined Networking: A Comprehensive Survey The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms - with a focus on aspects such as resiliency, scalability, performance, security, and dependability - as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.
Deep Learning in Mobile and Wireless Networking: A Survey. The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.24
0.24
0.24
0.24
0.24
0.24
0.12
0.013333
0
0
0
0
0
0
Neural Network and Jacobian Method for Solving the Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature The solution of the inverse kinematics problem of soft manipulators is essential to generate paths in the task space. The inverse kinematics problem of constant curvature or piecewise constant curvature manipulators has already been solved by using different methods, which include closed-form analytical approaches and iterative methods based on the Jacobian method. On the other hand, the inverse kinematics problem of nonconstant curvature manipulators remains unsolved. This study represents one of the first attempts in this direction. It presents both a model-based method and a supervised learning method to solve the inverse statics of nonconstant curvature soft manipulators. In particular, a Jacobian-based method and a feedforward neural network are chosen and tested experimentally. A comparative analysis has been conducted in terms of accuracy and computational time.
Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion. This paper presents and investigates the application of Zhang neural network (ZNN) activated by Li function to kinematic control of redundant robot manipulators via time-varying Jacobian matrix pseudoinversion. That is, by using Li activation function and by computing the time-varying pseudoinverse of the Jacobian matrix (of the robot manipulator), the resultant ZNN model is applied to redundant-manipulator kinematic control. Note that there are nine novelties and differences of ZNN from the conventional gradient neural network in the research methodology. More importantly, such a Li-function activated ZNN (LFAZNN) model has the property of finite-time convergence (showing its feasibility to redundant-manipulator kinematic control). Simulation results based on a four-link planar robot manipulator and a PA10 robot manipulator further demonstrate the effectiveness of the presented LFAZNN model, as well as show the LFAZNN application prospect.
Kinematic model to control the end-effector of a continuum robot for multi-axis processing This paper presents a novel kinematic approach for controlling the end-effector of a continuum robot for in-situ repair/inspection in restricted and hazardous environments. Forward and inverse kinematic (IK) models have been developed to control the last segment of the continuum robot for performing multi-axis processing tasks using the last six Degrees of Freedom (DoF). The forward kinematics (FK) is proposed using a combination of Euler angle representation and homogeneous matrices. Due to the redundancy of the system, different constraints are proposed to solve the IK for different cases; therefore, the IK model is solved for bending and direction angles between (-pi/2 to + pi/2) radians. In addition, a novel method to calculate the Jacobian matrix is proposed for this type of hyper-redundant kinematics. The error between the results calculated using the proposed Jacobian algorithm and using the partial derivative equations of the FK map (with respect to linear and angular velocity) is evaluated. The error between the two models is found to be insignificant, thus, the Jacobian is validated as a method of calculating the IK for six DoF.
Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks.
Robust Zeroing Neural-Dynamics and Its Time-Varying Disturbances Suppression Model Applied to Mobile Robot Manipulators. This paper proposes a novel robust zeroing neural-dynamics (RZND) approach as well as its associated model for solving the inverse kinematics problem of mobile robot manipulators. Unlike existing works based on the assumption that neural network models are free of external disturbances, four common forms of time-varying disturbances suppressed by the proposed RZND model are investigated in this pa...
A New Inequality-Based Obstacle-Avoidance MVN Scheme and Its Application to Redundant Robot Manipulators This paper proposes a new inequality-based criterion/constraint with its algorithmic and computational details for obstacle avoidance of redundant robot manipulators. By incorporating such a dynamically updated inequality constraint and the joint physical constraints (such as joint-angle limits and joint-velocity limits), a novel minimum-velocity-norm (MVN) scheme is presented and investigated for robotic redundancy resolution. The resultant obstacle-avoidance MVN scheme resolved at the joint-velocity level is further reformulated as a general quadratic program (QP). Two QP solvers, i.e., a simplified primal–dual neural network based on linear variational inequalities (LVI) and an LVI-based numerical algorithm, are developed and applied for online solution of the QP problem as well as the inequality-based obstacle-avoidance MVN scheme. Simulative results that are based on PA10 robot manipulator and a six-link planar robot manipulator in the presence of window-shaped and point obstacles demonstrate the efficacy and superiority of the proposed obstacle-avoidance MVN scheme. Moreover, experimental results of the proposed MVN scheme implemented on the practical six-link planar robot manipulator substantiate the physical realizability and effectiveness of such a scheme for obstacle avoidance of redundant robot manipulator.
Event-Triggered Finite-Time Control for Networked Switched Linear Systems With Asynchronous Switching. This paper is concerned with the event-triggered finite-time control problem for networked switched linear systems by using an asynchronous switching scheme. Not only the problem of finite-time boundedness, but also the problem of input-output finite-time stability is considered in this paper. Compared with the existing event-triggered results of the switched systems, a new type of event-triggered...
Tabu Search - Part I
Joint Optimization of Radio and Computational Resources for Multicell Mobile-Edge Computing Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources􀀀the transmit precoding matrices of the MUs􀀀and the computational resources􀀀the CPU cycles/second assigned by the cloud to each MU􀀀in order to minimize the overall users’ energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to compute the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. We then show that the proposed algorithmic framework naturally leads to a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz In this paper, large-scale fading and temporal fading characteristics of the industrial radio channel at 900, 2400, and 5200 MHz are determined. In contrast to measurements performed in houses and in office buildings, few attempts have been made until now to model propagation in industrial environments. In this paper, the industrial environment is categorized into different topographies. Industrial topographies are defined separately for large-scale and temporal fading, and their definition is based upon the specific physical characteristics of the local surroundings affecting both types of fading. Large-scale fading is well expressed by a one-slope path-loss model and excellent agreement with a lognormal distribution is obtained. Temporal fading is found to be Ricean and Ricean K-factors have been determined. Ricean K-factors are found to follow a lognormal distribution.
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0.1
0.018182
0
0
0
0
0
0
0
A Novel Zero-Watermarking Scheme With Enhanced Distinguishability And Robustness For Volumetric Medical Imaging The authenticity and copyright protection of volumetric medical images has become extremely important when these images are distributed online for diagnosis and education purpose. Compared to the authenticity and copyright protection of conventional images, there are two additional challenges for protecting the volumetric medical images. On one hand, the content of the protected medical images must be distortion-free to ensure unbiased diagnosis. On the other hand, it requires enhanced distinguishability to avoid misclassification of non-protected images into the protected set because volumetric medical images of different persons in the same modality share similar visual structures. To address these issues, a novel multi-slice feature based zero-watermarking scheme with enhanced distinguishability and robustness for volumetric medical imaging is proposed. In this scheme, ring statistics are deployed to guarantee both the watermarking distinguishability and robustness. In addition, an intra-slice variation based mechanism is designed to further enhance the watermarking distinguishability. Finally, a logistic-logistic system based chaotic map is used to ensure the watermarking security. Our experimental results demonstrate that the proposed scheme not only satisfies the lossless quality requirement but also ensures the watermarking distinguishability and robustness, which outperforms the state-of-the-art schemes.
An attention-based decision fusion scheme for multimedia information retrieval In this paper, we proposed a novel decision fusion scheme based on the psychological observations on human beings' visual and aural attention characteristics, which combines a set of decisions obtained from different data sources or features to generate better decision result. Based on studying of the “heterogeneity” and “monotonicity” properties of certain types of decision fusion issues, a set of so-called Attention Fusion Functions are devised, which are able to obtain more reasonable fusion results than typical fusion schemes. Preliminary experiment on image retrieval shows the effectiveness of the proposed fusion scheme.
Subjective and Objective Video Quality Assessment of 3D Synthesized Views With Texture/Depth Compression Distortion The quality assessment for synthesized video with texture/depth compression distortion is important for the design, optimization, and evaluation of the multi-view video plus depth (MVD)-based 3D video system. In this paper, the subjective and objective studies for synthesized view assessment are both conducted. First, a synthesized video quality database with texture/depth compression distortion i...
Semi-automatic synthetic depth map generation for video using random walks We present a method for easily generating depth maps from monoscopic (i.e. “2D”) video footage in order to convert them into stereoscopic, or “3D”, footage. Our method uses user-defined strokes for a number of keyframes in the original footage and interpolates between the keyframes to provide a sparse labelling for each frame. We then apply the Random Walks algorithm to the footage to provide depth estimates based on the input provided by the user. These depth maps can then be used to generate novel views through depth-based image rendering.
Novel robust zero-watermarking scheme for digital rights management of 3D videos. Digital watermarking is an effective technique for the digital rights management (DRM) of three-dimensional (3D) videos, which is still a crucial issue in the field of 3D televisions. The current watermarking schemes for 3D videos can be classified into two main categories: One embeds watermarks into 2D video frames, and the other embeds watermarks into depth maps. The former causes irreversible distortions to synthesized 3D videos whereas the latter is insufficiently robust against some of normal video attacks. Moreover, because these watermarking schemes only embed watermarks into either 2D video frames or depth maps of 3D videos, none of them can protect the copyrights of these two parts simultaneously and independently. To address those problems, a novel robust zero-watermarking scheme for the DRM of 3D videos is proposed in this study. In the proposed scheme, master shares are first generated by extracting features from temporally informative representative images (TIRIs) of both the 2D video frames and depth maps. Then, ownership shares, which denote the relationships between copyright information and master shares, are generated based on the Visual Secret Sharing (VSS) scheme and stored for copyright identification. Finally, copyright ownerships are identified by stacking master shares and ownership shares. The experiment results demonstrate that the proposed scheme outperforms the current state-of-the-art watermarking schemes because it does not cause any distortion to the synthesized 3D videos, exhibits strong robustness against various video attacks, and protects the copyrights of 2D video frames and depth maps of 3D videos simultaneously and independently. A robust lossless zero-watermarking scheme for the digital rights management (DRM) of DIBR-based 3D videos is proposed.The proposed scheme is based on Visual Secret Sharing and fully utilizes the robust content-based features of both 2D frames and depth maps of 3D videos.The copyrights of 2D video frames and depth maps of 3D videos are protected simultaneously and independently by designing a flexible copyright identification mechanism to fully satisfy the DRM requirements of different DIBR-based 3D videos.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Massive MIMO for next generation wireless systems Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Communication theory of secrecy systems THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Implementing Vehicle Routing Algorithms
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
Robust Sparse Linear Discriminant Analysis Linear discriminant analysis (LDA) is a very popular supervised feature extraction method and has been extended to different variants. However, classical LDA has the following problems: 1) The obtained discriminant projection does not have good interpretability for features. 2) LDA is sensitive to noise. 3) LDA is sensitive to the selection of number of projection directions. In this paper, a novel feature extraction method called robust sparse linear discriminant analysis (RSLDA) is proposed to solve the above problems. Specifically, RSLDA adaptively selects the most discriminative features for discriminant analysis by introducing the l2;1 norm. An orthogonal matrix and a sparse matrix are also simultaneously introduced to guarantee that the extracted features can hold the main energy of the original data and enhance the robustness to noise, and thus RSLDA has the potential to perform better than other discriminant methods. Extensive experiments on six databases demonstrate that the proposed method achieves the competitive performance compared with other state-of-the-art feature extraction methods. Moreover, the proposed method is robust to the noisy data. IEEE
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.1
0.066667
0
0
0
0
0
0
0
0
0
Teleoperation of robot arm with position measurement via angle-pixel characteristic and visual supporting function In this paper, a teleoperation system of a robot arm with position measurement function and visual supporting function is developed. The working robot arm is remotely controlled by the manual operation of the human operator and the autonomous control via visual servo. The visual servo employs the template matching technique. The position measurement is realized using a stereo camera based on the angle-pixel characteristic. The visual supporting function to give the human operator useful information about the teleoperation is also provided. The usefulness of the proposed teleoperation system is confirmed through experiments using an industrial articulated robot arm.
Visual servoing of mobile robots using non-central catadioptric cameras. This paper presents novel contributions on image-based control of a mobile robot using a general catadioptric camera model. A catadioptric camera is usually made up by a combination of a conventional camera and a curved mirror resulting in an omnidirectional sensor capable of providing 360° panoramic views of a scene. Modeling such cameras has been the subject of significant research interest in the computer vision community leading to a deeper understanding of the image properties and also to different models for different types of configurations. Visual servoing applications using catadioptric cameras have essentially been using central cameras and the corresponding unified projection model. So far only in a few cases more general models have been used. In this paper we address the problem of visual servoing using the so-called radial model. The radial model can be applied to many camera configurations and in particular to non-central catadioptric systems with mirrors that are symmetric around an axis coinciding with the optical axis. In this case, we show that the radial model can be used with a non-central catadioptric camera to allow effective image-based visual servoing (IBVS) of a mobile robot. Using this model, which is valid for a large set of catadioptric cameras (central or non-central), new visual features are proposed to control the degrees of freedom of a mobile robot moving on a plane. In addition to several simulation results, a set of experiments was carried out on Robot Operating System (ROS)-based platform which validates the applicability, effectiveness and robustness of the proposed method for image-based control of a non-holonomic robot.
Wireless hybrid visual servoing of omnidirectional wheeled mobile robots In this paper, we propose a new wireless hybrid control algorithm for visual servoing of mobile robots. In particular, the hybrid system is developed using the two autonomous control algorithms, i.e., position-based visual servoing (PBVS) and image-based visual servoing (IBVS). The PBVS algorithm is used for global routing, whereas the IBVS algorithm is used for the fine navigation. It helps in the specific steering towards the desired point for approaching the searched object. The proposed algorithm requires only the desired and actual poses of the mobile robot, and does not need any additional requirements such as the map of the environment or artificial landmarks. For the linearization of output signals, neural network extended Kalman filter is used. Several experimental as well as simulation results are presented in order to show the applicability of the proposed algorithm in the hybrid vision based control of mobile robots.
Teleoperation system for a mobile robot with visual servo mechanism based on automatic template generation In this paper, a teleoperation system for a mobile robot with visual servo mechanism is developed. The teleoperation system has two kinds of motions: rough motion and accurate motion. In the rough motion, the mobile robot is controlled manually. In the accurate motion, it is done autonomously by visual servoing, where the template matching technique is used to realize the visual servoing. The template image is automatically generated by only assigning one pixel of the target object. The usefulness of the developed teleoperation system is evaluated by experimental result for the automatic template generation and the teleoperation.
Service robot system with an informationally structured environment Daily life assistance is one of the most important applications for service robots. For comfortable assistance, service robots must recognize the surrounding conditions correctly, including human motion, the position of objects, and obstacles. However, since the everyday environment is complex and unpredictable, it is almost impossible to sense all of the necessary information using only a robot and sensors attached to it. In order to realize a service robot for daily life assistance, we have been developing an informationally structured environment using distributed sensors embedded in the environment. The present paper introduces a service robot system with an informationally structured environment referred to the ROS-TMS. This system enables the integration of various data from distributed sensors, as well as storage of these data in an on-line database and the planning of the service motion of a robot using real-time information about the surroundings. In addition, we discuss experiments such as detection and fetch-and-give tasks using the developed real environment and robot. Introduction of architecture and components of the ROS-TMS.Integration of various data from distributed sensors for service robot system.Object detection system (ODS) using RGB-D camera.Motion planning for a fetch-and-give task using a wagon and a humanoid robot.Handing over an object to a human using manipulability of both a robot and a human.
Experimental and theoretical analysis of human arm trajectories in 3D movements In this study, experiments of three-dimensional (3D) arm movements have been conducted, and the positions of marks provided on a shoulder, an elbow, and a hand are observed. In addition to the investigation of such trajectories in a 3D space, these trajectories are projected to a sagittal, a frontal, and a transverse planes. Then, specific features in these planes are investigated, and detailed properties of human arm trajectories have been uncovered. Next, kinematical features of a human arm during a movement have been analyzed on the basis of behavior of joint angles. Here, a kinematical arm model with joint redundancy is defined, and the kinematics of the model is reconstructed from the measured trajectories. Subsequently, the trajectories of all joint angles during a movement are obtained using the inverse kinematics, and their properties are analyzed in detail. The result shows that the angular trajectories are remarkably similar to those which are produced under the minimum angular jerk criterion.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
Energy Efficiency Resource Allocation For D2d Communication Network Based On Relay Selection In order to solve the problem of spectrum resource shortage and energy consumption, we put forward a new model that combines with D2D communication and energy harvesting technology: energy harvesting-aided D2D communication network under the cognitive radio (EHA-CRD), where the D2D users harvest energy from the base station and the D2D source communicate with D2D destination by D2D relays. Our goals are to investigate the maximization energy efficiency (EE) of the network by joint time allocation and relay selection while taking into the constraints of the signal-to-noise ratio of D2D and the rates of the Cellular users. During this process, the energy collection time and communication time are randomly allocated. The maximization problem of EE can be divided into two sub-problems: (1) relay selection problem; (2) time optimization problem. For the first sub-problem, we propose a weighted sum maximum algorithm to select the best relay. For the last sub-problem, the EE maximization problem is non-convex problem with time. Thus, by using fractional programming theory, we transform it into a standard convex optimization problem, and we propose the optimization iterative algorithm to solve the convex optimization problem for obtaining the optimal solution. And, the simulation results show that the proposed relay selection algorithm and time optimization algorithm are significantly improved compared with the existing algorithms.
Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries In this paper we propose efficient two-round k-out-of-n oblivious transfer schemes, in which R sends O(k) messages to S, and S sends O(n) messages back to R. The computation cost of R and S is reasonable. The choices of R are unconditionally secure. For the basic scheme, the secrecy of unchosen messages is guaranteed if the Decisional Diffie-Hellman problem is hard. When k=1, our basic scheme is as efficient as the most efficient 1-out-of-n oblivious transfer scheme. Our schemes have the nice property of universal parameters, that is each pair of R and S need neither hold any secret key nor perform any prior setup (initialization). The system parameters can be used by all senders and receivers without any trapdoor specification. Our k-out-of-n oblivious transfer schemes are the most efficient ones in terms of the communication cost, in both rounds and the number of messages. Moreover, one of our schemes can be extended in a straightforward way to an adaptivek-out-of-n oblivious transfer scheme, which allows the receiver R to choose the messages one by one adaptively. In our adaptive-query scheme, S sends O(n) messages to R in one round in the commitment phase. For each query of R, only O(1) messages are exchanged and O(1) operations are performed. In fact, the number k of queries need not be pre-fixed or known beforehand. This makes our scheme highly flexible.
Data-Driven Intelligent Transportation Systems: A Survey For the last two decades, intelligent transportation systems (ITS) have emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choices to travelers. A significant change in ITS in recent years is that much more data are collected from a variety of sources and can be processed into various forms for different stakeholders. The availability of a large amount of data can potentially lead to a revolution in ITS development, changing an ITS from a conventional technology-driven system into a more powerful multifunctional data-driven intelligent transportation system (D2ITS) : a system that is vision, multisource, and learning algorithm driven to optimize its performance. Furthermore, D2ITS is trending to become a privacy-aware people-centric more intelligent system. In this paper, we provide a survey on the development of D2ITS, discussing the functionality of its key components and some deployment issues associated with D2ITS Future research directions for the development of D2ITS is also presented.
Wireless Networks with RF Energy Harvesting: A Contemporary Survey Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations, and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RFEHNs according to the network types, i.e., single-hop networks, multi-antenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.
Quaternion polar harmonic Fourier moments for color images. •Quaternion polar harmonic Fourier moments (QPHFM) is proposed.•Complex Chebyshev-Fourier moments (CHFM) is extended to quaternion QCHFM.•Comparison experiments between QPHFM and QZM, QPZM, QOFMM, QCHFM and QRHFM are conducted.•QPHFM performs superbly in image reconstruction and invariant object recognition.•The importance of phase information of QPHFM in image reconstruction are discussed.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.068889
0.073333
0.073333
0.066667
0.066667
0.025185
0
0
0
0
0
0
0
0
A tutorial on support vector regression In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach. •Two data fusion approaches for combining time-series with text data are proposed.•Text data is modeled using word embeddings, convolutional layers and attention.•Proposed models are applied to taxi demand prediction in event areas in New York.•Text information about events is shown to significantly reduce prediction error.•Proposed models are shown to substantially outperform traditional approaches.
A survey on graph kernels. Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner’s guide to kernel-based graph classification.
An integrated feature learning approach using deep learning for travel time prediction. •Integrated supervised & unsupervised algorithm is proposed for travel time prediction.•Feature enriching algorithms have been applied to increase feature learnability.•A SAE with dropout for extracting information and increasing robustness is developed.•A deep FF MLP for travel time prediction using encoded features have been developed.
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI •We review concepts related to the explainability of AI methods (XAI).•We comprehensive analyze the XAI literature organized in two taxonomies.•We identify future research directions of the XAI field.•We discuss potential implications of XAI and privacy in data fusion contexts.•We identify Responsible AI as a concept promoting XAI and other AI principles in practical settings.
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% - 15% over state-of-the-art baselines
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles Vehicle-type recognition based on images is a challenging task. This paper comparatively studied two feature extraction methods for image description, i.e., the Gabor wavelet transform and the Pyramid Histogram of Oriented Gradients (PHOG). The Gabor transform has been widely adopted to extract image features for various vision tasks. PHOG has the superiority in its description of more discriminating information. A highly reliable classification scheme was proposed by cascade classifier ensembles with reject option to accommodate the situations where no decision should be made if there exists adequate ambiguity. The first ensemble is heterogeneous, consisting of several classifiers, including $k$-nearest neighbors (kNNs), multiple-layer perceptrons (MLPs), support vector machines (SVMs), and random forest. The classification reliability is further enhanced by a second classifier ensemble, which is composed of a set of base MLPs coordinated by an ensemble metalearning method called rotation forest (RF). For both of the ensembles, rejection option is accomplished by relating the consensus degree from majority voting to a confidence measure and by abstaining to classify ambiguous samples if the consensus degree is lower than a threshold. The final class label is assigned by dual majority voting from the two ensembles. Experimental results using more than 600 images from a variety of 21 makes of cars and vans demonstrated the effectiveness of the proposed approach. The cascade ensembles produce consistently reliable results. With a moderate ensemble size of 25 in the second ensemble, the two-stage classification scheme offers 98.65% accuracy with a rejection rate of 2.5%, exhibiting promising potential for real-world applications.
Characterizing Driver Intention via Hierarchical Perception-Action Modeling. We seek a mechanism for the classification of the intentional behavior of a cognitive agent, specifically a driver, in terms of a psychological Perception-Action (P-A) model, such that the resulting system would be potentially suitable for use in intelligent driver assistance. P-A models of human intentionality assume that a cognitive agent&#39;s perceptual domain is learned in response to the outcome...
Ear recognition: More than a survey. Automatic identity recognition from ear images represents an active field of research within the biometric community. The ability to capture ear images from a distance and in a covert manner makes the technology an appealing choice for surveillance and security applications as well as other application domains. Significant contributions have been made in the field over recent years, but open research problems still remain and hinder a wider (commercial) deployment of the technology. This paper presents an overview of the field of automatic ear recognition (from 2D images) and focuses specifically on the most recent, descriptor-based methods proposed in this area. Open challenges are discussed and potential research directions are outlined with the goal of providing the reader with a point of reference for issues worth examining in the future. In addition to a comprehensive review on ear recognition technology, the paper also introduces a new, fully unconstrained dataset of ear images gathered from the web and a toolbox implementing several state-of-the-art techniques for ear recognition. The dataset and toolbox are meant to address some of the open issues in the field and are made publicly available to the research community.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.031913
0.028571
0.028571
0.028571
0.028571
0.028571
0.028571
0.009524
0.001337
0
0
0
0
0
Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking Fairness and Algorithm Utility ABSTRACTBipartite ranking, which aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data, is widely adopted in various applications where sample prioritization is needed. Recently, there have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups defined by sensitive attributes. While there could be trade-off between fairness and performance, in this paper we propose a model agnostic post-processing framework for balancing them in the bipartite ranking scenario. Specifically, we maximize a weighted sum of the utility and fairness by directly adjusting the relative ordering of samples across groups. By formulating this problem as the identification of an optimal warping path across different protected groups, we propose a non-parametric method to search for such an optimal path through a dynamic programming process. Our method is compatible with various classification models and applicable to a variety of ranking fairness metrics. Comprehensive experiments on a suite of benchmark data sets and two real-world patient electronic health record repositories show that our method can achieve a great balance between the algorithm utility and ranking fairness. Furthermore, we experimentally verify the robustness of our method when faced with the fewer training samples and the difference between training and testing ranking score distributions.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The Case Of A Multiplication Skills Game: Teachers' Viewpoint On Mg'S Dashboard And Oslm Features Educational games and digital game-based learning (DGBL) provide pupils interactive, engaging, intelligent, and motivating learning environments. According to research, digital games can support students' learning and enhance their motivation to learn. Given the central role teachers play in the learning process, their perceptions of DGBL play a significant role in the usage and effectiveness of game-based learning. This paper presents the main findings of an online research on primary school teachers' attitudes toward DGBL. Furthermore, the research investigates teachers' opinions about the functionalities provided by the implemented Multiplication Game (MG) and the newly incorporated teacher dashboard. The MG is an assessment and skills improvement tool that integrates an adaptation mechanism that identifies student weaknesses on the multiplication tables and in its latest version also supports a strong social parameter. Students can be informed about their own progress as well as the progress of their peers in an effort to examine if social interaction or competition can increase players' motivation, which is a subject that raised some concerns in the teaching community. The paper describes the functional options offered by the MG dashboard and documents the outcomes of an online survey conducted with the participation of 182 primary school teachers. The survey indicated the potential usefulness of MG and the benefits it can offer as a learning tool to improve pupil multiplication skills and help teachers identify individual pupil skills and difficulties and adapt their teaching accordingly. The analysis applied has found a correlation between teachers' perceptions about MG and their view on using digital games in general.
Motivations for Play in Online Games. An empirical model of player motivations in online games provides the foundation to understand and assess how players differ from one another and how motivations of play relate to age, gender, usage patterns, and in-game behaviors. In the current study, a factor analytic approach was used to create an empirical model of player motivations. The analysis revealed 10 motivation subcomponents that grouped into three overarching components (achievement, social, and immersion). Relationships between motivations and demographic variables (age, gender, and usage patterns) are also presented.
Acceptance of game-based learning by secondary school teachers The adoption and the effectiveness of game-based learning depend largely on the acceptance by classroom teachers, as they can be considered the true change agents of the schools. Therefore, we need to understand teachers' perceptions and beliefs that underlie their decision-making processes. The present study focuses on the factors that influence the acceptance of commercial video games as learning tools in the classroom. A model for describing the acceptance and predicting the uptake of commercial games by secondary school teachers is suggested. Based on data gathered from 505 teachers, the model is tested and evaluated. The results are then linked to previous research in the domains of technology acceptance and game-based learning. Highlights¿ We examine 505 secondary school teachers' acceptance of game-based learning. ¿ We propose, test and evaluate a model for understanding and predicting acceptance. ¿ Teacher beliefs about the use of commercial games appear to be rather complex. ¿ The proposed model explains 57% of the variance in teachers' behavioral intention. ¿ Complexity and experience do not affect behavioral intention in the model.
Influence Of Gamification On Students' Motivation In Using E-Learning Applications Based On The Motivational Design Model Students' motivation is an important factor in ensuring the success of e-learning implementation. In order to ensure students is motivated to use e-learning, motivational design has been used during the development process of e-learning applications. The use of gamification in learning context can help to increase student motivation. The ARCS+G model of motivational design is used as a guide for the gamification of learning. This study focuses on the influence of gamification on students' motivation in using e-learning applications based on the ARCS+G model. Data from the Instructional Materials Motivation Scale (IMMS) questionnaire, were gathered and analyzed for comparison of two groups (one control and one experimental) in attention, relevance, confidence, and satisfaction categories. Based on the result of analysis, students from the experimental group are more motivated to use e-learning applications compared with the controlled group. This proves that gamification affect students' motivation when used in e-learning applications.
Design and Development of a Social, Educational and Affective Robot In this paper we describe the approach and the initial results obtained in the design and implementation of a social and educational robot called Wolly. We involved kids as co-designer helping us in shaping form and behavior of the robot, then we proceeded with the design and implementation of the hardware and software components, characterizing the robot with interactive, adaptive and affective features.
GameFlow: a model for evaluating player enjoyment in games Although player enjoyment is central to computer games, there is currently no accepted model of player enjoyment in games. There are many heuristics in the literature, based on elements such as the game interface, mechanics, gameplay, and narrative. However, there is a need to integrate these heuristics into a validated model that can be used to design, evaluate, and understand enjoyment in games. We have drawn together the various heuristics into a concise model of enjoyment in games that is structured by flow. Flow, a widely accepted model of enjoyment, includes eight elements that, we found, encompass the various heuristics from the literature. Our new model, GameFlow, consists of eight elements -- concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each element includes a set of criteria for achieving enjoyment in games. An initial investigation and validation of the GameFlow model was carried out by conducting expert reviews of two real-time strategy games, one high-rating and one low-rating, using the GameFlow criteria. The result was a deeper understanding of enjoyment in real-time strategy games and the identification of the strengths and weaknesses of the GameFlow model as an evaluation tool. The GameFlow criteria were able to successfully distinguish between the high-rated and low-rated games and identify why one succeeded and the other failed. We concluded that the GameFlow model can be used in its current form to review games; further work will provide tools for designing and evaluating enjoyment in games.
Wireless sensor networks: a survey This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.
ImageNet Classification with Deep Convolutional Neural Networks. We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called \"dropout\" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
2 Algorithms For Constructing A Delaunay Triangulation This paper provides a unified discussion of the Delaunay triangulation. Its geometric properties are reviewed and several applications are discussed. Two algorithms are presented for constructing the triangulation over a planar set ofN points. The first algorithm uses a divide-and-conquer approach. It runs inO(N logN) time, which is asymptotically optimal. The second algorithm is iterative and requiresO(N2) time in the worst case. However, its average case performance is comparable to that of the first algorithm.
MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive coupling, magnetic resonate coupling, and electromagnetic (EM) radiation, for short-/mid-/long-range applications, respectively. In this paper, we consider the EM or radio signal enabled WPT in particular. Since radio signals can carry energy as well as information at the same time, a unified study on simultaneous wireless information and power transfer (SWIPT) is pursued. Specifically, this paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas. Two scenarios are examined, in which the information receiver and energy receiver are separated and see different MIMO channels from the transmitter, or co-located and see the identical MIMO channel from the transmitter. For the case of separated receivers, we derive the optimal transmission strategy to achieve different tradeoffs for maximal information rate versus energy transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. For the case of co-located receivers, we show an outer bound for the achievable R-E region due to the potential limitation that practical energy harvesting receivers are not yet able to decode information directly. Under this constraint, we investigate two practical designs for the co-located receiver case, namely time switching and power splitting, and characterize their achievable R-E regions in comparison to the outer bound.
GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation Although a large number of WiFi fingerprinting based indoor localization systems have been proposed, our field experience with Google Maps Indoor (GMI), the only system available for public testing, shows that it is far from mature for indoor navigation. In this paper, we first report our field studies with GMI, as well as experiment results aiming to explain our unsatisfactory GMI experience. Then motivated by the obtained insights, we propose GROPING as a self-contained indoor navigation system independent of any infrastructural support. GROPING relies on geomagnetic fingerprints that are far more stable than WiFi fingerprints, and it exploits crowdsensing to construct floor maps rather than expecting individual venues to supply digitized maps. Based on our experiments with 20 participants in various floors of a big shopping mall, GROPING is able to deliver a sufficient accuracy for localization and thus provides smooth navigation experience.
Surrogate-assisted hierarchical particle swarm optimization. Meta-heuristic algorithms, which require a large number of fitness evaluations before locating the global optimum, are often prevented from being applied to computationally expensive real-world problems where one fitness evaluation may take from minutes to hours, or even days. Although many surrogate-assisted meta-heuristic optimization algorithms have been proposed, most of them were developed for solving expensive problems up to 30 dimensions. In this paper, we propose a surrogate-assisted hierarchical particle swarm optimizer for high-dimensional problems consisting of a standard particle swarm optimization (PSO) algorithm and a social learning particle swarm optimization algorithm (SL-PSO), where the PSO and SL-PSO work together to explore and exploit the search space, and simultaneously enhance the global and local performance of the surrogate model. Our experimental results on seven benchmark functions of dimensions 30, 50 and 100 demonstrate that the proposed method is competitive compared with the state-of-the-art algorithms under a limited computational budget.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.05
0
0
0
0
0
0
0
0
A Mobile Data Gathering Framework for Wireless Rechargeable Sensor Networks with Vehicle Movement Costs and Capacity Constraints. Several recent works have studied mobile vehicle scheduling to recharge sensor nodes via wireless energy transfer technologies. Unfortunately, most of them overlooked important factors of the vehicles&#39; moving energy consumption and limited recharging capacity, which may lead to problematic schedules or even stranded vehicles. In this paper, we consider the recharge scheduling problem under such im...
Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects The rechargeable battery is the conventional power source for mobile devices. However, limited battery capacity and frequent recharging requires further research to find new ways to deliver power without the hassle of connecting cables. Novel wireless power supply methods, such as energy harvesting and wireless power transfer, are currently receiving considerable attention. In this article, an overview of recent advances in wireless power supply is provided, and several promising applications are presented to show the future trends. In addition, to efficiently schedule the harvested energy, an energy scheduling scheme in the EH-powered D2D relay network is proposed as a case study. To be specific, we first formulate an optimization problem for energy scheduling, and then propose a modified two stage directional water filling algorithm to resolve it.
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
OPPC: An Optimal Path Planning Charging Scheme Based on Schedulability Evaluation for WRSNs. The lack of schedulability evaluation of previous charging schemes in wireless rechargeable sensor networks (WRSNs) degrades the charging efficiency, leading to node exhaustion. We propose an Optimal Path Planning Charging scheme, namely OPPC, for the on-demand charging architecture. OPPC evaluates the schedulability of a charging mission, which makes charging scheduling predictable. It provides an optimal charging path which maximizes charging efficiency. When confronted with a non-schedulable charging mission, a node discarding algorithm is developed to enable the schedulability. Experimental simulations demonstrate that OPPC can achieve better performance in successful charging rate as well as charging efficiency.
Machine learning algorithms for wireless sensor networks: A survey. •The survey of machine learning algorithms for WSNs from the period 2014 to March 2018.•Machine learning (ML) for WSNs with their advantages, features and limitations.•A statistical survey of ML-based algorithms for WSNs.•Reasons to choose a ML techniques to solve issues in WSNs.•The survey proposes a discussion on open issues.
Task Scheduling for Energy-Harvesting-Based IoT: A Survey and Critical Analysis The Internet of Things (IoT) has important applications in our daily lives, including health and fitness tracking, environmental monitoring, and transportation. However, sensor nodes in IoT suffer from the limited lifetime of batteries resulting from their finite energy availability. A promising solution is to harvest energy from environmental sources, such as solar, kinetic, thermal, and radio-fr...
GTCCS: A Game Theoretical Collaborative Charging Scheduling for On-Demand Charging Architecture. Battery energy is always limited in most wireless networked nodes, but wireless power transfer has the potential to address the problem for good. In this paper, we study the problem of collaborative charging decisions in Wireless Rechargeable Sensor Networks (WRSNs). In these networks, multiple Wireless Charging Vehicles (WCVs) need to decide which of the requesting sensors to charge and in what o...
Multi-Node Wireless Energy Charging in Sensor Networks Wireless energy transfer based on magnetic resonant coupling is a promising technology to replenish energy to a wireless sensor network (WSN). However, charging sensor nodes one at a time poses a serious scalability problem. Recent advances in magnetic resonant coupling show that multiple nodes can be charged at the same time. In this paper, we exploit this multi-node wireless energy transfer technology and investigate whether it is a scalable technology to address energy issues in a WSN. We consider a wireless charging vehicle (WCV) periodically traveling inside a WSN and charging sensor nodes wirelessly. Based on charging range of the WCV, we propose a cellular structure that partitions the two-dimensional plane into adjacent hexagonal cells. We pursue a formal optimization framework by jointly optimizing traveling path, flow routing, and charging time. By employing discretization and a novel Reformulation-Linearization Technique (RLT), we develop a provably near-optimal solution for any desired level of accuracy. Through numerical results, we demonstrate that our solution can indeed address the charging scalability problem in a WSN.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines The Internet has become essential to all aspects of modern life, and thus the consequences of network disruption have become increasingly severe. It is widely recognised that the Internet is not sufficiently resilient, survivable, and dependable, and that significant research, development, and engineering is necessary to improve the situation. This paper provides an architectural framework for resilience and survivability in communication networks and provides a survey of the disciplines that resilience encompasses, along with significant past failures of the network infrastructure. A resilience strategy is presented to defend against, detect, and remediate challenges, a set of principles for designing resilient networks is presented, and techniques are described to analyse network resilience.
Unseen visible watermarking: a novel methodology for auxiliary information delivery via visual contents A novel data hiding scheme, denoted as unseen visible watermarking (UVW), is proposed. In UVW schemes, hidden information can be embedded covertly and then directly extracted using the human visual system as long as appropriate operations (e.g., gamma correction provided by almost all display devices or changes in viewing angles relative to LCD monitors) are performed. UVW eliminates the requirement of invisible watermarking that specific watermark extractors must be deployed to the receiving end in advance, and it can be integrated with 2-D barcodes to transmit machine-readable information that conventional visible watermarking schemes fail to deliver. We also adopt visual cryptographic techniques to guard the security of hidden information and, at the same time, increase the practical value of visual cryptography. Since UVW can be alternatively viewed as a mechanism for visualizing patterns hidden with least-significant-bit embedding, its security against statistical steganalysis is proved by empirical tests. Limitations and other potential extensions of UVW are also addressed.
Fuzzy Logic Based Reliable and Real-Time Routing Protocol for Mobile Ad hoc Networks. MANET (mobile ad-hoc network) includes a set of wireless mobile nodes which communicate with one another without any central controls or infrastructures and they can be quickly implemented in the operational environment. One of the most significant issues in MANETs is concerned with finding a secure, safe and short route so that data can be transmitted through it. Although several routing protocols have been introduced for the network, the majority of them just consider the shortest path with the fewest number of hops. Hop criterion is considered for simple implementation and it is reliable in dynamic environments; however, queuing delay and connection delay in the intermediate nodes are not taken into consideration for selecting route in this criterion. In this paper, a fuzzy logic-based reliable routing protocol (FRRP) is proposed for MANETs which selects stable routes using fuzzy logic. It is able to optimize system efficiency. The score allocated to routes are based on four criteria: accessible bandwidth, the amount of energy of battery, the number of hops and the degree of dynamicity of nodes. The simulation results obtained from OPNET simulator version 10.5 indicate that the proposed protocol, in comparison with ad hoc on-demand distance vector (AODV) and fuzzy-based on-demand routing protocol (FBORP), was able to better improve packet delivery rate, average end-to-end delay and throughput.
LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks
1.032045
0.028571
0.028571
0.028571
0.028571
0.028571
0.028571
0.016667
0.007908
0
0
0
0
0
Indoor smartphone localization via fingerprint crowdsourcing: challenges and approaches. Nowadays, smartphones have become indispensable to everyone, with more and more built-in location-based applications to enrich our daily life. In the last decade, fingerprinting based on RSS has become a research focus in indoor localization, due to its minimum hardware requirement and satisfiable positioning accuracy. However, its time-consuming and labor-intensive site survey is a big hurdle for...
Magnetic field feature extraction and selection for indoor location estimation. User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices, which allows us to exploit not only infrastructures made for everyday use, such as WiFi, but also natural infrastructure, as is the case of natural magnetic field. In this paper we present an extension and improvement of our current indoor localization model based on the feature extraction of 46 magnetic field signal features. The extension adds a feature selection phase to our methodology, which is performed through Genetic Algorithm (GA) with the aim of optimizing the fitness of our current model. In addition, we present an evaluation of the final model in two different scenarios: home and office building. The results indicate that performing a feature selection process allows us to reduce the number of signal features of the model from 46 to 5 regardless the scenario and room location distribution. Further, we verified that reducing the number of features increases the probability of our estimator correctly detecting the user's location (sensitivity) and its capacity to detect false positives (specificity) in both scenarios.
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing. Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users' smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users' explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established.
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process. Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs' RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user's location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area.
Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket. Heading estimation is a central problem for indoor pedestrian navigation using the pervasively available smartphone. For smartphones placed in a pocket, one of the most popular device positions, the essential challenges in heading estimation are the changing device coordinate system and the severe indoor magnetic perturbations. To address these challenges, we propose a novel heading estimation approach based on a rotation matrix and principal component analysis (PCA). Firstly, through a related rotation matrix, we project the acceleration signals into a reference coordinate system (RCS), where a more accurate estimation of the horizontal plane of the acceleration signal is obtained. Then, we utilize PCA over the horizontal plane of acceleration signals for local walking direction extraction. Finally, in order to translate the local walking direction into the global one, we develop a calibration process without requiring noisy compass readings. Besides, a turn detection algorithm is proposed to improve the heading estimation accuracy. Experimental results show that our approach outperforms the traditional uDirect and PCA-based approaches in terms of accuracy and feasibility.
A Lightweight Collaborative Fault Tolerant Target Localization System for Wireless Sensor Networks Efficient target localization in wireless sensor networks is a complex and challenging task. Many past assumptions for target localization are not valid for wireless sensor networks. Limited hardware resources, energy conservation, and noise disruption due to wireless channel contention and instrumentation noise pose new constraints on designers nowadays. In this work, a lightweight acoustic target localization system for wireless sensor networks based on time difference of arrival (TDOA) is presented. When an event is detected, each sensor belonging to a group calculates an estimate of the target's location. A fuzzyART data fusion center detects errors and fuses estimates according to a decision tree based on spatial correlation and consensus vote. Moreover, a MAC protocol for wireless sensor networks (EB-MAC) is developed which is tailored for event-based systems that characterizes acoustic target localization systems. The system was implemented on MicaZ motes with TinyOS and a PIC 18F8720 microcontroller board as a coprocessor. Errors were detected and eliminated hence acquiring a fault tolerant operation. Furthermore, EB-MAC provided a reliable communication platform where high channel contention was lowered while maintaining high throughput.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.
Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries In this paper we propose efficient two-round k-out-of-n oblivious transfer schemes, in which R sends O(k) messages to S, and S sends O(n) messages back to R. The computation cost of R and S is reasonable. The choices of R are unconditionally secure. For the basic scheme, the secrecy of unchosen messages is guaranteed if the Decisional Diffie-Hellman problem is hard. When k=1, our basic scheme is as efficient as the most efficient 1-out-of-n oblivious transfer scheme. Our schemes have the nice property of universal parameters, that is each pair of R and S need neither hold any secret key nor perform any prior setup (initialization). The system parameters can be used by all senders and receivers without any trapdoor specification. Our k-out-of-n oblivious transfer schemes are the most efficient ones in terms of the communication cost, in both rounds and the number of messages. Moreover, one of our schemes can be extended in a straightforward way to an adaptivek-out-of-n oblivious transfer scheme, which allows the receiver R to choose the messages one by one adaptively. In our adaptive-query scheme, S sends O(n) messages to R in one round in the commitment phase. For each query of R, only O(1) messages are exchanged and O(1) operations are performed. In fact, the number k of queries need not be pre-fixed or known beforehand. This makes our scheme highly flexible.
Cognitive Cars: A New Frontier for ADAS Research This paper provides a survey of recent works on cognitive cars with a focus on driver-oriented intelligent vehicle motion control. The main objective here is to clarify the goals and guidelines for future development in the area of advanced driver-assistance systems (ADASs). Two major research directions are investigated and discussed in detail: 1) stimuli–decisions–actions, which focuses on the driver side, and 2) perception enhancement–action-suggestion–function-delegation, which emphasizes the ADAS side. This paper addresses the important achievements and major difficulties of each direction and discusses how to combine the two directions into a single integrated system to obtain safety and comfort while driving. Other related topics, including driver training and infrastructure design, are also studied.
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming. In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The ...
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.103556
0.107111
0.107111
0.103556
0.053556
0.004
0
0
0
0
0
0
0
0
P4: programming protocol-independent packet processors P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label.
Enhancing 5G SDN/NFV Edge with P4 Data Plane Programmability The 5G network revolution will be enabled by deep integration of Software Defined Networking (SDN) and Network Function Virtualization (NFV) to support multi-tenancy, per-user and per-application quality of service and experience. However, full softwarization and current SDN platforms may not be able to sustain the complexity and the heterogeneity of different requirements, for example, strict lat...
Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and Analysis Can we get network latency between any two servers at any time in large-scale data center networks? The collected latency data can then be used to address a series of challenges: telling if an application perceived latency issue is caused by the network or not, defining and tracking network service level agreement (SLA), and automatic network troubleshooting. We have developed the Pingmesh system for large-scale data center network latency measurement and analysis to answer the above question affirmatively. Pingmesh has been running in Microsoft data centers for more than four years, and it collects tens of terabytes of latency data per day. Pingmesh is widely used by not only network software developers and engineers, but also application and service developers and operators.
Latency-Sensitive Edge/Cloud Serverless Dynamic Deployment Over Telemetry-Based Packet-Optical Network The serverless technology, introduced for data center operation, represents an attractive technology for latency-sensitive applications operated at the edge, enabling a resource-aware deployment accounting for limited edge computing resources or end-to-end network congestion to the cloud. This paper presents and validates a framework for automated deployment and dynamic reconfiguration of serverless functions at either the edge or cloud. The framework relies on extensive telemetry data retrieved from both the computing and packet-optical network infrastructure and operates on diverse Amazon Web Services technologies, including Greengrass on the edge. Experimental demonstration with a latency-sensitive serverless application is then provided, showing fast dynamic reconfiguration capabilities, e.g., enabling even zero outage time under certain conditions.
Ground Control to Major Faults: Towards a Fault Tolerant and Adaptive SDN Control Network To provide high availability and fault-tolerance, SDN control planes should be distributed. However, distributed control planes are challenging to design and bootstrap, especially if to be done in-band, without dedicated control network, and without relying on legacy protocols. This paper promotes a distributed systems approach to build and maintain connectivity between a distributed control plane and the data plane. In particular, we make the case for a self-stabilizing distributed control plane, where from any initial configuration, controllers self-organize, and quickly establish a communication channel among themselves. Given the resulting managed control plane, arbitrary network services can be implemented on top. This paper presents a model for the design of such self-stabilizing control planes, and identifies fundamental challenges. Subsequently, we present techniques which can be used to solve these challenges, and implement a plug & play distributed control plane which supports automatic topology discovery and management, as well as flexible controller membership: controllers can be added and removed dynamically. Interestingly, we argue that our approach can readily be implemented in today's OpenFlow protocol. Moreover, our approach comes with interesting security features.
A detailed and real-time performance monitoring framework for blockchain systems. Blockchain systems, with the characteristics of decentralization, irreversibility and traceability, have attracted a lot of attentions recently. However, the current performance of blockchain is poor, which becomes a major constraint of its applications. Additionally, different blockchain systems lack standard performance monitoring approach which can automatically adapt to different systems and provide detailed and real-time performance information. To solve this problem, we propose overall performance metrics and detailed performance metrics for the users to know the exact performance in different stages of the blockchain. Then we propose a performance monitoring framework with a log-based method. It has advantages of lower overhead, more details, and better scalability than the previous performance monitoring approaches. Finally we implement the framework to monitor four well-known blockchain systems, using a set of 1,000 open-source smart contracts. The experimental results show that our framework can make detailed and real-time performance monitoring of blockchain systems. We also provide some suggestions for the future development of blockchain systems.
Reaching Agreement in the Presence of Faults The problem addressed here concerns a set of isolated processors, some unknown subset of which may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private value of information that must be communicated to each other nonfaulty processor. Nonfaulty processors always communicate honestly, whereas faulty processors may lie. The problem is to devise an algorithm in which processors communicate their own values and relay values received from others that allows each nonfaulty processor to infer a value for each other processor. The value inferred for a nonfaulty processor must be that processor's private value, and the value inferred for a faulty one must be consistent with the corresponding value inferred by each other nonfaulty processor.It is shown that the problem is solvable for, and only for, n ≥ 3m + 1, where m is the number of faulty processors and n is the total number. It is also shown that if faulty processors can refuse to pass on information but cannot falsely relay information, the problem is solvable for arbitrary n ≥ m ≥ 0. This weaker assumption can be approximated in practice using cryptographic methods.
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
A comparative study of texture measures with classification based on featured distributions This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently. For classification a method based on Kullback discrimination of sample and prototype distributions is used. The classification results for single features with one-dimensional feature value distributions and for pairs of complementary features with two-dimensional distributions are presented
Reinforcement learning of motor skills with policy gradients. Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine two recent research developments on learning motor control in order to achieve this scaling. First, we interpret the idea of modular motor control by means of motor primitives as a suitable way to generate parameterized control policies for reinforcement learning. Second, we combine motor primitives with the theory of stochastic policy gradient learning, which currently seems to be the only feasible framework for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus on their applicability to parameterized motor primitives. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.
Ripple effects of an embedded social agent: a field study of a social robot in the workplace Prior research has investigated the effect of interactive social agents presented on computer screens or embodied in robots. Much of this research has been pursued in labs and brief field studies. Comparatively little is known about social agents embedded in the workplace, where employees have repeated interactions with the agent, alone and with others. We designed a social robot snack delivery service for a workplace, and evaluated the service over four months allowing each employee to use it for two months. We report on how employees responded to the robot and the service over repeated encounters. Employees attached different social roles to the robot beyond a delivery person as they incorporated the robot's visit into their workplace routines. Beyond one-on-one interaction, the robot created a ripple effect in the workplace, triggering new behaviors among employees, including politeness, protection of the robot, mimicry, social comparison, and even jealousy. We discuss the implications of these ripple effects for designing services incorporating social agents.
Robust and Imperceptible Dual Watermarking for Telemedicine Applications In this paper, the effects of different error correction codes on the robustness and imperceptibility of discrete wavelet transform and singular value decomposition based dual watermarking scheme is investigated. Text and image watermarks are embedded into cover radiological image for their potential application in secure and compact medical data transmission. Four different error correcting codes such as Hamming, the Bose, Ray-Chaudhuri, Hocquenghem (BCH), the Reed---Solomon and hybrid error correcting (BCH and repetition code) codes are considered for encoding of text watermark in order to achieve additional robustness for sensitive text data such as patient identification code. Performance of the proposed algorithm is evaluated against number of signal processing attacks by varying the strength of watermarking and covers image modalities. The experimental results demonstrate that this algorithm provides better robustness without affecting the quality of watermarked image.This algorithm combines the advantages and removes the disadvantages of the two transform techniques. Out of the three error correcting codes tested, it has been found that Reed---Solomon shows the best performance. Further, a hybrid model of two of the error correcting codes (BCH and repetition code) is concatenated and implemented. It is found that the hybrid code achieves better results in terms of robustness. This paper provides a detailed analysis of the obtained experimental results.
Multiple switching-time-dependent discretized Lyapunov functions/functionals methods for stability analysis of switched time-delay stochastic systems. This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.
Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit The intention-detection strategy used to drive an exosuit is fundamental to evaluate the effectiveness and acceptability of the device. Yet, current literature on wearable soft robotics lacks evidence on the comparative performance of different control approaches for online intention-detection. In the present work, we compare two different and complementary controllers on a wearable robotic suit, previously formulated and tested by our group; a model-based myoelectric control ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> ), which estimates the joint torque from the activation of target muscles, and a force control that estimates human torques using an inverse dynamics model ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> ). We test them on a cohort of healthy participants performing tasks replicating functional activities of daily living involving a wide range of dynamic movements. Our results suggest that both controllers are robust and effective in detecting human–motor interaction, and show comparable performance for augmenting muscular activity. In particular, the biceps brachii activity was reduced by up to 74% under the assistance of the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> and up to 47% under the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to a no-suit condition. However, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> outperformed the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> in promptness and assistance during movements that involve high dynamics. The exosuit work normalized with respect to the overall work was <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$68.84 \pm 3.81\%$</tex-math></inline-formula> when it was ran by the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$45.29 \pm 7.71\%$</tex-math></inline-formula> during the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> condition. The reliability and accuracy of motor intention detection strategies in wearable device is paramount for both the efficacy and acceptability of this technology. In this article, we offer a detailed analysis of the two most widely used control approaches, trying to highlight their intrinsic structural differences and to discuss their different and complementary performance.
1.044625
0.044
0.04
0.04
0.024
0.00496
0.002313
0
0
0
0
0
0
0
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Mean Shift, Mode Seeking, and Clustering Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a 驴shadow驴 kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization.
An effective implementation of the Lin–Kernighan traveling salesman heuristic This paper describes an implementation of the Lin–Kernighan heuristic, one of the most successful methods for generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality today).
SGCO: Stabilized Green Crosshaul Orchestration for Dense IoT Offloading Services. The next-generation mobile network anticipates integrated heterogeneous fronthaul and backhaul technologies referred to as a unified crosshaul architecture. The crosshaul enables a flexible and cost-efficient infrastructure for handling mobile data tsunami from dense Internet of things (IoT). However, stabilization, energy efficiency, and latency have not been jointly considered in the optimizatio...
Joint Distributed Link Scheduling and Power Allocation for Content Delivery in Wireless Caching Networks In wireless caching networks, the design of the content delivery method must consider random user requests, caching states, network topology, and interference management. In this article, we establish a general framework for content delivery in wireless caching networks without stringent assumptions that restrict the network structure and interference model. Based on the framework, we propose a dynamic and distributed link scheduling and power allocation scheme for content delivery that is assisted by belief-propagation (BP) algorithms. The proposed scheme achieves three critical purposes of wireless caching networks: 1) limiting the delay of user request satisfactions, 2) maintaining the power efficiency of caching nodes, and 3) managing interference among users. In addition, we address the intrinsic problem of the BP algorithm in our network model, proposing a matching algorithm for one-to-one link scheduling. Simulation results show that the proposed scheme provides almost the same delay performance as the optimal scheme found through an exhaustive search at the expense of a little additional power consumption and does not require a clustering method and orthogonal resources in a large-scale D2D network.
Energy-Efficient Tour Optimization of Wireless Mobile Chargers for Rechargeable Sensor Networks Energy constraint is one of the main design issues of wireless sensor networks. Over the past few years, the concept of the wireless mobile charger (WMC) has been proposed in order to improve the energy efficiency of the networks. In such schemes, optimizing the moving trajectory and charging time of WMC are considered as two main problems. Several schemes attempt to optimize the moving trajectory of WMC without considering the balanced energy depletion time of nodes, which leads to degrading the energy efficiency and network lifetime. Thus, a route optimization of WMC algorithm is proposed to determine the optimal trajectory of WMC to move along sensor nodes in such a way that the balanced energy depletion time of the nodes is achieved. Moreover, in most of the existing schemes, WMCs charge the nodes as long as their batteries are fully charged. However, not considering the remaining lifetime of the other nodes leads to premature network death and decreases the network performance. Therefore, a charge time optimization of WMC algorithm is proposed to overcome the mentioned problem. Simulation results demonstrate that the proposed scheme remarkably enhance the network performance in terms of different evaluation metrics.
A Tree-Cluster based Data Gathering Algorithm for Industrial WSNs with a Mobile Sink Wireless sensor networks (WSNs) have been widely applied in various industrial applications, which involve collecting a massive amount of heterogeneous sensory data. However, most of data gathering strategies for WSNs can not avoid the “hotspot problem” in local or whole deployment area. “Hotspot problem” affects the network connectivity and makes the network lifetime decreased. Hence, we propose a Tree-Cluster Based Data Gathering Algorithm (TCBDGA) for WSNs with a mobile sink. A novel weight based tree construction method is introduced. The root nodes of the constructed trees are defined as Rendezvous Points (RPs). Additionally, some special nodes called Sub-Rendezvous Points (SRPs) are selected according to their traffic load and hops to root nodes. RPs and SRPs are viewed as stop points of the mobile sink for data collection, and can be re-selected after a certain period. The simulation and comparison with other algorithm show that our TCBDGA can significantly balance the load of the whole network, reduce the energy consumption, alleviate the “hotspot problem” and prolong the network lifetime.
A Coverage-Aware Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks Constant energy supply for sensor nodes is essential for the development of the green Internet of Things (IoT). Recently, WRSNs have been proposed to resolve the energy limitations of nodes, aiming to realize continuous functioning. In this article, a coverage-aware hierarchical charging algorithm in WRSNs is proposed, considering energy consumption and the degree of node coverage. The algorithm first performs network clustering using the K-means algorithm. In addition, nodes are classified into multiple levels in each cluster to calculate respective anchor points based on the energy consumption rate and coverage degree of nodes. Then, the anchor points converge to an optimized anchor point in each cluster. To reduce charging latency, the optimized anchor points form two disjoint internal and external polygons. Next, mobile chargers travel along the internal and external polygons, respectively. Experimental results indicate that the proposed algorithm can improve charging efficiency and reduce charging latency substantially.
Network Under Limited Mobile Devices: A New Technique for Mobile Charging Scheduling With Multiple Sinks. Recently, many studies have investigated scheduling mobile devices to recharge and collect data from sensors in wireless rechargeable sensor networks (WRSNs) such that the network lifetime is prolonged. In reality, because mobile devices are more powerful and expensive than sensors, the cost of the mobile devices often consumes a high portion of the budget. Due to a limited budget, the number of m...
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
Mitigating DoS attacks against broadcast authentication in wireless sensor networks Broadcast authentication is a critical security service in wireless sensor networks. There are two general approaches for broadcast authentication in wireless sensor networks: digital signatures and μTESLA-based techniques. However, both signature-based and μTESLA-based broadcast authentication are vulnerable to Denial of Services (DoS) attacks: An attacker can inject bogus broadcast packets to force sensor nodes to perform expensive signature verifications (in case of signature-based broadcast authentication) or packet forwarding (in case of μTESLA-based broadcast authentication), thus exhausting their limited battery power. This paper presents an efficient mechanism called message-specific puzzle to mitigate such DoS attacks. In addition to signature-based or μTESLA-based broadcast authentication, this approach adds a weak authenticator in each broadcast packet, which can be efficiently verified by a regular sensor node, but takes a computationally powerful attacker a substantial amount of time to forge. Upon receiving a broadcast packet, each sensor node first verifies the weak authenticator, and performs the expensive signature verification (in signature-based broadcast authentication) or packet forwarding (in μTESLA-based broadcast authentication) only when the weak authenticator is valid. A weak authenticator cannot be precomputed without a non-reusable (or short-lived) key disclosed only in a valid packet. Even if an attacker has intensive computational resources to forge one or more weak authenticators, it is difficult to reuse these forged weak authenticators. Thus, this weak authentication mechanism substantially increases the difficulty of launching successful DoS attacks against signature-based or μTESLA-based broadcast authentication. A limitation of this approach is that it requires a powerful sender and introduces sender-side delay. This article also reports an implementation of the proposed techniques on TinyOS, as well as initial experimental evaluation in a network of MICAz motes.
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-the-art operational ROVER algorithm for precipitation nowcasting.
A Delay-Sensitive Multicast Protocol for Network Capacity Enhancement in Multirate MANETs. Due to significant advances in wireless modulation technologies, some MAC standards such as 802.11a, 802.11b, and 802.11g can operate with multiple data rates for QoS-constrained multimedia communication to utilize the limited resources of MANETs more efficiently. In this paper, by means of measuring the busy/idle ratio of the shared radio channel, a method for estimating one-hop delay is first su...
Sustainable and Efficient Data Collection from WSNs to Cloud. The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time becomes a b...
1.040501
0.034286
0.034286
0.034286
0.034286
0.017143
0.001693
0.000952
0.000317
0
0
0
0
0
Optimal Number of Electric Vehicles for Existing Networks Considering Economic and Emission Dispatch The future transportation network is expected to be dominated by electric vehicles (EVs). With an increase in grid-connected vehicles, the power grid needs to increase its generation capacity to meet their charging demand. Thus, from a grid perspective, it is essential to find the maximum number of EVs that the existing infrastructure can handle. This research proposes a new framework to identify the fleet size capability of a power network in both uncontrolled and vehicle-to-grid (V2G) modes of operation. The proposed model is modeled as an optimization problem and tested on a system that is formed by combining IEEE 33-bus radial distribution system and a ten-unit generation system. Simulation results show that the current system can handle a fixed number of EVs when they operate independently. Participation of EVs in a V2G market significantly enhances the fleet size handling capability of the existing infrastructure, which is approximately four times the present capacity. Furthermore, a relation between the fleet size of EVs and operating points of plants is extracted, which is very beneficial for system planners. The result reveals that the time span requirements for power infrastructure upgradation can be increased by twofold if the V2G market is applied in the network.
Effective Utilization of Available PEV Battery Capacity for Mitigation of Solar PV Impact and Grid Support With Integrated V2G Functionality. Utilizing battery storage devices in plug-in electric vehicles (PEVs) for grid support using vehicle-to-grid (V2G) concept is gaining popularity. With appropriate control strategies, the PEV batteries and associated power electronics can be exploited for solar photovoltaic (PV) impact mitigation and grid support. However, as the PEV batteries have limited capacity and the capacity usage is also co...
Managing Demand for Plug-in Electric Vehicles in Unbalanced LV Systems With Photovoltaics. Although the future impact of plug-in electric vehicles (PEVs) on distribution grids is disputed, all parties agree that mass operation of PEVs will greatly affect load profiles and grid assets. The large-scale penetration of domestic energy storage, such as with photovoltaics (PVs), into the edges of low-voltage grids is increasing the amount of customer-generated electricity. Distribution grids,...
Robust Capacity Assessment of Distributed Generation in Unbalanced Distribution Networks Incorporating ANM Techniques. To settle a large-scale integration of renewable distributed generations (DGs), it requires to assess the maximal DG hosting capacity of active distribution networks (ADNs). For fully exploiting the ability of ADNs to accommodate DG, this paper proposes a robust comprehensive DG capacity assessment method considering three-phase power flow modelling and active network management (ANM) techniques. ...
Charging Load Pattern Extraction for Residential Electric Vehicles: A Training-free Non-intrusive Method Extracting the charging load pattern of residential electric vehicle (REV) will help grid operators make informed decisions in terms of scheduling and demand-side response management. Due to the multistate and high-frequency characteristics of integrated residential appliances from the residential perspective, it is difficult to achieve accurate extraction of the charging load pattern. To deal wit...
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Hiding Traces of Resampling in Digital Images Resampling detection has become a standard tool for forensic analyses of digital images. This paper presents new variants of image transformation operations which are undetectable by resampling detectors based on periodic variations in the residual signal of local linear predictors in the spatial domain. The effectiveness of the proposed method is supported with evidence from experiments on a large image database for various parameter settings. We benchmark detectability as well as the resulting image quality against conventional linear and bicubic interpolation and interpolation with a sinc kernel. These early findings on ldquocounter-forensicrdquo techniques put into question the reliability of known forensic tools against smart counterfeiters in general, and might serve as benchmarks and motivation for the development of much improved forensic techniques.
Fog computing and its role in the internet of things Fog Computing extends the Cloud Computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are: a) Low latency and location awareness; b) Wide-spread geographical distribution; c) Mobility; d) Very large number of nodes, e) Predominant role of wireless access, f) Strong presence of streaming and real time applications, g) Heterogeneity. In this paper we argue that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).
Efficient Signature Generation by Smart Cards We present a new public-key signature scheme and a corresponding authentication scheme that are based on discrete logarithms in a subgroup of units in Zp where p is a sufficiently large prime, e.g., p = 2512. A key idea is to use for the base of the discrete logarithm an integer a in Zp such that the order of a is a sufficiently large prime q, e.g., q = 2140. In this way we improve the ElGamal signature scheme in the speed of the procedures for the generation and the verification of signatures and also in the bit length of signatures. We present an efficient algorithm that preprocesses the exponentiation of a random residue modulo p.
Stabilizing a linear system by switching control with dwell time The use of networks in control systems to connect controllers and sensors/actuators has become common practice in many applications. This new technology has also posed a theoretical control problem of how to use the limited data rate of the network effectively. We consider a system where its sensor and actuator are connected by a finite data rate channel. A design method to stabilize a continuous-time, linear plant using a switching controller is proposed. In particular, to prevent the actuator from fast switching, or chattering, which can not only increase the necessary data rate but also damage the system, we employ a dwell-time switching scheme. It is shown that a systematic partition of the state-space enables us to reduce the complexity of the design problem
Empirical Modelling of Genetic Algorithms This paper addresses the problem of reliably setting genetic algorithm parameters for consistent labelling problems. Genetic algorithm parameters are notoriously difficult to determine. This paper proposes a robust empirical framework, based on the analysis of factorial experiments. The use of a graeco-latin square permits an initial study of a wide range of parameter settings. This is followed by fully crossed factorial experiments with narrower ranges, which allow detailed analysis by logistic regression. The empirical models derived can be used to determine optimal algorithm parameters and to shed light on interactions between the parameters and their relative importance. Re-fined models are produced, which are shown to be robust under extrapolation to up to triple the problem size.
Simultaneous wireless information and power transfer in modern communication systems Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This article provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The article also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
Image analysis by Bessel-Fourier moments In this paper, we proposed a new set of moments based on the Bessel function of the first kind, named Bessel-Fourier moments (BFMs), which are more suitable than orthogonal Fourier-Mellin and Zernike moments for image analysis and rotation invariant pattern recognition. Compared with orthogonal Fourier-Mellin and Zernike polynomials of the same degree, the new orthogonal radial polynomials have more zeros, and these zeros are more evenly distributed. The Bessel-Fourier moments can be thought of as generalized orthogonalized complex moments. Theoretical and experimental results show that the Bessel-Fourier moments perform better than the orthogonal Fourier-Mellin and Zernike moments (OFMMs and ZMs) in terms of image reconstruction capability and invariant recognition accuracy in noise-free, noisy and smooth distortion conditions.
Quaternion Zernike moments and their invariants for color image analysis and object recognition Moments and moment invariants have become a powerful tool in pattern recognition and image analysis. Conventional methods to deal with color images are based on RGB decomposition or graying, which may lose some significant color information. In this paper, by using the algebra of quaternions, we introduce the quaternion Zernike moments (QZMs) to deal with the color images in a holistic manner. It is shown that the QZMs can be obtained from the conventional Zernike moments of each channel. We also provide the theoretical framework to construct a set of combined invariants with respect to rotation, scaling and translation (RST) transformation. Experimental results are provided to illustrate the efficiency of the proposed descriptors.
Image analysis using hahn moments. This paper shows how Hahn moments provide a unified understanding of the recently introduced Chebyshev and Krawtchouk moments. The two latter moments can be obtained as particular cases of Hahn moments with the appropriate parameter settings, and this fact implies that Hahn moments encompass all their properties. The aim of this paper is twofold: 1) To show how Hahn moments, as a generalization of Chebyshev and Krawtchouk moments, can be used for global and local feature extraction, and 2) to show how Hahn moments can be incorporated into the framework of normalized convolution to analyze local structures of irregularly sampled signals.
Fast computation of Jacobi-Fourier moments for invariant image recognition The Jacobi-Fourier moments (JFMs) provide a wide class of orthogonal rotation invariant moments (ORIMs) which are useful for many image processing, pattern recognition and computer vision applications. They, however, suffer from high time complexity and numerical instability at high orders of moment. In this paper, a fast method based on the recursive computation of radial kernel function of JFMs is proposed which not only reduces time complexity but also improves their numerical stability. Fast recursive method for the computation of Jacobi-Fourier moments is proposed.The proposed method not only reduces time complexity but also improves numerical stability of moments.Better image reconstruction is achieved with lower reconstruction error.Proposed method is useful for many image processing, pattern recognition and computer vision applications.
Image analysis by generalized Chebyshev–Fourier and generalized pseudo-Jacobi–Fourier moments In this paper, we present two new sets, named the generalized Chebyshev–Fourier radial polynomials and the generalized pseudo Jacobi–Fourier radial polynomials, which are orthogonal over the unit circle. These generalized radial polynomials are then scaled to define two new types of continuous orthogonal moments, which are invariant to rotation. The classical Chebyshev–Fourier and pseudo Jacobi–Fourier moments are the particular cases of the proposed moments with parameter α=0. The relationships among the proposed two generalized radial polynomials and Jacobi polynomials, shift Jacobi polynomials, and the hypergeometric functions are derived in detail, and some interesting properties are discussed. Two recursive methods are developed for computing radial polynomials so that it is possible to improve computation speed and to avoid numerical instability. Simulation results are provided to validate the proposed moment functions and to compare their performance with previous works.
Dual watermarking framework for privacy protection and content authentication of multimedia. In the current multimedia networked infrastructure, privacy breaches due to cyber-attacks result in huge economic losses. Despite these threats there is ever increasing demand to share data over various insecure networks for accomplishment of numerous tasks. In such a scenario there is a greater need to develop new algorithms for strengthening the existing cybersecurity frameworks, ensure security, privacy, copyright protection and authentication of data. In this paper a new technique for copyright protection, data security and content authentication of multimedia images is presented. The copyright protection of the media is taken care of by embedding a robust watermark using an efficient inter-block coefficient differencing algorithm and is proposed as Scheme I. Scheme II has been utilized to ensure both copyright protection, and content authentication. The authentication of the content has been ensured by embedding a fragile watermark in spatial domain while as copyright protection has been taken care of utilizing a robust watermark. In order to thwart an adversary and ensure that it has no access to actual embedded data, we make use of a novel encryption algorithm in conjunction with Arnold transform to encrypt data prior to its embedding. The experimental results reveal that the proposed framework offers high degree of robustness against single/dual/triple attacks; with Normalized Correlation (NCC), more than or equal to 0.95. Besides, the fragile watermark embedding makes the system capable of tamper detection and localization with average BER more than 45% for all signal processing/geometric attacks. The average PSNR achieved for both schemes is greater than 41 dB. A comparison of the proposed framework with various state-of-the-art techniques demonstrate its effectiveness and superiority.
Robust zero-watermarking algorithm based on polar complex exponential transform and logistic mapping. This paper introduces a new zero-watermarking algorithm based on polar complex exponential transform (PCET) and logistic mapping. This algorithm takes advantage of the geometric invariance of PCET to improve the robustness of the algorithm against geometric attacks, and the logistic mapping’s sensitivity to initial values to improve the security of the algorithm. First, the algorithm computes the PCET of the original grayscale image. Then it randomly selects PCET coefficients based on logistic mapping, and computes their magnitudes to obtain a binary feature image. Finally, it performs an exclusive-or operation between the binary feature image and the scrambled logo image to obtain the zero-watermark image. At the stage of copyright verification, the image copyright can be determined by performing the exclusive-or operation between the feature image and the verification image and comparing the resulting image to the original logo image. Experimental results show that this algorithm has excellent robustness against geometric attacks and common image processing attacks and better performance compared to other zero-watermarking algorithms.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Cell-Free Massive MIMO versus Small Cells. A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs), which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max–min power control algorithms. Max–min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly fivefold improvement in 95%-likely per-user throughput over the small-cell scheme, and tenfold improvement when shadow fading is correlated.
GSA: A Gravitational Search Algorithm In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions.
RFID-based techniques for human-activity detection The iBracelet and the Wireless Identification and Sensing Platform promise the ability to infer human activity directly from sensor readings.
Mobile Data Gathering with Load Balanced Clustering and Dual Data Uploading in Wireless Sensor Networks In this paper, a three-layer framework is proposed for mobile data collection in wireless sensor networks, which includes the sensor layer, cluster head layer, and mobile collector (called SenCar) layer. The framework employs distributed load balanced clustering and dual data uploading, which is referred to as LBC-DDU. The objective is to achieve good scalability, long network lifetime and low data collection latency. At the sensor layer, a distributed load balanced clustering (LBC) algorithm is proposed for sensors to self-organize themselves into clusters. In contrast to existing clustering methods, our scheme generates multiple cluster heads in each cluster to balance the work load and facilitate dual data uploading. At the cluster head layer, the inter-cluster transmission range is carefully chosen to guarantee the connectivity among the clusters. Multiple cluster heads within a cluster cooperate with each other to perform energy-saving inter-cluster communications. Through inter-cluster transmissions, cluster head information is forwarded to SenCar for its moving trajectory planning. At the mobile collector layer, SenCar is equipped with two antennas, which enables two cluster heads to simultaneously upload data to SenCar in each time by utilizing multi-user multiple-input and multiple-output (MU-MIMO) technique. The trajectory planning for SenCar is optimized to fully utilize dual data uploading capability by properly selecting polling points in each cluster. By visiting each selected polling point, SenCar can efficiently gather data from cluster heads and transport the data to the static data sink. Extensive simulations are conducted to evaluate the effectiveness of the proposed LBC-DDU scheme. The results show that when each cluster has at most two cluster heads, LBC-DDU achieves over 50 percent energy saving per node and 60 percent energy saving on cluster heads comparing with data collection through multi-hop relay to the static data sink, and 20 percent - horter data collection time compared to traditional mobile data gathering.
Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network. In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.046188
0.033293
0.03093
0.028571
0.028571
0.028571
0.007253
0
0
0
0
0
0
0
Network Digital Replica using Neural-Network-based Network Node Modeling Future network infrastructures will need to provide network services safely and rapidly under complex conditions that include accommodating many devices and multiple access lines such as 5G / 6G supported by multiple carriers. For this reason, the efficiency of the pre-verification needs to be improved for a large number of various devices to ensure safety and reliability. Furthermore, future carrier networks will support network disaggregation technologies to leverage best-of-breed technology from different suppliers in accordance with service requirements. Therefore, it is necessary to verify combinations of a large number of devices and the components constituting the network infrastructure to achieve optimal settings. In this paper, we propose the concept of network digital replica and a method of network node modeling to predict the performance of network nodes using neural-network-based machine learning. A network digital replica, which is a copy of a physical network, can be created in a digital domain not only to classify the specifications of network nodes but also to verify the performance for network devices digitally. We evaluate the effectiveness of the proposed method, which predicts the throughput and processing delays of actual routers on the basis of the sets of learning data including router settings and traffic conditions.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A vehicle routing problem arising in unmanned aerial monitoring. •We consider a routing problem arising in unmanned aerial monitoring.•The problem possesses several military and civil applications.•The problem is to construct vehicle routes and to select monitoring heights.•We model the problem as an integer linear program and solve it by tabu search.•Extensive tests confirm the efficiency of the heuristic.
People detection and tracking from aerial thermal views Detection and tracking of people in visible-light images has been subject to extensive research in the past decades with applications ranging from surveillance to search-and-rescue. Following the growing availability of thermal cameras and the distinctive thermal signature of humans, research effort has been focusing on developing people detection and tracking methodologies applicable to this sensing modality. However, a plethora of challenges arise on the transition from visible-light to thermal images, especially with the recent trend of employing thermal cameras onboard aerial platforms (e.g. in search-and-rescue research) capturing oblique views of the scenery. This paper presents a new, publicly available dataset of annotated thermal image sequences, posing a multitude of challenges for people detection and tracking. Moreover, we propose a new particle filter based framework for tracking people in aerial thermal images. Finally, we evaluate the performance of this pipeline on our dataset, incorporating a selection of relevant, state-of-the-art methods and present a comprehensive discussion of the merits spawning from our study.
Pareto-Optimization for Scheduling of Crude Oil Operations in Refinery via Genetic Algorithm. With the interaction of discrete-event and continuous processes, it is challenging to schedule crude oil operations in a refinery. This paper studies the optimization problem of finding a detailed schedule to realize a given refining schedule. This is a multiobjective optimization problem with a combinatorial nature. Since the original problem cannot be directly solved by using heuristics and meta-heuristics, the problem is transformed into an assignment problem of charging tanks and distillers. Based on such a transformation, by analyzing the properties of the problem, this paper develops a chromosome that can describe a feasible schedule such that meta-heuristics can be applied. Then, it innovatively adopts an improved nondominated sorting genetic algorithm to solve the problem for the first time. An industrial case study is used to test the proposed solution method. The results show that the method makes a significant performance improvement and is applicable to real-life refinery scheduling problems.
The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. •We introduce the UAV Routing and Trajectory Optimisation Problem.•We provide a taxonomy for UAV routing, TO and other variants.•We apply the proposed taxonomy to 70 scientific articles.•A lack of research about integrating UAV routing and TO is identified.
Multiperiod Asset Allocation Considering Dynamic Loss Aversion Behavior of Investors In order to study the effect of loss aversion behavior on multiperiod investment decisions, we first introduce some psychological characteristics of dynamic loss aversion and then construct a multiperiod portfolio model by considering a conditional value-at-risk (CVaR) constraint. We then design a variable neighborhood search-based hybrid genetic algorithm to solve the model. We finally study the optimal asset allocation and investment performance of the proposed multiperiod model. Some important metrics, such as the initial loss aversion coefficient and reference point, are used to test the robustness of the model. The result shows that investors with loss aversion tend to centralize most of their wealth and have a better performance than rational investors. The effects of CVaR on investment performance are given. When a market is falling, investors with a higher degree of risk aversion can avoid a large loss and can obtain higher gains.
Cooperative Aerial-Ground Vehicle Route Planning With Fuel Constraints for Coverage Applications. Low-cost unmanned aerial vehicles (UAVs) need multiple refuels to accomplish large area coverage. We propose the use of a mobile ground vehicle (GV), constrained to travel on a given road network, as a refueling station for the UAV. Determining optimal routes for a UAV and GV, and selecting rendezvous locations for refueling to minimize coverage time is NP-hard. We develop a two-stage strategy for...
Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the sub-optimality of such a representation for matching descriptors and leads us to derive a more precise representation based on 1) Hamming embedding (HE) and 2) weak geometric consistency constraints (WGC). HE provides binary signatures that refine the matching based on visual words. WGC filters matching descriptors that are not consistent in terms of angle and scale. HE and WGC are integrated within the inverted file and are efficiently exploited for all images, even in the case of very large datasets. Experiments performed on a dataset of one million of images show a significant improvement due to the binary signature and the weak geometric consistency constraints, as well as their efficiency. Estimation of the full geometric transformation, i.e., a re-ranking step on a short list of images, is complementary to our weak geometric consistency constraints and allows to further improve the accuracy.
Microsoft Coco: Common Objects In Context We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
The Whale Optimization Algorithm. The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html
Collaborative privacy management The landscape of the World Wide Web with all its versatile services heavily relies on the disclosure of private user information. Unfortunately, the growing amount of personal data collected by service providers poses a significant privacy threat for Internet users. Targeting growing privacy concerns of users, privacy-enhancing technologies emerged. One goal of these technologies is the provision of tools that facilitate a more informative decision about personal data disclosures. A famous PET representative is the PRIME project that aims for a holistic privacy-enhancing identity management system. However, approaches like the PRIME privacy architecture require service providers to change their server infrastructure and add specific privacy-enhancing components. In the near future, service providers are not expected to alter internal processes. Addressing the dependency on service providers, this paper introduces a user-centric privacy architecture that enables the provider-independent protection of personal data. A central component of the proposed privacy infrastructure is an online privacy community, which facilitates the open exchange of privacy-related information about service providers. We characterize the benefits and the potentials of our proposed solution and evaluate a prototypical implementation.
Cognitive Cars: A New Frontier for ADAS Research This paper provides a survey of recent works on cognitive cars with a focus on driver-oriented intelligent vehicle motion control. The main objective here is to clarify the goals and guidelines for future development in the area of advanced driver-assistance systems (ADASs). Two major research directions are investigated and discussed in detail: 1) stimuli–decisions–actions, which focuses on the driver side, and 2) perception enhancement–action-suggestion–function-delegation, which emphasizes the ADAS side. This paper addresses the important achievements and major difficulties of each direction and discusses how to combine the two directions into a single integrated system to obtain safety and comfort while driving. Other related topics, including driver training and infrastructure design, are also studied.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. In this paper, a blind image watermarking scheme based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. In this scheme, DWT is applied on ROI (region of interest) of the medical image to get different frequency subbands of its wavelet decomposition. On the low frequency subband LL of the ROI, block-SVD is applied to get different singular matrices. A pair of elements with similar values is identified from the left singular value matrix of these selected blocks. The values of these pairs are modified using certain threshold to embed a bit of watermark content. Appropriate threshold is chosen to achieve the imperceptibility and robustness of medical image and watermark contents respectively. For authentication and identification of original medical image, one watermark image (logo) and other text watermark have been used. The watermark image provides authentication whereas the text data represents electronic patient record (EPR) for identification. At receiving end, blind recovery of both watermark contents is performed by a similar comparison scheme used during the embedding process. The proposed algorithm is applied on various groups of medical images like X-ray, CT scan and mammography. This scheme offers better visibility of watermarked image and recovery of watermark content due to DWT-SVD combination. Moreover, use of Hamming error correcting code (ECC) on EPR text bits reduces the BER and thus provides better recovery of EPR. The performance of proposed algorithm with EPR data coding by Hamming code is compared with the BCH error correcting code and it is found that later one perform better. A result analysis shows that imperceptibility of watermarked image is better as PSNR is above 43 dB and WPSNR is above 52 dB for all set of images. In addition, robustness of the scheme is better than existing scheme for similar set of medical images in terms of normalized correlation coefficient (NCC) and bit-error-rate (BER). An analysis is also carried out to verify the performance of the proposed scheme for different size of watermark contents (image and EPR data). It is observed from analysis that the proposed scheme is also appropriate for watermarking of color image. Using proposed scheme, watermark contents are extracted successfully under various noise attacks like JPEG compression, filtering, Gaussian noise, Salt and pepper noise, cropping, filtering and rotation. Performance comparison of proposed scheme with existing schemes shows proposed scheme has better robustness against different types of attacks. Moreover, the proposed scheme is also robust under set of benchmark attacks known as checkmark attacks.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
0