Query Text
stringlengths
10
40.4k
Ranking 1
stringlengths
12
40.4k
Ranking 2
stringlengths
12
36.2k
Ranking 3
stringlengths
10
36.2k
Ranking 4
stringlengths
13
40.4k
Ranking 5
stringlengths
12
36.2k
Ranking 6
stringlengths
13
36.2k
Ranking 7
stringlengths
10
40.4k
Ranking 8
stringlengths
12
36.2k
Ranking 9
stringlengths
12
36.2k
Ranking 10
stringlengths
12
36.2k
Ranking 11
stringlengths
20
6.21k
Ranking 12
stringlengths
14
8.24k
Ranking 13
stringlengths
28
4.03k
score_0
float64
1
1.25
score_1
float64
0
0.25
score_2
float64
0
0.25
score_3
float64
0
0.25
score_4
float64
0
0.25
score_5
float64
0
0.25
score_6
float64
0
0.25
score_7
float64
0
0.24
score_8
float64
0
0.2
score_9
float64
0
0.03
score_10
float64
0
0
score_11
float64
0
0
score_12
float64
0
0
score_13
float64
0
0
Decentralizing Privacy: Using Blockchain to Protect Personal Data The recent increase in reported incidents of surveillance and security breaches compromising users' privacy call into question the current model, in which third-parties collect and control massive amounts of personal data. Bit coin has demonstrated in the financial space that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we describe a decentralized personal data management system that ensures users own and control their data. We implement a protocol that turns a block chain into an automated access-control manager that does not require trust in a third party. Unlike Bit coin, transactions in our system are not strictly financial--they are used to carry instructions, such as storing, querying and sharing data. Finally, we discuss possible future extensions to block chains that could harness them into a well-rounded solution for trusted computing problems in society.
On signatures of knowledge In a traditional signature scheme, a signature σ on a message m is issued under a public key PK, and can be interpreted as follows: “The owner of the public key PK and its corresponding secret key has signed message m.” In this paper we consider schemes that allow one to issue signatures on behalf of any NP statement, that can be interpreted as follows: “A person in possession of a witness w to the statement that x ∈L has signed message m.” We refer to such schemes as signatures of knowledge. We formally define the notion of a signature of knowledge. We begin by extending the traditional definition of digital signature schemes, captured by Canetti's ideal signing functionality, to the case of signatures of knowledge. We then give an alternative definition in terms of games that also seems to capture the necessary properties one may expect from a signature of knowledge. We then gain additional confidence in our two definitions by proving them equivalent. We construct signatures of knowledge under standard complexity assumptions in the common-random-string model. We then extend our definition to allow signatures of knowledge to be nested i.e., a signature of knowledge (or another accepting input to a UC-realizable ideal functionality) can itself serve as a witness for another signature of knowledge. Thus, as a corollary, we obtain the first delegatable anonymous credential system, i.e., a system in which one can use one's anonymous credentials as a secret key for issuing anonymous credentials to others.
Smart contract for secure billing in ride-hailing service via blockchain Ride-hailing service is gaining an increasing popularity due to its great advantages on fare estimation, automatic payments, and reputation ratings. However, how to build the trust between the driver and the passenger and achieve the secure billing still remains an open challenge. This paper proposes a novel secure billing protocol which removes the presence of the online third party by a smart contract on a publicly-verifiable two-party blockchain. In the proposed secure billing protocol, the driver and the passenger generate a blockchain which contains information about the ride. The driver and the passenger measure their own trajectories respectively in rounds. At the end of each round, they exchange their trajectories of the current round. If the difference of trajectories is within a threshold, they jointly compute the fare of current round. After completing the computation, the passenger pays the driver the fare of the current round via a micropayment channel. The driver and the passenger end each round by adding the information generated in this round into the blockchain. The blockchain can be considered as an evidence of the ride since it contains all the information of the ride. We evaluate the performance and the effectiveness of the proposed protocol via extensive experiments and detailed analysis.
AP-PRE: Autonomous Path Proxy Re-encryption and Its Application In this paper, we introduce a new cryptographic primitive, called autonomous path proxy re-encryption (APPRE), which is motivated by several application scenarios where the delegator would like to control the whole delegation path in a multi-hop delegation process. Compared with the traditional proxy re-encryption, AP-PRE provides much better fine-grained access control to delegation path. Briefly speaking, in an APPRE scheme, the delegator designates a path of his preferred delegatees. The path consists of several delegatees with the privilege from high to low. If the delegatee in the path cannot complete the decryption, the decryption right is automatically delegated to the next one in the path. In this way, the delegator can ensure that the delegation has always been done among those delegatees the delegator trusts. Moreover, an AP-PRE scheme has to obey the following path rules. The delegation, for ciphertexts of a delegator i, can only be carried out on the autonomous path Pai designated by the delegator i, in the sense that (1) re-encrypted ciphertexts along the autonomous path Pai cannot branch off Pai with meaningful decryption, and (2) original ciphertexts generated under pkj for j = i (i.e., for a path Paj different from Pai) cannot be inserted into (i.e., cannot be transformed along) the autonomous path Pai with meaningful decryption. We give the formal definition, as well as the formal security model, for this cryptographic primitive. Under this concept, we construct an IND-CPA secure AP-PRE scheme under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. Our scheme is with the useful properties of proxy re-encryption, i.e., unidirectionality and multi-hop.
Machine learning based privacy-preserving fair data trading in big data market. •Propose a machine learning based privacy-preserving fair data trading model in big data market.•Present a concrete construction of fair data trading protocol.•Analyze the security of the proposed protocol.•Implement the proposed protocol.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Hiding Traces of Resampling in Digital Images Resampling detection has become a standard tool for forensic analyses of digital images. This paper presents new variants of image transformation operations which are undetectable by resampling detectors based on periodic variations in the residual signal of local linear predictors in the spatial domain. The effectiveness of the proposed method is supported with evidence from experiments on a large image database for various parameter settings. We benchmark detectability as well as the resulting image quality against conventional linear and bicubic interpolation and interpolation with a sinc kernel. These early findings on ldquocounter-forensicrdquo techniques put into question the reliability of known forensic tools against smart counterfeiters in general, and might serve as benchmarks and motivation for the development of much improved forensic techniques.
Fog computing and its role in the internet of things Fog Computing extends the Cloud Computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are: a) Low latency and location awareness; b) Wide-spread geographical distribution; c) Mobility; d) Very large number of nodes, e) Predominant role of wireless access, f) Strong presence of streaming and real time applications, g) Heterogeneity. In this paper we argue that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).
Efficient Signature Generation by Smart Cards We present a new public-key signature scheme and a corresponding authentication scheme that are based on discrete logarithms in a subgroup of units in Zp where p is a sufficiently large prime, e.g., p = 2512. A key idea is to use for the base of the discrete logarithm an integer a in Zp such that the order of a is a sufficiently large prime q, e.g., q = 2140. In this way we improve the ElGamal signature scheme in the speed of the procedures for the generation and the verification of signatures and also in the bit length of signatures. We present an efficient algorithm that preprocesses the exponentiation of a random residue modulo p.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
A Web-Based Tool For Control Engineering Teaching In this article a new tool for control engineering teaching is presented. The tool was implemented using Java applets and is freely accessible through Web. It allows the analysis and simulation of linear control systems and was created to complement the theoretical lectures in basic control engineering courses. The article is not only centered in the description of the tool but also in the methodology to use it and its evaluation in an electrical engineering degree. Two practical problems are included in the manuscript to illustrate the use of the main functions implemented. The developed web-based tool can be accessed through the link http://www.controlweb.cyc.ull.es. (C) 2006 Wiley Periodicals, Inc.
GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation Although a large number of WiFi fingerprinting based indoor localization systems have been proposed, our field experience with Google Maps Indoor (GMI), the only system available for public testing, shows that it is far from mature for indoor navigation. In this paper, we first report our field studies with GMI, as well as experiment results aiming to explain our unsatisfactory GMI experience. Then motivated by the obtained insights, we propose GROPING as a self-contained indoor navigation system independent of any infrastructural support. GROPING relies on geomagnetic fingerprints that are far more stable than WiFi fingerprints, and it exploits crowdsensing to construct floor maps rather than expecting individual venues to supply digitized maps. Based on our experiments with 20 participants in various floors of a big shopping mall, GROPING is able to deliver a sufficient accuracy for localization and thus provides smooth navigation experience.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor Networks Unmanned aerial vehicle (UAV)-aided Wireless Rechargeable Sensor Network (WRSN) is a promising application in providing sustainable power supply to the rechargeable sensor nodes (SNs). Constructing a trajectory for the UAV to traverse all SNs with the cheapest cost is an important issue in UAV-aided WRSN. Although some exact algorithms and heuristic methods have been proposed, they cannot achieve a superb result for the large-scale scene within the tolerable time. In this paper, we study the UAV‘s trajectory optimization problem from a novel viewpoint that the designed trajectory should maximize the UAV's energy utilization efficiency. The maximum UAV's energy utilization efficiency problem is decomposed as integer programming and non-convex optimization problems. For the problem that UAV‘s charging position is fixed, we have speeded the algorithm's performance by limiting the search direction, the initial search position, and the search space. In the other case, where the power transfer efficiency is unchangeable within a certain distance, a polynomial-time randomized approximation scheme (PRAS) is presented to find the approximate minimum number of hovering locations. We have presented TPA-FCP and TPA-ERC to solve the above problems, respectively. The numerical results verify that our proposed algorithms effectively reduce the length of optimal trajectory and the time complexity. Besides, the energy carried by the UAV for the specified task is predictable, which provides valuable information for arranging the UAV's flight task.
Minimizing Charging Delay for Directional Charging As a more energy-efficient WPT technology, directional WPT is applied to supply energy for wireless rechargeable sensor networks (WRSNs). Conventional methods that ignore anisotropic energy receiving property of rechargeable sensors cause a waste of energy. To address this issue, in this paper, we focus on minimizing the charging delay with a directional charging scheme. At first, we introduce lin...
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
A survey on cross-layer solutions for wireless sensor networks Ever since wireless sensor networks (WSNs) have emerged, different optimizations have been proposed to overcome their constraints. Furthermore, the proposal of new applications for WSNs have also created new challenges to be addressed. Cross-layer approaches have proven to be the most efficient optimization techniques for these problems, since they are able to take the behavior of the protocols at each layer into consideration. Thus, this survey proposes to identify the key problems of WSNs and gather available cross-layer solutions for them that have been proposed so far, in order to provide insights on the identification of open issues and provide guidelines for future proposals.
OPPC: An Optimal Path Planning Charging Scheme Based on Schedulability Evaluation for WRSNs. The lack of schedulability evaluation of previous charging schemes in wireless rechargeable sensor networks (WRSNs) degrades the charging efficiency, leading to node exhaustion. We propose an Optimal Path Planning Charging scheme, namely OPPC, for the on-demand charging architecture. OPPC evaluates the schedulability of a charging mission, which makes charging scheduling predictable. It provides an optimal charging path which maximizes charging efficiency. When confronted with a non-schedulable charging mission, a node discarding algorithm is developed to enable the schedulability. Experimental simulations demonstrate that OPPC can achieve better performance in successful charging rate as well as charging efficiency.
Machine learning algorithms for wireless sensor networks: A survey. •The survey of machine learning algorithms for WSNs from the period 2014 to March 2018.•Machine learning (ML) for WSNs with their advantages, features and limitations.•A statistical survey of ML-based algorithms for WSNs.•Reasons to choose a ML techniques to solve issues in WSNs.•The survey proposes a discussion on open issues.
Task Scheduling for Energy-Harvesting-Based IoT: A Survey and Critical Analysis The Internet of Things (IoT) has important applications in our daily lives, including health and fitness tracking, environmental monitoring, and transportation. However, sensor nodes in IoT suffer from the limited lifetime of batteries resulting from their finite energy availability. A promising solution is to harvest energy from environmental sources, such as solar, kinetic, thermal, and radio-fr...
A Grid-Based Joint Routing and Charging Algorithm for Industrial Wireless Rechargeable Sensor Networks Wireless charging techniques provide a more flexible and promising way to solve the energy constraint problem in industrial wireless rechargeable sensor networks (IWRSNs). Although considerable research has been done on wireless charging algorithms, most of it only focuses on passively replenishing nodes having insufficient energy. In this paper, we propose a grid-based joint routing and charging algorithm for IWRSNs to solve the charging problem in a proactive way. On the one hand, a new routing protocol is designed according to charging characteristics of the charger to achieve local energy balance. On the other hand, different charging times are allocated at different charging points on the basis of energy consumption caused by the routing process to achieve global energy balance. Simulation results verify superiority of our proposed algorithm in solving the balancing energy problem and improving survival rates of nodes.
A Mobile Data Gathering Framework for Wireless Rechargeable Sensor Networks with Vehicle Movement Costs and Capacity Constraints. Several recent works have studied mobile vehicle scheduling to recharge sensor nodes via wireless energy transfer technologies. Unfortunately, most of them overlooked important factors of the vehicles' moving energy consumption and limited recharging capacity, which may lead to problematic schedules or even stranded vehicles. In this paper, we consider the recharge scheduling problem under such im...
A comparative study of texture measures with classification based on featured distributions This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently. For classification a method based on Kullback discrimination of sample and prototype distributions is used. The classification results for single features with one-dimensional feature value distributions and for pairs of complementary features with two-dimensional distributions are presented
Distributed finite-time attitude containment control for multiple rigid bodies Distributed finite-time attitude containment control for multiple rigid bodies is addressed in this paper. When there exist multiple stationary leaders, we propose a model-independent control law to guarantee that the attitudes of the followers converge to the stationary convex hull formed by those of the leaders in finite time by using both the one-hop and two-hop neighbors’ information. We also discuss the special case of a single stationary leader and propose a control law using only the one-hop neighbors’ information to guarantee cooperative attitude regulation in finite time. When there exist multiple dynamic leaders, a distributed sliding-mode estimator and a non-singular sliding surface were given to guarantee that the attitudes and angular velocities of the followers converge, respectively, to the dynamic convex hull formed by those of the leaders in finite time. We also explicitly show the finite settling time.
Distributed Channel Selection in Time-Varying Radio Environment: Interference Mitigation Game With Uncoupled Stochastic Learning This paper investigates the problem of distributed channel selection for interference mitigation in a time-varying radio environment without information exchange. Most existing algorithms, which were originally designed for static channels, are costly and inefficient in the presence of time-varying channels. First, we formulate this problem as a noncooperative game, in which the utility of each player is defined as a function of its experienced expected weighted interference. This game is proven to be an exact potential game with the considered network utility (the expected weighted aggregate interference) serving as the potential function. However, most game-theoretic algorithms are not suitable for the considered network, since they are coupled, i.e., the updating procedure is relying on the actions or payoffs of other players. Then, we propose a simple, completely distributed, and uncoupled stochastic learning algorithm, with which the users learn the desirable channel selections from their individual trial-payoff history. It is analytically shown that the proposed algorithm converges to pure strategy Nash equilibrium in time-varying radio environment; moreover, it achieves optimal channel selection profiles and makes the network interference-free for underloaded or equally loaded scenarios, while achieving, on average, near-optimal performance for overloaded scenarios.
Distributed Adaptive Fuzzy Containment Control of Stochastic Pure-Feedback Nonlinear Multiagent Systems With Local Quantized Controller and Tracking Constraint This paper studies the distributed adaptive fuzzy containment tracking control for a class of high-order stochastic pure-feedback nonlinear multiagent systems with multiple dynamic leaders and performance constraint requirement. The control inputs are quantized by hysteresis quantizers. Mean value theorems are used to transfer the nonaffine systems into affine forms and a nonlinear decomposition is employed to solve the quantized input control problem. With a novel structure barrier Lyapunov function, the distributed control strategy is developed. It is strictly proved that the outputs of the followers converge to the convex hull spanned by the multiple dynamic leaders, the containment tracking errors satisfy the performance constraint requirement and the resulting leader-following multiagent system is stable in probability based on Lyapunov stability theory. At last, simulation is provided to show the validity and the advantages of the proposed techniques.
Active Suspension Control of Quarter-Car System With Experimental Validation A reliable, efficient, and simple control is presented and validated for a quarter-car active suspension system equipped with an electro-hydraulic actuator. Unlike the existing techniques, this control does not use any function approximation, e.g., neural networks (NNs) or fuzzy-logic systems (FLSs), while the unmolded dynamics, including the hydraulic actuator behavior, can be accommodated effectively. Hence, the heavy computational costs and tedious parameter tuning phase can be remedied. Moreover, both the transient and steady-state suspension performance can be retained by incorporating prescribed performance functions (PPFs) into the control implementation. This guaranteed performance is particularly useful for guaranteeing the safe operation of suspension systems. Apart from theoretical studies, some practical considerations of control implementation and several parameter tuning guidelines are suggested. Experimental results based on a practical quarter-car active suspension test-rig demonstrate that this control can obtain a superior performance and has better computational efficiency over several other control methods.
1.11
0.11
0.1
0.1
0.1
0.1
0.1
0.05
0.018861
0
0
0
0
0
Decentralized Sensor Scheduling, Bandwidth Allocation, and Dynamic Quantization for FL Under Hybrid Data Partitioning Considering the wide application of multiple types of sensors with diversified data sensing and collection capabilities, we focus on the resulting hybrid data partitioning among the local data set distributed at the edge sensors, especially the practical training implementation of federated learning (FL) under such a setting, where the neural network (NN) is trained collaboratively without requiring the sensors to share their data. Different from the conventional FL schemes, since each local sensor now only has partial data samples with type-specific features, the traditional stochastic gradient descent (SGD)-based training method cannot be directly utilized due to the intertype and intratype data coupling. To address this issue, we first transform the training problem into the primal–dual domain utilizing the corresponding Lagrangian and propose a stochastic primal-descent dual-ascent training method with a two-side residual feedback mechanism. Such a method can be implemented in a scalable way and compensate for the data distortion and loss caused by the practical transmission noise. Furthermore, a decentralized joint scheduling, bandwidth allocation, and dynamic quantization policy is proposed by analyzing the performance at each training iteration and the consumed transmission resources. The proposed method is adaptive to not only the channel state information (CSI) but also the instantaneous gradient importance and dynamic gradient statistics. The closed-form convergence analysis is provided, and the simulation experiments illustrate the superior performance of the proposed scheme.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these "Sybil attacks" is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Infrastructure as a Service and Cloud Technologies To choose the most appropriate cloud-computing model for your organization, you must analyze your IT infrastructure, usage, and needs. To help with this, this article describes cloud computing's current status.
Dynamic Management of Virtual Infrastructures Cloud infrastructures are becoming an appropriate solution to address the computational needs of scientific applications. However, the use of public or on-premises Infrastructure as a Service (IaaS) clouds requires users to have non-trivial system administration skills. Resource provisioning systems provide facilities to choose the most suitable Virtual Machine Images (VMI) and basic configuration of multiple instances and subnetworks. Other tasks such as the configuration of cluster services, computational frameworks or specific applications are not trivial on the cloud, and normally users have to manually select the VMI that best fits, including undesired additional services and software packages. This paper presents a set of components that ease the access and the usability of IaaS clouds by automating the VMI selection, deployment, configuration, software installation, monitoring and update of Virtual Appliances. It supports APIs from a large number of virtual platforms, making user applications cloud-agnostic. In addition it integrates a contextualization system to enable the installation and configuration of all the user required applications providing the user with a fully functional infrastructure. Therefore, golden VMIs and configuration recipes can be easily reused across different deployments. Moreover, the contextualization agent included in the framework supports horizontal (increase/decrease the number of resources) and vertical (increase/decrease resources within a running Virtual Machine) by properly reconfiguring the software installed, considering the configuration of the multiple resources running. This paves the way for automatic virtual infrastructure deployment, customization and elastic modification at runtime for IaaS clouds.
Application Oriented Dynamic Resource Allocation for Data Centers Using Docker Containers. Docker offers an opportunity for further improvement in data centers' (DCs) efficiency. However, existing models and schemes fall short to be efficiently used for Docker container-based resource allocation. We design a novel application oriented Docker container (AODC)-based resource allocation framework to minimize the application deployment cost in DCs, and to support automatic scaling while the...
HSACMA: a hierarchical scalable adaptive cloud monitoring architecture. Monitoring for cloud is the key technology to know the status and the availability of the resources and services present in the current infrastructure. However, cloud monitoring faces a lot of challenges due to inefficient monitoring capability and enormous resource consumption. We study the adaptive monitoring for cloud computing platform, and focus on the problem of balancing monitoring capability and resource consumption. We proposed HSACMA, a hierarchical scalable adaptive monitoring architecture, that (1) monitors the physical and virtual infrastructure at the infrastructure layer, the middleware running at the platform layer, and the application services at the application layer; (2) achieves the scalability of the monitoring based on microservices; and (3) adaptively adjusts the monitoring interval and data transmission strategy according to the running state of the cloud computing system. Moreover, we study a case of real production system deployed and running on the cloud computing platform called CloudStack, to verify the effectiveness of applying our architecture in practice. The results show that HSACMA can guarantee the accuracy and real-time performance of monitoring and reduces resource consumption.
Integrating security and privacy in software development As a consequence to factors such as progress made by the attackers, release of new technologies and use of increasingly complex systems, and threats to applications security have been continuously evolving. Security of code and privacy of data must be implemented in both design and programming practice to face such scenarios. In such a context, this paper proposes a software development approach, Privacy Oriented Software Development (POSD), that complements traditional development processes by integrating the activities needed for addressing security and privacy management in software systems. The approach is based on 5 key elements (Privacy by Design, Privacy Design Strategies, Privacy Pattern, Vulnerabilities, Context). The approach can be applied in two directions forward and backward, for developing new software systems or re-engineering an existing one. This paper presents the POSD approach in the backward mode together with an application in the context of an industrial project. Results show that POSD is able to discover software vulnerabilities, identify the remediation patterns needed for addressing them in the source code, and design the target architecture to be used for guiding privacy-oriented system re-engineering.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Vision meets robotics: The KITTI dataset We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations, and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets, and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.
A tutorial on support vector regression In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
GameFlow: a model for evaluating player enjoyment in games Although player enjoyment is central to computer games, there is currently no accepted model of player enjoyment in games. There are many heuristics in the literature, based on elements such as the game interface, mechanics, gameplay, and narrative. However, there is a need to integrate these heuristics into a validated model that can be used to design, evaluate, and understand enjoyment in games. We have drawn together the various heuristics into a concise model of enjoyment in games that is structured by flow. Flow, a widely accepted model of enjoyment, includes eight elements that, we found, encompass the various heuristics from the literature. Our new model, GameFlow, consists of eight elements -- concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each element includes a set of criteria for achieving enjoyment in games. An initial investigation and validation of the GameFlow model was carried out by conducting expert reviews of two real-time strategy games, one high-rating and one low-rating, using the GameFlow criteria. The result was a deeper understanding of enjoyment in real-time strategy games and the identification of the strengths and weaknesses of the GameFlow model as an evaluation tool. The GameFlow criteria were able to successfully distinguish between the high-rated and low-rated games and identify why one succeeded and the other failed. We concluded that the GameFlow model can be used in its current form to review games; further work will provide tools for designing and evaluating enjoyment in games.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
A Web-Based Tool For Control Engineering Teaching In this article a new tool for control engineering teaching is presented. The tool was implemented using Java applets and is freely accessible through Web. It allows the analysis and simulation of linear control systems and was created to complement the theoretical lectures in basic control engineering courses. The article is not only centered in the description of the tool but also in the methodology to use it and its evaluation in an electrical engineering degree. Two practical problems are included in the manuscript to illustrate the use of the main functions implemented. The developed web-based tool can be accessed through the link http://www.controlweb.cyc.ull.es. (C) 2006 Wiley Periodicals, Inc.
Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks Because of the complicity of consensus control of nonlinear multiagent systems in state time-delay, most of previous works focused only on linear systems with input time-delay. An adaptive neural network (NN) consensus control method for a class of nonlinear multiagent systems with state time-delay is proposed in this paper. The approximation property of radial basis function neural networks (RBFNNs) is used to neutralize the uncertain nonlinear dynamics in agents. An appropriate Lyapunov-Krasovskii functional, which is obtained from the derivative of an appropriate Lyapunov function, is used to compensate the uncertainties of unknown time delays. It is proved that our proposed approach guarantees the convergence on the basis of Lyapunov stability theory. The simulation results of a nonlinear multiagent time-delay system and a multiple collaborative manipulators system show the effectiveness of the proposed consensus control algorithm.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
Controller design for TS models using delayed nonquadratic Lyapunov functions. In the last few years, nonquadratic Lyapunov functions have been more and more frequently used in the analysis and controller design for Takagi-Sugeno fuzzy models. In this paper, we developed relaxed conditions for controller design using nonquadratic Lyapunov functions and delayed controllers and give a general framework for the use of such Lyapunov functions. The two controller design methods developed in this framework outperform and generalize current state-of-the-art methods. The proposed methods are extended to robust and H∞ control and α -sample variation.
Stability analysis of T-S fuzzy control systems by using set theory This paper is concerned with the stability analysis for T-S fuzzy control systems. By exploiting the property of the structure of fuzzy inference engine, an equivalence relation on index set of the product of fuzzy rule weights is defined. Further, a new stability criterion is proposed by using the equivalence relation, and formulated into progressively less conservative sets of linear matrix inequalities. By using an extension of P´olya’s Theorem, the new criterion is proved to be with no conservatism for quadratic stability analysis of T-S fuzzy control systems with a product inference engine and any possible fuzzy membership functions. A numerical example is given to illustrate the effectiveness of the proposed method.
Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach. This paper deals with the problem of control synthesis of discrete-time Takagi--Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
Efficient LMI Conditions for Enhanced Stabilization of Discrete-Time Takagi-Sugeno Models via Delayed Nonquadratic Lyapunov Functions This paper is concerned with the reduction of conservatism on stabilization conditions of discrete-time Takagi–Sugeno fuzzy models via delayed nonquadratic Lyapunov functions. A fruitful approach recently appeared in the literature, which, despite its benefits, dramatically increases the number of linear matrix inequalities needed to synthesize a controller. The two sets of sufficient conditions hereby proposed tackle this numerical problem while reducing conservatism and increasing the stabilization domain of existing conditions in literature, as illustrated in several examples.
Adaptive Fuzzy Observer-Based Fault Estimation for a Class of Nonlinear Stochastic Hybrid Systems This article studies the fault estimation problem for a class of continuous-time nonlinear Markovian jump systems with unmeasured states, unknown bounded sensor faults, and unknown nonlinearities simultaneously. In this article, a new adaptive fuzzy observer design scheme is developed, where the completely unknown nonlinear terms are approximated by adaptive fuzzy logic systems. By means of a nove...
Homogeneous polynomially nonquadratic stabilization of discrete-time TakagiSugeno systems via nonparallel distributed compensation law This paper considers stability of discrete-time nonlinear systems in TakagiSugeno (TS) form. This problem has been studied for more than 20 years with many sufficient conditions, and the asymptotically necessary and sufficient (ANS) conditions with respect to the common-quadratic Lyapunov, function, having being obtained. This paper considers general forms of homogeneous polynomially nonquadratic Lyapunov (HPNQL) function and homogeneous polynomially parameterized nonparallel distributed compensation (HPP-non-PDC) law. By generalization of the procedure based on Plyas theorem and techniques used for parameter-dependent linear matrix inequality (PD-LMI) which have been studied previously in different contexts, ANS stability conditions with respect to the general HPNQL function are obtained. © 2010 IEEE.
Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity. This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturat...
Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks Because of the complicity of consensus control of nonlinear multiagent systems in state time-delay, most of previous works focused only on linear systems with input time-delay. An adaptive neural network (NN) consensus control method for a class of nonlinear multiagent systems with state time-delay is proposed in this paper. The approximation property of radial basis function neural networks (RBFNNs) is used to neutralize the uncertain nonlinear dynamics in agents. An appropriate Lyapunov-Krasovskii functional, which is obtained from the derivative of an appropriate Lyapunov function, is used to compensate the uncertainties of unknown time delays. It is proved that our proposed approach guarantees the convergence on the basis of Lyapunov stability theory. The simulation results of a nonlinear multiagent time-delay system and a multiple collaborative manipulators system show the effectiveness of the proposed consensus control algorithm.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Using Social Psychology to Motivate Contributions to Online Communities Under-contribution is a problem for many online communities. Social psychology theories of social loafing and goal-setting can lead to mid-level design goals to address this problem. We tested design principles derived from these theories in four field experiments involving members of an online movie recommender community. In each of the experiments participated were given different explanations for the value of their contributions. As predicted by theory, individuals contributed when they were reminded of their uniqueness and when they were given specific and challenging goals. However, other predictions were disconfirmed. For example, in one experiment, participants given group goals contributed more than those given individual goals. The article ends with suggestions and challenges for mining design implications from social science theories.
Tabu search based multi-watermarks embedding algorithm with multiple description coding Digital watermarking is a useful solution for digital rights management systems, and it has been a popular research topic in the last decade. Most watermarking related literature focuses on how to resist deliberate attacks by applying benchmarks to watermarked media that assess the effectiveness of the watermarking algorithm. Only a few papers have concentrated on the error-resilient transmission of watermarked media. In this paper, we propose an innovative algorithm for vector quantization (VQ) based image watermarking, which is suitable for error-resilient transmission over noisy channels. By incorporating watermarking with multiple description coding (MDC), the scheme we propose to embed multiple watermarks can effectively overcome channel impairments while retaining the capability for copyright and ownership protection. In addition, we employ an optimization technique, called tabu search, to optimize both the watermarked image quality and the robustness of the extracted watermarks. We have obtained promising simulation results that demonstrate the utility and practicality of our algorithm. (C) 2011 Elsevier Inc. All rights reserved.
An efficient conditionally anonymous ring signature in the random oracle model A conditionally anonymous ring signature is an exception since the anonymity is conditional. Specifically, it allows an entity to confirm/refute the signature that he generated before. A group signature also shares the same property since a group manager can revoke a signer's anonymity using the trapdoor information. However, the special node (i.e., group manager) does not exist in the group in order to satisfy the ad hoc fashion. In this paper, we construct a new conditionally anonymous ring signature, in which the actual signer can be traced without the help of the group manager. The big advantage of the confirmation and disavowal protocols designed by us are non-interactive with constant costs while the known schemes suffer from the linear cost in terms of the ring size n or security parameter s.
The ApolloScape Dataset for Autonomous Driving Scene parsing aims to assign a class (semantic) label for each pixel in an image. It is a comprehensive analysis of an image. Given the rise of autonomous driving, pixel-accurate environmental perception is expected to be a key enabling technical piece. However, providing a large scale dataset for the design and evaluation of scene parsing algorithms, in particular for outdoor scenes, has been difficult. The per-pixel labelling process is prohibitively expensive, limiting the scale of existing ones. In this paper, we present a large-scale open dataset, ApolloScape, that consists of RGB videos and corresponding dense 3D point clouds. Comparing with existing datasets, our dataset has the following unique properties. The first is its scale, our initial release contains over 140K images - each with its per-pixel semantic mask, up to 1M is scheduled. The second is its complexity. Captured in various traffic conditions, the number of moving objects averages from tens to over one hundred (Figure 1). And the third is the 3D attribute, each image is tagged with high-accuracy pose information at cm accuracy and the static background point cloud has mm relative accuracy. We are able to label these many images by an interactive and efficient labelling pipeline that utilizes the high-quality 3D point cloud. Moreover, our dataset also contains different lane markings based on the lane colors and styles. We expect our new dataset can deeply benefit various autonomous driving related applications that include but not limited to 2D/3D scene understanding, localization, transfer learning, and driving simulation.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.1124
0.1124
0.1124
0.1124
0.104
0.050507
0.0052
0.001044
0
0
0
0
0
0
An Adaptive Longitudinal Driving Assistance System Based on Driver Characteristics prototype of a longitudinal driving-assistance system, which is adaptive to driver behavior, is developed. Its functions include adaptive cruise control and forward collision warning/avoidance. The research data came from driver car-following tests in real traffic environments. Based on the data analysis, a driver model imitating the driver's operation is established to generate the desired throttle depression and braking pressure. Algorithms for collision warning and automatic braking activation are designed based on the driver's pedal deflection timing during approach (gap closing). A self-learning algorithm for driver characteristics is proposed based on the recursive least-square method with a forgetting factor. Using this algorithm, the parameters of the driver model can be identified from the data in the manual operation phase, and the identification result is applied during the automatic control phase in real time. A test bed with an electronic throttle and an electrohydraulic brake actuator is developed for system validation. The experimental results show that the self-learning algorithm is effective and that the system can, to some extent, adapt to individual characteristics.
Statistical Behavior Modeling for Driver-Adaptive Precrash Systems Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver–individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver–individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
Speech emotion recognition approaches in human computer interaction Speech Emotion Recognition (SER) represents one of the emerging fields in human-computer interaction. Quality of the human-computer interface that mimics human speech emotions relies heavily on the types of features used and also on the classifier employed for recognition. The main purpose of this paper is to present a wide range of features employed for speech emotion recognition and the acoustic characteristics of those features. Also in this paper, we analyze the performance in terms of some important parameters such as: precision, recall, F-measure and recognition rate of the features using two of the commonly used emotional speech databases namely Berlin emotional database and Danish emotional database. Emotional speech recognition is being applied in modern human-computer interfaces and the overview of 10 interesting applications is also presented in this paper to illustrate the importance of this technique.
Camera-based drowsiness reference for driver state classification under real driving conditions Experts assume that accidents caused by drowsiness are significantly under-reported in police crash investigations (1-3%). They estimate that about 24-33% of the severe accidents are related to drowsiness. In order to develop warning systems that detect reduced vigilance based on the driving behavior, a reliable and accurate drowsiness reference is needed. Studies have shown that measures of the driver's eyes are capable to detect drowsiness under simulator or experiment conditions. In this study, the performance of the latest eye tracking based in-vehicle fatigue prediction measures are evaluated. These measures are assessed statistically and by a classification method based on a large dataset of 90 hours of real road drives. The results show that eye-tracking drowsiness detection works well for some drivers as long as the blinks detection works properly. Even with some proposed improvements, however, there are still problems with bad light conditions and for persons wearing glasses. As a summary, the camera based sleepiness measures provide a valuable contribution for a drowsiness reference, but are not reliable enough to be the only reference.
Fully Automated Driving: Impact of Trust and Practice on Manual Control Recovery. Objective: An experiment was performed in a driving simulator to investigate the impacts of practice, trust, and interaction on manual control recovery (MCR) when employing fully automated driving (FAD). Background: To increase the use of partially or highly automated driving efficiency and to improve safety, some studies have addressed trust in driving automation and training, but few studies have focused on FAD. FAD is an autonomous system that has full control of a vehicle without any need for intervention by the driver. Method: A total of 69 drivers with a valid license practiced with FAD. They were distributed evenly across two conditions: simple practice and elaborate practice. Results: When examining emergency MCR, a correlation was found between trust and reaction time in the simple practice group (i.e., higher trust meant a longer reaction time), but not in the elaborate practice group. This result indicated that to mitigate the negative impact of overtrust on reaction time, more appropriate practice may be needed. Conclusions: Drivers should be trained in how the automated device works so as to improve MCR performance in case of an emergency. Application: The practice format used in this study could be used for the first interaction with an FAD car when acquiring such a vehicle.
Visual-Manual Distraction Detection Using Driving Performance Indicators With Naturalistic Driving Data. This paper investigates the problem of driver distraction detection using driving performance indicators from onboard kinematic measurements. First, naturalistic driving data from the integrated vehicle-based safety system program are processed, and cabin camera data are manually inspected to determine the driver's state (i.e., distracted or attentive). Second, existing driving performance metrics...
Pre-Training With Asynchronous Supervised Learning For Reinforcement Learning Based Autonomous Driving Rule-based autonomous driving systems may suffer from increased complexity with large-scale intercoupled rules, so many researchers are exploring learning-based approaches. Reinforcement learning (RL) has been applied in designing autonomous driving systems because of its outstanding performance on a wide variety of sequential control problems. However, poor initial performance is a major challenge to the practical implementation of an RL-based autonomous driving system. RL training requires extensive training data before the model achieves reasonable performance, making an RL-based model inapplicable in a real-world setting, particularly when data are expensive. We propose an asynchronous supervised learning (ASL) method for the RL-based end-to-end autonomous driving model to address the problem of poor initial performance before training this RL-based model in real-world settings. Specifically, prior knowledge is introduced in the ASL pre-training stage by asynchronously executing multiple supervised learning processes in parallel, on multiple driving demonstration data sets. After pre-training, the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously break the performance limit. The presented pre-training method is evaluated on the race car simulator, TORCS (The Open Racing Car Simulator), to verify that it can be sufficiently reliable in improving the initial performance and convergence speed of an end-to-end autonomous driving model in the RL training stage. In addition, a real-vehicle verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment. Simulations results show that using some demonstrations during a supervised pre-training stage allows significant improvements in initial performance and convergence speed in the RL training stage.
Parallel Vehicular Networks: A CPSS-Based Approach via Multimodal Big Data in IoV Vehicular networks (VNs) have received great attention as one of the crucial supportive techniques for intelligent transportation systems (ITSs). However, the introduction of dynamic and complex human behaviors into VNs makes it a cyber-social-physical system. Thus, artificial systems, computational experiments, parallel executions-based parallel VNs (PVN) are proposed in this paper. The framework of PVN is then designed and presented, its characteristics and applications are demonstrated, and its related research challenges are discussed. PVN uses software-defined artificial VNs for modeling and representation, computational experiments for analysis and evaluation, and parallel execution for control and management. Thus, more reliable and efficient traffic status and ultrahigh data rate communications are obtained among vehicles and infrastructures, which is expected to achieve the descriptive intelligence, predictive intelligence, and prescription intelligence for VNs. The proposed PVN offers a competitive solution for achieving a smooth, safe, and efficient cooperation among connected vehicles in future ITSs.
A comprehensive survey on vehicular Ad Hoc network Vehicular ad hoc networks (VANETs) are classified as an application of mobile ad hoc network (MANET) that has the potential in improving road safety and in providing travellers comfort. Recently VANETs have emerged to turn the attention of researchers in the field of wireless and mobile communications, they differ from MANET by their architecture, challenges, characteristics and applications. In this paper we present aspects related to this field to help researchers and developers to understand and distinguish the main features surrounding VANET in one solid document, without the need to go through other relevant papers and articles starting from VANET architecture and ending up with the most appropriate simulation tools to simulate VANET protocols and applications.
Factorizing personalized Markov chains for next-basket recommendation Recommender systems are an important component of many websites. Two of the most popular approaches are based on matrix factorization (MF) and Markov chains (MC). MF methods learn the general taste of a user by factorizing the matrix over observed user-item preferences. On the other hand, MC methods model sequential behavior by learning a transition graph over items that is used to predict the next action based on the recent actions of a user. In this paper, we present a method bringing both approaches together. Our method is based on personalized transition graphs over underlying Markov chains. That means for each user an own transition matrix is learned - thus in total the method uses a transition cube. As the observations for estimating the transitions are usually very limited, our method factorizes the transition cube with a pairwise interaction model which is a special case of the Tucker Decomposition. We show that our factorized personalized MC (FPMC) model subsumes both a common Markov chain and the normal matrix factorization model. For learning the model parameters, we introduce an adaption of the Bayesian Personalized Ranking (BPR) framework for sequential basket data. Empirically, we show that our FPMC model outperforms both the common matrix factorization and the unpersonalized MC model both learned with and without factorization.
Generic orthogonal moments: Jacobi-Fourier moments for invariant image description A multi-distorted invariant orthogonal moments, Jacobi-Fourier Moments (JFM), were proposed. The integral kernel of the moments was composed of radial Jacobi polynomial and angular Fourier complex componential factor. The variation of two parameters in Jacobi polynomial, @a and @b, can form various types of orthogonal moments: Legendre-Fourier Moments (@a=1,@b=1); Chebyshev-Fourier Moments (@a=2,@b=32); Orthogonal Fourier-Mellin Moments (@a=2,@b=2); Zernike Moments and pseudo-Zernike Moments, and so on. Therefore, Jacobi-Fourier Moments are generic expressions of orthogonal moments formed by a radial orthogonal polynomial and angular Fourier complex component factor, providing a common mathematical tool for performance analysis of the orthogonal moments. In the paper, Jacobi-Fourier Moments were calculated for a deterministic image, and the original image was reconstructed with the moments. The relationship between Jacobi-Fourier Moments and other orthogonal moments was studied. Theoretical analysis and experimental investigation were conducted in terms of the description performance and noise sensibility of the JFM.
QoE-Aware Bandwidth Allocation for Video Traffic Using Sigmoidal Programming. The problem of bandwidth allocation in networks is traditionally solved using distributed rate allocation algorithms under the general framework of network utility maximization (NUM). Despite many advances in solving the computationally intensive flow assignment problem in NUM, the common but unrealistic assumption of concavity of utility functions undermines the performance of existing systems in...
AoI-Inspired Collaborative Information Collection for AUV-Assisted Internet of Underwater Things In order to better explore the ocean, autonomous underwater vehicles (AUVs) have been widely applied to facilitate the information collection. However, considering the extremely large-scale deployment of sensor nodes in the Internet of Underwater Things (IoUT), a homogeneous AUV-enabled information collection system cannot support timely and reliable information collection considering the time-var...
1.051039
0.05
0.04
0.04
0.04
0.04
0.04
0.04
0.0225
0.003407
0
0
0
0
Energy-Efficient Resource Allocation for Energy Harvesting-Based Device-to-Device Communication. In this paper, we address the downlink resource (subcarriers and power jointly) allocation problem for energy harvesting-based device-to-device communication in a railway carriage communication network to improve the energy efficiency (EE) of the system. The considered problem is formulated as maximizing the weighted EE and is solved by leveraging a game-theoretic learning approach. Specifically, ...
Stochastic Power Adaptation with Multiagent Reinforcement Learning for Cognitive Wireless Mesh Networks As the scarce spectrum resource is becoming overcrowded, cognitive radio indicates great flexibility to improve the spectrum efficiency by opportunistically accessing the authorized frequency bands. One of the critical challenges for operating such radios in a network is how to efficiently allocate transmission powers and frequency resource among the secondary users (SUs) while satisfying the quality-of-service constraints of the primary users. In this paper, we focus on the noncooperative power allocation problem in cognitive wireless mesh networks formed by a number of clusters with the consideration of energy efficiency. Due to the SUs' dynamic and spontaneous properties, the problem is modeled as a stochastic learning process. We first extend the single-agent $(Q)$-learning to a multiuser context, and then propose a conjecture-based multiagent $(Q)$-learning algorithm to achieve the optimal transmission strategies with only private and incomplete information. An intelligent SU performs $(Q)$-function updates based on the conjecture over the other SUs' stochastic behaviors. This learning algorithm provably converges given certain restrictions that arise during the learning procedure. Simulation experiments are used to verify the performance of our algorithm and demonstrate its effectiveness of improving the energy efficiency.
Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey. This paper presents a comprehensive literature review on applications of economic and pricing theory for resource management in the evolving fifth generation (5G) wireless networks. The 5G wireless networks are envisioned to overcome existing limitations of cellular networks in terms of data rate, capacity, latency, energy efficiency, spectrum efficiency, coverage, reliability, and cost per information transfer. To achieve the goals, the 5G systems will adopt emerging technologies such as massive multiple-input multiple-output, mmWave communications, and dense heterogeneous networks. However, 5G involves multiple entities and stakeholders that may have different objectives, e.g., high data rate, low latency, utility maximization, and revenue/profit maximization. This poses a number of challenges to resource management designs of 5G. While the traditional solutions may neither efficient nor applicable, economic and pricing models have been recently developed and adopted as useful tools to achieve the objectives. In this paper, we review economic and pricing approaches proposed to address resource management issues in the 5G wireless networks including user association, spectrum allocation, and interference and power management. Furthermore, we present applications of economic and pricing models for wireless caching and mobile data offloading. Finally, we highlight important challenges, open issues and future research directions of applying economic and pricing models to the 5G wireless networks.
Effective Capacity in Wireless Networks: A Comprehensive Survey. Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks, such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications, such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization.
A hierarchical learning approach to anti-jamming channel selection strategies. This paper investigates the channel selection problem for anti-jamming defense in an adversarial environment. In our work, we simultaneously consider malicious jamming and co-channel interference among users, and formulate this anti-jamming defense problem as a Stackelberg game with one leader and multiple followers. Specifically, the users and jammer independently and selfishly select their respective optimal strategies and obtain the optimal channels based on their own utilities. To derive the Stackelberg Equilibrium, a hierarchical learning framework is formulated, and a hierarchical learning algorithm (HLA) is proposed. In addition, the convergence performance of the proposed HLA algorithm is analyzed. Finally, we present simulation results to validate the effectiveness of the proposed algorithm.
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
Very Deep Convolutional Networks for Large-Scale Image Recognition. In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. In this paper, to remedy the joint-angle drift phenomenon for manipulation of two redundant robot arms, a novel scheme for simultaneous repetitive motion planning and control (SRMPC) at the joint-acceleration level is proposed, which consists of two subschemes. To do so, the performance index of each SRMPC subscheme is derived and designed by employing the gradient dynamics twice, of which a convergence theorem and its proof are presented. In addition, for improving the accuracy of the motion planning and control, position error, and velocity, error feedbacks are incorporated into the forward kinematics equation and analyzed via Zhang neural-dynamics method. Then the two subschemes are simultaneously reformulated as two quadratic programs (QPs), which are finally unified into one QP problem. Furthermore, a piecewise-linear projection equation-based neural network (PLPENN) is used to solve the unified QP problem, which can handle the strictly convex QP problem in an inverse-free manner. More importantly, via such a unified QP formulation and the corresponding PLPENN solver, the synchronism of two redundant robot arms is guaranteed. Finally, two given tasks are fulfilled by 2 three-link and 2 five-link planar robot arms, respectively. Computer-simulation results validate the efficacy and accuracy of the SRMPC scheme and the corresponding PLPENN solver for synchronous manipulation of two redundant robot arms.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Ear recognition after ear lobe surgery: A preliminary study Earlobe surgeries are performed with the intention to correct the ear characteristics both locally and globally and also to beautify the appearance. Since performing the surgery (both for beautification and corrections) will alter the original ear features to the greater extent thereby poses a significant challenge for ear recognition. In this work, we introduce and explore this problem of ear recognition after ear lobe surgery. To this extent, we prepared a new ear surgery database comprising of 50 subjects with both pre and post surgery ear samples. We then propose a new scheme for ear recognition based on the hybrid fusion of block features extracted from the ear images using Histogram of Oriented Gradients (HoG) and Local Phase Quantisation (LPQ). We present extensive experiments on the ear surgery database by comparing the performance of eight different state-of-the-art schemes to study the effect of ear surgeries on ear recognition accuracy. The results on the ear surgery database indicate a great challenge as the eight different state-of-the-art schemes are unable to provide acceptable levels of identification performance.
Plastic surgery: a new dimension to face recognition Advancement and affordability is leading to the popularity of plastic surgery procedures. Facial plastic surgery can be reconstructive to correct facial feature anomalies or cosmetic to improve the appearance. Both corrective as well as cosmetic surgeries alter the original facial information to a large extent thereby posing a great challenge for face recognition algorithms. The contribution of this research is 1) preparing a face database of 900 individuals for plastic surgery, and 2) providing an analytical and experimental underpinning of the effect of plastic surgery on face recognition algorithms. The results on the plastic surgery database suggest that it is an arduous research challenge and the current state-of-art face recognition algorithms are unable to provide acceptable levels of identification performance. Therefore, it is imperative to initiate a research effort so that future face recognition systems will be able to address this important problem.
One-class support vector machines: an application in machine fault detection and classification Fast incipient machine fault diagnosis is becoming one of the key requirements for economical and optimal process operation management. Artificial neural networks have been used to detect machine faults for a number of years and shown to be highly successful in this application area. This paper presents a novel test technique for machine fault detection and classification in electro-mechanical machinery from vibration measurements using one-class support vector machines (SVMs). In order to evaluate one-class SVMs, this paper examines the performance of the proposed method by comparing it with that of multilayer perception, one of the artificial neural network techniques, based on real benchmarking data.
Deep learning human actions from video via sparse filtering and locally competitive algorithms Physiological and psychophysical evidence suggest that early visual cortex compresses the visual input on the basis of spatial and orientation-tuned filters. Recent computational advances have suggested that these neural response characteristics may reflect a `sparse coding' architecture--in which a small number of neurons need to be active for any given image--yielding critical structure latent in natural scenes. Here we present a novel neural network architecture combining a sparse filter model and locally competitive algorithms (LCAs), and demonstrate the network's ability to classify human actions from video. Sparse filtering is an unsupervised feature learning algorithm designed to optimize the sparsity of the feature distribution directly without having the need to model the data distribution. LCAs are defined by a system of differential equations where the initial conditions define an optimization problem and the dynamics converge to a sparse decomposition of the input vector. We applied this architecture to train a classifier on categories of motion in human action videos. Inputs to the network were small 3D patches taken from frame differences in the videos. Dictionaries were derived for each action class and then activation levels for each dictionary were assessed during reconstruction of a novel test patch. Overall, classification accuracy was at ¿ 97 %. We discuss how this sparse filtering approach provides a natural framework for multi-sensory and multimodal data processing including RGB video, RGBD video, hyper-spectral video, and stereo audio/video streams.
Ear Recognition Using Multi-Scale Histogram of Oriented Gradients Ear recognition is a promising biometric measure, especially with the growing interest in multi-modal biometrics. Histogram of Oriented Gradients (HOG) have been effectively and efficiently used solving the problems of object detection and recognition, especially when illumination variations are present. This work presents a robust approach for ear recognition using multi-scale dense HOG features as a descriptor of 2D ear images. The multi-scale features assure to capture the different and complicated structures of ear images. Dimensionality reduction was performed to avoid feature redundancy and provide a more efficient recognition process while being prone to over-fitting. Finally, a test was performed on a large and realistic database and the results were compared to the state of the art ear recognition approaches tested on the same dataset and under the same test procedure.
Robust log-Gabor filter for ear biometrics Ears are a new biometric with major advantage in that they appear to maintain their structure with increasing age. Expanding on our previous parts-based model, we propose a new wavelet approach. In this, the log-Gabor filter exploits the frequency content of the ear boundary curves. Extending our model description, a specific aim of the new approach is to capture information in the ear¿s outer structures. Ear biometrics is also concerned with the effects of partial occlusion, mostly by hair and earrings. By localization, intuitively a wavelet can offer performance advantage when handling occluded data. We also add a more robust matching strategy to restrict the influence of erroneous wavelet coefficients. Significant improvement is observed when we combine the model and the log-Gabor filter, and we will show that this improvement is maintained as the ears get occluded.
Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition. The authors present an unconstrained ear recognition framework that outperforms state-of-the-art systems in different publicly available image databases. To this end, they developed convolutional neural network (CNN)-based solutions for ear normalisation and description, they used well-known handcrafted descriptors, and they fused learned and handcrafted features to improve recognition. They desig...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
TripRes: Traffic Flow Prediction Driven Resource Reservation for Multimedia IoV with Edge Computing AbstractThe Internet of Vehicles (IoV) connects vehicles, roadside units (RSUs) and other intelligent objects, enabling data sharing among them, thereby improving the efficiency of urban traffic and safety. Currently, collections of multimedia content, generated by multimedia surveillance equipment, vehicles, and so on, are transmitted to edge servers for implementation, because edge computing is a formidable paradigm for accommodating multimedia services with low-latency resource provisioning. However, the uneven or discrete distribution of the traffic flow covered by edge servers negatively affects the service performance (e.g., overload and underload) of edge servers in multimedia IoV systems. Therefore, how to accurately schedule and dynamically reserve proper numbers of resources for multimedia services in edge servers is still challenging. To address this challenge, a traffic flow prediction driven resource reservation method, called TripRes, is developed in this article. Specifically, the city map is divided into different regions, and the edge servers in a region are treated as a “big edge server” to simplify the complex distribution of edge servers. Then, future traffic flows are predicted using the deep spatiotemporal residual network (ST-ResNet), and future traffic flows are used to estimate the amount of multimedia services each region needs to offload to the edge servers. With the number of services to be offloaded in each region, their offloading destinations are determined through latency-sensitive transmission path selection. Finally, the performance of TripRes is evaluated using real-world big data with over 100M multimedia surveillance records from RSUs in Nanjing China.
Experiment-driven Characterization of Full-Duplex Wireless Systems We present an experiment-based characterization of passive suppression and active self-interference cancellation mechanisms in full-duplex wireless communication systems. In particular, we consider passive suppression due to antenna separation at the same node, and active cancellation in analog and/or digital domain. First, we show that the average amount of cancellation increases for active cance...
Decentralized Plug-in Electric Vehicle Charging Selection Algorithm in Power Systems This paper uses a charging selection concept for plug-in electric vehicles (PEVs) to maximize user convenience levels while meeting predefined circuit-level demand limits. The optimal PEV-charging selection problem requires an exhaustive search for all possible combinations of PEVs in a power system, which cannot be solved for the practical number of PEVs. Inspired by the efficiency of the convex relaxation optimization tool in finding close-to-optimal results in huge search spaces, this paper proposes the application of the convex relaxation optimization method to solve the PEV-charging selection problem. Compared with the results of the uncontrolled case, the simulated results indicate that the proposed PEV-charging selection algorithm only slightly reduces user convenience levels, but significantly mitigates the impact of the PEV-charging on the power system. We also develop a distributed optimization algorithm to solve the PEV-charging selection problem in a decentralized manner, i.e., the binary charging decisions (charged or not charged) are made locally by each vehicle. Using the proposed distributed optimization algorithm, each vehicle is only required to report its power demand rather than report several of its private user state information, mitigating the security problems inherent in such problem. The proposed decentralized algorithm only requires low-speed communication capability, making it suitable for real-time implementation.
Wireless Networks with RF Energy Harvesting: A Contemporary Survey Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations, and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RFEHNs according to the network types, i.e., single-hop networks, multi-antenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.
Collective feature selection to identify crucial epistatic variants. In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.215111
0.215111
0.215111
0.215111
0.076889
0.036197
0.006667
0
0
0
0
0
0
0
A Parallel Multi-Verse Optimizer for Application in Multilevel Image Segmentation Multi-version optimizer (MVO) inspired by the multi-verse theory is a new optimization algorithm for challenging multiple parameter optimization problems in the real world. In this paper, a novel parallel multi-verse optimizer (PMVO) with the communication strategy is proposed. The parallel mechanism is implemented to randomly divide the initial solutions into several groups, and share the information of different groups after each fixed iteration. This can significantly promote the cooperation individual of MVO algorithm, and reduce the deficiencies that the original MVO is premature convergence, search stagnation and easily trap into local optimal search space. To confirm the performance of the proposed scheme, the PMVO algorithm was compared with the other well-known optimization algorithms, such as gray wolf optimizer (GWO), particle swarm optimization (PSO), multi-version optimizer (MVO), and parallel particle swarm optimization (PPSO) under CEC2013 test suite. The experimental results prove that the PMVO is superior to the other compared algorithms. In addition, PMVO is also applied to solve complex multilevel image segmentation problems based on minimum cross entropy thresholding. The application results appear that the proposed PMVO algorithm can achieve higher quality image segmentation compared to other similar algorithms.
Tabu search based multi-watermarks embedding algorithm with multiple description coding Digital watermarking is a useful solution for digital rights management systems, and it has been a popular research topic in the last decade. Most watermarking related literature focuses on how to resist deliberate attacks by applying benchmarks to watermarked media that assess the effectiveness of the watermarking algorithm. Only a few papers have concentrated on the error-resilient transmission of watermarked media. In this paper, we propose an innovative algorithm for vector quantization (VQ) based image watermarking, which is suitable for error-resilient transmission over noisy channels. By incorporating watermarking with multiple description coding (MDC), the scheme we propose to embed multiple watermarks can effectively overcome channel impairments while retaining the capability for copyright and ownership protection. In addition, we employ an optimization technique, called tabu search, to optimize both the watermarked image quality and the robustness of the extracted watermarks. We have obtained promising simulation results that demonstrate the utility and practicality of our algorithm. (C) 2011 Elsevier Inc. All rights reserved.
On Deployment of Wireless Sensors on 3-D Terrains to Maximize Sensing Coverage by Utilizing Cat Swarm Optimization With Wavelet Transform. In this paper, a deterministic sensor deployment method based on wavelet transform (WT) is proposed. It aims to maximize the quality of coverage of a wireless sensor network while deploying a minimum number of sensors on a 3-D surface. For this purpose, a probabilistic sensing model and Bresenham's line of sight algorithm are utilized. The WT is realized by an adaptive thresholding approach for the generation of the initial population. Another novel aspect of the paper is that the method followed utilizes a Cat Swarm Optimization (CSO) algorithm, which mimics the behavior of cats. We have modified the CSO algorithm so that it can be used for sensor deployment problems on 3-D terrains. The performance of the proposed algorithm is compared with the Delaunay Triangulation and Genetic Algorithm based methods. The results reveal that CSO based sensor deployment which utilizes the wavelet transform method is a powerful and successful method for sensor deployment on 3-D terrains.
FPGA-Based Parallel Metaheuristic PSO Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation This paper presents a field-programmable gate array (FPGA)-based parallel metaheuristic particle swarm optimization algorithm (PPSO) and its application to global path planning for autonomous robot navigating in structured environments with obstacles. This PPSO consists of three parallel PSOs along with a communication operator in one FPGA chip. The parallel computing architecture takes advantages of maintaining better population diversity and inhibiting premature convergence in comparison with conventional PSOs. The collision-free discontinuous path generated from the PPSO planner is then smoothed using the cubic B-spline and system-on-a-programmable-chip (SoPC) technology. Experimental results are conducted to show the merit of the proposed FPGA-based PPSO path planner and smoother for global path planning of autonomous mobile robot navigation.
QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): An enhanced structure for Differential Evolution Optimization demands are ubiquitous in science and engineering. The key point is that the approach to tackle a complex optimization problem should not itself be difficult. Differential Evolution (DE) is such a simple method, and it is arguably a very powerful stochastic real-parameter algorithm for single-objective optimization. However, the performance of DE is highly dependent on control parameters and mutation strategies. Both tuning the control parameters and selecting the proper mutation strategy are still tedious but important tasks for users. In this paper, we proposed an enhanced structure for DE algorithm with less control parameters to be tuned. The crossover rate control parameter Cr is replaced by an automatically generated evolution matrix and the control parameter F can be renewed in an adaptive manner during the whole evolution. Moreover, an enhanced mutation strategy with time stamp mechanism is advanced as well in this paper. CEC2013 test suite for real-parameter single objective optimization is employed in the verification of the proposed algorithm. Experiment results show that our proposed algorithm is competitive with several well-known DE variants.
Hybrid Bird Swarm Optimized Quasi Affine Algorithm Based Node Location in Wireless Sensor Networks Wireless sensor networks (WSN) with the Internet of Things (IoT) play a vital key concept while performing the information transmission process. The WSN with IoT has been effectively utilized in different research contents such as network protocol selection, topology control, node deployment, location technology and network security, etc. Among that, node location is one of the crucial problems that need to be resolved to improve communication. The node location is directly influencing the network performance, lifetime and data sense. Therefore, this paper introduces the Bird Swarm Optimized Quasi-Affine Evolutionary Algorithm (BSOQAEA) to fix the node location problem in sensor networks. The proposed algorithm analyzes the node location, and incorporates the dynamic shrinking space process is to save time. The introduced evolutionary algorithm optimizes the node centroid location performed according to the received signal strength indications (RSSI). The created efficiency in the system is determined using high node location accuracy, minimum distance error, and location error.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Adam: A Method for Stochastic Optimization. We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Untangling Blockchain: A Data Processing View of Blockchain Systems. Blockchain technologies are gaining massive momentum in the last few years. Blockchains are distributed ledgers that enable parties who do not fully trust each other to maintain a set of global states. The parties agree on the existence, values, and histories of the states. As the technology landscape is expanding rapidly, it is both important and challenging to have a firm grasp of what the core ...
Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis Existing time-series models that are used for short-term traffic condition forecasting are mostly univariate in nature. Generally, the extension of existing univariate time-series models to a multivariate regime involves huge computational complexities. A different class of time-series models called structural time-series model (STM) (in its multivariate form) has been introduced in this paper to develop a parsimonious and computationally simple multivariate short-term traffic condition forecasting algorithm. The different components of a time-series data set such as trend, seasonal, cyclical, and calendar variations can separately be modeled in STM methodology. A case study at the Dublin, Ireland, city center with serious traffic congestion is performed to illustrate the forecasting strategy. The results indicate that the proposed forecasting algorithm is an effective approach in predicting real-time traffic flow at multiple junctions within an urban transport network.
A novel full structure optimization algorithm for radial basis probabilistic neural networks. In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.
G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. In this paper, to remedy the joint-angle drift phenomenon for manipulation of two redundant robot arms, a novel scheme for simultaneous repetitive motion planning and control (SRMPC) at the joint-acceleration level is proposed, which consists of two subschemes. To do so, the performance index of each SRMPC subscheme is derived and designed by employing the gradient dynamics twice, of which a convergence theorem and its proof are presented. In addition, for improving the accuracy of the motion planning and control, position error, and velocity, error feedbacks are incorporated into the forward kinematics equation and analyzed via Zhang neural-dynamics method. Then the two subschemes are simultaneously reformulated as two quadratic programs (QPs), which are finally unified into one QP problem. Furthermore, a piecewise-linear projection equation-based neural network (PLPENN) is used to solve the unified QP problem, which can handle the strictly convex QP problem in an inverse-free manner. More importantly, via such a unified QP formulation and the corresponding PLPENN solver, the synchronism of two redundant robot arms is guaranteed. Finally, two given tasks are fulfilled by 2 three-link and 2 five-link planar robot arms, respectively. Computer-simulation results validate the efficacy and accuracy of the SRMPC scheme and the corresponding PLPENN solver for synchronous manipulation of two redundant robot arms.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
A new optimization method: big bang-big crunch Nature is the principal source for proposing new optimization methods such as genetic algorithms (GA) and simulated annealing (SA) methods. All traditional evolutionary algorithms are heuristic population-based search procedures that incorporate random variation and selection. The main contribution of this study is that it proposes a novel optimization method that relies on one of the theories of the evolution of the universe; namely, the Big Bang and Big Crunch Theory. In the Big Bang phase, energy dissipation produces disorder and randomness is the main feature of this phase; whereas, in the Big Crunch phase, randomly distributed particles are drawn into an order. Inspired by this theory, an optimization algorithm is constructed, which will be called the Big Bang-Big Crunch (BB-BC) method that generates random points in the Big Bang phase and shrinks those points to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. It is shown that the performance of the new (BB-BC) method demonstrates superiority over an improved and enhanced genetic search algorithm also developed by the authors of this study, and outperforms the classical genetic algorithm (GA) for many benchmark test functions.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Harmony search algorithm for solving Sudoku Harmony search (HS) algorithm was applied to solving Sudoku puzzle. The HS is an evolutionary algorithm which mimics musicians' behaviors such as random play, memory-based play, and pitch-adjusted play when they perform improvisation. Sudoku puzzles in this study were formulated as an optimization problem with number-uniqueness penalties. HS could successfully solve the optimization problem after 285 function evaluations, taking 9 seconds. Also, sensitivity analysis of HS parameters was performed to obtain a better idea of algorithm parameter values.
DEC: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. Identification of models from input-output data essentially requires estimation of appropriate cluster centers. In this paper, a new online evolving clustering approach for streaming data is proposed. Unlike other approaches that consider either the data density or distance from existing cluster centers, this approach uses cluster weight and distance before generating new clusters. To capture the dynamics of the data stream, the cluster weight is defined in both data and time space in such a way that it decays exponentially with time. It also applies concepts from computational geometry to determine the neighborhood information while forming clusters. A distinction is made between core and noncore clusters to effectively identify the real outliers. The approach efficiently estimates cluster centers upon which evolving Takagi-Sugeno models are developed. The experimental results with developed models show that the proposed approach attains results at par or better than existing approaches and significantly reduces the computational overhead, which makes it suitable for real-time applications.
An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). GWO is employed for solving optimization problems focused on the minimization of discrete-time objective functions defined as the weighted sum of the absolute value of the control error and of the squared output sensitivity function, and the vector variable consists of the tuning parameters of the T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of the process, solving these optimization problems is important as it leads to fuzzy control systems with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning approach. GWO algorithms applied with this regard are formulated in easily understandable terms for both vector and scalar operations, and discussions on stability, convergence, and parameter settings are offered. The controlled processes referred to in the course of this paper belong to a family of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead zone static nonlinearity. Experimental results concerning the angular position control of a laboratory servo system are included for validating the proposed method.
Stability Analysis and Estimation of Domain of Attraction for Positive Polynomial Fuzzy Systems With Input Saturation AbstractIn this paper, the stability and positivity of positive polynomial fuzzy model based (PPFMB) control system are investigated, in which the positive polynomial fuzzy model and positive polynomial fuzzy controller are allowed to have different premise membership functions from each other. These mismatched premise membership functions can increase the flexibility of controller design; however, it will lead to the conservative results when the stability is analyzed based on the Lyapunov stability theory. To relax the positivity/stability conditions, the improved Taylor-series-membership-functions-dependent (ITSMFD) method is introduced by introducing the sample points information of Taylor-series approximate membership functions, local error information and boundary information of substate space of premise variables into the stability/positivity conditions. Meanwhile, the ITSMFD method is extended to the PPFMB control system with input saturation to relax the estimation of domain of attraction. Finally, simulation examples are presented to verify the feasibility of this method.
Optimization of fuzzy controller design using a Differential Evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems This paper proposes the use of the Differential Evolution algorithm with fuzzy logic for parameter adaptation in the optimal design of fuzzy controllers for nonlinear plants. The Differential Evolution algorithm is enhanced using Type-1 and Interval Type-2 fuzzy systems for achieving dynamic adaptation of the mutation parameter. In this paper, four control optimization problems in which the Differential Evolution algorithm optimizes the membership functions of the fuzzy controllers are presented. First, the experiments were performed with the original algorithm, second the experiments were performed with the Fuzzy Differential Evolution (in this case the mutation parameter is dynamic), and last, experiments were performed applying noise to the control plant by using Fuzzy Differential Evolution.
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. Two types of nonlinear control algorithms are presented for uncertain linear plants. Controllers of the first type are stabilizing polynomial feedbacks that allow to adjust a guaranteed convergence time of system trajectories into a prespecified neighborhood of the origin independently on initial conditions. The control design procedure uses block control principles and finite-time attractivity properties of polynomial feedbacks. Controllers of the second type are modifications of the second order sliding mode control algorithms. They provide global finite-time stability of the closed-loop system and allow to adjust a guaranteed settling time independently on initial conditions. Control algorithms are presented for both single-input and multi-input systems. Theoretical results are supported by numerical simulations.
MO4: A Many-Objective Evolutionary Algorithm for Protein Structure Prediction Protein structure prediction (PSP) problems are a major biocomputing challenge, owing to its scientific intrinsic that assists researchers to understand the relationship between amino acid sequences and protein structures, and to study the function of proteins. Although computational resources increased substantially over the last decade, a complete solution to PSP problems by computational methods has not yet been obtained. Using only one energy function is insufficient to characterize proteins because of their complexity. Diverse protein energy functions and evolutionary computation algorithms have been extensively studied to assist in the prediction of protein structures in different ways. Such algorithms are able to provide a better protein with less computational resources requirement than deep learning methods. For the first time, this study proposes a many-objective PSP (MaOPSP) problem with four types of objectives to alleviate the impact of imprecise energy functions for predicting protein structures. A many-objective evolutionary algorithm (MaOEA) is utilized to solve MaOPSP. The proposed method is compared with existing methods by examining 34 proteins. An analysis of the objectives demonstrates that our generated conformations are more reasonable than those generated by single/multiobjective optimization methods. Experimental results indicate that solving a PSP problem as an MaOPSP problem with four objectives yields better PSPs, in terms of both accuracy and efficiency. The source code of the proposed method can be found at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://toyamaailab.github.io/sourcedata.html</uri> .
A Game-Theoretical Approach for User Allocation in Edge Computing Environment Edge Computing provides mobile and Internet-of-Things (IoT) app vendors with a new distributed computing paradigm which allows an app vendor to deploy its app at hired edge servers distributed near app users at the edge of the cloud. This way, app users can be allocated to hired edge servers nearby to minimize network latency and energy consumption. A cost-effective edge user allocation (EUA) requires maximum app users to be served with minimum overall system cost. Finding a centralized optimal solution to this EUA problem is NP-hard. Thus, we propose EUAGame, a game-theoretic approach that formulates the EUA problem as a potential game. We analyze the game and show that it admits a Nash equilibrium. Then, we design a novel decentralized algorithm for finding a Nash equilibrium in the game as a solution to the EUA problem. The performance of this algorithm is theoretically analyzed and experimentally evaluated. The results show that the EUA problem can be solved effectively and efficiently.
Simple model of human arm reachable workspace The paper introduces a simplified mathematical model of the human arm kinematics which is used to determine the workspace related to the reachability of the wrist. The model contains six revolute degrees of freedom, five in the shoulder complex and one in the elbow joint. It is not directly associated to the anatomical structure of the arm, but represents the spatial motion of two characteristic points, epicondylus lateralis and proc. styloideus. Use of this simplified model for the determination of reachable workspace offers several advantages versus direct measurement: (i) the workspace can be obtained in few minutes on a micro VAX II computer, (ii) patients with various injuries in various stages of recovery can be treated since only a few brief and simple measurements of the model's parameters are needed, and (iii) the calculated workspace includes complete information of the envelope, as well as inside characteristics
Energy-Efficient Optimization for Wireless Information and Power Transfer in Large-Scale MIMO Systems Employing Energy Beamforming In this letter, we consider a large-scale multiple-input multiple-output (MIMO) system where the receiver should harvest energy from the transmitter by wireless power transfer to support its wireless information transmission. The energy beamforming in the large-scale MIMO system is utilized to address the challenging problem of long-distance wireless power transfer. Furthermore, considering the limitation of the power in such a system, this letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power. By solving the optimization problem, we derive an energy-efficient resource allocation scheme. Numerical results validate the effectiveness of the proposed scheme.
Orientation-aware RFID tracking with centimeter-level accuracy. RFID tracking attracts a lot of research efforts in recent years. Most of the existing approaches, however, adopt an orientation-oblivious model. When tracking a target whose orientation changes, those approaches suffer from serious accuracy degradation. In order to achieve target tracking with pervasive applicability in various scenarios, we in this paper propose OmniTrack, an orientation-aware RFID tracking approach. Our study discovers the linear relationship between the tag orientation and the phase change of the backscattered signals. Based on this finding, we propose an orientation-aware phase model to explicitly quantify the respective impact of the read-tag distance and the tag's orientation. OmniTrack addresses practical challenges in tracking the location and orientation of a mobile tag. Our experimental results demonstrate that OmniTrack achieves centimeter-level location accuracy and has significant advantages in tracking targets with varing orientations, compared to the state-of-the-art approaches.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.072732
0.08
0.08
0.08
0.08
0.08
0.04
0.005146
0.000392
0
0
0
0
0
Efficient Data Gathering and Estimation for Metropolitan Air Quality Monitoring by Using Vehicular Sensor Networks Owing to the rising awareness of environmental protection and health, people put a high premium on air pollution in their living environment. It thus draws considerable attention to air quality monitoring in cities. The paper suggests using a vehicular sensor network (VSN) to tactically monitor metropolitan air quality and develops an efficient data gathering and estimation (EDGE) mechanism on VSN...
Reliable and Fast Hand-Offs in Low-Power Wireless Networks Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
An efficient medium access control protocol for WSN-UAV. Recent advances in Unmanned Aerial Vehicle (UAV) technologies have enhanced Wireless Sensor Networks (WSNs) by offering a UAV as a mobile data gathering node. These systems are called WSN-UAV that are well-suited for remote monitoring and emergency applications. Since previous Medium Access Control (MAC) protocols proposed in WSNs are not appropriate in the presence of a UAV, few researches have proposed new MAC protocols to meet WSN-UAV requirements. MAC protocols of WSN-UAV should be extremely efficient and fair due to the time-limited presence of the UAV in the neighborhood of each sensor. However, issues such as high throughput in dense networks, fairness among sensors, and efficiency have not been resolved yet in a satisfactory manner. Moreover, previous works lack analytical evaluation of their protocols. In this paper, we present a novel MAC protocol in WSN-UAV, called Advanced Prioritized MAC (AP-MAC), that can provide high throughput, fairness, and efficiency, especially in dense networks. We also analytically evaluate AP-MAC using a 3-dimensional Markov chain and validate its correctness using simulation. Simulation results under various scenarios confirm that AP-MAC can approximately improve throughput and fairness up to 20% and 25%, respectively, leading to higher efficiency compared with previous work in WSN-UAV systems such as Prioritized Frame Selection (PFS).
Joint Synchronization and Localization in Wireless Sensor Networks Using Semidefinite Programming. A new joint synchronization and localization method for wireless sensor networks using two-way exchanged timestamps is proposed in this paper. The goal is to jointly localize and synchronize the source node, assuming that the locations and clock parameters of the anchor nodes are known. We first form the measurement model and derive the Cramér-Rao lower bound (CRLB). An analysis of the advantages ...
A Novel Cluster Head Selection Technique for Edge-Computing based IoMT Systems •An innovative cluster head selection technique is developed for medical systems.•An energy efficient communication protocol for IoMT applications.•Development of clustering model for remote healthcare domains.
An Energy-Efficient Evolutionary Clustering Technique for Disaster Management in IoT Networks. Wireless Sensor Networks (WSNs) are key elements of Internet of Things (IoT) networks which provide sensing and wireless connectivity. Disaster management in smart cities is classified as a safety-critical application. Thus, it is important to ensure system availability by increasing the lifetime of WSNs. Clustering is one of the routing techniques that benefits energy efficiency in WSNs. This paper provides an evolutionary clustering and routing method which is capable of managing the energy consumption of nodes while considering the characteristics of a disaster area. The proposed method consists of two phases. First, we present a model with improved hybrid Particle Swarm Optimization (PSO) and Harmony Search Algorithm (HSA) for cluster head (CH) selection. Second, we design a PSO-based multi-hop routing system with enhanced tree encoding and a modified data packet format. The simulation results for disaster scenarios prove the efficiency of the proposed method in comparison with the state-of-the-art approaches in terms of the overall residual energy, number of live nodes, network coverage, and the packet delivery ratio.
Wireless sensor network survey A wireless sensor network (WSN) has important applications such as remote environmental monitoring and target tracking. This has been enabled by the availability, particularly in recent years, of sensors that are smaller, cheaper, and intelligent. These sensors are equipped with wireless interfaces with which they can communicate with one another to form a network. The design of a WSN depends significantly on the application, and it must consider factors such as the environment, the application's design objectives, cost, hardware, and system constraints. The goal of our survey is to present a comprehensive review of the recent literature since the publication of [I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Communications Magazine, 2002]. Following a top-down approach, we give an overview of several new applications and then review the literature on various aspects of WSNs. We classify the problems into three different categories: (1) internal platform and underlying operating system, (2) communication protocol stack, and (3) network services, provisioning, and deployment. We review the major development in these three categories and outline new challenges.
Long short-term memory. Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks Mobile-edge computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this paper, an MEC enabled multi-cell wireless network is considered where each base station (BS) is equipped with a MEC server that assists mobile users...
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
Dynamic transfer among alternative controllers and its relation to antiwindup controller design Advanced control strategies and modern consulting provide new challenges for the classical problem of bumpless transfer. It can, for example, be necessary to transfer between an only approximately known existing analog controller and a new digital or adaptive controller without accessing any states. Transfer ought to be bidirectional and not presuppose steady state, so that an immediate back-transfer is possible if the new controller should drive the plant unstable. We present a scheme that meets these requirements. By casting the problem of bidirectional transfer into an associated tracking control problem, systematic analysis and design procedures from control theory can be applied. The associated control problem also has a correspondence to the design of antiwindup controllers. The paper includes laboratory and industrial applications.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0.2
0.011111
0
0
0
0
0
0
0
Blockchain-enabled digital rights management for multimedia resources of online education Nowadays, various online education platforms (such as MOOCs, Coursera, XuetangX and so on) not only provide a broad Internet environment for sharing multimedia learning resources, but also bring a series of challenges in digital rights management, such as the infringement of digital copyrights of multimedia learning resources, the insecurity of digital education certificates, and the low degree of openness of multimedia learning resources. To sovle these issues, we propose a blockchain-enabled digital rights management system, which includes an entirely new network architecture for sharing and managing multimedia resources of online education on the basis of the combination of the public and private blockchains, as well as three specific smart contract schemes for the realization of the recording of multimedia digital rights, the secure storage and the unmediated verification of digital certificates, respectively. The proposed blockchain-enabled digital rights management system has been demonstrated as a promising candidate solution to the blockchain-based multimedia data protection in an online education environment.
Universal Scoring Function Based On Bias Equalizer For Bias-Based Fingerprinting Codes The study of universal detector for fingerprinting code is strongly dependent on the design of scoring function. The optimal detector is known as MAP detector that calculates an optimal correlation score for a given single user's codeword. However, the knowledge about the number of colluders and their collusion strategy are inevitable. In this paper, we propose a new scoring function that equalizes the bias between symbols of codeword, which is called bias equalizer. We further investigate an efficient scoring function based on the bias equalizer under the relaxed marking assumption such that white Gaussian noise is added to a pirated codeword. The performance is compared with the MAP detector as well as some state-of-the-art scoring functions.
Scalable and Privacy-Preserving Data Sharing Based on Blockchain. With the development of network technology and cloud computing, data sharing is becoming increasingly popular, and many scholars have conducted in-depth research to promote its flourish. As the scale of data sharing expands, its privacy protection has become a hot issue in research. Moreover, in data sharing, the data is usually maintained in multiple parties, which brings new challenges to protect the privacy of these multi-party data. In this paper, we propose a trusted data sharing scheme using blockchain. We use blockchain to prevent the shared data from being tampered, and use the Paillier cryptosystem to realize the confidentiality of the shared data. In the proposed scheme, the shared data can be traded, and the transaction information is protected by using the (p, t)-threshold Paillier cryptosystem. We conduct experiments in cloud storage scenarios and the experimental results demonstrate the efficiency and effectiveness of the proposed scheme.
Designing Blockchain-Based Access Control Protocol in IoT-Enabled Smart-Grid System We design a new blockchain-based access control protocol in IoT-enabled smart-grid system, called DBACP-IoTSG. Through the proposed DBACP-IoTSG, the data is securely brought to the service providers from their respective smart meters (SMs). The peer-to-peer (P2P) network is formed by the participating service providers, where the peer nodes are responsible for creating the blocks from the gathered data securely from their corresponding SMs and adding them into the blockchain after validation of the blocks using the voting-based consensus algorithm. In our work, the blockchain is considered as private because the data collected from the consumers of the SMs are private and confidential. By the formal security analysis under the random oracle model, nonmathematical security analysis and software-based formal security verification, DBACP-IoTSG is shown to be resistant against various attacks. We carry out the experimental results of various cryptographic primitives that are needed for comparative analysis using the widely used multiprecision integer and rational arithmetic cryptographic library (MIRACL). A detailed comparative study reveals that DBACP-IoTSG supports more functionality features and provides better security apart from its low communication and computation costs as compared to recently proposed relevant schemes. In addition, the blockchain implementation of DBACP-IoTSG has been performed to measure computational time needed for the varied number of blocks addition and also the varied number of transactions per block in the blockchain.
A Survey Of Security Threats And Defense On Blockchain Blockchain provides a trusted environment for storing information and propagating transactions. Owing to the distributed property and integrity, blockchain has been employed in various domains. However, lots of studies prove that the security mechanism of blockchain exposes its vulnerability especially when the blockchain suffers attacks. This work provides a systematic summary of the security threats and countermeasures on blockchain. We first review the working procedure and its implementation techniques. We then summarize basic security properties of blockchain. From the view of the blockchain's architecture, we describe security threats of blockchain, including weak anonymity, vulnerability of P2P network, consensus mechanism, incentive mechanism and smart contract. We then describe the related attacks and summarize the current representative countermeasures which improve anonymity and robustness against security threats respectively. Finally, we also put forward future research directions on consensus, incentive mechanisms, privacy preservation and encryption algorithm to further enhance security and privacy of the blockchain-based multimedia.
Security and blockchain convergence with Internet of Multimedia Things: Current trends, research challenges and future directions The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications.
A standalone RFID Indoor Positioning System Using Passive Tags Indoor positioning systems (IPSs) locate objects in closed structures such as office buildings, hospitals, stores, factories, and warehouses, where Global Positioning System devices generally do not work. Most available systems apply wireless concepts, optical tracking, and/or ultrasound. This paper presents a standalone IPS using radio frequency identification (RFID) technology. The concept is ba...
Model-based periodic event-triggered control for linear systems Periodic event-triggered control (PETC) is a control strategy that combines ideas from conventional periodic sampled-data control and event-triggered control. By communicating periodically sampled sensor and controller data only when needed to guarantee stability or performance properties, PETC is capable of reducing the number of transmissions significantly, while still retaining a satisfactory closed-loop behavior. In this paper, we will study observer-based controllers for linear systems and propose advanced event-triggering mechanisms (ETMs) that will reduce communication in both the sensor-to-controller channels and the controller-to-actuator channels. By exploiting model-based computations, the new classes of ETMs will outperform existing ETMs in the literature. To model and analyze the proposed classes of ETMs, we present two frameworks based on perturbed linear and piecewise linear systems, leading to conditions for global exponential stability and @?"2-gain performance of the resulting closed-loop systems in terms of linear matrix inequalities. The proposed analysis frameworks can be used to make tradeoffs between the network utilization on the one hand and the performance in terms of @?"2-gains on the other. In addition, we will show that the closed-loop performance realized by an observer-based controller, implemented in a conventional periodic time-triggered fashion, can be recovered arbitrarily closely by a PETC implementation. This provides a justification for emulation-based design. Next to centralized model-based ETMs, we will also provide a decentralized setup suitable for large-scale systems, where sensors and actuators are physically distributed over a wide area. The improvements realized by the proposed model-based ETMs will be demonstrated using numerical examples.
Hierarchical mesh segmentation based on fitting primitives In this paper, we describe a hierarchical face clustering algorithm for triangle meshes based on fitting primitives belonging to an arbitrary set. The method proposed is completely automatic, and generates a binary tree of clusters, each of which is fitted by one of the primitives employed. Initially, each triangle represents a single cluster; at every iteration, all the pairs of adjacent clusters are considered, and the one that can be better approximated by one of the primitives forms a new single cluster. The approximation error is evaluated using the same metric for all the primitives, so that it makes sense to choose which is the most suitable primitive to approximate the set of triangles in a cluster.Based on this approach, we have implemented a prototype that uses planes, spheres and cylinders, and have experimented that for meshes made of 100 K faces, the whole binary tree of clusters can be built in about 8 s on a standard PC.The framework described here has natural application in reverse engineering processes, but it has also been tested for surface denoising, feature recovery and character skinning.
Pors: proofs of retrievability for large files In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety. A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes. In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work. We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.
On controller initialization in multivariable switching systems We consider a class of switched systems which consists of a linear MIMO and possibly unstable process in feedback interconnection with a multicontroller whose dynamics switch. It is shown how one can achieve significantly better transient performance by selecting the initial condition for every controller when it is inserted into the feedback loop. This initialization is obtained by performing the minimization of a quadratic cost function of the tracking error, controlled output, and control signal. We guarantee input-to-state stability of the closed-loop system when the average number of switches per unit of time is smaller than a specific value. If this is not the case then stability can still be achieved by adding a mild constraint to the optimization. We illustrate the use of our results in the control of a flexible beam actuated in torque. This system is unstable with two poles at the origin and contains several lightly damped modes, which can be easily excited by controller switching.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
Modeling taxi driver anticipatory behavior. As part of a wider behavioral agent-based model that simulates taxi drivers' dynamic passenger-finding behavior under uncertainty, we present a model of strategic behavior of taxi drivers in anticipation of substantial time varying demand at locations such as airports and major train stations. The model assumes that, considering a particular decision horizon, a taxi driver decides to transfer to such a destination based on a reward function. The dynamic uncertainty of demand is captured by a time dependent pick-up probability, which is a cumulative distribution function of waiting time. The model allows for information learning by which taxi drivers update their beliefs from past experiences. A simulation on a real road network, applied to test the model, indicates that the formulated model dynamically improves passenger-finding strategies at the airport. Taxi drivers learn when to transfer to the airport in anticipation of the time-varying demand at the airport to minimize their waiting time.
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.1
0.1
0.1
0.1
0.1
0.05
0
0
0
0
0
0
0
0
Railway disruption: a bi-level rescheduling algorithm The real-time rescheduling of railway traffic in case of unexpected events is a challenging task. This is mainly due to the complexity of the railway service, which has to ensure safety, punctuality, and efficiency to customers by respecting timetable, framework, and resources constraints. Most of the available researches focus on short delays (i.e., disturbances). Approaches typically rely on simplified macroscopic models for large-scale systems or detailed microscopic models for one or a few lines, due to the long computation time required for solving the rescheduling problem. Only a small number of works consider rescheduling in case of long delays (i.e., disruptions) and all of them are also based on either a macroscopic or a microscopic model. This research focuses on disruptions and aims at filling the gap between macroscopic and microscopic modelling by proposing an innovative bi-level rescheduling algorithm based on a mesoscopic Mixed Integer Linear Programming (MILP) model. The technique allows obtaining a feasible rescheduled timetable in a short computation time respecting not only timetable and safety constraints (typical of macroscopic models) but also capacity and ordering constraints for the disrupted stations (typical of microscopic models). The bi-level algorithm first solves the macroscopic MILP rescheduling problem and then, considering the cancellation and non-admissible platform assignments results, it solves a mesoscopic MILP rescheduling problem. This allows to significantly reduce the search space and consequently the computation time. The method is tested for the rescheduling of the Dutch railway traffic in case of a full blockade between two consecutive stations.
Parallel Multi-Block ADMM with o(1/k) Convergence This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: $$\\begin{aligned} \\text {minimize} ~~&f_1(\\mathbf{x}_1) + \\cdots + f_N(\\mathbf{x}_N)\\\\ \\text {subject to}~~&A_1 \\mathbf{x}_1 ~+ \\cdots + A_N\\mathbf{x}_N =c,\\\\&\\mathbf{x}_1\\in {\\mathcal {X}}_1,~\\ldots , ~\\mathbf{x}_N\\in {\\mathcal {X}}_N, \\end{aligned}$$minimizef1(x1)+ź+fN(xN)subject toA1x1+ź+ANxN=c,x1źX1,ź,xNźXN,where $$N \\ge 2$$Nź2, $$f_i$$fi are convex functions, $$A_i$$Ai are matrices, and $${\\mathcal {X}}_i$$Xi are feasible sets for variable $$\\mathbf{x}_i$$xi. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices $$A_i$$Ai are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices $$A_i$$Ai). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that $$\\Vert {\\mathbf {x}}^{k+1} - {\\mathbf {x}}^k\\Vert _M^2$$źxk+1-xkźM2 converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with 300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
Design of Modern Supply Chain Networks Using Fuzzy Bargaining Game and Data Envelopment Analysis This article proposes a novel methodology for multistage, multiproduct, multi-item, and closed-loop Supply Chain Network (SCN) design under uncertainty. The method considers that multiple products are manufactured by the SCN, each composed by multiple items, and that some of the sold products may require repair, refurbishing, or remanufacturing activities. We solve the two main decisions that take place in the medium-/short-term planning horizon, namely partners’ selection and allocation of the received orders among them. The partners’ selection problem is solved by a cross-efficiency fuzzy Data Envelopment Analysis technique, which allows evaluating the efficiency of each SCN member and ranking them against multiple conflicting objectives under uncertain data on their performance. Then, according to the estimated customers’ demand, the order allocation problem is solved by a fuzzy bargaining game problem, where each SCN actor behaves to simultaneously maximize both its own profit and the service level of the overall SCN in terms of efficiency, costs, and lead time. An illustrative example from the literature is finally presented. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Note to Practitioners</italic> —We present a decision tool to address the optimal design, performance evaluation, and continuous improvement of modern cooperative SCNs. We propose an effective method to jointly solve the members’ selection and the orders’ allocation, considering the complex structure of modern SCNs, the multiobjective nature of the problems, and the uncertainty characterizing economic markets. Competition within SCNs stages and cooperation along the chain are considered, with the aim to improve both financial and environmental sustainability, while ensuring the highest service levels to customers.
Distributed Full Synchronized System for Global Health Monitoring Based on FLSA In modern medicine, smart wireless connected devices are gaining an increasingly important role in aiding doctors’ job of monitoring patients. More and more complex systems, with a high density of sensors capable of monitoring many biological signals, are arising. Merging the data offers a great opportunity for increasing the reliability of diagnosis. However, a huge problem is constituted by synchronization. Multi-board wireless-connected monitoring systems are a typical example of distributed systems and synchronization has always been a challenging issue. In this paper, we present a distributed full synchronized system for monitoring patients’ health capable of heartbeat rate, oxygen saturation, gait and posture analysis, and muscle activity measurements. The time synchronization is guaranteed thanks to the Fractional Low-power Synchronization Algorithm (FLSA).
Fundamental Limits on Synchronizing Clocks Over Networks We characterize what is feasible concerning clock synchronization in wireline or wireless networks. We consider a net work of n nodes, equipped with affine clocks relative to a designated clock that exchange packets subject to link delays. Determining all unknown parameters, i.e., skews and offsets of all the clocks as well as the delays of all the communication links, is impossible. All nodal skews, as well as all round-trip delays between every pair of nodes, can be determined correctly. Also, every transmitting node can predict precisely the time indicated by the receiver's clock at which it receives the packet. However, the vector of unknown link delays and clock offsets can only be determined up to an (n - 1)-dimensional subspace, with each degree of freedom corresponding to the offset of one of the (n - 1) clocks. Invoking causality, that packets cannot be received before they are transmitted, the uncertainty set can be reduced to a polyhedron. We also investigate structured models for link delays as the sum of a transmitter-dependent delay, a receiver-dependent delay, and a known propagation delay, and identify conditions which permit a unique solution, and conditions under which the number of the residual degrees of freedom is independent of the network size. For receiver-receiver synchronization, where only receipt times are available, but no time-stamping is done by the sender, all nodal skews can still be determined, but delay differences between neighboring communication links with a common sender can only be characterized up to an affine transformation of the (n - 1) un known offsets. Moreover, causality does not help reduce the uncertainty set.
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
A Low-Complexity Analytical Modeling for Cross-Layer Adaptive Error Protection in Video Over WLAN We find a low-complicity and accurate model to solve the problem of optimizing MAC-layer transmission of real-time video over wireless local area networks (WLANs) using cross-layer techniques. The objective in this problem is to obtain the optimal MAC retry limit in order to minimize the total packet loss rate. First, the accuracy of Fluid and M/M/1/K analytical models is examined. Then we derive a closed-form expression for service time in WLAN MAC transmission, and will use this in mathematical formulation of our optimization problem based on M/G/1 model. Subsequently we introduce an approximate and simple formula for MAC-layer service time, which leads to the M/M/1 model. Compared with M/G/1, we particularly show that our M/M/1-based model provides a low-complexity and yet quite accurate means for analyzing MAC transmission process in WLAN. Using our M/M/1 model-based analysis, we derive closed-form formulas for the packet overflow drop rate and optimum retry-limit. These closed-form expressions can be effectively invoked for analyzing adaptive retry-limit algorithms. Simulation results (network simulator-2) will verify the accuracy of our analytical models.
Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.
Efficient Signature Generation by Smart Cards We present a new public-key signature scheme and a corresponding authentication scheme that are based on discrete logarithms in a subgroup of units in Zp where p is a sufficiently large prime, e.g., p = 2512. A key idea is to use for the base of the discrete logarithm an integer a in Zp such that the order of a is a sufficiently large prime q, e.g., q = 2140. In this way we improve the ElGamal signature scheme in the speed of the procedures for the generation and the verification of signatures and also in the bit length of signatures. We present an efficient algorithm that preprocesses the exponentiation of a random residue modulo p.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
Gravity-Balancing Leg Orthosis and Its Performance Evaluation In this paper, we propose a device to assist persons with hemiparesis to walk by reducing or eliminating the effects of gravity. The design of the device includes the following features: 1) it is passive, i.e., it does not include motors or actuators, but is only composed of links and springs; 2) it is safe and has a simple patient-machine interface to accommodate variability in geometry and inertia of the subjects. A number of methods have been proposed in the literature to gravity-balance a machine. Here, we use a hybrid method to achieve gravity balancing of a human leg over its range of motion. In the hybrid method, a mechanism is used to first locate the center of mass of the human limb and the orthosis. Springs are then added so that the system is gravity-balanced in every configuration. For a quantitative evaluation of the performance of the device, electromyographic (EMG) data of the key muscles, involved in the motion of the leg, were collected and analyzed. Further experiments involving leg-raising and walking tasks were performed, where data from encoders and force-torque sensors were used to compute joint torques. These experiments were performed on five healthy subjects and a stroke patient. The results showed that the EMG activity from the rectus femoris and hamstring muscles with the device was reduced by 75%, during static hip and knee flexion, respectively. For leg-raising tasks, the average torque for static positioning was reduced by 66.8% at the hip joint and 47.3% at the knee joint; however, if we include the transient portion of the leg-raising task, the average torque at the hip was reduced by 61.3%, and at the knee was increased by 2.7% at the knee joints. In the walking experiment, there was a positive impact on the range of movement at the hip and knee joints, especially for the stroke patient: the range of movement increased by 45% at the hip joint and by 85% at the knee joint. We believe that this orthosis can be potentially used to desig- - n rehabilitation protocols for patients with stroke
Biologically-inspired soft exosuit. In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.1
0.1
0.1
0.1
0.05
0
0
0
0
0
0
0
0
0
Convergence of Smoothed Empirical Measures with Applications to Entropy Estimation This paper studies convergence of empirical measures smoothed by a Gaussian kernel. Specifically, consider approximating $P\ast \mathcal {N}_\sigma $ , for $\mathcal {N}_\sigma \triangleq \mathcal {N}(0,\sigma ^{2} \mathrm {I}_{d})$ , by $\hat {P}_{n}\ast \mathcal {N}_\sigma $ under different statistical distances, where $\hat {P}_{n}$ is the empirical measure. We examine the convergence in ...
Adaptive Clustering with Feature Ranking for DDoS Attacks Detection Distributed Denial of Service (DDoS) attacks pose an increasing threat to the current internet. The detection of such attacks plays an important role in maintaining the security of networks. In this paper, we propose a novel adaptive clustering method combined with feature ranking for DDoS attacks detection. First, based on the analysis of network traffic, preliminary variables are selected. Second, the Modified Global K-means algorithm (MGKM) is used as the basic incremental clustering algorithm to identify the cluster structure of the target data. Third, the linear correlation coefficient is used for feature ranking. Lastly, the feature ranking result is used to inform and recalculate the clusters. This adaptive process can make worthwhile adjustments to the working feature vector according to different patterns of DDoS attacks, and can improve the quality of the clusters and the effectiveness of the clustering algorithm. The experimental results demonstrate that our method is effective and adaptive in detecting the separate phases of DDoS attacks.
The role of KL divergence in anomaly detection We study the role of Kullback-Leibler divergence in the framework of anomaly detection, where its abilities as a statistic underlying detection have never been investigated in depth. We give an in-principle analysis of network attack detection, showing explicitly attacks may be masked at minimal cost through 'camouflage'. We illustrate on both synthetic distributions and ones taken from real traffic.
An Anomaly Detection Model Based on One-Class SVM to Detect Network Intrusions. Intrusion detection occupies a decision position in solving the network security problems. Support Vector Machines (SVMs) are one of the widely used intrusion detection techniques. However, the commonly used two-class SVM algorithms are facing difficulties of constructing the training dataset. That is because in many real application scenarios, normal connection records are easy to be obtained, but attack records are not so. We propose an anomaly detection model based on One-class SVM to detect network intrusions. The one-class SVM adopts only normal network connection records as the training dataset. But after being trained, it is able to recognize normal from various attacks. This just meets the requirements of the anomaly detection. Experimental results on KDDCUP99 dataset show that compared to Probabilistic Neural Network (PNN) and C-SVM, our anomaly detection model based on One-class SVM achieves higher detection rates and yields average better performance in terms of precision, recall and F-value.
Detection and Mitigation of DoS and DDoS Attacks in IoT-Based Stateful SDN : An Experimental Approach. The expected advent of the Internet of Things (IoT) has triggered a large demand of embedded devices, which envisions the autonomous interaction of sensors and actuators while offering all sort of smart services. However, these IoT devices are limited in computation, storage, and network capacity, which makes them easy to hack and compromise. To achieve secure development of IoT, it is necessary to engineer scalable security solutions optimized for the IoT ecosystem. To this end, Software Defined Networking (SDN) is a promising paradigm that serves as a pillar in the fifth generation of mobile systems (5G) that could help to detect and mitigate Denial of Service (DoS) and Distributed DoS (DDoS) threats. In this work, we propose to experimentally evaluate an entropy-based solution to detect and mitigate DoS and DDoS attacks in IoT scenarios using a stateful SDN data plane. The obtained results demonstrate for the first time the effectiveness of this technique targeting real IoT data traffic.
Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks Distributed Denial of Service (DDoS) attacks represent a major concern in modern Software Defined Networking (SDN), as SDN controllers are sensitive points of failures in the whole SDN architecture. Recently, research on DDoS attacks detection in SDN has focused on investigation of how to leverage data plane programmability, enabled by P4 language, to detect attacks directly in network switches, with marginal involvement of SDN controllers. In order to effectively address cybersecurity management in SDN architectures, we investigate the potential of Artificial Intelligence and Machine Learning (ML) algorithms to perform automated DDoS Attacks Detection (DAD), specifically focusing on Transmission Control Protocol SYN flood attacks. We compare two different DAD architectures, called Standalone and Correlated DAD, where traffic features collection and attack detection are performed locally at network switches or in a single entity (e.g., in SDN controller), respectively. We combine the capability of ML and P4-enabled data planes to implement real-time DAD. Illustrative numerical results show that, for all tested ML algorithms, accuracy, precision, recall and F1-score are above 98% in most cases, and classification time is in the order of few hundreds of mu s in the worst case. Considering real-time DAD implementation, significant latency reduction is obtained when features are extracted at the data plane by using P4 language.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
Evolutionary computation: comments on the history and current state Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete
Supporting social navigation on the World Wide Web This paper discusses a navigation behavior on Internet information services, in particular the World Wide Web, which is characterized by pointing out of information using various communication tools. We call this behavior social navigation as it is based on communication and interaction with other users, be that through email, or any other means of communication. Social navigation phenomena are quite common although most current tools (like Web browsers or email clients) offer very little support for it. We describe why social navigation is useful and how it can be better supported in future systems. We further describe two prototype systems that, although originally not designed explicitly as tools for social navigation, provide features that are typical for social navigation systems. One of these systems, the Juggler system, is a combination of a textual virtual environment and a Web client. The other system is a prototype of a Web- hotlist organizer, called Vortex. We use both systems to describe fundamental principles of social navigation systems.
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an extended Kalman filter designed for real-time estimation of the orientation of human limb segments. The filter processes data from small inertial/magnetic sensor modules containing triaxial angular rate sensors, accelerometers, and magnetometers. The filter represents rotation using quaternions rather than Euler angles or axis/angle pairs. Preprocessing of the acceleration and magnetometer measurements using the Quest algorithm produces a computed quaternion input for the filter. This preprocessing reduces the dimension of the state vector and makes the measurement equations linear. Real-time implementation and testing results of the quaternion-based Kalman filter are presented. Experimental results validate the filter design, and show the feasibility of using inertial/magnetic sensor modules for real-time human body motion tracking
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming. In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The ...
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
Social information access: the other side of the social web Modern Web, which is frequently called Social Web or Web 2.0, celebrates the power of the user community. Most frequently it is associated with the power of users as contributors or various kinds of contents through Wikis, blogs, and resource sharing sites. However, the community power impacts not only the production of Web content, but also the access to all kinds of Web content. A number of research groups worldwide work on social information access techniques, which help users get to the right information using "community wisdom" distilled from tracked actions of those who worked with this information earlier. The paper provides an overview of this research stream focusing on social search, social navigation, and social visualization techniques.
A web-based e-learning system for increasing study efficiency by stimulating learner's motivation Due to the opportunities provided by the Internet, more and more people are taking advantage of distance learning courses and during the last few years enormous research efforts have been dedicated to the development of distance learning systems. So far, many e-learning systems are proposed and used practically. However, in these systems the e-learning completion rate is about 30%. One of the reasons is the low study desire when the learner studies the learning materials. In this research, we propose an interactive Web-based e-learning system. The purpose of our system is to increase the e-learning completion rate by stimulating learner's motivation. The proposed system has three subsystems: the learning subsystem, learner support subsystem, and teacher support subsystem. The learning subsystem improves the learner's study desire. The learner support subsystem supports the learner during the study, and the teacher support subsystem supports the teacher to get the learner's study state. To evaluate the proposed system, we developed several experiments and surveys. By using new features such as: display of learner's study history, change of interface color, encourage function, ranking function, self-determination of the study materials, and grouping of learners, the proposed system can increase the learning efficiency.
A Web-Based Tool For Control Engineering Teaching In this article a new tool for control engineering teaching is presented. The tool was implemented using Java applets and is freely accessible through Web. It allows the analysis and simulation of linear control systems and was created to complement the theoretical lectures in basic control engineering courses. The article is not only centered in the description of the tool but also in the methodology to use it and its evaluation in an electrical engineering degree. Two practical problems are included in the manuscript to illustrate the use of the main functions implemented. The developed web-based tool can be accessed through the link http://www.controlweb.cyc.ull.es. (C) 2006 Wiley Periodicals, Inc.
Self-organising navigational support in lifelong learning: How predecessors can lead the way Increased flexibility and modularisation in higher education complicates the process of learners finding their way through the offerings of higher education institutions. In lifelong learning, where learning opportunities are diverse and reach beyond institutional boundaries, it becomes even more complex to decide on a learning path. However, efficient and effective lifelong learning requires that learners can make well informed decisions. Drawing on principles of self-organisation and indirect social interaction, this article suggests solving the problem by analysing the paths followed by learners and feeding this information back as advice to learners facing navigational decisions. This article starts by introducing the principles of self-organisation and indirect social interaction. It describes how we expect the use of indirect social interaction using collaborative filtering to enhance effectiveness (completion rates and amount of progress) and efficiency (time taken to complete) in lifelong learning. The effects were tested in a controlled experiment, with the results showing effects on effectiveness though not on efficiency. The study shows that indirect feedback is a promising line of enquiry for navigational support in lifelong learning.
Lifelong Learner Modeling for Lifelong Personalized Pervasive Learning Pervasive and ubiquitous computing have the potential to make huge changes in the ways that we will learn, throughout our lives. This paper presents a vision for the lifelong user model as a first class citizen, existing independently of any single application and controlled by the learner. The paper argues that this is a critical foundation for a vision of personalised lifelong learning as well as a form of augmented cognition that enables learners to supplement their own knowledge with readily accessible digital information based on documents that they have accessed or used. The paper presents work that provides foundations for this vision for a lifelong user model. First, it outlines technical issues and research into approaches for addressing them. Then it presents work on the interface between the learner and the lifelong user model because the human issues of control and privacy are so central. The final discussion and conclusions draw upon these to define a roadmap for future research in a selection of the key areas that will underpin this vision of the lifelong user model.
EDUCO - A Collaborative Learning Environment Based on Social Navigation Web-based learning is primarily a lonesome activity, even when it involves working in groups. This is due to the fact that the majority of web-based learning relies on asynchronous forms of interacting with other people. In most of the cases, the chat discussion is the only form of synchronous interaction that adds to the feeling that there are other people present in the environment. EDUCO is a system that tries to bring in the sense of other users in a collaborative learning environment by making the other users and their the navigation visible to everyone else in the environment in real-time. The paper describes EDUCO and presents the first empirical evaluation as EDUCO was used in a university course.
What Hinders Teachers in Using Computer and Video Games in the Classroom? Exploring Factors Inhibiting the Uptake of Computer and Video Games. The purpose of this study is to identify factors inhibiting teachers' use of computer and video games in the classroom setting and to examine the degree to which teaching experience and gender affect attitudes toward using games. Six factors that hinder teachers' use of games in the classroom were discovered: Inflexibility of curriculum, Negative effects of gaming, Students' lack of readiness, Lack of supporting materials, Fixed class schedules, and Limited budgets. Lack of supporting material, Fixed class schedules, and Limited budgets were factors that female teachers believed to be more serious obstacles to game use in the classroom than male teachers did. Experienced teachers, more so than inexperienced teachers, believed that adopting games in teaching was hindered by Inflexibility of curriculum and Negative effects of gaming. On the other hand, inexperienced teachers, more so than experienced teachers, believed that adopting games in teaching is less hindered by Lack of supporting materials and Fixed class schedules.
Wireless sensor networks: a survey This paper describes the concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are also discussed.
Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users move away from their serving edge clouds. To address this issue, this article investigates microservice coordination among edge clouds to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel conditions and edge cloud's computation capabilities required, which is hard to be obtained. Therefore, we reformulate the microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e., the Telecom's base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the achieved performance is close to the optimal performance obtained by the offline algorithm.
Trust in Automation: Designing for Appropriate Reliance. Automation is often problematic because people fail to rely upon it appropriately. Because people respond to technology socially, trust influences reliance on automation. In particular, trust guides reliance when complexity and unanticipated situations make a complete understanding of the automation impractical. This review considers trust from the organizational, sociological, interpersonal, psychological, and neurological perspectives. It considers how the context, automation characteristics, and cognitive processes affect the appropriateness of trust. The context in which the automation is used influences automation performance and provides a goal-oriented perspective to assess automation characteristics along a dimension of attributional abstraction. These characteristics can influence trust through analytic, analogical, and affective processes. The challenges of extrapolating the concept of trust in people to trust in automation are discussed. A conceptual model integrates research regarding trust in automation and describes the dynamics of trust, the role of context, and the influence of display characteristics. Actual or potential applications of this research include improved designs of systems that require people to manage imperfect automation.
A novel full structure optimization algorithm for radial basis probabilistic neural networks. In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.
GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation Although a large number of WiFi fingerprinting based indoor localization systems have been proposed, our field experience with Google Maps Indoor (GMI), the only system available for public testing, shows that it is far from mature for indoor navigation. In this paper, we first report our field studies with GMI, as well as experiment results aiming to explain our unsatisfactory GMI experience. Then motivated by the obtained insights, we propose GROPING as a self-contained indoor navigation system independent of any infrastructural support. GROPING relies on geomagnetic fingerprints that are far more stable than WiFi fingerprints, and it exploits crowdsensing to construct floor maps rather than expecting individual venues to supply digitized maps. Based on our experiments with 20 participants in various floors of a big shopping mall, GROPING is able to deliver a sufficient accuracy for localization and thus provides smooth navigation experience.
Collective feature selection to identify crucial epistatic variants. In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.201113
0.201113
0.201113
0.101083
0.06732
0.034145
0.000531
0
0
0
0
0
0
0
Network-Aware Availability Modeling of an End-to-End NFV-Enabled Service Network Function Virtualization (NFV) represents a key shift in nowadays network service provisioning by entailing higher flexibility, elasticity, and programmability of network services. Dependability is one of the main aspects that need to be investigated and tackled in order to profitably use NFV in the future. The main objective of this paper is to propose a comprehensive approach to estimate the end-to-end NFV-deployed service availability and present a quantitative assessment of the network factors that affect the availability of the service provided by an NFV architecture. To achieve this goal, we adopted a two-level availability model where i) the low level considers the network topology structure and NFV connectivity requirements through the definition of the system structure function based on minimal-cut sets and ii) the higher level examines dynamics and failure modes of network and NFV elements through stochastic activity networks. By using the proposed model, we have carried out an extensive sensitivity analysis to identify the impact on the service availability of the different service elements involved in the delivery, and their deployment across the network. The results highlight the significant impact that network nodes have on the end-to-end network service. Less robust network nodes may reduce the availability of an NFV-enabled service by more than one order of magnitude even though NFV elements like VNFs or MANO are provided with redundancy. Moreover, the results show that adopting an SDN-integrated network degrades the service availability and increases the vulnerability of the network service to SDN controllers unless adequately protected.
Analysis of Software Aging in a Web Server Several recent studies have reported & examined the phenomenon that long-running software systems show an increasing failure rate and/or a progressive degradation of their performance. Causes of this phenomenon, which has been referred to as &#34;software aging&#34;, are the accumulation of internal error conditions, and the depletion of operating system resources. A proactive technique called &#34;software r...
Container Network Functions: Bringing NFV to the Network Edge. In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and ...
Reliability-Aware Service Chaining In Carrier-Grade Softwarized Networks. Network Function Virtualization (NFV) has revolutionized service provisioning in cloud datacenter networks. It enables the complete decoupling of Network Functions (NFs) from the physical hardware middle boxes that network operators deploy for implementing service-specific and strictly ordered NF chains. Precisely, NFV allows for dispatching NFs as instances of plain software called virtual networ...
Model-Driven Availability Assessment of the NFV-MANO With Software Rejuvenation Network Function Virtualization enables network operators to modernize their networks with greater elasticity, network programmability, and scalability. Exploiting these advantages requires new and specialized designs for management, automation, and orchestration systems which are capable of reliably operating and handling new elements such as virtual functions, virtualized infrastructures, and a ...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Massive MIMO for next generation wireless systems Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Communication theory of secrecy systems THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.
A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization In recent years, there has been a growing interest for the experimental analysis in the field of evolutionary algorithms. It is noticeable due to the existence of numerous papers which analyze and propose different types of problems, such as the basis for experimental comparisons of algorithms, proposals of different methodologies in comparison or proposals of use of different statistical techniques in algorithms’ comparison.In this paper, we focus our study on the use of statistical techniques in the analysis of evolutionary algorithms’ behaviour over optimization problems. A study about the required conditions for statistical analysis of the results is presented by using some models of evolutionary algorithms for real-coding optimization. This study is conducted in two ways: single-problem analysis and multiple-problem analysis. The results obtained state that a parametric statistical analysis could not be appropriate specially when we deal with multiple-problem results. In multiple-problem analysis, we propose the use of non-parametric statistical tests given that they are less restrictive than parametric ones and they can be used over small size samples of results. As a case study, we analyze the published results for the algorithms presented in the CEC’2005 Special Session on Real Parameter Optimization by using non-parametric test procedures.
Implementing Vehicle Routing Algorithms
Switching Stabilization for a Class of Slowly Switched Systems In this technical note, the problem of switching stabilization for slowly switched linear systems is investigated. In particular, the considered systems can be composed of all unstable subsystems. Based on the invariant subspace theory, the switching signal with mode-dependent average dwell time (MDADT) property is designed to exponentially stabilize the underlying system. Furthermore, sufficient condition of stabilization for switched systems with all stable subsystems under MDADT switching is also given. The correctness and effectiveness of the proposed approaches are illustrated by a numerical example.
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
GSA: A Gravitational Search Algorithm In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Harmony search algorithm for solving Sudoku Harmony search (HS) algorithm was applied to solving Sudoku puzzle. The HS is an evolutionary algorithm which mimics musicians' behaviors such as random play, memory-based play, and pitch-adjusted play when they perform improvisation. Sudoku puzzles in this study were formulated as an optimization problem with number-uniqueness penalties. HS could successfully solve the optimization problem after 285 function evaluations, taking 9 seconds. Also, sensitivity analysis of HS parameters was performed to obtain a better idea of algorithm parameter values.
DEC: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. Identification of models from input-output data essentially requires estimation of appropriate cluster centers. In this paper, a new online evolving clustering approach for streaming data is proposed. Unlike other approaches that consider either the data density or distance from existing cluster centers, this approach uses cluster weight and distance before generating new clusters. To capture the dynamics of the data stream, the cluster weight is defined in both data and time space in such a way that it decays exponentially with time. It also applies concepts from computational geometry to determine the neighborhood information while forming clusters. A distinction is made between core and noncore clusters to effectively identify the real outliers. The approach efficiently estimates cluster centers upon which evolving Takagi-Sugeno models are developed. The experimental results with developed models show that the proposed approach attains results at par or better than existing approaches and significantly reduces the computational overhead, which makes it suitable for real-time applications.
An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). GWO is employed for solving optimization problems focused on the minimization of discrete-time objective functions defined as the weighted sum of the absolute value of the control error and of the squared output sensitivity function, and the vector variable consists of the tuning parameters of the T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of the process, solving these optimization problems is important as it leads to fuzzy control systems with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning approach. GWO algorithms applied with this regard are formulated in easily understandable terms for both vector and scalar operations, and discussions on stability, convergence, and parameter settings are offered. The controlled processes referred to in the course of this paper belong to a family of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead zone static nonlinearity. Experimental results concerning the angular position control of a laboratory servo system are included for validating the proposed method.
Stability Analysis and Estimation of Domain of Attraction for Positive Polynomial Fuzzy Systems With Input Saturation AbstractIn this paper, the stability and positivity of positive polynomial fuzzy model based (PPFMB) control system are investigated, in which the positive polynomial fuzzy model and positive polynomial fuzzy controller are allowed to have different premise membership functions from each other. These mismatched premise membership functions can increase the flexibility of controller design; however, it will lead to the conservative results when the stability is analyzed based on the Lyapunov stability theory. To relax the positivity/stability conditions, the improved Taylor-series-membership-functions-dependent (ITSMFD) method is introduced by introducing the sample points information of Taylor-series approximate membership functions, local error information and boundary information of substate space of premise variables into the stability/positivity conditions. Meanwhile, the ITSMFD method is extended to the PPFMB control system with input saturation to relax the estimation of domain of attraction. Finally, simulation examples are presented to verify the feasibility of this method.
A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests In this paper, we focus on the experimental analysis on the performance in artificial neural networks with the use of statistical tests on the classification task. Particularly, we have studied whether the sample of results from multiple trials obtained by conventional artificial neural networks and support vector machines checks the necessary conditions for being analyzed through parametrical tests. The study is conducted by considering three possibilities on classification experiments: random variation in the selection of test data, the selection of training data and internal randomness in the learning algorithm. The results obtained state that the fulfillment of these conditions are problem-dependent and indefinite, which justifies the need of using non-parametric statistics in the experimental analysis.
Novel Adaptive Charged System Search algorithm for optimal tuning of fuzzy controllers This paper proposes a novel Adaptive Charged System Search (ACSS) algorithm for the optimal tuning of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). The five stages of this algorithm, namely the engagement, exploration, explanation, elaboration and evaluation, involve the adaptation of the acceleration, velocity, and separation distance parameters to the iteration index, and the substitution of the worst charged particles' fitness function values and positions with the best performing particle data. The ACSS algorithm solves the optimization problems aiming to minimize the objective functions expressed as the sum of absolute control error plus squared output sensitivity function, resulting in optimal fuzzy control systems with reduced parametric sensitivity. The ACSS-based tuning of T-S PI-FCs is applied to second-order servo systems with an integral component. The ACSS algorithm is validated by an experimental case study dealing with the optimal tuning of a T-S PI-FC for the position control of a nonlinear servo system.
Nonlinear Output Feedback Finite-Time Control for Vehicle Active Suspension Systems In this paper, an output feedback finite-time control method is investigated for stabilizing the perturbed vehicle active suspension system to improve the suspension performance. Since physical suspension systems always exist in the phenomenon of uncertainty or external disturbance, a novel disturbance compensator with finite-time convergence performance is proposed for efficiently compensating the unknown external disturbance. Moreover, the presented compensator is advantageous over the existing ones since it is continuous and can completely remove the matched disturbance. From the viewpoint of practical implementation, continuous control law will not lead to chattering, which is desirable for electrical and mechanical systems. For the nominal suspension system without disturbance, a homogeneous controller with a simple filter is constructed to achieve a finite-time convergence property, where the filter is applied to obtain the unknown velocity signal. Thus, the nominal controller combines a disturbance compensator into an overall continuous control law, which provides two independent parts with a separate design unit and a high flexibility for selecting the control gains. According to the geometric homogeneity and finite-time separation principle, it can be shown that the active suspension is finite-time stabilized. A designed example is given to illustrate the effectiveness of the presented controller for improving the vehicle ride performance.
A Charging Algorithm for the Wireless Rechargeable Sensor Network with Imperfect Charging Channel and Finite Energy Storage. Recently, wireless energy transfer technology becomes a popular way to address energy shortage in wireless sensor networks. The capacity of the mobile wireless charging car (WCV) and the wireless channel between the WCV and the sensor are two important factors influencing the energy efficiency of the wireless sensor network, which has not been well considered. In this paper, we study the energy efficiency of a wireless rechargeable sensor network charged by a finite capacity WCV through an imperfect wireless channel. To estimate the energy efficiency, we first propose a new metric named waste rate, which is defined as a function of the charging channel quality. Then, energy efficiency optimization is modeled as minimizing the waste rate. Through optimizing the distance between the WCV and sensor nodes, the set of optimal charging sensor nodes is obtained. By using the Hamiltonian circle, the nearest neighbor algorithm is proposed to find the traveling path of the WCV. Furthermore, to avoid the untimely death of sensor nodes and the coverage hole, an extended node dynamic replacement strategy is proposed. The simulation results show that the proposed method can reduce the waste rate and the total charging time; i.e., the sum of traveling time and charging delay can be significantly reduced, which indicates that the proposed algorithm can improve the energy efficiency of the network.
Anomaly detection: A survey Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.
Inexact Kleinman-Newton Method for Riccati Equations In this paper we consider the numerical solution of the algebraic Riccati equation using Newton's method. We propose an inexact variant which allows one control the number of the inner iterates used in an iterative solver for each Newton step. Conditions are given under which the monotonicity and global convergence result of Kleinman also hold for the inexact Newton iterates. Numerical results illustrate the efficiency of this method.
Person Transfer GAN to Bridge Domain Gap for Person Re-identification Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT171 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.
Enhanced Coordinated Operations of Electric Power and Transportation Networks via EV Charging Services Electric power and transportation networks become increasingly coupled through electric vehicles (EV) charging station (EVCS) as the penetration of EVs continues to grow. In this paper, we propose a holistic framework to enhance the operation of coordinated electric power distribution network (PDN) and urban transportation network (UTN) via EV charging services. Under this framework, a bi-level mo...
1.010799
0.0112
0.0112
0.0112
0.0112
0.0112
0.008
0.006037
0.0016
0.0002
0
0
0
0
A Blockchain-Based Secure Key Management Scheme with Trustworthiness in DWSNs Dynamic wireless sensor networks (DWSNs) as an important means of industrial data collection are a key part of industrial Internet of Things (IIoT), where security and reliability are important characteristics of trustworthiness. However, due to dynamics, the security of key management is caused by a nontrusted base station (BS) that is easily targeted. For the distribution key management scheme, ...
Privacy Enabled Digital Rights Management Without Trusted Third Party Assumption Digital rights management systems are required to provide security and accountability without violating the privacy of the entities involved. However, achieving privacy along with accountability in the same framework is hard as these attributes are mutually contradictory. Thus, most of the current digital rights management systems rely on trusted third parties to provide privacy to the entities involved. However, a trusted third party can become malicious and break the privacy protection of the entities in the system. Hence, in this paper, we propose a novel privacy preserving content distribution mechanism for digital rights management without relying on the trusted third party assumption. We use simple primitives such as blind decryption and one way hash chain to avoid the trusted third party assumption. We prove that our scheme is not prone to the “oracle problem” of the blind decryption mechanism. The proposed mechanism supports access control without degrading user's privacy as well as allows revocation of even malicious users without violating their privacy.
An efficient conditionally anonymous ring signature in the random oracle model A conditionally anonymous ring signature is an exception since the anonymity is conditional. Specifically, it allows an entity to confirm/refute the signature that he generated before. A group signature also shares the same property since a group manager can revoke a signer's anonymity using the trapdoor information. However, the special node (i.e., group manager) does not exist in the group in order to satisfy the ad hoc fashion. In this paper, we construct a new conditionally anonymous ring signature, in which the actual signer can be traced without the help of the group manager. The big advantage of the confirmation and disavowal protocols designed by us are non-interactive with constant costs while the known schemes suffer from the linear cost in terms of the ring size n or security parameter s.
Threats to Networking Cloud and Edge Datacenters in the Internet of Things. Several application domains are collecting data using Internet of Things sensing devices and shipping it to remote cloud datacenters for analysis (fusion, storage, and processing). Data analytics activities raise a new set of technical challenges from the perspective of ensuring end-to-end security and privacy of data as it travels from an edge datacenter (EDC) to a cloud datacenter (CDC) (or vice...
Performance Analysis of the Raft Consensus Algorithm for Private Blockchains Consensus is one of the key problems in blockchains. There are many articles analyzing the performance of threat models for blockchains. But the network stability seems lack of attention, which in fact affects the blockchain performance. This paper studies the performance of a well adopted consensus algorithm, Raft, in networks with non-negligible packet loss rate. In particular, we propose a simple but accurate analytical model to analyze the distributed network split probability. At a given time, we explicitly present the network split probability as a function of the network size, the packet loss rate, and the election timeout period. To validate our analysis, we implement a Raft simulator and the simulation results coincide with the analytical results. With the proposed model, one can predict the network split time and probability in theory and optimize the parameters in Raft consensus algorithm.
A Blockchain-Based Scheme For Privacy-Preserving And Secure Sharing Of Medical Data How to alleviate the contradiction between the patient's privacy and the research or com-mercial demands of health data has become the challenging problem of intelligent medical system with the exponential increase of medical data. In this paper, a blockchainbased privacy-preserving scheme is proposed, which realizes secure sharing of medical data between several entities involved patients, research institutions and semi-trusted cloud servers. And meanwhile, it achieves the data availability and consistency between patients and research institutions, where zero-knowledge proof is employed to verify whether the patient's medical data meets the specific requirements proposed by research institutions without revealing patients' privacy, and then the proxy re-encryption technology is adopted to ensure that research institutions can decrypt the intermediary ciphertext. In addition, this proposal can execute distributed consensus based on PBFT algorithm for transactions between patients and research institutions according to the prearranged terms. Theoretical analysis shows the proposed scheme can satisfy security and privacy requirements such as confidentiality, integrity and availability, as well as performance evaluation demonstrates it is feasible and efficient in contrast with other typical schemes. (C) 2020 Elsevier Ltd. All rights reserved.
Chaos-Based Content Distribution Framework for Digital Rights Management System Multimedia contents are digitally utilized these days. Thus, the development of an effective method to access the content is becoming the topmost priority of the entertainment industry to protect the digital content from unauthorized access. Digital rights management (DRM) systems are the technique that makes digital content accessible only to the legal rights holders. As the Internet of Things environment is used in the distribution and access of digital content, a secure and efficient content delivery mechanism is also required. Keeping the focus on these points, this article proposes a content distribution framework for DRM system using chaotic map. Formal security verification under the random oracle model, which uncovers the proposed protocol's capability to resist the critical attacks is given. Moreover, simulation study for security verification is performed using the broadly accepted “automated validation of Internet security protocols and applications,” which indicates that the protocol is safe. Moreover, the detailed comparative study with related protocols demonstrates that it provides better security and improves the computational and communication efficiency.
Constrained Kalman filtering for indoor localization of transport vehicles using floor-installed HF RFID transponders Localization of transport vehicles is an important issue for many intralogistics applications. The paper presents an inexpensive solution for indoor localization of vehicles. Global localization is realized by detection of RFID transponders, which are integrated in the floor. The paper presents a novel algorithm for fusing RFID readings with odometry using Constraint Kalman filtering. The paper presents experimental results with a Mecanum based omnidirectional vehicle on a NaviFloor® installation, which includes passive HF RFID transponders. The experiments show that the proposed Constraint Kalman filter provides a similar localization accuracy compared to a Particle filter but with much lower computational expense.
Constrained Multiobjective Optimization for IoT-Enabled Computation Offloading in Collaborative Edge and Cloud Computing Internet-of-Things (IoT) applications are becoming more resource-hungry and latency-sensitive, which are severely constrained by limited resources of current mobile hardware. Mobile cloud computing (MCC) can provide abundant computation resources, while mobile-edge computing (MEC) aims to reduce the transmission latency by offloading complex tasks from IoT devices to nearby edge servers. It is sti...
MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition Decomposition is a basic strategy in traditional multiobjective optimization. However, it has not yet been widely used in multiobjective evolutionary optimization. This paper proposes a multiobjective evolutionary algorithm based on decomposition (MOEA/D). It decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Each subproblem is optimized by only using information from its several neighboring subproblems, which makes MOEA/D have lower computational complexity at each generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjective optimization problems. It has been shown that MOEA/D using objective normalization can deal with disparately-scaled objectives, and MOEA/D with an advanced decomposition method can generate a set of very evenly distributed solutions for 3-objective test instances. The ability of MOEA/D with small population, the scalability and sensitivity of MOEA/D have also been experimentally investigated in this paper.
A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning Designers and evaluators of immersive virtual reality systems have many ideas concerning how virtual reality can facilitate learning. However, we have little information concerning which of virtual reality's features provide the most leverage for enhancing understanding or how to customize those affordances for different learning environments. In part, this reflects the truly complex nature of learning. Features of a learning environment do not act in isolation; other factors such as the concepts or skills to be learned, individual characteristics, the learning experience, and the interaction experience all play a role in shaping the learning process and its outcomes. Through Project Science Space, we have been trying to identify, use, and evaluate immersive virtual reality's affordances as a means to facilitate the mastery of complex, abstract concepts. In doing so, we are beginning to understand the interplay between virtual reality's features and other important factors in shaping the learning process and learning outcomes for this type of material. In this paper, we present a general model that describes how we think these factors work together and discuss some of the lessons we are learning about virtual reality's affordances in the context of this model for complex conceptual learning.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications This paper investigates the problem of fault detection filter design for discrete-time polynomial fuzzy systems with faults and unknown disturbances. The frequency ranges of the faults and the disturbances are assumed to be known beforehand and to reside in low, middle or high frequency ranges. Thus, the proposed filter is designed in the finite frequency range to overcome the conservatism generated by those designed in the full frequency domain. Being of polynomial fuzzy structure, the proposed filter combines the H−/H∞ performances in order to ensure the best robustness to the disturbance and the best sensitivity to the fault. Design conditions are derived in Sum Of Squares formulations that can be easily solved via available software tools. Two illustrative examples are introduced to demonstrate the effectiveness of the proposed method and a comparative study with LMI method is also provided.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation Spatiotemporal traffic time series (e.g., traffic volume/speed) collected from sensing systems are often incomplete with considerable corruption and large amounts of missing values, preventing users from harnessing the full power of the data. Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems. A widely applied imputation method is low-rank matrix/tensor completion; however, the low-rank assumption only preserves the global structure while ignores the strong local consistency in spatiotemporal data. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework by introducing temporal variation as a new regularization term into the completion of a third-order (sensor x time of day x day) tensor. The third-order tensor structure allows us to better capture the global consistency of traffic data, such as the inherent seasonality and day-to-day similarity. To achieve local consistency, we design the temporal variation by imposing an autoregressive model for each time series with coefficients as learnable parameters. Different from previous spatial and temporal regularization schemes, the minimization of temporal variation can better characterize temporal generative mechanisms beyond local smoothness, allowing us to deal with more challenging scenarios such as ``blackout'' missing. To solve the optimization problem in LATC, we introduce an alternating minimization scheme that estimates the low-rank tensor and autoregressive coefficients iteratively. We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.
Movie2Comics: Towards a Lively Video Content Presentation a type of artwork, comics is prevalent and popular around the world. However, despite the availability of assistive software and tools, the creation of comics is still a labor-intensive and time-consuming process. This paper proposes a scheme that is able to automatically turn a movie clip to comics. Two principles are followed in the scheme: 1) optimizing the information preservation of the movie; and 2) generating outputs following the rules and the styles of comics. The scheme mainly contains three components: script-face mapping, descriptive picture extraction, and cartoonization. The script-face mapping utilizes face tracking and recognition techniques to accomplish the mapping between characters' faces and their scripts. The descriptive picture extraction then generates a sequence of frames for presentation. Finally, the cartoonization is accomplished via three steps: panel scaling, stylization, and comics layout design. Experiments are conducted on a set of movie clips and the results have demonstrated the usefulness and the effectiveness of the scheme.
View-Based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper, we propose a discriminative probabilistic object modeling approach. It builds probabilistic models for each object based on the distribution of its views, and the distance between two objects is defined as the upper bound of the Kullback–Leibler divergence of the corresponding probabilistic models. 3D object retrieval and recognition is accomplished based on the distance measures. We first learn models for each object by the adaptation from a set of global models with a maximum likelihood principle. A further adaption step is then performed to enhance the discriminative ability of the models. We conduct experiments on the ETH 3D object dataset, the National Taiwan University 3D model dataset, and the Princeton Shape Benchmark. We compare our approach with different methods, and experimental results demonstrate the superiority of our approach.
DADNet: Dilated-Attention-Deformable ConvNet for Crowd Counting Most existing CNN-based methods for crowd counting always suffer from large scale variation in objects of interest, leading to density maps of low quality. In this paper, we propose a novel deep model called Dilated-Attention-Deformable ConvNet (DADNet), which consists of two schemes: multi-scale dilated attention and deformable convolutional DME (Density Map Estimation). The proposed model explores a scale-aware attention fusion with various dilation rates to capture different visual granularities of crowd regions of interest, and utilizes deformable convolutions to generate a high-quality density map. There are two merits as follows: (1) varying dilation rates can effectively identify discriminative regions by enlarging the receptive fields of convolutional kernels upon surrounding region cues, and (2) deformable CNN operations promote the accuracy of object localization in the density map by augmenting the spatial object location sampling with adaptive offsets and scalars. DADNet not only excels at capturing rich spatial context of salient and tiny regions of interest simultaneously, but also keeps a robustness to background noises, such as partially occluded objects. Extensive experiments on benchmark datasets verify that DADNet achieves the state-of-the-art performance. Visualization results of the multi-scale attention maps further validate the remarkable interpretability achieved by our solution.
Context-Aware Graph Inference With Knowledge Distillation for Visual Dialog Visual dialog is a challenging task that requires the comprehension of the semantic dependencies among implicit visual and textual contexts. This task can refer to the relational inference in a graphical model with sparse contextual subjects (nodes) and unknown graph structure (relation descriptor); how to model the underlying context-aware relational inference is critical. To this end, we propose a novel context-aware graph (CAG) neural network. We focus on the exploitation of fine-grained relational reasoning with object-level dialog-historical co-reference nodes. The graph structure (relation in dialog) is iteratively updated using an adaptive top- <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula> message passing mechanism. To eliminate sparse useless relations, each node has dynamic relations in the graph (different related <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula> neighbor nodes), and only the most relevant nodes are attributive to the context-aware relational graph inference. In addition, to avoid negative performance caused by linguistic bias of history, we propose a pure visual-aware knowledge distillation mechanism named CAG-Distill, in which image-only visual clues are used to regularize the joint dialog-historical contextual awareness at the object-level. Experimental results on VisDial v0.9 and v1.0 datasets show that both CAG and CAG-Distill outperform comparative methods. Visualization results further validate the remarkable interpretability of our graph inference solution.
A deep learning approach to patch-based image inpainting forensics. Although image inpainting is now an effective image editing technique, limited work has been done for inpainting forensics. The main drawbacks of the conventional inpainting forensics methods lie in the difficulties on inpainting feature extraction and the very high computational cost. In this paper, we propose a novel approach based on a convolutional neural network (CNN) to detect patch-based inpainting operation. Specifically, the CNN is built following the encoder–decoder network structure, which allows us to predict the inpainting probability for each pixel in an image. To guide the CNN to automatically learn the inpainting features, a label matrix is generated for the CNN training by assigning a class label for each pixel of an image, and the designed weighted cross-entropy serves as the loss function. They further help to strongly supervise the CNN to capture the manipulation information rather than the image content features. By the established CNN, inpainting forensics does not need to consider feature extraction and classifier design, and use any postprocessing as in conventional forensics methods. They are combined into the unique framework and optimized simultaneously. Experimental results show that the proposed method achieves superior performance in terms of true positive rate, false positive rate and the running time, as compared with state-of-the-art methods for inpainting forensics, and is very robust against JPEG compression and scaling manipulations.
Rich Models for Steganalysis of Digital Images We describe a novel general strategy for building steganography detectors for digital images. The process starts with assembling a rich model of the noise component as a union of many diverse submodels formed by joint distributions of neighboring samples from quantized image noise residuals obtained using linear and nonlinear high-pass filters. In contrast to previous approaches, we make the model assembly a part of the training process driven by samples drawn from the corresponding cover- and stego-sources. Ensemble classifiers are used to assemble the model as well as the final steganalyzer due to their low computational complexity and ability to efficiently work with high-dimensional feature spaces and large training sets. We demonstrate the proposed framework on three steganographic algorithms designed to hide messages in images represented in the spatial domain: HUGO, edge-adaptive algorithm by Luo , and optimally coded ternary $\\pm {\\hbox{1}}$ embedding. For each algorithm, we apply a simple submodel-selection technique to increase the detection accuracy per model dimensionality and show how the detection saturates with increasing complexity of the rich model. By observing the differences between how different submodels engage in detection, an interesting interplay between the embedding and detection is revealed. Steganalysis built around rich image models combined with ensemble classifiers is a promising direction towards automatizing steganalysis for a wide spectrum of steganographic schemes.
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Joint Optimization of Radio and Computational Resources for Multicell Mobile-Edge Computing Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources􀀀the transmit precoding matrices of the MUs􀀀and the computational resources􀀀the CPU cycles/second assigned by the cloud to each MU􀀀in order to minimize the overall users’ energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to compute the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. We then show that the proposed algorithmic framework naturally leads to a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
A Comparative Study of Distributed Learning Environments on Learning Outcomes Advances in information and communication technologies have fueled rapid growth in the popularity of technology-supported distributed learning (DL). Many educational institutions, both academic and corporate, have undertaken initiatives that leverage the myriad of available DL technologies. Despite their rapid growth in popularity, however, alternative technologies for DL are seldom systematically evaluated for learning efficacy. Considering the increasing range of information and communication technologies available for the development of DL environments, we believe it is paramount for studies to compare the relative learning outcomes of various technologies.In this research, we employed a quasi-experimental field study approach to investigate the relative learning effectiveness of two collaborative DL environments in the context of an executive development program. We also adopted a framework of hierarchical characteristics of group support system (GSS) technologies, outlined by DeSanctis and Gallupe (1987), as the basis for characterizing the two DL environments.One DL environment employed a simple e-mail and listserv capability while the other used a sophisticated GSS (herein referred to as Beta system). Interestingly, the learning outcome of the e-mail environment was higher than the learning outcome of the more sophisticated GSS environment. The post-hoc analysis of the electronic messages indicated that the students in groups using the e-mail system exchanged a higher percentage of messages related to the learning task. The Beta system users exchanged a higher level of technology sense-making messages. No significant difference was observed in the students' satisfaction with the learning process under the two DL environments.
A Framework of Joint Mobile Energy Replenishment and Data Gathering in Wireless Rechargeable Sensor Networks Recent years have witnessed the rapid development and proliferation of techniques on improving energy efficiency for wireless sensor networks. Although these techniques can relieve the energy constraint on wireless sensors to some extent, the lifetime of wireless sensor networks is still limited by sensor batteries. Recent studies have shown that energy rechargeable sensors have the potential to provide perpetual network operations by capturing renewable energy from external environments. However, the low output of energy capturing devices can only provide intermittent recharging opportunities to support low-rate data services due to spatial-temporal, geographical or environmental factors. To provide steady and high recharging rates and achieve energy efficient data gathering from sensors, in this paper, we propose to utilize mobility for joint energy replenishment and data gathering. In particular, a multi-functional mobile entity, called SenCarin this paper, is employed, which serves not only as a mobile data collector that roams over the field to gather data via short-range communication but also as an energy transporter that charges static sensors on its migration tour via wireless energy transmissions. Taking advantages of SenCar's controlled mobility, we focus on the joint optimization of effective energy charging and high-performance data collections. We first study this problem in general networks with random topologies. We give a two-step approach for the joint design. In the first step, the locations of a subset of sensors are periodically selected as anchor points, where the SenCar will sequentially visit to charge the sensors at these locations and gather data from nearby sensors in a multi-hop fashion. To achieve a desirable balance between energy replenishment amount and data gathering latency, we provide a selection algorithm to search for a maximum number of anchor points where sensors hold the least battery energy, and meanwhile by visiting them, - he tour length of the SenCar is no more than a threshold. In the second step, we consider data gathering performance when the SenCar migrates among these anchor points. We formulate the problem into a network utility maximization problem and propose a distributed algorithm to adjust data rates at which sensors send buffered data to the SenCar, link scheduling and flow routing so as to adapt to the up-to-date energy replenishing status of sensors. Besides general networks, we also study a special scenario where sensors are regularly deployed. For this case we can provide a simplified solution of lower complexity by exploiting the symmetry of the topology. Finally, we validate the effectiveness of our approaches by extensive numerical results, which show that our solutions can achieve perpetual network operations and provide high network utility.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems. This paper addresses the finite-time tracking problem of nonlinear pure-feedback systems. Unlike the literature on traditional finite-time stabilization, in this paper the nonlinear system functions, including the bounding functions, are all totally unknown. Fuzzy logic systems are used to model those unknown functions. To present a finite-time control strategy, a criterion of semiglobal practical...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.1
0.016667
0
0
0
0
0
0
0
Teleoperation system for a mobile robot arm with visual servomechanism based on turning radius determination using angle information of image This paper considers the development of a teleoperation system for a mobile robot arm with visual servo mechanism. The robot to be operated mainly consists of a mobile robot and a robot arm with USB camera. The robot is teleoperated according to the control command which is generated by combining the manual operation with the autonomous control via the vision system based on the USB camera images. In this paper, a control method of determining the turning radius of the mobile robot is proposed based on the angle information of image corresponding to the error of a target position from the reference one. To evaluate the proposed teleoperation system, experiments of pressing a button were conducted by using an actual robot. It was verified from the experimental results that sufficiently high success rate of teleoperation could be obtained by the proposed method.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Embracing Tag Collisions: Acquiring Bloom Filters across RFIDs in Physical Layer Embedding Radio-Frequency IDentification (RFID) into everyday objects to construct ubiquitous networks has been a long-standing goal. However, a major problem that hinders the attainment of this goal is the current inefficient reading of RFID tags. To address issue, the research community introduces the technique of Bloom Filter (BF) to RFID systems. This work presents TagMap, a practical solution that acquires BFs across commercial off-the-shelf (COTS) RFID tags in the physical layer, enabling upper applications to boost their performance by orders of magnitude. The key idea is to treat all tags as if they were a single virtual sender, which hashes each tag into different intercepted inventories. Our approach does not require hardware nor firmware changes in commodity RFID tags -allows for rapid, zero-cost deployment in existing RFID tags. We design and implement TagMap reader with commodity device (e.g., USRP N210) platforms. Our comprehensive evaluation reveals that the overhead of TagMap is 66.22% lower than the state-of-the-art solution, with a bit error rate of 0.4%.
Revisiting unknown RFID tag identification in large-scale internet of things. RFID is a major prerequisite for the IoT, which connects physical objects with the Internet. Unknown tag identification is a fundamental problem in large-scale IoT systems, such as automatic stock management and object tracking. Recently, several protocols have been proposed to discern unknown tags. In this article, we overview the underlying mechanism of previous protocols, and pinpoint the challenging issues together with possible solutions. Then we propose a scheme using a Bloom filter that significantly reduces the data transmission during the identification process. We further present the preliminary results to illuminate the Bloom-filter- based architecture.
Efficient and Reliable Missing Tag Identification for Large-Scale RFID Systems With Unknown Tags. Radio frequency identification (RFID), which promotes the rapid development of Internet of Things (IoT), has been an emerging technology and widely deployed in various applications such as warehouse management, supply chain management, and social networks. In such applications, objects can be efficiently managed by attaching them with low-cost RFID tags and carefully monitoring them. The missing o...
Efficient Unknown Tag Detection in Large-Scale RFID Systems With Unreliable Channels. One of the most important applications of radio frequency identification (RFID) technology is to detect unknown tags brought by new tagged items, misplacement, or counterfeit tags. While unknown tag identification is able to pinpoint all the unknown tags, probabilistic unknown tag detection is preferred in large-scale RFID systems that need to be frequently checked up, e.g., real-time inventory mo...
On Efficient Tree-Based Tag Search in Large-Scale RFID Systems Tag search, which is to find a particular set of tags in a radio frequency identification (RFID) system, is a key service in such important Internet-of-Things applications as inventory management. When the system scale is large with a massive number of tags, deterministic search can be prohibitively expensive, and probabilistic search has been advocated, seeking a balance between reliability and time efficiency. Given a failure probability <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{\mathcal {O}(K)}$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> is the number of tags, state-of-the-art solutions have achieved a time cost of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathcal {O}(K \log K)$ </tex-math></inline-formula> through multi-round hashing and verification. Further improvement, however, faces a critical bottleneck of repetitively verifying each individual target tag in each round. In this paper, we present an efficient tree-based tag search (TTS) that approaches <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathcal {O}(K)$ </tex-math></inline-formula> through batched verification. The key novelty of TTS is to smartly hash multiple tags into each internal tree node and adaptively control the node degrees. It conducts bottom–up search to verify tags group by group with the number of groups decreasing rapidly. Furthermore, we design an enhanced tag search scheme, referred to as TTS+, to overcome the negative impact of asymmetric tag set sizes on time efficiency of TTS. TTS+ first rules out partial ineligible tags with a filtering vector and feeds the shrunk tag sets into TTS. We derive the optimal hash code length and node degrees in TTS to accommodate hash collisions and the optimal filtering vector size to minimize the time cost of TTS+. The superiority of TTS and TTS+ over the state-of-the-art solution is demonstrated through both theoretical analysis and extensive simulations. Specifically, as reliability demand on scales, the time efficiency of TTS+ reaches nearly 2 times at most that of TTS.
Efficiently and Completely Identifying Missing Key Tags for Anonymous RFID Systems. Radio frequency identification (RFID) systems can be applied to efficiently identify the missing items by attaching them with tags. Prior missing tag identification protocols concentrated on identifying all of the tags. However, there may be some scenarios in which we just care about the key tags instead of all tags, making it inefficient to merely identify the missing key tags due to the interfer...
Identification-free batch authentication for RFID tags Cardinality estimation and tag authentication are two major issues in large-scale Radio Frequency Identification (RFID) systems. While there exist both per-tag and probabilistic approaches for the cardinality estimation, the RFID-oriented authentication protocols are mainly per-tag based: the reader authenticates one tag at each time. For a batch of tags, current RFID systems have to identify them and then authenticate each tag sequentially, incurring large volume of authentication data and huge communication cost. We study the RFID batch authentication issue and propose the first probabilistic approach, termed as Single Echo based Batch Authentication (SEBA), to meet the requirement of prompt and reliable batch authentications in large scale RFID applications, e.g., the anti-counterfeiting solution. Without the need of identifying tags, SEBA provides a provable probabilistic guarantee that the percentage of potential counterfeit products is under the user-defined threshold. The experimental result demonstrates the effectiveness of SEBA in fast batch authentications and significant improvement compared to existing approaches.
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems Mobile Edge Computing (MEC) is a promising architecture to reduce the energy consumption of mobile devices and provide satisfactory quality-of-service to time-sensitive services. How to jointly optimize task offloading and resource allocation to minimize the energy consumption subject to the latency requirement remains an open problem, which motivates this paper. When the latency constraint is tak...
On signatures of knowledge In a traditional signature scheme, a signature σ on a message m is issued under a public key PK, and can be interpreted as follows: “The owner of the public key PK and its corresponding secret key has signed message m.” In this paper we consider schemes that allow one to issue signatures on behalf of any NP statement, that can be interpreted as follows: “A person in possession of a witness w to the statement that x ∈L has signed message m.” We refer to such schemes as signatures of knowledge. We formally define the notion of a signature of knowledge. We begin by extending the traditional definition of digital signature schemes, captured by Canetti's ideal signing functionality, to the case of signatures of knowledge. We then give an alternative definition in terms of games that also seems to capture the necessary properties one may expect from a signature of knowledge. We then gain additional confidence in our two definitions by proving them equivalent. We construct signatures of knowledge under standard complexity assumptions in the common-random-string model. We then extend our definition to allow signatures of knowledge to be nested i.e., a signature of knowledge (or another accepting input to a UC-realizable ideal functionality) can itself serve as a witness for another signature of knowledge. Thus, as a corollary, we obtain the first delegatable anonymous credential system, i.e., a system in which one can use one's anonymous credentials as a secret key for issuing anonymous credentials to others.
An evaluation of direct attacks using fake fingers generated from ISO templates This work reports a vulnerability evaluation of a highly competitive ISO matcher to direct attacks carried out with fake fingers generated from ISO templates. Experiments are carried out on a fingerprint database acquired in a real-life scenario and show that the evaluated system is highly vulnerable to the proposed attack scheme, granting access in over 75% of the attempts (for a high-security operating point). Thus, the study disproves the popular belief of minutiae templates non-reversibility and raises a key vulnerability issue in the use of non-encrypted standard templates. (This article is an extended version of Galbally et al., 2008, which was awarded with the IBM Best Student Paper Award in the track of Biometrics at ICPR 2008).
A Framework of Joint Mobile Energy Replenishment and Data Gathering in Wireless Rechargeable Sensor Networks Recent years have witnessed the rapid development and proliferation of techniques on improving energy efficiency for wireless sensor networks. Although these techniques can relieve the energy constraint on wireless sensors to some extent, the lifetime of wireless sensor networks is still limited by sensor batteries. Recent studies have shown that energy rechargeable sensors have the potential to provide perpetual network operations by capturing renewable energy from external environments. However, the low output of energy capturing devices can only provide intermittent recharging opportunities to support low-rate data services due to spatial-temporal, geographical or environmental factors. To provide steady and high recharging rates and achieve energy efficient data gathering from sensors, in this paper, we propose to utilize mobility for joint energy replenishment and data gathering. In particular, a multi-functional mobile entity, called SenCarin this paper, is employed, which serves not only as a mobile data collector that roams over the field to gather data via short-range communication but also as an energy transporter that charges static sensors on its migration tour via wireless energy transmissions. Taking advantages of SenCar's controlled mobility, we focus on the joint optimization of effective energy charging and high-performance data collections. We first study this problem in general networks with random topologies. We give a two-step approach for the joint design. In the first step, the locations of a subset of sensors are periodically selected as anchor points, where the SenCar will sequentially visit to charge the sensors at these locations and gather data from nearby sensors in a multi-hop fashion. To achieve a desirable balance between energy replenishment amount and data gathering latency, we provide a selection algorithm to search for a maximum number of anchor points where sensors hold the least battery energy, and meanwhile by visiting them, - he tour length of the SenCar is no more than a threshold. In the second step, we consider data gathering performance when the SenCar migrates among these anchor points. We formulate the problem into a network utility maximization problem and propose a distributed algorithm to adjust data rates at which sensors send buffered data to the SenCar, link scheduling and flow routing so as to adapt to the up-to-date energy replenishing status of sensors. Besides general networks, we also study a special scenario where sensors are regularly deployed. For this case we can provide a simplified solution of lower complexity by exploiting the symmetry of the topology. Finally, we validate the effectiveness of our approaches by extensive numerical results, which show that our solutions can achieve perpetual network operations and provide high network utility.
An indoor localization solution using Bluetooth RSSI and multiple sensors on a smartphone. In this paper, we propose an indoor positioning system using a Bluetooth receiver, an accelerometer, a magnetic field sensor, and a barometer on a smartphone. The Bluetooth receiver is used to estimate distances from beacons. The accelerometer and magnetic field sensor are used to trace the movement of moving people in the given space. The horizontal location of the person is determined by received signal strength indications (RSSIs) and the traced movement. The barometer is used to measure the vertical position where a person is located. By combining RSSIs, the traced movement, and the vertical position, the proposed system estimates the indoor position of moving people. In experiments, the proposed approach showed excellent performance in localization with an overall error of 4.8%.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
0
An Unsupervised Learning Technique to Optimize Radio Maps for Indoor Localization. A major burden of signal strength-based fingerprinting for indoor positioning is the generation and maintenance of a radio map, also known as a fingerprint database. Model-based radio maps are generated much faster than measurement-based radio maps but are generally not accurate enough. This work proposes a method to automatically construct and optimize a model-based radio map. The method is based on unsupervised learning, where random walks, for which the ground truth locations are unknown, serve as input for the optimization, along with a floor plan and a location tracking algorithm. No measurement campaign or site survey, which are labor-intensive and time-consuming, or inertial sensor measurements, which are often not available and consume additional power, are needed for this approach. Experiments in a large office building, covering over 1100 m(2), resulted in median accuracies of up to 2.07 m, or a relative improvement of 28.6% with only 15 min of unlabeled training data.
RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features and shape-based alignment. Visual and depth information are also combined for view-based loop-closure detection, followed by pose optimization to achieve globally consistent maps. We evaluate RGB-D Mapping on two large indoor environments, and show that it effectively combines the visual and shape information available from RGB-D cameras.
A survey of information-centric networking. The information-centric networking (ICN) concept is a significant common approach of several future Internet research activities. The approach leverages in-network caching, multiparty communication through replication, and interaction models decoupling senders and receivers. The goal is to provide a network infrastructure service that is better suited to today¿s use (in particular. content distrib...
Hierarchical Semantic Hashing: Visual Localization from Buildings on Maps In this paper we present a vision-based method for instant global localization from a given aerial image. The approach mimics how humans localize themselves on maps using spatial layout of semantic elements on the map. Unlike other matching and localization methods that use visual appearance or feature matching, our method relies on robust and consistently detectable semantic elements that are invariant to illumination, temporal variations and occlusions. We use the buildings on the map and on the given aerial query image as our semantic elements. Spatial relations between these elements are efficiently stored and queried under a hierarchical semantic version of the Geometric Hashing algorithm that is inherently rotation and scale invariant. We also present a method to obtain building locations from a given query image using image classification and processing techniques. Overall this approach provides fast and robust localization over large areas. We show our experimental results for localizing satellite image tiles from a 16.5 km sq dense city map with over 7,000 buildings.
On the Feasibility of Attribute-Based Encryption on Internet of Things Devices. The Internet of Things (IoT) is emerging with the pace of technology evolution, connecting people and things through the Internet. IoT devices enable large-scale data collection and sharing for a wide range of applications. However, it is challenging to securely manage interconnected IoT devices because the collected data could contain sensitive personal information. The authors believe that attribute-based encryption (ABE) could be an effective cryptographic tool for secure management of IoT devices. However, little research has addressed ABE's actual feasibility in the IoT thus far. This article investigates such feasibility considering well-known IoT platforms--specifically, Intel Galileo Gen 2, Intel Edison, Raspberry Pi 1 Model B, and Raspberry Pi Zero. A thorough evaluation confirms that adopting ABE in the IoT is indeed feasible.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Latent dirichlet allocation We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
Neural fitted q iteration – first experiences with a data efficient neural reinforcement learning method This paper introduces NFQ, an algorithm for efficient and effective training of a Q-value function represented by a multi-layer perceptron. Based on the principle of storing and reusing transition experiences, a model-free, neural network based Reinforcement Learning algorithm is proposed. The method is evaluated on three benchmark problems. It is shown empirically, that reasonably few interactions with the plant are needed to generate control policies of high quality.
Empirical Modelling of Genetic Algorithms This paper addresses the problem of reliably setting genetic algorithm parameters for consistent labelling problems. Genetic algorithm parameters are notoriously difficult to determine. This paper proposes a robust empirical framework, based on the analysis of factorial experiments. The use of a graeco-latin square permits an initial study of a wide range of parameter settings. This is followed by fully crossed factorial experiments with narrower ranges, which allow detailed analysis by logistic regression. The empirical models derived can be used to determine optimal algorithm parameters and to shed light on interactions between the parameters and their relative importance. Re-fined models are produced, which are shown to be robust under extrapolation to up to triple the problem size.
Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks Because of the complicity of consensus control of nonlinear multiagent systems in state time-delay, most of previous works focused only on linear systems with input time-delay. An adaptive neural network (NN) consensus control method for a class of nonlinear multiagent systems with state time-delay is proposed in this paper. The approximation property of radial basis function neural networks (RBFNNs) is used to neutralize the uncertain nonlinear dynamics in agents. An appropriate Lyapunov-Krasovskii functional, which is obtained from the derivative of an appropriate Lyapunov function, is used to compensate the uncertainties of unknown time delays. It is proved that our proposed approach guarantees the convergence on the basis of Lyapunov stability theory. The simulation results of a nonlinear multiagent time-delay system and a multiple collaborative manipulators system show the effectiveness of the proposed consensus control algorithm.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
End-to-end quality adaptation scheme based on QoE prediction for video streaming service in LTE networks How to measure the user's feeling about mobile video service and to improve the quality of experience (QoE), has become a concern of network operators and service providers. In this paper, we first investigate the QoE evaluation method for video streaming over Long-Term Evolution (LTE) networks, and propose an end-to-end video quality prediction model based on the gradient boosting machine. In the proposed QoE prediction model, cross-layer parameters extracted from the network layer, the application layer, video content and user equipment are taken into account. Validation results show that our proposed model outperforms ITU-T G.1070 model with a smaller root mean squared error and a higher Pearson correlation coefficient. Second, a window-based bit rate adaptation scheme, which is implemented in the video streaming server, is proposed to improve the quality of video streaming service in LTE networks. In the proposed scheme, the encoding bit rate is adjusted according to two control parameters, the value of predicted QoE and the feedback congestion state of the network. Simulation results show that our proposed end-to-end quality adaptation scheme efficiently improves user-perceived quality compared to the scenarios with fixed bit rates.
A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification The identification of network applications through observation of associated packet traffic flows is vital to the areas of network management and surveillance. Currently popular methods such as port number and payload-based identification exhibit a number of shortfalls. An alternative is to use machine learning (ML) techniques and identify network applications based on per-flow statistics, derived from payload-independent features such as packet length and inter-arrival time distributions. The performance impact of feature set reduction, using Consistency-based and Correlation-based feature selection, is demonstrated on Naïve Bayes, C4.5, Bayesian Network and Naïve Bayes Tree algorithms. We then show that it is useful to differentiate algorithms based on computational performance rather than classification accuracy alone, as although classification accuracy between the algorithms is similar, computational performance can differ significantly.
A Support Vector Machine Based Approach for Forecasting of Network Weather Services We present forecasting related results using a recently introduced technique called Support Vector Machines (SVM) for measurements of processing, memory, disk space, communication latency and bandwidth derived from Network Weather Services (NWS). We then compare the performance of support vector machines with the forecasting techniques existing in network weather services using a set of metrics like mean absolute error, mean square error among others. The models are used to make predictions for several future time steps as against the present network weather services method of just the immediate future time step. The number of future time steps for which the prediction is done is referred to as the depth of prediction set. The support vector machines forecasts are found to be more accurate and outperform the existing methods. The performance improvement using support vector machines becomes more pronounced as the depth of the prediction set increases. The data gathered is from a production environment (i.e., non-experimental).
On User-Centric Modular QoE Prediction for VoIP Based on Machine-Learning Algorithms. The impact of the network performance on the quality of experience (QoE) for various services is not well-understood. Assessing the impact of different network and channel conditions on the user experience is important for improving the telecommunication services. The QoE for various wireless services including VoIP, video streaming, and web browsing, has been in the epicenter of recent networking activities. The majority of such efforts aim to characterize the user experience, analyzing various types of measurements often in an aggregate manner. This paper proposes the MLQoE, a modular algorithm for user-centric QoE prediction. The MLQoE employs multiple machine learning (ML) algorithms, namely, Artificial Neural Networks, Support Vector Regression machines, Decision Trees, and Gaussian Naive Bayes classifiers, and tunes their hyper-parameters. It uses the Nested Cross Validation (nested CV) protocol for selecting the best classifier and the corresponding best hyper-parameter values and estimates the performance of the final model. The MLQoE is conservative in the performance estimation despite multiple induction of models. The MLQoE is modular, in that, it can be easily extended to include other ML algorithms. The MLQoE selects the ML algorithm that exhibits the best performance and its parameters automatically given the dataset used as input. It uses empirical measurements based on network metrics (e.g., packet loss, delay, and packet interarrival) and subjective opinion scores reported by actual users. This paper extensively evaluates the MLQoE using three unidirectional datasets containing VoIP calls over wireless networks under various network conditions and feedback from subjects (collected in field studies). Moreover, it performs a preliminary analysis to assess the generality of our methodology using bidirectional VoIP and video traces. The MLQoE outperforms several state-of-the-art algorithms, resulting in fairly accurate predictions.
Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for Quality of Experience (QoE) estimation can be designed and introduced in next generation networks. It is, however, unclear how 5G networks can collect monitoring data and application metrics, how they correlate to each other, and which techniques can be used in 5G systems for QoE estimation. This paper studies the feasibility of Machine Learning (ML) techniques for QoE estimation and evaluates their performance for a mobile video streaming use-case. A simulator has been implemented with OMNeT++ for generating traces to (i) examine the relevance of features generated from 5G monitoring data and (ii) to study the QoE estimation accuracy (iii) for a variable number of used features.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Communication in reactive multiagent robotic systems Multiple cooperating robots are able to complete many tasks more quickly and reliably than one robot alone. Communication between the robots can multiply their capabilities and effectiveness, but to what extent? In this research, the importance of communication in robotic societies is investigated through experiments on both simulated and real robots. Performance was measured for three different types of communication for three different tasks. The levels of communication are progressively more complex and potentially more expensive to implement. For some tasks, communication can significantly improve performance, but for others inter-agent communication is apparently unnecessary. In cases where communication helps, the lowest level of communication is almost as effective as the more complex type. The bulk of these results are derived from thousands of simulations run with randomly generated initial conditions. The simulation results help determine appropriate parameters for the reactive control system which was ported for tests on Denning mobile robots.
Efficient and reliable low-power backscatter networks There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors. This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality --i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.
Internet of Things for Smart Cities The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Collective feature selection to identify crucial epistatic variants. In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Scalable and Privacy-Preserving Data Sharing Based on Blockchain. With the development of network technology and cloud computing, data sharing is becoming increasingly popular, and many scholars have conducted in-depth research to promote its flourish. As the scale of data sharing expands, its privacy protection has become a hot issue in research. Moreover, in data sharing, the data is usually maintained in multiple parties, which brings new challenges to protect the privacy of these multi-party data. In this paper, we propose a trusted data sharing scheme using blockchain. We use blockchain to prevent the shared data from being tampered, and use the Paillier cryptosystem to realize the confidentiality of the shared data. In the proposed scheme, the shared data can be traded, and the transaction information is protected by using the (p, t)-threshold Paillier cryptosystem. We conduct experiments in cloud storage scenarios and the experimental results demonstrate the efficiency and effectiveness of the proposed scheme.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Mining Road Network Correlation for Traffic Estimation via Compressive Sensing. This paper presents a transport traffic estimation method which leverages road network correlation and sparse traffic sampling via the compressive sensing technique. Through the investigation on a traffic data set of more than 4400 taxis from Shanghai city, China, we observe nontrivial traffic correlations among the traffic conditions of different road segments and derive a mathematical model to c...
Traffic-incident detection-algorithm based on nonparametric regression This paper proposes an improved nonparametric regression (INPR) algorithm for forecasting traffic flows and its application in automatic detection of traffic incidents. The INPRA is constructed based on the searching method of nearest neighbors for a traffic-state vector and its main advantage lies in forecasting through possible trends of traffic flows, instead of just current traffic states, as commonly used in previous forecasting algorithms. Various simulation results have indicated the viability and effectiveness of the proposed new algorithm. Several performance tests have been conducted using actual traffic data sets and results demonstrate that INPRs average absolute forecast errors, average relative forecast errors, and average computing times are the smallest comparing with other forecasting algorithms.
A Road Congestion Detection System Using Undedicated Mobile Phones Road congestion has been one of the major issues in most metropolises, and thus, it is crucial to detect road congestions effectively and efficiently. Traditional solutions require the deployment of dedicated sensors on the roadside or on the vehicles, which suffer from high installation and maintenance costs and limited coverage. In this paper, we propose an alternative solution by exploiting the sensing ability of mobile phones. However, it is challenging to detect road congestions in a daily-living environment using undedicated mobile phones while guaranteeing energy efficiency. The proposed system only depends on the accelerometer and cellular signal, which have been proven to be energy efficient as compared with other built-in sensors (e.g., GPS). It consists of three interactive modules: (a) an accelerometer-based vehicular movement detection module for detecting the periods when the mobile phone user is traveling by vehicle; (b) a map-matching module relying on the cellular signal for determining the traveled road segments; and (c) a road congestion estimation module for inferring the congestion degree of the traveled road segments. We evaluated the proposed system based on real-world datasets, with promising results.
License Plate Recognition Data-Based Traffic Volume Estimation Using Collaborative Tensor Decomposition. The sparse problem of traffic volume data is unavoidable due to budget limits and device malfunctions in traffic systems. To address this problem, we propose a license plate recognition (LPR) data and collaborative tensor decomposition (CTD)-based method to estimate the sparse traffic volume data. The method works in two phases: first, a vehicle-time matrix is created based on LPR data, and non-ne...
Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction Traffic flow prediction plays an important role in ITS (Intelligent Transportation System). This task is challenging due to the complex spatial and temporal correlations (e.g., the constraints of road network and the law of dynamic change with time). Existing work tried to solve this problem by exploiting a variety of spatiotemporal models. However, we observe that more semantic pair-wise correlat...
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Latent dirichlet allocation We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization In recent years, there has been a growing interest for the experimental analysis in the field of evolutionary algorithms. It is noticeable due to the existence of numerous papers which analyze and propose different types of problems, such as the basis for experimental comparisons of algorithms, proposals of different methodologies in comparison or proposals of use of different statistical techniques in algorithms’ comparison.In this paper, we focus our study on the use of statistical techniques in the analysis of evolutionary algorithms’ behaviour over optimization problems. A study about the required conditions for statistical analysis of the results is presented by using some models of evolutionary algorithms for real-coding optimization. This study is conducted in two ways: single-problem analysis and multiple-problem analysis. The results obtained state that a parametric statistical analysis could not be appropriate specially when we deal with multiple-problem results. In multiple-problem analysis, we propose the use of non-parametric statistical tests given that they are less restrictive than parametric ones and they can be used over small size samples of results. As a case study, we analyze the published results for the algorithms presented in the CEC’2005 Special Session on Real Parameter Optimization by using non-parametric test procedures.
Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion This article presents the results of video-based Human Robot Interaction (HRI) trials which investigated people's perceptions of different robot appearances and associated attention-seeking features and behaviors displayed by robots with different appearance and behaviors. The HRI trials studied the participants' preferences for various features of robot appearance and behavior, as well as their personality attributions towards the robots compared to their own personalities. Overall, participants tended to prefer robots with more human-like appearance and attributes. However, systematic individual differences in the dynamic appearance ratings are not consistent with a universal effect. Introverts and participants with lower emotional stability tended to prefer the mechanical looking appearance to a greater degree than other participants. It is also shown that it is possible to rate individual elements of a particular robot's behavior and then assess the contribution, or otherwise, of that element to the overall perception of the robot by people. Relating participants' dynamic appearance ratings of individual robots to independent static appearance ratings provided evidence that could be taken to support a portion of the left hand side of Mori's theoretically proposed `uncanny valley' diagram. Suggestions for future work are outlined.
Switching Stabilization for a Class of Slowly Switched Systems In this technical note, the problem of switching stabilization for slowly switched linear systems is investigated. In particular, the considered systems can be composed of all unstable subsystems. Based on the invariant subspace theory, the switching signal with mode-dependent average dwell time (MDADT) property is designed to exponentially stabilize the underlying system. Furthermore, sufficient condition of stabilization for switched systems with all stable subsystems under MDADT switching is also given. The correctness and effectiveness of the proposed approaches are illustrated by a numerical example.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.2
0.2
0.2
0.2
0.04
0
0
0
0
0
0
0
0
0
A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems An online adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem for continuous-time uncertain nonlinear systems. A novel actor–critic–identifier (ACI) is proposed to approximate the Hamilton–Jacobi–Bellman equation using three neural network (NN) structures—actor and critic NNs approximate the optimal control and the optimal value function, respectively, and a robust dynamic neural network identifier asymptotically approximates the uncertain system dynamics. An advantage of using the ACI architecture is that learning by the actor, critic, and identifier is continuous and simultaneous, without requiring knowledge of system drift dynamics. Convergence of the algorithm is analyzed using Lyapunov-based adaptive control methods. A persistence of excitation condition is required to guarantee exponential convergence to a bounded region in the neighborhood of the optimal control and uniformly ultimately bounded (UUB) stability of the closed-loop system. Simulation results demonstrate the performance of the actor–critic–identifier method for approximate optimal control.
Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems. In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming. In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal...
Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise. In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.
Periodic Event-Triggered Suboptimal Control With Sampling Period and Performance Analysis In this paper, the periodic event-triggered suboptimal control (PETSOC) method is developed for continuous-time linear systems. Different from event-triggered control, where the triggering condition is monitored continuously, the developed PETSOC method only verifies the triggering condition periodically at sampling instants, which further reduces computational resources. First, the control gain of the PETSOC is designed based on the algebraic Riccati equation. Subsequently, the periodic event-triggering condition is proposed for the suboptimal control method, which is only verified at sampling instants periodically. The sampling period is determined and analyzed based on the continuous form of the triggering condition. Moreover, the stability and the performance upper bound of the closed-loop system with the PETSOC are proved. Finally, the effectiveness of the developed PETSOC is validated through simulation on an unstable batch reactor.
Adaptive Optimal Control of Unknown Constrained-Input Systems Using Policy Iteration and Neural Networks This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
Model-Free Dual Heuristic Dynamic Programming. Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
Neurodynamic Programming and Zero-Sum Games for Constrained Control Systems In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L2-gain optimal control, suboptimal Hinfin control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L2-gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
The Generalized TP Model Transformation for T-S Fuzzy Model Manipulation and Generalized Stability Verification. This paper integrates various ideas about the tensor product (TP) model transformation into one conceptual framework and formulates it in terms of the Takagi-Sugeno (T-S) fuzzy model manipulation and control design framework. Several new extensions of the TP model transformation are proposed, such as the quasi and “full,” compact and rank-reduced higher order singular-value-decomposition-based can...
Dyme: Dynamic Microservice Scheduling in Edge Computing Enabled IoT In recent years, the rapid development of mobile edge computing (MEC) provides an efficient execution platform at the edge for Internet-of-Things (IoT) applications. Nevertheless, the MEC also provides optimal resources to different microservices, however, underlying network conditions and infrastructures inherently affect the execution process in MEC. Therefore, in the presence of varying network conditions, it is necessary to optimally execute the available task of end users while maximizing the energy efficiency in edge platform and we also need to provide fair Quality-of-Service (QoS). On the other hand, it is necessary to schedule the microservices dynamically to minimize the total network delay and network price. Thus, in this article, unlike most of the existing works, we propose a dynamic microservice scheduling scheme for MEC. We design the microservice scheduling framework mathematically and also discuss the computational complexity of the scheduling algorithm. Extensive simulation results show that the microservice scheduling framework significantly improves the performance metrics in terms of total network delay, average price, satisfaction level, energy consumption rate (ECR), failure rate, and network throughput over other existing baselines.
The 'Dresden Image Database' for benchmarking digital image forensics This paper introduces and documents a novel image database specifically built for the purpose of development and bench-marking of camera-based digital forensic techniques. More than 14,000 images of various indoor and outdoor scenes have been acquired under controlled and thus widely comparable conditions from altogether 73 digital cameras. The cameras were drawn from only 25 different models to ensure that device-specific and model-specific characteristics can be disentangled and studied separately, as validated with results in this paper. In addition, auxiliary images for the estimation of device-specific sensor noise pattern were collected for each camera. Another subset of images to study model-specific JPEG compression algorithms has been compiled for each model. The 'Dresden Image Database' will be made freely available for scientific purposes when this accompanying paper is presented. The database is intended to become a useful resource for researchers and forensic investigators. Using a standard database as a benchmark not only makes results more comparable and reproducible, but it is also more economical and avoids potential copyright and privacy issues that go along with self-sampled benchmark sets from public photo communities on the Internet.
Telecommunications Power Plant Damage Assessment for Hurricane Katrina– Site Survey and Follow-Up Results This paper extends knowledge of disaster impact on the telecommunications power infrastructure by discussing the effects of Hurricane Katrina based on an on-site survey conducted in October 2005 and on public sources. It includes observations about power infrastructure damage in wire-line and wireless networks. In general, the impact on centralized network elements was more severe than on the distributed portion of the grids. The main cause of outage was lack of power due to fuel supply disruptions, flooding and security issues. This work also describes the means used to restore telecommunications services and proposes ways to improve logistics, such as coordinating portable generator set deployment among different network operators and reducing genset fuel consumption by installing permanent photovoltaic systems at sites where long electric outages are likely. One long term solution is to use of distributed generation. It also discusses the consequences on telecom power technology and practices since the storm.
Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.03732
0.040024
0.040024
0.034286
0.034286
0.0275
0.014363
0.002477
0.00001
0
0
0
0
0
Deep learning in neural networks: An overview. In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Deep Learning for Wireless Communications: An Emerging Interdisciplinary Paradigm Wireless communications are envisioned to bring about dramatic changes in the future, with a variety of emerging applications, such as virtual reality, Internet of Things, and so on, becoming a reality. However, these compelling applications have imposed many new challenges, including unknown channel models, low-latency requirement in large-scale super-dense networks, and so on. The amazing success of deep learning in various fields, particularly in computer science, has recently stimulated increasing interest in applying it to address those challenges. Hence, in this review, a pair of dominant methodologies of using DL for wireless communications are investigated. The first one is DL-based architecture design, which breaks the classical model-based block design rule of wireless communications in the past decades. The second one is DL-based algorithm design, which will be illustrated by several examples in a series of typical techniques conceived for 5G and beyond. Their principles, key features, and performance gains will be discussed. Open problems and future research opportunities will also be pointed out, highlighting the interplay between DL and wireless communications. We expect that this review can stimulate more novel ideas and exciting contributions for intelligent wireless communications.
Beyond 5G: Leveraging Cell Free TDD Massive MIMO Using Cascaded Deep Learning This letter deals with the calibration of Time Division Duplexing (TDD) reciprocity in an Orthogonal Frequency Division Multiplexing (OFDM) based Cell Free Massive MIMO system where the responses of the (Radio Frequency) RF chains render the end to end channel non-reciprocal, even though the physical wireless channel is reciprocal. We further address the non-availability of the uplink channel estimates at locations other than pilot subcarriers and propose a single-shot solution to estimate the downlink channel at all subcarriers from the uplink channel at selected pilot subcarriers. We propose a cascade of two Deep Neural Networks (DNN) to achieve the objective. The proposed method is easily scalable and removes the need for relative reciprocity calibration based on the cooperation of antennas, which usually introduces dependency in Cell Free Massive MIMO systems.
Deep Q-network based dynamic power allocation for cell-free massive MIMO Numerical optimization has been investigated for decades to address complex problems. Many effective methods, e.g., the weighted minimum mean square error (WMMSE) algorithm, have been developed for a large variety of applications in wireless communication systems. However, these methods often require high computational cost creating a serious gap between theoretical analysis and real-time processi...
Enhanced Normalized Conjugate Beamforming for Cell-Free Massive MIMO In cell-free massive multiple-input multiple-output (MIMO) the fluctuations of the channel gain from the access points to a user are large due to the distributed topology of the system. Because of these fluctuations, data decoding schemes that treat the channel as deterministic perform inefficiently. A way to reduce the channel fluctuations is to design a precoding scheme that equalizes the effective channel gain seen by the users. Conjugate beamforming (CB) poorly contributes to harden the effective channel at the users. In this work, we propose a variant of CB dubbed enhanced normalized CB (ECB), in that the precoding vector consists of the conjugate of the channel estimate normalized by its squared norm. For this scheme, we derive an exact closed-form expression for an achievable downlink spectral efficiency (SE), accounting for channel estimation errors, pilot reuse and user's lack of channel state information (CSI), assuming independent Rayleigh fading channels. We also devise an optimal max-min fairness power allocation based only on large-scale fading quantities. ECB greatly boosts the channel hardening enabling the users to reliably decode data relying only on statistical CSI. As the provided effective channel is nearly deterministic, acquiring CSI at the users does not yield a significant gain.
Reinforcement Learning-Based Joint Cooperation Clustering and Content Caching in Cell-Free Massive MIMO Networks This paper studies the previously unexamined problem of joint cooperation clustering and content caching in a cache-enabled cell-free massive multiple-input multiple-output (CF-mMIMO) network that comprises a large number of access points (APs) collaboratively serving users without cell structure limitations. A joint cooperation clustering and content caching design is motivated by the observation that forming cooperation clusters (i.e., determining the sets of serving access points (APs) for users) based on channel quality alone or caching status alone is suboptimal. We develop a deep reinforcement learning (DRL)-based joint design scheme for dynamic CF-mMIMO networks. The proposed scheme demonstrates favorable network energy efficiency (EE) performance and does not require prior information such as user content preferences.
Uplink Power Control In Cell-Free Massive Mimo Via Deep Learning This paper focuses on the use of a deep learning approach to perform sum-rate-max and max-min power allocation in the uplink of a cell-free massive MIMO network. In particular, we train a deep neural network in order to learn the mapping between a set of input data and the optimal solution of the power allocation strategy. Numerical results show that the presence of the pilot contamination in the cell-free massive MIMO system does not significantly affect the learning capabilities of the neural network, that gives near-optimal performance. Conversely, with the introduction of the shadowing effect in the system the performance obtained with the deep learning approach gets significantly degraded with respect to the optimal one.
Finite-Approximation-Error-Based Optimal Control Approach for Discrete-Time Nonlinear Systems. In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite-horizon discrete-time nonlinear systems with finite approximation errors. The idea is to use an iterative ADP algorithm to obtain the iterative control law that makes the iterative performance index function reach the optimum. When the iterative control law and the iterative performance index function in each iteration cannot be accurately obtained, the convergence conditions of the iterative ADP algorithm are obtained. When convergence conditions are satisfied, it is shown that the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some mild assumptions. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Passivity constraints for the impedance control of series elastic actuators. Robots operating in close contact with humans require actuators capable of accurately and safely modulating the delivered torque. To this aim, rotary series elastic actuators are largely adopted. Torque control is often implemented using a cascade control scheme involving proportional-integral regulators (velocity controller nested in a torque controller) for its simplicity and its potential of ensuring coupled stability. A high-level impedance control loop is also commonly added to regulate the interaction with the external agents. In the present work, conservative passivity conditions are derived when a cascade-controlled series elastic actuator is used to haptically display different models of virtual impedance. In particular, the case of a null impedance, of a pure spring and of series and parallel spring-damper systems (corresponding to standard linear viscoelastic bodies) are analyzed in order to derive design guidelines useful for the selection of the control gains as well as for determining the ranges of renderable virtual impedance.
Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
Image tamper detection based on demosaicing artifacts In this paper, we introduce tamper detection techniques based on artifacts created by Color Filter Array (CFA) processing in most digital cameras. The techniques are based on computing a single feature and a simple threshold based classifier. The efficacy of the approach was tested over thousands of authentic, tampered, and computer generated images. Experimental results demonstrate reasonably low error rates.
A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Researchers have explored the benefits and applications of virtual reality (VR) in different scenarios. VR possesses much potential and its application in education has seen much research interest lately. However, little systematic work currently exists on how researchers have applied immersive VR for higher education purposes that considers the usage of both high-end and budget head-mounted displays (HMDs). Hence, we propose using systematic mapping to identify design elements of existing research dedicated to the application of VR in higher education. The reviewed articles were acquired by extracting key information from documents indexed in four scientific digital libraries, which were filtered systematically using exclusion, inclusion, semi-automatic, and manual methods. Our review emphasizes three key points: the current domain structure in terms of the learning contents, the VR design elements, and the learning theories, as a foundation for successful VR-based learning. The mapping was conducted between application domains and learning contents and between design elements and learning contents. Our analysis has uncovered several gaps in the application of VR in the higher education sphere—for instance, learning theories were not often considered in VR application development to assist and guide toward learning outcomes. Furthermore, the evaluation of educational VR applications has primarily focused on usability of the VR apps instead of learning outcomes and immersive VR has mostly been a part of experimental and development work rather than being applied regularly in actual teaching. Nevertheless, VR seems to be a promising sphere as this study identifies 18 application domains, indicating a better reception of this technology in many disciplines. The identified gaps point toward unexplored regions of VR design for education, which could motivate future work in the field.
An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems. Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in e...
Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit The intention-detection strategy used to drive an exosuit is fundamental to evaluate the effectiveness and acceptability of the device. Yet, current literature on wearable soft robotics lacks evidence on the comparative performance of different control approaches for online intention-detection. In the present work, we compare two different and complementary controllers on a wearable robotic suit, previously formulated and tested by our group; a model-based myoelectric control ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> ), which estimates the joint torque from the activation of target muscles, and a force control that estimates human torques using an inverse dynamics model ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> ). We test them on a cohort of healthy participants performing tasks replicating functional activities of daily living involving a wide range of dynamic movements. Our results suggest that both controllers are robust and effective in detecting human–motor interaction, and show comparable performance for augmenting muscular activity. In particular, the biceps brachii activity was reduced by up to 74% under the assistance of the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> and up to 47% under the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to a no-suit condition. However, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> outperformed the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> in promptness and assistance during movements that involve high dynamics. The exosuit work normalized with respect to the overall work was <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$68.84 \pm 3.81\%$</tex-math></inline-formula> when it was ran by the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">myoprocessor</i> , compared to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$45.29 \pm 7.71\%$</tex-math></inline-formula> during the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dynamic arm</i> condition. The reliability and accuracy of motor intention detection strategies in wearable device is paramount for both the efficacy and acceptability of this technology. In this article, we offer a detailed analysis of the two most widely used control approaches, trying to highlight their intrinsic structural differences and to discuss their different and complementary performance.
1.042492
0.04
0.04
0.04
0.04
0.04
0.013333
0.002408
0.000533
0
0
0
0
0
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
Towards Empathic Virtual and Robotic Tutors.
Tablet use in schools: a critical review of the evidence for learning outcomes The increased popularity of tablets in general has led to uptake in education. We critically review the literature reporting use of tablets by primary and secondary school children across the curriculum, with a particular emphasis on learning outcomes. The systematic review methodology was used, and our literature search resulted in 33 relevant studies meeting the inclusion criteria. A total of 23 met the minimum quality criteria and were examined in detail 16 reporting positive learning outcomes, 5 no difference and 2 negative learning outcomes. Explanations underlying these observations were analysed, and factors contributing to successful uses of tablets are discussed. While we hypothesize how tablets can viably support children in completing a variety of learning tasks across a range of contexts and academic subjects, the fragmented nature of the current knowledge base, and the scarcity of rigorous studies, makes it difficult to draw firm conclusions. The generalizability of evidence is limited, and detailed explanations as to how, or why, using tablets within certain activities can improve learning remain elusive. We recommend that future research moves beyond exploration towards systematic and in-depth investigations building on the existing findings documented here.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
People respond better to robots than computer tablets delivering healthcare instructions. •We compared responses to a robot with responses to a computer in a health context.•Participants spoke and smiled more towards the robot than the tablet.•Participants were more likely to follow relaxation instructions when given by the robot.•The robot was rated more favourably and more likeable than the tablet.•Robots can offer advantages over a computer tablet in healthcare.
Image quality assessment: from error visibility to structural similarity. Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Vision meets robotics: The KITTI dataset We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations, and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets, and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.
A tutorial on support vector regression In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
GameFlow: a model for evaluating player enjoyment in games Although player enjoyment is central to computer games, there is currently no accepted model of player enjoyment in games. There are many heuristics in the literature, based on elements such as the game interface, mechanics, gameplay, and narrative. However, there is a need to integrate these heuristics into a validated model that can be used to design, evaluate, and understand enjoyment in games. We have drawn together the various heuristics into a concise model of enjoyment in games that is structured by flow. Flow, a widely accepted model of enjoyment, includes eight elements that, we found, encompass the various heuristics from the literature. Our new model, GameFlow, consists of eight elements -- concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each element includes a set of criteria for achieving enjoyment in games. An initial investigation and validation of the GameFlow model was carried out by conducting expert reviews of two real-time strategy games, one high-rating and one low-rating, using the GameFlow criteria. The result was a deeper understanding of enjoyment in real-time strategy games and the identification of the strengths and weaknesses of the GameFlow model as an evaluation tool. The GameFlow criteria were able to successfully distinguish between the high-rated and low-rated games and identify why one succeeded and the other failed. We concluded that the GameFlow model can be used in its current form to review games; further work will provide tools for designing and evaluating enjoyment in games.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
A Web-Based Tool For Control Engineering Teaching In this article a new tool for control engineering teaching is presented. The tool was implemented using Java applets and is freely accessible through Web. It allows the analysis and simulation of linear control systems and was created to complement the theoretical lectures in basic control engineering courses. The article is not only centered in the description of the tool but also in the methodology to use it and its evaluation in an electrical engineering degree. Two practical problems are included in the manuscript to illustrate the use of the main functions implemented. The developed web-based tool can be accessed through the link http://www.controlweb.cyc.ull.es. (C) 2006 Wiley Periodicals, Inc.
Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks Because of the complicity of consensus control of nonlinear multiagent systems in state time-delay, most of previous works focused only on linear systems with input time-delay. An adaptive neural network (NN) consensus control method for a class of nonlinear multiagent systems with state time-delay is proposed in this paper. The approximation property of radial basis function neural networks (RBFNNs) is used to neutralize the uncertain nonlinear dynamics in agents. An appropriate Lyapunov-Krasovskii functional, which is obtained from the derivative of an appropriate Lyapunov function, is used to compensate the uncertainties of unknown time delays. It is proved that our proposed approach guarantees the convergence on the basis of Lyapunov stability theory. The simulation results of a nonlinear multiagent time-delay system and a multiple collaborative manipulators system show the effectiveness of the proposed consensus control algorithm.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
Mf-Cnn: Traffic Flow Prediction Using Convolutional Neural Network And Multi-Features Fusion Accurate traffic flow prediction is the precondition for many applications in Intelligent Transportation Systems, such as traffic control and route guidance. Traditional data driven traffic flow prediction models tend to ignore traffic self-features (e.g., periodicities), and commonly suffer from the shifts brought by various complex factors (e.g., weather and holidays). These would reduce the precision and robustness of the prediction models. To tackle this problem, in this paper, we propose a CNN-based multi-feature predictive model (MF-CNN) that collectively predicts network-scale traffic flow with multiple spatiotemporal features and external factors (weather and holidays). Specifically, we classify traffic self-features into temporal continuity as short-term feature, daily periodicity and weekly periodicity as long-term features, then map them to three two-dimensional spaces, which each one is composed of time and space, represented by two-dimensional matrices. The high-level spatiotemporal features learned by CNNs from the matrices with different time lags are further fused with external factors by a logistic regression layer to derive the final prediction. Experimental results indicate that the MF-CNN model considering multi-features improves the predictive performance compared to five baseline models, and achieves the trade-off between accuracy and efficiency.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
Resource Allocation and HARQ Optimization for URLLC Traffic in 5G Wireless Networks. 5G wireless networks are expected to support ultra-reliable low latency communications (URLLC) traffic which requires very low packet delays (<; 1 ms) and extremely high reliability (~99.999%). In this paper, we focus on the design of a wireless system supporting downlink URLLC traffic. Using a queuing network-based model for the wireless system, we characterize the effect of various design choice...
Container-as-a-Service at the Edge: Trade-off between Energy Efficiency and Service Availability at Fog Nano Data Centers. In the last few years, we have witnessed the huge popularity of one of the most promising technologies of the modern era: the Internet of Things. In IoT, various smart objects (smart sensors, embedded devices, PDAs, and smartphones) share their data with one another irrespective of their geographical locations using the Internet. The amount of data generated by these connected smart objects will b...
Toward Ultrareliable Low-Latency Communications: Typical Scenarios, Possible Solutions, and Open Issues Ultrareliable low-latency communications (URLLC) is one of three emerging application scenarios in 5G new radio (NR) for which physical layer design aspects have been specified. With 5G NR, we can guarantee reliability and latency in radio access networks. However, for communication scenarios where the transmission involves both radio access and wide-area core networks, the delay in radio access n...
On the integration of NFV and MEC technologies: architecture analysis and benefits for edge robotics Forthcoming networks will need to accommodate a large variety of services over a common shared infrastructure. To achieve the necessary flexibility and cost savings, these networks will need to leverage two promising technologies: Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). While the benefits of NFV and MEC have been largely studied as independent domains, the benefits of an harmonized system comprising these two technologies remains largely unexplored. In this article we first identify a set of reference use cases that would benefit from a joint use of MEC and NFV. Then, we analyze the current state-of-the-art on MEC and NFV integration and we identify several issues that prevent a seamless integration. Next, we consider a reference use case, namely Edge Robotics, to exemplify and characterize these issues in terms of the overall service life cycle: from the initial development, to deployment and termination.
Spatiotemporal Dependable Task Execution Services in MEC-Enabled Wireless Systems Multi-access Edge Computing (MEC) enables computation and energy-constrained devices to offload and execute their tasks on powerful servers. Due to the scarce nature of the spectral and computation resources, it is important to jointly consider i) contention-based communications for task offloading and ii) parallel computing and occupation of failure-prone MEC processing resources (virtual machines). The feasibility of task offloading and successful task execution with virtually no failures during the operation time needs to be investigated collectively from a combined point of view. To this end, this letter proposes a novel spatiotemporal framework that utilizes stochastic geometry and continuous time Markov chains to jointly characterize the communication and computation performance of dependable MEC-enabled wireless systems. Based on the designed framework, we evaluate the influence of various system parameters on different dependability metrics such as (i) computation resources availability, (ii) task execution retainability, and (iii) task execution capacity. Our findings showcase that there exists an optimal number of virtual machines for parallel computing at the MEC server to maximize the task execution capacity.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Hiding Traces of Resampling in Digital Images Resampling detection has become a standard tool for forensic analyses of digital images. This paper presents new variants of image transformation operations which are undetectable by resampling detectors based on periodic variations in the residual signal of local linear predictors in the spatial domain. The effectiveness of the proposed method is supported with evidence from experiments on a large image database for various parameter settings. We benchmark detectability as well as the resulting image quality against conventional linear and bicubic interpolation and interpolation with a sinc kernel. These early findings on ldquocounter-forensicrdquo techniques put into question the reliability of known forensic tools against smart counterfeiters in general, and might serve as benchmarks and motivation for the development of much improved forensic techniques.
Fog computing and its role in the internet of things Fog Computing extends the Cloud Computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are: a) Low latency and location awareness; b) Wide-spread geographical distribution; c) Mobility; d) Very large number of nodes, e) Predominant role of wireless access, f) Strong presence of streaming and real time applications, g) Heterogeneity. In this paper we argue that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).
GameFlow: a model for evaluating player enjoyment in games Although player enjoyment is central to computer games, there is currently no accepted model of player enjoyment in games. There are many heuristics in the literature, based on elements such as the game interface, mechanics, gameplay, and narrative. However, there is a need to integrate these heuristics into a validated model that can be used to design, evaluate, and understand enjoyment in games. We have drawn together the various heuristics into a concise model of enjoyment in games that is structured by flow. Flow, a widely accepted model of enjoyment, includes eight elements that, we found, encompass the various heuristics from the literature. Our new model, GameFlow, consists of eight elements -- concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each element includes a set of criteria for achieving enjoyment in games. An initial investigation and validation of the GameFlow model was carried out by conducting expert reviews of two real-time strategy games, one high-rating and one low-rating, using the GameFlow criteria. The result was a deeper understanding of enjoyment in real-time strategy games and the identification of the strengths and weaknesses of the GameFlow model as an evaluation tool. The GameFlow criteria were able to successfully distinguish between the high-rated and low-rated games and identify why one succeeded and the other failed. We concluded that the GameFlow model can be used in its current form to review games; further work will provide tools for designing and evaluating enjoyment in games.
Adapting visual category models to new domains Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
A Web-Based Tool For Control Engineering Teaching In this article a new tool for control engineering teaching is presented. The tool was implemented using Java applets and is freely accessible through Web. It allows the analysis and simulation of linear control systems and was created to complement the theoretical lectures in basic control engineering courses. The article is not only centered in the description of the tool but also in the methodology to use it and its evaluation in an electrical engineering degree. Two practical problems are included in the manuscript to illustrate the use of the main functions implemented. The developed web-based tool can be accessed through the link http://www.controlweb.cyc.ull.es. (C) 2006 Wiley Periodicals, Inc.
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. •The proposed watermarking scheme utilized improved discrete wavelet transformation (IDWT) to retrieve the invariant wavelet domain.•The entropy mechanism is used to identify the suitable region for insertion of watermark. This will improve the imperceptibility and robustness of the watermarking procedure.•The scaling factors such as PSNR and NC are considered for evaluation of the proposed method and the Particle Swarm Optimization is employed to optimize the scaling factors.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
0
Constrained EV Charging Scheduling Based on Safe Deep Reinforcement Learning Electric vehicles (EVs) have been popularly adopted and deployed over the past few years because they are environment-friendly. When integrated into smart grids, EVs can operate as flexible loads or energy storage devices to participate in demand response (DR). By taking advantage of time-varying electricity prices in DR, the charging cost can be reduced by optimizing the charging/discharging schedules. However, since there exists randomness in the arrival and departure time of an EV and the electricity price, it is difficult to determine the optimal charging/discharging schedules to guarantee that the EV is fully charged upon departure. To address this issue, we formulate the EV charging/discharging scheduling problem as a constrained Markov Decision Process (CMDP). The aim is to find a constrained charging/discharging scheduling strategy to minimize the charging cost as well as guarantee the EV can be fully charged. To solve the CMDP, a model-free approach based on safe deep reinforcement learning (SDRL) is proposed. The proposed approach does not require any domain knowledge about the randomness. It directly learns to generate the constrained optimal charging/discharging schedules with a deep neural network (DNN). Unlike existing reinforcement learning (RL) or deep RL (DRL) paradigms, the proposed approach does not need to manually design a penalty term or tune a penalty coefficient. Numerical experiments with real-world electricity prices demonstrate the effectiveness of the proposed approach.
Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning In this paper, an intelligent multi-microgrid (MMG) energy management method is proposed based on deep neural network (DNN) and model-free reinforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease the demand-side peak-to-average ratio (PAR), and to maximize the profit from selling energy. To protect user privacy, DSO learns the MMG response by implementing a DNN without direct access to user’s information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from RL, which optimizes the decision based on prediction. The simulation results from the proposed data-driven deep learning method, as well as comparisons with conventional model-based methods, substantiate the effectiveness of the proposed approach in solving power system problems with partial or uncertain information.
Control and Optimization of Grid-Tied Photovoltaic Storage Systems Using Model Predictive Control. In this paper, we develop optimization and control methods for a grid-tied photovoltaic (PV) storage system. The storage component consists of two separate units, a large slower moving unit for energy shifting and arbitrage and a small rapid charging unit for smoothing. We use a Model Predictive Control (MPC) framework to allow the units to automatically and dynamically adapt to changes in PV outp...
Real-Time Energy Storage Management for Renewable Integration in Microgrid: An Off-Line Optimization Approach Microgrid is a key enabling solution to future smart grids by integrating distributed renewable generators and storage systems to efficiently serve the local demand. However, due to the random and intermittent characteristics of renewable energy, new challenges arise for the reliable operation of microgrids. To address this issue, we study in this paper the real-time energy management for a single microgrid system that constitutes a renewable generation system, an energy storage system, and an aggregated load. We model the renewable energy offset by the load over time, termed net energy profile, to be practically predictable, but with finite errors that can be arbitrarily distributed. We aim to minimize the total energy cost (modeled as sum of time-varying strictly convex functions) of the conventional energy drawn from the main grid over a finite horizon by jointly optimizing the energy charged/discharged to/from the storage system over time subject to practical load and storage constraints. To solve this problem in real time, we propose a new off-line optimization approach to devise the online algorithm. In this approach, we first assume that the net energy profile is perfectly predicted or known ahead of time, under which we derive the optimal off-line energy scheduling solution in closed-form. Next, inspired by the optimal off-line solution, we propose a sliding-window based online algorithm for real-time energy management under the practical setup of noisy predicted net energy profile with arbitrary errors. Finally, we conduct simulations based on the real wind generation data of the Ireland power system to evaluate the performance of our proposed algorithm, as compared with other heuristically designed algorithms, as well as the conventional dynamic programming based solution.
Smoothed Least-laxity-first Algorithm for EV Charging. We formulate EV charging as a feasibility problem that meets all EVs' energy demands before departure under charging rate constraints and total power constraint. We propose an online algorithm, the smoothed least-laxity-first (sLLF) algorithm, that decides on the current charging rates based on only the information up to the current time. We characterize the performance of the sLLF algorithm analytically and numerically. Numerical experiments with real-world data show that it has significantly higher rate of generating feasible EV charging than several other common EV charging algorithms.
ACN-Data - Analysis and Applications of an Open EV Charging Dataset. We are releasing ACN-Data, a dynamic dataset of workplace EV charging which currently includes over 30,000 sessions with more added daily. In this paper we describe the dataset, as well as some interesting user behavior it exhibits. To demonstrate the usefulness of the dataset, we present three examples, learning and predicting user behavior using Gaussian mixture models, optimally sizing on-site solar generation for adaptive electric vehicle charging, and using workplace charging to smooth the net demand Duck Curve.
Reinforcement learning of motor skills with policy gradients. Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine two recent research developments on learning motor control in order to achieve this scaling. First, we interpret the idea of modular motor control by means of motor primitives as a suitable way to generate parameterized control policies for reinforcement learning. Second, we combine motor primitives with the theory of stochastic policy gradient learning, which currently seems to be the only feasible framework for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus on their applicability to parameterized motor primitives. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.
Fuzzy logic in control systems: fuzzy logic controller. I.
A Game-Theoretical Approach for User Allocation in Edge Computing Environment Edge Computing provides mobile and Internet-of-Things (IoT) app vendors with a new distributed computing paradigm which allows an app vendor to deploy its app at hired edge servers distributed near app users at the edge of the cloud. This way, app users can be allocated to hired edge servers nearby to minimize network latency and energy consumption. A cost-effective edge user allocation (EUA) requires maximum app users to be served with minimum overall system cost. Finding a centralized optimal solution to this EUA problem is NP-hard. Thus, we propose EUAGame, a game-theoretic approach that formulates the EUA problem as a potential game. We analyze the game and show that it admits a Nash equilibrium. Then, we design a novel decentralized algorithm for finding a Nash equilibrium in the game as a solution to the EUA problem. The performance of this algorithm is theoretically analyzed and experimentally evaluated. The results show that the EUA problem can be solved effectively and efficiently.
GSA: A Gravitational Search Algorithm In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions.
Harmony search algorithm for solving Sudoku Harmony search (HS) algorithm was applied to solving Sudoku puzzle. The HS is an evolutionary algorithm which mimics musicians' behaviors such as random play, memory-based play, and pitch-adjusted play when they perform improvisation. Sudoku puzzles in this study were formulated as an optimization problem with number-uniqueness penalties. HS could successfully solve the optimization problem after 285 function evaluations, taking 9 seconds. Also, sensitivity analysis of HS parameters was performed to obtain a better idea of algorithm parameter values.
Learning A Discriminative Null Space For Person Re-Identification Most existing person re-identification (re-id) methods focus on learning the optimal distance metrics across camera views. Typically a person's appearance is represented using features of thousands of dimensions, whilst only hundreds of training samples are available due to the difficulties in collecting matched training images. With the number of training samples much smaller than the feature dimension, the existing methods thus face the classic small sample size (SSS) problem and have to resort to dimensionality reduction techniques and/or matrix regularisation, which lead to loss of discriminative power. In this work, we propose to overcome the SSS problem in re-id distance metric learning by matching people in a discriminative null space of the training data. In this null space, images of the same person are collapsed into a single point thus minimising the within-class scatter to the extreme and maximising the relative between-class separation simultaneously. Importantly, it has a fixed dimension, a closed-form solution and is very efficient to compute. Extensive experiments carried out on five person re-identification benchmarks including VIPeR, PRID2011, CUHK01, CUHK03 and Market1501 show that such a simple approach beats the state-of-the-art alternatives, often by a big margin.
The ApolloScape Dataset for Autonomous Driving Scene parsing aims to assign a class (semantic) label for each pixel in an image. It is a comprehensive analysis of an image. Given the rise of autonomous driving, pixel-accurate environmental perception is expected to be a key enabling technical piece. However, providing a large scale dataset for the design and evaluation of scene parsing algorithms, in particular for outdoor scenes, has been difficult. The per-pixel labelling process is prohibitively expensive, limiting the scale of existing ones. In this paper, we present a large-scale open dataset, ApolloScape, that consists of RGB videos and corresponding dense 3D point clouds. Comparing with existing datasets, our dataset has the following unique properties. The first is its scale, our initial release contains over 140K images - each with its per-pixel semantic mask, up to 1M is scheduled. The second is its complexity. Captured in various traffic conditions, the number of moving objects averages from tens to over one hundred (Figure 1). And the third is the 3D attribute, each image is tagged with high-accuracy pose information at cm accuracy and the static background point cloud has mm relative accuracy. We are able to label these many images by an interactive and efficient labelling pipeline that utilizes the high-quality 3D point cloud. Moreover, our dataset also contains different lane markings based on the lane colors and styles. We expect our new dataset can deeply benefit various autonomous driving related applications that include but not limited to 2D/3D scene understanding, localization, transfer learning, and driving simulation.
Design and Validation of a Cable-Driven Asymmetric Back Exosuit Lumbar spine injuries caused by repetitive lifting rank as the most prevalent workplace injury in the United States. While these injuries are caused by both symmetric and asymmetric lifting, asymmetric is often more damaging. Many back devices do not address asymmetry, so we present a new system called the Asymmetric Back Exosuit (ABX). The ABX addresses this important gap through unique design geometry and active cable-driven actuation. The suit allows the user to move in a wide range of lumbar trajectories while the “X” pattern cable routing allows variable assistance application for these trajectories. We also conducted a biomechanical analysis in OpenSim to map assistive cable force to effective lumbar torque assistance for a given trajectory, allowing for intuitive controller design in the lumbar joint space over the complex kinematic chain for varying lifting techniques. Human subject experiments illustrated that the ABX reduced lumbar erector spinae muscle activation during symmetric and asymmetric lifting by an average of 37.8% and 16.0%, respectively, compared to lifting without the exosuit. This result indicates the potential for our device to reduce lumbar injury risk.
1.066667
0.066667
0.066667
0.066667
0.066667
0.066667
0.033333
0
0
0
0
0
0
0
Extending Wireless Rechargeable Sensor Network Life without Full Knowledge. When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.
IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. The use of the Internet is growing in this day and age, so another area has developed to use the Internet, called Internet of Things (IoT). It facilitates the machines and objects to communicate, compute and coordinate with each other. It is an enabler for the intelligence affixed to several essential features of the modern world, such as homes, hospitals, buildings, transports and cities. The security and privacy are some of the critical issues related to the wide application of IoT. Therefore, these issues prevent the wide adoption of the IoT. In this paper, we are presenting an overview about different layered architectures of IoT and attacks regarding security from the perspective of layers. In addition, a review of mechanisms that provide solutions to these issues is presented with their limitations. Furthermore, we have suggested a new secure layered architecture of IoT to overcome these issues.
A Multicharger Cooperative Energy Provision Algorithm Based On Density Clustering In The Industrial Internet Of Things Wireless sensor networks (WSNs) are an important core of the Industrial Internet of Things (IIoT). Wireless rechargeable sensor networks (WRSNs) are sensor networks that are charged by mobile chargers (MCs), and can achieve self-sufficiency. Therefore, the development of WRSNs has begun to attract widespread attention in recent years. Most of the existing energy replenishment algorithms for MCs use one or more MCs to serve the whole network in WRSNs. However, a single MC is not suitable for large-scale network environments, and multiple MCs make the network cost too high. Thus, this paper proposes a collaborative charging algorithm based on network density clustering (CCA-NDC) in WRSNs. This algorithm uses the mean-shift algorithm based on density to cluster, and then the mother wireless charger vehicle (MWCV) carries multiple sub wireless charger vehicles (SWCVs) to charge the nodes in each cluster by using a gradient descent optimization algorithm. The experimental results confirm that the proposed algorithm can effectively replenish the energy of the network and make the network more stable.
Dynamic Charging Scheme Problem With Actor–Critic Reinforcement Learning The energy problem is one of the most important challenges in the application of sensor networks. With the development of wireless charging technology and intelligent mobile charger (MC), the energy problem can be solved by the wireless charging strategy. In the practical application of wireless rechargeable sensor networks (WRSNs), the energy consumption rate of nodes is dynamically changed due to many uncertainties, such as the death and different transmission tasks of sensor nodes. However, existing works focus on on-demand schemes, which not fully consider real-time global charging scheduling. In this article, a novel dynamic charging scheme (DCS) in WRSN based on the actor-critic reinforcement learning (ACRL) algorithm is proposed. In the ACRL, we introduce gated recurrent units (GRUs) to capture the relationships of charging actions in time sequence. Using the actor network with one GRU layer, we can pick up an optimal or near-optimal sensor node from candidates as the next charging target more quickly and speed up the training of the model. Meanwhile, we take the tour length and the number of dead nodes as the reward signal. Actor and critic networks are updated by the error criterion function of R and V. Compared with current on-demand charging scheduling algorithms, extensive simulations show that the proposed ACRL algorithm surpasses heuristic algorithms, such as the Greedy, DP, nearest job next with preemption, and TSCA in the average lifetime and tour length, especially against the size and complexity increasing of WRSNs.
Adaptive Wireless Power Transfer in Mobile Ad Hoc Networks. We investigate the interesting impact of mobility on the problem of efficient wireless power transfer in ad hoc networks. We consider a set of mobile agents (consuming energy to perform certain sensing and communication tasks), and a single static charger (with finite energy) which can recharge the agents when they get in its range. In particular, we focus on the problem of efficiently computing the appropriate range of the charger with the goal of prolonging the network lifetime. We first demonstrate (under the realistic assumption of fixed energy supplies) the limitations of any fixed charging range and, therefore, the need for (and power of) a dynamic selection of the charging range, by adapting to the behavior of the mobile agents which is revealed in an online manner. We investigate the complexity of optimizing the selection of such an adaptive charging range, by showing that two simplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
Charging Path Optimization For Wireless Rechargeable Sensor Network In wireless rechargeable sensor networks(WRSNs), charging path planning becomes more and more important. In this paper, a charging path planning model based on high-dimensional multi-objective optimization is proposed, which takes life cycle, distance, energy consumption and charging time into consideration. At the same time, an improved algorithm is proposed to improve the crossover mode and diversity of the reference-point-based many-objective evolutionary algorithm following non-dominated sorting genetic algorithm(NSGA)&NSGA-II framework(we call it NSGA-III) for charging path planning. In the end, the validity of the charging process and the rationality of the charging path are verified by experimental comparison.
Adaptive online mobile charging for node failure avoidance in wireless rechargeable sensor networks. Recent breakthrough progress of wireless energy transfer technology and rechargeable lithium battery technology emerge the Wireless Rechargeable Sensor Networks (WRSNs). To avoid sensor node failure, how to schedule the Mobile Charger (MC) to recharge sensor nodes in WRSNs is very challenging. Previous works that predetermining the charging path of MC cannot adapt to the diversity and dynamic energy consumption of sensors in actual environment and may lead to problematic schedules. Many online charging schemes are proposed to overcome the challenges, but they still get performance limitation due to leaving out of consideration about the energy depletion issue resulted from not timely and/or unfair charging response. Particularly, the node failure problem will be worse when there are a large number of charging requirements in the network. In this paper, we address the node failure avoidance mobile charing for WRSNs, which aims to minimize the number of invalid nodes due to sensor node energy depletion in the charging process. We first consider the dynamic energy consumption rate of the node based on both its history statistics and real time energy consumption. Then we propose two efficient online charging algorithms named PA and INMA, respectively. PA selects the next charging node according to the charging probability of the requesting nodes, whereas INMA always chooses the nodes which make the least number of other requesting nodes suffer from energy depletion as the charging candidates. Furthermore, to achieve high charging efficiency, the node with the shortest time to finish the charging will be selected as the next charging node if there are multiple nodes in the candidate set. Simulation results demonstrate that the proposed algorithms can effectively solve the node energy depletion problem with lower charging latency and charging cost in comparison with other current existing online charging schemes.
J-RoC: A Joint Routing and Charging scheme to prolong sensor network lifetime The emerging wireless charging technology creates a controllable and perpetual energy source to provide wireless power over distance. Schemes have been proposed to make use of wireless charging to prolong the sensor network lifetime. Unfortunately, existing schemes only passively replenish sensors that are deficient in energy supply, and cannot fully leverage the strengths of this technology. To address the limitation, we propose J-RoC - a practical and efficient Joint Routing and Charging scheme. Through proactively guiding the routing activities in the network and delivering energy to where it is needed, J-RoC not only replenishes energy into the network but also effectively improves the network energy utilization, thus prolonging the network lifetime. To evaluate the performance of the J-RoC scheme, we conduct experiments in a small-scale testbed and simulations in large-scale networks. Evaluation results demonstrate that J-RoC significantly elongates the network lifetime compared to existing wireless charging based schemes.
Semantic Image Synthesis With Spatially-Adaptive Normalization We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to "wash away" semantic information. To address the issue, we propose using the input layout. for modulating the activations in normalization layers through a spatially-adaptive,learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and align-ment with input layouts. Finally, our model allows user control over both semantic and style as synthesizing images.
A Probabilistic Approach to Collaborative Multi-Robot Localization This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The technique has been implemented and tested using two mobile robots equipped with cameras and laser range-finders for detecting other robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization. A further experiment demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots collaborate during localization.
Rich Models for Steganalysis of Digital Images We describe a novel general strategy for building steganography detectors for digital images. The process starts with assembling a rich model of the noise component as a union of many diverse submodels formed by joint distributions of neighboring samples from quantized image noise residuals obtained using linear and nonlinear high-pass filters. In contrast to previous approaches, we make the model assembly a part of the training process driven by samples drawn from the corresponding cover- and stego-sources. Ensemble classifiers are used to assemble the model as well as the final steganalyzer due to their low computational complexity and ability to efficiently work with high-dimensional feature spaces and large training sets. We demonstrate the proposed framework on three steganographic algorithms designed to hide messages in images represented in the spatial domain: HUGO, edge-adaptive algorithm by Luo , and optimally coded ternary $\\pm {\\hbox{1}}$ embedding. For each algorithm, we apply a simple submodel-selection technique to increase the detection accuracy per model dimensionality and show how the detection saturates with increasing complexity of the rich model. By observing the differences between how different submodels engage in detection, an interesting interplay between the embedding and detection is revealed. Steganalysis built around rich image models combined with ensemble classifiers is a promising direction towards automatizing steganalysis for a wide spectrum of steganographic schemes.
An efficient conditionally anonymous ring signature in the random oracle model A conditionally anonymous ring signature is an exception since the anonymity is conditional. Specifically, it allows an entity to confirm/refute the signature that he generated before. A group signature also shares the same property since a group manager can revoke a signer's anonymity using the trapdoor information. However, the special node (i.e., group manager) does not exist in the group in order to satisfy the ad hoc fashion. In this paper, we construct a new conditionally anonymous ring signature, in which the actual signer can be traced without the help of the group manager. The big advantage of the confirmation and disavowal protocols designed by us are non-interactive with constant costs while the known schemes suffer from the linear cost in terms of the ring size n or security parameter s.
Learning Discriminative Features with Multiple Granularities for Person Re-Identification. The combination of global and partial features has been an essential solution to improve discriminative performances in person re-identification (Re-ID) tasks. Previous part-based methods mainly focus on locating regions with specific pre-defined semantics to learn local representations, which increases learning difficulty but not efficient or robust to scenarios with large variances. In this paper, we propose an end-to-end feature learning strategy integrating discriminative information with various granularities. We carefully design the Multiple Granularity Network (MGN), a multi-branch deep network architecture consisting of one branch for global feature representations and two branches for local feature representations. Instead of learning on semantic regions, we uniformly partition the images into several stripes, and vary the number of parts in different local branches to obtain local feature representations with multiple granularities. Comprehensive experiments implemented on the mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03 indicate that our method robustly achieves state-of-the-art performances and outperforms any existing approaches by a large margin. For example, on Market-1501 dataset in single query mode, we obtain a top result of Rank-1/mAP=96.6%/94.2% with this method after re-ranking.
Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks Federated learning (FL) over resource-constrained wireless networks has recently attracted much attention. However, most existing studies consider one FL task in single-cell wireless networks and ignore the impact of downlink/uplink inter-cell interference on the learning performance. In this paper, we investigate FL over a multi-cell wireless network, where each cell performs a different FL task and over-the-air computation (AirComp) is adopted to enable fast uplink gradient aggregation. We conduct convergence analysis of AirComp-assisted FL systems, taking into account the inter-cell interference in both the downlink and uplink model/gradient transmissions, which reveals that the distorted model/gradient exchanges induce a gap to hinder the convergence of FL. We characterize the Pareto boundary of the error-induced gap region to quantify the learning performance trade-off among different FL tasks, based on which we formulate an optimization problem to minimize the sum of error-induced gaps in all cells. To tackle the coupling between the downlink and uplink transmissions as well as the coupling among multiple cells, we propose a cooperative multi-cell FL optimization framework to achieve efficient interference management for downlink and uplink transmission design. Results demonstrate that our proposed algorithm achieves much better average learning performance over multiple cells than non-cooperative baseline schemes.
1.11
0.12
0.12
0.12
0.12
0.1
0.033333
0.001136
0
0
0
0
0
0
A Coverage-Aware Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks Constant energy supply for sensor nodes is essential for the development of the green Internet of Things (IoT). Recently, WRSNs have been proposed to resolve the energy limitations of nodes, aiming to realize continuous functioning. In this article, a coverage-aware hierarchical charging algorithm in WRSNs is proposed, considering energy consumption and the degree of node coverage. The algorithm first performs network clustering using the K-means algorithm. In addition, nodes are classified into multiple levels in each cluster to calculate respective anchor points based on the energy consumption rate and coverage degree of nodes. Then, the anchor points converge to an optimized anchor point in each cluster. To reduce charging latency, the optimized anchor points form two disjoint internal and external polygons. Next, mobile chargers travel along the internal and external polygons, respectively. Experimental results indicate that the proposed algorithm can improve charging efficiency and reduce charging latency substantially.
Double warning thresholds for preemptive charging scheduling in Wireless Rechargeable Sensor Networks. Wireless power transfer technique provides new alternatives for solving the limited power capacity problem for ubiquitous mobile wireless devices, and makes wireless rechargeable sensor networks (WRSNs) promising. However, mainly due to the underestimate of unbalanced influences of spatial and temporal constraints posed by charging requests, traditional scheduling strategies achieve rather low charging request throughput and success rate, posing as a major bottleneck for further improvement. In this paper, we propose a Double Warning thresholds with Double Preemption (DWDP) charging scheme, in which double warning thresholds are used when residual energy levels of sensor nodes fall below certain thresholds. By introducing specific comparison rules, warning thresholds can be used to adjust charging priorities of different sensors, warn the upcoming recharge deadlines, as well as support preemptive scheduling. Then DWDP is extended to where multiple Wireless Charging Vehicles (WCVs) are employed, and a Collaborative Charging DWDP, namely CCDWDP is proposed. Finally, we conduct extensive simulations to manifest the advantages of DWDP as well as CCDWDP. Simulation results reveal that DWDP can achieve better performance in guaranteeing the successful scheduling of the high-priority task and improving stability of the system. CCDWDP outperforms in terms of high charging throughput and short charging delay.
A deep reinforcement learning-based on-demand charging algorithm for wireless rechargeable sensor networks Wireless rechargeable sensor networks are widely used in many fields. However, the limited battery capacity of sensor nodes hinders its development. With the help of wireless energy transfer technology, employing a mobile charger to charge sensor nodes wirelessly has become a promising technology for prolonging the lifetime of wireless sensor networks. Considering that the energy consumption rate varies significantly among sensors, we need a better way to model the charging demand of each sensor, such that the sensors are able to be charged multiple times in one charging tour. Therefore, time window is used to represent charging demand. In order to allow the mobile charger to respond to these charging demands in time and transfer more energy to the sensors, we introduce a new metric: charging reward. This new metric enables us to measure the quality of sensor charging. And then, we study the problem of how to schedule the mobile charger to replenish the energy supply of sensors, such that the sum of charging rewards collected by mobile charger on its charging tour is maximized. The sum of the collected charging reward is subject to the energy capacity constraint on the mobile charger and the charging time windows of all sensor nodes. We first prove that this problem is NP-hard. Due to the complexity of the problem, then deep reinforcement learning technique is exploited to obtain the moving path for mobile charger. Finally, experimental simulations are conducted to evaluate the performance of the proposed charging algorithm, and the results show that the proposed scheme is very promising.
Tag-based cooperative data gathering and energy recharging in wide area RFID sensor networks The Wireless Identification and Sensing Platform (WISP) conjugates the identification potential of the RFID technology and the sensing and computing capability of the wireless sensors. Practical issues, such as the need of periodically recharging WISPs, challenge the effective deployment of large-scale RFID sensor networks (RSNs) consisting of RFID readers and WISP nodes. In this view, the paper proposes cooperative solutions to energize the WISP devices in a wide-area sensing network while reducing the data collection delay. The main novelty is the fact that both data transmissions and energy transfer are based on the RFID technology only: RFID mobile readers gather data from the WISP devices, wirelessly recharge them, and mutually cooperate to reduce the data delivery delay to the sink. Communication between mobile readers relies on two proposed solutions: a tag-based relay scheme, where RFID tags are exploited to temporarily store sensed data at pre-determined contact points between the readers; and a tag-based data channel scheme, where the WISPs are used as a virtual communication channel for real time data transfer between the readers. Both solutions require: (i) clustering the WISP nodes; (ii) dimensioning the number of required RFID mobile readers; (iii) planning the tour of the readers under the energy and time constraints of the nodes. A simulative analysis demonstrates the effectiveness of the proposed solutions when compared to non-cooperative approaches. Differently from classic schemes in the literature, the solutions proposed in this paper better cope with scalability issues, which is of utmost importance for wide area networks.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks. The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.
Hybrid charging scheduling schemes for three-dimensional underwater wireless rechargeable sensor networks. •We are the first to study charging issue for 3D underwater rechargeable sensor networks.•We develop a series of charging algorithms for enhancing energy efficiency.•Our schemes can save energy, save time, and ensure effective utilization of resources.
Energy and Distance Optimization in Rechargeable Wireless Sensor Networks The aim of a mobile recharger operating in a wireless sensor network (WSN) is to keep the network's average consumed energy and covered distance low. As shown in the literature, the covered distance is minimized when the mobile recharger's base is located as per the solution of a median problem, while the network's average energy consumption is minimized as per the solution of a different median problem. In this work, the first problem is analytically investigated, showing that its solution depends on the traffic load and the topology characteristics. Furthermore, it is shown that, under certain conditions, the solution for both problems is identical. These analytical results motivate the introduction of a new on-demand recharging policy, simple to be implemented and depending on local information. The simulation results confirm the analytical findings, showing that the solutions of both median problems are identical under certain conditions in WSN environments. Additionally, the proposed recharging policy is evaluated against a well-known policy that exploits global knowledge, demonstrating its advantage for prolonging network lifetime. For both recharging policies, it is shown that energy consumption and covered distance are minimized when the mobile recharger is initially located at the solution of the said median problems.
MAC protocols for wireless sensor networks: a survey Wireless sensor networks are appealing to researchers due to their wide range of application potential in areas such as target detection and tracking, environmental monitoring, industrial process monitoring, and tactical systems. However, low sensing ranges result in dense networks and thus it becomes necessary to achieve an efficient medium-access protocol subject to power constraints. Various medium-access control (MAC) protocols with different objectives have been proposed for wireless sensor networks. In this article, we first outline the sensor network properties that are crucial for the design of MAC layer protocols. Then, we describe several MAC protocols proposed for sensor networks, emphasizing their strengths and weaknesses. Finally, we point out open research issues with regard to MAC layer design.
Efficient Scheduling of Multiple Mobile Chargers for Wireless Sensor Networks. In this paper, we study the deployment of multiple mobile charging vehicles to charge sensors in a large-scale wireless sensor network for a given monitoring period so that none of the sensors will run out of energy, where sensors can be charged by the charging vehicles with wireless energy transfer. To minimize the network operational cost, we first formulate a charging scheduling problem of disp...
A comparative study of texture measures with classification based on featured distributions This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently. For classification a method based on Kullback discrimination of sample and prototype distributions is used. The classification results for single features with one-dimensional feature value distributions and for pairs of complementary features with two-dimensional distributions are presented
Distributed finite-time attitude containment control for multiple rigid bodies Distributed finite-time attitude containment control for multiple rigid bodies is addressed in this paper. When there exist multiple stationary leaders, we propose a model-independent control law to guarantee that the attitudes of the followers converge to the stationary convex hull formed by those of the leaders in finite time by using both the one-hop and two-hop neighbors’ information. We also discuss the special case of a single stationary leader and propose a control law using only the one-hop neighbors’ information to guarantee cooperative attitude regulation in finite time. When there exist multiple dynamic leaders, a distributed sliding-mode estimator and a non-singular sliding surface were given to guarantee that the attitudes and angular velocities of the followers converge, respectively, to the dynamic convex hull formed by those of the leaders in finite time. We also explicitly show the finite settling time.
Distributed Channel Selection in Time-Varying Radio Environment: Interference Mitigation Game With Uncoupled Stochastic Learning This paper investigates the problem of distributed channel selection for interference mitigation in a time-varying radio environment without information exchange. Most existing algorithms, which were originally designed for static channels, are costly and inefficient in the presence of time-varying channels. First, we formulate this problem as a noncooperative game, in which the utility of each player is defined as a function of its experienced expected weighted interference. This game is proven to be an exact potential game with the considered network utility (the expected weighted aggregate interference) serving as the potential function. However, most game-theoretic algorithms are not suitable for the considered network, since they are coupled, i.e., the updating procedure is relying on the actions or payoffs of other players. Then, we propose a simple, completely distributed, and uncoupled stochastic learning algorithm, with which the users learn the desirable channel selections from their individual trial-payoff history. It is analytically shown that the proposed algorithm converges to pure strategy Nash equilibrium in time-varying radio environment; moreover, it achieves optimal channel selection profiles and makes the network interference-free for underloaded or equally loaded scenarios, while achieving, on average, near-optimal performance for overloaded scenarios.
Distributed Adaptive Fuzzy Containment Control of Stochastic Pure-Feedback Nonlinear Multiagent Systems With Local Quantized Controller and Tracking Constraint This paper studies the distributed adaptive fuzzy containment tracking control for a class of high-order stochastic pure-feedback nonlinear multiagent systems with multiple dynamic leaders and performance constraint requirement. The control inputs are quantized by hysteresis quantizers. Mean value theorems are used to transfer the nonaffine systems into affine forms and a nonlinear decomposition is employed to solve the quantized input control problem. With a novel structure barrier Lyapunov function, the distributed control strategy is developed. It is strictly proved that the outputs of the followers converge to the convex hull spanned by the multiple dynamic leaders, the containment tracking errors satisfy the performance constraint requirement and the resulting leader-following multiagent system is stable in probability based on Lyapunov stability theory. At last, simulation is provided to show the validity and the advantages of the proposed techniques.
Active Suspension Control of Quarter-Car System With Experimental Validation A reliable, efficient, and simple control is presented and validated for a quarter-car active suspension system equipped with an electro-hydraulic actuator. Unlike the existing techniques, this control does not use any function approximation, e.g., neural networks (NNs) or fuzzy-logic systems (FLSs), while the unmolded dynamics, including the hydraulic actuator behavior, can be accommodated effectively. Hence, the heavy computational costs and tedious parameter tuning phase can be remedied. Moreover, both the transient and steady-state suspension performance can be retained by incorporating prescribed performance functions (PPFs) into the control implementation. This guaranteed performance is particularly useful for guaranteeing the safe operation of suspension systems. Apart from theoretical studies, some practical considerations of control implementation and several parameter tuning guidelines are suggested. Experimental results based on a practical quarter-car active suspension test-rig demonstrate that this control can obtain a superior performance and has better computational efficiency over several other control methods.
1.11
0.11
0.11
0.1
0.1
0.1
0.1
0.05
0.017035
0
0
0
0
0
A CRNN module for hand pose estimation. •The input is no longer a single frame, but a sequence of several adjacent frames.•A CRNN module is proposed, which is basically the same as the standard RNN, except that it uses convolutional connection.•When the difference in the feature image of a certain layer is large, it is better to add CRNN / RNN after this layer.•Our method has the lowest error of output compared to the current state-of-the-art methods.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Deep convolutional neural network-based Bernoulli heatmap for head pose estimation Head pose estimation is a crucial problem for many tasks, such as driver attention, fatigue detection, and human behaviour analysis. It is well known that neural networks are better at handling classification problems than regression problems. It is an extremely nonlinear process to let the network output the angle value directly for optimization learning, and the weight constraint of the loss function will be relatively weak. This paper proposes a novel Bernoulli heatmap for head pose estimation from a single RGB image. Our method can achieve the positioning of the head area while estimating the angles of the head. The Bernoulli heatmap makes it possible to construct fully convolutional neural networks without fully connected layers and provides a new idea for the output form of head pose estimation. A deep convolutional neural network (CNN) structure with multiscale representations is adopted to maintain high-resolution information and low-resolution information in parallel. This kind of structure can maintain rich, high-resolution representations. In addition, channelwise fusion is adopted to make the fusion weights learnable instead of simple addition with equal weights. As a result, the estimation is spatially more precise and potentially more accurate. The effectiveness of the proposed method is empirically demonstrated by comparing it with other state-of-the-art methods on public datasets.
Reinforcement learning based data fusion method for multi-sensors In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion (RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications FSA (artificial fish-swarm algorithm) is one of the best methods of optimization among the swarm intelligence algorithms. This algorithm is inspired by the collective movement of the fish and their various social behaviors. Based on a series of instinctive behaviors, the fish always try to maintain their colonies and accordingly demonstrate intelligent behaviors. Searching for food, immigration and dealing with dangers all happen in a social form and interactions between all fish in a group will result in an intelligent social behavior.This algorithm has many advantages including high convergence speed, flexibility, fault tolerance and high accuracy. This paper is a review of AFSA algorithm and describes the evolution of this algorithm along with all improvements, its combination with various methods as well as its applications. There are many optimization methods which have a affinity with this method and the result of this combination will improve the performance of this method. Its disadvantages include high time complexity, lack of balance between global and local search, in addition to lack of benefiting from the experiences of group members for the next movements.
Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning The literature on short-term traffic flow forecasting has undergone great development recently. Many works, describing a wide variety of different approaches, which very often share similar features and ideas, have been published. However, publications presenting new prediction algorithms usually employ different settings, data sets, and performance measurements, making it difficult to infer a clear picture of the advantages and limitations of each model. The aim of this paper is twofold. First, we review existing approaches to short-term traffic flow forecasting methods under the common view of probabilistic graphical models, presenting an extensive experimental comparison, which proposes a common baseline for their performance analysis and provides the infrastructure to operate on a publicly available data set. Second, we present two new support vector regression models, which are specifically devised to benefit from typical traffic flow seasonality and are shown to represent an interesting compromise between prediction accuracy and computational efficiency. The SARIMA model coupled with a Kalman filter is the most accurate model; however, the proposed seasonal support vector regressor turns out to be highly competitive when performing forecasts during the most congested periods.
TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks. The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a temporal-spatial charging scheduling algorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.
A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems In this paper, to eliminate the tracking error by using adaptive dynamic programming (ADP) algorithms, a novel formulation of the value function is presented for the optimal tracking problem (TP) of nonlinear discrete-time systems. Unlike existing ADP methods, this formulation introduces the control input into the tracking error, and ignores the quadratic form of the control input directly, which makes the boundedness and convergence of the value function independent of the discount factor. Based on the proposed value function, the optimal control policy can be deduced without considering the reference control input. Value iteration (VI) and policy iteration (PI) methods are applied to prove the optimality of the obtained control policy, and derived the monotonicity property and convergence of the iterative value function. Simulation examples realized with neural networks and the actor–critic structure are provided to verify the effectiveness of the proposed ADP algorithm.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
Soft Wearable Motion Sensing Suit For Lower Limb Biomechanics Measurements Motion sensing has played an important role in the study of human biomechanics as well as the entertainment industry. Although existing technologies, such as optical or inertial based motion capture systems, have relatively high accuracy in detecting body motions, they still have inherent limitations with regards to mobility and wearability. In this paper, we present a soft motion sensing suit for measuring lower extremity joint motion. The sensing suit prototype includes a pair of elastic tights and three hyperelastic strain sensors. The strain sensors are made of silicone elastomer with embedded microchannels filled with conductive liquid. To form a sensing suit, these sensors are attached at the hip, knee, and ankle areas to measure the joint angles in the sagittal plane. The prototype motion sensing suit has significant potential as an autonomous system that can be worn by individuals during many activities outside the laboratory, from running to rock climbing. In this study we characterize the hyperelastic sensors in isolation to determine their mechanical and electrical responses to strain, and then demonstrate the sensing capability of the integrated suit in comparison with a ground truth optical motion capture system. Using simple calibration techniques, we can accurately track joint angles and gait phase. Our efforts result in a calculated trade off: with a maximum error less than 8%, the sensing suit does not track joints as accurately as optical motion capture, but its wearability means that it is not constrained to use only in a lab.
Wearable soft sensing suit for human gait measurement Wearable robots based on soft materials will augment mobility and performance of the host without restricting natural kinematics. Such wearable robots will need soft sensors to monitor the movement of the wearer and robot outside the lab. Until now wearable soft sensors have not demonstrated significant mechanical robustness nor been systematically characterized for human motion studies of walking and running. Here, we present the design and systematic characterization of a soft sensing suit for monitoring hip, knee, and ankle sagittal plane joint angles. We used hyper-elastic strain sensors based on microchannels of liquid metal embedded within elastomer, but refined their design with the use of discretized stiffness gradients to improve mechanical durability. We found that these robust sensors could stretch up to 396% of their original lengths, would restrict the wearer by less than 0.17% of any given joint's torque, had gauge factor sensitivities of greater than 2.2, and exhibited less than 2% change in electromechanical specifications through 1500 cycles of loading-unloading. We also evaluated the accuracy and variability of the soft sensing suit by comparing it with joint angle data obtained through optical motion capture. The sensing suit had root mean square (RMS) errors of less than 5° for a walking speed of 0.89 m/s and reached a maximum RMS error of 15° for a running speed of 2.7 m/s. Despite the deviation of absolute measure, the relative repeatability of the sensing suit's joint angle measurements were statistically equivalent to that of optical motion capture at all speeds. We anticipate that wearable soft sensing will also have applications beyond wearable robotics, such as in medical diagnostics and in human-computer interaction.
Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance. In recent years, there is an increase in the number of people that require support during walking as a result of a decrease in the leg muscle strength accompanying aging. An important index for evaluating walking ability is step length. A key cause for a decrease in step length is the loss of muscle strength in the legs. Many researchers have designed and developed orthoses for walking assistance. In this study, we advanced the design of an orthosis for walking assistance that assists the forward swing of the leg to increase step length. We employed a pneumatic artificial muscle as the actuator so that flexible assistance with low rigidity can be achieved. To evaluate the performance of the system, we measured the effect of assistance quantitatively. In this study, we constructed a prototype of the orthosis and measure EMG and step length on fitting it to a healthy subject so as to determine the effect of assistance, noting the increase in the obtained step length. Although there was an increase in EMG stemming from the need to maintain body balance during the stance phase, we observed that the EMG of the sartorius muscle, which helps swing the leg forward, decreased, and the strength of the semitendinosus muscle, which restrains the leg against over-assistance, did not increase but decreased. Our experiments showed that the assistance force provided by the developed orthosis is not adequate for the intended task, and the development of a mechanism that provides appropriate assistance is required in the future.
Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an extended Kalman filter designed for real-time estimation of the orientation of human limb segments. The filter processes data from small inertial/magnetic sensor modules containing triaxial angular rate sensors, accelerometers, and magnetometers. The filter represents rotation using quaternions rather than Euler angles or axis/angle pairs. Preprocessing of the acceleration and magnetometer measurements using the Quest algorithm produces a computed quaternion input for the filter. This preprocessing reduces the dimension of the state vector and makes the measurement equations linear. Real-time implementation and testing results of the quaternion-based Kalman filter are presented. Experimental results validate the filter design, and show the feasibility of using inertial/magnetic sensor modules for real-time human body motion tracking
Ergonomics of exoskeletons: Objective performance metrics In this paper it is shown how variation of the kinematic structure of an exoskeleton and variation of its fixation strength on the human limb influences objective task performance metrics, such as interface load, tracking error and voluntary range of motion in a signal tracking experiment.
Stronger, Smarter, Softer: Next-Generation Wearable Robots. Exosuits show much promise as a method for augmenting the body with lightweight, portable, and compliant wearable systems. We envision that such systems can be further refined so that they can be sufficiently low profile to fit under a wearer's existing clothing. Our focus is on creating an assistive device that provides a fraction of the nominal biological torques and does not provide external load transfer. In early work, we showed that the system can substantially maintain normal biomechanics and positively affect a wearer's metabolic rate. Many basic fundamental research and development challenges remain in actuator development, textile innovation, soft sensor development, human-machine interface (control), biomechanics, and physiology, which provides fertile ground for academic research in many disciplines. While we have focused on gait assistance thus far, numerous other applications are possible, including rehabilitation, upper body support, and assistance for other motions. We look forward to a future where wearable robots provide benefits for people across many areas of our society.
Eyes are faster than hands: A soft wearable robot learns user intention from the egocentric view. To perceive user intentions for wearable robots, we present a learning-based intention detection methodology using a first-person-view camera.
Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation. The cycling wheelchair "Profhand" developed by our research group in Japan has been found to be useful in rehabilitation of motor function of lower limbs. It is also expected for rehabilitation of paraplegic subjects to propel the cycling wheelchair by lower limbs controlled by functional electrical stimulation (FES). In this paper, a prototype FES control system for the cycling wheelchair was developed using wireless surface stimulators and wireless inertial sensors and tested with healthy subjects. The stimulation pattern that stimulated the quadriceps femoris and the gluteus maximus at the same time was shown to be effective to propel the Profhand. From the analysis of steady state cycling, it was shown that the cycling speed was smaller and the variation of the speed was larger in FES cycling than those of voluntary cycling. Measured angular velocity of the crank suggested that stimulation timing have to be changed considering delay in muscle response to electrical stimulation and cycling speed in order to improve FES cycling. It was also suggested that angle of the pedal have to be adjusted by controlling ankle joint angle with FES in order to apply force appropriately.
Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices. Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.
EDUCO - A Collaborative Learning Environment Based on Social Navigation Web-based learning is primarily a lonesome activity, even when it involves working in groups. This is due to the fact that the majority of web-based learning relies on asynchronous forms of interacting with other people. In most of the cases, the chat discussion is the only form of synchronous interaction that adds to the feeling that there are other people present in the environment. EDUCO is a system that tries to bring in the sense of other users in a collaborative learning environment by making the other users and their the navigation visible to everyone else in the environment in real-time. The paper describes EDUCO and presents the first empirical evaluation as EDUCO was used in a university course.
Prolonging Sensor Network Lifetime Through Wireless Charging The emerging wireless charging technology is a promising alternative to address the power constraint problem in sensor networks. Comparing to existing approaches, this technology can replenish energy in a more controllable manner and does not require accurate location of or physical alignment to sensor nodes. However, little work has been reported on designing and implementing a wireless charging system for sensor networks. In this paper, we design such a system, build a proof-of-concept prototype, conduct experiments on the prototype to evaluate its feasibility and performance in small-scale networks, and conduct extensive simulations to study its performance in large-scale networks. Experimental and simulation results demonstrate that the proposed system can utilize the wireless charging technology effectively to prolong the network lifetime through delivering energy by a robot to where it is needed. The effects of various configuration and design parameters have also been studied, which may serve as useful guidelines in actual deployment of the proposed system in practice.
Robust and Imperceptible Dual Watermarking for Telemedicine Applications In this paper, the effects of different error correction codes on the robustness and imperceptibility of discrete wavelet transform and singular value decomposition based dual watermarking scheme is investigated. Text and image watermarks are embedded into cover radiological image for their potential application in secure and compact medical data transmission. Four different error correcting codes such as Hamming, the Bose, Ray-Chaudhuri, Hocquenghem (BCH), the Reed---Solomon and hybrid error correcting (BCH and repetition code) codes are considered for encoding of text watermark in order to achieve additional robustness for sensitive text data such as patient identification code. Performance of the proposed algorithm is evaluated against number of signal processing attacks by varying the strength of watermarking and covers image modalities. The experimental results demonstrate that this algorithm provides better robustness without affecting the quality of watermarked image.This algorithm combines the advantages and removes the disadvantages of the two transform techniques. Out of the three error correcting codes tested, it has been found that Reed---Solomon shows the best performance. Further, a hybrid model of two of the error correcting codes (BCH and repetition code) is concatenated and implemented. It is found that the hybrid code achieves better results in terms of robustness. This paper provides a detailed analysis of the obtained experimental results.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.055501
0.050751
0.027304
0.022609
0.014447
0.001876
0.000262
0.000003
0
0
0
0
0
0
Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input This technical note considers the distributed tracking control problem of multiagent systems with general linear dynamics and a leader whose control input is nonzero and not available to any follower. Based on the relative states of neighboring agents, two distributed discontinuous controllers with, respectively, static and adaptive coupling gains, are designed for each follower to ensure that the states of the followers converge to the state of the leader, if the interaction graph among the followers is undirected, the leader has directed paths to all followers, and the leader's control input is bounded. A sufficient condition for the existence of the distributed controllers is that each agent is stabilizable. Simulation examples are given to illustrate the theoretical results.
Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems This paper presents a set of algorithms for fault diagnosis and fault tolerant control strategy for affine nonlinear systems subjected to an unknown time-varying fault vector. First, the design of fault diagnosis filter is performed using nonlinear observer techniques, where the system is decoupled through a nonlinear transformation and an observer is used to generate the required residual signal. By introducing an extra input to the observer, a direct estimation of the time-varying fault is obtained when the residual is controlled, by this extra input, to zero. The stability analysis of this observer is proved and some relevant sufficient conditions are obtained. Using the estimated fault vector, a fault tolerant controller is established which guarantees the stability of the closed loop system. The proposed algorithm is applied to a combined pH and consistency control system of a pilot paper machine, where simulations are performed to show the effectiveness of the proposed approach.
Adaptive Fuzzy Observer-Based Active Fault-Tolerant Dynamic Surface Control for a Class of Nonlinear Systems With Actuator Faults The problem of fault-tolerant dynamic surface control (DSC) for a class of uncertain nonlinear systems with actuator faults is discussed and an active fault-tolerant control (FTC) scheme is proposed. Using the DSC technique, a novel fault diagnostic algorithm is proposed, which removes the classical assumption that the time derivative of the output error should be known. Further, an accommodation scheme is proposed to compensate for both actuator time-varying gain and bias faults, and avoids the controller singularity. In addition, the proposed controller guarantees that all signals of the closed-loop system are semiglobally uniformly ultimately bounded, and converge to a small neighborhood of the origin. Finally, the effectiveness of the proposed FTC approach is demonstrated on a simulated aircraft longitudinal dynamics example.
Adaptive Fault-Tolerant Consensus for a Class of Uncertain Nonlinear Second-Order Multi-Agent Systems With Circuit Implementation. In this paper, a robust fault-tolerant consensus control strategy and its circuit implementation method are proposed for a class of nonlinear second-order leader-following multi-agent systems against multiple actuator faults and time-varying state/input-dependent system uncertainties. The faults of partial loss of actuator effectiveness and bias-actuators are considered without knowing eventual fa...
Consensus Tracking Control of Uncertain Multiagent Systems With Sampled Data and Time-Varying Delay In this article, the adaptive consensus tracking control is developed for uncertain multiagent systems with time-varying state delay in the case that leader’s state is accessible at sampling instants. By proposing a distributed sampled observer with hybrid form, adaptive tracking controller with the complementary term is designed for first-order multiagent systems, and then is extended to high-ord...
Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations The asynchronously switched multi-agent systems comprising switched agents of different dynamics and switching signals are considered under arbitrarily switching communication topologies. The practical output synchronization problem is studied for such a kind of systems due to the heterogeneity brought by both the dynamics and the switchings of agents. A switching-dependent controller with an embedded virtual reference system is proposed for each agent. The original problem is then converted into tracking problems between each agent and its reference system. The analysis of resultant tracking error systems involves the analysis of switched systems with bounded but non-attenuating state impulses. By satisfying sufficient conditions featuring the average dwell time (ADT) and the newly proposed piecewise ADT, the practical output synchronization can be achieved and the ultimate bound of the output errors can also be obtained for the considered systems. Furthermore, a realistic case where the agent switching signals undergo adverse fast-switching perturbations is studied. The perturbations may potentially invalidate the “slow-switching” based method. A regulation strategy is thus developed for each agent to render it adaption to such adversity. A payload transport task is taken as the practical example to illustrate the effectiveness of the proposed method and the adaption strategy.
Command Filtered Adaptive Backstepping Implementation of adaptive backstepping controllers requires analytic calculation of the partial derivatives of certain stabilizing functions. It is well documented that, as the order of a nonlinear system increases, analytic calculation of these derivatives becomes prohibitive. Therefore, in practice, either alternative control approaches are used or the derivatives are neglected in the implementation. Neglecting the derivatives results in the loss of all guarantees proven by Lyapunov methods for the adaptive backstepping approach and may result in instability. This paper presents a new implementation approach for adaptive backstepping control. The main objectives are to facilitate the derivation and implementation of the adaptive backstepping approach, with performance guarantees proven by Lyapunov methods, for applications that were prohibitively difficult using the standard analytic implementation approach. The new approach uses filtering methods to produce certain command signals and their derivatives which eliminates the requirement of analytic differentiation. The approach also introduces filters to generate certain compensating signals necessary to compute compensated tracking errors suitable for adaptive parameter estimation. We present a set of Lemmas and Theorems to analyze the performance both during the initialization and the operating phases. We show that the initialization phase is of finite duration that can be controlled by selection of a design parameter. We also show that all signals within the system are bounded during this short initialization phase. During the operating phase, we show that the command filtered implementation approach has theoretical properties identical to those of the conventional approach. The general approach is presented and analyzed for systems in generalized parameter strict feedback form. Extensions of the approach are presented to demonstrate the application of the method to a land vehicle trajectory following applicat- on. Application and effectiveness of the proposed method is shown by simulation results.
On the ratio of optimal integral and fractional covers It is shown that the ratio of optimal integral and fractional covers of a hypergraph does not exceed 1 + log d , where d is the maximum degree. This theorem may replace probabilistic methods in certain circumstances. Several applications are shown.
Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution Recently, the rapid advance of vehicular networks has led to the emergence of diverse delay-sensitive vehicular applications such as automatic driving, auto navigation. Note that existing resource-constrained vehicles cannot adequately meet these demands on low / ultra-low latency. By offloading parts of the vehicles’ compute-intensive tasks to the edge servers in proximity, mobile edge computing is envisioned as a promising paradigm, giving rise to the vehicular edge computing networks (VECNs). However, most existing works on task offloading in VECNs did not take the load balancing of the computation resources at the edge servers into account. To address these issues and given the high dynamics of vehicular networks, we introduce fiber-wireless (FiWi) technology to enhance VECNs, due to its advantages on centralized network management and supporting multiple communication techniques. Aiming to minimize the processing delay of the vehicles’ computation tasks, we propose a software-defined networking (SDN) based load-balancing task offloading scheme in FiWi enhanced VECNs, where SDN is introduced to provide supports for the centralized network and vehicle information management. Extensive analysis and numerical results corroborate that our proposed load-balancing scheme can achieve superior performance on processing delay reduction by utilizing the edge servers’ computation resources more efficiently.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
Design and simulation of a joint-coupled orthosis for regulating FES-aided gait A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at this http URL
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
The redundant discrete wavelet transform and additive noise The behavior under additive noise of the redundant discrete wavelet transform (RDWT), which is a frame expansion that is essentially an undecimated discrete wavelet transform, is studied. Known prior results in the form of inequalities bound distortion energy in the original signal domain from additive noise in frame-expansion coefficients. In this letter, a precise relationship between RDWT-domai...
Deep learning for source camera identification on mobile devices. •The design of an efficient CNN architecture for the SCI problem on mobile devices.•The evaluation of different CNN configurations.•The usage of a unique dataset (MICHE-I) of images taken from several mobile devices.•A 98.1% of accuracy on model detection.•A 91.1% of accuracy on sensor detection.
Learning deep features for source color laser printer identification based on cascaded learning. Color laser printers have fast printing speed and high resolution, and forgeries using color laser printers can cause significant harm to society. A source printer identification technique can be employed as a countermeasure to those forgeries. This paper presents a color laser printer identification method based on cascaded learning of deep neural networks. First, the refiner network is trained by adversarial training to refine the synthetic dataset for halftone color decomposition. Then, the halftone color decomposing ConvNet is trained with the refined dataset. The trained knowledge about halftone color decomposition is transferred to the printer identifying ConvNet to enhance the identification accuracy. Training of the printer identifying ConvNet is carried out with real halftone images printed from candidate source printers. The robustness about rotation and scaling is considered in training process, which is not considered in existing methods. Experiments are performed on eight color laser printers, and the performance is compared with several existing methods. The experimental results clearly show that the proposed method outperforms existing source color laser printer identification methods.
Smooth filtering identification based on convolutional neural networks The increasing prevalence of digital technology brings great convenience to human life, while also shows us the problems and challenges. Relying on easy-to-use image editing tools, some malicious manipulations, such as image forgery, have already threatened the authenticity of information, especially the electronic evidence in the crimes. As a result, digital forensics attracts more and more attention of researchers. Since some general post-operations, like widely used smooth filtering, can affect the reliability of forensic methods in various ways, it is also significant to detect them. Furthermore, the determination of detailed filtering parameters assists to recover the tampering history of an image. To deal with this problem, we propose a new approach based on convolutional neural networks (CNNs). Through adding a transform layer, obtained distinguishable frequency-domain features are put into a conventional CNN model, to identify the template parameters of various types of spatial smooth filtering operations, such as average, Gaussian and median filtering. Experimental results on a composite database show that putting the images directly into the conventional CNN model without transformation can not work well, and our method achieves better performance than some other applicable related methods, especially in the scenarios of small size and JPEG compression.
Real-time detecting one specific tampering operation in multiple operator chains Currently, many forensic techniques have been developed to determine the processing history of given multimedia contents. However, because of the interaction among tampering operations, there are still fundamental limits on the determination of tampering order and type. Up to now, a few works consider the cases where multiple operation types are involved in. In these cases, we not only need to consider the interplay of operation order, but also should quantify the detectability of one specific operation. In this paper, we propose an efficient information theoretical framework to solve this problem. Specially, we analyze the operation detection problem from the perspective of set partitioning and detection theory. Then, under certain detectors, we present the information framework to contrast the detected hypotheses and true hypotheses. Some constraint criterions are designed to improve the detection performance of an operation. In addition, Maximum-Likelihood Estimation (MLE) is used to obtain the best detector. Finally, a multiple chain set is examined in this paper, where three efficient detection methods have been proposed and the effectiveness of our framework has been demonstrated by simulations.
Distinctive Image Features from Scale-Invariant Keypoints This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Theory of Mind for a Humanoid Robot If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie (1994) and Baron-Cohen (1995) on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models.
Gravity-Balancing Leg Orthosis and Its Performance Evaluation In this paper, we propose a device to assist persons with hemiparesis to walk by reducing or eliminating the effects of gravity. The design of the device includes the following features: 1) it is passive, i.e., it does not include motors or actuators, but is only composed of links and springs; 2) it is safe and has a simple patient-machine interface to accommodate variability in geometry and inertia of the subjects. A number of methods have been proposed in the literature to gravity-balance a machine. Here, we use a hybrid method to achieve gravity balancing of a human leg over its range of motion. In the hybrid method, a mechanism is used to first locate the center of mass of the human limb and the orthosis. Springs are then added so that the system is gravity-balanced in every configuration. For a quantitative evaluation of the performance of the device, electromyographic (EMG) data of the key muscles, involved in the motion of the leg, were collected and analyzed. Further experiments involving leg-raising and walking tasks were performed, where data from encoders and force-torque sensors were used to compute joint torques. These experiments were performed on five healthy subjects and a stroke patient. The results showed that the EMG activity from the rectus femoris and hamstring muscles with the device was reduced by 75%, during static hip and knee flexion, respectively. For leg-raising tasks, the average torque for static positioning was reduced by 66.8% at the hip joint and 47.3% at the knee joint; however, if we include the transient portion of the leg-raising task, the average torque at the hip was reduced by 61.3%, and at the knee was increased by 2.7% at the knee joints. In the walking experiment, there was a positive impact on the range of movement at the hip and knee joints, especially for the stroke patient: the range of movement increased by 45% at the hip joint and by 85% at the knee joint. We believe that this orthosis can be potentially used to desig- - n rehabilitation protocols for patients with stroke
Biologically-inspired soft exosuit. In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.
Inter-class sparsity based discriminative least square regression Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
0
0
Research on gain scheduling Gain scheduling for nonlinear controller design is described in terms of general features of the approach and in terms of early examples of applications in flight control and automotive engine control. Then recent research is discussed, emphasizing work on linearization-based scheduling and work on linear parameter-varying approaches. (C) 2000 Elsevier Science Ltd. All rights reserved.
A Robust Controller Interpolation Design Technique Switching or blending among controllers is termed controller interpolation. This paper investigates a robust controller interpolation technique and applies it to an experimental test bed. Although an interpolated controller is composed of linear time-invariant (LTI) controllers stabilizing the LTI plant, closed-loop performance and stability are not guaranteed. Thus, it is of interest to design the interpolated controller to guarantee closed-loop stability and a performance level for all interpolation signals describing controller switching sequences and combinations. The performance metric that is under investigation in this paper is the H ¿ norm. A suboptimal robust interpolated-controller design algorithm is framed in terms of bilinear matrix inequalities. The motivating example demonstrates the efficacy of the robust interpolated-controller design.
State resetting for bumpless switching in supervisory control In this paper the realization and implementation of a multi-controller scheme made of a finite set of linear single-input-single-output controllers, possibly having different state dimensions, is studied. The supervisory control framework is considered, namely a minimal parameter dependent realization of the set of controllers such that all controllers share the same state space is used. A specific state resetting strategy based on the behavioral approach to system theory is developed in order to master the transient upon controller switching.
The smooth switching control for TORA system via LMIs This paper investigates the smooth switching control approach for linear parameter varying systems with applications to the nonlinear translational oscillator with rotational actuator (TORA) systems. In the smooth switching control, the control law for neighboring subsystems is smoothly switched or scheduled in the overlapped region instead of the usual instant switching methods. The design approach is presented in terms of the obtained maximum relative stability under control input and system output variables constraints. The control law is constructed based on the formulated linear matrix inequality conditions. As shown, the designed performance can be reasonably improved with the increase of number of partitions of the considered varying parameters range.
A Convex Characterization Of Gain-Scheduled H-Infinity Controllers An important class of linear time-varying systems consists of plants where the state-space matrices are fixed functions of some time-varying physical parameters theta. Small gain techniques can be applied to such systems to derive robust time-invariant controllers. Yet, this approach is often overly conservative when the parameters theta undergo large variations during system operation, In general, higher performance can be achieved by control laws that incorporate available measurements of theta and therefore ''adjust'' to the current plant dynamics. This paper discusses extensions of H-infinity, synthesis techniques to allow for controller dependence on time-varying but measured parameters. When this dependence is linear fractional, the existence of such gain-scheduled H-infinity, controllers is fully characterized in terms of linear matrix inequalities. The underlying synthesis problem is therefore a convex program for which efficient optimization techniques are available. The formalism and derivation techniques developed here apply to both the continuous- and discrete-time problems. Existence conditions for robust time-invariant controllers are recovered as a special case, and extensions to gain-scheduling in the face of parametric uncertainty are discussed. In particular, simple heuristics are proposed to compute such controllers.
Dissipativity-Based Filtering for Fuzzy Switched Systems With Stochastic Perturbation. In this technical note, the problem of the dissipativity-based filtering problem is considered for a class of T-S fuzzy switched systems with stochastic perturbation. Firstly, a sufficient condition of strict dissipativity performance is given to guarantee the mean-square exponential stability for the concerned T-S fuzzy switched system. Then, our attention is focused on the design of a filter to the T-S fuzzy switched system with Brownian motion. By combining the average dwell time technique with the piecewise Lyapunov function technique, the desired fuzzy filters are designed that guarantee the filter error dynamic system to be mean-square exponential stable with a strictly dissipative performance, and the corresponding solvability condition for the fuzzy filter is also presented based on the linearization procedure approach. Finally, an example is provided to illustrate the effectiveness of the proposed dissipativity-based filter technique.
Convexity of the cost functional in an optimal control problem for a class of positive switched systems. This paper deals with the optimal control of a class of positive switched systems. The main feature of this class is that switching alters only the diagonal entries of the dynamic matrix. The control input is represented by the switching signal itself and the optimal control problem is that of minimizing a positive linear combination of the final state variable. First, the switched system is embedded in the class of bilinear systems with control variables living in a simplex, for each time point. The main result is that the cost is convex with respect to the control variables. This ensures that any Pontryagin solution is optimal. Algorithms to find the optimal solution are then presented and an example, taken from a simplified model for HIV mutation mitigation is discussed.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
Deep learning Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning. Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, constructing a pattern-recognition or machine-learning system required careful engineering and considerable domain expertise to design a feature extractor that transformed the raw data (such as the pixel values of an image) into a suitable internal representation or feature vector from which the learning subsystem, often a classifier, could detect or classify patterns in the input. Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned. For classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations. An image, for example, comes in the form of an array of pixel values, and the learned features in the first layer of representation typically represent the presence or absence of edges at particular orientations and locations in the image. The second layer typically detects motifs by spotting particular arrangements of edges, regardless of small variations in the edge positions. The third layer may assemble motifs into larger combinations that correspond to parts of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of deep learning is that these layers of features are not designed by human engineers: they are learned from data using a general-purpose learning procedure. Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years. It has turned out to be very good at discovering intricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition1, 2, 3, 4 and speech recognition5, 6, 7, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules8, analysing particle accelerator data9, 10, reconstructing brain circuits11, and predicting the effects of mutations in non-coding DNA on gene expression and disease12, 13. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding14, particularly topic classification, sentiment analysis, question answering15 and language translation16, 17. We think that deep learning will have many more successes in the near future because it requires very little engineering by hand, so it can easily take advantage of increases in the amount of available computation and data. New learning algorithms and architectures that are currently being developed for deep neural networks will only accelerate this progress. The most common form of machine learning, deep or not, is supervised learning. Imagine that we want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets, each labelled with its category. During training, the machine is shown an image and produces an output in the form of a vector of scores, one for each category. We want the desired category to have the highest score of all categories, but this is unlikely to happen before training. We compute an objective function that measures the error (or distance) between the output scores and the desired pattern of scores. The machine then modifies its internal adjustable parameters to reduce this error. These adjustable parameters, often called weights, are real numbers that can be seen as 'knobs' that define the input–output function of the machine. In a typical deep-learning system, there may be hundreds of millions of these adjustable weights, and hundreds of millions of labelled examples with which to train the machine. To properly adjust the weight vector, the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error would increase or decrease if the weight were increased by a tiny amount. The weight vector is then adjusted in the opposite direction to the gradient vector. The objective function, averaged over all the training examples, can be seen as a kind of hilly landscape in the high-dimensional space of weight values. The negative gradient vector indicates the direction of steepest descent in this landscape, taking it closer to a minimum, where the output error is low on average. In practice, most practitioners use a procedure called stochastic gradient descent (SGD). This consists of showing the input vector for a few examples, computing the outputs and the errors, computing the average gradient for those examples, and adjusting the weights accordingly. The process is repeated for many small sets of examples from the training set until the average of the objective function stops decreasing. It is called stochastic because each small set of examples gives a noisy estimate of the average gradient over all examples. This simple procedure usually finds a good set of weights surprisingly quickly when compared with far more elaborate optimization techniques18. After training, the performance of the system is measured on a different set of examples called a test set. This serves to test the generalization ability of the machine — its ability to produce sensible answers on new inputs that it has never seen during training. Many of the current practical applications of machine learning use linear classifiers on top of hand-engineered features. A two-class linear classifier computes a weighted sum of the feature vector components. If the weighted sum is above a threshold, the input is classified as belonging to a particular category. Since the 1960s we have known that linear classifiers can only carve their input space into very simple regions, namely half-spaces separated by a hyperplane19. But problems such as image and speech recognition require the input–output function to be insensitive to irrelevant variations of the input, such as variations in position, orientation or illumination of an object, or variations in the pitch or accent of speech, while being very sensitive to particular minute variations (for example, the difference between a white wolf and a breed of wolf-like white dog called a Samoyed). At the pixel level, images of two Samoyeds in different poses and in different environments may be very different from each other, whereas two images of a Samoyed and a wolf in the same position and on similar backgrounds may be very similar to each other. A linear classifier, or any other 'shallow' classifier operating on raw pixels could not possibly distinguish the latter two, while putting the former two in the same category. This is why shallow classifiers require a good feature extractor that solves the selectivity–invariance dilemma — one that produces representations that are selective to the aspects of the image that are important for discrimination, but that are invariant to irrelevant aspects such as the pose of the animal. To make classifiers more powerful, one can use generic non-linear features, as with kernel methods20, but generic features such as those arising with the Gaussian kernel do not allow the learner to generalize well far from the training examples21. The conventional option is to hand design good feature extractors, which requires a considerable amount of engineering skill and domain expertise. But this can all be avoided if good features can be learned automatically using a general-purpose learning procedure. This is the key advantage of deep learning. A deep-learning architecture is a multilayer stack of simple modules, all (or most) of which are subject to learning, and many of which compute non-linear input–output mappings. Each module in the stack transforms its input to increase both the selectivity and the invariance of the representation. With multiple non-linear layers, say a depth of 5 to 20, a system can implement extremely intricate functions of its inputs that are simultaneously sensitive to minute details — distinguishing Samoyeds from white wolves — and insensitive to large irrelevant variations such as the background, pose, lighting and surrounding objects. From the earliest days of pattern recognition22, 23, the aim of researchers has been to replace hand-engineered features with trainable multilayer networks, but despite its simplicity, the solution was not widely understood until the mid 1980s. As it turns out, multilayer architectures can be trained by simple stochastic gradient descent. As long as the modules are relatively smooth functions of their inputs and of their internal weights, one can compute gradients using the backpropagation procedure. The idea that this could be done, and that it worked, was discovered independently by several different groups during the 1970s and 1980s24, 25, 26, 27. The backpropagation procedure to compute the gradient of an objective function with respect to the weights of a multilayer stack of modules is nothing more than a practical application of the chain rule for derivatives. The key insight is that the derivative (or gradient) of the objective with respect to the input of a module can be computed by working backwards from the gradient with respect to the output of that module (or the input of the subsequent module) (Fig. 1). The backpropagation equation can be applied repeatedly to propagate gradients through all modules, starting from the output at the top (where the network produces its prediction) all the way to the bottom (where the external input is fed). Once these gradients have been computed, it is straightforward to compute the gradients with respect to the weights of each module. Many applications of deep learning use feedforward neural network architectures (Fig. 1), which learn to map a fixed-size input (for example, an image) to a fixed-size output (for example, a probability for each of several categories). To go from one layer to the next, a set of units compute a weighted sum of their inputs from the previous layer and pass the result through a non-linear function. At present, the most popular non-linear function is the rectified linear unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). In past decades, neural nets used smoother non-linearities, such as tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster in networks with many layers, allowing training of a deep supervised network without unsupervised pre-training28. Units that are not in the input or output layer are conventionally called hidden units. The hidden layers can be seen as distorting the input in a non-linear way so that categories become linearly separable by the last layer (Fig. 1). In the late 1990s, neural nets and backpropagation were largely forsaken by the machine-learning community and ignored by the computer-vision and speech-recognition communities. It was widely thought that learning useful, multistage, feature extractors with little prior knowledge was infeasible. In particular, it was commonly thought that simple gradient descent would get trapped in poor local minima — weight configurations for which no small change would reduce the average error. In practice, poor local minima are rarely a problem with large networks. Regardless of the initial conditions, the system nearly always reaches solutions of very similar quality. Recent theoretical and empirical results strongly suggest that local minima are not a serious issue in general. Instead, the landscape is packed with a combinatorially large number of saddle points where the gradient is zero, and the surface curves up in most dimensions and curves down in the remainder29, 30. The analysis seems to show that saddle points with only a few downward curving directions are present in very large numbers, but almost all of them have very similar values of the objective function. Hence, it does not much matter which of these saddle points the algorithm gets stuck at. Interest in deep feedforward networks was revived around 2006 (refs 31,32,33,34) by a group of researchers brought together by the Canadian Institute for Advanced Research (CIFAR). The researchers introduced unsupervised learning procedures that could create layers of feature detectors without requiring labelled data. The objective in learning each layer of feature detectors was to be able to reconstruct or model the activities of feature detectors (or raw inputs) in the layer below. By 'pre-training' several layers of progressively more complex feature detectors using this reconstruction objective, the weights of a deep network could be initialized to sensible values. A final layer of output units could then be added to the top of the network and the whole deep system could be fine-tuned using standard backpropagation33, 34, 35. This worked remarkably well for recognizing handwritten digits or for detecting pedestrians, especially when the amount of labelled data was very limited36. The first major application of this pre-training approach was in speech recognition, and it was made possible by the advent of fast graphics processing units (GPUs) that were convenient to program37 and allowed researchers to train networks 10 or 20 times faster. In 2009, the approach was used to map short temporal windows of coefficients extracted from a sound wave to a set of probabilities for the various fragments of speech that might be represented by the frame in the centre of the window. It achieved record-breaking results on a standard speech recognition benchmark that used a small vocabulary38 and was quickly developed to give record-breaking results on a large vocabulary task39. By 2012, versions of the deep net from 2009 were being developed by many of the major speech groups6 and were already being deployed in Android phones. For smaller data sets, unsupervised pre-training helps to prevent overfitting40, leading to significantly better generalization when the number of labelled examples is small, or in a transfer setting where we have lots of examples for some 'source' tasks but very few for some 'target' tasks. Once deep learning had been rehabilitated, it turned out that the pre-training stage was only needed for small data sets. There was, however, one particular type of deep, feedforward network that was much easier to train and generalized much better than networks with full connectivity between adjacent layers. This was the convolutional neural network (ConvNet)41, 42. It achieved many practical successes during the period when neural networks were out of favour and it has recently been widely adopted by the computer-vision community. ConvNets are designed to process data that come in the form of multiple arrays, for example a colour image composed of three 2D arrays containing pixel intensities in the three colour channels. Many data modalities are in the form of multiple arrays: 1D for signals and sequences, including language; 2D for images or audio spectrograms; and 3D for video or volumetric images. There are four key ideas behind ConvNets that take advantage of the properties of natural signals: local connections, shared weights, pooling and the use of many layers. The architecture of a typical ConvNet (Fig. 2) is structured as a series of stages. The first few stages are composed of two types of layers: convolutional layers and pooling layers. Units in a convolutional layer are organized in feature maps, within which each unit is connected to local patches in the feature maps of the previous layer through a set of weights called a filter bank. The result of this local weighted sum is then passed through a non-linearity such as a ReLU. All units in a feature map share the same filter bank. Different feature maps in a layer use different filter banks. The reason for this architecture is twofold. First, in array data such as images, local groups of values are often highly correlated, forming distinctive local motifs that are easily detected. Second, the local statistics of images and other signals are invariant to location. In other words, if a motif can appear in one part of the image, it could appear anywhere, hence the idea of units at different locations sharing the same weights and detecting the same pattern in different parts of the array. Mathematically, the filtering operation performed by a feature map is a discrete convolution, hence the name. Although the role of the convolutional layer is to detect local conjunctions of features from the previous layer, the role of the pooling layer is to merge semantically similar features into one. Because the relative positions of the features forming a motif can vary somewhat, reliably detecting the motif can be done by coarse-graining the position of each feature. A typical pooling unit computes the maximum of a local patch of units in one feature map (or in a few feature maps). Neighbouring pooling units take input from patches that are shifted by more than one row or column, thereby reducing the dimension of the representation and creating an invariance to small shifts and distortions. Two or three stages of convolution, non-linearity and pooling are stacked, followed by more convolutional and fully-connected layers. Backpropagating gradients through a ConvNet is as simple as through a regular deep network, allowing all the weights in all the filter banks to be trained. Deep neural networks exploit the property that many natural signals are compositional hierarchies, in which higher-level features are obtained by composing lower-level ones. In images, local combinations of edges form motifs, motifs assemble into parts, and parts form objects. Similar hierarchies exist in speech and text from sounds to phones, phonemes, syllables, words and sentences. The pooling allows representations to vary very little when elements in the previous layer vary in position and appearance. The convolutional and pooling layers in ConvNets are directly inspired by the classic notions of simple cells and complex cells in visual neuroscience43, and the overall architecture is reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway44. When ConvNet models and monkeys are shown the same picture, the activations of high-level units in the ConvNet explains half of the variance of random sets of 160 neurons in the monkey's inferotemporal cortex45. ConvNets have their roots in the neocognitron46, the architecture of which was somewhat similar, but did not have an end-to-end supervised-learning algorithm such as backpropagation. A primitive 1D ConvNet called a time-delay neural net was used for the recognition of phonemes and simple words47, 48. There have been numerous applications of convolutional networks going back to the early 1990s, starting with time-delay neural networks for speech recognition47 and document reading42. The document reading system used a ConvNet trained jointly with a probabilistic model that implemented language constraints. By the late 1990s this system was reading over 10% of all the cheques in the United States. A number of ConvNet-based optical character recognition and handwriting recognition systems were later deployed by Microsoft49. ConvNets were also experimented with in the early 1990s for object detection in natural images, including faces and hands50, 51, and for face recognition52. Since the early 2000s, ConvNets have been applied with great success to the detection, segmentation and recognition of objects and regions in images. These were all tasks in which labelled data was relatively abundant, such as traffic sign recognition53, the segmentation of biological images54 particularly for connectomics55, and the detection of faces, text, pedestrians and human bodies in natural images36, 50, 51, 56, 57, 58. A major recent practical success of ConvNets is face recognition59. Importantly, images can be labelled at the pixel level, which will have applications in technology, including autonomous mobile robots and self-driving cars60, 61. Companies such as Mobileye and NVIDIA are using such ConvNet-based methods in their upcoming vision systems for cars. Other applications gaining importance involve natural language understanding14 and speech recognition7. Despite these successes, ConvNets were largely forsaken by the mainstream computer-vision and machine-learning communities until the ImageNet competition in 2012. When deep convolutional networks were applied to a data set of about a million images from the web that contained 1,000 different classes, they achieved spectacular results, almost halving the error rates of the best competing approaches1. This success came from the efficient use of GPUs, ReLUs, a new regularization technique called dropout62, and techniques to generate more training examples by deforming the existing ones. This success has brought about a revolution in computer vision; ConvNets are now the dominant approach for almost all recognition and detection tasks4, 58, 59, 63, 64, 65 and approach human performance on some tasks. A recent stunning demonstration combines ConvNets and recurrent net modules for the generation of image captions (Fig. 3). Recent ConvNet architectures have 10 to 20 layers of ReLUs, hundreds of millions of weights, and billions of connections between units. Whereas training such large networks could have taken weeks only two years ago, progress in hardware, software and algorithm parallelization have reduced training times to a few hours. The performance of ConvNet-based vision systems has caused most major technology companies, including Google, Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly growing number of start-ups to initiate research and development projects and to deploy ConvNet-based image understanding products and services. ConvNets are easily amenable to efficient hardware implementations in chips or field-programmable gate arrays66, 67. A number of companies such as NVIDIA, Mobileye, Intel, Qualcomm and Samsung are developing ConvNet chips to enable real-time vision applications in smartphones, cameras, robots and self-driving cars. Deep-learning theory shows that deep nets have two different exponential advantages over classic learning algorithms that do not use distributed representations21. Both of these advantages arise from the power of composition and depend on the underlying data-generating distribution having an appropriate componential structure40. First, learning distributed representations enable generalization to new combinations of the values of learned features beyond those seen during training (for example, 2n combinations are possible with n binary features)68, 69. Second, composing layers of representation in a deep net brings the potential for another exponential advantage70 (exponential in the depth). The hidden layers of a multilayer neural network learn to represent the network's inputs in a way that makes it easy to predict the target outputs. This is nicely demonstrated by training a multilayer neural network to predict the next word in a sequence from a local context of earlier words71. Each word in the context is presented to the network as a one-of-N vector, that is, one component has a value of 1 and the rest are 0. In the first layer, each word creates a different pattern of activations, or word vectors (Fig. 4). In a language model, the other layers of the network learn to convert the input word vectors into an output word vector for the predicted next word, which can be used to predict the probability for any word in the vocabulary to appear as the next word. The network learns word vectors that contain many active components each of which can be interpreted as a separate feature of the word, as was first demonstrated27 in the context of learning distributed representations for symbols. These semantic features were not explicitly present in the input. They were discovered by the learning procedure as a good way of factorizing the structured relationships between the input and output symbols into multiple 'micro-rules'. Learning word vectors turned out to also work very well when the word sequences come from a large corpus of real text and the individual micro-rules are unreliable71. When trained to predict the next word in a news story, for example, the learned word vectors for Tuesday and Wednesday are very similar, as are the word vectors for Sweden and Norway. Such representations are called distributed representations because their elements (the features) are not mutually exclusive and their many configurations correspond to the variations seen in the observed data. These word vectors are composed of learned features that were not determined ahead of time by experts, but automatically discovered by the neural network. Vector representations of words learned from text are now very widely used in natural language applications14, 17, 72, 73, 74, 75, 76. The issue of representation lies at the heart of the debate between the logic-inspired and the neural-network-inspired paradigms for cognition. In the logic-inspired paradigm, an instance of a symbol is something for which the only property is that it is either identical or non-identical to other symbol instances. It has no internal structure that is relevant to its use; and to reason with symbols, they must be bound to the variables in judiciously chosen rules of inference. By contrast, neural networks just use big activity vectors, big weight matrices and scalar non-linearities to perform the type of fast 'intuitive' inference that underpins effortless commonsense reasoning. Before the introduction of neural language models71, the standard approach to statistical modelling of language did not exploit distributed representations: it was based on counting frequencies of occurrences of short symbol sequences of length up to N (called N-grams). The number of possible N-grams is on the order of VN, where V is the vocabulary size, so taking into account a context of more than a handful of words would require very large training corpora. N-grams treat each word as an atomic unit, so they cannot generalize across semantically related sequences of words, whereas neural language models can because they associate each word with a vector of real valued features, and semantically related words end up close to each other in that vector space (Fig. 4). When backpropagation was first introduced, its most exciting use was for training recurrent neural networks (RNNs). For tasks that involve sequential inputs, such as speech and language, it is often better to use RNNs (Fig. 5). RNNs process an input sequence one element at a time, maintaining in their hidden units a 'state vector' that implicitly contains information about the history of all the past elements of the sequence. When we consider the outputs of the hidden units at different discrete time steps as if they were the outputs of different neurons in a deep multilayer network (Fig. 5, right), it becomes clear how we can apply backpropagation to train RNNs. RNNs are very powerful dynamic systems, but training them has proved to be problematic because the backpropagated gradients either grow or shrink at each time step, so over many time steps they typically explode or vanish77, 78. Thanks to advances in their architecture79, 80 and ways of training them81, 82, RNNs have been found to be very good at predicting the next character in the text83 or the next word in a sequence75, but they can also be used for more complex tasks. For example, after reading an English sentence one word at a time, an English 'encoder' network can be trained so that the final state vector of its hidden units is a good representation of the thought expressed by the sentence. This thought vector can then be used as the initial hidden state of (or as extra input to) a jointly trained French 'decoder' network, which outputs a probability distribution for the first word of the French translation. If a particular first word is chosen from this distribution and provided as input to the decoder network it will then output a probability distribution for the second word of the translation and so on until a full stop is chosen17, 72, 76. Overall, this process generates sequences of French words according to a probability distribution that depends on the English sentence. This rather naive way of performing machine translation has quickly become competitive with the state-of-the-art, and this raises serious doubts about whether understanding a sentence requires anything like the internal symbolic expressions that are manipulated by using inference rules. It is more compatible with the view that everyday reasoning involves many simultaneous analogies that each contribute plausibility to a conclusion84, 85. Instead of translating the meaning of a French sentence into an English sentence, one can learn to 'translate' the meaning of an image into an English sentence (Fig. 3). The encoder here is a deep ConvNet that converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN similar to the ones used for machine translation and neural language modelling. There has been a surge of interest in such systems recently (see examples mentioned in ref. 86). RNNs, once unfolded in time (Fig. 5), can be seen as very deep feedforward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long78. To correct for that, one idea is to augment the network with an explicit memory. The first proposal of this kind is the long short-term memory (LSTM) networks that use special hidden units, the natural behaviour of which is to remember inputs for a long time79. A special unit called the memory cell acts like an accumulator or a gated leaky neuron: it has a connection to itself at the next time step that has a weight of one, so it copies its own real-valued state and accumulates the external signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear the content of the memory. LSTM networks have subsequently proved to be more effective than conventional RNNs, especially when they have several layers for each time step87, enabling an entire speech recognition system that goes all the way from acoustics to the sequence of characters in the transcription. LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks that perform so well at machine translation17, 72, 76. Over the past year, several authors have made different proposals to augment RNNs with a memory module. Proposals include the Neural Turing Machine in which the network is augmented by a 'tape-like' memory that the RNN can choose to read from or write to88, and memory networks, in which a regular network is augmented by a kind of associative memory89. Memory networks have yielded excellent performance on standard question-answering benchmarks. The memory is used to remember the story about which the network is later asked to answer questions. Beyond simple memorization, neural Turing machines and memory networks are being used for tasks that would normally require reasoning and symbol manipulation. Neural Turing machines can be taught 'algorithms'. Among other things, they can learn to output a sorted list of symbols when their input consists of an unsorted sequence in which each symbol is accompanied by a real value that indicates its priority in the list88. Memory networks can be trained to keep track of the state of the world in a setting similar to a text adventure game and after reading a story, they can answer questions that require complex inference90. In one test example, the network is shown a 15-sentence version of the The Lord of the Rings and correctly answers questions such as “where is Frodo now?”89. Unsupervised learning91, 92, 93, 94, 95, 96, 97, 98 had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. Although we have not focused on it in this Review, we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object. Human vision is an active process that sequentially samples the optic array in an intelligent, task-specific way using a small, high-resolution fovea with a large, low-resolution surround. We expect much of the future progress in vision to come from systems that are trained end-to-end and combine ConvNets with RNNs that use reinforcement learning to decide where to look. Systems combining deep learning and reinforcement learning are in their infancy, but they already outperform passive vision systems99 at classification tasks and produce impressive results in learning to play many different video games100. Natural language understanding is another area in which deep learning is poised to make a large impact over the next few years. We expect systems that use RNNs to understand sentences or whole documents will become much better when they learn strategies for selectively attending to one part at a time76, 86. Ultimately, major progress in artificial intelligence will come about through systems that combine representation learning with complex reasoning. Although deep learning and simple reasoning have been used for speech and handwriting recognition for a long time, new paradigms are needed to replace rule-based manipulation of symbolic expressions by operations on large vectors101. Download references The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute For Advanced Research (CIFAR), the National Science Foundation and Office of Naval Research for support. Y.L. and Y.B. are CIFAR fellows. Reprints and permissions information is available at www.nature.com/reprints.
GSA: A Gravitational Search Algorithm In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions.
Optimal distributed interference avoidance: potential game and learning. This article studies the problem of distributed interference avoidance (IA) through channel selection for distributed wireless networks, where mutual interference only occurs among nearby users. First, an interference graph is used to characterise the limited range of interference, and then the distributed IA problem is formulated as a graph colouring problem. Because solving the graph colouring problem is non-deterministic polynomial hard even in a centralised manner, the task of obtaining the optimal channel selection profile distributively is challenging. We formulate this problem as a channel selection game, which is proved to be an exact potential game with the weighted aggregate interference serving as the potential function. On the basis of this, a distributed learning algorithm is proposed to achieve the optimal channel selection profile that constitutes an optimal Nash equilibrium point of the channel selection game. The proposed learning algorithm is fully distributed because it needs information about neither the network topology nor the actions and the experienced interference of others. Simulation results show that the proposed potential game theoretic IA algorithm outperforms the existing algorithm because it minimises the aggregate weighted interference and achieves higher network rate. Copyright (c) 2012 John Wiley & Sons, Ltd.
Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics. In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed that the reference trajectory is generated by a linear command generator system. An augmented system composed of the original system and the command generator is constructed and it is shown that the value function for the LQT is quadratic in terms of the state of the augmented system. Using the quadratic structure of the value function, a Bellman equation and an augmented algebraic Riccati equation (ARE) for solving the LQT are derived. In contrast to the standard solution of the LQT, which requires the solution of an ARE and a noncausal difference equation simultaneously, in the proposed method the optimal control input is obtained by only solving an augmented ARE. A Q-learning algorithm is developed to solve online the augmented ARE without any knowledge about the system dynamics or the command generator. Convergence to the optimal solution is shown. A simulation example is used to verify the effectiveness of the proposed control scheme.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.046248
0.047378
0.04226
0.04226
0.014575
0.001096
0.000096
0
0
0
0
0
0
0
Approximation Algorithms for Charging Reward Maximization in Rechargeable Sensor Networks via a Mobile Charger. Wireless energy transfer has emerged as a promising technology for wireless sensor networks to power sensors with controllable yet perpetual energy. In this paper, we study sensor energy replenishment by employing a mobile charger (charging vehicle) to charge sensors wirelessly in a rechargeable sensor network, so that the sum of charging rewards collected from all charged sensors by the mobile ch...
Mean Shift, Mode Seeking, and Clustering Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a 驴shadow驴 kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization.
An effective implementation of the Lin–Kernighan traveling salesman heuristic This paper describes an implementation of the Lin–Kernighan heuristic, one of the most successful methods for generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality today).
SGCO: Stabilized Green Crosshaul Orchestration for Dense IoT Offloading Services. The next-generation mobile network anticipates integrated heterogeneous fronthaul and backhaul technologies referred to as a unified crosshaul architecture. The crosshaul enables a flexible and cost-efficient infrastructure for handling mobile data tsunami from dense Internet of things (IoT). However, stabilization, energy efficiency, and latency have not been jointly considered in the optimizatio...
I-SEP: An Improved Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring Wireless sensor networks (WSNs) is a virtual layer in the paradigm of the Internet of Things (IoT). It inter-relates information associated with the physical domain to the IoT drove computational systems. WSN provides an ubiquitous access to location, the status of different entities of the environment, and data acquisition for long-term IoT monitoring. Since energy is a major constraint in the design process of a WSN, recent advances have led to project various energy-efficient protocols. Routing of data involves energy expenditure in considerable amount. In recent times, various heuristic clustering protocols have been discussed to solve the purpose. This article is an improvement of the existing stable election protocol (SEP) that implements a threshold-based cluster head (CH) selection for a heterogeneous network. The threshold maintains uniform energy distribution between member and CH nodes. The sensor nodes are also categorized into three different types called normal, intermediate, and advanced depending on the initial energy supply to distribute the network load evenly. The simulation result shows that the proposed scheme outperforms SEP and DEEC protocols with an improvement of 300% in network lifetime and 56% in throughput.
Adaptive Wireless Power Transfer in Mobile Ad Hoc Networks. We investigate the interesting impact of mobility on the problem of efficient wireless power transfer in ad hoc networks. We consider a set of mobile agents (consuming energy to perform certain sensing and communication tasks), and a single static charger (with finite energy) which can recharge the agents when they get in its range. In particular, we focus on the problem of efficiently computing the appropriate range of the charger with the goal of prolonging the network lifetime. We first demonstrate (under the realistic assumption of fixed energy supplies) the limitations of any fixed charging range and, therefore, the need for (and power of) a dynamic selection of the charging range, by adapting to the behavior of the mobile agents which is revealed in an online manner. We investigate the complexity of optimizing the selection of such an adaptive charging range, by showing that two simplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
Minimizing the Maximum Charging Delay of Multiple Mobile Chargers Under the Multi-Node Energy Charging Scheme Wireless energy charging has emerged as a very promising technology for prolonging sensor lifetime in wireless rechargeable sensor networks (WRSNs). Existing studies focused mainly on the one-to-one charging scheme that a single sensor can be charged by a mobile charger at each time, this charging scheme however suffers from poor charging scalability and inefficiency. Recently, another charging scheme, the multi-node charging scheme that allows multiple sensors to be charged simultaneously by a mobile charger, becomes dominant, which can mitigate charging scalability and improve charging efficiency. However, most previous studies on this multi-node energy charging scheme focused on the use of a single mobile charger to charge multiple sensors simultaneously. For large scale WRSNs, it is insufficient to deploy only a single mobile charger to charge many lifetime-critical sensors, and consequently sensor expiration durations will increase dramatically. To charge many lifetime-critical sensors in large scale WRSNs as early as possible, it is inevitable to adopt multiple mobile chargers for sensor charging that can not only speed up sensor charging but also reduce expiration times of sensors. This however poses great challenges to fairly schedule the multiple mobile chargers such that the longest charging delay among sensors is minimized. One important constraint is that no sensor can be charged by more than one mobile charger at any time due to the fact that the sensor cannot receive any energy from either of the chargers or the overcharging will damage the recharging battery of the sensor. Thus, finding a closed charge tour for each of the multiple chargers such that the longest charging delay is minimized is crucial. In this paper we address the challenge by formulating a novel longest charging delay minimization problem. We first show that the problem is NP-hard. We then devise the very first approximation algorithm with a provable approximation ratio for the problem. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithm is promising, and outperforms existing algorithms in various settings.
Approximation Algorithms for the Team Orienteering Problem In this paper we study a team orienteering problem, which is to find service paths for multiple vehicles in a network such that the profit sum of serving the nodes in the paths is maximized, subject to the cost budget of each vehicle. This problem has many potential applications in IoT and smart cities, such as dispatching energy-constrained mobile chargers to charge as many energy-critical sensors as possible to prolong the network lifetime. In this paper, we first formulate the team orienteering problem, where different vehicles are different types, each node can be served by multiple vehicles, and the profit of serving the node is a submodular function of the number of vehicles serving it. We then propose a novel $\left( {1 - {{(1/e)}^{\frac{1}{{2 + \varepsilon }}}}} \right)$ approximation algorithm for the problem, where ϵ is a given constant with 0 < ϵ≤ 1 and e is the base of the natural logarithm. In particular, the approximation ratio is no less than 0.32 when ϵ= 0.5. In addition, for a special team orienteering problem with the same type of vehicles and the profits of serving a node once and multiple times being the same, we devise an improved approximation algorithm. Finally, we evaluate the proposed algorithms with simulation experiments, and the results of which are very promising. Precisely, the profit sums delivered by the proposed algorithms are approximately 12.5% to 17.5% higher than those by existing algorithms.
Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor Networks Unmanned aerial vehicle (UAV)-aided Wireless Rechargeable Sensor Network (WRSN) is a promising application in providing sustainable power supply to the rechargeable sensor nodes (SNs). Constructing a trajectory for the UAV to traverse all SNs with the cheapest cost is an important issue in UAV-aided WRSN. Although some exact algorithms and heuristic methods have been proposed, they cannot achieve a superb result for the large-scale scene within the tolerable time. In this paper, we study the UAV‘s trajectory optimization problem from a novel viewpoint that the designed trajectory should maximize the UAV's energy utilization efficiency. The maximum UAV's energy utilization efficiency problem is decomposed as integer programming and non-convex optimization problems. For the problem that UAV‘s charging position is fixed, we have speeded the algorithm's performance by limiting the search direction, the initial search position, and the search space. In the other case, where the power transfer efficiency is unchangeable within a certain distance, a polynomial-time randomized approximation scheme (PRAS) is presented to find the approximate minimum number of hovering locations. We have presented TPA-FCP and TPA-ERC to solve the above problems, respectively. The numerical results verify that our proposed algorithms effectively reduce the length of optimal trajectory and the time complexity. Besides, the energy carried by the UAV for the specified task is predictable, which provides valuable information for arranging the UAV's flight task.
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
Minimum interference routing of bandwidth guaranteed tunnels with MPLS traffic engineering applications This paper presents new algorithms for dynamic routing of bandwidth guaranteed tunnels, where tunnel routing requests arrive one by one and there is no a priori knowledge regarding future requests. This problem is motivated by the service provider needs for fast deployment of bandwidth guaranteed services. Offline routing algorithms cannot be used since they require a priori knowledge of all tunnel requests that are to be rooted. Instead, on-line algorithms that handle requests arriving one by one and that satisfy as many potential future demands as possible are needed. The newly developed algorithms are on-line algorithms and are based on the idea that a newly routed tunnel must follow a route that does not “interfere too much” with a route that may he critical to satisfy a future demand. We show that this problem is NP-hard. We then develop path selection heuristics which are based on the idea of deferred loading of certain “critical” links. These critical links are identified by the algorithm as links that, if heavily loaded, would make it impossible to satisfy future demands between certain ingress-egress pairs. Like min-hop routing, the presented algorithm uses link-state information and some auxiliary capacity information for path selection. Unlike previous algorithms, the proposed algorithm exploits any available knowledge of the network ingress-egress points of potential future demands, even though the demands themselves are unknown. If all nodes are ingress-egress nodes, the algorithm can still be used, particularly to reduce the rejection rate of requests between a specified subset of important ingress-egress pairs. The algorithm performs well in comparison to previously proposed algorithms on several metrics like the number of rejected demands and successful rerouting of demands upon link failure
Comprehensible classification models: a position paper The vast majority of the literature evaluates the performance of classification models using only the criterion of predictive accuracy. This paper reviews the case for considering also the comprehensibility (interpretability) of classification models, and discusses the interpretability of five types of classification models, namely decision trees, classification rules, decision tables, nearest neighbors and Bayesian network classifiers. We discuss both interpretability issues which are specific to each of those model types and more generic interpretability issues, namely the drawbacks of using model size as the only criterion to evaluate the comprehensibility of a model, and the use of monotonicity constraints to improve the comprehensibility and acceptance of classification models by users.
Efficient multi-task allocation and path planning for unmanned surface vehicle in support of ocean operations. Presently, there is an increasing interest in the deployment of unmanned surface vehicles (USVs) to support complex ocean operations. In order to carry out these missions in a more efficient way, an intelligent hybrid multi-task allocation and path planning algorithm is required and has been proposed in this paper. In terms of the multi-task allocation, a novel algorithm based upon a self-organising map (SOM) has been designed and developed. The main contribution is that an adaptive artificial repulsive force field has been constructed and integrated into the SOM to achieve collision avoidance capability. The new algorithm is able to fast and effectively generate a sequence for executing multiple tasks in a cluttered maritime environment involving numerous obstacles. After generating an optimised task execution sequence, a path planning algorithm based upon fast marching square (FMS) is utilised to calculate the trajectories. Because of the introduction of a safety parameter, the FMS is able to adaptively adjust the dimensional influence of an obstacle and accordingly generate the paths to ensure the safety of the USV. The algorithms have been verified and evaluated through a number of computer based simulations and has been proven to work effectively in both simulated and practical maritime environments. (C) 2017 Elsevier B.V. All rights reserved.
Small Leak Location for Intelligent Pipeline System via Action-Dependent Heuristic Dynamic Programming In the construction process of intelligent pipeline system, pipeline monitoring is an important content to improve the safety of pipeline operation. Small leak location, in particular, is the primary focus of pipeline monitoring due to the unclear pressure drop point. To solve this, in this article, a data driven-based method of small leak location is proposed. First, through the collected pipeline parameters, empirical flow variables, and historical pressure values in pipeline system, a pipeline model based on pressure along pipeline is presented by a three-layer neural network to close to the industrial scenarios. Then, on the basis of the analyzed propagation process of negative pressure wave, an action-dependent heuristic dynamic programming with pressure–distance physical constraints is proposed to obtain the small leak location result. The proposed method is suitable for the collection of only pressure data scenario, which expands the application range. Finally, different cases of small leak location results indicate that the proposed method can locate the leak point, and the field tests further show that the proposed method has satisfactory performances in pipeline leak analysis.
1.027219
0.03
0.03
0.03
0.03
0.03
0.025
0.025
0.01375
0
0
0
0
0
An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System. With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability.
Higher-order SVD analysis for crowd density estimation This paper proposes a new method to estimate the crowd density based on the combination of higher-order singular value decomposition (HOSVD) and support vector machine (SVM). We first construct a higher-order tensor with all the images in the training set, and apply HOSVD to obtain a small set of orthonormal basis tensors that can span the principal subspace for all the training images. The coordinate, which best describes an image under this set of orthonormal basis tensors, is computed as the density character vector. Furthermore, a multi-class SVM classifier is designed to classify the extracted density character vectors into different density levels. Compared with traditional methods, we can make significant improvements to crowd density estimation. The experimental results show that the accuracy of our method achieves 96.33%, in which the misclassified images are all concentrated in their neighboring categories.
Crowd density analysis using subspace learning on local binary pattern Crowd density analysis is a crucial component in visual surveillance for security monitoring. This paper proposes a novel approach for crowd density estimation. The main contribution of this paper is two-fold: First, we propose to estimate crowd density at patch level, where the size of each patch varies in such way to compensate the effects of perspective distortions; second, instead of using raw features to represent each patch sample, we propose to learn a discriminant subspace of the high-dimensional Local Binary Pattern (LBP) raw feature vector where samples of different crowd density are optimally separated. The effectiveness of the proposed algorithm is evaluated on PETS dataset, and the results show that effective dimensionality reduction (DR) techniques significantly enhance the classification accuracy. The performance of the proposed framework is also compared to other frequently used features in crowd density estimation. Our proposed algorithm outperforms the state-of-the-art methods with a significant margin.
Real-time people movement estimation in large disasters from several kinds of mobile phone data. Recently, an understanding of mass movement in urban areas immediately after large disasters, such as the Great East Japan Earthquake (GEJE), has been needed. In particular, mobile phone data is available as time-varying data. However, much more detailed movement that is based on network flow instead of aggregated data is needed for appropriate rescue on a real-time basis. Hence, our research aims to estimate real-time human movement during large disasters from several kinds of mobile phone data. In this paper, we simulate the movement of people in the Tokyo metropolitan area in a large disaster situation and obtain several kinds of fragmentary movement observation data from mobile phones. Our approach is to use data assimilation techniques combining with simulation of population movement and observation data. The experimental results confirm that the improvement in accuracy depends on the observation data quality using sensitivity analysis and data processing speed to satisfy each condition for real-time estimation.
Inferring fine-grained transport modes from mobile phone cellular signaling data Due to the ubiquity of mobile phones, mobile phone network data (e.g., Call Detail Records, CDR; and cellular signaling data, CSD), which are collected by mobile telecommunication operators for maintenance purposes, allow us to potentially study travel behaviors of a high percentage of the whole population, with full temporal coverage at a comparatively low cost. However, extracting mobility information such as transport modes from these data is very challenging, due to their low spatial accuracy and infrequent/irregular temporal characteristics. Existing studies relying on mobile phone network data mostly employed simple rule-based methods with geographic data, and focused on easy-to-detect transport modes (e.g., train and subway) or coarse-grained modes (e.g., public versus private transport). Meanwhile, due to the lack of ground truth data, evaluation of these methods was not reported, or only for aggregate data, and it is thus unclear how well the existing methods can detect modes of individual trips. This article proposes two supervised methods - one combining rule-based heuristics (RBH) with random forest (RF), and the other combining RBH with a fuzzy logic system - and a third, unsupervised method with RBH and k-medoids clustering, to detect fine-grained transport modes from CSD, particularly subway, train, tram, bike, car, and walk. Evaluation with a labeled ground truth dataset shows that the best performing method is the hybrid one with RBH and RF, where a classification accuracy of 73% is achieved when differentiating these modes. To our knowledge, this is the first study that distinguishes fine-grained transport modes in CSD and validates results with ground truth data. This study may thus inform future CSD-based applications in areas such as intelligent transport systems, urban/transport planning, and smart cities.
An aggregation approach to short-term traffic flow prediction In this paper, an aggregation approach is proposed for traffic flow prediction that is based on the moving average (MA), exponential smoothing (ES), autoregressive MA (ARIMA), and neural network (NN) models. The aggregation approach assembles information from relevant time series. The source time series is the traffic flow volume that is collected 24 h/day over several years. The three relevant time series are a weekly similarity time series, a daily similarity time series, and an hourly time series, which can be directly generated from the source time series. The MA, ES, and ARIMA models are selected to give predictions of the three relevant time series. The predictions that result from the different models are used as the basis of the NN in the aggregation stage. The output of the trained NN serves as the final prediction. To assess the performance of the different models, the naïve, ARIMA, nonparametric regression, NN, and data aggregation (DA) models are applied to the prediction of a real vehicle traffic flow, from which data have been collected at a data-collection point that is located on National Highway 107, Guangzhou, Guangdong, China. The outcome suggests that the DA model obtains a more accurate forecast than any individual model alone. The aggregation strategy can offer substantial benefits in terms of improving operational forecasting.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Distributed Representations, Simple Recurrent Networks, And Grammatical Structure In this paper three problems for a connectionist account of language are considered:1. What is the nature of linguistic representations?2. How can complex structural relationships such as constituent structure be represented?3. How can the apparently open-ended nature of language be accommodated by a fixed-resource system?Using a prediction task, a simple recurrent network (SRN) is trained on multiclausal sentences which contain multiply-embedded relative clauses. Principal component analysis of the hidden unit activation patterns reveals that the network solves the task by developing complex distributed representations which encode the relevant grammatical relations and hierarchical constituent structure. Differences between the SRN state representations and the more traditional pushdown store are discussed in the final section.
Social navigation: techniques for building more usable systems
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Labels and event processes in the Asbestos operating system Asbestos, a new operating system, provides novel labeling and isolation mechanisms that help contain the effects of exploitable software flaws. Applications can express a wide range of policies with Asbestos's kernel-enforced labels, including controls on interprocess communication and system-wide information flow. A new event process abstraction defines lightweight, isolated contexts within a single process, allowing one process to act on behalf of multiple users while preventing it from leaking any single user's data to others. A Web server demonstration application uses these primitives to isolate private user data. Since the untrusted workers that respond to client requests are constrained by labels, exploited workers cannot directly expose user data except as allowed by application policy. The server application requires 1.4 memory pages per user for up to 145,000 users and achieves connection rates similar to Apache, demonstrating that additional security can come at an acceptable cost.
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
Inter-class sparsity based discriminative least square regression Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.2
0.2
0.2
0.2
0.2
0.016667
0
0
0
0
0
0
0
0
Fully Distributed Event-Triggered Vehicular Platooning With Actuator Uncertainties The goal of this paper is to design a fully distributed event-triggered control policy with intermittent communication to reach leader-follower consensus of vehicular platoons with nonzero leader&#39;s input and actuator uncertainties. The time-dependent event-triggered condition in a fully distributed manner is proposed for checking the necessary data transmission time. Meanwhile, a distributed contr...
A Stability Guaranteed Robust Fault Tolerant Control Design for Vehicle Suspension Systems Subject to Actuator Faults and Disturbances A fault tolerant control approach based on a novel sliding mode method is proposed in this brief for a full vehicle suspension system. The proposed approach aims at retaining system stability in the presence of model uncertainties, actuator faults, parameter variations, and neglected nonlinear effects. The design is based on a realistic model that includes road uncertainties, disturbances, and faults. The design begins by dividing the system into two subsystems: a first subsystem with 3 degrees-of-freedom (DoF) representing the chassis and a second subsystem with 4 DoF representing the wheels, electrohydraulic actuators, and effect of road disturbances and actuator faults. Based on the analysis of the system performance, the first subsystem is considered as the internal dynamic of the whole system for control design purposes. The proposed algorithm is implemented in two stages to provide a stability guaranteed approach. A robust optimal sliding mode controller is designed first for the uncertain internal dynamics of the system to mitigate the effect of road disturbances. Then, a robust sliding mode controller is proposed to handle actuator faults and ensure overall stability of the whole system. The proposed approach has been tested on a 7-DoF full car model subject to uncertainties and actuator faults. The results are compared with the ones obtained using approach. The proposed approach optimizes riding comfort and road holding ability even in the presence of actuator faults and parameter variations.
Neural Learning Control of Strict-Feedback Systems Using Disturbance Observer. This paper studies the compound learning control of disturbed uncertain strict-feedback systems. The design is using the dynamic surface control equipped with a novel learning scheme. This paper integrates the recently developed online recorded data-based neural learning with the nonlinear disturbance observer (DOB) to achieve good ``understanding'' of the system uncertainty including unknown dynamics and time-varying disturbance. With the proposed method to show how the neural networks and DOB are cooperating with each other, one indicator is constructed and included into the update law. The closed-loop system stability analysis is rigorously presented. Different kinds of disturbances are considered in a third-order system as simulation examples and the results confirm that the proposed method achieves higher tracking accuracy while the compound estimation is much more precise. The design is applied to the flexible hypersonic flight dynamics and a better tracking performance is obtained.
Distributed Model-Based Event-Triggered Leader–Follower Consensus Control for Linear Continuous-Time Multiagent Systems This article investigates the event-triggered leader–follower consensus control problem for linear continuous-time multiagent systems (MASs). A new consensus protocol and an event-triggered communication (ETC) strategy based on a closed-loop state estimator are designed. The closed-looped state estimator renders us more accurate state estimations, therefore the triggering times can be decreased wh...
Adaptive Fuzzy Backstepping-Based Formation Control of Unmanned Surface Vehicles With Unknown Model Nonlinearity and Actuator Saturation In this article, the formation control of unmanned surface vehicles (USVs) is addressed considering actuator saturation and unknown nonlinear items. The algorithm can be divided into two parts, steering the leader USV to trace along the desired path and steering the follower USV to follow the leader in the desired formation. In the proposed formation control framework, a virtual USV is first constructed so that the leader USV can be guided to the desired path. To solve the input constraint problem, an auxiliary is introduced, and the adaptive fuzzy method is used to estimate unknown nonlinear items in the USV. To maintain the desired formation, the desired velocities of follower USVs are deduced using geometry and Lyapunov stability theories; the stability of the closed-loop system is also proved. Finally, the effectiveness of the proposed approach is demonstrated by the simulation and experimental results.
Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints. In this brief, we develop a novel iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of unicycle-type mobile robots with two actuated wheels that are subject to actuator faults. Unlike most of the ILC literature that requires identical reference trajectories over the iteration domain, the desired trajectories in this work can be iteration dependent, and the initial position of the robot in each iteration can also be random. The mass and inertia property of the robot and wheels can be unknown and iteration dependent. Barrier Lyapunov functions are used in the analysis to guarantee satisfaction of constraint requirements, feasibility of the controller, and prescribed tracking performance. We show that under the proposed algorithm, the distance and angle tracking errors can uniformly converge to an arbitrarily small positive constant and zero, respectively, over the iteration domain, beyond a small initial time interval in each iteration. A numerical simulation is presented in the end to demonstrate the efficacy of the proposed algorithm.
Fuzzy logic in control systems: fuzzy logic controller. I.
An introduction to ROC analysis Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions The ever-increasing number of resource-constrained machine-type communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced mobile broadband (eMBB), massive machine type communications (mMTCs), and ultra-reliable and low latency communications (URLLCs), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include quality of service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead, and radio access network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy random access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions toward addressing RAN congestion problem, and then identify potential advantages, challenges, and use cases for the applications of emerging machine learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning approach in the mMTC scenario along with the recent advances toward enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions.
Priced Oblivious Transfer: How to Sell Digital Goods We consider the question of protecting the privacy of customers buying digital goods. More specifically, our goal is to allow a buyer to purchase digital goods from a vendor without letting the vendor learn what, and to the extent possible also when and how much, it is buying. We propose solutions which allow the buyer, after making an initial deposit, to engage in an unlimited number of priced oblivious-transfer protocols, satisfying the following requirements: As long as the buyer's balance contains sufficient funds, it will successfully retrieve the selected item and its balance will be debited by the item's price. However, the buyer should be unable to retrieve an item whose cost exceeds its remaining balance. The vendor should learn nothing except what must inevitably be learned, namely, the amount of interaction and the initial deposit amount (which imply upper bounds on the quantity and total price of all information obtained by the buyer). In particular, the vendor should be unable to learn what the buyer's current balance is or when it actually runs out of its funds. The technical tools we develop, in the process of solving this problem, seem to be of independent interest. In particular, we present the first one-round (two-pass) protocol for oblivious transfer that does not rely on the random oracle model (a very similar protocol was independently proposed by Naor and Pinkas [21]). This protocol is a special case of a more general "conditional disclosure" methodology, which extends a previous approach from [11] and adapts it to the 2-party setting.
Fast identification of the missing tags in a large RFID system. RFID (radio-frequency identification) is an emerging technology with extensive applications such as transportation and logistics, object tracking, and inventory management. How to quickly identify the missing RFID tags and thus their associated objects is a practically important problem in many large-scale RFID systems. This paper presents three novel methods to quickly identify the missing tags in a large-scale RFID system of thousands of tags. Our protocols can reduce the time for identifying all the missing tags by up to 75% in comparison to the state of art.
Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. In this paper, adaptive neural network based dynamic surface control (DSC) is developed for a class of nonlinear strict-feedback systems with unknown direction control gains and input saturation. A Gaussian error function based saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided by utilizing DSC. Based on backstepping combined with DSC, adaptive radial basis function neural network control is developed to guarantee that all the signals in the closed-loop system are globally bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design parameters. Simulation results demonstrate the effectiveness of the proposed approach and the good performance is guaranteed even though both the saturation constraints and the wrong control direction are occurred.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0
Parametrization and Range of Motion of the Ball-and-Socket Joint The ball-and-socket joint model is used to represent articulations with three rotational degrees of free- dom (DOF), such as the human shoulder and the hip. The goal of this paper is to discuss two related prob- lems: the parametrization and the definition of realistic joint boundaries for ball-and-socket joints. Doing this accurately is difficult, yet important for motion generators (such as inverse kinematics and dynamics engines) and for motion manipulators (such as motion retargeting), since the resulting motions should satisfy the anatomic constraints. The difficulty mainly comes from the complex nature of 3D orientations and of human articulations. The underlying question of parametrization must be addressed before realis- tic and meaningful boundaries can be defined over the set of 3D orientations. In this paper, we review and compare several known methods, and advocate the use of the swing-and-twist parametrization, that parti- tions an arbitrary orientation into two meaningful components. The related problem of induced twist is discussed. Finally, we review some joint boundaries representations based on this decomposition, and show an example.
Positional kinematics of humanoid arms We present the positional abilities of a humanoid manipulator based on an improved kinematical model of the human arm. This was synthesized from electro-optical measurements of healthy female and male subjects. The model possesses three joints: inner shoulder joint, outer shoulder joint and elbow joint. The first functions as the human sternoclavicular joint, the second functions as the human glenohumeral joint, and the last replicates the human humeroulnar rotation. There are three links included, the forearm and the upper arm link which are of a constant length, and the shoulder link which is expandable. Mathematical interrelations between the joint coordinates are also taken into consideration. We determined the reachability of a humanoid arm, treated its orienting redundancy in the shoulder complex and the positional redundancy in the shoulder-elbow complexes, and discussed optimum configurations in executing different tasks. The results are important for the design and control of humanoid robots, in medicine and sports.
Coordinate Dependence Of Variability Analysis Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multidimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent on an investigator's choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous inferences about CNS control. An alternative method uses a two-level approach where variability in task execution (expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An analysis of variability in execution using this function to quantify performance at the level of results offers substantially less sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards developing coordinate-invariant analysis methods for movement neuroscience.
Ubiquitous human upper-limb motion estimation using wearable sensors. Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Reliability and precision of 3D wireless measurement of scapular kinematics. To direct interventions aimed at improving scapular position and motion in shoulder pathologies, a clinically feasible, objective, sensitive and reliable assessment of scapular dyskinesis is needed. The aim of this study is to evaluate the intra- and inter-observer reliability and the precision of 3D scapula kinematics measurement using wireless sensors of an inertial and magnetic measurement system (IMMS). Scapular kinematics during humerus anteflexion and abduction of 20 subjects without shoulder pathologies were measured twice by two observers at two different days, using IMMS. Similar movement patterns and corresponding high intraclass correlation coefficients were found within (intra) and between (inter) observers, especially for scapular retraction/protraction (0.65–0.85) and medio/lateral rotation (0.56–0.91). Lowest reliability and highest difference in range of motion were observed for anterior/posterior tilt. Medio/lateral rotation and anterior/posterior tilt showed a high precision, with standard error of measurement being mostly below 5°. The inter-observer measurements of retraction/protraction showed lowest precision, reflected in systematic differences. This is caused by an offset in anatomical calibration of the sensors. IMMS enables easy and objective measurement of 3D scapula kinematics. Further research in a patient population should focus on clinical feasibility and validity for measurement of scapular dyskinesis. This would include the application of a scapula locator to enhance anatomical calibration.
Analytical Inverse Kinematics Solver for Anthropomorphic 7-DOF Redundant Manipulators with Human-Like Configuration Constraints. It is a common belief that service robots shall move in a human-like manner to enable natural and convenient interaction with a human user or collaborator. In particular, this applies to anthropomorphic 7-DOF redundant robot manipulators that have a shoulder-elbow-wrist configuration. On the kinematic level, human-like movement then can be realized by means of selecting a redundancy resolution for the inverse kinematics (IK), which realizes human-like movement through respective nullspace preferences. In this paper, key positions are introduced and defined as Cartesian positions of the manipulator's elbow and wrist joints. The key positions are used as constraints on the inverse kinematics in addition to orientation constraints at the end-effector, such that the inverse kinematics can be calculated through an efficient analytical scheme and realizes human-like configurations. To obtain suitable key positions, a correspondence method named wrist-elbow-in-line is derived to map key positions of human demonstrations to the real robot for obtaining a valid analytical inverse kinematics solution. A human demonstration tracking experiment is conducted to evaluate the end-effector accuracy and human-likeness of the generated motion for a 7-DOF Kuka-LWR arm. The results are compared to a similar correspondance method that emphasizes only the wrist postion and show that the subtle differences between the two different correspondence methods may lead to significant performance differences. Furthermore, the wrist-elbow-in-line method is validated as more stable in practical application and extended for obstacle avoidance.
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
Very Deep Convolutional Networks for Large-Scale Image Recognition. In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
A novel full structure optimization algorithm for radial basis probabilistic neural networks. In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
Scalable and Privacy-Preserving Data Sharing Based on Blockchain. With the development of network technology and cloud computing, data sharing is becoming increasingly popular, and many scholars have conducted in-depth research to promote its flourish. As the scale of data sharing expands, its privacy protection has become a hot issue in research. Moreover, in data sharing, the data is usually maintained in multiple parties, which brings new challenges to protect the privacy of these multi-party data. In this paper, we propose a trusted data sharing scheme using blockchain. We use blockchain to prevent the shared data from being tampered, and use the Paillier cryptosystem to realize the confidentiality of the shared data. In the proposed scheme, the shared data can be traded, and the transaction information is protected by using the (p, t)-threshold Paillier cryptosystem. We conduct experiments in cloud storage scenarios and the experimental results demonstrate the efficiency and effectiveness of the proposed scheme.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.24
0.24
0.24
0.24
0.24
0.24
0
0
0
0
0
0
0
0
Anomaly detection: A survey Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.
Squeezed Convolutional Variational AutoEncoder for unsupervised anomaly detection in edge device industrial Internet of Things In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.
Time Series Anomaly Detection for Trustworthy Services in Cloud Computing Systems As a powerful architecture for large-scale computation, cloud computing has revolutionized the way that computing infrastructure is abstracted and utilized. Coupled with the challenges caused by Big Data, the rocketing development of cloud computing boosts the complexity of system management and maintenance, resulting in weakened trustworthiness of cloud services. To cope with this problem, a comp...
Deep Learning Based Anomaly Detection in Water Distribution Systems Water distribution system (WDS) is one of the most essential infrastructures all over the world. However, incidents such as natural disasters, accidents and intentional damages are endangering the safety of drinking water. With the advance of sensor technologies, different kinds of sensors are being deployed to monitor operative and quality indicators such as flow rate, pH, turbidity, the amount of chlorine dioxide etc. This brings the possibility to detect anomalies in real time based on the data collected from the sensors and different kinds of methods have been applied to tackle this task such as the traditional machine learning methods (e.g. logistic regression, support vector machine, random forest). Recently, researchers tried to apply the deep learning methods (e.g. RNN, CNN) for WDS anomaly detection but the results are worse than that of the traditional machine learning methods. In this paper, by taking into account the characteristics of the WDS monitoring data, we integrate sequence-to-point learning and data balancing with the deep learning model Long Short-term Memory (LSTM) for the task of anomaly detection in WDSs. With a public data set, we show that by choosing an appropriate input length and balance the training data our approach achieves better F1 score than the state-of-the-art method in the literature.
Context-Aware Learning for Anomaly Detection with Imbalanced Log Data Logs are used to record runtime states and significant events for a software system. They are widely used for anomaly detection. Logs produced by most of the real-world systems show clear characteristics of imbalanced data because the number of samples in different classes varies sharply. The distribution of imbalanced data makes the anomaly classifier bias toward the majority class, so it is diff...
Modeling intrusion detection system using hybrid intelligent systems The process of monitoring the events occurring in a computer system or network and analyzing them for sign of intrusions is known as intrusion detection system (IDS). This paper presents two hybrid approaches for modeling IDS. Decision trees (DT) and support vector machines (SVM) are combined as a hierarchical hybrid intelligent system model (DT-SVM) and an ensemble approach combining the base classifiers. The hybrid intrusion detection model combines the individual base classifiers and other hybrid machine learning paradigms to maximize detection accuracy and minimize computational complexity. Empirical results illustrate that the proposed hybrid systems provide more accurate intrusion detection systems.
Distributed Representations, Simple Recurrent Networks, And Grammatical Structure In this paper three problems for a connectionist account of language are considered:1. What is the nature of linguistic representations?2. How can complex structural relationships such as constituent structure be represented?3. How can the apparently open-ended nature of language be accommodated by a fixed-resource system?Using a prediction task, a simple recurrent network (SRN) is trained on multiclausal sentences which contain multiply-embedded relative clauses. Principal component analysis of the hidden unit activation patterns reveals that the network solves the task by developing complex distributed representations which encode the relevant grammatical relations and hierarchical constituent structure. Differences between the SRN state representations and the more traditional pushdown store are discussed in the final section.
Deep Sequence Learning with Auxiliary Information for Traffic Prediction. Predicting traffic conditions from online route queries is a challenging task as there are many complicated interactions over the roads and crowds involved. In this paper, we intend to improve traffic prediction by appropriate integration of three kinds of implicit but essential factors encoded in auxiliary information. We do this within an encoder-decoder sequence learning framework that integrates the following data: 1) offline geographical and social attributes. For example, the geographical structure of roads or public social events such as national celebrations; 2) road intersection information. In general, traffic congestion occurs at major junctions; 3) online crowd queries. For example, when many online queries issued for the same destination due to a public performance, the traffic around the destination will potentially become heavier at this location after a while. Qualitative and quantitative experiments on a real-world dataset from Baidu have demonstrated the effectiveness of our framework.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs' data and physical resources. To address these challenges, we first propose FEDL, a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem's structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings.
Distributed wireless communication system: a new architecture for future public wireless access The distributed wireless communication system (DWCS) is a new architecture for a wireless access system with distributed antennas, distributed processors, and distributed control. With distributed antennas, the system capacity can be expanded through dense frequency reuse, and the transmission power can be greatly decreased. With distributed processors control, the system works like a software or network radio, so different standards can coexist, and the system capacity can be increased by coprocessing of signals to and from multiple antennas.
Energy-Efficient Optimization for Wireless Information and Power Transfer in Large-Scale MIMO Systems Employing Energy Beamforming In this letter, we consider a large-scale multiple-input multiple-output (MIMO) system where the receiver should harvest energy from the transmitter by wireless power transfer to support its wireless information transmission. The energy beamforming in the large-scale MIMO system is utilized to address the challenging problem of long-distance wireless power transfer. Furthermore, considering the limitation of the power in such a system, this letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power. By solving the optimization problem, we derive an energy-efficient resource allocation scheme. Numerical results validate the effectiveness of the proposed scheme.
Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges. Fog computing is an emerging paradigm that extends computation, communication, and storage facilities toward the edge of a network. Compared to traditional cloud computing, fog computing can support delay-sensitive service requests from end-users (EUs) with reduced energy consumption and low traffic congestion. Basically, fog networks are viewed as offloading to core computation and storage. Fog n...
Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach This paper mainly investigates the multi-user anti-jamming spectrum access problem. Using the idea of “converting harm into benefit,” the malicious jamming signals projected by the enemy are utilized by the users as the coordination signals to guide spectrum coordination. An “internal coordination-external confrontation” multi-user anti-jamming access game model is constructed, and the existence of Nash equilibrium (NE) as well as correlated equilibrium (CE) is demonstrated. A coordination-learning based anti-jamming spectrum access algorithm (CLASA) is designed to achieve the CE of the game. Simulation results show the convergence, and effectiveness of the proposed CLASA algorithm, and indicate that our approach can help users confront the malicious jammer, and coordinate internal spectrum access simultaneously without information exchange. Last but not least, the fairness of the proposed approach under different jamming attack patterns is analyzed, which illustrates that this approach provides fair anti-jamming spectrum access opportunities under complicated jamming pattern.
1.038125
0.022222
0.022222
0.022222
0.022222
0.017778
0.001111
0.000333
0.000052
0
0
0
0
0
Predicting Taxi–Passenger Demand Using Streaming Data Informed driving is increasingly becoming a key feature for increasing the sustainability of taxi companies. The sensors that are installed in each vehicle are providing new opportunities for automatically discovering knowledge, which, in return, delivers information for real-time decision making. Intelligent transportation systems for taxi dispatching and for finding time-saving routes are already exploring these sensing data. This paper introduces a novel methodology for predicting the spatial distribution of taxi–passengers for a short-term time horizon using streaming data. First, the information was aggregated into a histogram time series. Then, three time-series forecasting techniques were combined to originate a prediction. Experimental tests were conducted using the online data that are transmitted by 441 vehicles of a fleet running in the city of Porto, Portugal. The results demonstrated that the proposed framework can provide effective insight into the spatiotemporal distribution of taxi–passenger demand for a 30-min horizon.
Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network Taxi and sharing bike bring great convenience to urban transportation. A lot of efforts have been made to improve the efficiency of taxi service or bike sharing system by predicting the next-period pick-up or drop-off demand. Different from the existing research, this paper is motivated by the following two facts: 1) From a micro view, an observed spatial demand at any time slot could be decomposed as a combination of many hidden spatial demand bases; 2) From a macro view, the multiple transportation demands are strongly correlated with each other, both spatially and temporally. Definitely, the above two views have great potential to revolutionize the existing taxi or bike demand prediction methods. Along this line, this paper provides a novel Co-prediction method based on Spatio-Temporal neural Network, namely, CoST-Net. In particular, a deep convolutional neural network is constructed to decompose a spatial demand into a combination of hidden spatial demand bases. The combination weight vector is used as a representation of the decomposed spatial demand. Then, a heterogeneous Long Short-Term Memory (LSTM) is proposed to integrate the states of multiple transportation demands, and also model the dynamics of them mixedly. Last, the environmental features such as humidity and temperature are incorporated with the achieved overall hidden states to predict the multiple demands simultaneously. Experiments have been conducted on real-world taxi and sharing bike demand data, results demonstrate the superiority of the proposed method over both classical and the state-of-the-art transportation demand prediction methods.
Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. •The model of support vector regression with adaptive genetic algorithm and the seasonal mechanism is proposed.•Parameters selection and seasonal adjustment should be carefully selected.•We focus on latest and representative holiday daily data in China.•Two experiments are used to prove the effect of the model.•The AGASSVR is superior to AGA-SVR and BPNN.
Bayesian Particle Tracking of Traffic Flows. We develop a Bayesian particle filter for tracking traffic flows that is capable of capturing non-linearities and discontinuities present in flow dynamics. Our model includes a hidden state variable that captures sudden regime shifts between traffic free flow, breakdown, and recovery. We develop an efficient particle learning algorithm for real time online inference of states and parameters. This ...
Deep and Embedded Learning Approach for Traffic Flow Prediction in Urban Informatics Traffic flow prediction has received extensive attention recently, since it is a key step to prevent and mitigate traffic congestion in urban areas. However, most previous studies on traffic flow prediction fail to capture fine-grained traffic information (like link-level traffic) and ignore the impacts from other factors, such as route structure and weather conditions. In this paper, we propose a deep and embedding learning approach (DELA) that can help to explicitly learn from fine-grained traffic information, route structure, and weather conditions. In particular, our DELA consists of an embedding component, a convolutional neural network (CNN) component and a long short-term memory (LSTM) component. The embedding component can capture the categorical feature information and identify correlated features. Meanwhile, the CNN component can learn the 2-D traffic flow data while the LSTM component has the benefits of maintaining a long-term memory of historical data. The integration of the three models together can improve the prediction accuracy of traffic flow. We conduct extensive experiments on realistic traffic flow dataset to evaluate the performance of our DELA and make comparison with other existing models. The experimental results show that the proposed DELA outperforms the existing methods in terms of prediction accuracy.
A General Framework for Unmet Demand Prediction in On-Demand Transport Services Emerging on-demand transport services, such as Uber and GoGoVan, usually face the dilemma of demand supply imbalance, meaning that the spatial distributions of orders and drivers are imbalanced. Due to such imbalance, much supply resource is wasted while a considerable amount of order demand cannot be met in time. To address this dilemma, knowing the unmet demand in the near future is of high importance for service providers because they can dispatch their vehicles in advance to alleviate the impending demand supply imbalance, we develop a general framework for predicting the unmet demand in future time slots. Under this framework, we first evaluate the predictability of unmet demand in on-demand transport services and find that unmet demand is highly predictable. Then, we extract both static and dynamic urban features relevant to unmet demand from data sets in multiple domains. Finally, multiple prediction models are trained to predict unmet demand by using the extracted features. As demonstrated via experiments, the proposed framework can predict unmet demand in on-demand transport services effectively and flexibly.
A brief overview of machine learning methods for short-term traffic forecasting and future directions. Short-term traffic forecasting is a vital part of intelligent transportation systems. Recently, the combination of unprecedented data availability and the repaid development of machine learning techniques have brought on immense advancement in this field. In this paper, we aim to provide a brief overview of machine learning approaches for short-term traffic forecasting to facilitate research in related fields. We first introduce traffic forecasting and the challenges, and then introduce different approaches for modeling the temporal and/or spatial dependencies. Finally, we discuss several important directions for the future research.
Multi-modal Sequence to Sequence Learning with Content Attention for Hotspot Traffic Speed Prediction. Traffic speed prediction is a crucial and fundamental task of the intelligent transportation systems (ITS). Due to the dynamic and non-linear nature of the traffic, this task is difficult. Nonetheless, the collection of crowd map queries data brings new ways to solve this problem. Generally speaking, in a short period of time, a large amount of crowd map queries aiming at the same destination may lead to traffic congestion. For instance, large queries for Family Restaurant during the dinner time lead to traffic jams around it. However, traffic speed prediction with crowd map queries is challenging due to the complexity and scale of the map queries, as well as their modalities. To bridge the gap, we propose Multi-Seq2Seq-Att for hotspot traffic speed prediction. Multi-Seq2Seq-Att is a multi-modal sequence learning model that deals with two sequences in different modalities, namely, the query sequence and the traffic speed sequence. The main idea of Multi-Seq2Seq-Att is to learn to fuse the multi-modal sequence with content attention. With this method, Multi-Seq2Seq-Att addresses the modality gap between queries and the traffic speed. Experiments on real-world datasets from Baidu Map demonstrates a 24% relative boost over other state-of-the-art methods.
You Only Look Once: Unified, Real-Time Object Detection We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Multi-Armed Bandit-Based Client Scheduling for Federated Learning By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels. However, latency caused by hundreds to thousands of communication rounds remains a bottleneck in FL. To minimize the training latency, this work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients. Firstly, we propose a CS algorithm based on the upper confidence bound policy (CS-UCB) for ideal scenarios where local datasets of clients are independent and identically distributed (i.i.d.) and balanced. An upper bound of the expected performance regret of the proposed CS-UCB algorithm is provided, which indicates that the regret grows logarithmically over communication rounds. Then, to address non-ideal scenarios with non-i.i.d. and unbalanced properties of local datasets and varying availability of clients, we further propose a CS algorithm based on the UCB policy and virtual queue technique (CS-UCB-Q). An upper bound is also derived, which shows that the expected performance regret of the proposed CS-UCB-Q algorithm can have a sub-linear growth over communication rounds under certain conditions. Besides, the convergence performance of FL training is also analyzed. Finally, simulation results validate the efficiency of the proposed algorithms.
The 'Dresden Image Database' for benchmarking digital image forensics This paper introduces and documents a novel image database specifically built for the purpose of development and bench-marking of camera-based digital forensic techniques. More than 14,000 images of various indoor and outdoor scenes have been acquired under controlled and thus widely comparable conditions from altogether 73 digital cameras. The cameras were drawn from only 25 different models to ensure that device-specific and model-specific characteristics can be disentangled and studied separately, as validated with results in this paper. In addition, auxiliary images for the estimation of device-specific sensor noise pattern were collected for each camera. Another subset of images to study model-specific JPEG compression algorithms has been compiled for each model. The 'Dresden Image Database' will be made freely available for scientific purposes when this accompanying paper is presented. The database is intended to become a useful resource for researchers and forensic investigators. Using a standard database as a benchmark not only makes results more comparable and reproducible, but it is also more economical and avoids potential copyright and privacy issues that go along with self-sampled benchmark sets from public photo communities on the Internet.
Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries. With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulati...
An improved E-DRM scheme for mobile environments. With the rapid development of information science and network technology, Internet has become an important platform for the dissemination of digital content, which can be easily copied and distributed through the Internet. Although convenience is increased, it causes significant damage to authors of digital content. Digital rights management system (DRM system) is an access control system that is designed to protect digital content and ensure illegal users from maliciously spreading digital content. Enterprise Digital Rights Management system (E-DRM system) is a DRM system that prevents unauthorized users from stealing the enterprise's confidential data. User authentication is the most important method to ensure digital rights management. In order to verify the validity of user, the biometrics-based authentication protocol is widely used due to the biological characteristics of each user are unique. By using biometric identification, it can ensure the correctness of user identity. In addition, due to the popularity of mobile device and Internet, user can access digital content and network information at anytime and anywhere. Recently, Mishra et al. proposed an anonymous and secure biometric-based enterprise digital rights management system for mobile environment. Although biometrics-based authentication is used to prevent users from being forged, the anonymity of users and the preservation of digital content are not ensured in their proposed system. Therefore, in this paper, we will propose a more efficient and secure biometric-based enterprise digital rights management system with user anonymity for mobile environments.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.026527
0.025556
0.025556
0.025556
0.025556
0.025556
0.012778
0.004444
0.000741
0
0
0
0
0
Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations The asynchronously switched multi-agent systems comprising switched agents of different dynamics and switching signals are considered under arbitrarily switching communication topologies. The practical output synchronization problem is studied for such a kind of systems due to the heterogeneity brought by both the dynamics and the switchings of agents. A switching-dependent controller with an embedded virtual reference system is proposed for each agent. The original problem is then converted into tracking problems between each agent and its reference system. The analysis of resultant tracking error systems involves the analysis of switched systems with bounded but non-attenuating state impulses. By satisfying sufficient conditions featuring the average dwell time (ADT) and the newly proposed piecewise ADT, the practical output synchronization can be achieved and the ultimate bound of the output errors can also be obtained for the considered systems. Furthermore, a realistic case where the agent switching signals undergo adverse fast-switching perturbations is studied. The perturbations may potentially invalidate the “slow-switching” based method. A regulation strategy is thus developed for each agent to render it adaption to such adversity. A payload transport task is taken as the practical example to illustrate the effectiveness of the proposed method and the adaption strategy.
Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems This paper presents a set of algorithms for fault diagnosis and fault tolerant control strategy for affine nonlinear systems subjected to an unknown time-varying fault vector. First, the design of fault diagnosis filter is performed using nonlinear observer techniques, where the system is decoupled through a nonlinear transformation and an observer is used to generate the required residual signal. By introducing an extra input to the observer, a direct estimation of the time-varying fault is obtained when the residual is controlled, by this extra input, to zero. The stability analysis of this observer is proved and some relevant sufficient conditions are obtained. Using the estimated fault vector, a fault tolerant controller is established which guarantees the stability of the closed loop system. The proposed algorithm is applied to a combined pH and consistency control system of a pilot paper machine, where simulations are performed to show the effectiveness of the proposed approach.
Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input This technical note considers the distributed tracking control problem of multiagent systems with general linear dynamics and a leader whose control input is nonzero and not available to any follower. Based on the relative states of neighboring agents, two distributed discontinuous controllers with, respectively, static and adaptive coupling gains, are designed for each follower to ensure that the states of the followers converge to the state of the leader, if the interaction graph among the followers is undirected, the leader has directed paths to all followers, and the leader's control input is bounded. A sufficient condition for the existence of the distributed controllers is that each agent is stabilizable. Simulation examples are given to illustrate the theoretical results.
Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. In this paper, adaptive neural network based dynamic surface control (DSC) is developed for a class of nonlinear strict-feedback systems with unknown direction control gains and input saturation. A Gaussian error function based saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided by utilizing DSC. Based on backstepping combined with DSC, adaptive radial basis function neural network control is developed to guarantee that all the signals in the closed-loop system are globally bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design parameters. Simulation results demonstrate the effectiveness of the proposed approach and the good performance is guaranteed even though both the saturation constraints and the wrong control direction are occurred.
Finite-Time Adaptive Fuzzy Control for Nonstrict-Feedback Nonlinear Systems Via an Event-Triggered Strategy This article addresses the finite-time adaptive fuzzy control problem for a class of nonstrict-feedback uncertain nonlinear systems via an event-triggered strategy. A novel design scheme, consisting of finite-time adaptive fuzzy controller and event-triggering mechanism (ETM), is proposed to decrease the number of data transmission and the number of control actuation updates. With the proposed event-triggered adaptive fuzzy control scheme, all the solutions of the resulting closed-loop system are guaranteed to be semi-globally bounded within finite time. Moreover, the feasibility of the proposed ETM is verified by excluding Zeno behavior. In contrast to existing results on similar problems, the restrictions on nonlinearities are relaxed and the more general uncertain nonlinear systems are considered. Finally, an example is provided to illustrate our theoretical results.
Event-Based Formation Control for Nonlinear Multiagent Systems Under DoS Attacks This article focuses on the formation control problem of nonlinear multiagent systems under denial-of-service attacks. The formation control can be preserved by the distributed hybrid event-triggering strategies (HETSs). As a balance between periodic and continuous event-triggering strategies, HETS arranges a tradeoff between the resource utilization and the communication frequency among agents. Theoretical results are verified using a benchmark problem of six miniature quadrotor prototypes.
Command Filtered Adaptive Backstepping Implementation of adaptive backstepping controllers requires analytic calculation of the partial derivatives of certain stabilizing functions. It is well documented that, as the order of a nonlinear system increases, analytic calculation of these derivatives becomes prohibitive. Therefore, in practice, either alternative control approaches are used or the derivatives are neglected in the implementation. Neglecting the derivatives results in the loss of all guarantees proven by Lyapunov methods for the adaptive backstepping approach and may result in instability. This paper presents a new implementation approach for adaptive backstepping control. The main objectives are to facilitate the derivation and implementation of the adaptive backstepping approach, with performance guarantees proven by Lyapunov methods, for applications that were prohibitively difficult using the standard analytic implementation approach. The new approach uses filtering methods to produce certain command signals and their derivatives which eliminates the requirement of analytic differentiation. The approach also introduces filters to generate certain compensating signals necessary to compute compensated tracking errors suitable for adaptive parameter estimation. We present a set of Lemmas and Theorems to analyze the performance both during the initialization and the operating phases. We show that the initialization phase is of finite duration that can be controlled by selection of a design parameter. We also show that all signals within the system are bounded during this short initialization phase. During the operating phase, we show that the command filtered implementation approach has theoretical properties identical to those of the conventional approach. The general approach is presented and analyzed for systems in generalized parameter strict feedback form. Extensions of the approach are presented to demonstrate the application of the method to a land vehicle trajectory following applicat- on. Application and effectiveness of the proposed method is shown by simulation results.
On the ratio of optimal integral and fractional covers It is shown that the ratio of optimal integral and fractional covers of a hypergraph does not exceed 1 + log d , where d is the maximum degree. This theorem may replace probabilistic methods in certain circumstances. Several applications are shown.
Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution Recently, the rapid advance of vehicular networks has led to the emergence of diverse delay-sensitive vehicular applications such as automatic driving, auto navigation. Note that existing resource-constrained vehicles cannot adequately meet these demands on low / ultra-low latency. By offloading parts of the vehicles’ compute-intensive tasks to the edge servers in proximity, mobile edge computing is envisioned as a promising paradigm, giving rise to the vehicular edge computing networks (VECNs). However, most existing works on task offloading in VECNs did not take the load balancing of the computation resources at the edge servers into account. To address these issues and given the high dynamics of vehicular networks, we introduce fiber-wireless (FiWi) technology to enhance VECNs, due to its advantages on centralized network management and supporting multiple communication techniques. Aiming to minimize the processing delay of the vehicles’ computation tasks, we propose a software-defined networking (SDN) based load-balancing task offloading scheme in FiWi enhanced VECNs, where SDN is introduced to provide supports for the centralized network and vehicle information management. Extensive analysis and numerical results corroborate that our proposed load-balancing scheme can achieve superior performance on processing delay reduction by utilizing the edge servers’ computation resources more efficiently.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
Design and simulation of a joint-coupled orthosis for regulating FES-aided gait A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at this http URL
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
Technical Note-Global Robust Stability In A General Price And Assortment Competition Model We analyze a general but parsimonious price competition model for an oligopoly in which each firm offers any number of products. The demand volumes are general piecewise affine functions of the full price vector, generated as the "regular" extension of a base set of affine functions. The model specifies a product assortment, along with their prices and demand volumes, in contrast to most commonly used demand models, such as the multinomial logit model or any of its variants. We show that a special equilibrium in this model has global robust stability. This means that, from any starting point, the market converges to this equilibrium when firms use a particular response mapping to dynamically adjust their own prices in response to their competitors' prices. The mapping involves each firm optimizing its own prices over a limited subset of possible prices and requires each firm to only know the demand function and cost structure for its own products (but not for other firms' products).
Computational difficulties of bilevel linear programming We show, using small examples, that two algorithms previously published for the Bilevel Linear Programming problem BLP may fail to find the optimal solution and thus must be considered to be heuris...
Competitive charging station pricing for plug-in electric vehicles This paper considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs). Every PEV needs to select a charging station by considering the charging prices, waiting times, and travel distances. Each charging station optimizes its charging price based on the prediction of the PEVs' charging station selection decisions, in an attempt to maximize its profit. To obtain insights of such a highly coupled system, we consider a one-dimensional system with two charging stations and Poisson arriving PEVs. We propose a multi-leader-multi-follower Stackelberg game model, in which the charging stations (leaders) announce their charging prices in Stage I, and the PEVs (followers) make their charging station selections in Stage II. We show that there always exists a unique charging station selection equilibrium in Stage II, and such equilibrium depends on the price difference between the charging stations. We then characterize the sufficient conditions for the existence and uniqueness of the pricing equilibrium in Stage I. Unfortunately, it is hard to compute the pricing equilibrium in closed form. To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricing equilibrium and the subgame perfect equilibrium of our Stackelberg game with no information exchange.
Placement of EV Charging Stations - Balancing Benefits Among Multiple Entities. This paper studies the problem of multistage placement of electric vehicle (EV) charging stations with incremental EV penetration rates. A nested logit model is employed to analyze the charging preference of the individual consumer (EV owner) and predict the aggregated charging demand at the charging stations. The EV charging industry is modeled as an oligopoly where the entire market is dominated...
An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations In this paper, we investigate the price competition among electric vehicle charging stations (EVCSs) with renewable power generators (RPGs). Both a large-sized EVCS (L-EVCS) and small-sized EVCSs (S-EVCSs), which have different capacities, are considered. Moreover, the price elasticity of electric vehicles (EVs), the effect of the distance between an EV and the EVCSs, and the impact of the number ...
PEV Fast-Charging Station Sizing and Placement in Coupled Transportation-Distribution Networks Considering Power Line Conditioning Capability The locations and sizes of plug-in electric vehicle fast-charging stations (PEVFCS) can affect traffic flow in the urban transportation network (TN) and operation indices in the electrical energy distribution network (DN). PEVFCSs are supplied by the DNs, generally using power electronic devices. Thus, PEVFCSs could be used as power line conditioners, especially as active filters (for mitigating harmonic pollutions) and reactive power compensators. Accordingly, this paper proposes a mixed-integer linear programming model taking into account the traffic impacts and power line conditioning capabilities of PEVFCSs to determine optimal locations and sizes of PEVFCSs. Various load profile patterns and the variation of charging demand during the planning horizon are included in this model to consider different operation states of DN and TN. The proposed model is implemented in GAMS and applied to two standard test systems. Numerical results are provided for the case studies and various scenarios. The results confirm the ability and efficiency of the proposed model and its superiority to the existing models.
Completely derandomized self-adaptation in evolution strategies. This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
An online mechanism for multi-unit demand and its application to plug-in hybrid electric vehicle charging We develop an online mechanism for the allocation of an expiring resource to a dynamic agent population. Each agent has a non-increasing marginal valuation function for the resource, and an upper limit on the number of units that can be allocated in any period. We propose two versions on a truthful allocation mechanism. Each modifies the decisions of a greedy online assignment algorithm by sometimes cancelling an allocation of resources. One version makes this modification immediately upon an allocation decision while a second waits until the point at which an agent departs the market. Adopting a prior-free framework, we show that the second approach has better worst-case allocative efficiency and is more scalable. On the other hand, the first approach (with immediate cancellation) may be easier in practice because it does not need to reclaim units previously allocated. We consider an application to recharging plug-in hybrid electric vehicles (PHEVs). Using data from a real-world trial of PHEVs in the UK, we demonstrate higher system performance than a fixed price system, performance comparable with a standard, but non-truthful scheduling heuristic, and the ability to support 50% more vehicles at the same fuel cost than a simple randomized policy.
Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. The Internet of Things (IoT) is stepping out of its infancy into full maturity and establishing itself as a part of the future Internet. One of the technical challenges of having billions of devices deployed worldwide is the ability to manage them. Although access management technologies exist in IoT, they are based on centralized models which introduce a new variety of technical limitations to ma...
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. In this paper, a novel optimal control design scheme is proposed for continuous-time nonaffine nonlinear dynamic systems with unknown dynamics by adaptive dynamic programming (ADP). The proposed methodology iteratively updates the control policy online by using the state and input information without identifying the system dynamics. An ADP algorithm is developed, and can be applied to a general class of nonlinear control design problems. The convergence analysis for the designed control scheme is presented, along with rigorous stability analysis for the closed-loop system. The effectiveness of this new algorithm is illustrated by two simulation examples.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
Wireless Charger Placement for Directional Charging. Wireless power transfer technology has witnessed huge development because of its convenience and reliability. This paper concerns the fundamental issue of wireless charger PLacement with Optimized charging uTility (PLOT), i.e., given a fixed number of chargers and a set of points where rechargeable devices can be placed with orientations uniformly distributed in the range of [0, 2π) positions and ...
Mean Shift, Mode Seeking, and Clustering Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a 驴shadow驴 kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization.
An effective implementation of the Lin–Kernighan traveling salesman heuristic This paper describes an implementation of the Lin–Kernighan heuristic, one of the most successful methods for generating optimal or near-optimal solutions for the symmetric traveling salesman problem (TSP). Computational tests show that the implementation is highly effective. It has found optimal solutions for all solved problem instances we have been able to obtain, including a 13,509-city problem (the largest non-trivial problem instance solved to optimality today).
SGCO: Stabilized Green Crosshaul Orchestration for Dense IoT Offloading Services. The next-generation mobile network anticipates integrated heterogeneous fronthaul and backhaul technologies referred to as a unified crosshaul architecture. The crosshaul enables a flexible and cost-efficient infrastructure for handling mobile data tsunami from dense Internet of things (IoT). However, stabilization, energy efficiency, and latency have not been jointly considered in the optimizatio...
Joint Distributed Link Scheduling and Power Allocation for Content Delivery in Wireless Caching Networks In wireless caching networks, the design of the content delivery method must consider random user requests, caching states, network topology, and interference management. In this article, we establish a general framework for content delivery in wireless caching networks without stringent assumptions that restrict the network structure and interference model. Based on the framework, we propose a dynamic and distributed link scheduling and power allocation scheme for content delivery that is assisted by belief-propagation (BP) algorithms. The proposed scheme achieves three critical purposes of wireless caching networks: 1) limiting the delay of user request satisfactions, 2) maintaining the power efficiency of caching nodes, and 3) managing interference among users. In addition, we address the intrinsic problem of the BP algorithm in our network model, proposing a matching algorithm for one-to-one link scheduling. Simulation results show that the proposed scheme provides almost the same delay performance as the optimal scheme found through an exhaustive search at the expense of a little additional power consumption and does not require a clustering method and orthogonal resources in a large-scale D2D network.
Optimizing age of information in wireless networks with perfect channel state information Age of information (AoI), defined as the time elapsed since the last received update was generated, is a newly proposed metric to measure the timeliness of information updates in a network. We consider AoI minimization problem for a network with general interference constraints, and time varying channels. We propose two policies, namely, virtual-queue based policy and age-based policy when the channel state is available to the network scheduler at each time step. We prove that the virtual-queue based policy is nearly optimal, up to a constant additive factor, and the age-based policy is at-most factor 4 away from optimality. Comparison with previous work, which derived age optimal policies when channel state information is not available to the scheduler, demonstrates a 4 fold improvement in age due to the availability of channel state information.
Energy-Aware Multiple Mobile Chargers Coordination for Wireless Rechargeable Sensor Networks Wireless charging provides dynamic power supply for wireless sensor networks (WSNs). Such systems, are typically considered under the scenario of wireless rechargeable sensor networks (WRSNs). With the use of mobile chargers (MCs), the flexibility of WRSNs is further enhanced. However, the use of MCs poses several challenges during the system design. The coordination process has to simultaneously optimize the scheduling, the moving time, and the charging time of multiple MCs under limited system resources (time and energy). Efficient methods that jointly solve these challenges are generally lacking in the literature. In this paper, we address the multiple MCs coordination problem under multiple system requirements. First, we aim at minimizing the energy consumption of MCs, guaranteeing that every sensor will not run out of energy. We formulate the multiple MCs coordination problem as a mixed-integer linear programming and derive a set of desired network properties. Second, we propose a novel decomposition method to optimally solve the problem, as well as to reduce the computation time. Our approach divides the problem into a subproblem for the MC scheduling and a subproblem for the MC moving time and charging time, and solves them iteratively by utilizing the solution of one into the other. The convergence of proposed method is analyzed theoretically. Simulation results demonstrate the effectiveness and scalability of the proposed method in terms of solution quality and computation time.
Charge me if you can: charging path optimization and scheduling in mobile networks. We study a class of generic optimization problems on charger scheduling and charging path planing. These problems arise from emerging networking applications where mobile chargers are dispatched to deliver energy to mobile agents (e.g., robots, drones, and vehicles), which have specified tasks and mobility patterns. We instantiate our work by focusing on finding the charging path maximizing the number of nodes charged within a fixed time horizon. We prove that this problem is APX-hard. By recursively decomposing the problem into sub-problems of searching sub-paths, we design a quasi-polynomial time algorithm that achieves poly-logarithmic approximation to the optimum charging path. Our approximation algorithm can be further adapted and extended to solve a variety of charging path optimization and scheduling problems with realistic constraints, such as limited time and energy budget.
A standalone RFID Indoor Positioning System Using Passive Tags Indoor positioning systems (IPSs) locate objects in closed structures such as office buildings, hospitals, stores, factories, and warehouses, where Global Positioning System devices generally do not work. Most available systems apply wireless concepts, optical tracking, and/or ultrasound. This paper presents a standalone IPS using radio frequency identification (RFID) technology. The concept is ba...
Poisson Arrivals See Time Averages In many stochastic models, particularly in queueing theory, Poisson arrivals both observe see a stochastic process and interact with it. In particular cases and/or under restrictive assumptions it ...
The set cover with pairs problem We consider a generalization of the set cover problem, in which elements are covered by pairs of objects, and we are required to find a minimum cost subset of objects that induces a collection of pairs covering all elements. Formally, let U be a ground set of elements and let ${\cal S}$ be a set of objects, where each object i has a non-negative cost wi. For every $\{ i, j \} \subseteq {\cal S}$, let ${\cal C}(i,j)$ be the collection of elements in U covered by the pair { i, j }. The set cover with pairs problem asks to find a subset $A \subseteq {\cal S}$ such that $\bigcup_{ \{ i, j \} \subseteq A } {\cal C}(i,j) = U$ and such that ∑i∈Awi is minimized. In addition to studying this general problem, we are also concerned with developing polynomial time approximation algorithms for interesting special cases. The problems we consider in this framework arise in the context of domination in metric spaces and separation of point sets.
A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. This paper is concerned with event-triggered sampled-data consensus for distributed multi-agent systems with directed graph. A novel distributed event-triggered sampled-data transmission strategy is proposed, which allows the event-triggering condition to be intermittently examined at constant sampling instants. Based on this novel strategy, a sampled-data consensus control protocol is presented, with which the consensus of distributed multi-agent systems can be transformed into the stability of a system with a time-varying delay. Then, a sufficient condition on the consensus of the multi-agent system is derived. Correspondingly, a co-design algorithm for obtaining both the parameters of the distributed event-triggered transmission strategy and the consensus controller gain is proposed. Two numerical examples are given to show the effectiveness of the proposed method.
Substituting Motion Effects with Vibrotactile Effects for 4D Experiences. In this paper, we present two methods to substitute motion effects using vibrotactile effects in order to improve the 4D experiences of viewers. This work was motivated by the needs of more affordable 4D systems for individual users. Our sensory substitution algorithms convert motion commands to vibrotactile commands to a grid display that uses multiple actuators. While one method is based on the fundamental principle of vestibular feedback, the other method makes use of intuitive visually-based mapping from motion to vibrotactile stimulation. We carried out a user study and could confirm the effectiveness of our substitution methods in improving 4D experiences. To our knowledge, this is the first study that investigated the feasibility of replacing motion effects using much simpler and less expensive vibrotactile effects.
A Muscle Synergy-Driven ANFIS Approach to Predict Continuous Knee Joint Movement Continuous motion prediction plays a significant role in realizing seamless control of robotic exoskeletons and orthoses. Explicitly modeling the relationship between coordinated muscle activations from surface electromyography (sEMG) and human limb movements provides a new path of sEMG-based human–machine interface. Instead of the numeric features from individual channels, we propose a muscle synergy-driven adaptive network-based fuzzy inference system (ANFIS) approach to predict continuous knee joint movements, in which muscle synergy reflects the motor control information to coordinate muscle activations for performing movements. Four human subjects participated in the experiment while walking at five types of speed: 2.0 km/h, 2.5 km/h, 3.0 km/h, 3.5 km/h, and 4.0 km/h. The study finds that the acquired muscle synergies associate the muscle activations with human joint movements in a low-dimensional space and have been further utilized for predicting knee joint angles. The proposed approach outperformed commonly used numeric features from individual sEMG channels with an average correlation coefficient of 0.92 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \pm $</tex-math></inline-formula> 0.05. Results suggest that the correlation between muscle activations and knee joint movements is captured by the muscle synergy-driven ANFIS model and can be utilized for the estimation of continuous joint angles.
1.038889
0.046667
0.046667
0.046667
0.046667
0.033333
0.023333
0.007
0
0
0
0
0
0
Automated Driving in Uncertain Environments: Planning With Interaction and Uncertain Maneuver Prediction. Automated driving requires decision making in dynamic and uncertain environments. The uncertainty from the prediction originates from the noisy sensor data and from the fact that the intention of human drivers cannot be directly measured. This problem is formulated as a partially observable Markov decision process (POMDP) with the intended route of the other vehicles as hidden variables. The solut...
Using Ontology-Based Traffic Models for More Efficient Decision Making of Autonomous Vehicles The paper describes how a high-level abstract world model can be used to support the decision-making process of an autonomous driving system. The approach uses a hierarchical world model and distinguishes between a low-level model for the trajectory planning and a high-level model for solving the traffic coordination problem. The abstract world model used in the CyberCars-2 project is presented. It is based on a topological lane segmentation and introduces relations to represent the semantic context of the traffic scenario. This makes it much easier to realize a consistent and complete driving control system, and to analyze, evaluate and simulate such a system.
Ontology-based methods for enhancing autonomous vehicle path planning We report the results of a first implementation demonstrating the use of an ontology to support reasoning about obstacles to improve the capabilities and performance of on-board route planning for autonomous vehicles. This is part of an overall effort to evaluate the performance of ontologies in different components of an autonomous vehicle within the 4D/RCS system architecture developed at NIST. Our initial focus has been on simple roadway driving scenarios where the controlled vehicle encounters potential obstacles in its path. As reported elsewhere [C. Schlenoff, S. Balakirsky, M. Uschold, R. Provine, S. Smith, Using ontologies to aid navigation planning in autonomous vehicles, Knowledge Engineering Review 18 (3) (2004) 243–255], our approach is to develop an ontology of objects in the environment, in conjunction with rules for estimating the damage that would be incurred by collisions with different objects in different situations. Automated reasoning is used to estimate collision damage; this information is fed to the route planner to help it decide whether to plan to avoid the object. We describe the results of the first implementation that integrates the ontology, the reasoner and the planner. We describe our insights and lessons learned and discuss resulting changes to our approach.
Online Verification of Automated Road Vehicles Using Reachability Analysis An approach for formally verifying the safety of automated vehicles is proposed. Due to the uniqueness of each traffic situation, we verify safety online, i.e., during the operation of the vehicle. The verification is performed by predicting the set of all possible occupancies of the automated vehicle and other traffic participants on the road. In order to capture all possible future scenarios, we apply reachability analysis to consider all possible behaviors of mathematical models considering uncertain inputs (e.g., sensor noise, disturbances) and partially unknown initial states. Safety is guaranteed with respect to the modeled uncertainties and behaviors if the occupancy of the automated vehicle does not intersect that of other traffic participants for all times. The applicability of the approach is demonstrated by test drives with an automated vehicle at the Robotics Institute at Carnegie Mellon University.
DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems. While Deep Neural Networks (DNNs) have established the fundamentals of image-based autonomous driving systems, they may exhibit erroneous behaviors and cause fatal accidents. To address the safety issues in autonomous driving systems, a recent set of testing techniques have been designed to automatically generate artificial driving scenes to enrich test suite, e.g., generating new input images transformed from the original ones. However, these techniques are insufficient due to two limitations: first, many such synthetic images often lack diversity of driving scenes, and hence compromise the resulting efficacy and reliability. Second, for machine-learning-based systems, a mismatch between training and application domain can dramatically degrade system accuracy, such that it is necessary to validate inputs for improving system robustness. In this paper, we propose DeepRoad, an unsupervised DNN-based framework for automatically testing the consistency of DNN-based autonomous driving systems and online validation. First, DeepRoad automatically synthesizes large amounts of diverse driving scenes without using image transformation rules (e.g. scale, shear and rotation). In particular, DeepRoad is able to produce driving scenes with various weather conditions (including those with rather extreme conditions) by applying Generative Adversarial Networks (GANs) along with the corresponding real-world weather scenes. Second, DeepRoad utilizes metamorphic testing techniques to check the consistency of such systems using synthetic images. Third, DeepRoad validates input images for DNN-based systems by measuring the distance of the input and training images using their VGGNet features. We implement DeepRoad to test three well-recognized DNN-based autonomous driving systems in Udacity self-driving car challenge. The experimental results demonstrate that DeepRoad can detect thousands of inconsistent behaviors for these systems, and effectively validate input images to potentially enhance the system robustness as well.
Automatically testing self-driving cars with search-based procedural content generation Self-driving cars rely on software which needs to be thoroughly tested. Testing self-driving car software in real traffic is not only expensive but also dangerous, and has already caused fatalities. Virtual tests, in which self-driving car software is tested in computer simulations, offer a more efficient and safer alternative compared to naturalistic field operational tests. However, creating suitable test scenarios is laborious and difficult. In this paper we combine procedural content generation, a technique commonly employed in modern video games, and search-based testing, a testing technique proven to be effective in many domains, in order to automatically create challenging virtual scenarios for testing self-driving car soft- ware. Our AsFault prototype implements this approach to generate virtual roads for testing lane keeping, one of the defining features of autonomous driving. Evaluation on two different self-driving car software systems demonstrates that AsFault can generate effective virtual road networks that succeed in revealing software failures, which manifest as cars departing their lane. Compared to random testing AsFault was not only more efficient, but also caused up to twice as many lane departures.
Acclimatizing the Operational Design Domain for Autonomous Driving Systems The operational design domain (ODD) of an automated driving system (ADS) can be used to confine the environmental scope of where the ADS is safe to execute. ODD acclimatization is one of the necessary steps for validating vehicle safety in complex traffic environments. This article proposes an approach and architectural design to extract and enhance the ODD of the ADS based on the task scenario an...
Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.
A survey of socially interactive robots This paper reviews “socially interactive robots”: robots for which social human–robot interaction is important. We begin by discussing the context for socially interactive robots, emphasizing the relationship to other research fields and the different forms of “social robots”. We then present a taxonomy of design methods and system components used to build socially interactive robots. Finally, we describe the impact of these robots on humans and discuss open issues. An expanded version of this paper, which contains a survey and taxonomy of current applications, is available as a technical report [T. Fong, I. Nourbakhsh, K. Dautenhahn, A survey of socially interactive robots: concepts, design and applications, Technical Report No. CMU-RI-TR-02-29, Robotics Institute, Carnegie Mellon University, 2002].
A General Equilibrium Model for Industries with Price and Service Competition This paper develops a stochastic general equilibrium inventory model for an oligopoly, in which all inventory constraint parameters are endogenously determined. We propose several systems of demand processes whose distributions are functions of all retailers' prices and all retailers' service levels. We proceed with the investigation of the equilibrium behavior of infinite-horizon models for industries facing this type of generalized competition, under demand uncertainty.We systematically consider the following three competition scenarios. (1) Price competition only: Here, we assume that the firms' service levels are exogenously chosen, but characterize how the price and inventory strategy equilibrium vary with the chosen service levels. (2) Simultaneous price and service-level competition: Here, each of the firms simultaneously chooses a service level and a combined price and inventory strategy. (3) Two-stage competition: The firms make their competitive choices sequentially. In a first stage, all firms simultaneously choose a service level; in a second stage, the firms simultaneously choose a combined pricing and inventory strategy with full knowledge of the service levels selected by all competitors. We show that in all of the above settings a Nash equilibrium of infinite-horizon stationary strategies exists and that it is of a simple structure, provided a Nash equilibrium exists in a so-called reduced game.We pay particular attention to the question of whether a firm can choose its service level on the basis of its own (input) characteristics (i.e., its cost parameters and demand function) only. We also investigate under which of the demand models a firm, under simultaneous competition, responds to a change in the exogenously specified characteristics of the various competitors by either: (i) adjusting its service level and price in the same direction, thereby compensating for price increases (decreases) by offering improved (inferior) service, or (ii) adjusting them in opposite directions, thereby simultaneously offering better or worse prices and service.
Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles This paper proposes an operating framework for aggregators of plug-in electric vehicles (PEVs). First, a minimum-cost load scheduling algorithm is designed, which determines the purchase of energy in the day-ahead market based on the forecast electricity price and PEV power demands. The same algorithm is applicable for negotiating bilateral contracts. Second, a dynamic dispatch algorithm is developed, used for distributing the purchased energy to PEVs on the operating day. Simulation results are used to evaluate the proposed algorithms, and to demonstrate the potential impact of an aggregated PEV fleet on the power system.
An Efficient Non-Negative Matrix-Factorization-Based Approach to Collaborative Filtering for Recommender Systems Matrix-factorization (MF)-based approaches prove to be highly accurate and scalable in addressing collaborative filtering (CF) problems. During the MF process, the non-negativity, which ensures good representativeness of the learnt model, is critically important. However, current non-negative MF (NMF) models are mostly designed for problems in computer vision, while CF problems differ from them due to their extreme sparsity of the target rating-matrix. Currently available NMF-based CF models are based on matrix manipulation and lack practicability for industrial use. In this work, we focus on developing an NMF-based CF model with a single-element-based approach. The idea is to investigate the non-negative update process depending on each involved feature rather than on the whole feature matrices. With the non-negative single-element-based update rules, we subsequently integrate the Tikhonov regularizing terms, and propose the regularized single-element-based NMF (RSNMF) model. RSNMF is especially suitable for solving CF problems subject to the constraint of non-negativity. The experiments on large industrial datasets show high accuracy and low-computational complexity achieved by RSNMF.
Driver Gaze Zone Estimation Using Convolutional Neural Networks: A General Framework and Ablative Analysis Driver gaze has been shown to be an excellent surrogate for driver attention in intelligent vehicles. With the recent surge of highly autonomous vehicles, driver gaze can be useful for determining the handoff time to a human driver. While there has been significant improvement in personalized driver gaze zone estimation systems, a generalized system which is invariant to different subjects, perspe...
Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem Group scheduling problems have attracted much attention owing to their many practical applications. This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time, release time, and due time. It is originated from an important industrial process, i.e., wire rod and bar rolling process in steel production systems. Two objecti...
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
A cable-based series elastic actuator with conduit sensor for wearable exoskeletons. There is currently a scarcity of wearable robotic devices that can practically provide physical assistance in a range of real world activities. Soft wearable exoskeletons, or exosuits, have the potential to be more portable and less restrictive than their rigid counterparts. In this paper, we present the design of an actuation system that has been optimized for use in a soft exosuit for the human arm. The selected design comprises a DC motor and gearbox, a flexible cable conduit transmission, and a custom series elastic force sensor. Placed in series with the transmission conduit, the custom compliant force sensor consists of a translational steel compression spring with a pair of Hall effect sensors for measuring deflection. The custom sensor is validated as an accurate means of measuring cable tension, and it is shown that it can be used in feedback to control the cable tension with high bandwidth. The dynamic effect of the cable-conduit transmission on the force felt at the user interface is characterized by backdriving the system as it renders a range of virtual impedances to the user. We conclude with recommendations for the integration of such an actuation system into a full wearable exosuit.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Scalable and Privacy-Preserving Data Sharing Based on Blockchain. With the development of network technology and cloud computing, data sharing is becoming increasingly popular, and many scholars have conducted in-depth research to promote its flourish. As the scale of data sharing expands, its privacy protection has become a hot issue in research. Moreover, in data sharing, the data is usually maintained in multiple parties, which brings new challenges to protect the privacy of these multi-party data. In this paper, we propose a trusted data sharing scheme using blockchain. We use blockchain to prevent the shared data from being tampered, and use the Paillier cryptosystem to realize the confidentiality of the shared data. In the proposed scheme, the shared data can be traded, and the transaction information is protected by using the (p, t)-threshold Paillier cryptosystem. We conduct experiments in cloud storage scenarios and the experimental results demonstrate the efficiency and effectiveness of the proposed scheme.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Citywide traffic congestion estimation with social media. Conventional traffic congestion estimation approaches require the deployment of traffic sensors or large-scale probe vehicles. The high cost of deploying and maintaining these equipments largely limits their spatial-temporal coverage. This paper proposes an alternative solution with lower cost and wider spatial coverage by exploring traffic related information from Twitter. By regarding each Twitter user as a traffic monitoring sensor, various real-time traffic information can be collected freely from each corner of the city. However, there are two major challenges for this problem. Firstly, the congestion related information extracted directly from real-time tweets are very sparse due both to the low resolution of geographic location mentioned in the tweets and the inherent sparsity nature of Twitter data. Secondly, the traffic event information coming from Twitter can be multi-typed including congestion, accident, road construction, etc. It is non-trivial to model the potential impacts of diverse traffic events on traffic congestion. We propose to enrich the sparse real-time tweets from two directions: 1) mining the spatial and temporal correlations of the road segments in congestion from historical data, and 2) applying auxiliary information including social events and road features for help. We finally propose a coupled matrix and tensor factorization model to effectively integrate rich information for Citywide Traffic Congestion Eestimation (CTCE). Extensive evaluations on Twitter data and 500 million public passenger buses GPS data on nearly 700 mile roads of Chicago demonstrate the efficiency and effectiveness of the proposed approach.
Estimating Urban Traffic Congestions with Multi-sourced Data This paper studies the novel problem of more accurately estimating urban traffic congestions by integrating sparse probe data and traffic related information collected from social media. Limited by the lack of reliability and low sampling frequency of GPS probes, probe data are usually not sufficient for fully estimating traffic conditions of a large arterial network. To address the data sparsity challenge, we extensively collect and model traffic related data from multiple data sources. Besides the GPS probe data, we also extensively collect traffic related tweets that report various traffic events such as congestion, accident, and road construction from both traffic authority accounts and general user accounts from Twitter. To further explore other factors that might affect traffic conditions, we also extract auxiliary information including road congestion correlations, social events, road features, as well as point of interest (POI) for help. To integrate the different types of data coming from different sources, we finally propose a coupled matrix and tensor factorization model to more accurately complete the very sparse traffic congestion matrix by collaboratively factorizing it with other matrices and tensors formed by other data. We evaluate the proposed model on the arterial network of downtown Chicago with 1257 road segments. The results demonstrate the effectiveness and efficiency of the proposed model by comparison with previous approaches.
Applied research of data sensing and service to ubiquitous intelligent transportation system High-efficiency transportation systems in urban environments are not only solutions for the growing public travel demands, but are also the premise for enlarging transportation capacity and narrowing the gap between urban and rural areas. Such transportation systems should have characteristics such as mobility, convenience and being accident-free. Ubiquitous-intelligent transportation systems (U-ITS) are next generation of intelligent transportation system (ITS). The key issue of U-ITS is providing better and more efficient services by providing vehicle to vehicle (V2V) or vehicle to infrastructure (V2I) interconnection. The emergence of cyber physical systems (CPS), which focus on information awareness technologies, provides technical assurance for the rapid development of U-ITS. This paper introduces the ongoing Beijing U-ITS project, which utilizes mobile sensors. Realization of universal interconnection between real-time information systems and large-scale detectors allows the system to maximize equipment efficiency and improve transportation efficiency through information services.
Predicting Short-Term Traffic Flow by Long Short-Term Memory Recurrent Neural Network Intelligent Transportation System (ITS) is a significant part of smart city, and short-term traffic flow prediction plays an important role in intelligent transportation management and route guidance. A number of models and algorithms based on time series prediction and machine learning were applied to short-term traffic flow prediction and achieved good results. However, most of the models require the length of the input historical data to be predefined and static, which cannot automatically determine the optimal time lags. To overcome this shortage, a model called Long Short-Term Memory Recurrent Neural Network (LSTM RNN) is proposed in this paper, which takes advantages of the three multiplicative units in the memory block to determine the optimal time lags dynamically. The dataset from Caltrans Performance Measurement System (PeMS) is used for building the model and comparing LSTM RNN with several well-known models, such as random walk(RW), support vector machine(SVM), single layer feed forward neural network(FFNN) and stacked autoencoder(SAE). The results show that the proposed prediction model achieves higher accuracy and generalizes well.
Temporal Graph Convolutional Network for Urban Traffic Flow Prediction Method.
Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction. Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.
Predicting Taxi–Passenger Demand Using Streaming Data Informed driving is increasingly becoming a key feature for increasing the sustainability of taxi companies. The sensors that are installed in each vehicle are providing new opportunities for automatically discovering knowledge, which, in return, delivers information for real-time decision making. Intelligent transportation systems for taxi dispatching and for finding time-saving routes are already exploring these sensing data. This paper introduces a novel methodology for predicting the spatial distribution of taxi–passengers for a short-term time horizon using streaming data. First, the information was aggregated into a histogram time series. Then, three time-series forecasting techniques were combined to originate a prediction. Experimental tests were conducted using the online data that are transmitted by 441 vehicles of a fleet running in the city of Porto, Portugal. The results demonstrated that the proposed framework can provide effective insight into the spatiotemporal distribution of taxi–passenger demand for a 30-min horizon.
Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. Top-N sequential recommendation models each user as a sequence of items interacted in the past and aims to predict top-N ranked items that a user will likely interact in a »near future». The order of interaction implies that sequential patterns play an important role where more recent items in a sequence have a larger impact on the next item. In this paper, we propose a Convolutional Sequence Embedding Recommendation Model »Caser» as a solution to address this requirement. The idea is to embed a sequence of recent items into an »image» in the time and latent spaces and learn sequential patterns as local features of the image using convolutional filters. This approach provides a unified and flexible network structure for capturing both general preferences and sequential patterns. The experiments on public data sets demonstrated that Caser consistently outperforms state-of-the-art sequential recommendation methods on a variety of common evaluation metrics.
A survey of socially interactive robots This paper reviews “socially interactive robots”: robots for which social human–robot interaction is important. We begin by discussing the context for socially interactive robots, emphasizing the relationship to other research fields and the different forms of “social robots”. We then present a taxonomy of design methods and system components used to build socially interactive robots. Finally, we describe the impact of these robots on humans and discuss open issues. An expanded version of this paper, which contains a survey and taxonomy of current applications, is available as a technical report [T. Fong, I. Nourbakhsh, K. Dautenhahn, A survey of socially interactive robots: concepts, design and applications, Technical Report No. CMU-RI-TR-02-29, Robotics Institute, Carnegie Mellon University, 2002].
From template to image: reconstructing fingerprints from minutiae points. Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line Integral Convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint.
Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations This note investigates the robust stability of uncertain linear time-invariant systems in polytopic domains by means of parameter-dependent linear matrix inequality (PD-LMI) conditions, exploiting some algebraic properties provided by the uncertainty representation. A systematic procedure to construct a family of finite-dimensional LMI relaxations is provided. The robust stability is assessed by means of the existence of a Lyapunov function, more specifically, a homogeneous polynomially parameter-dependent Lyapunov (HPPDL) function of arbitrary degree. For a given degree , if an HPPDL solution exists, a sequence of relaxations based on real algebraic properties provides sufficient LMI conditions of increasing precision and constant number of decision variables for the existence of an HPPDL function which tend to the necessity. Alternatively, if an HPPDL solution of degree exists, a sequence of relaxations which increases the number of variables and the number of LMIs will provide an HPPDL solution of larger degree. The method proposed can be applied to determine homogeneous parameter-dependent matrix solutions to a wide variety of PD-LMIs by transforming the infinite-dimensional LMI problem described in terms of uncertain parameters belonging to the unit simplex in a sequence of finite-dimensional LMI conditions which converges to the necessary conditions for the existence of a homogeneous polynomially parameter-dependent solution of arbitrary degree. Illustrative examples show the efficacy of the proposed conditions when compared with other methods from the literature.
A novel data hiding for color images based on pixel value difference and modulus function This paper proposes a novel data hiding method using pixel-value difference and modulus function for color image with the large embedding capacity(hiding 810757 bits in a 512 512 host image at least) and a high-visual-quality of the cover image. The proposed method has fully taken into account the correlation of the R, G and B plane of a color image. The amount of information embedded the R plane and the B plane determined by the difference of the corresponding pixel value between the G plane and the median of G pixel value in each pixel block. Furthermore, two sophisticated pixel value adjustment processes are provided to maintain the division consistency and to solve underflow and overflow problems. The most importance is that the secret data are completely extracted through the mathematical theoretical proof.
A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Data collection through mobile sink (MS) in wireless sensor networks (WSNs) is an effective solution to the hot-spot or sink-hole problem caused by multi-hop routing using the static sink. Rendezvous point (RP) based MS path design is a common and popular technique used in this regard. However, design of the optimal path is a well-known NP-hard problem. Therefore, an evolutionary approach like multi-objective particle swarm optimization (MOPSO) can prove to be a very promising and reasonable approach to solve the same. In this paper, we first present a Linear Programming formulation for the stated problem and then, propose an MOPSO-based algorithm to design an energy efficient trajectory for the MS. The algorithm is presented with an efficient particle encoding scheme and derivation of a proficient multi-objective fitness function. We use Pareto dominance in MOPSO for obtaining both local and global best guides for each particle. We carry out rigorous simulation experiments on the proposed algorithm and compare the results with two existing algorithms namely, tree cluster based data gathering algorithm (TCBDGA) and energy aware sink relocation (EASR). The results demonstrate that the proposed algorithm performs better than both of them in terms of various performance metrics. The results are also validated through the statistical test, analysis of variance (ANOVA) and its least significant difference (LSD) post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.078541
0.077389
0.067778
0.067778
0.067778
0.022593
0.001702
0.000181
0
0
0
0
0
0
Model-Free Dual Heuristic Dynamic Programming. Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
Inexact Kleinman-Newton Method for Riccati Equations In this paper we consider the numerical solution of the algebraic Riccati equation using Newton's method. We propose an inexact variant which allows one control the number of the inner iterates used in an iterative solver for each Newton step. Conditions are given under which the monotonicity and global convergence result of Kleinman also hold for the inexact Newton iterates. Numerical results illustrate the efficiency of this method.
Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise. In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.
Stability Analysis of Optimal Adaptive Control using Value Iteration with Approximation Errors. Effects of the presence of approximation errors are analyzed on the stability of adaptive optimal control using value iteration, initiated from a stabilizing control policy. This analysis includes the system operated using any single/constant resulting control policy and also using an evolving/time-varying control policy. Sufficient conditions on the `per iteration&#39; approximation errors are obtain...
Policy Iteration Q-Learning for Data-Based Two-Player Zero-Sum Game of Linear Discrete-Time Systems. In this article, the data-based two-player zero-sum game problem is considered for linear discrete-time systems. This problem theoretically depends on solving the discrete-time game algebraic Riccati equation (DTGARE), while it requires complete system dynamics. To avoid solving the DTGARE, the $Q$ -function is introduced and a data-based policy iteration $Q$ -learning (PIQL) algorithm is develo...
H∞ control of linear discrete-time systems: Off-policy reinforcement learning. In this paper, a model-free solution to the H∞ control of linear discrete-time systems is presented. The proposed approach employs off-policy reinforcement learning (RL) to solve the game algebraic Riccati equation online using measured data along the system trajectories. Like existing model-free RL algorithms, no knowledge of the system dynamics is required. However, the proposed method has two main advantages. First, the disturbance input does not need to be adjusted in a specific manner. This makes it more practical as the disturbance cannot be specified in most real-world applications. Second, there is no bias as a result of adding a probing noise to the control input to maintain persistence of excitation (PE) condition. Consequently, the convergence of the proposed algorithm is not affected by probing noise. An example of the H∞ control for an F-16 aircraft is given. It is seen that the convergence of the new off-policy RL algorithm is insensitive to probing noise.
Adaptive optimal control for continuous-time linear systems based on policy iteration In this paper we propose a new scheme based on adaptive critics for finding online the state feedback, infinite horizon, optimal control solution of linear continuous-time systems using only partial knowledge regarding the system dynamics. In other words, the algorithm solves online an algebraic Riccati equation without knowing the internal dynamics model of the system. Being based on a policy iteration technique, the algorithm alternates between the policy evaluation and policy update steps until an update of the control policy will no longer improve the system performance. The result is a direct adaptive control algorithm which converges to the optimal control solution without using an explicit, a priori obtained, model of the system internal dynamics. The effectiveness of the algorithm is shown while finding the optimal-load-frequency controller for a power system.
Adaptive Fuzzy Decentralized Control for a Class of Strong Interconnected Nonlinear Systems With Unmodeled Dynamics. The state-feedback decentralized stabilization problem is considered for interconnected nonlinear systems in the presence of unmodeled dynamics. The functional relationship in affine form between the strong interconnected functions and error signals is established, which makes backstepping-based fuzzy control successfully generalized to strong interconnected nonlinear systems. By combining adaptiv...
Distributed finite-time attitude containment control for multiple rigid bodies Distributed finite-time attitude containment control for multiple rigid bodies is addressed in this paper. When there exist multiple stationary leaders, we propose a model-independent control law to guarantee that the attitudes of the followers converge to the stationary convex hull formed by those of the leaders in finite time by using both the one-hop and two-hop neighbors’ information. We also discuss the special case of a single stationary leader and propose a control law using only the one-hop neighbors’ information to guarantee cooperative attitude regulation in finite time. When there exist multiple dynamic leaders, a distributed sliding-mode estimator and a non-singular sliding surface were given to guarantee that the attitudes and angular velocities of the followers converge, respectively, to the dynamic convex hull formed by those of the leaders in finite time. We also explicitly show the finite settling time.
Precomputing Oblivious Transfer Alice and Bob are too untrusting of computer scientists to let their privacy depend on unproven assumptions such as the existence of one-way functions. Firm believers in Schrödinger and Heisenberg, they might accept a quantum OT device, but IBM’s prototype is not yet portable. Instead, as part of their prenuptial agreement, they decide to visit IBM and perform some OT’s in advance, so that any later divorces, coin-flipping or other important interactions can be done more conveniently, without needing expensive third parties. Unfortunately, OT can’t be done in advance in a direct way, because even though Bob might not know what bit Alice will later send (even if she first sends a random bit and later corrects it, for example), he would already know which bit or bits he will receive. We address the problem of precomputing oblivious transfer and show that OT can be precomputed at a cost of Θ(κ) prior transfers (a tight bound). In contrast, we show that variants of OT, such as one-out-of-two OT, can be precomputed using only one prior transfer. Finally, we show that all variants can be reduced to a single precomputed one-out-of-two oblivious transfer.
Map-matching for low-sampling-rate GPS trajectories Map-matching is the process of aligning a sequence of observed user positions with the road network on a digital map. It is a fundamental pre-processing step for many applications, such as moving object management, traffic flow analysis, and driving directions. In practice there exists huge amount of low-sampling-rate (e.g., one point every 2--5 minutes) GPS trajectories. Unfortunately, most current map-matching approaches only deal with high-sampling-rate (typically one point every 10--30s) GPS data, and become less effective for low-sampling-rate points as the uncertainty in data increases. In this paper, we propose a novel global map-matching algorithm called ST-Matching for low-sampling-rate GPS trajectories. ST-Matching considers (1) the spatial geometric and topological structures of the road network and (2) the temporal/speed constraints of the trajectories. Based on spatio-temporal analysis, a candidate graph is constructed from which the best matching path sequence is identified. We compare ST-Matching with the incremental algorithm and Average-Fréchet-Distance (AFD) based global map-matching algorithm. The experiments are performed both on synthetic and real dataset. The results show that our ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories. Meanwhile, when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.
Stochastic Power Adaptation with Multiagent Reinforcement Learning for Cognitive Wireless Mesh Networks As the scarce spectrum resource is becoming overcrowded, cognitive radio indicates great flexibility to improve the spectrum efficiency by opportunistically accessing the authorized frequency bands. One of the critical challenges for operating such radios in a network is how to efficiently allocate transmission powers and frequency resource among the secondary users (SUs) while satisfying the quality-of-service constraints of the primary users. In this paper, we focus on the noncooperative power allocation problem in cognitive wireless mesh networks formed by a number of clusters with the consideration of energy efficiency. Due to the SUs' dynamic and spontaneous properties, the problem is modeled as a stochastic learning process. We first extend the single-agent $(Q)$-learning to a multiuser context, and then propose a conjecture-based multiagent $(Q)$-learning algorithm to achieve the optimal transmission strategies with only private and incomplete information. An intelligent SU performs $(Q)$-function updates based on the conjecture over the other SUs' stochastic behaviors. This learning algorithm provably converges given certain restrictions that arise during the learning procedure. Simulation experiments are used to verify the performance of our algorithm and demonstrate its effectiveness of improving the energy efficiency.
Multiple switching-time-dependent discretized Lyapunov functions/functionals methods for stability analysis of switched time-delay stochastic systems. This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.046171
0.04
0.04
0.04
0.04
0.028444
0.011592
0.002833
0.000004
0
0
0
0
0
Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. This paper focuses on the semi-globally practical finite-time tracking control problem for a class of nonlinear systems with non-strict feedback structure. Inspired by prescribed performance control (PPC), a new performance function called finite-time performance function (FTPF) is defined for the first time. With the aid of neural networks and backstepping, an adaptive finite-time tracking controller is properly designed. Different from the existing finite-time results, the proposed method can guarantee that the tracking error converges to an arbitrarily small region at any settling time and all the signals in the closed-loop system are semi-globally practical finite-time stable (SGPF-stable). Two simulation examples are given to exhibit the effectiveness and superiority of the presented technique.
Network-Induced Constraints in Networked Control Systems—A Survey Networked control systems (NCSs) have, in recent years, brought many innovative impacts to control systems. However, great challenges are also met due to the network-induced imperfections. Such network-induced imperfections are handled as various constraints, which should appropriately be considered in the analysis and design of NCSs. In this paper, the main methodologies suggested in the literature to cope with typical network-induced constraints, namely time delays, packet losses and disorder, time-varying transmission intervals, competition of multiple nodes accessing networks, and data quantization are surveyed; the constraints suggested in the literature on the first two types of constraints are updated in different categorizing ways; and those on the latter three types of constraints are extended.
Gateway Framework for In-Vehicle Networks based on CAN, FlexRay and Ethernet This paper proposes a gateway framework for in-vehicle networks based on CAN, FlexRay, and Ethernet. The proposed gateway framework is designed to be easy to reuse and verify, in order to reduce development costs and time. The gateway framework can be configured, and its verification environment is automatically generated by a program with a dedicated graphical user interface. The gateway framework provides state of the art functionalities that include parallel reprogramming, diagnostic routing, network management, dynamic routing update, multiple routing configuration, and security. The proposed gateway framework was developed, and its performance was analyzed and evaluated.
Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence. For parameter identifications of robot systems, most existing works have focused on the estimation veracity, but few works of literature are concerned with the convergence speed. In this paper, we developed a robot control/identification scheme to identify the unknown robot kinematic and dynamic parameters with enhanced convergence rate. Superior to the traditional methods, the information of para...
Finite-Time H ∞ Estimator Design for Switched Discrete-Time Delayed Neural Networks With Event-Triggered Strategy This article is concerned with the event-triggered finite-time $H_{\infty }$ estimator design for a class of discrete-time switched neural networks (SNNs) with mixed time delays and packet dropouts. To further reduce the data transmission, both the measured information of system outputs and switching signal of the SNNs are on...
Prescribed Performance for Bipartite Tracking Control of Nonlinear Multiagent Systems With Hysteresis Input Uncertainties. This paper studies bipartite tracking problem of nonlinear multiagent systems over signed directed graphs. Each following agent is modeled by a higher-order nonlinear system in strict-feedback form with unknown dynamics and hysteresis input uncertainty. Both distributed state feedback and output feedback control laws are proposed to achieve bipartite tracking confined by the prescribed performance bounds. The proposed approximation-free distributed controllers only utilize error variables incorporating with performance bound functions, which lead to a low-complexity control algorithm. Moreover, the proposed control laws guarantee that all signals of the closed-loop system are uniformly ultimately bounded.
Forming Circle Formations of Anonymous Mobile Agents With Order Preservation We propose distributed control laws for a group of anonymous mobile agents to form desired circle formations when the agents move in the one-dimensional space of a circle. The agents are modeled by kinematic points. They share the common knowledge of the orientation of the circle, but are oblivious and anonymous. Moreover, each agent can only sense the relative positions of its neighboring two agents that are immediately in front of or behind itself. Distributed control strategies are designed for the agents using only the information of the relative positions of their two neighbors and also the given desired distances to its neighboring two agents. To make the control strategies more practical, we discuss the corresponding sampled-data control laws, and utilizing the technique of adopting time-varying gains, we obtain control laws that are able to guide the agents to form the desired circle formation within any given finite time. One feature of the proposed control laws is that they guarantee that the spatial ordering of the agents are preserved throughout the system's evolution, and thus no collision may take place during the process of forming circle formations. Both theoretical analysis and numerical simulations are given to show the effectiveness of the proposed formation control strategies.
Event-Triggered Control for Multiagent Systems With Sensor Faults and Input Saturation An adaptive neural network (NN) event-triggered control scheme is proposed for nonlinear nonstrict-feedback multiagent systems (MASs) against input saturation, unknown disturbance, and sensor faults. Mean-value theorem and Nussbaum-type function are invoked to transform the structure of the input saturation and overcome the difficulty of unknown control directions, respectively. On the basis of the universal approximation property of NNs, a nonlinear disturbance observer is designed to estimate the unknown compounded disturbance composed of external disturbance and the residual term of input saturation. According to the measurement error defined by control signal, an event-triggered mechanism is developed to save network transmission resource and reduce the number of controller update. Then, an adaptive NN compensation control approach is proposed to tackle the problem of sensor faults via the dynamic surface control (DSC) technique. It is proved that all signals in the closed-loop system are semi-globally uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the presented control strategy.
Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach The Hamilton-Jacobi-Bellman (HJB) equation corresponding to constrained control is formulated using a suitable nonquadratic functional. It is shown that the constrained optimal control law has the largest region of asymptotic stability (RAS). The value function of this HJB equation is solved for by solving for a sequence of cost functions satisfying a sequence of Lyapunov equations (LE). A neural network is used to approximate the cost function associated with each LE using the method of least-squares on a well-defined region of attraction of an initial stabilizing controller. As the order of the neural network is increased, the least-squares solution of the HJB equation converges uniformly to the exact solution of the inherently nonlinear HJB equation associated with the saturating control inputs. The result is a nearly optimal constrained state feedback controller that has been tuned a priori off-line.
Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform" are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Excellent experimental results obtained in true problems of rotation invariance, where the classifier is trained at one particular rotation angle and tested with samples from other rotation angles, demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns. These operators characterize the spatial configuration of local image texture and the performance can be further improved by combining them with rotation invariant variance measures that characterize the contrast of local image texture. The joint distributions of these orthogonal measures are shown to be very powerful tools for rotation invariant texture analysis.
Map-matching for low-sampling-rate GPS trajectories Map-matching is the process of aligning a sequence of observed user positions with the road network on a digital map. It is a fundamental pre-processing step for many applications, such as moving object management, traffic flow analysis, and driving directions. In practice there exists huge amount of low-sampling-rate (e.g., one point every 2--5 minutes) GPS trajectories. Unfortunately, most current map-matching approaches only deal with high-sampling-rate (typically one point every 10--30s) GPS data, and become less effective for low-sampling-rate points as the uncertainty in data increases. In this paper, we propose a novel global map-matching algorithm called ST-Matching for low-sampling-rate GPS trajectories. ST-Matching considers (1) the spatial geometric and topological structures of the road network and (2) the temporal/speed constraints of the trajectories. Based on spatio-temporal analysis, a candidate graph is constructed from which the best matching path sequence is identified. We compare ST-Matching with the incremental algorithm and Average-Fréchet-Distance (AFD) based global map-matching algorithm. The experiments are performed both on synthetic and real dataset. The results show that our ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories. Meanwhile, when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.
How to Use Bitcoin to Design Fair Protocols. We study a model of fairness in secure computation in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty. We then show how the Bitcoin network can be used to achieve the above notion of fairness in the twoparty as well as the multiparty setting (with a dishonest majority). In particular, we propose new ideal functionalities and protocols for fair secure computation and fair lottery in this model. One of our main contributions is the definition of an ideal primitive, which we call F-CR(star) (CR stands for "claim-or-refund"), that formalizes and abstracts the exact properties we require from the Bitcoin network to achieve our goals. Naturally, this abstraction allows us to design fair protocols in a hybrid model in which parties have access to the F-CR(star) functionality, and is otherwise independent of the Bitcoin ecosystem. We also show an efficient realization of F-CR(star) that requires only two Bitcoin transactions to be made on the network. Our constructions also enjoy high efficiency. In a multiparty setting, our protocols only require a constant number of calls to F-CR(star) per party on top of a standard multiparty secure computation protocol. Our fair multiparty lottery protocol improves over previous solutions which required a quadratic number of Bitcoin transactions.
A Covert Channel Over VoLTE via Adjusting Silence Periods. Covert channels represent unforeseen communication methods that exploit authorized overt communication as the carrier medium for covert messages. Covert channels can be a secure and effective means of transmitting confidential information hidden in overt traffic. For covert timing channel, the covert message is usually modulated into inter-packet delays (IPDs) of legitimate traffic, which is not suitable for voice over LTE (VoLTE) since the IPDs of VoLTE traffic are fixed to lose the possibility of being modulated. For this reason, we propose a covert channel via adjusting silence periods, which modulates covert message by the postponing or extending silence periods in VoLTE traffic. To keep the robustness, we employ the Gray code to encode the covert message to reduce the impact of packet loss. Moreover, the proposed covert channel enables the tradeoff between the robustness and voice quality which is an important performance indicator for VoLTE. The experiment results show that the proposed covert channel is undetectable by statistical tests and outperforms the other covert channels based on IPDs in terms of robustness.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.072612
0.066667
0.066667
0.066667
0.066667
0.028168
0.006667
0.001481
0.000002
0
0
0
0
0
Decision Fusion for IoT-Based Wireless Sensor Networks. This article presents a novel decision fusion algorithm for Internet-of-Things-based wireless sensor networks, where multiple sensors transmit their decisions about a certain phenomenon to a remote fusion center (FC) over a wide area network. The proposed algorithm denoted as the individual likelihood approximation (ILA) can significantly reduce the decision fusion error probability performance wh...
Reliable and Fast Hand-Offs in Low-Power Wireless Networks Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
An efficient medium access control protocol for WSN-UAV. Recent advances in Unmanned Aerial Vehicle (UAV) technologies have enhanced Wireless Sensor Networks (WSNs) by offering a UAV as a mobile data gathering node. These systems are called WSN-UAV that are well-suited for remote monitoring and emergency applications. Since previous Medium Access Control (MAC) protocols proposed in WSNs are not appropriate in the presence of a UAV, few researches have proposed new MAC protocols to meet WSN-UAV requirements. MAC protocols of WSN-UAV should be extremely efficient and fair due to the time-limited presence of the UAV in the neighborhood of each sensor. However, issues such as high throughput in dense networks, fairness among sensors, and efficiency have not been resolved yet in a satisfactory manner. Moreover, previous works lack analytical evaluation of their protocols. In this paper, we present a novel MAC protocol in WSN-UAV, called Advanced Prioritized MAC (AP-MAC), that can provide high throughput, fairness, and efficiency, especially in dense networks. We also analytically evaluate AP-MAC using a 3-dimensional Markov chain and validate its correctness using simulation. Simulation results under various scenarios confirm that AP-MAC can approximately improve throughput and fairness up to 20% and 25%, respectively, leading to higher efficiency compared with previous work in WSN-UAV systems such as Prioritized Frame Selection (PFS).
Wireless Powered Sensor Networks for Internet of Things: Maximum Throughput and Optimal Power Allocation. This paper investigates a wireless powered sensor network, where multiple sensor nodes are deployed to monitor a certain external environment. A multiantenna power station (PS) provides the power to these sensor nodes during wireless energy transfer phase, and consequently the sensor nodes employ the harvested energy to transmit their own monitoring information to a fusion center during wireless i...
A Compressive Sensing-Based Approach to End-to-End Network Traffic Reconstruction. Estimation of end-to-end network traffic plays an important role in traffic engineering and network planning. The direct measurement of a network&#39;s traffic matrix consumes large amounts of network resources and is thus impractical in most cases. How to accurately construct traffic matrix remains a great challenge. This paper studies end-to-end network traffic reconstruction in large-scale networks...
An Energy-Efficient Evolutionary Clustering Technique for Disaster Management in IoT Networks. Wireless Sensor Networks (WSNs) are key elements of Internet of Things (IoT) networks which provide sensing and wireless connectivity. Disaster management in smart cities is classified as a safety-critical application. Thus, it is important to ensure system availability by increasing the lifetime of WSNs. Clustering is one of the routing techniques that benefits energy efficiency in WSNs. This paper provides an evolutionary clustering and routing method which is capable of managing the energy consumption of nodes while considering the characteristics of a disaster area. The proposed method consists of two phases. First, we present a model with improved hybrid Particle Swarm Optimization (PSO) and Harmony Search Algorithm (HSA) for cluster head (CH) selection. Second, we design a PSO-based multi-hop routing system with enhanced tree encoding and a modified data packet format. The simulation results for disaster scenarios prove the efficiency of the proposed method in comparison with the state-of-the-art approaches in terms of the overall residual energy, number of live nodes, network coverage, and the packet delivery ratio.
Wireless sensor network survey A wireless sensor network (WSN) has important applications such as remote environmental monitoring and target tracking. This has been enabled by the availability, particularly in recent years, of sensors that are smaller, cheaper, and intelligent. These sensors are equipped with wireless interfaces with which they can communicate with one another to form a network. The design of a WSN depends significantly on the application, and it must consider factors such as the environment, the application's design objectives, cost, hardware, and system constraints. The goal of our survey is to present a comprehensive review of the recent literature since the publication of [I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Communications Magazine, 2002]. Following a top-down approach, we give an overview of several new applications and then review the literature on various aspects of WSNs. We classify the problems into three different categories: (1) internal platform and underlying operating system, (2) communication protocol stack, and (3) network services, provisioning, and deployment. We review the major development in these three categories and outline new challenges.
Long short-term memory. Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks Mobile-edge computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this paper, an MEC enabled multi-cell wireless network is considered where each base station (BS) is equipped with a MEC server that assists mobile users...
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
Dynamic transfer among alternative controllers and its relation to antiwindup controller design Advanced control strategies and modern consulting provide new challenges for the classical problem of bumpless transfer. It can, for example, be necessary to transfer between an only approximately known existing analog controller and a new digital or adaptive controller without accessing any states. Transfer ought to be bidirectional and not presuppose steady state, so that an immediate back-transfer is possible if the new controller should drive the plant unstable. We present a scheme that meets these requirements. By casting the problem of bidirectional transfer into an associated tracking control problem, systematic analysis and design procedures from control theory can be applied. The associated control problem also has a correspondence to the design of antiwindup controllers. The paper includes laboratory and industrial applications.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
Adaptive Fuzzy Control With Prescribed Performance for Block-Triangular-Structured Nonlinear Systems. In this paper, an adaptive fuzzy control method with prescribed performance is proposed for multi-input and multioutput block-triangular-structured nonlinear systems with immeasurable states. Fuzzy logic systems are adopted to identify the unknown nonlinear system functions. Adaptive fuzzy state observers are designed to solve the problem of unmeasured states, and a new observer-based output-feedb...
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0.2
0.011111
0
0
0
0
0
0
0
Relaxed Real-Time Scheduling Stabilization of Discrete-Time Takagi-Sugeno Fuzzy Systems via An Alterable-Weights-Based Ranking Switching Mechanism. The problem of relaxed real-time scheduling stabilization of nonlinear systems in the Takagi-Sugeno fuzzy model form is studied by proposing a new alterable-weights-based ranking switching mechanism. Thanks to the proposed alterable-weights-based ranking switching mechanism, a new fuzzy switching controller is developed with a set of activated modes that are adjusted by the real-time joint distrib...
Controller design for TS models using delayed nonquadratic Lyapunov functions. In the last few years, nonquadratic Lyapunov functions have been more and more frequently used in the analysis and controller design for Takagi-Sugeno fuzzy models. In this paper, we developed relaxed conditions for controller design using nonquadratic Lyapunov functions and delayed controllers and give a general framework for the use of such Lyapunov functions. The two controller design methods developed in this framework outperform and generalize current state-of-the-art methods. The proposed methods are extended to robust and H∞ control and α -sample variation.
Stability analysis of T-S fuzzy control systems by using set theory This paper is concerned with the stability analysis for T-S fuzzy control systems. By exploiting the property of the structure of fuzzy inference engine, an equivalence relation on index set of the product of fuzzy rule weights is defined. Further, a new stability criterion is proposed by using the equivalence relation, and formulated into progressively less conservative sets of linear matrix inequalities. By using an extension of P´olya’s Theorem, the new criterion is proved to be with no conservatism for quadratic stability analysis of T-S fuzzy control systems with a product inference engine and any possible fuzzy membership functions. A numerical example is given to illustrate the effectiveness of the proposed method.
The Generalized TP Model Transformation for T-S Fuzzy Model Manipulation and Generalized Stability Verification. This paper integrates various ideas about the tensor product (TP) model transformation into one conceptual framework and formulates it in terms of the Takagi-Sugeno (T-S) fuzzy model manipulation and control design framework. Several new extensions of the TP model transformation are proposed, such as the quasi and “full,” compact and rank-reduced higher order singular-value-decomposition-based can...
A Novel Fuzzy Output Feedback Dynamic Sliding Mode Controller Design for Two-Dimensional Nonlinear Systems The system information of 2-D systems is usually in propagation along two independent directions. This article focuses on the issue of output feedback sliding mode control (SMC) for 2-D nonlinear systems through T-S fuzzy affine models. Associated with the sliding surface function, a singular system is established to describe the sliding mode dynamics. Based on piecewise quadratic Lyapunov functio...
Homogeneous polynomially nonquadratic stabilization of discrete-time TakagiSugeno systems via nonparallel distributed compensation law This paper considers stability of discrete-time nonlinear systems in TakagiSugeno (TS) form. This problem has been studied for more than 20 years with many sufficient conditions, and the asymptotically necessary and sufficient (ANS) conditions with respect to the common-quadratic Lyapunov, function, having being obtained. This paper considers general forms of homogeneous polynomially nonquadratic Lyapunov (HPNQL) function and homogeneous polynomially parameterized nonparallel distributed compensation (HPP-non-PDC) law. By generalization of the procedure based on Plyas theorem and techniques used for parameter-dependent linear matrix inequality (PD-LMI) which have been studied previously in different contexts, ANS stability conditions with respect to the general HPNQL function are obtained. © 2010 IEEE.
Adaptive Optimal Control of Unknown Constrained-Input Systems Using Policy Iteration and Neural Networks This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.
Distributed Event-Triggered Control for Multi-Agent Systems Event-driven strategies for multi-agent systems are motivated by the future use of embedded microprocessors with limited resources that will gather information and actuate the individual agent controller updates. The controller updates considered here are event-driven, depending on the ratio of a certain measurement error with respect to the norm of a function of the state, and are applied to a first order agreement problem. A centralized formulation is considered first and then its distributed counterpart, in which agents require knowledge only of their neighbors' states for the controller implementation. The results are then extended to a self-triggered setup, where each agent computes its next update time at the previous one, without having to keep track of the state error that triggers the actuation between two consecutive update instants. The results are illustrated through simulation examples.
Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing With the growing prevalence of Internet of Things (IoT) devices and technology, a burgeoning computing paradigm namely mobile edge computing (MEC) is delicately proposed and designed to accommodate the application requirements of IoT scenario. In this paper, we focus on the problems of dynamic task scheduling and resource management in MEC environment, with the specific objective of achieving the optimal revenue earned by edge service providers. While the majority of task scheduling and resource management algorithms are formulated by an integer programming (IP) problem and solved in a dispreferred NP-hard manner, we innovatively investigate the problem structure and identify a favorable property namely totally unimodular constraints. The totally unimodular property further helps to design an equivalent linear programming (LP) problem which can be efficiently and elegantly solved at polynomial computational complexity. In order to evaluate our proposed approach, we conduct simulations based on real-life IoT dataset to verify the effectiveness and efficiency of our approach.
Competition in Service Industries We analyze a general market for an industry of competing service facilities. Firms differentiate themselves by their price levels and the waiting time their customers experience, as well as different attributes not determined directly through competition. Our model therefore assumes that the expected demand experienced by a given firm may depend on all of the industry's price levels as well as a (steady-state) waiting-time standard, which each of the firms announces and commits itself to by proper adjustment of its capacity level. We focus primarily on a separable specification, which in addition is linear in the prices. (Alternative nonseparable or nonlinear specifications are discussed in the concluding section.) We define a firm's service level as the difference between an upper-bound benchmark for the waiting-time standard (w脤聟) and the firm's actual waiting-time standard. Different types of competition and the resulting equilibrium behavior may arise, depending on the industry dynamics through which the firms select their strategic choices. In one case, firms may initially select their waiting-time standards, followed by a selection of their prices in a second stage (service-level first). Alternatively, the sequence of strategic choices may be reversed (price first) or, as a third alternative, the firms may make their choices simultaneously (simultaneous competition). We model each of the service facilities as a single-server M/M/1 queueing facility, which receives a given firm-specific price for each customer served. Each firm incurs a given cost per customer served as well as cost per unit of time proportional to its adopted capacity level.
A system for creating the content for a multi-sensory theater This paper reports on the current progress in a project to develop a multi-sensory theater. The project is focused not only on the development of hardware devices for multi-sensory presentations but also on an investigation into the framework and method of expression for creating the content. Olfactory, wind, and pneumatic devices that present the sensation of odor, wind and gusts, respectively, were developed and integrated into an audio-visual theater environment. All the devices, including the video device, are controlled through a MIDI interface. Also, a framework for creating the multisensory content by programming the sequence of device operations was proposed and implemented.
Safe mutations for deep and recurrent neural networks through output gradients While neuroevolution (evolving neural networks) has been successful across a variety of domains from reinforcement learning, to artificial life, to evolutionary robotics, it is rarely applied to large, deep neural networks. A central reason is that while random mutation generally works in low dimensions, a random perturbation of thousands or millions of weights will likely break existing functionality. This paper proposes a solution: a family of safe mutation (SM) operators that facilitate exploration without dramatically altering network behavior or requiring additional interaction with the environment. The most effective SM variant scales the degree of mutation of each individual weight according to the sensitivity of the network's outputs to that weight, which requires computing the gradient of outputs with respect to the weights (instead of the gradient of error, as in conventional deep learning). This safe mutation through gradients (SM-G) operator dramatically increases the ability of a simple genetic algorithm-based neuroevolution method to find solutions in high-dimensional domains that require deep and/or recurrent neural networks, including domains that require processing raw pixels. By improving our ability to evolve deep neural networks, this new safer approach to mutation expands the scope of domains amenable to neuroevolution.
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.0639
0.0614
0.0614
0.0614
0.052
0.030107
0.013867
0.003
0.000404
0
0
0
0
0
On a cuckoo search optimization approach towards feedback system identification This paper presents a cuckoo search algorithm (CSA) based adaptive infinite impulse response (IIR) system identification scheme. The proposed scheme prevents the local minima problem encountered in conventional IIR modeling mechanisms. The performance of the new method has been compared with that obtained by other evolutionary computing algorithms like genetic algorithm (GA) and particle swarm optimization (PSO). The superior system identification capability of the proposed scheme is evident from the results obtained through an exhaustive simulation study.
Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. A novel nonlinear system identification scheme is proposed.A Hammerstein model has been trained using cuckoo search algorithm.The model is a cascade of a FLANN and an adaptive IIR filter.Simulation study shows enhanced modeling capacity of the proposed scheme.The new schemes offers lesser computational time over other methods studied. An attempt has been made in this paper to model a nonlinear system using a Hammerstein model. The Hammerstein model considered in this paper is a functional link artificial neural network (FLANN) in cascade with an adaptive infinite impulse response (IIR) filter. In order to avoid local optima issues caused by conventional gradient descent training strategies, the model has been trained using a cuckoo search algorithm (CSA), which is a recently proposed stochastic algorithm. Modeling accuracy of the proposed scheme has been compared with that obtained using other popular evolutionary computing algorithms for the Hammerstein model. Enhanced modeling capability of the CSA based scheme is evident from the simulation results.
A meta-analysis and systematic literature review of virtual reality rehabilitation programs. A recent advancement in the study of physical rehabilitation is the application of virtual reality rehabilitation (VRR) programs, in which patients perform practice behaviors while interacting with the computer-simulation of an environment that imitates a physical presence in real or imagined worlds. Despite enthusiasm, much remains unknown about VRR programs. Particularly, two important research questions have been left unanswered: Are VRR programs effective? And, if so, why are VRR programs effective? A meta-analysis is performed in the current article to determine the efficacy of VRR programs, in general, as well as their ability to develop four specific rehabilitation outcomes: motor control, balance, gait, and strength. A systematic literature review is also performed to determine the mechanisms that may cause VRR program success or failure. The results demonstrate that VRR programs are more effective than traditional rehabilitation programs for physical outcome development. Further, three mechanisms have been proposed to cause these improved outcomes: excitement, physical fidelity, and cognitive fidelity; however, empirical research has yet to show that these mechanisms actually prompt better rehabilitation outcomes. The implications of these results and possible avenues for future research and practice are discussed. Virtual reality rehabilitation (VRR) programs are growing in popularity.VRR programs are more effective than traditional rehabilitation programs.Excitement, physical fidelity, and cognitive fidelity may cause VRR program success.More research is needed to better understand VRR programs.
Laminar: practical fine-grained decentralized information flow control This paper describes Laminar, the first system to implement decen- tralized information flow control (DIFC) using a single set of ab- stractions for OS resources and heap-allocated objects. Program- mers express security policies by labeling data with secrecy and integrity labels, and then accessing this labeled data in lexically scoped security regions. Laminar enforces the security policies specified by the labels at run time. Laminar is implemented using a modified Java virtual machine and a new Linux security mod- ule. This paper shows that security regions ease incremental de- ployment and limit dynamic security checks, allowing us to retrofit DIFC policies on four application case studies. Replacing the ap- plications' ad-hoc policies changes less than 10% of the code, and incurs performance overheads from 4% to 84%. Whereas prior sys- tems only supported limited types of multithreaded programs, Lam- inar supports a more general class of multithreaded DIFC programs that can access heterogeneously labeled data.
On Two Models of Noninterference: Rushby and Greve, Wilding, and Vanfleet We formally compare two industrially relevant and popular models of noninterference, namely, the model defined by Rushby and the one defined by Greve, Wilding, and Vanfleet (GWV). We create a mapping between the objects and relations of the two models. We prove a number of theorems showing under which assumptions a system identified as \"secure\" in one model is also identified as \"secure\" in the other model. Using two examples, we illustrate and discuss some of these assumptions. Our main conclusion is that the GWV model is more discriminating than the Rushby model. All systems satisfying GWV's Separation also satisfy Rushby's noninterference. The other direction only holds if we additionally assume that GWV systems are such that every partition is assigned at most one memory segment. All of our proofs have been checked using the Isabelle/HOL proof assistant.
Protecting privacy using the decentralized label model Stronger protection is needed for the confidentiality and integrity of data, because programs containing untrusted code are the rule rather than the exception. Information flow control allows the enforcement of end-to-end security policies, but has been difficult to put into practice. This article describes the decentralized label model, a new label model for control of information flow in systems with mutual distrust and decentralized authority. The model improves on existing multilevel security models by allowing users to declassify information in a decentralized way, and by improving support for fine-grained data sharing. It supports static program analysis of information flow, so that programs can be certified to permit only acceptable information flows, while largely avoiding the overhead of run-time checking. The article introduces the language Jif, an extension to Java that provides static checking of information flow using the decentralized label model.
Attribute-based encryption for fine-grained access control of encrypted data As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems Mobile Edge Computing (MEC) is a promising architecture to reduce the energy consumption of mobile devices and provide satisfactory quality-of-service to time-sensitive services. How to jointly optimize task offloading and resource allocation to minimize the energy consumption subject to the latency requirement remains an open problem, which motivates this paper. When the latency constraint is tak...
Distributed multirobot localization In this paper, we present a new approach to the problem of simultaneously localizing a group of mobile robots capable of sensing one another. Each of the robots collects sensor data regarding its own motion and shares this information with the rest of the team during the update cycles. A single estimator, in the form of a Kalman filter, processes the available positioning information from all the members of the team and produces a pose estimate for every one of them. The equations for this centralized estimator can be written in a decentralized form, therefore allowing this single Kalman filter to be decomposed into a number of smaller communicating filters. Each of these filters processes the sensor data collected by its host robot. Exchange of information between the individual filters is necessary only when two robots detect each other and measure their relative pose. The resulting decentralized estimation schema, which we call collective localization, constitutes a unique means for fusing measurements collected from a variety of sensors with minimal communication and processing requirements. The distributed localization algorithm is applied to a group of three robots and the improvement in localization accuracy is presented. Finally, a comparison to the equivalent decentralized information filter is provided.
State resetting for bumpless switching in supervisory control In this paper the realization and implementation of a multi-controller scheme made of a finite set of linear single-input-single-output controllers, possibly having different state dimensions, is studied. The supervisory control framework is considered, namely a minimal parameter dependent realization of the set of controllers such that all controllers share the same state space is used. A specific state resetting strategy based on the behavioral approach to system theory is developed in order to master the transient upon controller switching.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
5G Virtualized Multi-access Edge Computing Platform for IoT Applications. The next generation of fifth generation (5G) network, which is implemented using Virtualized Multi-access Edge Computing (vMEC), Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, is a flexible and resilient network that supports various Internet of Things (IoT) devices. While NFV provides flexibility by allowing network functions to be dynamically deployed and inter-connected, vMEC provides intelligence at the edge of the mobile network reduces latency and increases the available capacity. With the diverse development of networking applications, the proposed vMEC use of Container-based Virtualization Technology (CVT) as gateway with IoT devices for flow control mechanism in scheduling and analysis methods will effectively increase the application Quality of Service (QoS). In this work, the proposed IoT gateway is analyzed. The combined effect of simultaneously deploying Virtual Network Functions (VNFs) and vMEC applications on a single network infrastructure, and critically in effecting exhibits low latency, high bandwidth and agility that will be able to connect large scale of devices. The proposed platform efficiently exploiting resources from edge computing and cloud computing, and takes IoT applications that adapt to network conditions to degrade an average 30% of end to end network latency.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.087556
0.093333
0.046667
0.026667
0.026667
0.014
0.000095
0
0
0
0
0
0
0
Investigating Taste-liking with a Humanoid Robot Facilitator Tasting is an essential activity in our daily lives. Implementing social robots in the food and drink service industry requires the social robots to be able to understand customers’ nonverbal behaviours, including taste-liking. Little is known about whether people alter their behavioural responses related to taste-liking when interacting with a humanoid social robot. We conducted the first beverage tasting study where the facilitator is a human versus a humanoid social robot with priming versus non-priming instruction styles. We found that the facilitator type and facilitation style had no significant influence on cognitive taste-liking. However, in robot facilitator scenarios, people were more willing to follow the instruction and felt more comfortable when facilitated with priming. Our study provides new empirical findings and design implications for using humanoid social robots in the hospitality industry.
Social Perception and Steering for Online Avatars This paper presents work on a new platform for producing realistic group conversation dynamics in shared virtual environments. An avatar, representing users, should perceive the surrounding social environment just as humans would, and use the perceptual information for driving low level reactive behaviors. Unconscious reactions serve as evidence of life, and can also signal social availability and spatial awareness to others. These behaviors get lost when avatar locomotion requires explicit user control. For automating such behaviors we propose a steering layer in the avatars that manages a set of prioritized behaviors executed at different frequencies, which can be activated or deactivated and combined together. This approach gives us enough flexibility to model the group dynamics of social interactions as a set of social norms that activate relevant steering behaviors. A basic set of behaviors is described for conversations, some of which generate a social force field that makes the formation of conversation groups fluidly adapt to external and internal noise, through avatar repositioning and reorientations. The resulting social group behavior appears relatively robust, but perhaps more importantly, it starts to bring a new sense of relevance and continuity to the virtual bodies that often get separated from the ongoing conversation in the chat window.
Ripple effects of an embedded social agent: a field study of a social robot in the workplace Prior research has investigated the effect of interactive social agents presented on computer screens or embodied in robots. Much of this research has been pursued in labs and brief field studies. Comparatively little is known about social agents embedded in the workplace, where employees have repeated interactions with the agent, alone and with others. We designed a social robot snack delivery service for a workplace, and evaluated the service over four months allowing each employee to use it for two months. We report on how employees responded to the robot and the service over repeated encounters. Employees attached different social roles to the robot beyond a delivery person as they incorporated the robot's visit into their workplace routines. Beyond one-on-one interaction, the robot created a ripple effect in the workplace, triggering new behaviors among employees, including politeness, protection of the robot, mimicry, social comparison, and even jealousy. We discuss the implications of these ripple effects for designing services incorporating social agents.
Effects of (in)accurate empathy and situational valence on attitudes towards robots Empathy has great potential in human-robot interaction. However, the challenging nature of assessing the user's emotional state points to the importance of also understanding the effects of empathic behaviours incongruent with users' affective experience. A 3×2 between-subject video-based survey experiment (N=133) was conducted with empathic robot behaviour (empathically accurate, neutral, inaccurate) and valence of the situation (positive, negative) as dimensions. Trust decreased when empathic responses were incongruent with the affective state of the user. However, in the negative valence condition, reported perceived empathic abilities were greater when the robot responded as if the situation were positive.
Training Agents With Interactive Reinforcement Learning and Contextual Affordances. In the future, robots will be used more extensively as assistants in home scenarios and must be able to acquire expertise from trainers by learning through crossmodal interaction. One promising approach is interactive reinforcement learning (IRL) where an external trainer advises an apprentice on actions to speed up the learning process. In this paper we present an IRL approach for the domestic ta...
Affective social robots For human-robot interaction to proceed in a smooth, natural manner, robots must adhere to human social norms. One such human convention is the use of expressive moods and emotions as an integral part of social interaction. Such expressions are used to convey messages such as ''I'm happy to see you'' or ''I want to be comforted,'' and people's long-term relationships depend heavily on shared emotional experiences. Thus, we have developed an affective model for social robots. This generative model attempts to create natural, human-like affect and includes distinctions between immediate emotional responses, the overall mood of the robot, and long-term attitudes toward each visitor to the robot, with a focus on developing long-term human-robot relationships. This paper presents the general affect model as well as particular details of our implementation of the model on one robot, the Roboceptionist. In addition, we present findings from two studies that demonstrate the model's potential.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
Evolutionary computation: comments on the history and current state Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete
Supporting social navigation on the World Wide Web This paper discusses a navigation behavior on Internet information services, in particular the World Wide Web, which is characterized by pointing out of information using various communication tools. We call this behavior social navigation as it is based on communication and interaction with other users, be that through email, or any other means of communication. Social navigation phenomena are quite common although most current tools (like Web browsers or email clients) offer very little support for it. We describe why social navigation is useful and how it can be better supported in future systems. We further describe two prototype systems that, although originally not designed explicitly as tools for social navigation, provide features that are typical for social navigation systems. One of these systems, the Juggler system, is a combination of a textual virtual environment and a Web client. The other system is a prototype of a Web- hotlist organizer, called Vortex. We use both systems to describe fundamental principles of social navigation systems.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Implementing Vehicle Routing Algorithms
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. •The proposed watermarking scheme utilized improved discrete wavelet transformation (IDWT) to retrieve the invariant wavelet domain.•The entropy mechanism is used to identify the suitable region for insertion of watermark. This will improve the imperceptibility and robustness of the watermarking procedure.•The scaling factors such as PSNR and NC are considered for evaluation of the proposed method and the Particle Swarm Optimization is employed to optimize the scaling factors.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.2
0.2
0.2
0.2
0.2
0.05
0
0
0
0
0
0
0
0
An Improved Beam-Search for the Test Case Generation for Formal Verification Systems
Recall-Oriented Evaluation for Information Retrieval Systems. In a recall context, the user is interested in retrieving all relevant documents rather than retrieving a few that are at the top of the results list. In this article we propose ROM (Recall Oriented Measure) which takes into account the main elements that should be considered in evaluating information retrieval systems while ordering them in a way explicitly adapted to a recall context.
Tight Hardness Results for LCS and Other Sequence Similarity Measures Two important similarity measures between sequences are the longest common subsequence (LCS) and the dynamic time warping distance (DTWD). The computations of these measures for two given sequences are central tasks in a variety of applications. Simple dynamic programming algorithms solve these tasks in O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) time, and despite an extensive amount of research, no algorithms with significantly better worst case upper bounds are known. In this paper, we show that for any constant ε >0, an O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2-ε</sup> ) time algorithm for computing the LCS or the DTWD of two sequences of length n over a constant size alphabet, refutes the popular Strong Exponential Time Hypothesis (SETH).
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. We present Spider, a large-scale, complex and cross-domain semantic parsing and text-to-SQL dataset annotated by 11 college students. It consists of 10,181 questions and 5,693 unique complex SQL queries on 200 databases with multiple tables, covering 138 different domains. We define a new complex and cross-domain semantic parsing and text-to-SQL task where different complex SQL queries and databases appear in train and test sets. In this way, the task requires the model to generalize well to both new SQL queries and new database schemas. Spider is distinct from most of the previous semantic parsing tasks because they all use a single database and the exact same programs in the train set and the test set. We experiment with various state-of-the-art models and the best model achieves only 12.4% exact matching accuracy on a database split setting. This shows that Spider presents a strong challenge for future research. Our dataset and task are publicly available at this https URL
Semantic Parsing With Syntax- And Table-Aware Sql Generation We present a generative model to map natural language questions into SQL queries. Existing neural network based approaches typically generate a SQL query word-by-word, however, a large portion of the generated results is incorrect or not executable due to the mismatch between question words and table contents. Our approach addresses this problem by considering the structure of table and the syntax of SQL language. The quality of the generated SQL query is significantly improved through (1) learning to replicate content from column names, cells or SQL keywords; and (2) improving the generation of WHERE clause by leveraging the column-cell relation. Experiments are conducted on WikiSQL, a recently released dataset with the largest question-SQL pairs. Our approach significantly improves the state-of-the-art execution accuracy from 69.0% to 74.4%.
Sequence-Based Structured Prediction For Semantic Parsing We propose an approach for semantic parsing that uses a recurrent neural network to map a natural language question into a logical form representation of a KB query. Building on recent work by (Wang et al., 2015), the interpretable logical forms, which are structured objects obeying certain constraints, are enumerated by an underlying grammar and are paired with their canonical realizations. In order to use sequence prediction, we need to sequentialize these logical forms. We compare three sequentializations: a direct linearization of the logical form, a linearization of the associated canonical realization, and a sequence consisting of derivation steps relative to the underlying grammar. We also show how grammatical constraints on the derivation sequence can easily be integrated inside the RNNbased sequential predictor. Our experiments show important improvements over previous results for the same dataset, and also demonstrate the advantage of incorporating the grammatical constraints.
Footprints: history-rich tools for information foraging Inspired by Hill and Hollans original work [7], we have beendeveloping a theory of interaction history and building tools toapply this theory to navigation in a complex information space. Wehave built a series of tools - map, paths, annota- tions andsignposts - based on a physical-world navigation metaphor. Thesetools have been in use for over a year. Our user study involved acontrolled browse task and showed that users were able to get thesame amount of work done with significantly less effort.
A survey of socially interactive robots This paper reviews “socially interactive robots”: robots for which social human–robot interaction is important. We begin by discussing the context for socially interactive robots, emphasizing the relationship to other research fields and the different forms of “social robots”. We then present a taxonomy of design methods and system components used to build socially interactive robots. Finally, we describe the impact of these robots on humans and discuss open issues. An expanded version of this paper, which contains a survey and taxonomy of current applications, is available as a technical report [T. Fong, I. Nourbakhsh, K. Dautenhahn, A survey of socially interactive robots: concepts, design and applications, Technical Report No. CMU-RI-TR-02-29, Robotics Institute, Carnegie Mellon University, 2002].
Energy Efficiency Resource Allocation For D2d Communication Network Based On Relay Selection In order to solve the problem of spectrum resource shortage and energy consumption, we put forward a new model that combines with D2D communication and energy harvesting technology: energy harvesting-aided D2D communication network under the cognitive radio (EHA-CRD), where the D2D users harvest energy from the base station and the D2D source communicate with D2D destination by D2D relays. Our goals are to investigate the maximization energy efficiency (EE) of the network by joint time allocation and relay selection while taking into the constraints of the signal-to-noise ratio of D2D and the rates of the Cellular users. During this process, the energy collection time and communication time are randomly allocated. The maximization problem of EE can be divided into two sub-problems: (1) relay selection problem; (2) time optimization problem. For the first sub-problem, we propose a weighted sum maximum algorithm to select the best relay. For the last sub-problem, the EE maximization problem is non-convex problem with time. Thus, by using fractional programming theory, we transform it into a standard convex optimization problem, and we propose the optimization iterative algorithm to solve the convex optimization problem for obtaining the optimal solution. And, the simulation results show that the proposed relay selection algorithm and time optimization algorithm are significantly improved compared with the existing algorithms.
The contourlet transform: an efficient directional multiresolution image representation. The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discrete-domain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discrete-domain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and, thus, it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for N-pixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuous-domain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications. Index Terms-Contourlets, contours, filter banks, geometric image processing, multidirection, multiresolution, sparse representation, wavelets.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.1
0.05
0
0
0
0
0
0
0
0
The ParallelEye-CS Dataset: Constructing Artificial Scenes for Evaluating the Visual Intelligence of Intelligent Vehicles Offline training and testing are playing an essential role in design and evaluation of intelligent vehicle vision algorithms. Nevertheless, long-term inconvenience concerning traditional image datasets is that manually collecting and annotating datasets from real scenes lack testing tasks and diverse environmental conditions. For that virtual datasets can make up for these regrets. In this paper, we propose to construct artificial scenes for evaluating the visual intelligence of intelligent vehicles and generate a new virtual dataset called “ParallelEye-CS”. First of all, the actual track map data is used to build 3D scene model of Chinese Flagship Intelligent Vehicle Proving Center Area, Changshu. Then, the computer graphics and virtual reality technologies are utilized to simulate the virtual testing tasks according to the Chinese Intelligent Vehicles Future Challenge (IVFC) tasks. Furthermore, the Unity3D platform is used to generate accurate ground-truth labels and change environmental conditions. As a result, we present a viable implementation method for constructing artificial scenes for traffic vision research. The experimental results show that our method is able to generate photorealistic virtual datasets with diverse testing tasks.
Generative Adversarial Networks for Parallel Transportation Systems. Generative Adversaria Networks (GANs) have emerged as a promising and effective mechanism for machine learning due to its recent successful applications. GANs share the same idea of producing, testing, acquiring, and utilizing data as well as knowledge based on artificial systems, computational experiments, and parallel execution of actual and virtual scenarios, as outlined in the theory of parall...
Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges AbstractRecent advancements in perception for autonomous driving are driven by deep learning. In order to achieve robust and accurate scene understanding, autonomous vehicles are usually equipped with different sensors (e.g. cameras, LiDARs, Radars), and multiple sensing modalities can be fused to exploit their complementary properties. In this context, many methods have been proposed for deep multi-modal perception problems. However, there is no general guideline for network architecture design, and questions of “what to fuse”, “when to fuse”, and “how to fuse” remain open. This review paper attempts to systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving. To this end, we first provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection and semantic segmentation in autonomous driving research. We then summarize the fusion methodologies and discuss challenges and open questions. In the appendix, we provide tables that summarize topics and methods. We also provide an interactive online platform to navigate each reference: https://boschresearch.github.io/multimodalperception/.
Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance Object detection is a critical problem for advanced driving assistance systems (ADAS). Recently, convolutional neural networks (CNN) achieved large successes on object detection, with performance improvement over traditional approaches, which use hand-engineered features. However, due to the challenging driving environment (e.g., large object scale variation, object occlusion, and bad light conditions), popular CNN detectors do not achieve very good object detection accuracy over the KITTI autonomous driving benchmark dataset. In this paper, we propose three enhancements for CNN-based visual object detection for ADAS. To address the large object scale variation challenge, deconvolution and fusion of CNN feature maps are proposed to add context and deeper features for better object detection at low feature map scales. In addition, soft non-maximal suppression (NMS) is applied across object proposals at different feature scales to address the object occlusion challenge. As the cars and pedestrians have distinct aspect ratio features, we measure their aspect ratio statistics and exploit them to set anchor boxes properly for better object matching and localization. The proposed CNN enhancements are evaluated with various image input sizes by experiments over KITTI dataset. The experimental results demonstrate the effectiveness of the proposed enhancements with good detection performance over KITTI test set.
MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection. Object detection plays an important role in intelligent transportation systems and intelligent vehicles. Although the topic of object detection has been studied for decades, it is still challenging to accurately detect objects under complex scenarios. The contributing factors for challenges include diversified object and background appearance, motion blur, adverse weather conditions, and complex i...
Context-Aware Dynamic Feature Extraction for 3D Object Detection in Point Clouds Varying density of point clouds increases the difficulty of 3D detection. In this paper, we present a context-aware dynamic network (CADNet) to capture the variance of density by considering both point context and semantic context. Point-level contexts are generated from original point clouds to enlarge the effective receptive filed. They are extracted around the voxelized pillars based on our extended voxelization method and processed with the context encoder in parallel with the pillar features. With a large perception range, we are able to capture the variance of features for potential objects and generate attentive spatial guidance to help adjust the strengths for different regions. In the region proposal network, considering the limited representation ability of traditional convolution where same kernels are shared among different samples and positions, we propose a decomposable dynamic convolutional layer to adapt to the variance of input features by learning from the local semantic context. It adaptively generates the position-dependent coefficients for multiple fixed kernels and combines them to convolve with local features. Based on our dynamic convolution, we design a dual-path convolution block to further improve the representation ability. We conduct experiments on KITTI dataset and the proposed CADNet has achieved superior performance of 3D detection outperforming SECOND and PointPillars by a large margin at the speed of 30 FPS.
China's 12-Year Quest of Autonomous Vehicular Intelligence: The Intelligent Vehicles Future Challenge Program In this article, we introduce the Intelligent Vehicles Future Challenge of China (IVFC), which has lasted 12 years. Some key features of the tests and a few interesting findings of IVFC are selected and presented. Through the IVFCs held between 2009 and 2020, we gradually established a set of theories, methods, and tools to collect tests? data and efficiently evaluate the performance of autonomous vehicles so that we could learn how to improve both the autonomous vehicles and the testing system itself.
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
A comparative study of texture measures with classification based on featured distributions This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently. For classification a method based on Kullback discrimination of sample and prototype distributions is used. The classification results for single features with one-dimensional feature value distributions and for pairs of complementary features with two-dimensional distributions are presented
Social Perception and Steering for Online Avatars This paper presents work on a new platform for producing realistic group conversation dynamics in shared virtual environments. An avatar, representing users, should perceive the surrounding social environment just as humans would, and use the perceptual information for driving low level reactive behaviors. Unconscious reactions serve as evidence of life, and can also signal social availability and spatial awareness to others. These behaviors get lost when avatar locomotion requires explicit user control. For automating such behaviors we propose a steering layer in the avatars that manages a set of prioritized behaviors executed at different frequencies, which can be activated or deactivated and combined together. This approach gives us enough flexibility to model the group dynamics of social interactions as a set of social norms that activate relevant steering behaviors. A basic set of behaviors is described for conversations, some of which generate a social force field that makes the formation of conversation groups fluidly adapt to external and internal noise, through avatar repositioning and reorientations. The resulting social group behavior appears relatively robust, but perhaps more importantly, it starts to bring a new sense of relevance and continuity to the virtual bodies that often get separated from the ongoing conversation in the chat window.
Node Reclamation and Replacement for Long-Lived Sensor Networks When deployed for long-term tasks, the energy required to support sensor nodes' activities is far more than the energy that can be preloaded in their batteries. No matter how the battery energy is conserved, once the energy is used up, the network life terminates. Therefore, guaranteeing long-term energy supply has persisted as a big challenge. To address this problem, we propose a node reclamation and replacement (NRR) strategy, with which a mobile robot or human labor called mobile repairman (MR) periodically traverses the sensor network, reclaims nodes with low or no power supply, replaces them with fully charged ones, and brings the reclaimed nodes back to an energy station for recharging. To effectively and efficiently realize the strategy, we develop an adaptive rendezvous-based two-tier scheduling scheme (ARTS) to schedule the replacement/reclamation activities of the MR and the duty cycles of nodes. Extensive simulations have been conducted to verify the effectiveness and efficiency of the ARTS scheme.
Haptic feedback for enhancing realism of walking simulations. In this paper, we describe several experiments whose goal is to evaluate the role of plantar vibrotactile feedback in enhancing the realism of walking experiences in multimodal virtual environments. To achieve this goal we built an interactive and a noninteractive multimodal feedback system. While during the use of the interactive system subjects physically walked, during the use of the noninteractive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented with and without the haptic feedback. Results of the experiments provide a clear preference toward the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and noninteractive configurations. The majority of subjects clearly appreciated the added feedback. However, some subjects found the added feedback unpleasant. This might be due, on one hand, to the limits of the haptic simulation and, on the other hand, to the different individual desire to be involved in the simulations. Our findings can be applied to the context of physical navigation in multimodal virtual environments as well as to enhance the user experience of watching a movie or playing a video game.
Vehicular Sensing Networks in a Smart City: Principles, Technologies and Applications. Given the escalating population across the globe, it has become paramount to construct smart cities, aiming for improving the management of urban flows relying on efficient information and communication technologies (ICT). Vehicular sensing networks (VSNs) play a critical role in maintaining the efficient operation of smart cities. Naturally, there are numerous challenges to be solved before the w...
Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem Group scheduling problems have attracted much attention owing to their many practical applications. This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time, release time, and due time. It is originated from an important industrial process, i.e., wire rod and bar rolling process in steel production systems. Two objecti...
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0.006897
0
0
0
0
0
0
Finite-time convergence disturbance rejection control for a flexible Timoshenko manipulator This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances. To suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and ensure the finitetime convergence of disturbances, we develop three disturbance observers (DOs) and boundary controllers. Under the derived DOs-based control schemes, the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time. In the end, numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.
Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion. This paper presents and investigates the application of Zhang neural network (ZNN) activated by Li function to kinematic control of redundant robot manipulators via time-varying Jacobian matrix pseudoinversion. That is, by using Li activation function and by computing the time-varying pseudoinverse of the Jacobian matrix (of the robot manipulator), the resultant ZNN model is applied to redundant-manipulator kinematic control. Note that there are nine novelties and differences of ZNN from the conventional gradient neural network in the research methodology. More importantly, such a Li-function activated ZNN (LFAZNN) model has the property of finite-time convergence (showing its feasibility to redundant-manipulator kinematic control). Simulation results based on a four-link planar robot manipulator and a PA10 robot manipulator further demonstrate the effectiveness of the presented LFAZNN model, as well as show the LFAZNN application prospect.
Kinematic model to control the end-effector of a continuum robot for multi-axis processing This paper presents a novel kinematic approach for controlling the end-effector of a continuum robot for in-situ repair/inspection in restricted and hazardous environments. Forward and inverse kinematic (IK) models have been developed to control the last segment of the continuum robot for performing multi-axis processing tasks using the last six Degrees of Freedom (DoF). The forward kinematics (FK) is proposed using a combination of Euler angle representation and homogeneous matrices. Due to the redundancy of the system, different constraints are proposed to solve the IK for different cases; therefore, the IK model is solved for bending and direction angles between (-pi/2 to + pi/2) radians. In addition, a novel method to calculate the Jacobian matrix is proposed for this type of hyper-redundant kinematics. The error between the results calculated using the proposed Jacobian algorithm and using the partial derivative equations of the FK map (with respect to linear and angular velocity) is evaluated. The error between the two models is found to be insignificant, thus, the Jacobian is validated as a method of calculating the IK for six DoF.
Optimization-Based Inverse Model of Soft Robots With Contact Handling. This letter presents a physically based algorithm to interactively simulate and control the motion of soft robots interacting with their environment. We use the finite-element method to simulate the nonlinear deformation of the soft structure, its actuators, and surroundings and propose a control method relying on a quadratic optimization to find the inverse of the model. The novelty of this work ...
A Finite-Time Convergent and Noise-Rejection Recurrent Neural Network and Its Discretization for Dynamic Nonlinear Equations Solving. The so-called zeroing neural network (ZNN) is an effective recurrent neural network for solving dynamic problems including the dynamic nonlinear equations. There exist numerous unperturbed ZNN models that can converge to the theoretical solution of solvable nonlinear equations in infinity long or finite time. However, when these ZNN models are perturbed by external disturbances, the convergence pe...
A New Inequality-Based Obstacle-Avoidance MVN Scheme and Its Application to Redundant Robot Manipulators This paper proposes a new inequality-based criterion/constraint with its algorithmic and computational details for obstacle avoidance of redundant robot manipulators. By incorporating such a dynamically updated inequality constraint and the joint physical constraints (such as joint-angle limits and joint-velocity limits), a novel minimum-velocity-norm (MVN) scheme is presented and investigated for robotic redundancy resolution. The resultant obstacle-avoidance MVN scheme resolved at the joint-velocity level is further reformulated as a general quadratic program (QP). Two QP solvers, i.e., a simplified primal–dual neural network based on linear variational inequalities (LVI) and an LVI-based numerical algorithm, are developed and applied for online solution of the QP problem as well as the inequality-based obstacle-avoidance MVN scheme. Simulative results that are based on PA10 robot manipulator and a six-link planar robot manipulator in the presence of window-shaped and point obstacles demonstrate the efficacy and superiority of the proposed obstacle-avoidance MVN scheme. Moreover, experimental results of the proposed MVN scheme implemented on the practical six-link planar robot manipulator substantiate the physical realizability and effectiveness of such a scheme for obstacle avoidance of redundant robot manipulator.
Event-Triggered Finite-Time Control for Networked Switched Linear Systems With Asynchronous Switching. This paper is concerned with the event-triggered finite-time control problem for networked switched linear systems by using an asynchronous switching scheme. Not only the problem of finite-time boundedness, but also the problem of input-output finite-time stability is considered in this paper. Compared with the existing event-triggered results of the switched systems, a new type of event-triggered...
Tabu Search - Part I
Joint Optimization of Radio and Computational Resources for Multicell Mobile-Edge Computing Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources􀀀the transmit precoding matrices of the MUs􀀀and the computational resources􀀀the CPU cycles/second assigned by the cloud to each MU􀀀in order to minimize the overall users’ energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to compute the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. We then show that the proposed algorithmic framework naturally leads to a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz In this paper, large-scale fading and temporal fading characteristics of the industrial radio channel at 900, 2400, and 5200 MHz are determined. In contrast to measurements performed in houses and in office buildings, few attempts have been made until now to model propagation in industrial environments. In this paper, the industrial environment is categorized into different topographies. Industrial topographies are defined separately for large-scale and temporal fading, and their definition is based upon the specific physical characteristics of the local surroundings affecting both types of fading. Large-scale fading is well expressed by a one-slope path-loss model and excellent agreement with a lognormal distribution is obtained. Temporal fading is found to be Ricean and Ricean K-factors have been determined. Ricean K-factors are found to follow a lognormal distribution.
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0.1
0.018182
0
0
0
0
0
0
0
A system for creating the content for a multi-sensory theater This paper reports on the current progress in a project to develop a multi-sensory theater. The project is focused not only on the development of hardware devices for multi-sensory presentations but also on an investigation into the framework and method of expression for creating the content. Olfactory, wind, and pneumatic devices that present the sensation of odor, wind and gusts, respectively, were developed and integrated into an audio-visual theater environment. All the devices, including the video device, are controlled through a MIDI interface. Also, a framework for creating the multisensory content by programming the sequence of device operations was proposed and implemented.
Improvement of olfactory display using solenoid valves The research on olfactory sense in virtual reality has gradually expanded even though the technology is still premature. We have developed an olfactory display composed of multiple solenoid valves. In the present study, an extended olfactory display, where 32 component odors can be blended in any recipe, is described; the previous version has only 8 odor components. The size was unchanged even though the number of odor components was four times larger than that in the previous display. The complexity of blending was greatly reduced because of algorithm improvement. The blending method and the fundamental experiment using a QCM (quartz crystal microbalance) sensor are described here
A global averaging method for dynamic time warping, with applications to clustering Mining sequential data is an old topic that has been revived in the last decade, due to the increasing availability of sequential datasets. Most works in this field are centred on the definition and use of a distance (or, at least, a similarity measure) between sequences of elements. A measure called dynamic time warping (DTW) seems to be currently the most relevant for a large panel of applications. This article is about the use of DTW in data mining algorithms, and focuses on the computation of an average of a set of sequences. Averaging is an essential tool for the analysis of data. For example, the K-means clustering algorithm repeatedly computes such an average, and needs to provide a description of the clusters it forms. Averaging is here a crucial step, which must be sound in order to make algorithms work accurately. When dealing with sequences, especially when sequences are compared with DTW, averaging is not a trivial task. Starting with existing techniques developed around DTW, the article suggests an analysis framework to classify averaging techniques. It then proceeds to study the two major questions lifted by the framework. First, we develop a global technique for averaging a set of sequences. This technique is original in that it avoids using iterative pairwise averaging. It is thus insensitive to ordering effects. Second, we describe a new strategy to reduce the length of the resulting average sequence. This has a favourable impact on performance, but also on the relevance of the results. Both aspects are evaluated on standard datasets, and the evaluation shows that they compare favourably with existing methods. The article ends by describing the use of averaging in clustering. The last section also introduces a new application domain, namely the analysis of satellite image time series, where data mining techniques provide an original approach.
Haptic feedback for enhancing realism of walking simulations. In this paper, we describe several experiments whose goal is to evaluate the role of plantar vibrotactile feedback in enhancing the realism of walking experiences in multimodal virtual environments. To achieve this goal we built an interactive and a noninteractive multimodal feedback system. While during the use of the interactive system subjects physically walked, during the use of the noninteractive system the locomotion was simulated while subjects were sitting on a chair. In both the configurations subjects were exposed to auditory and audio-visual stimuli presented with and without the haptic feedback. Results of the experiments provide a clear preference toward the simulations enhanced with haptic feedback showing that the haptic channel can lead to more realistic experiences in both interactive and noninteractive configurations. The majority of subjects clearly appreciated the added feedback. However, some subjects found the added feedback unpleasant. This might be due, on one hand, to the limits of the haptic simulation and, on the other hand, to the different individual desire to be involved in the simulations. Our findings can be applied to the context of physical navigation in multimodal virtual environments as well as to enhance the user experience of watching a movie or playing a video game.
Substituting Motion Effects with Vibrotactile Effects for 4D Experiences. In this paper, we present two methods to substitute motion effects using vibrotactile effects in order to improve the 4D experiences of viewers. This work was motivated by the needs of more affordable 4D systems for individual users. Our sensory substitution algorithms convert motion commands to vibrotactile commands to a grid display that uses multiple actuators. While one method is based on the fundamental principle of vestibular feedback, the other method makes use of intuitive visually-based mapping from motion to vibrotactile stimulation. We carried out a user study and could confirm the effectiveness of our substitution methods in improving 4D experiences. To our knowledge, this is the first study that investigated the feasibility of replacing motion effects using much simpler and less expensive vibrotactile effects.
HapSeat: producing motion sensation with multiple force-feedback devices embedded in a seat We introduce a novel way of simulating sensations of motion which does not require an expensive and cumbersome motion platform. Multiple force-feedbacks are applied to the seated user's body to generate a sensation of motion experiencing passive navigation. A set of force-feedback devices such as mobile armrests or headrests are arranged around a seat so that they can apply forces to the user. We have dubbed this new approach HapSeat. A proof of concept has been designed which uses three low-cost force-feedback devices, and two control models have been implemented. Results from the first user study suggest that subjective sensations of motion are reliably generated using either model. Our results pave the way to a novel device to generate consumer motion effects based on our prototype.
Psychophysical Dimensions of Tactile Perception of Textures This paper reviews studies on the tactile dimensionality of physical properties of materials in order to determine a common structure for these dimensions. Based on the commonality found in a number of studies and known mechanisms for the perception of physical properties of textures, we conclude that tactile textures are composed of three prominent psychophysical dimensions that are perceived as roughness/smoothness, hardness/softness, and coldness/warmness. The roughness dimension may be divided into two dimensions: macro and fine roughness. Furthermore, it is reasonable to consider that a friction dimension that is related to the perception of moistness/dryness and stickiness/slipperiness exists. Thus, the five potential dimensions of tactile perception are macro and fine roughness, warmness/coldness, hardness/softness, and friction (moistness/dryness, stickiness/slipperiness). We also summarize methods such as psychological experiments and mathematical approaches for structuring tactile dimensions and their limitations.
A survey on sensor networks The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems Mobile Edge Computing (MEC) is a promising architecture to reduce the energy consumption of mobile devices and provide satisfactory quality-of-service to time-sensitive services. How to jointly optimize task offloading and resource allocation to minimize the energy consumption subject to the latency requirement remains an open problem, which motivates this paper. When the latency constraint is tak...
Symbolic model checking for real-time systems We describe finite-state programs over real-numbered time in a guarded-command language with real-valued clocks or, equivalently, as finite automata with real-valued clocks. Model checking answers the question which states of a real-time program satisfy a branching-time specification (given in an extension of CTL with clock variables). We develop an algorithm that computes this set of states symbolically as a fixpoint of a functional on state predicates, without constructing the state space. For this purpose, we introduce a μ-calculus on computation trees over real-numbered time. Unfortunately, many standard program properties, such as response for all nonzeno execution sequences (during which time diverges), cannot be characterized by fixpoints: we show that the expressiveness of the timed μ-calculus is incomparable to the expressiveness of timed CTL. Fortunately, this result does not impair the symbolic verification of "implementable" real-time programs-those whose safety constraints are machine-closed with respect to diverging time and whose fairness constraints are restricted to finite upper bounds on clock values. All timed CTL properties of such programs are shown to be computable as finitely approximable fixpoints in a simple decidable theory.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Data collection through mobile sink (MS) in wireless sensor networks (WSNs) is an effective solution to the hot-spot or sink-hole problem caused by multi-hop routing using the static sink. Rendezvous point (RP) based MS path design is a common and popular technique used in this regard. However, design of the optimal path is a well-known NP-hard problem. Therefore, an evolutionary approach like multi-objective particle swarm optimization (MOPSO) can prove to be a very promising and reasonable approach to solve the same. In this paper, we first present a Linear Programming formulation for the stated problem and then, propose an MOPSO-based algorithm to design an energy efficient trajectory for the MS. The algorithm is presented with an efficient particle encoding scheme and derivation of a proficient multi-objective fitness function. We use Pareto dominance in MOPSO for obtaining both local and global best guides for each particle. We carry out rigorous simulation experiments on the proposed algorithm and compare the results with two existing algorithms namely, tree cluster based data gathering algorithm (TCBDGA) and energy aware sink relocation (EASR). The results demonstrate that the proposed algorithm performs better than both of them in terms of various performance metrics. The results are also validated through the statistical test, analysis of variance (ANOVA) and its least significant difference (LSD) post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.072753
0.072753
0.066667
0.066667
0.066667
0.045187
0.0001
0
0
0
0
0
0
0
Machine learning algorithms for wireless sensor networks: A survey. •The survey of machine learning algorithms for WSNs from the period 2014 to March 2018.•Machine learning (ML) for WSNs with their advantages, features and limitations.•A statistical survey of ML-based algorithms for WSNs.•Reasons to choose a ML techniques to solve issues in WSNs.•The survey proposes a discussion on open issues.
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
Tag-based cooperative data gathering and energy recharging in wide area RFID sensor networks The Wireless Identification and Sensing Platform (WISP) conjugates the identification potential of the RFID technology and the sensing and computing capability of the wireless sensors. Practical issues, such as the need of periodically recharging WISPs, challenge the effective deployment of large-scale RFID sensor networks (RSNs) consisting of RFID readers and WISP nodes. In this view, the paper proposes cooperative solutions to energize the WISP devices in a wide-area sensing network while reducing the data collection delay. The main novelty is the fact that both data transmissions and energy transfer are based on the RFID technology only: RFID mobile readers gather data from the WISP devices, wirelessly recharge them, and mutually cooperate to reduce the data delivery delay to the sink. Communication between mobile readers relies on two proposed solutions: a tag-based relay scheme, where RFID tags are exploited to temporarily store sensed data at pre-determined contact points between the readers; and a tag-based data channel scheme, where the WISPs are used as a virtual communication channel for real time data transfer between the readers. Both solutions require: (i) clustering the WISP nodes; (ii) dimensioning the number of required RFID mobile readers; (iii) planning the tour of the readers under the energy and time constraints of the nodes. A simulative analysis demonstrates the effectiveness of the proposed solutions when compared to non-cooperative approaches. Differently from classic schemes in the literature, the solutions proposed in this paper better cope with scalability issues, which is of utmost importance for wide area networks.
Improving charging capacity for wireless sensor networks by deploying one mobile vehicle with multiple removable chargers. Wireless energy transfer is a promising technology to prolong the lifetime of wireless sensor networks (WSNs), by employing charging vehicles to replenish energy to lifetime-critical sensors. Existing studies on sensor charging assumed that one or multiple charging vehicles being deployed. Such an assumption may have its limitation for a real sensor network. On one hand, it usually is insufficient to employ just one vehicle to charge many sensors in a large-scale sensor network due to the limited charging capacity of the vehicle or energy expirations of some sensors prior to the arrival of the charging vehicle. On the other hand, although the employment of multiple vehicles can significantly improve the charging capability, it is too costly in terms of the initial investment and maintenance costs on these vehicles. In this paper, we propose a novel charging model that a charging vehicle can carry multiple low-cost removable chargers and each charger is powered by a portable high-volume battery. When there are energy-critical sensors to be charged, the vehicle can carry the chargers to charge multiple sensors simultaneously, by placing one portable charger in the vicinity of one sensor. Under this novel charging model, we study the scheduling problem of the charging vehicle so that both the dead duration of sensors and the total travel distance of the mobile vehicle per tour are minimized. Since this problem is NP-hard, we instead propose a (3+ϵ)-approximation algorithm if the residual lifetime of each sensor can be ignored; otherwise, we devise a novel heuristic algorithm, where ϵ is a given constant with 0 < ϵ ≤ 1. Finally, we evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the performance of the proposed algorithms are very promising.
Speed control of mobile chargers serving wireless rechargeable networks. Wireless rechargeable networks have attracted increasing research attention in recent years. For charging service, a mobile charger is often employed to move across the network and charge all network nodes. To reduce the charging completion time, most existing works have used the “move-then-charge” model where the charger first moves to specific spots and then starts charging nodes nearby. As a result, these works often aim to reduce the moving delay or charging delay at the spots. However, the charging opportunity on the move is largely overlooked because the charger can charge network nodes while moving, which as we analyze in this paper, has the potential to greatly reduce the charging completion time. The major challenge to exploit the charging opportunity is the setting of the moving speed of the charger. When the charger moves slow, the charging delay will be reduced (more energy will be charged during the movement) but the moving delay will increase. To deal with this challenge, we formulate the problem of delay minimization as a Traveling Salesman Problem with Speed Variations (TSP-SV) which jointly considers both charging and moving delay. We further solve the problem using linear programming to generate (1) the moving path of the charger, (2) the moving speed variations on the path and (3) the stay time at each charging spot. We also discuss possible ways to reduce the calculation complexity. Extensive simulation experiments are conducted to study the delay performance under various scenarios. The results demonstrate that our proposed method achieves much less completion time compared to the state-of-the-art work.
Beamforming in Wireless Energy Harvesting Communications Systems: A Survey. Wireless energy harvesting (EH) is a promising solution to prolong lifetime of power-constrained networks such as military and sensor networks. The high sensitivity of energy transfer to signal decay due to path loss and fading, promotes multi-antenna techniques like beamforming as the candidate transmission scheme for EH networks. Exploiting beamforming in EH networks has gained overwhelming inte...
Coverage and Connectivity Aware Energy Charging Mechanism Using Mobile Charger for WRSNs Wireless recharging using a mobile charger has been widely discussed in recent years. Most of them considered that all sensors were equally important and aimed to maximize the number of recharged sensors. The purpose of energy recharging is to extend the lifetime of sensors whose major work is to maximize the surveillance quality. In a randomly deployed wireless rechargeable sensor network, the surveillance quality highly depends on the contributions of coverage and network connectivity of each sensor. Instead of considering maximizing the number of recharged sensors, this article further takes into consideration the contributions of coverage and network connectivity of each sensor when making the decision of recharging schedule, aiming to maximize the surveillance quality and improve the number of data collected from sensors to the sink node. This article proposes an energy recharging mechanism, called an energy recharging mechanism for maximizing the surveillance quality of a given WRSNs (ERSQ), which partitions the monitoring region into several equal-sized grids and considers the important factors, including coverage contribution, network connectivity contribution, the remaining energy as well as the path length cost of each grid, aiming to maximize surveillance quality for a given wireless sensor network. Performance studies reveal that the proposed ERSQ outperforms existing recharging mechanisms in terms of the coverage, the number of working sensors as well as the effectiveness index of working sensors.
Minimizing the Maximum Charging Delay of Multiple Mobile Chargers Under the Multi-Node Energy Charging Scheme Wireless energy charging has emerged as a very promising technology for prolonging sensor lifetime in wireless rechargeable sensor networks (WRSNs). Existing studies focused mainly on the one-to-one charging scheme that a single sensor can be charged by a mobile charger at each time, this charging scheme however suffers from poor charging scalability and inefficiency. Recently, another charging scheme, the multi-node charging scheme that allows multiple sensors to be charged simultaneously by a mobile charger, becomes dominant, which can mitigate charging scalability and improve charging efficiency. However, most previous studies on this multi-node energy charging scheme focused on the use of a single mobile charger to charge multiple sensors simultaneously. For large scale WRSNs, it is insufficient to deploy only a single mobile charger to charge many lifetime-critical sensors, and consequently sensor expiration durations will increase dramatically. To charge many lifetime-critical sensors in large scale WRSNs as early as possible, it is inevitable to adopt multiple mobile chargers for sensor charging that can not only speed up sensor charging but also reduce expiration times of sensors. This however poses great challenges to fairly schedule the multiple mobile chargers such that the longest charging delay among sensors is minimized. One important constraint is that no sensor can be charged by more than one mobile charger at any time due to the fact that the sensor cannot receive any energy from either of the chargers or the overcharging will damage the recharging battery of the sensor. Thus, finding a closed charge tour for each of the multiple chargers such that the longest charging delay is minimized is crucial. In this paper we address the challenge by formulating a novel longest charging delay minimization problem. We first show that the problem is NP-hard. We then devise the very first approximation algorithm with a provable approximation ratio for the problem. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithm is promising, and outperforms existing algorithms in various settings.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
Hierarchical mesh segmentation based on fitting primitives In this paper, we describe a hierarchical face clustering algorithm for triangle meshes based on fitting primitives belonging to an arbitrary set. The method proposed is completely automatic, and generates a binary tree of clusters, each of which is fitted by one of the primitives employed. Initially, each triangle represents a single cluster; at every iteration, all the pairs of adjacent clusters are considered, and the one that can be better approximated by one of the primitives forms a new single cluster. The approximation error is evaluated using the same metric for all the primitives, so that it makes sense to choose which is the most suitable primitive to approximate the set of triangles in a cluster.Based on this approach, we have implemented a prototype that uses planes, spheres and cylinders, and have experimented that for meshes made of 100 K faces, the whole binary tree of clusters can be built in about 8 s on a standard PC.The framework described here has natural application in reverse engineering processes, but it has also been tested for surface denoising, feature recovery and character skinning.
Movie2Comics: Towards a Lively Video Content Presentation a type of artwork, comics is prevalent and popular around the world. However, despite the availability of assistive software and tools, the creation of comics is still a labor-intensive and time-consuming process. This paper proposes a scheme that is able to automatically turn a movie clip to comics. Two principles are followed in the scheme: 1) optimizing the information preservation of the movie; and 2) generating outputs following the rules and the styles of comics. The scheme mainly contains three components: script-face mapping, descriptive picture extraction, and cartoonization. The script-face mapping utilizes face tracking and recognition techniques to accomplish the mapping between characters' faces and their scripts. The descriptive picture extraction then generates a sequence of frames for presentation. Finally, the cartoonization is accomplished via three steps: panel scaling, stylization, and comics layout design. Experiments are conducted on a set of movie clips and the results have demonstrated the usefulness and the effectiveness of the scheme.
Parallel Multi-Block ADMM with o(1/k) Convergence This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints: $$\\begin{aligned} \\text {minimize} ~~&f_1(\\mathbf{x}_1) + \\cdots + f_N(\\mathbf{x}_N)\\\\ \\text {subject to}~~&A_1 \\mathbf{x}_1 ~+ \\cdots + A_N\\mathbf{x}_N =c,\\\\&\\mathbf{x}_1\\in {\\mathcal {X}}_1,~\\ldots , ~\\mathbf{x}_N\\in {\\mathcal {X}}_N, \\end{aligned}$$minimizef1(x1)+ź+fN(xN)subject toA1x1+ź+ANxN=c,x1źX1,ź,xNźXN,where $$N \\ge 2$$Nź2, $$f_i$$fi are convex functions, $$A_i$$Ai are matrices, and $${\\mathcal {X}}_i$$Xi are feasible sets for variable $$\\mathbf{x}_i$$xi. Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices $$A_i$$Ai are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices $$A_i$$Ai). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that $$\\Vert {\\mathbf {x}}^{k+1} - {\\mathbf {x}}^k\\Vert _M^2$$źxk+1-xkźM2 converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with 300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
Deep Continuous Fusion For Multi-Sensor 3d Object Detection In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud The increasing popularity of mobile video streaming in wireless networks has stimulated growing demands for efficient video streaming services. However, due to the time-varying throughput and user mobility, it is still difficult to provide high quality video services for mobile users. Our proposed optimization method considers key factors such as video quality, bitrate level, and quality variations to enhance quality of experience over wireless networks. The mobile network and device parameters are estimated in order to deliver the best quality video for the mobile user. We develop a rate adaptation algorithm using Lyapunov optimization for multi-source multimedia content delivery to minimize the video rate switches and provide higher video quality. The multi-source manager algorithm is developed to select the best stream based on the path quality for each path. The node joining and cluster head election mechanism update the node information. As the proposed approach selects the optimal path, it also achieves fairness and stability among clients. The quality of experience feature metrics like bitrate level, rebuffering events, and bitrate switch frequency are employed to assess video quality. We also employ objective video quality assessment methods like VQM, MS-SSIM, and SSIMplus for video quality measurement closer to human visual assessment. Numerical results show the effectiveness of the proposed method as compared to the existing state-of-the-art methods in providing quality of experience and bandwidth utilization.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.02
0
0
0
0
0
An Innovative Two-Level Model for Electric Vehicle Parking Lots in Distribution Systems With Renewable Energy. With the rapid growth of electric vehicles (EVs) in distribution systems, a new player, called EV parking lot operator (EV PLO), is emerging around the world. Furthermore, the integration of distributed generation in the distribution level, in particular, renewable energy sources, is leading to the establishment of various markets in distribution systems. On one hand, such PLOs aim at managing the...
Competitive on-line scheduling with level of service Motivated by an application in thinwire visualization, we study an abstract on-line scheduling problem where the size of each requested service can be scaled down by the scheduler. Thus, our problem embodies a notion of "Level of Service" that is increasingly important in multimedia applications. We give two schedulers FirstFit and EndFit based on two simple heuristics, and generalize them into a class of greedy schedulers. We show that both FirstFit and EndFit are 2-competitive, and any greedy scheduler is 3-competitive. These bounds are shown to be tight.
Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid Distributed energy resources (DERs), like electric vehicles (EVs), can offer valuable services to power systems, such as enabling renewable energy to the electricity producer and providing ancillary services to the system operator. However, these new DERs may challenge the distribution grid due to insufficient capacity in peak hours. This paper aims to coordinate the valuable services and operation constraints of three actors: the EV owner, the Fleet operator (FO) and the Distribution system operator (DSO), considering the individual EV owner's driving requirement, the charging cost of EV and thermal limits of cables and transformers in the proposed market framework. Firstly, a theoretical market framework is described. Within this framework, FOs who represent their customer's (EV owners) interests will centrally guarantee the EV owners' driving requirements and procure the energy for their vehicles with lower cost. The congestion problem will be solved by a coordination between DSO and FOs through a distribution grid capacity market scheme. Then, a mathematical formulation of the market scheme is presented. Further, some case studies are shown to illustrate the effectiveness of the proposed solutions.
Real-Time PEV Charging/Discharging Coordination in Smart Distribution Systems. This paper proposes a novel online coordination method for the charging of plug-in electric vehicles (PEVs) in smart distribution networks. The goal of the proposed method is to optimally charge the PEVs in order to maximize the PEV owners&#39; satisfaction and to minimize system operating costs without violating power system constraints. Unlike the solutions reported in the literature, the proposed c...
Effective Utilization of Available PEV Battery Capacity for Mitigation of Solar PV Impact and Grid Support With Integrated V2G Functionality. Utilizing battery storage devices in plug-in electric vehicles (PEVs) for grid support using vehicle-to-grid (V2G) concept is gaining popularity. With appropriate control strategies, the PEV batteries and associated power electronics can be exploited for solar photovoltaic (PV) impact mitigation and grid support. However, as the PEV batteries have limited capacity and the capacity usage is also co...
Optimal Number of Electric Vehicles for Existing Networks Considering Economic and Emission Dispatch The future transportation network is expected to be dominated by electric vehicles (EVs). With an increase in grid-connected vehicles, the power grid needs to increase its generation capacity to meet their charging demand. Thus, from a grid perspective, it is essential to find the maximum number of EVs that the existing infrastructure can handle. This research proposes a new framework to identify the fleet size capability of a power network in both uncontrolled and vehicle-to-grid (V2G) modes of operation. The proposed model is modeled as an optimization problem and tested on a system that is formed by combining IEEE 33-bus radial distribution system and a ten-unit generation system. Simulation results show that the current system can handle a fixed number of EVs when they operate independently. Participation of EVs in a V2G market significantly enhances the fleet size handling capability of the existing infrastructure, which is approximately four times the present capacity. Furthermore, a relation between the fleet size of EVs and operating points of plants is extracted, which is very beneficial for system planners. The result reveals that the time span requirements for power infrastructure upgradation can be increased by twofold if the V2G market is applied in the network.
iEMS for large scale charging of electric vehicles: Architecture and optimal online scheduling The problem of large scale charging of electric vehicles (EVs) is considered. An architecture for the energy management system (EMS) is proposed based on the concept of network switched charging where chargers are controlled by a scheduler that optimizes the overall operating profit of the service provider. It is assumed that the EMS has access to collocated renewable sources (e.g. solar power) and can supplement the renewable with purchased electricity from the grid. The renewable source may vary arbitrarily, and requests of all EVs accepted for service must be completed by their respective deadlines. Under a deterministic model for arbitrary arrivals, charging requests, and service deadlines, online scheduling of EV charging is formulated as a multi-processor deadline scheduling problem for which the optimal scheduler maximizes the competitive ratio against the best offline scheduler. An online scheduling algorithm, referred to as TAGS, is proposed based on the principle of threshold admission and greedy scheduling. TAGS has the complexity of O(n log n) where n is the number of EVs in the facility. It is shown that, when the price offered to the EV customers is higher than the purchasing price of electricity from the grid, TAGS achieves the competitive ratio of 1. Otherwise, TAGS achieves the maximum competitive ratio given by the inverse of a real root of a certain polynomial. Simulations are used to evaluate the performance of TAGS against standard benchmarks and for the setting of optimal charging price.
A Low-Complexity Analytical Modeling for Cross-Layer Adaptive Error Protection in Video Over WLAN We find a low-complicity and accurate model to solve the problem of optimizing MAC-layer transmission of real-time video over wireless local area networks (WLANs) using cross-layer techniques. The objective in this problem is to obtain the optimal MAC retry limit in order to minimize the total packet loss rate. First, the accuracy of Fluid and M/M/1/K analytical models is examined. Then we derive a closed-form expression for service time in WLAN MAC transmission, and will use this in mathematical formulation of our optimization problem based on M/G/1 model. Subsequently we introduce an approximate and simple formula for MAC-layer service time, which leads to the M/M/1 model. Compared with M/G/1, we particularly show that our M/M/1-based model provides a low-complexity and yet quite accurate means for analyzing MAC transmission process in WLAN. Using our M/M/1 model-based analysis, we derive closed-form formulas for the packet overflow drop rate and optimum retry-limit. These closed-form expressions can be effectively invoked for analyzing adaptive retry-limit algorithms. Simulation results (network simulator-2) will verify the accuracy of our analytical models.
Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs' data and physical resources. To address these challenges, we first propose FEDL, a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem's structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings.
Efficient algorithms for Web services selection with end-to-end QoS constraints Service-Oriented Architecture (SOA) provides a flexible framework for service composition. Using standard-based protocols (such as SOAP and WSDL), composite services can be constructed by integrating atomic services developed independently. Algorithms are needed to select service components with various QoS levels according to some application-dependent performance requirements. We design a broker-based architecture to facilitate the selection of QoS-based services. The objective of service selection is to maximize an application-specific utility function under the end-to-end QoS constraints. The problem is modeled in two ways: the combinatorial model and the graph model. The combinatorial model defines the problem as a multidimension multichoice 0-1 knapsack problem (MMKP). The graph model defines the problem as a multiconstraint optimal path (MCOP) problem. Efficient heuristic algorithms for service processes of different composition structures are presented in this article and their performances are studied by simulations. We also compare the pros and cons between the two models.
Multi-stage genetic programming: A new strategy to nonlinear system modeling This paper presents a new multi-stage genetic programming (MSGP) strategy for modeling nonlinear systems. The proposed strategy is based on incorporating the individual effect of predictor variables and the interactions among them to provide more accurate simulations. According to the MSGP strategy, an efficient formulation for a problem comprises different terms. In the first stage of the MSGP-based analysis, the output variable is formulated in terms of an influencing variable. Thereafter, the error between the actual and the predicted value is formulated in terms of a new variable. Finally, the interaction term is derived by formulating the difference between the actual values and the values predicted by the individually developed terms. The capabilities of MSGP are illustrated by applying it to the formulation of different complex engineering problems. The problems analyzed herein include the following: (i) simulation of pH neutralization process, (ii) prediction of surface roughness in end milling, and (iii) classification of soil liquefaction conditions. The validity of the proposed strategy is confirmed by applying the derived models to the parts of the experimental results that were not included in the analyses. Further, the external validation of the models is verified using several statistical criteria recommended by other researchers. The MSGP-based solutions are capable of effectively simulating the nonlinear behavior of the investigated systems. The results of MSGP are found to be more accurate than those of standard GP and artificial neural network-based models.
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
An indoor localization solution using Bluetooth RSSI and multiple sensors on a smartphone. In this paper, we propose an indoor positioning system using a Bluetooth receiver, an accelerometer, a magnetic field sensor, and a barometer on a smartphone. The Bluetooth receiver is used to estimate distances from beacons. The accelerometer and magnetic field sensor are used to trace the movement of moving people in the given space. The horizontal location of the person is determined by received signal strength indications (RSSIs) and the traced movement. The barometer is used to measure the vertical position where a person is located. By combining RSSIs, the traced movement, and the vertical position, the proposed system estimates the indoor position of moving people. In experiments, the proposed approach showed excellent performance in localization with an overall error of 4.8%.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.0525
0.06
0.06
0.06
0.05
0.05
0.009762
0
0
0
0
0
0
0
A Microgrid Energy Management System Based on the Rolling Horizon Strategy. A novel energy management system (EMS) based on a rolling horizon (RH) strategy for a renewable-based microgrid is proposed. For each decision step, a mixed integer optimization problem based on forecasting models is solved. The EMS provides online set points for each generation unit and signals for consumers based on a demand-side management (DSM) mechanism. The proposed EMS is implemented for a microgrid composed of photovoltaic panels, two wind turbines, a diesel generator and an energy storage system. A coherent forecast information scheme and an economic comparison framework between the RH and the standard unit commitment (UC) are proposed. Solar and wind energy forecasting are based on phenomenological models with updated data. A neural network for two-day-ahead electric consumption forecasting is also designed. The system is tested using real data sets from an existent microgrid in Chile (ESUSCON). The results based on different operation conditions show the economic sense of the proposal. A full practical implementation of the system for ESUSCON is envisioned.
Control and Optimization of Grid-Tied Photovoltaic Storage Systems Using Model Predictive Control. In this paper, we develop optimization and control methods for a grid-tied photovoltaic (PV) storage system. The storage component consists of two separate units, a large slower moving unit for energy shifting and arbitrage and a small rapid charging unit for smoothing. We use a Model Predictive Control (MPC) framework to allow the units to automatically and dynamically adapt to changes in PV outp...
A Model Predictive Control Approach to Microgrid Operation Optimization. Microgrids are subsystems of the distribution grid, which comprises generation capacities, storage devices, and controllable loads, operating as a single controllable system either connected or isolated from the utility grid. In this paper, we present a study on applying a model predictive control approach to the problem of efficiently optimizing microgrid operations while satisfying a time-varying request and operation constraints. The overall problem is formulated using mixed-integer linear programming (MILP), which can be solved in an efficient way by using commercial solvers without resorting to complex heuristics or decompositions techniques. Then, the MILP formulation leads to significant improvements in solution quality and computational burden. A case study of a microgrid is employed to assess the performance of the online optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid located in Athens, Greece. The experimental results show the feasibility and the effectiveness of the proposed approach.
A Fully Distributed Power Dispatch Method for Fast Frequency Recovery and Minimal Generation Cost in Autonomous Microgrids This paper describes a fully distributed power dispatch method that can achieve fast frequency recovery and minimal generation cost for autonomous microgrids. The method is comprised of two stages. In the first stage, a subgradient-based consensus algorithm is used to recover frequency. The equal increment rate criteria is incorporated into this algorithm to achieve a minimal regulating cost, obtained by economically distributing power among distributed energy resources. Control signals updated with latest local measurements are executed in each iteration step to speed up the frequency recovery procedure. In the second stage, an average consensus algorithm is applied to resolve frequency oscillations caused by measurement errors. Numerical tests are described to demonstrate the validity of the proposed method and its applicability in the presence of communication time delay is discussed.
Prioritized Replay Dueling DDQN Based Grid-Edge Control of Community Energy Storage System This paper develops a new prioritized replay dueling DDQN (PRD-DDQN) method for grid-edge control of community energy storage system with good robustness to uncertainties and fast convergence speed while achieving good control performance. The control problem is first formulated as a Markov decision process (MDP) considering the current time interval, state of charge of the CESS, the price signals...
Double Deep $Q$ -Learning-Based Distributed Operation of Battery Energy Storage System Considering Uncertainties <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning-based operation strategies are being recently applied for optimal operation of energy storage systems, where, a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -table is used to store <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -values for all possible state-action pairs. However, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning faces challenges when it comes to large state space problems, i.e., continuous state space problems or problems with environment uncertainties. In order to address the limitations of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning, this paper proposes a distributed operation strategy using double deep <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning method. It is applied to managing the operation of a community battery energy storage system (CBESS) in a microgrid system. In contrast to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning, the proposed operation strategy is capable of dealing with uncertainties in the system in both grid-connected and islanded modes. This is due to the utilization of a deep neural network as a function approximator to estimate the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -values. Moreover, the proposed method can mitigate the overestimation that is the major drawback of the standard deep <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning. The proposed method trains the model faster by decoupling the selection and evaluation processes. Finally, the performance of the proposed double deep <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning-based operation method is evaluated by comparing its results with a centralized approach-based operation.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Adam: A Method for Stochastic Optimization. We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Energy Efficiency Resource Allocation For D2d Communication Network Based On Relay Selection In order to solve the problem of spectrum resource shortage and energy consumption, we put forward a new model that combines with D2D communication and energy harvesting technology: energy harvesting-aided D2D communication network under the cognitive radio (EHA-CRD), where the D2D users harvest energy from the base station and the D2D source communicate with D2D destination by D2D relays. Our goals are to investigate the maximization energy efficiency (EE) of the network by joint time allocation and relay selection while taking into the constraints of the signal-to-noise ratio of D2D and the rates of the Cellular users. During this process, the energy collection time and communication time are randomly allocated. The maximization problem of EE can be divided into two sub-problems: (1) relay selection problem; (2) time optimization problem. For the first sub-problem, we propose a weighted sum maximum algorithm to select the best relay. For the last sub-problem, the EE maximization problem is non-convex problem with time. Thus, by using fractional programming theory, we transform it into a standard convex optimization problem, and we propose the optimization iterative algorithm to solve the convex optimization problem for obtaining the optimal solution. And, the simulation results show that the proposed relay selection algorithm and time optimization algorithm are significantly improved compared with the existing algorithms.
Priced Oblivious Transfer: How to Sell Digital Goods We consider the question of protecting the privacy of customers buying digital goods. More specifically, our goal is to allow a buyer to purchase digital goods from a vendor without letting the vendor learn what, and to the extent possible also when and how much, it is buying. We propose solutions which allow the buyer, after making an initial deposit, to engage in an unlimited number of priced oblivious-transfer protocols, satisfying the following requirements: As long as the buyer's balance contains sufficient funds, it will successfully retrieve the selected item and its balance will be debited by the item's price. However, the buyer should be unable to retrieve an item whose cost exceeds its remaining balance. The vendor should learn nothing except what must inevitably be learned, namely, the amount of interaction and the initial deposit amount (which imply upper bounds on the quantity and total price of all information obtained by the buyer). In particular, the vendor should be unable to learn what the buyer's current balance is or when it actually runs out of its funds. The technical tools we develop, in the process of solving this problem, seem to be of independent interest. In particular, we present the first one-round (two-pass) protocol for oblivious transfer that does not rely on the random oracle model (a very similar protocol was independently proposed by Naor and Pinkas [21]). This protocol is a special case of a more general "conditional disclosure" methodology, which extends a previous approach from [11] and adapts it to the 2-party setting.
The concept of flow in collaborative game-based learning Generally, high-school students have been characterized as bored and disengaged from the learning process. However, certain educational designs promote excitement and engagement. Game-based learning is assumed to be such a design. In this study, the concept of flow is used as a framework to investigate student engagement in the process of gaming and to explain effects on game performance and student learning outcome. Frequency 1550, a game about medieval Amsterdam merging digital and urban play spaces, has been examined as an exemplar of game-based learning. This 1-day game was played in teams by 216 students of three schools for secondary education in Amsterdam. Generally, these students show flow with their game activities, although they were distracted by solving problems in technology and navigation. Flow was shown to have an effect on their game performance, but not on their learning outcome. Distractive activities and being occupied with competition between teams did show an effect on the learning outcome of students: the fewer students were distracted from the game and the more they were engaged in group competition, the more students learned about the medieval history of Amsterdam. Consequences for the design of game-based learning in secondary education are discussed.
Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way Radio Frequency Identification (RFID) technology has been widely used in inventory management in many scenarios, e.g., warehouses, retail stores, hospitals, etc. This paper investigates a challenging problem of complete identification of missing tags in large-scale RFID systems. Although this problem has attracted extensive attention from academy and industry, the existing work can hardly satisfy the stringent real-time requirements. In this paper, a Slot Filter-based Missing Tag Identification (SFMTI) protocol is proposed to reconcile some expected collision slots into singleton slots and filter out the expected empty slots as well as the unreconcilable collision slots, thereby achieving the improved time-efficiency. The theoretical analysis is conducted to minimize the execution time of the proposed SFMTI. We then propose a cost-effective method to extend SFMTI to the multi-reader scenarios. The extensive simulation experiments and performance results demonstrate that the proposed SFMTI protocol outperforms the most promising Iterative ID-free Protocol (IIP) by reducing nearly 45% of the required execution time, and is just within a factor of 1.18 from the lower bound of the minimum execution time.
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
A Hierarchical Architecture Using Biased Min-Consensus for USV Path Planning This paper proposes a hierarchical architecture using the biased min-consensus (BMC) method, to solve the path planning problem of unmanned surface vessel (USV). We take the fixed-point monitoring mission as an example, where a series of intermediate monitoring points should be visited once by USV. The whole framework incorporates the low-level layer planning the standard path between any two intermediate points, and the high-level fashion determining their visiting sequence. First, the optimal standard path in terms of voyage time and risk measure is planned by the BMC protocol, given that the corresponding graph is constructed with node state and edge weight. The USV will avoid obstacles or keep a certain distance safely, and arrive at the target point quickly. It is proven theoretically that the state of the graph will converge to be stable after finite iterations, i.e., the optimal solution can be found by BMC with low calculation complexity. Second, by incorporating the constraint of intermediate points, their visiting sequence is optimized by BMC again with the reconstruction of a new virtual graph based on the former planned results. The extensive simulation results in various scenarios also validate the feasibility and effectiveness of our method for autonomous navigation.
1.084444
0.066667
0.066667
0.066667
0.066667
0.022222
0
0
0
0
0
0
0
0
Event-Based Formation Control for Nonlinear Multiagent Systems Under DoS Attacks This article focuses on the formation control problem of nonlinear multiagent systems under denial-of-service attacks. The formation control can be preserved by the distributed hybrid event-triggering strategies (HETSs). As a balance between periodic and continuous event-triggering strategies, HETS arranges a tradeoff between the resource utilization and the communication frequency among agents. Theoretical results are verified using a benchmark problem of six miniature quadrotor prototypes.
Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems This paper presents a set of algorithms for fault diagnosis and fault tolerant control strategy for affine nonlinear systems subjected to an unknown time-varying fault vector. First, the design of fault diagnosis filter is performed using nonlinear observer techniques, where the system is decoupled through a nonlinear transformation and an observer is used to generate the required residual signal. By introducing an extra input to the observer, a direct estimation of the time-varying fault is obtained when the residual is controlled, by this extra input, to zero. The stability analysis of this observer is proved and some relevant sufficient conditions are obtained. Using the estimated fault vector, a fault tolerant controller is established which guarantees the stability of the closed loop system. The proposed algorithm is applied to a combined pH and consistency control system of a pilot paper machine, where simulations are performed to show the effectiveness of the proposed approach.
Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input This technical note considers the distributed tracking control problem of multiagent systems with general linear dynamics and a leader whose control input is nonzero and not available to any follower. Based on the relative states of neighboring agents, two distributed discontinuous controllers with, respectively, static and adaptive coupling gains, are designed for each follower to ensure that the states of the followers converge to the state of the leader, if the interaction graph among the followers is undirected, the leader has directed paths to all followers, and the leader's control input is bounded. A sufficient condition for the existence of the distributed controllers is that each agent is stabilizable. Simulation examples are given to illustrate the theoretical results.
Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. In this paper, adaptive neural network based dynamic surface control (DSC) is developed for a class of nonlinear strict-feedback systems with unknown direction control gains and input saturation. A Gaussian error function based saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided by utilizing DSC. Based on backstepping combined with DSC, adaptive radial basis function neural network control is developed to guarantee that all the signals in the closed-loop system are globally bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design parameters. Simulation results demonstrate the effectiveness of the proposed approach and the good performance is guaranteed even though both the saturation constraints and the wrong control direction are occurred.
Finite-Time Adaptive Fuzzy Control for Nonstrict-Feedback Nonlinear Systems Via an Event-Triggered Strategy This article addresses the finite-time adaptive fuzzy control problem for a class of nonstrict-feedback uncertain nonlinear systems via an event-triggered strategy. A novel design scheme, consisting of finite-time adaptive fuzzy controller and event-triggering mechanism (ETM), is proposed to decrease the number of data transmission and the number of control actuation updates. With the proposed event-triggered adaptive fuzzy control scheme, all the solutions of the resulting closed-loop system are guaranteed to be semi-globally bounded within finite time. Moreover, the feasibility of the proposed ETM is verified by excluding Zeno behavior. In contrast to existing results on similar problems, the restrictions on nonlinearities are relaxed and the more general uncertain nonlinear systems are considered. Finally, an example is provided to illustrate our theoretical results.
Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations The asynchronously switched multi-agent systems comprising switched agents of different dynamics and switching signals are considered under arbitrarily switching communication topologies. The practical output synchronization problem is studied for such a kind of systems due to the heterogeneity brought by both the dynamics and the switchings of agents. A switching-dependent controller with an embedded virtual reference system is proposed for each agent. The original problem is then converted into tracking problems between each agent and its reference system. The analysis of resultant tracking error systems involves the analysis of switched systems with bounded but non-attenuating state impulses. By satisfying sufficient conditions featuring the average dwell time (ADT) and the newly proposed piecewise ADT, the practical output synchronization can be achieved and the ultimate bound of the output errors can also be obtained for the considered systems. Furthermore, a realistic case where the agent switching signals undergo adverse fast-switching perturbations is studied. The perturbations may potentially invalidate the “slow-switching” based method. A regulation strategy is thus developed for each agent to render it adaption to such adversity. A payload transport task is taken as the practical example to illustrate the effectiveness of the proposed method and the adaption strategy.
Command Filtered Adaptive Backstepping Implementation of adaptive backstepping controllers requires analytic calculation of the partial derivatives of certain stabilizing functions. It is well documented that, as the order of a nonlinear system increases, analytic calculation of these derivatives becomes prohibitive. Therefore, in practice, either alternative control approaches are used or the derivatives are neglected in the implementation. Neglecting the derivatives results in the loss of all guarantees proven by Lyapunov methods for the adaptive backstepping approach and may result in instability. This paper presents a new implementation approach for adaptive backstepping control. The main objectives are to facilitate the derivation and implementation of the adaptive backstepping approach, with performance guarantees proven by Lyapunov methods, for applications that were prohibitively difficult using the standard analytic implementation approach. The new approach uses filtering methods to produce certain command signals and their derivatives which eliminates the requirement of analytic differentiation. The approach also introduces filters to generate certain compensating signals necessary to compute compensated tracking errors suitable for adaptive parameter estimation. We present a set of Lemmas and Theorems to analyze the performance both during the initialization and the operating phases. We show that the initialization phase is of finite duration that can be controlled by selection of a design parameter. We also show that all signals within the system are bounded during this short initialization phase. During the operating phase, we show that the command filtered implementation approach has theoretical properties identical to those of the conventional approach. The general approach is presented and analyzed for systems in generalized parameter strict feedback form. Extensions of the approach are presented to demonstrate the application of the method to a land vehicle trajectory following applicat- on. Application and effectiveness of the proposed method is shown by simulation results.
On the ratio of optimal integral and fractional covers It is shown that the ratio of optimal integral and fractional covers of a hypergraph does not exceed 1 + log d , where d is the maximum degree. This theorem may replace probabilistic methods in certain circumstances. Several applications are shown.
Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution Recently, the rapid advance of vehicular networks has led to the emergence of diverse delay-sensitive vehicular applications such as automatic driving, auto navigation. Note that existing resource-constrained vehicles cannot adequately meet these demands on low / ultra-low latency. By offloading parts of the vehicles’ compute-intensive tasks to the edge servers in proximity, mobile edge computing is envisioned as a promising paradigm, giving rise to the vehicular edge computing networks (VECNs). However, most existing works on task offloading in VECNs did not take the load balancing of the computation resources at the edge servers into account. To address these issues and given the high dynamics of vehicular networks, we introduce fiber-wireless (FiWi) technology to enhance VECNs, due to its advantages on centralized network management and supporting multiple communication techniques. Aiming to minimize the processing delay of the vehicles’ computation tasks, we propose a software-defined networking (SDN) based load-balancing task offloading scheme in FiWi enhanced VECNs, where SDN is introduced to provide supports for the centralized network and vehicle information management. Extensive analysis and numerical results corroborate that our proposed load-balancing scheme can achieve superior performance on processing delay reduction by utilizing the edge servers’ computation resources more efficiently.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
Design and simulation of a joint-coupled orthosis for regulating FES-aided gait A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at this http URL
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
A Planning Algorithm to Support Learning in Open-ended, Unstructured Environments The focus of this paper is a novel pedagogical planner that we have developed called the CFLS planner (Collaborative Filtering based on Learning Sequences). The CFLS planner has been designed for an open-ended and unstructured learning environment based on the ecological approach (EA) architecture (McCalla Journal of Interactive Media in Education, 7, 2004). The EA-based learning environment represents its content as learning objects (LOs), maintains models of its learners, and keeps track of learner interactions with the LOs by attaching traces of their behaviour to the LOs they have interacted with. The CFLS planner creates pedagogical plans for a target learner by looking back at the sequence of the b (for “backward”) most recent LOs that the target learner has interacted with and finding a neighbourhood of other learners who in the past have interacted with a similar sequence of b LOs. The CFLS planner then recommends to the target learner a sequence of f (for “forward”) LOs that was the most successful sequence (in terms of learning outcomes) that had been carried out next among the neighbourhood of similar learners. We implemented and tested the CFLS planner using a very simple simulation, in which simulated learners interact with simulated learning objects. We experimented with various settings for the b and f parameters. Intriguing patterns in the relationship between b and f emerged. Further, the settings for b and f that led to the best learning outcomes (on two different measures of success) varied according to the aptitude levels of the learners. Finally, we compared the CFLS planner to two baseline planners: a simple prerequisite planner (SPP) and a planner that randomly recommended the next learning object (Random). The CFLS planner readily outperformed Random (as expected), but also, more surprisingly, with appropriate settings of b and f, it outperformed SPP even though the CFLS planner did not know about the prerequisite relationships among the LOs that the SPP was able to access. This shows promise that a CFLS planner can find niche learning paths to recommend to learners based on interaction traces left behind by the learners, without needing externally engineered metadata about the learning objects or knowing very much about the learners, perhaps even finding paths based on patterns of learning activity never considered by a human designer. This is exactly the kind of planning system needed in open-ended, unstructured learning environments.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification. Person re-identification (reID) is an important task that requires to retrieve a person's images from an image dataset, given one image of the person of interest. For learning robust person features, the pose variation of person images is one of the key challenges. Existing works targeting the problem either perform human alignment, or learn human-region-based representations. Extra pose information and computational cost is generally required for inference. To solve this issue, a Feature Distilling Generative Adversarial Network (FD-GAN) is proposed for learning identity-related and pose-unrelated representations. It is a novel framework based on a Siamese structure with multiple novel discriminators on human poses and identities. In addition to the discriminators, a novel same-pose loss is also integrated, which requires appearance of a same person's generated images to be similar. After learning pose-unrelated person features with pose guidance, no auxiliary pose information and additional computational cost is required during testing. Our proposed FD-GAN achieves state-of-the-art performance on three person reID datasets, which demonstrates that the effectiveness and robust feature distilling capability of the proposed FD-GAN.(double dagger double dagger)
Horizontal Pyramid Matching for Person Re-Identification Despite the remarkable progress in person re-identification (Re-ID), such approaches still suffer from the failure cases where the discriminative body parts are missing. To mitigate this type of failure, we propose a simple yet effective Horizontal Pyramid Matching (HPM) approach to fully exploit various partial information of a given person, so that correct person candidates can be identified even if some key parts are missing. With HPM, we make the following contributions to produce more robust feature representations for the Re-ID task: 1) we learn to classify using partial feature representations at different horizontal pyramid scales, which successfully enhance the discriminative capabilities of various person parts; 2) we exploit average and max pooling strategies to account for person-specific discriminative information in a global-local manner. To validate the effectiveness of our proposed HPM method, extensive experiments are conducted on three popular datasets including Market-1501, DukeMTMC-ReID and CUHK03. Respectively, we achieve mAP scores of 83.1%, 74.5% and 59.7% on these challenging benchmarks, which are the new state-of-the-arts.
Differentiable Learning-to-Normalize via Switchable Normalization. We address a learning-to-normalize problem by proposing Switchable Normalization (SN), which learns to select different operations for different normalization layers of a deep neural network (DNN). SN switches among three distinct scopes to compute statistics (means and variances) including a channel, a layer, and a minibatch, by learning their importance weights in an end-to-end manner. SN has several good properties. First, it adapts to various network architectures and tasks (see Fig.1). Second, it is robust to a wide range of batch sizes, maintaining high performance when small minibatch is presented (e.g. 2 images/GPU). Third, SN treats all channels as a group, unlike group normalization that searches the number of groups as a hyper-parameter. Without bells and whistles, SN outperforms its counterparts on various challenging problems, such as image classification in ImageNet, object detection and segmentation in COCO, artistic image stylization, and neural architecture search. We hope SN will help ease the usages and understand the effects of normalization techniques in deep learning. The code of SN will be made available in this https URL.
Generalizing Across Domains via Cross-Gradient Training. We present CROSSGRAD , a method to use multi-domain training data to learn a classifier that generalizes to new domains. CROSSGRAD does not need an adaptation phase via labeled or unlabeled data, or domain features in the new domain. Most existing domain adaptation methods attempt to erase domain signals using techniques like domain adversarial training. In contrast, CROSSGRAD is free to use domain signals for predicting labels, if it can prevent overfitting on training domains. We conceptualize the task in a Bayesian setting, in which a sampling step is implemented as data augmentation, based on domain-guided perturbations of input instances. CROSSGRAD jointly trains a label and a domain classifier on examples perturbed by loss gradients of each other’s objectives. This enables us to directly perturb inputs, without separating and re-mixing domain signals while making various distributional assumptions. Empirical evaluation on three different applications where this setting is natural establishes that (1) domain-guided perturbation provides consistently better generalization to unseen domains, compared to generic instance perturbation methods, and (2) data augmentation is a more stable and accurate method than domain adversarial training.
Bag of Tricks and A Strong Baseline for Deep Person Re-identification. This paper explores a simple and efficient baseline for person re-identification (ReID). Person re-identification (ReID) with deep neural networks has made progress and achieved high performance in recent years. However, many state-of-the-arts methods design complex network structure and concatenate multi-branch features. In the literature, some effective training tricks are briefly appeared in several papers or source codes. This paper will collect and evaluate these effective training tricks in person ReID. By combining these tricks together, the model achieves 94.5% rank-I and 85.9% mAP on Market1501 with only using global features. Our codes and models are available at https://github.com/michuanhaohao/reid-strong-baseline
Domain Generalization via Invariant Feature Representation This paper investigates domain generalization: How to take knowledge acquired from an arbitrary number of related domains and apply it to previously unseen domains? We propose Domain-Invariant Component Analysis (DICA), a kernel-based optimization algorithm that learns an invariant transformation by minimizing the dissimilarity across domains, whilst preserving the functional relationship between input and output variables. A learning-theoretic analysis shows that reducing dissimilarity improves the expected generalization ability of classifiers on new domains, motivating the proposed algorithm. Experimental results on synthetic and real-world datasets demonstrate that DICA successfully learns invariant features and improves classifier performance in practice.
Learning Discriminative Features with Multiple Granularities for Person Re-Identification. The combination of global and partial features has been an essential solution to improve discriminative performances in person re-identification (Re-ID) tasks. Previous part-based methods mainly focus on locating regions with specific pre-defined semantics to learn local representations, which increases learning difficulty but not efficient or robust to scenarios with large variances. In this paper, we propose an end-to-end feature learning strategy integrating discriminative information with various granularities. We carefully design the Multiple Granularity Network (MGN), a multi-branch deep network architecture consisting of one branch for global feature representations and two branches for local feature representations. Instead of learning on semantic regions, we uniformly partition the images into several stripes, and vary the number of parts in different local branches to obtain local feature representations with multiple granularities. Comprehensive experiments implemented on the mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03 indicate that our method robustly achieves state-of-the-art performances and outperforms any existing approaches by a large margin. For example, on Market-1501 dataset in single query mode, we obtain a top result of Rank-1/mAP=96.6%/94.2% with this method after re-ranking.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
General Inner Approximation Algorithm For Non-Convex Mathematical Programs Inner approximation algorithms have had two major roles in the mathematical programming literature. Their first role was in the construction of algorithms for the decomposition of large-scale mathe...
Are we ready for autonomous driving? The KITTI vision benchmark suite Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection. Our recording platform is equipped with four high resolution video cameras, a Velodyne laser scanner and a state-of-the-art localization system. Our benchmarks comprise 389 stereo and optical flow image pairs, stereo visual odometry sequences of 39.2 km length, and more than 200k 3D object annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians are visible per image). Results from state-of-the-art algorithms reveal that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias by providing challenging benchmarks with novel difficulties to the computer vision community. Our benchmarks are available online at: www.cvlibs.net/datasets/kitti.
Fast and Fully Automatic Ear Detection Using Cascaded AdaBoost Ear detection from a profile face image is an important step in many applications including biometric recognition. But accurate and rapid detection of the ear for real-time applications is a challenging task, particularly in the presence of occlusions. In this work, a cascaded AdaBoost based ear detection approach is proposed. In an experiment with a test set of 203 profile face images, all the ears were accurately detected by the proposed detector with a very low (5 x 10-6) false positive rate. It is also very fast and relatively robust to the presence of occlusions and degradation of the ear images (e.g. motion blur). The detection process is fully automatic and does not require any manual intervention.
A recent survey of reversible watermarking techniques. The art of secretly hiding and communicating information has gained immense importance in the last two decades due to the advances in generation, storage, and communication technology of digital content. Watermarking is one of the promising solutions for tamper detection and protection of digital content. However, watermarking can cause damage to the sensitive information present in the cover work. Therefore, at the receiving end, the exact recovery of cover work may not be possible. Additionally, there exist certain applications that may not tolerate even small distortions in cover work prior to the downstream processing. In such applications, reversible watermarking instead of conventional watermarking is employed. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the cover work. For the last few years, reversible watermarking techniques are gaining popularity because of its increasing applications in some important and sensitive areas, i.e., military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different reversible watermarking schemes are discussed on the basis of various characteristics of watermarking. However, the major focus of this survey is on prediction-error expansion based reversible watermarking techniques, whereby the secret information is hidden in the prediction domain through error expansion. Comparison of the different reversible watermarking techniques is provided in tabular form, and an analysis is carried out. Additionally, experimental comparison of some of the recent reversible watermarking techniques, both in terms of watermarking properties and computational time, is provided on a dataset of 300 images. Future directions are also provided for this potentially important field of watermarking.
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at this http URL
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.108016
0.108016
0.103781
0.103781
0.054633
0.026113
0.004099
0.00008
0
0
0
0
0
0
Blockchain-Powered Parallel Healthcare Systems Based on the ACP Approach. To improve the accuracy of diagnosis and the effectiveness of treatment, a framework of parallel healthcare systems (PHSs) based on the artificial systems + computational experiments + parallel execution (ACP) approach is proposed in this paper. PHS uses artificial healthcare systems to model and represent patients&#39; conditions, diagnosis, and treatment process, then applies computational experimen...
Research on the Selection Strategies of Blockchain Mining Pools. Since the increasing popularization of the emerging blockchain technology, blockchain mining has attracted more and more attention. Due to the difficulty of solo mining, typically miners choose to join a mining pool. As there are many mining pools and different mining pools may adopt different reward mechanisms, how to choose the appropriate mining pool has become one of the most important issues ...
Blockchainized Internet of Minds: A New Opportunity for Cyber-Physical-Social Systems. Welcome to the last issue of the IEEE Transactions on Computational Social Systems (IEEE TCSS) in 2018. Starting from the first issue next year, our Transactions will be a bimonthly publication, entering a new stage for the IEEE TCSS.
Parallel Blockchain: An Architecture for CPSS-Based Smart Societies. Time flies fast, it has been already one year since I was appointed as the Editor-in-Chief of this great publication, and thanks to the strong support and dedication of our associate editors, editorial staff, anonymous reviewers, and authors, we have made solid progress and I really enjoy my work and our achievement so far. At this point, significant improvements in the timeliness and quality of t...
The Reserve Price of Ad Impressions in Multi-Channel Real-Time Bidding Markets. With the application of big data analytics in online marketing, real-time bidding (RTB) has developed to be the primary business model and also the major online advertising channel. Due to the precise analysis of Web Cookies, RTB platforms can target the visiting audiences and then forward their generated ad impressions to demanding advertisers who bid on the best-matched audience in a real-time f...
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Latent dirichlet allocation We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Labels and event processes in the Asbestos operating system Asbestos, a new operating system, provides novel labeling and isolation mechanisms that help contain the effects of exploitable software flaws. Applications can express a wide range of policies with Asbestos's kernel-enforced labels, including controls on interprocess communication and system-wide information flow. A new event process abstraction defines lightweight, isolated contexts within a single process, allowing one process to act on behalf of multiple users while preventing it from leaking any single user's data to others. A Web server demonstration application uses these primitives to isolate private user data. Since the untrusted workers that respond to client requests are constrained by labels, exploited workers cannot directly expose user data except as allowed by application policy. The server application requires 1.4 memory pages per user for up to 145,000 users and achieves connection rates similar to Apache, demonstrating that additional security can come at an acceptable cost.
Simultaneous wireless information and power transfer in modern communication systems Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This article provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The article also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks.
An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. •The proposed watermarking scheme utilized improved discrete wavelet transformation (IDWT) to retrieve the invariant wavelet domain.•The entropy mechanism is used to identify the suitable region for insertion of watermark. This will improve the imperceptibility and robustness of the watermarking procedure.•The scaling factors such as PSNR and NC are considered for evaluation of the proposed method and the Particle Swarm Optimization is employed to optimize the scaling factors.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.0416
0.04
0.04
0.03
0.02
0
0
0
0
0
0
0
0
0
A Hybrid Assistive Paradigm Based on Neuromuscular Electrical Stimulation and Force Control for Upper Limb Exosuits Intensive rehabilitation treatments are crucial to recovering motor functions in patients with neuromuscular diseases. Robotic devices and neuromuscular electrical stimulation (NMES) have shown their efficacy with respect to traditional physiotherapy. Both technologies present complementary features but also limitations due to their working principles. However, merging robots and NMES could overcome their boundaries, providing more patient therapy effort. By pursuing such a hybrid concept, we propose a new device that combines NMES and an upper limb exosuit to assist elbow movements. We tested the designed system on healthy people by evaluating kinematics outcomes and metabolic consumption. The outcomes result in more accuracy and less metabolic consumption by assisting people with the hybrid system than the exosuit and the NMES alone. The ability to seamlessly combine NMES with wearable soft mechatronics can open new avenues for restoring human movement in impaired individuals.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Pre-Training With Asynchronous Supervised Learning For Reinforcement Learning Based Autonomous Driving Rule-based autonomous driving systems may suffer from increased complexity with large-scale intercoupled rules, so many researchers are exploring learning-based approaches. Reinforcement learning (RL) has been applied in designing autonomous driving systems because of its outstanding performance on a wide variety of sequential control problems. However, poor initial performance is a major challenge to the practical implementation of an RL-based autonomous driving system. RL training requires extensive training data before the model achieves reasonable performance, making an RL-based model inapplicable in a real-world setting, particularly when data are expensive. We propose an asynchronous supervised learning (ASL) method for the RL-based end-to-end autonomous driving model to address the problem of poor initial performance before training this RL-based model in real-world settings. Specifically, prior knowledge is introduced in the ASL pre-training stage by asynchronously executing multiple supervised learning processes in parallel, on multiple driving demonstration data sets. After pre-training, the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously break the performance limit. The presented pre-training method is evaluated on the race car simulator, TORCS (The Open Racing Car Simulator), to verify that it can be sufficiently reliable in improving the initial performance and convergence speed of an end-to-end autonomous driving model in the RL training stage. In addition, a real-vehicle verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment. Simulations results show that using some demonstrations during a supervised pre-training stage allows significant improvements in initial performance and convergence speed in the RL training stage.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Deep convolutional neural network-based Bernoulli heatmap for head pose estimation Head pose estimation is a crucial problem for many tasks, such as driver attention, fatigue detection, and human behaviour analysis. It is well known that neural networks are better at handling classification problems than regression problems. It is an extremely nonlinear process to let the network output the angle value directly for optimization learning, and the weight constraint of the loss function will be relatively weak. This paper proposes a novel Bernoulli heatmap for head pose estimation from a single RGB image. Our method can achieve the positioning of the head area while estimating the angles of the head. The Bernoulli heatmap makes it possible to construct fully convolutional neural networks without fully connected layers and provides a new idea for the output form of head pose estimation. A deep convolutional neural network (CNN) structure with multiscale representations is adopted to maintain high-resolution information and low-resolution information in parallel. This kind of structure can maintain rich, high-resolution representations. In addition, channelwise fusion is adopted to make the fusion weights learnable instead of simple addition with equal weights. As a result, the estimation is spatially more precise and potentially more accurate. The effectiveness of the proposed method is empirically demonstrated by comparing it with other state-of-the-art methods on public datasets.
Reinforcement learning based data fusion method for multi-sensors In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion (RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications FSA (artificial fish-swarm algorithm) is one of the best methods of optimization among the swarm intelligence algorithms. This algorithm is inspired by the collective movement of the fish and their various social behaviors. Based on a series of instinctive behaviors, the fish always try to maintain their colonies and accordingly demonstrate intelligent behaviors. Searching for food, immigration and dealing with dangers all happen in a social form and interactions between all fish in a group will result in an intelligent social behavior.This algorithm has many advantages including high convergence speed, flexibility, fault tolerance and high accuracy. This paper is a review of AFSA algorithm and describes the evolution of this algorithm along with all improvements, its combination with various methods as well as its applications. There are many optimization methods which have a affinity with this method and the result of this combination will improve the performance of this method. Its disadvantages include high time complexity, lack of balance between global and local search, in addition to lack of benefiting from the experiences of group members for the next movements.
Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning The literature on short-term traffic flow forecasting has undergone great development recently. Many works, describing a wide variety of different approaches, which very often share similar features and ideas, have been published. However, publications presenting new prediction algorithms usually employ different settings, data sets, and performance measurements, making it difficult to infer a clear picture of the advantages and limitations of each model. The aim of this paper is twofold. First, we review existing approaches to short-term traffic flow forecasting methods under the common view of probabilistic graphical models, presenting an extensive experimental comparison, which proposes a common baseline for their performance analysis and provides the infrastructure to operate on a publicly available data set. Second, we present two new support vector regression models, which are specifically devised to benefit from typical traffic flow seasonality and are shown to represent an interesting compromise between prediction accuracy and computational efficiency. The SARIMA model coupled with a Kalman filter is the most accurate model; however, the proposed seasonal support vector regressor turns out to be highly competitive when performing forecasts during the most congested periods.
TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks. The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a temporal-spatial charging scheduling algorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.
A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems In this paper, to eliminate the tracking error by using adaptive dynamic programming (ADP) algorithms, a novel formulation of the value function is presented for the optimal tracking problem (TP) of nonlinear discrete-time systems. Unlike existing ADP methods, this formulation introduces the control input into the tracking error, and ignores the quadratic form of the control input directly, which makes the boundedness and convergence of the value function independent of the discount factor. Based on the proposed value function, the optimal control policy can be deduced without considering the reference control input. Value iteration (VI) and policy iteration (PI) methods are applied to prove the optimality of the obtained control policy, and derived the monotonicity property and convergence of the iterative value function. Simulation examples realized with neural networks and the actor–critic structure are provided to verify the effectiveness of the proposed ADP algorithm.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
A Framework of Joint Mobile Energy Replenishment and Data Gathering in Wireless Rechargeable Sensor Networks Recent years have witnessed the rapid development and proliferation of techniques on improving energy efficiency for wireless sensor networks. Although these techniques can relieve the energy constraint on wireless sensors to some extent, the lifetime of wireless sensor networks is still limited by sensor batteries. Recent studies have shown that energy rechargeable sensors have the potential to provide perpetual network operations by capturing renewable energy from external environments. However, the low output of energy capturing devices can only provide intermittent recharging opportunities to support low-rate data services due to spatial-temporal, geographical or environmental factors. To provide steady and high recharging rates and achieve energy efficient data gathering from sensors, in this paper, we propose to utilize mobility for joint energy replenishment and data gathering. In particular, a multi-functional mobile entity, called SenCarin this paper, is employed, which serves not only as a mobile data collector that roams over the field to gather data via short-range communication but also as an energy transporter that charges static sensors on its migration tour via wireless energy transmissions. Taking advantages of SenCar's controlled mobility, we focus on the joint optimization of effective energy charging and high-performance data collections. We first study this problem in general networks with random topologies. We give a two-step approach for the joint design. In the first step, the locations of a subset of sensors are periodically selected as anchor points, where the SenCar will sequentially visit to charge the sensors at these locations and gather data from nearby sensors in a multi-hop fashion. To achieve a desirable balance between energy replenishment amount and data gathering latency, we provide a selection algorithm to search for a maximum number of anchor points where sensors hold the least battery energy, and meanwhile by visiting them, - he tour length of the SenCar is no more than a threshold. In the second step, we consider data gathering performance when the SenCar migrates among these anchor points. We formulate the problem into a network utility maximization problem and propose a distributed algorithm to adjust data rates at which sensors send buffered data to the SenCar, link scheduling and flow routing so as to adapt to the up-to-date energy replenishing status of sensors. Besides general networks, we also study a special scenario where sensors are regularly deployed. For this case we can provide a simplified solution of lower complexity by exploiting the symmetry of the topology. Finally, we validate the effectiveness of our approaches by extensive numerical results, which show that our solutions can achieve perpetual network operations and provide high network utility.
Joint Mobile Data Gathering and Energy Provisioning in Wireless Rechargeable Sensor Networks The emerging wireless energy transfer technology enables charging sensor batteries in a wireless sensor network (WSN) and maintaining perpetual operation of the network. Recent breakthrough in this area has opened up a new dimension to the design of sensor network protocols. In the meanwhile, mobile data gathering has been considered as an efficient alternative to data relaying in WSNs. However, time variation of recharging rates in wireless rechargeable sensor networks imposes a great challenge in obtaining an optimal data gathering strategy. In this paper, we propose a framework of joint wireless energy replenishment and anchor-point based mobile data gathering (WerMDG) in WSNs by considering various sources of energy consumption and time-varying nature of energy replenishment. To that end, we first determine the anchor point selection strategy and the sequence to visit the anchor points. We then formulate the WerMDG problem into a network utility maximization problem which is constrained by flow, energy balance, link and battery capacity and the bounded sojourn time of the mobile collector. Furthermore, we present a distributed algorithm composed of cross-layer data control, scheduling and routing subalgorithms for each sensor node, and sojourn time allocation subalgorithm for the mobile collector at different anchor points. We also provide the convergence analysis of these subalgorithms. Finally, we implement the WerMDG algorithm in a distributed manner in the NS-2 simulator and give extensive numerical results to verify the convergence of the proposed algorithm and the impact of utility weight, link capacity and recharging rate on network performance.
Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. Wireless Sensor Networks (WSNs) are crucial in supporting continuous environmental monitoring, where sensor nodes are deployed and must remain operational to collect and transfer data from the environment to a base-station. However, sensor nodes have limited energy in their primary power storage unit, and this energy may be quickly drained if the sensor node remains operational over long periods of time. Therefore, the idea of harvesting ambient energy from the immediate surroundings of the deployed sensors, to recharge the batteries and to directly power the sensor nodes, has recently been proposed. The deployment of energy harvesting in environmental field systems eliminates the dependency of sensor nodes on battery power, drastically reducing the maintenance costs required to replace batteries. In this article, we review the state-of-the-art in energy-harvesting WSNs for environmental monitoring applications, including Animal Tracking, Air Quality Monitoring, Water Quality Monitoring, and Disaster Monitoring to improve the ecosystem and human life. In addition to presenting the technologies for harvesting energy from ambient sources and the protocols that can take advantage of the harvested energy, we present challenges that must be addressed to further advance energy-harvesting-based WSNs, along with some future work directions to address these challenges.
TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks. The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a temporal-spatial charging scheduling algorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.
A Coverage-Aware Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks Constant energy supply for sensor nodes is essential for the development of the green Internet of Things (IoT). Recently, WRSNs have been proposed to resolve the energy limitations of nodes, aiming to realize continuous functioning. In this article, a coverage-aware hierarchical charging algorithm in WRSNs is proposed, considering energy consumption and the degree of node coverage. The algorithm first performs network clustering using the K-means algorithm. In addition, nodes are classified into multiple levels in each cluster to calculate respective anchor points based on the energy consumption rate and coverage degree of nodes. Then, the anchor points converge to an optimized anchor point in each cluster. To reduce charging latency, the optimized anchor points form two disjoint internal and external polygons. Next, mobile chargers travel along the internal and external polygons, respectively. Experimental results indicate that the proposed algorithm can improve charging efficiency and reduce charging latency substantially.
Optimal Scheduling for Quality of Monitoring in Wireless Rechargeable Sensor Networks Wireless Rechargeable Sensor Network (WRSN) is an emerging technology to address the energy constraint in sensor networks. The protocol design in WRSN is extremely challenging due to the complicated interactions between rechargeable sensor nodes and readers, capable of mobility and functioning as energy distributors and data collectors. In this paper, we for the first time investigate the optimal scheduling problem in WRSN for stochastic event capture, i.e., how to jointly mobilize the readers for energy distribution and schedule sensor nodes for optimal quality of monitoring (QoM). We analyze the QoM for three application scenarios: i) the reader travels at a fixed speed to recharge sensor nodes and sensor nodes consume the collected energy in an aggressive way, ii) the reader stops to recharge sensor nodes for a predefined time during its periodic traveling and sensor nodes deplete energy aggressively, iii) the reader stops to recharge sensor nodes but sensor nodes can adopt optimal duty cycle scheduling for maximal QoM. We provide analytical results for achieving the optimal QoM under arbitrary parameter settings. Extensive simulation results are offered to demonstrate the correctness and effectiveness of our results.
Tag-based cooperative data gathering and energy recharging in wide area RFID sensor networks The Wireless Identification and Sensing Platform (WISP) conjugates the identification potential of the RFID technology and the sensing and computing capability of the wireless sensors. Practical issues, such as the need of periodically recharging WISPs, challenge the effective deployment of large-scale RFID sensor networks (RSNs) consisting of RFID readers and WISP nodes. In this view, the paper proposes cooperative solutions to energize the WISP devices in a wide-area sensing network while reducing the data collection delay. The main novelty is the fact that both data transmissions and energy transfer are based on the RFID technology only: RFID mobile readers gather data from the WISP devices, wirelessly recharge them, and mutually cooperate to reduce the data delivery delay to the sink. Communication between mobile readers relies on two proposed solutions: a tag-based relay scheme, where RFID tags are exploited to temporarily store sensed data at pre-determined contact points between the readers; and a tag-based data channel scheme, where the WISPs are used as a virtual communication channel for real time data transfer between the readers. Both solutions require: (i) clustering the WISP nodes; (ii) dimensioning the number of required RFID mobile readers; (iii) planning the tour of the readers under the energy and time constraints of the nodes. A simulative analysis demonstrates the effectiveness of the proposed solutions when compared to non-cooperative approaches. Differently from classic schemes in the literature, the solutions proposed in this paper better cope with scalability issues, which is of utmost importance for wide area networks.
Joint Scheduling and Trajectory Optimization of Charging UAV in Wireless Rechargeable Sensor Networks Wireless rechargeable sensor networks with a charging unmanned aerial vehicle (CUAV) have broad application prospects in the power supply of the rechargeable sensor nodes (SNs). However, how to schedule a CUAV and design the trajectory to improve the charging efficiency of the entire system is still a vital problem. In this article, we formulate a joint-CUAV scheduling and trajectory optimization problem (JSTOP) to simultaneously minimize the hovering points of CUAV, the number of the repeatedly covered SNs, and the flying distance of CUAV for charging all SNs. Due to the complexity of JSTOP, it is decomposed into two optimization subproblems that are CUAV scheduling optimization problem (CSOP) and CUAV trajectory optimization problem (CTOP). CSOP is a hybrid optimization problem that consists of the continuous and discrete solution space, and the solution dimension in CSOP is not fixed since it should be changed with the number of hovering points of CUAV. Moreover, CTOP is a completely discrete optimization problem. Thus, we propose a particle swarm optimization (PSO) with a flexible dimension mechanism, a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -means operator, and a punishment-compensation mechanism (PSOFKP) and a PSO with a discretization factor, a 2-opt operator, and a path crossover reduction mechanism (PSOD2P) to solve the converted CSOP and CTOP, respectively. Simulation results evaluate the benefits of PSOFKP and PSOD2P under different scales and settings of the network, and the stability of the proposed algorithms is verified.
Mobile Data Gathering with Load Balanced Clustering and Dual Data Uploading in Wireless Sensor Networks In this paper, a three-layer framework is proposed for mobile data collection in wireless sensor networks, which includes the sensor layer, cluster head layer, and mobile collector (called SenCar) layer. The framework employs distributed load balanced clustering and dual data uploading, which is referred to as LBC-DDU. The objective is to achieve good scalability, long network lifetime and low data collection latency. At the sensor layer, a distributed load balanced clustering (LBC) algorithm is proposed for sensors to self-organize themselves into clusters. In contrast to existing clustering methods, our scheme generates multiple cluster heads in each cluster to balance the work load and facilitate dual data uploading. At the cluster head layer, the inter-cluster transmission range is carefully chosen to guarantee the connectivity among the clusters. Multiple cluster heads within a cluster cooperate with each other to perform energy-saving inter-cluster communications. Through inter-cluster transmissions, cluster head information is forwarded to SenCar for its moving trajectory planning. At the mobile collector layer, SenCar is equipped with two antennas, which enables two cluster heads to simultaneously upload data to SenCar in each time by utilizing multi-user multiple-input and multiple-output (MU-MIMO) technique. The trajectory planning for SenCar is optimized to fully utilize dual data uploading capability by properly selecting polling points in each cluster. By visiting each selected polling point, SenCar can efficiently gather data from cluster heads and transport the data to the static data sink. Extensive simulations are conducted to evaluate the effectiveness of the proposed LBC-DDU scheme. The results show that when each cluster has at most two cluster heads, LBC-DDU achieves over 50 percent energy saving per node and 60 percent energy saving on cluster heads comparing with data collection through multi-hop relay to the static data sink, and 20 percent - horter data collection time compared to traditional mobile data gathering.
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with ’attention’ mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.
Universal Scoring Function Based On Bias Equalizer For Bias-Based Fingerprinting Codes The study of universal detector for fingerprinting code is strongly dependent on the design of scoring function. The optimal detector is known as MAP detector that calculates an optimal correlation score for a given single user's codeword. However, the knowledge about the number of colluders and their collusion strategy are inevitable. In this paper, we propose a new scoring function that equalizes the bias between symbols of codeword, which is called bias equalizer. We further investigate an efficient scoring function based on the bias equalizer under the relaxed marking assumption such that white Gaussian noise is added to a pirated codeword. The performance is compared with the MAP detector as well as some state-of-the-art scoring functions.
Inferring Latent Traffic Demand Offered To An Overloaded Link With Modeling Qos-Degradation Effect In this paper, we propose a CTRIL (Common Trend and Regression with Independent Loss) model to infer latent traffic demand in overloaded links as well as how much it is reduced due to QoS (Quality of Service) degradation. To appropriately provision link bandwidth for such overloaded links, we need to infer how much traffic will increase without QoS degradation. Because original latent traffic demand cannot be observed, we propose a method that compares the other traffic time series of an underloaded link, and by assuming that the latent traffic demands in both overloaded and underloaded are common, and actualized traffic demand in the overloaded link is decreased from common pattern due to the effect of QoS degradation. To realize the method, we developed a CTRIL model on the basis of a state-space model where observed traffic is generated from a latent trend but is decreased by the QoS degradation. By applying the CTRIL model to actual HTTP (Hypertext transfer protocol) traffic and QoS time series data, we reveal that 1% packet loss decreases traffic demand by 12.3%, and the estimated latent traffic demand is larger than the observed one by 23.0%.
1.01551
0.016443
0.012787
0.012594
0.012096
0.010452
0.008696
0.008696
0.00515
0.000019
0
0
0
0
An FES-assisted training strategy combined with impedance control for a lower limb rehabilitation robot In order to investigate the feasibility of integrating functional electrical stimulation (FES) with robot-based rehabilitation training, this paper proposes an FES-assisted training strategy combined with impedance control for our self-made exoskeleton lower limb rehabilitation robot. This control strategy is carried out in a leg press task. Through impedance control, an active compliance of the robot is established, and the patient's voluntary effort to accomplish the task is inspired. During the training process, the patient's related muscles are applied with FES which provides an extra assistance to the patient. The intensity of the FES is properly chosen aiming to induce a desired active torque which is proportional to the voluntary effort of the patient. This kind of enhancement serves as a positive feedback which reminds the patient of the correct attempt to fulfill the desired motion. FES control is conducted by a combination of neural network-based feedforward controller and a PD feedback controller. The feasibility of this control strategy has been verified in Matlab.
Finite State Control of FES-Assisted Walking with Spring Brake Orthosis This paper presents finite state control (FSC) of paraplegic walking with wheel walker using functional electrical stimulation (FES) with spring brake orthosis (SBO). The work is a first effort towards restoring natural like swing phase in paraplegic gait through a new hybrid orthosis, referred to as spring brake orthosis (SBO). This mechanism simplifies the control task and results in smooth motion and more-natural like trajectory produced by the flexion reflex for gait in spinal cord injured subjects. The study is carried out with a model of humanoid with wheel walker using the Visual Nastran (Vn4D) dynamic simulation software. Stimulated muscle model of quadriceps is developed for knee extension. Fuzzy logic control (FLC) is developed in Matlab/Simulink to regulate the muscle stimulation pulse-width required to drive FES-assisted walking gait and the computed motion is visualised in graphic animation from Vn4D and finite state control is used to control the transaction between all walking states. Finite state control (FSC) is used to control the switching of brakes, FES and spring during walking cycle.
Assist-As-Needed Training Paradigms For Robotic Rehabilitation Of Spinal Cord Injuries This paper introduces a new "assist-as-needed" (AAN) training paradigm for rehabilitation of spinal cord injuries via robotic training devices. In the pilot study reported in this paper, nine female adult Swiss-Webster mice were divided into three groups, each experiencing a different robotic training control strategy: a fixed training trajectory (Fixed Group, A), an AAN training method without interlimb coordination (Band Group, B), and an AAN training method with bilateral hindlimb coordination (Window Group, C). Fourteen days after complete transection at the mid-thoracic level, the mice were robotically trained to step in the presence of an acutely administered serotonin agonist, quipazine, for a period of six weeks. The mice that received AAN training (Groups B and C) show higher levels of recovery than Group A mice, as measured by the number, consistency, and periodicity of steps realized during testing sessions. Group C displays a higher incidence of alternating stepping than Group B. These results indicate that this training approach may be more effective than fixed trajectory paradigms in promoting robust post-injury stepping behavior. Furthermore, the constraint of interlimb coordination appears to be an important contribution to successful training.
FEXO Knee: A rehabilitation device for knee joint combining functional electrical stimulation with a compliant exoskeleton This paper presents the design and control of a novel assistive system, FEXO Knee, which combines functional electrical stimulation (FES) with a compliant exoskeleton for better physical rehabilitation of knee joint. The exoskeleton and FES work together in a synergetic manner that attempts to allow arbitrary torque allocation via regulating a tunable gain. The study focuses on controlling human rhythmic movements, i.e., the swing of shank, to demonstrate the assistance efficiency of the hybrid FES-exoskeleton rehabilitation. Two muscle groups (Vasti and Hamstrings) are stimulated to produce active torque for knee joint. The reference trajectories of the exoskeleton and FES are provided by central pattern generator that acts as a phase predictor to deal with unexpected phase confliction between human shank and exoskeleton. The modulated pulse width of FES stimulator is controlled by a model-based feed-forward controller. The elastic cable-driven actuator of knee exoskeleton allows safe interaction with the patients and avoids abruptly large torque shocks, which is more important than pure position tracking in robotic-assisted rehabilitation. The motion of the knee exoskeleton is controlled by a proportional-integral-derivative controller. The joint angle is the only feedback signal that needs to be measured in the control frame. The mutual torque is also measured during the swing but it is merely for the purpose of performance evaluation. Four healthy subjects participate in the initial evaluation experiments and the results show good performance of the hybrid FES-exoskeleton system.
A Passive Gait-Based Weight-Support Lower Extremity Exoskeleton With Compliant Joints. This paper presents the design and analysis of a passive body weight (BW)-support lower extremity exoskeleton (LEE) with compliant joints to relieve compressive load in the knee. The biojoint-like mechanical knee decouples human gait into two phases, stance and swing, by a dual snap fit. The knee joint transfers the BW to the ground in the stance phases and is compliant to free the leg in the swin...
Preliminary assessment of the efficacy of supplementing knee extension capability in a lower limb exoskeleton with FES. The authors describe a cooperative controller that combines the knee joint actuation of an externally powered lower limb exoskeleton with the torque and power contribution from the electrically stimulated quadriceps muscle group. The efficacy of combining these efforts is experimentally validated with a series of weighted leg lift maneuvers. Measurements from these experiments indicate that the control approach effectively combines the respective efforts of the motor and muscle, such that good control performance is achieved, with substantial torque and energy contributions from both the biological and non-biological actuators.
One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects This paper introduces the Penn Haptic Texture Toolkit (HaTT), a publicly available repository of haptic texture models for use by the research community. HaTT includes 100 haptic texture and friction models, the recorded data from which the models were made, images of the textures, and the code and methods necessary to render these textures using an impedance-type haptic interface such as a SensAble Phantom Omni. This paper reviews our previously developed methods for modeling haptic virtual textures, describes our technique for modeling Coulomb friction between a tooltip and a surface, discusses the adaptation of our rendering methods for display using an impedance-type haptic device, and provides an overview of the information included in the toolkit. Each texture and friction model was based on a ten-second recording of the force, speed, and high-frequency acceleration experienced by a handheld tool moved by an experimenter against the surface in a natural manner. We modeled each texture's recorded acceleration signal as a piecewise autoregressive (AR) process and stored the individual AR models in a Delaunay triangulation as a function of the force and speed used when recording the data. To increase the adaptability and utility of HaTT, we developed a method for resampling the texture models so they can be rendered at a sampling rate other than the 10 kHz used when recording data. Measurements of the user's instantaneous normal force and tangential speed are used to synthesize texture vibrations in real time. These vibrations are transformed into a texture force vector that is added to the friction and normal force vectors for display to the user.
Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks The positioning methods based on received signal strength (RSS) measurements, link the RSS values to the position of the mobile station(MS) to be located. Their accuracy depends on the suitability of the propagation models used for the actual propagation conditions. In indoor wireless networks, these propagation conditions are very difficult to predict due to the unwieldy and dynamic nature of the RSS. In this paper, we present a novel method which dynamically estimates the propagation models that best fit the propagation environments, by using only RSS measurements obtained in real time. This method is based on maximizing compatibility of the MS to access points (AP) distance estimates. Once the propagation models are estimated in real time, it is possible to accurately determine the distance between the MS and each AP. By means of these distance estimates, the location of the MS can be obtained by trilateration. The method proposed coupled with simulations and measurements in a real indoor environment, demonstrates its feasibility and suitability, since it outperforms conventional RSS-based indoor location methods without using any radio map information nor a calibration stage.
Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems. The vehicular edge computing system integrates the computing resources of vehicles, and provides computing services for other vehicles and pedestrians with task offloading. However, the vehicular task offloading environment is dynamic and uncertain, with fast varying network topologies, wireless channel states, and computing workloads. These uncertainties bring extra challenges to task offloading. In this paper, we consider the task offloading among vehicles, and propose a solution that enables vehicles to learn the offloading delay performance of their neighboring vehicles while offloading computation tasks. We design an adaptive learning based task offloading (ALTO) algorithm based on the multi-armed bandit theory, in order to minimize the average offloading delay. ALTO works in a distributed manner without requiring frequent state exchange, and is augmented with input-awareness and occurrence-awareness to adapt to the dynamic environment. The proposed algorithm is proved to have a sublinear learning regret. Extensive simulations are carried out under both synthetic scenario and realistic highway scenario, and results illustrate that the proposed algorithm achieves low delay performance, and decreases the average delay up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$30\%$</tex-math></inline-formula> compared with the existing upper confidence bound based learning algorithm.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning Designers and evaluators of immersive virtual reality systems have many ideas concerning how virtual reality can facilitate learning. However, we have little information concerning which of virtual reality's features provide the most leverage for enhancing understanding or how to customize those affordances for different learning environments. In part, this reflects the truly complex nature of learning. Features of a learning environment do not act in isolation; other factors such as the concepts or skills to be learned, individual characteristics, the learning experience, and the interaction experience all play a role in shaping the learning process and its outcomes. Through Project Science Space, we have been trying to identify, use, and evaluate immersive virtual reality's affordances as a means to facilitate the mastery of complex, abstract concepts. In doing so, we are beginning to understand the interplay between virtual reality's features and other important factors in shaping the learning process and learning outcomes for this type of material. In this paper, we present a general model that describes how we think these factors work together and discuss some of the lessons we are learning about virtual reality's affordances in the context of this model for complex conceptual learning.
NETWRAP: An NDN Based Real-TimeWireless Recharging Framework for Wireless Sensor Networks Using vehicles equipped with wireless energy transmission technology to recharge sensor nodes over the air is a game-changer for traditional wireless sensor networks. The recharging policy regarding when to recharge which sensor nodes critically impacts the network performance. So far only a few works have studied such recharging policy for the case of using a single vehicle. In this paper, we propose NETWRAP, an N DN based Real Time Wireless Rech arging Protocol for dynamic wireless recharging in sensor networks. The real-time recharging framework supports single or multiple mobile vehicles. Employing multiple mobile vehicles provides more scalability and robustness. To efficiently deliver sensor energy status information to vehicles in real-time, we leverage concepts and mechanisms from named data networking (NDN) and design energy monitoring and reporting protocols. We derive theoretical results on the energy neutral condition and the minimum number of mobile vehicles required for perpetual network operations. Then we study how to minimize the total traveling cost of vehicles while guaranteeing all the sensor nodes can be recharged before their batteries deplete. We formulate the recharge optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions with low overhead, we present an algorithm that selects the node with the minimum weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability but also ensures the perpetual operation of networks. Extensive simulation results demonstrate the effectiveness and efficiency of the proposed design. The results also validate the correctness of the theoretical analysis and show significant improvements that cut the number of nonfunctional nodes by half compared to the static scheme while maintaining the network overhead at the same level.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.205714
0.205714
0.205714
0.205714
0.205714
0.068571
0.000952
0
0
0
0
0
0
0
A systematic literature review of blockchain cyber security Since the publication of Satoshi Nakamoto's white paper on Bitcoin in 2008, blockchain has (slowly) become one of the most frequently discussed methods for securing data storage and transfer through decentralized, trustless, peer-to-peer systems. This research identifies peer-reviewed literature that seeks to utilize blockchain for cyber security purposes and presents a systematic analysis of the most frequently adopted blockchain security applications. Our findings show that the Internet of Things (IoT) lends itself well to novel blockchain applications, as do networks and machine visualization, public-key cryptography, web applications, certification schemes and the secure storage of Personally Identifiable Information (PII). This timely systematic review also sheds light on future directions of research, education and practices in the blockchain and cyber security space, such as security of blockchain in IoT, security of blockchain for AI data, and sidechain security.
GMDH-based networks for intelligent intrusion detection. Network intrusion detection has been an area of rapid advancement in recent times. Similar advances in the field of intelligent computing have led to the introduction of several classification techniques for accurately identifying and differentiating network traffic into normal and anomalous. Group Method for Data Handling (GMDH) is one such supervised inductive learning approach for the synthesis of neural network models. Through this paper, we propose a GMDH-based technique for classifying network traffic into normal and anomalous. Two variants of the technique, namely, Monolithic and Ensemble-based, were tested on the KDD-99 dataset. The dataset was preprocessed and all features were ranked based on three feature ranking techniques, namely, Information Gain, Gain Ratio, and GMDH by itself. The results obtained proved that the proposed intrusion detection scheme yields high attack detection rates, nearly 98%, when compared with other intelligent classification techniques for network intrusion detection.
Mining network data for intrusion detection through combining SVMs with ant colony networks. In this paper, we introduce a new machine-learning-based data classification algorithm that is applied to network intrusion detection. The basic task is to classify network activities (in the network log as connection records) as normal or abnormal while minimizing misclassification. Although different classification models have been developed for network intrusion detection, each of them has its strengths and weaknesses, including the most commonly applied Support Vector Machine (SVM) method and the Clustering based on Self-Organized Ant Colony Network (CSOACN). Our new approach combines the SVM method with CSOACNs to take the advantages of both while avoiding their weaknesses. Our algorithm is implemented and evaluated using a standard benchmark KDD99 data set. Experiments show that CSVAC (Combining Support Vectors with Ant Colony) outperforms SVM alone or CSOACN alone in terms of both classification rate and run-time efficiency.
A two-level hybrid approach for intrusion detection. To exploit the strengths of misuse detection and anomaly detection, an intensive focus on intrusion detection combines the two. From a novel perspective, in this paper, we proposed a hybrid approach toward achieving a high detection rate with a low false positive rate. The approach is a two-level hybrid solution consisting of two anomaly detection components and a misuse detection component. In stage 1, an anomaly detection method with low computing complexity is developed and employed to build the detection component. The k-nearest neighbors algorithm becomes crucial in building the two detection components for stage 2. In this hybrid approach, all of the detection components are well-coordinated. The detection component of stage 1 becomes involved in the course of building the two detection components of stage 2 that reduce the false positives and false negatives generated by the detection component of stage 1. Experimental results on the KDD'99 dataset and the Kyoto University Benchmark dataset confirm that the proposed hybrid approach can effectively detect network anomalies with a low false positive rate. HighlightsA novel two-level hybrid intrusion detection approach is proposed.A novel anomaly detection method based on change of cluster centres is proposed.Detection components in the two stages of the hybrid approach work well together.Experimental results show that our approach performs well in false positive rate.
A Blockchain Based Truthful Incentive Mechanism for Distributed P2P Applications. In distributed peer-to-peer (P2P) applications, peers self-organize and cooperate to effectively complete certain tasks such as forwarding files, delivering messages, or uploading data. Nevertheless, users are selfish in nature and they may refuse to cooperate due to their concerns on energy and bandwidth consumption. Thus each user should receive a satisfying reward to compensate its resource consumption for cooperation. However, suitable incentive mechanisms that can meet the diverse requirements of users in dynamic and distributed P2P environments are still missing. On the other hand, we observe that Blockchain is a decentralized secure digital ledger of economic transactions that can be programmed to record not just financial transactions and Blockchain-based cryptocurrencies get more and more market capitalization. Therefore in this paper, we propose a Blockchain based truthful incentive mechanism for distributed P2P applications that applies a cryptocurrency such as Bitcoin to incentivize users for cooperation. In this mechanism, users who help with a successful delivery get rewarded. As users and miners in the Blockchain P2P system may exhibit selfish actions or collude with each other, we propose a secure validation method and a pricing strategy, and integrate them into our incentive mechanism. Through a game theoretical analysis and evaluation study, we demonstrate the effectiveness and security strength of our proposed incentive mechanism.
A weighted voting ensemble of efficient regularized extreme learning machine The exact evaluation of Extreme Learning Machine (ELM) compactness is difficult due to the randomness in hidden layer nodes number, weight and bias values. To overcome this randomness, and other problems such as resultant overfitting and large variance, a selective weighted voting ensemble model based on regularized ELM is investigated. It can strongly enhance the overall performance including accuracy, variance and time consumption. Efficient Prediction Sum of Squares (PRESS) criteria that utilizing Singular Value Decomposition (SVD) is proposed to address the slow execution. Furthermore, an ensemble pruning approach based on the eigenvalues for the input weight matrix is developed. In this work, the ensemble base classifiers weights are calculated based on the same PRESS error metric used for the solutions of the output weight vector (β) in RELM, thus, it can reduce computational cost and space requirement. Different state-of-the-art learning approaches and various well-known facial expressions faces and object recognition benchmark datasets were examined in this work.
The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy. •Summary of literature on trust in the context of blockchain and the sharing economy.•Conceptualizations of trust differ substantially between the contexts.•Blockchain technology is to some degree able to replace trust in platform providers.•The notion of trust-free systems depends on the development of trusted interfaces.
A Tutorial On Visual Servo Control This article provides a tutorial introduction to visual servo control of robotic manipulators, Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework, We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process, We then present a taxonomy of visual servo control systems, The two major classes of systems, position-based and image-based systems, are then discussed in detail, Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking, We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Energy-Optimized Partial Computation Offloading in Mobile-Edge Computing With Genetic Simulated-Annealing-Based Particle Swarm Optimization Smart mobile devices (SMDs) can meet users' high expectations by executing computational intensive applications but they only have limited resources, including CPU, memory, battery power, and wireless medium. To tackle this limitation, partial computation offloading can be used as a promising method to schedule some tasks of applications from resource-limited SMDs to high-performance edge servers. However, it brings communication overhead issues caused by limited bandwidth and inevitably increases the latency of tasks offloaded to edge servers. Therefore, it is highly challenging to achieve a balance between high-resource consumption in SMDs and high communication cost for providing energy-efficient and latency-low services to users. This work proposes a partial computation offloading method to minimize the total energy consumed by SMDs and edge servers by jointly optimizing the offloading ratio of tasks, CPU speeds of SMDs, allocated bandwidth of available channels, and transmission power of each SMD in each time slot. It jointly considers the execution time of tasks performed in SMDs and edge servers, and transmission time of data. It also jointly considers latency limits, CPU speeds, transmission power limits, available energy of SMDs, and the maximum number of CPU cycles and memories in edge servers. Considering these factors, a nonlinear constrained optimization problem is formulated and solved by a novel hybrid metaheuristic algorithm named genetic simulated annealing-based particle swarm optimization (GSP) to produce a close-to-optimal solution. GSP achieves joint optimization of computation offloading between a cloud data center and the edge, and resource allocation in the data center. Real-life data-based experimental results prove that it achieves lower energy consumption in less convergence time than its three typical peers.
Supervisory control of fuzzy discrete event systems: a formal approach. Fuzzy discrete event systems (DESs) were proposed recently by Lin and Ying [19], which may better cope with the real-world problems of fuzziness, impreciseness, and subjectivity such as those in biomedicine. As a continuation of [19], in this paper, we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More specifically: 1) we reformulate the parallel composition of crisp DESs, and then define the parallel composition of fuzzy DESs that is equivalent to that in [19]. Max-product and max-min automata for modeling fuzzy DESs are considered, 2) we deal with a number of fundamental problems regarding supervisory control of fuzzy DESs, particularly demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and thus, present the conditions for the existence of supervisors in fuzzy DESs; 3) we analyze the complexity for presenting a uniform criterion to test the fuzzy controllability condition of fuzzy DESs modeled by max-product automata; in particular, we present in detail a general computing method for checking whether or not the fuzzy controllability condition holds, if max-min automata are used to model fuzzy DESs, and by means of this method we can search for all possible fuzzy states reachable from initial fuzzy state in max-min automata. Also, we introduce the fuzzy n-controllability condition for some practical problems, and 4) a number of examples serving to illustrate the applications of the derived results and methods are described; some basic properties related to supervisory control of fuzzy DESs are investigated. To conclude, some related issues are raised for further consideration.
An evaluation of direct attacks using fake fingers generated from ISO templates This work reports a vulnerability evaluation of a highly competitive ISO matcher to direct attacks carried out with fake fingers generated from ISO templates. Experiments are carried out on a fingerprint database acquired in a real-life scenario and show that the evaluated system is highly vulnerable to the proposed attack scheme, granting access in over 75% of the attempts (for a high-security operating point). Thus, the study disproves the popular belief of minutiae templates non-reversibility and raises a key vulnerability issue in the use of non-encrypted standard templates. (This article is an extended version of Galbally et al., 2008, which was awarded with the IBM Best Student Paper Award in the track of Biometrics at ICPR 2008).
Cost-Effective Authentic and Anonymous Data Sharing with Forward Security Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.
Flymap: Interacting With Maps Projected From A Drone Interactive maps have become ubiquitous in our daily lives, helping us reach destinations and discovering our surroundings. Yet, designing map interactions is not straightforward and depends on the device being used. As mobile devices evolve and become independent from users, such as with robots and drones, how will we interact with the maps they provide? We propose FlyMap as a novel user experience for drone-based interactive maps. We designed and developed three interaction techniques for FlyMap's usage scenarios. In a comprehensive indoor study (N = 16), we show the strengths and weaknesses of two techniques on users' cognition, task load, and satisfaction. FlyMap was then pilot tested with the third technique outdoors in real world conditions with four groups of participants (N = 13). We show that FlyMap's interactivity is exciting to users and opens the space for more direct interactions with drones.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.1
0.1
0.1
0.1
0.1
0.1
0.025
0
0
0
0
0
0
0
AARGNN: An Attentive Attributed Recurrent Graph Neural Network for Traffic Flow Prediction Considering Multiple Dynamic Factors Traffic flow prediction is a fundamental part of ITS (Intelligent Transportation System). Since the correlations of traffic data are complicated and are affected by various factors, traffic flow prediction is a challenging task. Existing traffic flow prediction methods generally take limited static factors (e.g., the distance between sensors and road network topological structure) into consideration and model the correlations of the traffic data separately to predict the future traffic. In this paper, we propose AARGNN (Attentive Attributed Recurrent Graph Neural Network), a GNN (graph neural network) based method considering multiple dynamic factors to predict short-term traffic flow. With multi-source urban data (e.g., POI, road network, incident, weather, etc.), AARGNN considers both static factors and dynamic factors (e.g., spatial distance, semantic distance, road characteristic, road situation, and global context) to predict the short-term traffic flow. Specifically, AARGNN constructs an attributed graph and encodes various factors into the attributes. The correlations of the traffic data are modeled by utilizing the GNN combined with LSTM (long short-term memory). In addition, AARGNN specifies the contributions of each factor based on attention mechanism. Experiments on real-world datasets show that the proposed method outperforms all baseline methods.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Changes in the Correlation Between Eye and Steering Movements Indicate Driver Distraction Driver distraction represents an increasingly important contributor to crashes and fatalities. Technology that can detect and mitigate distraction by alerting distracted drivers could play a central role in maintaining safety. Based on either eye measures or driver performance measures, numerous algorithms to detect distraction have been developed. Combining both eye glance and vehicle data could enhance distraction detection. The goal of this paper is to evaluate whether changes in the eye–steering correlation structure can indicate distraction. Drivers performed visual, cognitive, and cognitive/visual tasks while driving in a simulator. The auto- and cross-correlations of horizontal eye position and steering wheel angle show that eye movements associated with road scanning produce a low eye–steering correlation. However, even this weak correlation is sensitive to distraction. Time lead associated with the maximum correlation is sensitive to all three types of distraction, and the maximum correlation coefficient is most strongly affected by off-road glances. These results demonstrate that eye–steering correlation statistics can detect distraction and differentiate between types of distraction.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes Driver behavioral cues may present a rich source of information and feedback for future intelligent advanced driver-assistance systems (ADASs). With the design of a simple and robust ADAS in mind, we are interested in determining the most important driver cues for distinguishing driver intent. Eye gaze may provide a more accurate proxy than head movement for determining driver attention, whereas the measurement of head motion is less cumbersome and more reliable in harsh driving conditions. We use a lane-change intent-prediction system (McCall et al., 2007) to determine the relative usefulness of each cue for determining intent. Various combinations of input data are presented to a discriminative classifier, which is trained to output a prediction of probable lane-change maneuver at a particular point in the future. Quantitative results from a naturalistic driving study are presented and show that head motion, when combined with lane position and vehicle dynamics, is a reliable cue for lane-change intent prediction. The addition of eye gaze does not improve performance as much as simpler head dynamics cues. The advantage of head data over eye data is shown to be statistically significant (p
Detection of Driver Fatigue Caused by Sleep Deprivation This paper aims to provide reliable indications of driver drowsiness based on the characteristics of driver-vehicle interaction. A test bed was built under a simulated driving environment, and a total of 12 subjects participated in two experiment sessions requiring different levels of sleep (partial sleep-deprivation versus no sleep-deprivation) before the experiment. The performance of the subjects was analyzed in a series of stimulus-response and routine driving tasks, which revealed the performance differences of drivers under different sleep-deprivation levels. The experiments further demonstrated that sleep deprivation had greater effect on rule-based than on skill-based cognitive functions: when drivers were sleep-deprived, their performance of responding to unexpected disturbances degraded, while they were robust enough to continue the routine driving tasks such as lane tracking, vehicle following, and lane changing. In addition, we presented both qualitative and quantitative guidelines for designing drowsy-driver detection systems in a probabilistic framework based on the paradigm of Bayesian networks. Temporal aspects of drowsiness and individual differences of subjects were addressed in the framework.
Online Prediction of Driver Distraction Based on Brain Activity Patterns This paper presents a new computational framework for early detection of driver distractions (map viewing) using brain activity measured by electroencephalographic (EEG) signals. Compared with most studies in the literature, which are mainly focused on the classification of distracted and nondistracted periods, this study proposes a new framework to prospectively predict the start and end of a distraction period, defined by map viewing. The proposed prediction algorithm was tested on a data set of continuous EEG signals recorded from 24 subjects. During the EEG recordings, the subjects were asked to drive from an initial position to a destination using a city map in a simulated driving environment. The overall accuracy values for the prediction of the start and the end of map viewing were 81% and 70%, respectively. The experimental results demonstrated that the proposed algorithm can predict the start and end of map viewing with relatively high accuracy and can be generalized to individual subjects. The outcome of this study has a high potential to improve the design of future intelligent navigation systems. Prediction of the start of map viewing can be used to provide route information based on a driver's needs and consequently avoid map-viewing activities. Prediction of the end of map viewing can be used to provide warnings for potential long map-viewing durations. Further development of the proposed framework and its applications in driver-distraction predictions are also discussed.
Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Objective: The feasibility of measuring drivers' automation trust via gaze behavior during highly automated driving was assessed with eye tracking and validated with self-reported automation trust in a driving simulator study. Background: Earlier research from other domains indicates that drivers' automation trust might be inferred from gaze behavior, such as monitoring frequency. Method: The gaze behavior and self-reported automation trust of 35 participants attending to a visually demanding non-driving-related task (NDRT) during highly automated driving was evaluated. The relationship between dispositional, situational, and learned automation trust with gaze behavior was compared. Results: Overall, there was a consistent relationship between drivers' automation trust and gaze behavior. Participants reporting higher automation trust tended to monitor the automation less frequently. Further analyses revealed that higher automation trust was associated with lower monitoring frequency of the automation during NDRTs, and an increase in trust over the experimental session was connected with a decrease in monitoring frequency. Conclusion: We suggest that (a) the current results indicate a negative relationship between drivers' self-reported automation trust and monitoring frequency, (b) gaze behavior provides a more direct measure of automation trust than other behavioral measures, and (c) with further refinement, drivers' automation trust during highly automated driving might be inferred from gaze behavior. Application: Potential applications of this research include the estimation of drivers' automation trust and reliance during highly automated driving.
3D separable convolutional neural network for dynamic hand gesture recognition. •The Frame Difference method is used to pre-process the input in order to filter the background.•A 3D separable CNN is proposed for dynamic gesture recognition. The standard 3D convolution process is decomposed into two processes: 3D depth-wise and 3D point-wise.•By the application of skip connection and layer-wise learning rate, the undesirable gradient dispersion due to the separation operation is solved and the performance of the network is improved.•A dynamic hand gesture library is built through HoloLens.
Cooperative channel assignment for VANETs based on multiagent reinforcement learning. Dynamic channel assignment (DCA) plays a key role in extending vehicular ad-hoc network capacity and mitigating congestion. However, channel assignment under vehicular direct communication scenarios faces mutual influence of large-scale nodes, the lack of centralized coordination, unknown global state information, and other challenges. To solve this problem, a multiagent reinforcement learning (RL) based cooperative DCA (RL-CDCA) mechanism is proposed. Specifically, each vehicular node can successfully learn the proper strategies of channel selection and backoff adaptation from the real-time channel state information (CSI) using two cooperative RL models. In addition, neural networks are constructed as nonlinear Q-function approximators, which facilitates the mapping of the continuously sensed input to the mixed policy output. Nodes are driven to locally share and incorporate their individual rewards such that they can optimize their policies in a distributed collaborative manner. Simulation results show that the proposed multiagent RL-CDCA can better reduce the one-hop packet delay by no less than 73.73%, improve the packet delivery ratio by no less than 12.66% on average in a highly dense situation, and improve the fairness of the global network resource allocation.
Cooperative Ramp Merging Design and Field Implementation: A Digital Twin Approach Based on Vehicle-to-Cloud Communication Ramp merging is considered as one of the most difficult driving scenarios due to the chaotic nature in both longitudinal and lateral driver behaviors (namely lack of effective coordination) in the merging area. In this study, we have designed a cooperative ramp merging system for connected vehicles, allowing merging vehicles to cooperate with others prior to arriving at the merging zone. Different...
ImageNet Classification with Deep Convolutional Neural Networks. We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called \"dropout\" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
Computational difficulties of bilevel linear programming We show, using small examples, that two algorithms previously published for the Bilevel Linear Programming problem BLP may fail to find the optimal solution and thus must be considered to be heuris...
Joint Indoor Localization and Radio Map Construction with Limited Deployment Load One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment efforts required to construct the radio maps through fingerprinting. In this paper, we aim to design an indoor localization scheme that can be directly employed without building a full fingerprinted radio map of the indoor environment. By accumulating the information of localized RSSs, this scheme can also simultaneously construct the radio map with limited calibration. To design this scheme, we employ a source data set that possesses the same spatial correlation of the RSSs in the indoor environment of interest. The knowledge of this data set is then transferred to a limited number of calibration fingerprints and one or several RSS observations with unknown locations, in order to perform direct localization of these observations using manifold alignment. We test two different source data sets, namely a simulated radio propagation map and the environment's plan coordinates. For moving users, we exploit the correlation of their observations to improve their localization accuracy. The online testing in two indoor environments shows that the plan coordinates achieve better results than the simulated radio maps, and a negligible degradation with 70-85 percent reduction in the calibration load.
Adaptive Joint Estimation Protocol for Arbitrary Pair of Tag Sets in a Distributed RFID System. Radio frequency identification (RFID) technology has been widely used in Applications, such as inventory control, object tracking, and supply chain management. In this domain, an important research problem is called RFID cardinality estimation, which focuses on estimating the number of tags in a certain area covered by one or multiple readers. This paper extends the research in both temporal and s...
Relaxed Resilient Fuzzy Stabilization of Discrete-Time Takagi–Sugeno Systems via a Higher Order Time-Variant Balanced Matrix Method Resilient fuzzy stabilization is capable of providing much less conservative results than conventional fuzzy stabilization while the alert threshold condition should be always satisfied at each sampling instant. In order to make the alert threshold condition more easily to be guaranteed, the short paper employs the switching-type gain-scheduling control law so that the real-time information, which is specific to the current sampling instant, can be integrated into resilient fuzzy stabilization. More importantly, a new kind of time-variant balanced matrix is introduced for the first time for adjusting positive/negative terms of different monomials in a more flexible way. As a result, the conservatism of resilient fuzzy stabilization can be further reduced even if the alert threshold condition becomes more difficult to be violated. Finally, the advantage of the developed method is tested and validated via related comparisons on a benchmark example.
1.102558
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.05
0.000013
0
0
0
0
Firefly algorithm, stochastic test functions and design optimisation Modern optimisation algorithms are often metaheuristic, and they are very promising in solving NP-hard optimisation problems. In this paper, we show how to use the recently developed firefly algorithm to solve non-linear design problems. For the standard pressure vessel design optimisation, the optimal solution found by FA is far better than the best solution obtained previously in the literature. In addition, we also propose a few new test functions with either singularity or stochastic components but with known global optimality and thus they can be used to validate new optimisation algorithms. Possible topics for further research are also discussed.
Mobile cloud computing: A survey Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, frequent disconnections, and mobility. Mobile cloud computing can address these problems by executing mobile applications on resource providers external to the mobile device. In this paper, we provide an extensive survey of mobile cloud computing research, while highlighting the specific concerns in mobile cloud computing. We present a taxonomy based on the key issues in this area, and discuss the different approaches taken to tackle these issues. We conclude the paper with a critical analysis of challenges that have not yet been fully met, and highlight directions for future work.
Harmony search algorithm for solving Sudoku Harmony search (HS) algorithm was applied to solving Sudoku puzzle. The HS is an evolutionary algorithm which mimics musicians' behaviors such as random play, memory-based play, and pitch-adjusted play when they perform improvisation. Sudoku puzzles in this study were formulated as an optimization problem with number-uniqueness penalties. HS could successfully solve the optimization problem after 285 function evaluations, taking 9 seconds. Also, sensitivity analysis of HS parameters was performed to obtain a better idea of algorithm parameter values.
DEC: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. Identification of models from input-output data essentially requires estimation of appropriate cluster centers. In this paper, a new online evolving clustering approach for streaming data is proposed. Unlike other approaches that consider either the data density or distance from existing cluster centers, this approach uses cluster weight and distance before generating new clusters. To capture the dynamics of the data stream, the cluster weight is defined in both data and time space in such a way that it decays exponentially with time. It also applies concepts from computational geometry to determine the neighborhood information while forming clusters. A distinction is made between core and noncore clusters to effectively identify the real outliers. The approach efficiently estimates cluster centers upon which evolving Takagi-Sugeno models are developed. The experimental results with developed models show that the proposed approach attains results at par or better than existing approaches and significantly reduces the computational overhead, which makes it suitable for real-time applications.
An Easily Understandable Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning. This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs). GWO is employed for solving optimization problems focused on the minimization of discrete-time objective functions defined as the weighted sum of the absolute value of the control error and of the squared output sensitivity function, and the vector variable consists of the tuning parameters of the T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of the process, solving these optimization problems is important as it leads to fuzzy control systems with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning approach. GWO algorithms applied with this regard are formulated in easily understandable terms for both vector and scalar operations, and discussions on stability, convergence, and parameter settings are offered. The controlled processes referred to in the course of this paper belong to a family of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead zone static nonlinearity. Experimental results concerning the angular position control of a laboratory servo system are included for validating the proposed method.
Stability Analysis and Estimation of Domain of Attraction for Positive Polynomial Fuzzy Systems With Input Saturation AbstractIn this paper, the stability and positivity of positive polynomial fuzzy model based (PPFMB) control system are investigated, in which the positive polynomial fuzzy model and positive polynomial fuzzy controller are allowed to have different premise membership functions from each other. These mismatched premise membership functions can increase the flexibility of controller design; however, it will lead to the conservative results when the stability is analyzed based on the Lyapunov stability theory. To relax the positivity/stability conditions, the improved Taylor-series-membership-functions-dependent (ITSMFD) method is introduced by introducing the sample points information of Taylor-series approximate membership functions, local error information and boundary information of substate space of premise variables into the stability/positivity conditions. Meanwhile, the ITSMFD method is extended to the PPFMB control system with input saturation to relax the estimation of domain of attraction. Finally, simulation examples are presented to verify the feasibility of this method.
Monkey King Evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment Optimization algorithms are proposed to maximize the desirable properties while simultaneously minimizing the undesirable characteristics. Particle Swarm Optimization (PSO) is a famous optimization algorithm, and it has undergone many variants since its inception in 1995. Though different topologies and relations among particles are used in some state-of-the-art PSO variants, the overall performance on high dimensional multimodal optimization problem is still not very good. In this paper, we present a new memetic optimization algorithm, named Monkey King Evolutionary (MKE) algorithm, and give a comparative view of the PSO variants, including the canonical PSO, Inertia Weighted PSO, Constriction Coefficients PSO, Fully-Informed Particle Sawrm, Cooperative PSO, Comprehensive Learning PSO and some variants proposed in recent years, such as Dynamic Neighborhood Learning PSO, Social Learning Particle Swarm Optimization etc. The proposed MKE algorithm is a further work of ebb-tide-fish algorithm and what’s more it performs very well not only on unimodal benchmark functions but also on multimodal ones on high dimensions. Comparison results under CEC2013 test suite for real parameter optimization show that the proposed MKE algorithm outperforms state-of-the-art PSO variants significantly. An application of the vehicle navigation optimization is also discussed in the paper, and the conducted experiment shows that the proposed approach to path navigation optimization saves travel time of real-time traffic navigation in a micro-scope traffic networks. © 2016, Springer Science+Business Media New York.
An overview on fault diagnosis and nature-inspired optimal control of industrial process applications An overview on recent developments in fault diagnosis is carried out.Machine learning, data mining and evolving soft computing techniques are discussed.Real liquid level control, wind turbine and servo system applications are offered.An overview on nature-inspired optimal control of industrial processes is given.New research challenges with strong industrial impact are highlighted. Fault detection, isolation and optimal control have long been applied to industry. These techniques have proven various successful theoretical results and industrial applications. Fault diagnosis is considered as the merge of fault detection (that indicates if there is a fault) and fault isolation (that determines where the fault is), and it has important effects on the operation of complex dynamical systems specific to modern industry applications such as industrial electronics, business management systems, energy, and public sectors. Since the resources are always limited in real-world industrial applications, the solutions to optimally use them under various constraints are of high actuality. In this context, the optimal tuning of linear and nonlinear controllers is a systematic way to meet the performance specifications expressed as optimization problems that target the minimization of integral- or sum-type objective functions, where the tuning parameters of the controllers are the vector variables of the objective functions. The nature-inspired optimization algorithms give efficient solutions to such optimization problems. This paper presents an overview on recent developments in machine learning, data mining and evolving soft computing techniques for fault diagnosis and on nature-inspired optimal control. The generic theory is discussed along with illustrative industrial process applications that include a real liquid level control application, wind turbines and a nonlinear servo system. New research challenges with strong industrial impact are highlighted.
Observer-Based Adaptive Backstepping Consensus Tracking Control for High-Order Nonlinear Semi-Strict-Feedback Multiagent Systems. Combined with backstepping techniques, an observer-based adaptive consensus tracking control strategy is developed for a class of high-order nonlinear multiagent systems, of which each follower agent is modeled in a semi-strict-feedback form. By constructing the neural network-based state observer for each follower, the proposed consensus control method solves the unmeasurable state problem of hig...
Wireless Body Area Networks: A Survey Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.
Multiresolution Spatial and Temporal Coding in a Wireless Sensor Network for Long-Term Monitoring Applications In many WSN (wireless sensor network) applications, such as [1], [2], [3], the targets are to provide long-term monitoring of environments. In such applications, energy is a primary concern because sensor nodes have to regularly report data to the sink and need to continuously work for a very long time so that users may periodically request a rough overview of the monitored environment. On the other hand, users may occasionally query more in-depth data of certain areas to analyze abnormal events. These requirements motivate us to propose a multiresolution compression and query (MRCQ) framework to support in-network data compression and data storage in WSNs from both space and time domains. Our MRCQ framework can organize sensor nodes hierarchically and establish multiresolution summaries of sensing data inside the network, through spatial and temporal compressions. In the space domain, only lower resolution summaries are sent to the sink; the other higher resolution summaries are stored in the network and can be obtained via queries. In the time domain, historical data stored in sensor nodes exhibit a finer resolution for more recent data, and a coarser resolution for older data. Our methods consider the hardware limitations of sensor nodes. So, the result is expected to save sensors' energy significantly, and thus, can support long-term monitoring WSN applications. A prototyping system is developed to verify its feasibility. Simulation results also show the efficiency of MRCQ compared to existing work.
Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks Over the last decade, Convolutional Neural Network (CNN) models have been highly successful in solving complex vision based problems. However, deep models are perceived as "black box" methods considering the lack of understanding of their internal functioning. There has been a significant recent interest to develop explainable deep learning models, and this paper is an effort in this direction. Building on a recently proposed method called Grad-CAM, we propose Grad-CAM++ to provide better visual explanations of CNN model predictions (when compared to Grad-CAM), in terms of better localization of objects as well as explaining occurrences of multiple objects of a class in a single image. We provide a mathematical explanation for the proposed method, Grad-CAM++, which uses a weighted combination of the positive partial derivatives of the last convolutional layer feature maps with respect to a specific class score as weights to generate a visual explanation for the class label under consideration. Our extensive experiments and evaluations, both subjective and objective, on standard datasets showed that Grad-CAM++ indeed provides better visual explanations for a given CNN architecture when compared to Grad-CAM.
Generating Natural Language Adversarial Examples. Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations to correctly classified examples which can cause the model to misclassify. In the image domain, these perturbations are often virtually indistinguishable to human perception, causing humans and state-of-the-art models to disagree. However, in the natural language domain, small perturbations are clearly perceptible, and the replacement of a single word can drastically alter the semantics of the document. Given these challenges, we use a black-box population-based optimization algorithm to generate semantically and syntactically similar adversarial examples that fool well-trained sentiment analysis and textual entailment models with success rates of 97% and 70%, respectively. We additionally demonstrate that 92.3% of the successful sentiment analysis adversarial examples are classified to their original label by 20 human annotators, and that the examples are perceptibly quite similar. Finally, we discuss an attempt to use adversarial training as a defense, but fail to yield improvement, demonstrating the strength and diversity of our adversarial examples. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.
Attitudes Towards Social Robots In Education: Enthusiast, Practical, Troubled, Sceptic, And Mindfully Positive While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented.
1.036651
0.04
0.04
0.04
0.04
0.04
0.033333
0.014103
0.000606
0
0
0
0
0
Data-Driven Estimation of Driver Attention Using Calibration-Free Eye Gaze and Scene Features Driver attention estimation is one of the key technologies for intelligent vehicles. The existing related methods only focus on the scene image or the driver&#39;s gaze or head pose. The purpose of this article is to propose a more reasonable and feasible method based on a dual-view scene with calibration-free gaze direction. According to human visual mechanisms, the low-level features, static visual ...
Auto-Alert: A Spatial and Temporal Architecture for Driving Assistance in Road Traffic Environments Over the last decade, the Advanced Driver Assistance System (ADAS) concept has evolved prominently. ADAS involves several advanced approaches such as automotive electronics, vehicular communication, RADAR, LIDAR, computer vision, and its associated aspects such as machine learning and deep learning. Of these, computer vision and machine learning-based solutions have mainly been effective that have allowed real-time vehicle control, driver-aided systems, etc. However, most of the existing works deal with ADAS deployment and autonomous driving functionality in countries with well-disciplined lane traffic. These solutions and frameworks do not work in countries and cities with less-disciplined/ chaotic traffic. Hence, critical ADAS functionalities and even L2/ L3 autonomy levels in driving remain a major open challenge. In this regard, this work proposes a novel framework called Auto-Alert. Auto-Alert performs a two-stage spatial and temporal analysis based on external traffic environment and tri-axial sensor system for safe driving assistance. This work investigates time-series analysis with deep learning models for driving events prediction and assistance. Further, as a basic premise, various essential design considerations towards the ADAS are discussed. Significantly, the Convolutional Neural Network (CNN) and Long-Short-Term-Memory (LSTM) models are applied in the proposed Auto-Alert. It is shown that the LSTM outperforms the CNN with 99% for the considered window length. Importantly, this also involves developing and demonstrating an efficient traffic monitoring and density estimation system. Further, this work provides the benchmark results for Indian Driving Dataset (IDD), specifically for the object detection task. The findings of this proposed work demonstrate the significance of using CNN and LSTM networks to assist the driver in the holistic traffic environment.
Analysing user physiological responses for affective video summarisation. Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches.
Speech emotion recognition approaches in human computer interaction Speech Emotion Recognition (SER) represents one of the emerging fields in human-computer interaction. Quality of the human-computer interface that mimics human speech emotions relies heavily on the types of features used and also on the classifier employed for recognition. The main purpose of this paper is to present a wide range of features employed for speech emotion recognition and the acoustic characteristics of those features. Also in this paper, we analyze the performance in terms of some important parameters such as: precision, recall, F-measure and recognition rate of the features using two of the commonly used emotional speech databases namely Berlin emotional database and Danish emotional database. Emotional speech recognition is being applied in modern human-computer interfaces and the overview of 10 interesting applications is also presented in this paper to illustrate the importance of this technique.
Camera-based drowsiness reference for driver state classification under real driving conditions Experts assume that accidents caused by drowsiness are significantly under-reported in police crash investigations (1-3%). They estimate that about 24-33% of the severe accidents are related to drowsiness. In order to develop warning systems that detect reduced vigilance based on the driving behavior, a reliable and accurate drowsiness reference is needed. Studies have shown that measures of the driver's eyes are capable to detect drowsiness under simulator or experiment conditions. In this study, the performance of the latest eye tracking based in-vehicle fatigue prediction measures are evaluated. These measures are assessed statistically and by a classification method based on a large dataset of 90 hours of real road drives. The results show that eye-tracking drowsiness detection works well for some drivers as long as the blinks detection works properly. Even with some proposed improvements, however, there are still problems with bad light conditions and for persons wearing glasses. As a summary, the camera based sleepiness measures provide a valuable contribution for a drowsiness reference, but are not reliable enough to be the only reference.
Fully Automated Driving: Impact of Trust and Practice on Manual Control Recovery. Objective: An experiment was performed in a driving simulator to investigate the impacts of practice, trust, and interaction on manual control recovery (MCR) when employing fully automated driving (FAD). Background: To increase the use of partially or highly automated driving efficiency and to improve safety, some studies have addressed trust in driving automation and training, but few studies have focused on FAD. FAD is an autonomous system that has full control of a vehicle without any need for intervention by the driver. Method: A total of 69 drivers with a valid license practiced with FAD. They were distributed evenly across two conditions: simple practice and elaborate practice. Results: When examining emergency MCR, a correlation was found between trust and reaction time in the simple practice group (i.e., higher trust meant a longer reaction time), but not in the elaborate practice group. This result indicated that to mitigate the negative impact of overtrust on reaction time, more appropriate practice may be needed. Conclusions: Drivers should be trained in how the automated device works so as to improve MCR performance in case of an emergency. Application: The practice format used in this study could be used for the first interaction with an FAD car when acquiring such a vehicle.
Visual-Manual Distraction Detection Using Driving Performance Indicators With Naturalistic Driving Data. This paper investigates the problem of driver distraction detection using driving performance indicators from onboard kinematic measurements. First, naturalistic driving data from the integrated vehicle-based safety system program are processed, and cabin camera data are manually inspected to determine the driver&#39;s state (i.e., distracted or attentive). Second, existing driving performance metrics...
Pre-Training With Asynchronous Supervised Learning For Reinforcement Learning Based Autonomous Driving Rule-based autonomous driving systems may suffer from increased complexity with large-scale intercoupled rules, so many researchers are exploring learning-based approaches. Reinforcement learning (RL) has been applied in designing autonomous driving systems because of its outstanding performance on a wide variety of sequential control problems. However, poor initial performance is a major challenge to the practical implementation of an RL-based autonomous driving system. RL training requires extensive training data before the model achieves reasonable performance, making an RL-based model inapplicable in a real-world setting, particularly when data are expensive. We propose an asynchronous supervised learning (ASL) method for the RL-based end-to-end autonomous driving model to address the problem of poor initial performance before training this RL-based model in real-world settings. Specifically, prior knowledge is introduced in the ASL pre-training stage by asynchronously executing multiple supervised learning processes in parallel, on multiple driving demonstration data sets. After pre-training, the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously break the performance limit. The presented pre-training method is evaluated on the race car simulator, TORCS (The Open Racing Car Simulator), to verify that it can be sufficiently reliable in improving the initial performance and convergence speed of an end-to-end autonomous driving model in the RL training stage. In addition, a real-vehicle verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment. Simulations results show that using some demonstrations during a supervised pre-training stage allows significant improvements in initial performance and convergence speed in the RL training stage.
Displayed Uncertainty Improves Driving Experience and Behavior: The Case of Range Anxiety in an Electric Car We explore the impact of the displayed precision of instrumentation estimates of range and state-of-charge on drivers' attitudes towards an all-electric vehicle (EV), on their driving experience, and driving behavior under varying conditions of resource availability. Participants (N=73) completed a 19-mile long drive through highway, rural town and mountain road conditions in an EV that displayed high vs. low remaining range, and gave estimates of that range with high and low information ambiguity. We found that an ambiguous display of range preserved drivers' feelings of trust towards the vehicle, despite encountering situations intended to induce severe range anxiety. Furthermore, compared to drivers facing an unambiguous display of range, drivers presented with an ambiguous range display reported improved driving experience, and exhibited driving behavior better adapted to road and remaining range conditions.
Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior We present PROCAB, an efficient method for Probabilistically Reasoning from Observed Context-Aware Behavior. It models the context-dependent utilities and underlying reasons that people take different actions. The model generalizes to unseen situations and scales to incorporate rich contextual information. We train our model using the route preferences of 25 taxi drivers demonstrated in over 100,000 miles of collected data, and demonstrate the performance of our model by inferring: (1) decision at next intersection, (2) route to known destination, and (3) destination given partially traveled route.
Stabilizing a linear system by switching control with dwell time The use of networks in control systems to connect controllers and sensors/actuators has become common practice in many applications. This new technology has also posed a theoretical control problem of how to use the limited data rate of the network effectively. We consider a system where its sensor and actuator are connected by a finite data rate channel. A design method to stabilize a continuous-time, linear plant using a switching controller is proposed. In particular, to prevent the actuator from fast switching, or chattering, which can not only increase the necessary data rate but also damage the system, we employ a dwell-time switching scheme. It is shown that a systematic partition of the state-space enables us to reduce the complexity of the design problem
Ergonomics of exoskeletons: Objective performance metrics In this paper it is shown how variation of the kinematic structure of an exoskeleton and variation of its fixation strength on the human limb influences objective task performance metrics, such as interface load, tracking error and voluntary range of motion in a signal tracking experiment.
Clickers In The Flipped Classroom: Bring Your Own Device (Byod) To Promote Student Learning Flipped classrooms continue to grow in popularity across all levels of education. Following this pedagogical trend, the present study aimed to enhance the face-to-face instruction in flipped classrooms with the use of clickers. A game-like clicker application was implemented through a bring your own device (BYOD) model to gamify classroom dynamics in the spirit of question-and-answer competitions. A series of flipped learning lessons were created for the study, with clickers integrated into question-and-answer activities associated with each of the lessons as formative assessments to assist students in the learning of English as a foreign language. In this quasi-experimental research, the data were gathered using a summative assessment, a perception survey, and individual interviews. The collected data were then analyzed to compare the students' flipped learning experiences, with or without clicker use. The results indicated that the gamified use of clickers had positive influences on student learning, with regard to their performance, perceptions, and preferences. This study thus suggests that the emerging generation of clicker technology allows for a cost-effective BYOD integration model in flipped classrooms, through which it is possible to seamlessly bridge pre-class and in-class activities and to effectively promote student learning.
AoI-Inspired Collaborative Information Collection for AUV-Assisted Internet of Underwater Things In order to better explore the ocean, autonomous underwater vehicles (AUVs) have been widely applied to facilitate the information collection. However, considering the extremely large-scale deployment of sensor nodes in the Internet of Underwater Things (IoUT), a homogeneous AUV-enabled information collection system cannot support timely and reliable information collection considering the time-var...
1.11
0.12
0.1
0.1
0.1
0.1
0.1
0.1
0.05
0.004815
0
0
0
0
Control of elastic soft robots based on real-time finite element method In this paper, we present a new method for the control of soft robots with elastic behavior, piloted by several actuators. The central contribution of this work is the use of the Finite Element Method (FEM), computed in real-time, in the control algorithm. The FEM based simulation computes the nonlinear deformations of the robots at interactive rates. The model is completed by Lagrange multipliers at the actuation zones and at the end-effector position. A reduced compliance matrix is built in order to deal with the necessary inversion of the model. Then, an iterative algorithm uses this compliance matrix to find the contribution of the actuators (force and/or position) that will deform the structure so that the terminal end of the robot follows a given position. Additional constraints, like rigid or deformable obstacles, or the internal characteristics of the actuators are integrated in the control algorithm. We illustrate our method using simulated examples of both serial and parallel structures and we validate it on a real 3D soft robot made of silicone.
Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion. This paper presents and investigates the application of Zhang neural network (ZNN) activated by Li function to kinematic control of redundant robot manipulators via time-varying Jacobian matrix pseudoinversion. That is, by using Li activation function and by computing the time-varying pseudoinverse of the Jacobian matrix (of the robot manipulator), the resultant ZNN model is applied to redundant-manipulator kinematic control. Note that there are nine novelties and differences of ZNN from the conventional gradient neural network in the research methodology. More importantly, such a Li-function activated ZNN (LFAZNN) model has the property of finite-time convergence (showing its feasibility to redundant-manipulator kinematic control). Simulation results based on a four-link planar robot manipulator and a PA10 robot manipulator further demonstrate the effectiveness of the presented LFAZNN model, as well as show the LFAZNN application prospect.
Kinematic model to control the end-effector of a continuum robot for multi-axis processing This paper presents a novel kinematic approach for controlling the end-effector of a continuum robot for in-situ repair/inspection in restricted and hazardous environments. Forward and inverse kinematic (IK) models have been developed to control the last segment of the continuum robot for performing multi-axis processing tasks using the last six Degrees of Freedom (DoF). The forward kinematics (FK) is proposed using a combination of Euler angle representation and homogeneous matrices. Due to the redundancy of the system, different constraints are proposed to solve the IK for different cases; therefore, the IK model is solved for bending and direction angles between (-pi/2 to + pi/2) radians. In addition, a novel method to calculate the Jacobian matrix is proposed for this type of hyper-redundant kinematics. The error between the results calculated using the proposed Jacobian algorithm and using the partial derivative equations of the FK map (with respect to linear and angular velocity) is evaluated. The error between the two models is found to be insignificant, thus, the Jacobian is validated as a method of calculating the IK for six DoF.
Optimization-Based Inverse Model of Soft Robots With Contact Handling. This letter presents a physically based algorithm to interactively simulate and control the motion of soft robots interacting with their environment. We use the finite-element method to simulate the nonlinear deformation of the soft structure, its actuators, and surroundings and propose a control method relying on a quadratic optimization to find the inverse of the model. The novelty of this work ...
A Finite-Time Convergent and Noise-Rejection Recurrent Neural Network and Its Discretization for Dynamic Nonlinear Equations Solving. The so-called zeroing neural network (ZNN) is an effective recurrent neural network for solving dynamic problems including the dynamic nonlinear equations. There exist numerous unperturbed ZNN models that can converge to the theoretical solution of solvable nonlinear equations in infinity long or finite time. However, when these ZNN models are perturbed by external disturbances, the convergence pe...
An overview of calibration technology of industrial robots With the continuous improvement of automation, industrial robots have become an indispensable part of automated production lines. They widely used in a number of industrial production activities, such as spraying, welding, handling, etc., and have a great role in these sectors. Recently, the robotic technology is developing towards high precision, high intelligence. Robot calibration technology has a great significance to improve the accuracy of robot. However, it has much work to be done in the identification of robot parameters. The parameter identification work of existing serial and parallel robots is introduced. On the one hand, it summarizes the methods for parameter calibration and discusses their advantages and disadvantages. On the other hand, the application of parameter identification is introduced. This overview has a great reference value for robot manufacturers to choose proper identification method, points further research areas for researchers. Finally, this paper analyzes the existing problems in robot calibration, which may be worth researching in the future.
Robotic Intra-Operative Ultrasound: Virtual Environments and Parallel Systems Robotic intra-operative ultrasound has the potential to improve the conventional practice of diagnosis and procedure guidance that are currently performed manually. Working towards automatic or semi-automatic ultrasound, being able to define ultrasound views and the corresponding probe poses via intelligent approaches become crucial. Based on the concept of parallel system which incorporates the ingredients of artificial systems, computational experiments, and parallel execution, this paper utilized a recent developed robotic trans-esophageal ultrasound system as the study object to explore the method for developing the corresponding virtual environments and present the potential applications of such systems. The proposed virtual system includes the use of 3D slicer as the main workspace and graphic user interface (GUI), Matlab engine to provide robotic control algorithms and customized functions, and PLUS (Public software Library for UltraSound imaging research) toolkit to generate simulated ultrasound images. Detailed implementation methods were presented and the proposed features of the system were explained. Based on this virtual system, example uses and case studies were presented to demonstrate its capabilities when used together with the physical TEE robot. This includes standard view definition and customized view optimization for pre-planning and navigation, as well as robotic control algorithm evaluations to facilitate real-time automatic probe pose adjustments. To conclude, the proposed virtual system would be a powerful tool to facilitate the further developments and clinical uses of the robotic intra-operative ultrasound systems.
Hiding Traces of Resampling in Digital Images Resampling detection has become a standard tool for forensic analyses of digital images. This paper presents new variants of image transformation operations which are undetectable by resampling detectors based on periodic variations in the residual signal of local linear predictors in the spatial domain. The effectiveness of the proposed method is supported with evidence from experiments on a large image database for various parameter settings. We benchmark detectability as well as the resulting image quality against conventional linear and bicubic interpolation and interpolation with a sinc kernel. These early findings on ldquocounter-forensicrdquo techniques put into question the reliability of known forensic tools against smart counterfeiters in general, and might serve as benchmarks and motivation for the development of much improved forensic techniques.
Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. Mobile-edge computation offloading (MECO) off-loads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite cloud computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a mixed-integer problem. To solve this challenging problem and characterize its policy structure, a low-complexity sub-optimal algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance in simulation.
Statistical tools for digital forensics A digitally altered photograph, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic photograph. As a result, photographs no longer hold the unique stature as a definitive recording of events. We describe several statistical techniques for detecting traces of digital tampering in the absence of any digital watermark or signature. In particular, we quantify statistical correlations that result from specific forms of digital tampering, and devise detection schemes to reveal these correlations.
Development of a UAV-LiDAR System with Application to Forest Inventory We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m(2)) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points per m(2), to 0.15 m when the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.084444
0.066667
0.066667
0.066667
0.066667
0.066667
0.016667
0
0
0
0
0
0
0
A General Approach for Simulating Rain Effects on Sensor Data in Real and Virtual Environments Driving automation systems typically use surround sensors to perceive their local environment. Accidents with automated vehicles have shown that errors in sensor data measurement and interpretation can lead to fatal injuries. It is thus necessary to test the reliability of environmental perception systems before market introduction. Since critical weather conditions are random, rare, and change quickly, relevant data sets are biased towards clear conditions. Consequently, detection algorithms based on these data suffer from limited performance. This article focuses on a two-step approach based on a) an indoor rain facility to test under reproducible, realistic conditions and b) physical-based models to enrich sensor data from clear conditions with virtual rain effects in a post-processing step. We concentrate on data from camera, lidar, and radar sensors. Experimental results show that both approaches simulate critical effects on raw sensor data and, therefore, enable replicable testing and validation at every stage of development.
Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS We describe a real-time, low-cost system to localize a mobile robot in outdoor environments. Our system relies on stereo vision to robustly estimate frame-to-frame motion in real time (also known as visual odometry). The motion estimation problem is formulated efficiently in the disparity space and results in accurate and robust estimates of the motion even for a small-baseline configuration. Our system uses inertial measurements to fill in motion estimates when visual odometry fails. This incremental motion is then fused with a low-cost GPS sensor using a Kalman Filter to prevent long-term drifts. Experimental results are presented for outdoor localization in moderately sized environments (\geqslant 100 meters)
Vision based robot localization by ground to satellite matching in GPS-denied situations This paper studies the problem of matching images captured from an unmanned ground vehicle (UGV) to those from a satellite or high-flying vehicle. We focus on situations where the UGV navigates in remote areas with few man-made structures. This is a difficult problem due to the drastic change in perspective between the ground and aerial imagery and the lack of environmental features for image comparison. We do not rely on GPS, which may be jammed or uncertain. We propose a two-step approach: (1) the UGV images are warped to obtain a bird's eye view of the ground, and (2) this view is compared to a grid of satellite locations using whole-image descriptors. We analyze the performance of a variety of descriptors for different satellite map sizes and various terrain and environment types. We incorporate the air-ground matching into a particle-filter framework for localization using the best-performing descriptor. The results show that vision-based UGV localization from satellite maps is not only possible, but often provides better position estimates than GPS estimates, enabling us to improve the location estimates of Google Street View.
Federated Learning in Vehicular Networks: Opportunities and Solutions The emerging advances in personal devices and privacy concerns have given the rise to the concept of Federated Learning. Federated Learning proves its effectiveness and privacy preservation through collaborative local training and updating a shared machine learning model while protecting the individual data-sets. This article investigates a new type of vehicular network concept, namely a Federated Vehicular Network (FVN), which can be viewed as a robust distributed vehicular network. Compared to traditional vehicular networks, an FVN has centralized components and utilizes both DSRC and mmWave communication to achieve more scalable and stable performance. As a result, FVN can be used to support data-/computation-intensive applications such as distributed machine learning and Federated Learning. The article first outlines the enabling technologies of FVN. Then, we briefly discuss the high-level architecture of FVN and explain why such an architecture is adequate for Federated Learning. In addition, we use auxiliary Blockchain-based systems to facilitate transactions and mitigate malicious behaviors. Next, we discuss in detail one key component of FVN, a federated vehicular cloud (FVC), that is used for sharing data and models in FVN. In particular, we focus on the routing inside FVCs and present our solutions and preliminary evaluation results. Finally, we point out open problems and future research directions of this disruptive technology.
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions Although convolutional neural networks (CNNs) have achieved great success in computer vision, this work investigates a simpler, convolution-free backbone network use-fid for many dense prediction tasks. Unlike the recently-proposed Vision Transformer (ViT) that was designed for image classification specifically, we introduce the Pyramid Vision Transformer (PVT), which overcomes the difficulties of...
Toward Lightweight, Privacy-Preserving Cooperative Object Classification for Connected Autonomous Vehicles Collaborative perception enables autonomous vehicles to exchange sensor data among each other to achieve cooperative object classification, which is considered an effective means to improve the perception accuracy of connected autonomous vehicles (CAVs). To protect information privacy in cooperative perception, we propose a lightweight, privacy-preserving cooperative object classification framework that allows CAVs to exchange raw sensor data (e.g., images captured by HD camera), without leaking private information. Leveraging chaotic encryption and additive secret sharing technique, image data are first encrypted into two ciphertexts and processed, in the encrypted format, by two separate edge servers. The use of chaotic mapping can avoid information leakage during data uploading. The encrypted images are then processed by the proposed privacy-preserving convolutional neural network (P-CNN) model embedded in the designed secure computing protocols. Finally, the processed results are combined/decrypted on the receiving vehicles to realize cooperative object classification. We formally prove the correctness and security of the proposed framework and carry out intensive experiments to evaluate its performance. The experimental results indicate that P-CNN offers exactly almost the same object classification results as the original CNN model, while offering great privacy protection of shared data and lightweight execution efficiency.
Robust Camera Pose Estimation for Unordered Road Scene Images in Varying Viewing Conditions For continuous performance optimization of camera sensor systems in automated driving, training data from rare corner cases occurring in series production cars are required. In this article, we propose collaborative acquisition of camera images via connected car fleets for synthesis of image sequences from arbitrary road sections which are challenging for machine vision. While allowing a scalable hardware architecture inside the cars, this concept demands to reconstruct the recording locations of the individual images aggregated in the back-end. Varying environmental conditions, dynamic scenes, and small numbers of significant landmarks may hamper camera pose estimation through sparse reconstruction from unordered road scene images. Tackling those problems, we extend a state-of-the-art Structure from Motion pipeline by selecting keypoints based on a semantic image segmentation and removing GPS outliers. We present three challenging image datasets recorded on repetitive test drives under differing environmental conditions for evaluation of our method. The results demonstrate that our optimized pipeline is able to reconstruct the camera viewpoints robustly in the majority of road scenes observed while preserving high image registration rates. Reducing the median deviation from GPS measurements by over 48% for car fleet images, the method increases the accuracy of camera poses dramatically.
A standalone RFID Indoor Positioning System Using Passive Tags Indoor positioning systems (IPSs) locate objects in closed structures such as office buildings, hospitals, stores, factories, and warehouses, where Global Positioning System devices generally do not work. Most available systems apply wireless concepts, optical tracking, and/or ultrasound. This paper presents a standalone IPS using radio frequency identification (RFID) technology. The concept is ba...
Dyme: Dynamic Microservice Scheduling in Edge Computing Enabled IoT In recent years, the rapid development of mobile edge computing (MEC) provides an efficient execution platform at the edge for Internet-of-Things (IoT) applications. Nevertheless, the MEC also provides optimal resources to different microservices, however, underlying network conditions and infrastructures inherently affect the execution process in MEC. Therefore, in the presence of varying network conditions, it is necessary to optimally execute the available task of end users while maximizing the energy efficiency in edge platform and we also need to provide fair Quality-of-Service (QoS). On the other hand, it is necessary to schedule the microservices dynamically to minimize the total network delay and network price. Thus, in this article, unlike most of the existing works, we propose a dynamic microservice scheduling scheme for MEC. We design the microservice scheduling framework mathematically and also discuss the computational complexity of the scheduling algorithm. Extensive simulation results show that the microservice scheduling framework significantly improves the performance metrics in terms of total network delay, average price, satisfaction level, energy consumption rate (ECR), failure rate, and network throughput over other existing baselines.
Reciprocal N-body Collision Avoidance In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace. In our formulation, each robot acts fully in- dependently, and does not communicate with other robots. Based on the definition of velocity obstacles (5), we derive sufficient conditions for collision-free motion by reducing the problem to solving a low-dimensional linear program. We test our approach on several dense and complex simulation scenarios involving thousands of robots and compute collision-free actions for all of them in only a few millisec- onds. To the best of our knowledge, this method is the first that can guarantee local collision-free motion for a large number of robots in a cluttered workspace.
RFID-based techniques for human-activity detection The iBracelet and the Wireless Identification and Sensing Platform promise the ability to infer human activity directly from sensor readings.
RECIFE-MILP: An Effective MILP-Based Heuristic for the Real-Time Railway Traffic Management Problem The real-time railway traffic management problem consists of selecting appropriate train routes and schedules for minimizing the propagation of delay in case of traffic perturbation. In this paper, we tackle this problem by introducing RECIFE-MILP, a heuristic algorithm based on a mixed-integer linear programming model. RECIFE-MILP uses a model that extends one we previously proposed by including additional elements characterizing railway reality. In addition, it implements performance boosting methods selected among several ones through an algorithm configuration tool. We present a thorough experimental analysis that shows that the performances of RECIFE-MILP are better than the ones of the currently implemented traffic management strategy. RECIFE-MILP often finds the optimal solution to instances within the short computation time available in real-time applications. Moreover, RECIFE-MILP is robust to its configuration if an appropriate selection of the combination of boosting methods is performed.
A Covert Channel Over VoLTE via Adjusting Silence Periods. Covert channels represent unforeseen communication methods that exploit authorized overt communication as the carrier medium for covert messages. Covert channels can be a secure and effective means of transmitting confidential information hidden in overt traffic. For covert timing channel, the covert message is usually modulated into inter-packet delays (IPDs) of legitimate traffic, which is not suitable for voice over LTE (VoLTE) since the IPDs of VoLTE traffic are fixed to lose the possibility of being modulated. For this reason, we propose a covert channel via adjusting silence periods, which modulates covert message by the postponing or extending silence periods in VoLTE traffic. To keep the robustness, we employ the Gray code to encode the covert message to reduce the impact of packet loss. Moreover, the proposed covert channel enables the tradeoff between the robustness and voice quality which is an important performance indicator for VoLTE. The experiment results show that the proposed covert channel is undetectable by statistical tests and outperforms the other covert channels based on IPDs in terms of robustness.
Pricing-Based Channel Selection for D2D Content Sharing in Dynamic Environment In order to make device-to-device (D2D) content sharing give full play to its advantage of improving local area services, one of the important issues is to decide the channels that D2D pairs occupy. Most existing works study this issue in static environment, and ignore the guidance for D2D pairs to select the channel adaptively. In this paper, we investigate this issue in dynamic environment where...
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
Road Traffic Forecasting: Recent Advances and New Challenges. Due to its paramount relevance in transport planning and logistics, road traffic forecasting has been a subject of active research within the engineering community for more than 40 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. More recently, the development of new technology, platforms and techniques for massive data...
Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. •The model of support vector regression with adaptive genetic algorithm and the seasonal mechanism is proposed.•Parameters selection and seasonal adjustment should be carefully selected.•We focus on latest and representative holiday daily data in China.•Two experiments are used to prove the effect of the model.•The AGASSVR is superior to AGA-SVR and BPNN.
Regression conformal prediction with random forests Regression conformal prediction produces prediction intervals that are valid, i.e., the probability of excluding the correct target value is bounded by a predefined confidence level. The most important criterion when comparing conformal regressors is efficiency; the prediction intervals should be as tight (informative) as possible. In this study, the use of random forests as the underlying model for regression conformal prediction is investigated and compared to existing state-of-the-art techniques, which are based on neural networks and k-nearest neighbors. In addition to their robust predictive performance, random forests allow for determining the size of the prediction intervals by using out-of-bag estimates instead of requiring a separate calibration set. An extensive empirical investigation, using 33 publicly available data sets, was undertaken to compare the use of random forests to existing state-of-the-art conformal predictors. The results show that the suggested approach, on almost all confidence levels and using both standard and normalized nonconformity functions, produced significantly more efficient conformal predictors than the existing alternatives.
Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network Bus arrival time prediction intends to improve the level of the services provided by transportation agencies. Intuitively, many stochastic factors affect the predictability of the arrival time, e.g., weather and local events. Moreover, the arrival time prediction for a current station is closely correlated with that of multiple passed stations. Motivated by the observations above, this paper propo...
Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data Traffic forecasting has recently attracted increasing interest due to the popularity of online navigation services, ridesharing and smart city projects. Owing to the non-stationary nature of road traffic, forecasting accuracy is fundamentally limited by the lack of contextual information. To address this issue, we propose the Hybrid Spatio-Temporal Graph Convolutional Network (H-STGCN), which is able to "deduce" future travel time by exploiting the data of upcoming traffic volume. Specifically, we propose an algorithm to acquire the upcoming traffic volume from an online navigation engine. Taking advantage of the piecewise-linear flow-density relationship, a novel transformer structure converts the upcoming volume into its equivalent in travel time. We combine this signal with the commonly-utilized travel-time signal, and then apply graph convolution to capture the spatial dependency. Particularly, we construct a compound adjacency matrix which reflects the innate traffic proximity. We conduct extensive experiments on real-world datasets. The results show that H-STGCN remarkably outperforms state-of-the-art methods in various metrics, especially for the prediction of non-recurring congestion.
Long-Term Traffic Speed Prediction Based on Multiscale Spatio-Temporal Feature Learning Network Speed plays a significant role in evaluating the evolution of traffic status, and predicting speed is one of the fundamental tasks for the intelligent transportation system. There exists a large number of works on speed forecast; however, the problem of long-term prediction for the next day is still not well addressed. In this paper, we propose a multiscale spatio-temporal feature learning network (MSTFLN) as the model to handle the challenging task of long-term traffic speed prediction for elevated highways. Raw traffic speed data collected from loop detectors every 5 min are transformed into spatial-temporal matrices; each matrix represents the one-day speed information, rows of the matrix indicate the numbers of loop detectors, and time intervals are denoted by columns. To predict the traffic speed of a certain day, nine speed matrices of three historical days with three different time scales are served as the input of MSTFLN. The proposed MSTFLN model consists of convolutional long short-term memories and convolutional neural networks. Experiments are evaluated using the data of three main elevated highways in Shanghai, China. The presented results demonstrate that our approach outperforms the state-of-the-art work and it can effectively predict the long-term speed information.
Estimation of missing values in heterogeneous traffic data: Application of multimodal deep learning model With the development of sensing technology, a large amount of heterogeneous traffic data can be collected. However, the raw data often contain corrupted or missing values, which need to be imputed to aid traffic condition monitoring and the assessment of the system performance. Several existing studies have reported imputation models used to impute the missing values, and most of these models aimed to capture the spatial or temporal dependencies. However, the dependencies of the heterogeneous data were ignored. To this end, we propose a multimodal deep learning model to enable heterogeneous traffic data imputation. The model involves the use of two parallel stacked autoencoders that can simultaneously consider the spatial and temporal dependencies. In addition, a latent feature fusion layer is developed to capture the dependencies of the heterogeneous traffic data. To train the proposed imputation model, a hierarchical training method is introduced. Using a real world dataset, the performance of the proposed model is evaluated and compared with that of several widely used temporal imputation models, spatial imputation models, and spatial–temporal imputation models. The experimental and evaluation results indicate that the values of the evaluation criteria of the proposed model are smaller, indicating a better performance. The results also show that the proposed model can accurately impute the continuously missing data. Furthermore, the sensitivity of the parameters used in the proposed deep multimodal deep learning model is investigated. This study clearly demonstrates the effectiveness of deep learning for heterogeneous traffic data synthesis and missing data imputation. The dependencies of the heterogeneous traffic data should be considered in future studies to improve the performance of the imputation model.
Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling Ride-hailing applications are becoming more and more popular for providing drivers and passengers with convenient ride services, especially in metropolises like Beijing or New York. To obtain the passengers' mobility patterns, the online platforms of ride services need to predict the number of passenger demands from one region to another in advance. We formulate this problem as an Origin-Destination Matrix Prediction (ODMP) problem. Though this problem is essential to large-scale providers of ride services for helping them make decisions and some providers have already put it forward in public, existing studies have not solved this problem well. One of the main reasons is that the ODMP problem is more challenging than the common demand prediction. Besides the number of demands in a region, it also requires the model to predict the destinations of them. In addition, data sparsity is a severe issue. To solve the problem effectively, we propose a unified model, Grid-Embedding based Multi-task Learning (GEML) which consists of two components focusing on spatial and temporal information respectively. The Grid-Embedding part is designed to model the spatial mobility patterns of passengers and neighboring relationships of different areas, the pre-weighted aggregator of which aims to sense the sparsity and range of data. The Multi-task Learning framework focuses on modeling temporal attributes and capturing several objectives of the ODMP problem. The evaluation of our model is conducted on real operational datasets from UCAR and Didi. The experimental results demonstrate the superiority of our GEML against the state-of-the-art approaches.
Deep learning Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning. Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, constructing a pattern-recognition or machine-learning system required careful engineering and considerable domain expertise to design a feature extractor that transformed the raw data (such as the pixel values of an image) into a suitable internal representation or feature vector from which the learning subsystem, often a classifier, could detect or classify patterns in the input. Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned. For classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations. An image, for example, comes in the form of an array of pixel values, and the learned features in the first layer of representation typically represent the presence or absence of edges at particular orientations and locations in the image. The second layer typically detects motifs by spotting particular arrangements of edges, regardless of small variations in the edge positions. The third layer may assemble motifs into larger combinations that correspond to parts of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of deep learning is that these layers of features are not designed by human engineers: they are learned from data using a general-purpose learning procedure. Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years. It has turned out to be very good at discovering intricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition1, 2, 3, 4 and speech recognition5, 6, 7, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules8, analysing particle accelerator data9, 10, reconstructing brain circuits11, and predicting the effects of mutations in non-coding DNA on gene expression and disease12, 13. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding14, particularly topic classification, sentiment analysis, question answering15 and language translation16, 17. We think that deep learning will have many more successes in the near future because it requires very little engineering by hand, so it can easily take advantage of increases in the amount of available computation and data. New learning algorithms and architectures that are currently being developed for deep neural networks will only accelerate this progress. The most common form of machine learning, deep or not, is supervised learning. Imagine that we want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets, each labelled with its category. During training, the machine is shown an image and produces an output in the form of a vector of scores, one for each category. We want the desired category to have the highest score of all categories, but this is unlikely to happen before training. We compute an objective function that measures the error (or distance) between the output scores and the desired pattern of scores. The machine then modifies its internal adjustable parameters to reduce this error. These adjustable parameters, often called weights, are real numbers that can be seen as 'knobs' that define the input–output function of the machine. In a typical deep-learning system, there may be hundreds of millions of these adjustable weights, and hundreds of millions of labelled examples with which to train the machine. To properly adjust the weight vector, the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error would increase or decrease if the weight were increased by a tiny amount. The weight vector is then adjusted in the opposite direction to the gradient vector. The objective function, averaged over all the training examples, can be seen as a kind of hilly landscape in the high-dimensional space of weight values. The negative gradient vector indicates the direction of steepest descent in this landscape, taking it closer to a minimum, where the output error is low on average. In practice, most practitioners use a procedure called stochastic gradient descent (SGD). This consists of showing the input vector for a few examples, computing the outputs and the errors, computing the average gradient for those examples, and adjusting the weights accordingly. The process is repeated for many small sets of examples from the training set until the average of the objective function stops decreasing. It is called stochastic because each small set of examples gives a noisy estimate of the average gradient over all examples. This simple procedure usually finds a good set of weights surprisingly quickly when compared with far more elaborate optimization techniques18. After training, the performance of the system is measured on a different set of examples called a test set. This serves to test the generalization ability of the machine — its ability to produce sensible answers on new inputs that it has never seen during training. Many of the current practical applications of machine learning use linear classifiers on top of hand-engineered features. A two-class linear classifier computes a weighted sum of the feature vector components. If the weighted sum is above a threshold, the input is classified as belonging to a particular category. Since the 1960s we have known that linear classifiers can only carve their input space into very simple regions, namely half-spaces separated by a hyperplane19. But problems such as image and speech recognition require the input–output function to be insensitive to irrelevant variations of the input, such as variations in position, orientation or illumination of an object, or variations in the pitch or accent of speech, while being very sensitive to particular minute variations (for example, the difference between a white wolf and a breed of wolf-like white dog called a Samoyed). At the pixel level, images of two Samoyeds in different poses and in different environments may be very different from each other, whereas two images of a Samoyed and a wolf in the same position and on similar backgrounds may be very similar to each other. A linear classifier, or any other 'shallow' classifier operating on raw pixels could not possibly distinguish the latter two, while putting the former two in the same category. This is why shallow classifiers require a good feature extractor that solves the selectivity–invariance dilemma — one that produces representations that are selective to the aspects of the image that are important for discrimination, but that are invariant to irrelevant aspects such as the pose of the animal. To make classifiers more powerful, one can use generic non-linear features, as with kernel methods20, but generic features such as those arising with the Gaussian kernel do not allow the learner to generalize well far from the training examples21. The conventional option is to hand design good feature extractors, which requires a considerable amount of engineering skill and domain expertise. But this can all be avoided if good features can be learned automatically using a general-purpose learning procedure. This is the key advantage of deep learning. A deep-learning architecture is a multilayer stack of simple modules, all (or most) of which are subject to learning, and many of which compute non-linear input–output mappings. Each module in the stack transforms its input to increase both the selectivity and the invariance of the representation. With multiple non-linear layers, say a depth of 5 to 20, a system can implement extremely intricate functions of its inputs that are simultaneously sensitive to minute details — distinguishing Samoyeds from white wolves — and insensitive to large irrelevant variations such as the background, pose, lighting and surrounding objects. From the earliest days of pattern recognition22, 23, the aim of researchers has been to replace hand-engineered features with trainable multilayer networks, but despite its simplicity, the solution was not widely understood until the mid 1980s. As it turns out, multilayer architectures can be trained by simple stochastic gradient descent. As long as the modules are relatively smooth functions of their inputs and of their internal weights, one can compute gradients using the backpropagation procedure. The idea that this could be done, and that it worked, was discovered independently by several different groups during the 1970s and 1980s24, 25, 26, 27. The backpropagation procedure to compute the gradient of an objective function with respect to the weights of a multilayer stack of modules is nothing more than a practical application of the chain rule for derivatives. The key insight is that the derivative (or gradient) of the objective with respect to the input of a module can be computed by working backwards from the gradient with respect to the output of that module (or the input of the subsequent module) (Fig. 1). The backpropagation equation can be applied repeatedly to propagate gradients through all modules, starting from the output at the top (where the network produces its prediction) all the way to the bottom (where the external input is fed). Once these gradients have been computed, it is straightforward to compute the gradients with respect to the weights of each module. Many applications of deep learning use feedforward neural network architectures (Fig. 1), which learn to map a fixed-size input (for example, an image) to a fixed-size output (for example, a probability for each of several categories). To go from one layer to the next, a set of units compute a weighted sum of their inputs from the previous layer and pass the result through a non-linear function. At present, the most popular non-linear function is the rectified linear unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). In past decades, neural nets used smoother non-linearities, such as tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster in networks with many layers, allowing training of a deep supervised network without unsupervised pre-training28. Units that are not in the input or output layer are conventionally called hidden units. The hidden layers can be seen as distorting the input in a non-linear way so that categories become linearly separable by the last layer (Fig. 1). In the late 1990s, neural nets and backpropagation were largely forsaken by the machine-learning community and ignored by the computer-vision and speech-recognition communities. It was widely thought that learning useful, multistage, feature extractors with little prior knowledge was infeasible. In particular, it was commonly thought that simple gradient descent would get trapped in poor local minima — weight configurations for which no small change would reduce the average error. In practice, poor local minima are rarely a problem with large networks. Regardless of the initial conditions, the system nearly always reaches solutions of very similar quality. Recent theoretical and empirical results strongly suggest that local minima are not a serious issue in general. Instead, the landscape is packed with a combinatorially large number of saddle points where the gradient is zero, and the surface curves up in most dimensions and curves down in the remainder29, 30. The analysis seems to show that saddle points with only a few downward curving directions are present in very large numbers, but almost all of them have very similar values of the objective function. Hence, it does not much matter which of these saddle points the algorithm gets stuck at. Interest in deep feedforward networks was revived around 2006 (refs 31,32,33,34) by a group of researchers brought together by the Canadian Institute for Advanced Research (CIFAR). The researchers introduced unsupervised learning procedures that could create layers of feature detectors without requiring labelled data. The objective in learning each layer of feature detectors was to be able to reconstruct or model the activities of feature detectors (or raw inputs) in the layer below. By 'pre-training' several layers of progressively more complex feature detectors using this reconstruction objective, the weights of a deep network could be initialized to sensible values. A final layer of output units could then be added to the top of the network and the whole deep system could be fine-tuned using standard backpropagation33, 34, 35. This worked remarkably well for recognizing handwritten digits or for detecting pedestrians, especially when the amount of labelled data was very limited36. The first major application of this pre-training approach was in speech recognition, and it was made possible by the advent of fast graphics processing units (GPUs) that were convenient to program37 and allowed researchers to train networks 10 or 20 times faster. In 2009, the approach was used to map short temporal windows of coefficients extracted from a sound wave to a set of probabilities for the various fragments of speech that might be represented by the frame in the centre of the window. It achieved record-breaking results on a standard speech recognition benchmark that used a small vocabulary38 and was quickly developed to give record-breaking results on a large vocabulary task39. By 2012, versions of the deep net from 2009 were being developed by many of the major speech groups6 and were already being deployed in Android phones. For smaller data sets, unsupervised pre-training helps to prevent overfitting40, leading to significantly better generalization when the number of labelled examples is small, or in a transfer setting where we have lots of examples for some 'source' tasks but very few for some 'target' tasks. Once deep learning had been rehabilitated, it turned out that the pre-training stage was only needed for small data sets. There was, however, one particular type of deep, feedforward network that was much easier to train and generalized much better than networks with full connectivity between adjacent layers. This was the convolutional neural network (ConvNet)41, 42. It achieved many practical successes during the period when neural networks were out of favour and it has recently been widely adopted by the computer-vision community. ConvNets are designed to process data that come in the form of multiple arrays, for example a colour image composed of three 2D arrays containing pixel intensities in the three colour channels. Many data modalities are in the form of multiple arrays: 1D for signals and sequences, including language; 2D for images or audio spectrograms; and 3D for video or volumetric images. There are four key ideas behind ConvNets that take advantage of the properties of natural signals: local connections, shared weights, pooling and the use of many layers. The architecture of a typical ConvNet (Fig. 2) is structured as a series of stages. The first few stages are composed of two types of layers: convolutional layers and pooling layers. Units in a convolutional layer are organized in feature maps, within which each unit is connected to local patches in the feature maps of the previous layer through a set of weights called a filter bank. The result of this local weighted sum is then passed through a non-linearity such as a ReLU. All units in a feature map share the same filter bank. Different feature maps in a layer use different filter banks. The reason for this architecture is twofold. First, in array data such as images, local groups of values are often highly correlated, forming distinctive local motifs that are easily detected. Second, the local statistics of images and other signals are invariant to location. In other words, if a motif can appear in one part of the image, it could appear anywhere, hence the idea of units at different locations sharing the same weights and detecting the same pattern in different parts of the array. Mathematically, the filtering operation performed by a feature map is a discrete convolution, hence the name. Although the role of the convolutional layer is to detect local conjunctions of features from the previous layer, the role of the pooling layer is to merge semantically similar features into one. Because the relative positions of the features forming a motif can vary somewhat, reliably detecting the motif can be done by coarse-graining the position of each feature. A typical pooling unit computes the maximum of a local patch of units in one feature map (or in a few feature maps). Neighbouring pooling units take input from patches that are shifted by more than one row or column, thereby reducing the dimension of the representation and creating an invariance to small shifts and distortions. Two or three stages of convolution, non-linearity and pooling are stacked, followed by more convolutional and fully-connected layers. Backpropagating gradients through a ConvNet is as simple as through a regular deep network, allowing all the weights in all the filter banks to be trained. Deep neural networks exploit the property that many natural signals are compositional hierarchies, in which higher-level features are obtained by composing lower-level ones. In images, local combinations of edges form motifs, motifs assemble into parts, and parts form objects. Similar hierarchies exist in speech and text from sounds to phones, phonemes, syllables, words and sentences. The pooling allows representations to vary very little when elements in the previous layer vary in position and appearance. The convolutional and pooling layers in ConvNets are directly inspired by the classic notions of simple cells and complex cells in visual neuroscience43, and the overall architecture is reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway44. When ConvNet models and monkeys are shown the same picture, the activations of high-level units in the ConvNet explains half of the variance of random sets of 160 neurons in the monkey's inferotemporal cortex45. ConvNets have their roots in the neocognitron46, the architecture of which was somewhat similar, but did not have an end-to-end supervised-learning algorithm such as backpropagation. A primitive 1D ConvNet called a time-delay neural net was used for the recognition of phonemes and simple words47, 48. There have been numerous applications of convolutional networks going back to the early 1990s, starting with time-delay neural networks for speech recognition47 and document reading42. The document reading system used a ConvNet trained jointly with a probabilistic model that implemented language constraints. By the late 1990s this system was reading over 10% of all the cheques in the United States. A number of ConvNet-based optical character recognition and handwriting recognition systems were later deployed by Microsoft49. ConvNets were also experimented with in the early 1990s for object detection in natural images, including faces and hands50, 51, and for face recognition52. Since the early 2000s, ConvNets have been applied with great success to the detection, segmentation and recognition of objects and regions in images. These were all tasks in which labelled data was relatively abundant, such as traffic sign recognition53, the segmentation of biological images54 particularly for connectomics55, and the detection of faces, text, pedestrians and human bodies in natural images36, 50, 51, 56, 57, 58. A major recent practical success of ConvNets is face recognition59. Importantly, images can be labelled at the pixel level, which will have applications in technology, including autonomous mobile robots and self-driving cars60, 61. Companies such as Mobileye and NVIDIA are using such ConvNet-based methods in their upcoming vision systems for cars. Other applications gaining importance involve natural language understanding14 and speech recognition7. Despite these successes, ConvNets were largely forsaken by the mainstream computer-vision and machine-learning communities until the ImageNet competition in 2012. When deep convolutional networks were applied to a data set of about a million images from the web that contained 1,000 different classes, they achieved spectacular results, almost halving the error rates of the best competing approaches1. This success came from the efficient use of GPUs, ReLUs, a new regularization technique called dropout62, and techniques to generate more training examples by deforming the existing ones. This success has brought about a revolution in computer vision; ConvNets are now the dominant approach for almost all recognition and detection tasks4, 58, 59, 63, 64, 65 and approach human performance on some tasks. A recent stunning demonstration combines ConvNets and recurrent net modules for the generation of image captions (Fig. 3). Recent ConvNet architectures have 10 to 20 layers of ReLUs, hundreds of millions of weights, and billions of connections between units. Whereas training such large networks could have taken weeks only two years ago, progress in hardware, software and algorithm parallelization have reduced training times to a few hours. The performance of ConvNet-based vision systems has caused most major technology companies, including Google, Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly growing number of start-ups to initiate research and development projects and to deploy ConvNet-based image understanding products and services. ConvNets are easily amenable to efficient hardware implementations in chips or field-programmable gate arrays66, 67. A number of companies such as NVIDIA, Mobileye, Intel, Qualcomm and Samsung are developing ConvNet chips to enable real-time vision applications in smartphones, cameras, robots and self-driving cars. Deep-learning theory shows that deep nets have two different exponential advantages over classic learning algorithms that do not use distributed representations21. Both of these advantages arise from the power of composition and depend on the underlying data-generating distribution having an appropriate componential structure40. First, learning distributed representations enable generalization to new combinations of the values of learned features beyond those seen during training (for example, 2n combinations are possible with n binary features)68, 69. Second, composing layers of representation in a deep net brings the potential for another exponential advantage70 (exponential in the depth). The hidden layers of a multilayer neural network learn to represent the network's inputs in a way that makes it easy to predict the target outputs. This is nicely demonstrated by training a multilayer neural network to predict the next word in a sequence from a local context of earlier words71. Each word in the context is presented to the network as a one-of-N vector, that is, one component has a value of 1 and the rest are 0. In the first layer, each word creates a different pattern of activations, or word vectors (Fig. 4). In a language model, the other layers of the network learn to convert the input word vectors into an output word vector for the predicted next word, which can be used to predict the probability for any word in the vocabulary to appear as the next word. The network learns word vectors that contain many active components each of which can be interpreted as a separate feature of the word, as was first demonstrated27 in the context of learning distributed representations for symbols. These semantic features were not explicitly present in the input. They were discovered by the learning procedure as a good way of factorizing the structured relationships between the input and output symbols into multiple 'micro-rules'. Learning word vectors turned out to also work very well when the word sequences come from a large corpus of real text and the individual micro-rules are unreliable71. When trained to predict the next word in a news story, for example, the learned word vectors for Tuesday and Wednesday are very similar, as are the word vectors for Sweden and Norway. Such representations are called distributed representations because their elements (the features) are not mutually exclusive and their many configurations correspond to the variations seen in the observed data. These word vectors are composed of learned features that were not determined ahead of time by experts, but automatically discovered by the neural network. Vector representations of words learned from text are now very widely used in natural language applications14, 17, 72, 73, 74, 75, 76. The issue of representation lies at the heart of the debate between the logic-inspired and the neural-network-inspired paradigms for cognition. In the logic-inspired paradigm, an instance of a symbol is something for which the only property is that it is either identical or non-identical to other symbol instances. It has no internal structure that is relevant to its use; and to reason with symbols, they must be bound to the variables in judiciously chosen rules of inference. By contrast, neural networks just use big activity vectors, big weight matrices and scalar non-linearities to perform the type of fast 'intuitive' inference that underpins effortless commonsense reasoning. Before the introduction of neural language models71, the standard approach to statistical modelling of language did not exploit distributed representations: it was based on counting frequencies of occurrences of short symbol sequences of length up to N (called N-grams). The number of possible N-grams is on the order of VN, where V is the vocabulary size, so taking into account a context of more than a handful of words would require very large training corpora. N-grams treat each word as an atomic unit, so they cannot generalize across semantically related sequences of words, whereas neural language models can because they associate each word with a vector of real valued features, and semantically related words end up close to each other in that vector space (Fig. 4). When backpropagation was first introduced, its most exciting use was for training recurrent neural networks (RNNs). For tasks that involve sequential inputs, such as speech and language, it is often better to use RNNs (Fig. 5). RNNs process an input sequence one element at a time, maintaining in their hidden units a 'state vector' that implicitly contains information about the history of all the past elements of the sequence. When we consider the outputs of the hidden units at different discrete time steps as if they were the outputs of different neurons in a deep multilayer network (Fig. 5, right), it becomes clear how we can apply backpropagation to train RNNs. RNNs are very powerful dynamic systems, but training them has proved to be problematic because the backpropagated gradients either grow or shrink at each time step, so over many time steps they typically explode or vanish77, 78. Thanks to advances in their architecture79, 80 and ways of training them81, 82, RNNs have been found to be very good at predicting the next character in the text83 or the next word in a sequence75, but they can also be used for more complex tasks. For example, after reading an English sentence one word at a time, an English 'encoder' network can be trained so that the final state vector of its hidden units is a good representation of the thought expressed by the sentence. This thought vector can then be used as the initial hidden state of (or as extra input to) a jointly trained French 'decoder' network, which outputs a probability distribution for the first word of the French translation. If a particular first word is chosen from this distribution and provided as input to the decoder network it will then output a probability distribution for the second word of the translation and so on until a full stop is chosen17, 72, 76. Overall, this process generates sequences of French words according to a probability distribution that depends on the English sentence. This rather naive way of performing machine translation has quickly become competitive with the state-of-the-art, and this raises serious doubts about whether understanding a sentence requires anything like the internal symbolic expressions that are manipulated by using inference rules. It is more compatible with the view that everyday reasoning involves many simultaneous analogies that each contribute plausibility to a conclusion84, 85. Instead of translating the meaning of a French sentence into an English sentence, one can learn to 'translate' the meaning of an image into an English sentence (Fig. 3). The encoder here is a deep ConvNet that converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN similar to the ones used for machine translation and neural language modelling. There has been a surge of interest in such systems recently (see examples mentioned in ref. 86). RNNs, once unfolded in time (Fig. 5), can be seen as very deep feedforward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long78. To correct for that, one idea is to augment the network with an explicit memory. The first proposal of this kind is the long short-term memory (LSTM) networks that use special hidden units, the natural behaviour of which is to remember inputs for a long time79. A special unit called the memory cell acts like an accumulator or a gated leaky neuron: it has a connection to itself at the next time step that has a weight of one, so it copies its own real-valued state and accumulates the external signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear the content of the memory. LSTM networks have subsequently proved to be more effective than conventional RNNs, especially when they have several layers for each time step87, enabling an entire speech recognition system that goes all the way from acoustics to the sequence of characters in the transcription. LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks that perform so well at machine translation17, 72, 76. Over the past year, several authors have made different proposals to augment RNNs with a memory module. Proposals include the Neural Turing Machine in which the network is augmented by a 'tape-like' memory that the RNN can choose to read from or write to88, and memory networks, in which a regular network is augmented by a kind of associative memory89. Memory networks have yielded excellent performance on standard question-answering benchmarks. The memory is used to remember the story about which the network is later asked to answer questions. Beyond simple memorization, neural Turing machines and memory networks are being used for tasks that would normally require reasoning and symbol manipulation. Neural Turing machines can be taught 'algorithms'. Among other things, they can learn to output a sorted list of symbols when their input consists of an unsorted sequence in which each symbol is accompanied by a real value that indicates its priority in the list88. Memory networks can be trained to keep track of the state of the world in a setting similar to a text adventure game and after reading a story, they can answer questions that require complex inference90. In one test example, the network is shown a 15-sentence version of the The Lord of the Rings and correctly answers questions such as “where is Frodo now?”89. Unsupervised learning91, 92, 93, 94, 95, 96, 97, 98 had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. Although we have not focused on it in this Review, we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object. Human vision is an active process that sequentially samples the optic array in an intelligent, task-specific way using a small, high-resolution fovea with a large, low-resolution surround. We expect much of the future progress in vision to come from systems that are trained end-to-end and combine ConvNets with RNNs that use reinforcement learning to decide where to look. Systems combining deep learning and reinforcement learning are in their infancy, but they already outperform passive vision systems99 at classification tasks and produce impressive results in learning to play many different video games100. Natural language understanding is another area in which deep learning is poised to make a large impact over the next few years. We expect systems that use RNNs to understand sentences or whole documents will become much better when they learn strategies for selectively attending to one part at a time76, 86. Ultimately, major progress in artificial intelligence will come about through systems that combine representation learning with complex reasoning. Although deep learning and simple reasoning have been used for speech and handwriting recognition for a long time, new paradigms are needed to replace rule-based manipulation of symbolic expressions by operations on large vectors101. Download references The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute For Advanced Research (CIFAR), the National Science Foundation and Office of Naval Research for support. Y.L. and Y.B. are CIFAR fellows. Reprints and permissions information is available at www.nature.com/reprints.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.
Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries. With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulati...
Sparse Communication for Distributed Gradient Descent. We make distributed stochastic gradient descent faster by exchanging sparse updates instead of dense updates. Gradient updates are positively skewed as most updates are near zero, so we map the 99% smallest updates (by absolute value) to zero then exchange sparse matrices. This method can be combined with quantization to further improve the compression. We explore different configurations and apply them to neural machine translation and MNIST image classification tasks. Most configurations work on MNIST, whereas different configurations reduce convergence rate on the more complex translation task. Our experiments show that we can achieve up to 49% speed up on MNIST and 22% on NMT without damaging the final accuracy or BLEU.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.068889
0.073333
0.073333
0.073333
0.073333
0.073333
0.066667
0.04
0.001705
0
0
0
0
0
Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.
Privacy Enabled Digital Rights Management Without Trusted Third Party Assumption Digital rights management systems are required to provide security and accountability without violating the privacy of the entities involved. However, achieving privacy along with accountability in the same framework is hard as these attributes are mutually contradictory. Thus, most of the current digital rights management systems rely on trusted third parties to provide privacy to the entities involved. However, a trusted third party can become malicious and break the privacy protection of the entities in the system. Hence, in this paper, we propose a novel privacy preserving content distribution mechanism for digital rights management without relying on the trusted third party assumption. We use simple primitives such as blind decryption and one way hash chain to avoid the trusted third party assumption. We prove that our scheme is not prone to the “oracle problem” of the blind decryption mechanism. The proposed mechanism supports access control without degrading user's privacy as well as allows revocation of even malicious users without violating their privacy.
An efficient conditionally anonymous ring signature in the random oracle model A conditionally anonymous ring signature is an exception since the anonymity is conditional. Specifically, it allows an entity to confirm/refute the signature that he generated before. A group signature also shares the same property since a group manager can revoke a signer's anonymity using the trapdoor information. However, the special node (i.e., group manager) does not exist in the group in order to satisfy the ad hoc fashion. In this paper, we construct a new conditionally anonymous ring signature, in which the actual signer can be traced without the help of the group manager. The big advantage of the confirmation and disavowal protocols designed by us are non-interactive with constant costs while the known schemes suffer from the linear cost in terms of the ring size n or security parameter s.
Threats to Networking Cloud and Edge Datacenters in the Internet of Things. Several application domains are collecting data using Internet of Things sensing devices and shipping it to remote cloud datacenters for analysis (fusion, storage, and processing). Data analytics activities raise a new set of technical challenges from the perspective of ensuring end-to-end security and privacy of data as it travels from an edge datacenter (EDC) to a cloud datacenter (CDC) (or vice...
Performance Analysis of the Raft Consensus Algorithm for Private Blockchains Consensus is one of the key problems in blockchains. There are many articles analyzing the performance of threat models for blockchains. But the network stability seems lack of attention, which in fact affects the blockchain performance. This paper studies the performance of a well adopted consensus algorithm, Raft, in networks with non-negligible packet loss rate. In particular, we propose a simple but accurate analytical model to analyze the distributed network split probability. At a given time, we explicitly present the network split probability as a function of the network size, the packet loss rate, and the election timeout period. To validate our analysis, we implement a Raft simulator and the simulation results coincide with the analytical results. With the proposed model, one can predict the network split time and probability in theory and optimize the parameters in Raft consensus algorithm.
A Blockchain-Based Scheme For Privacy-Preserving And Secure Sharing Of Medical Data How to alleviate the contradiction between the patient's privacy and the research or com-mercial demands of health data has become the challenging problem of intelligent medical system with the exponential increase of medical data. In this paper, a blockchainbased privacy-preserving scheme is proposed, which realizes secure sharing of medical data between several entities involved patients, research institutions and semi-trusted cloud servers. And meanwhile, it achieves the data availability and consistency between patients and research institutions, where zero-knowledge proof is employed to verify whether the patient's medical data meets the specific requirements proposed by research institutions without revealing patients' privacy, and then the proxy re-encryption technology is adopted to ensure that research institutions can decrypt the intermediary ciphertext. In addition, this proposal can execute distributed consensus based on PBFT algorithm for transactions between patients and research institutions according to the prearranged terms. Theoretical analysis shows the proposed scheme can satisfy security and privacy requirements such as confidentiality, integrity and availability, as well as performance evaluation demonstrates it is feasible and efficient in contrast with other typical schemes. (C) 2020 Elsevier Ltd. All rights reserved.
Chaos-Based Content Distribution Framework for Digital Rights Management System Multimedia contents are digitally utilized these days. Thus, the development of an effective method to access the content is becoming the topmost priority of the entertainment industry to protect the digital content from unauthorized access. Digital rights management (DRM) systems are the technique that makes digital content accessible only to the legal rights holders. As the Internet of Things environment is used in the distribution and access of digital content, a secure and efficient content delivery mechanism is also required. Keeping the focus on these points, this article proposes a content distribution framework for DRM system using chaotic map. Formal security verification under the random oracle model, which uncovers the proposed protocol's capability to resist the critical attacks is given. Moreover, simulation study for security verification is performed using the broadly accepted “automated validation of Internet security protocols and applications,” which indicates that the protocol is safe. Moreover, the detailed comparative study with related protocols demonstrates that it provides better security and improves the computational and communication efficiency.
Constrained Kalman filtering for indoor localization of transport vehicles using floor-installed HF RFID transponders Localization of transport vehicles is an important issue for many intralogistics applications. The paper presents an inexpensive solution for indoor localization of vehicles. Global localization is realized by detection of RFID transponders, which are integrated in the floor. The paper presents a novel algorithm for fusing RFID readings with odometry using Constraint Kalman filtering. The paper presents experimental results with a Mecanum based omnidirectional vehicle on a NaviFloor® installation, which includes passive HF RFID transponders. The experiments show that the proposed Constraint Kalman filter provides a similar localization accuracy compared to a Particle filter but with much lower computational expense.
Constrained Multiobjective Optimization for IoT-Enabled Computation Offloading in Collaborative Edge and Cloud Computing Internet-of-Things (IoT) applications are becoming more resource-hungry and latency-sensitive, which are severely constrained by limited resources of current mobile hardware. Mobile cloud computing (MCC) can provide abundant computation resources, while mobile-edge computing (MEC) aims to reduce the transmission latency by offloading complex tasks from IoT devices to nearby edge servers. It is sti...
MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition Decomposition is a basic strategy in traditional multiobjective optimization. However, it has not yet been widely used in multiobjective evolutionary optimization. This paper proposes a multiobjective evolutionary algorithm based on decomposition (MOEA/D). It decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Each subproblem is optimized by only using information from its several neighboring subproblems, which makes MOEA/D have lower computational complexity at each generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjective optimization problems. It has been shown that MOEA/D using objective normalization can deal with disparately-scaled objectives, and MOEA/D with an advanced decomposition method can generate a set of very evenly distributed solutions for 3-objective test instances. The ability of MOEA/D with small population, the scalability and sensitivity of MOEA/D have also been experimentally investigated in this paper.
A Model for Understanding How Virtual Reality Aids Complex Conceptual Learning Designers and evaluators of immersive virtual reality systems have many ideas concerning how virtual reality can facilitate learning. However, we have little information concerning which of virtual reality's features provide the most leverage for enhancing understanding or how to customize those affordances for different learning environments. In part, this reflects the truly complex nature of learning. Features of a learning environment do not act in isolation; other factors such as the concepts or skills to be learned, individual characteristics, the learning experience, and the interaction experience all play a role in shaping the learning process and its outcomes. Through Project Science Space, we have been trying to identify, use, and evaluate immersive virtual reality's affordances as a means to facilitate the mastery of complex, abstract concepts. In doing so, we are beginning to understand the interplay between virtual reality's features and other important factors in shaping the learning process and learning outcomes for this type of material. In this paper, we present a general model that describes how we think these factors work together and discuss some of the lessons we are learning about virtual reality's affordances in the context of this model for complex conceptual learning.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications This paper investigates the problem of fault detection filter design for discrete-time polynomial fuzzy systems with faults and unknown disturbances. The frequency ranges of the faults and the disturbances are assumed to be known beforehand and to reside in low, middle or high frequency ranges. Thus, the proposed filter is designed in the finite frequency range to overcome the conservatism generated by those designed in the full frequency domain. Being of polynomial fuzzy structure, the proposed filter combines the H−/H∞ performances in order to ensure the best robustness to the disturbance and the best sensitivity to the fault. Design conditions are derived in Sum Of Squares formulations that can be easily solved via available software tools. Two illustrative examples are introduced to demonstrate the effectiveness of the proposed method and a comparative study with LMI method is also provided.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.2
0.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
Weakly Supervised Joint Sentiment-Topic Detection from Text Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Twitter in academic events: A study of temporal usage, communication, sentimental and topical patterns in 16 Computer Science conferences •Analysis of Twitter on 16 CS conferences over five years.•Over time, users increase informational use and decrease conversational usage.•LDA allows conference clustering, unveiling shared areas of interest.•Sentiment analysis exposes differences between research communities.•Model of user participation explains the importance of different social features.
A space-time visualization analysis method for taxi operation in Beijing Traffic phenomena are associated with a complex dynamic behavior of spatiotemporal traffic patterns. It is possible to understand the features of real traffic by a spatiotemporal analysis approach for real measured traffic data. In this paper, a space-time visualization analysis method is designed and carried out for taxi spatiotemporal dataset from Beijing floating car data acquisition system and Beijing GIS data. Through this method, large-amount taxi GPS data is processed and the spatial-temporal trajectory is analyzed. And then taxi daily operation time, operating range and residence location of individual driver, vehicle operation and rest periods and other indicators are calculated, which are important characteristic parameters of Beijing Taxi Operations. In sum, continuous, comprehensive, and dynamic analysis information for monitoring taxi operation status can be acquired through the method. These information can provide the decision basis for city taxi operation management, and help to improve the city taxi operation management level. A spatial visualization analysis method for taxi is designed and carried out.The residence location of driver, vehicle operation and rest periods are counted.The results show that most drivers lack enough time to relax.The distribution of taxi driver's working location are counted and summed.The result show that many taxi drivers have a operation psychological space.
Examining user perceptions of smartwatch through dynamic topic modeling. •This study investigates user opinions for the smartwatch through the dynamic topic modeling on Reddit.•User perceptions on the functional properties of smartwatch are investigated from the remediation perspective.•Based on the analysis results, suggestions for the future of smartwatch are discussed.
Taxi Drivers' Cruising Patterns - Insights from Taxi GPS Traces. In this paper, we seek to identify the different impacts of external and internal information on taxis&#39; cruising behaviors and to find effective methods to enhance taxis&#39; cruising efficiency. Through global positioning system trajectory data collected in Shenzhen, China, we determine the impacts of external factors (land use, traffic conditions, and road grade) and internal factors (previous pick-...
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
JPEG Error Analysis and Its Applications to Digital Image Forensics JPEG is one of the most extensively used image formats. Understanding the inherent characteristics of JPEG may play a useful role in digital image forensics. In this paper, we introduce JPEG error analysis to the study of image forensics. The main errors of JPEG include quantization, rounding, and truncation errors. Through theoretically analyzing the effects of these errors on single and double JPEG compression, we have developed three novel schemes for image forensics including identifying whether a bitmap image has previously been JPEG compressed, estimating the quantization steps of a JPEG image, and detecting the quantization table of a JPEG image. Extensive experimental results show that our new methods significantly outperform existing techniques especially for the images of small sizes. We also show that the new method can reliably detect JPEG image blocks which are as small as 8 × 8 pixels and compressed with quality factors as high as 98. This performance is important for analyzing and locating small tampered regions within a composite image.
Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.
Efficient Signature Generation by Smart Cards We present a new public-key signature scheme and a corresponding authentication scheme that are based on discrete logarithms in a subgroup of units in Zp where p is a sufficiently large prime, e.g., p = 2512. A key idea is to use for the base of the discrete logarithm an integer a in Zp such that the order of a is a sufficiently large prime q, e.g., q = 2140. In this way we improve the ElGamal signature scheme in the speed of the procedures for the generation and the verification of signatures and also in the bit length of signatures. We present an efficient algorithm that preprocesses the exponentiation of a random residue modulo p.
Stabilizing a linear system by switching control with dwell time The use of networks in control systems to connect controllers and sensors/actuators has become common practice in many applications. This new technology has also posed a theoretical control problem of how to use the limited data rate of the network effectively. We consider a system where its sensor and actuator are connected by a finite data rate channel. A design method to stabilize a continuous-time, linear plant using a switching controller is proposed. In particular, to prevent the actuator from fast switching, or chattering, which can not only increase the necessary data rate but also damage the system, we employ a dwell-time switching scheme. It is shown that a systematic partition of the state-space enables us to reduce the complexity of the design problem
Empirical Modelling of Genetic Algorithms This paper addresses the problem of reliably setting genetic algorithm parameters for consistent labelling problems. Genetic algorithm parameters are notoriously difficult to determine. This paper proposes a robust empirical framework, based on the analysis of factorial experiments. The use of a graeco-latin square permits an initial study of a wide range of parameter settings. This is followed by fully crossed factorial experiments with narrower ranges, which allow detailed analysis by logistic regression. The empirical models derived can be used to determine optimal algorithm parameters and to shed light on interactions between the parameters and their relative importance. Re-fined models are produced, which are shown to be robust under extrapolation to up to triple the problem size.
Beamforming for MISO Interference Channels with QoS and RF Energy Transfer We consider a multiuser multiple-input single-output interference channel where the receivers are characterized by both quality-of-service (QoS) and radio-frequency (RF) energy harvesting (EH) constraints. We consider the power splitting RF-EH technique where each receiver divides the received signal into two parts a) for information decoding and b) for battery charging. The minimum required power that supports both the QoS and the RF-EH constraints is formulated as an optimization problem that incorporates the transmitted power and the beamforming design at each transmitter as well as the power splitting ratio at each receiver. We consider both the cases of fixed beamforming and when the beamforming design is incorporated into the optimization problem. For fixed beamforming we study three standard beamforming schemes, the zero-forcing (ZF), the regularized zero-forcing (RZF) and the maximum ratio transmission (MRT); a hybrid scheme, MRT-ZF, comprised of a linear combination of MRT and ZF beamforming is also examined. The optimal solution for ZF beamforming is derived in closed-form, while optimization algorithms based on second-order cone programming are developed for MRT, RZF and MRT-ZF beamforming to solve the problem. In addition, the joint-optimization of beamforming and power allocation is studied using semidefinite programming (SDP) with the aid of rank relaxation.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
0
0
Distributed Channel Selection in Time-Varying Radio Environment: Interference Mitigation Game With Uncoupled Stochastic Learning This paper investigates the problem of distributed channel selection for interference mitigation in a time-varying radio environment without information exchange. Most existing algorithms, which were originally designed for static channels, are costly and inefficient in the presence of time-varying channels. First, we formulate this problem as a noncooperative game, in which the utility of each player is defined as a function of its experienced expected weighted interference. This game is proven to be an exact potential game with the considered network utility (the expected weighted aggregate interference) serving as the potential function. However, most game-theoretic algorithms are not suitable for the considered network, since they are coupled, i.e., the updating procedure is relying on the actions or payoffs of other players. Then, we propose a simple, completely distributed, and uncoupled stochastic learning algorithm, with which the users learn the desirable channel selections from their individual trial-payoff history. It is analytically shown that the proposed algorithm converges to pure strategy Nash equilibrium in time-varying radio environment; moreover, it achieves optimal channel selection profiles and makes the network interference-free for underloaded or equally loaded scenarios, while achieving, on average, near-optimal performance for overloaded scenarios.
Stochastic Power Adaptation with Multiagent Reinforcement Learning for Cognitive Wireless Mesh Networks As the scarce spectrum resource is becoming overcrowded, cognitive radio indicates great flexibility to improve the spectrum efficiency by opportunistically accessing the authorized frequency bands. One of the critical challenges for operating such radios in a network is how to efficiently allocate transmission powers and frequency resource among the secondary users (SUs) while satisfying the quality-of-service constraints of the primary users. In this paper, we focus on the noncooperative power allocation problem in cognitive wireless mesh networks formed by a number of clusters with the consideration of energy efficiency. Due to the SUs' dynamic and spontaneous properties, the problem is modeled as a stochastic learning process. We first extend the single-agent $(Q)$-learning to a multiuser context, and then propose a conjecture-based multiagent $(Q)$-learning algorithm to achieve the optimal transmission strategies with only private and incomplete information. An intelligent SU performs $(Q)$-function updates based on the conjecture over the other SUs' stochastic behaviors. This learning algorithm provably converges given certain restrictions that arise during the learning procedure. Simulation experiments are used to verify the performance of our algorithm and demonstrate its effectiveness of improving the energy efficiency.
Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey. This paper presents a comprehensive literature review on applications of economic and pricing theory for resource management in the evolving fifth generation (5G) wireless networks. The 5G wireless networks are envisioned to overcome existing limitations of cellular networks in terms of data rate, capacity, latency, energy efficiency, spectrum efficiency, coverage, reliability, and cost per information transfer. To achieve the goals, the 5G systems will adopt emerging technologies such as massive multiple-input multiple-output, mmWave communications, and dense heterogeneous networks. However, 5G involves multiple entities and stakeholders that may have different objectives, e.g., high data rate, low latency, utility maximization, and revenue/profit maximization. This poses a number of challenges to resource management designs of 5G. While the traditional solutions may neither efficient nor applicable, economic and pricing models have been recently developed and adopted as useful tools to achieve the objectives. In this paper, we review economic and pricing approaches proposed to address resource management issues in the 5G wireless networks including user association, spectrum allocation, and interference and power management. Furthermore, we present applications of economic and pricing models for wireless caching and mobile data offloading. Finally, we highlight important challenges, open issues and future research directions of applying economic and pricing models to the 5G wireless networks.
Effective Capacity in Wireless Networks: A Comprehensive Survey. Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks, such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications, such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization.
A hierarchical learning approach to anti-jamming channel selection strategies. This paper investigates the channel selection problem for anti-jamming defense in an adversarial environment. In our work, we simultaneously consider malicious jamming and co-channel interference among users, and formulate this anti-jamming defense problem as a Stackelberg game with one leader and multiple followers. Specifically, the users and jammer independently and selfishly select their respective optimal strategies and obtain the optimal channels based on their own utilities. To derive the Stackelberg Equilibrium, a hierarchical learning framework is formulated, and a hierarchical learning algorithm (HLA) is proposed. In addition, the convergence performance of the proposed HLA algorithm is analyzed. Finally, we present simulation results to validate the effectiveness of the proposed algorithm.
Pricing-Based Channel Selection for D2D Content Sharing in Dynamic Environment In order to make device-to-device (D2D) content sharing give full play to its advantage of improving local area services, one of the important issues is to decide the channels that D2D pairs occupy. Most existing works study this issue in static environment, and ignore the guidance for D2D pairs to select the channel adaptively. In this paper, we investigate this issue in dynamic environment where...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Very Deep Convolutional Networks for Large-Scale Image Recognition. In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Chimp optimization algorithm. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
Space-time modeling of traffic flow. This paper discusses the application of space-time autoregressive integrated moving average (STARIMA) methodology for representing traffic flow patterns. Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Important spatial characteristics of the space-time process are incorporated in the STARIMA model through the use of weighting matrices estimated on the basis of the distances among the various locations where data are collected. These matrices distinguish the space-time approach from the vector autoregressive moving average (VARMA) methodology and enable the model builders to control the number of the parameters that have to be estimated. The proposed models can be used for short-term forecasting of space-time stationary traffic-flow processes and for assessing the impact of traffic-flow changes on other parts of the network. The three-stage iterative space-time model building procedure is illustrated using 7.5min average traffic flow data for a set of 25 loop-detectors located at roads that direct to the centre of the city of Athens, Greece. Data for two months with different traffic-flow characteristics are modelled in order to determine the stability of the parameter estimation.
A simplified dual neural network for quadratic programming with its KWTA application. The design, analysis, and application of a new recurrent neural network for quadratic programming, called simplified dual neural network, are discussed. The analysis mainly concentrates on the convergence property and the computational complexity of the neural network. The simplified dual neural network is shown to be globally convergent to the exact optimal solution. The complexity of the neural network architecture is reduced with the number of neurons equal to the number of inequality constraints. Its application to k-winners-take-all (KWTA) operation is discussed to demonstrate how to solve problems with this neural network.
G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. In this paper, to remedy the joint-angle drift phenomenon for manipulation of two redundant robot arms, a novel scheme for simultaneous repetitive motion planning and control (SRMPC) at the joint-acceleration level is proposed, which consists of two subschemes. To do so, the performance index of each SRMPC subscheme is derived and designed by employing the gradient dynamics twice, of which a convergence theorem and its proof are presented. In addition, for improving the accuracy of the motion planning and control, position error, and velocity, error feedbacks are incorporated into the forward kinematics equation and analyzed via Zhang neural-dynamics method. Then the two subschemes are simultaneously reformulated as two quadratic programs (QPs), which are finally unified into one QP problem. Furthermore, a piecewise-linear projection equation-based neural network (PLPENN) is used to solve the unified QP problem, which can handle the strictly convex QP problem in an inverse-free manner. More importantly, via such a unified QP formulation and the corresponding PLPENN solver, the synchronism of two redundant robot arms is guaranteed. Finally, two given tasks are fulfilled by 2 three-link and 2 five-link planar robot arms, respectively. Computer-simulation results validate the efficacy and accuracy of the SRMPC scheme and the corresponding PLPENN solver for synchronous manipulation of two redundant robot arms.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.084444
0.066667
0.066667
0.066667
0.066667
0.066667
0
0
0
0
0
0
0
0
A Survey and Analysis of Mobility Models for Airborne Networks Mobility models serve as the foundation for evaluating and designing airborne networks (ANs). Due to the significant impact of mobility models on the networking performance, the mobility models must realistically capture the attributes of ANs. In this paper, we present a comprehensive survey and comparative analysis of mobility models that are either adapted to or developed for AN evaluation purposes. We evaluate these mobility models based on the following metrics: adaptability, networking performance, and ability to realistically capture the mobility attributes of ANs (including high mobility, mechanical and aerodynamic constraint, and safety requirements). To provide a deeper understanding and facilitate the selection and configuration of these mobility models, we also evaluate them based on randomness levels and associated applications.
Mobility in wireless sensor networks - Survey and proposal. Targeting an increasing number of potential application domains, wireless sensor networks (WSN) have been the subject of intense research, in an attempt to optimize their performance while guaranteeing reliability in highly demanding scenarios. However, hardware constraints have limited their application, and real deployments have demonstrated that WSNs have difficulties in coping with complex communication tasks – such as mobility – in addition to application-related tasks. Mobility support in WSNs is crucial for a very high percentage of application scenarios and, most notably, for the Internet of Things. It is, thus, important to know the existing solutions for mobility in WSNs, identifying their main characteristics and limitations. With this in mind, we firstly present a survey of models for mobility support in WSNs. We then present the Network of Proxies (NoP) assisted mobility proposal, which relieves resource-constrained WSN nodes from the heavy procedures inherent to mobility management. The presented proposal was implemented and evaluated in a real platform, demonstrating not only its advantages over conventional solutions, but also its very good performance in the simultaneous handling of several mobile nodes, leading to high handoff success rate and low handoff time.
Tag-based cooperative data gathering and energy recharging in wide area RFID sensor networks The Wireless Identification and Sensing Platform (WISP) conjugates the identification potential of the RFID technology and the sensing and computing capability of the wireless sensors. Practical issues, such as the need of periodically recharging WISPs, challenge the effective deployment of large-scale RFID sensor networks (RSNs) consisting of RFID readers and WISP nodes. In this view, the paper proposes cooperative solutions to energize the WISP devices in a wide-area sensing network while reducing the data collection delay. The main novelty is the fact that both data transmissions and energy transfer are based on the RFID technology only: RFID mobile readers gather data from the WISP devices, wirelessly recharge them, and mutually cooperate to reduce the data delivery delay to the sink. Communication between mobile readers relies on two proposed solutions: a tag-based relay scheme, where RFID tags are exploited to temporarily store sensed data at pre-determined contact points between the readers; and a tag-based data channel scheme, where the WISPs are used as a virtual communication channel for real time data transfer between the readers. Both solutions require: (i) clustering the WISP nodes; (ii) dimensioning the number of required RFID mobile readers; (iii) planning the tour of the readers under the energy and time constraints of the nodes. A simulative analysis demonstrates the effectiveness of the proposed solutions when compared to non-cooperative approaches. Differently from classic schemes in the literature, the solutions proposed in this paper better cope with scalability issues, which is of utmost importance for wide area networks.
Improving charging capacity for wireless sensor networks by deploying one mobile vehicle with multiple removable chargers. Wireless energy transfer is a promising technology to prolong the lifetime of wireless sensor networks (WSNs), by employing charging vehicles to replenish energy to lifetime-critical sensors. Existing studies on sensor charging assumed that one or multiple charging vehicles being deployed. Such an assumption may have its limitation for a real sensor network. On one hand, it usually is insufficient to employ just one vehicle to charge many sensors in a large-scale sensor network due to the limited charging capacity of the vehicle or energy expirations of some sensors prior to the arrival of the charging vehicle. On the other hand, although the employment of multiple vehicles can significantly improve the charging capability, it is too costly in terms of the initial investment and maintenance costs on these vehicles. In this paper, we propose a novel charging model that a charging vehicle can carry multiple low-cost removable chargers and each charger is powered by a portable high-volume battery. When there are energy-critical sensors to be charged, the vehicle can carry the chargers to charge multiple sensors simultaneously, by placing one portable charger in the vicinity of one sensor. Under this novel charging model, we study the scheduling problem of the charging vehicle so that both the dead duration of sensors and the total travel distance of the mobile vehicle per tour are minimized. Since this problem is NP-hard, we instead propose a (3+ϵ)-approximation algorithm if the residual lifetime of each sensor can be ignored; otherwise, we devise a novel heuristic algorithm, where ϵ is a given constant with 0 < ϵ ≤ 1. Finally, we evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the performance of the proposed algorithms are very promising.
Speed control of mobile chargers serving wireless rechargeable networks. Wireless rechargeable networks have attracted increasing research attention in recent years. For charging service, a mobile charger is often employed to move across the network and charge all network nodes. To reduce the charging completion time, most existing works have used the “move-then-charge” model where the charger first moves to specific spots and then starts charging nodes nearby. As a result, these works often aim to reduce the moving delay or charging delay at the spots. However, the charging opportunity on the move is largely overlooked because the charger can charge network nodes while moving, which as we analyze in this paper, has the potential to greatly reduce the charging completion time. The major challenge to exploit the charging opportunity is the setting of the moving speed of the charger. When the charger moves slow, the charging delay will be reduced (more energy will be charged during the movement) but the moving delay will increase. To deal with this challenge, we formulate the problem of delay minimization as a Traveling Salesman Problem with Speed Variations (TSP-SV) which jointly considers both charging and moving delay. We further solve the problem using linear programming to generate (1) the moving path of the charger, (2) the moving speed variations on the path and (3) the stay time at each charging spot. We also discuss possible ways to reduce the calculation complexity. Extensive simulation experiments are conducted to study the delay performance under various scenarios. The results demonstrate that our proposed method achieves much less completion time compared to the state-of-the-art work.
A Prediction-Based Charging Policy and Interference Mitigation Approach in the Wireless Powered Internet of Things The Internet of Things (IoT) technology has recently drawn more attention due to its ability to achieve the interconnections of massive physic devices. However, how to provide a reliable power supply to energy-constrained devices and improve the energy efficiency in the wireless powered IoT (WP-IoT) is a twofold challenge. In this paper, we develop a novel wireless power transmission (WPT) system, where an unmanned aerial vehicle (UAV) equipped with radio frequency energy transmitter charges the IoT devices. A machine learning framework of echo state networks together with an improved <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula> -means clustering algorithm is used to predict the energy consumption and cluster all the sensor nodes at the next period, thus automatically determining the charging strategy. The energy obtained from the UAV by WPT supports the IoT devices to communicate with each other. In order to improve the energy efficiency of the WP-IoT system, the interference mitigation problem is modeled as a mean field game, where an optimal power control policy is presented to adapt and analyze the large number of sensor nodes randomly deployed in WP-IoT. The numerical results verify that our proposed dynamic charging policy effectively reduces the data packet loss rate, and that the optimal power control policy greatly mitigates the interference, and improve the energy efficiency of the whole network.
Design of Self-sustainable Wireless Sensor Networks with Energy Harvesting and Wireless Charging AbstractEnergy provisioning plays a key role in the sustainable operations of Wireless Sensor Networks (WSNs). Recent efforts deploy multi-source energy harvesting sensors to utilize ambient energy. Meanwhile, wireless charging is a reliable energy source not affected by spatial-temporal ambient dynamics. This article integrates multiple energy provisioning strategies and adaptive adjustment to accomplish self-sustainability under complex weather conditions. We design and optimize a three-tier framework with the first two tiers focusing on the planning problems of sensors with various types and distributed energy storage powered by environmental energy. Then we schedule the Mobile Chargers (MC) between different charging activities and propose an efficient, 4-factor approximation algorithm. Finally, we adaptively adjust the algorithms to capture real-time energy profiles and jointly optimize those correlated modules. Our extensive simulations demonstrate significant improvement of network lifetime (\(\)), increase of harvested energy (15%), reduction of network cost (30%), and the charging capability of MC by 100%.
Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects The rechargeable battery is the conventional power source for mobile devices. However, limited battery capacity and frequent recharging requires further research to find new ways to deliver power without the hassle of connecting cables. Novel wireless power supply methods, such as energy harvesting and wireless power transfer, are currently receiving considerable attention. In this article, an overview of recent advances in wireless power supply is provided, and several promising applications are presented to show the future trends. In addition, to efficiently schedule the harvested energy, an energy scheduling scheme in the EH-powered D2D relay network is proposed as a case study. To be specific, we first formulate an optimization problem for energy scheduling, and then propose a modified two stage directional water filling algorithm to resolve it.
Clustering and Splitting Charging Algorithms for Large Scaled Wireless Rechargeable Sensor Networks Merging and clustering charging algorithms named HCCA and HCCA-TS are proposed for WRSN.HCCA combines K-means clustering and hierarchical clustering for enhancing charging efficiency.HCCA-TS optimizes the performance of HCCA from a task splitting view. As the interdiscipline of wireless communication and control engineering, the periodical charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. However, existing techniques for periodical charging neglect to focus on the location relationship and topological feature, leading to large charging times and long traveling time. In this paper, we develop a hybrid clustering charging algorithm (HCCA), which firstly constructs a network backbone based on a minimum connected dominating set built from the given network. Next, a hierarchical clustering algorithm which takes advantage of location relationship, is proposed to group nodes into clusters. Afterward, a K-means clustering algorithm is implemented to calculate the energy core set for realizing energy awareness. To further optimize the performance of HCCA, HCCA-TS is proposed to transform the energy charging process into a task splitting model. Tasks generated from HCCA are split into small tasks, which aim at reducing the charging time to enhance the charging efficiency. At last, simulations are carried out to demonstrate the merit of the schemes. Simulation results indicate that HCCA can enhance the performance in terms of reducing charging times, journey time and average charging time simultaneously. Moreover, HCCA-TS can further improve the performance of HCCA.
Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users move away from their serving edge clouds. To address this issue, this article investigates microservice coordination among edge clouds to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel conditions and edge cloud's computation capabilities required, which is hard to be obtained. Therefore, we reformulate the microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e., the Telecom's base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the achieved performance is close to the optimal performance obtained by the offline algorithm.
Robust State-Dependent Switching of Linear Systems With Dwell Time. A state-dependent switching law that obeys a dwell time constraint and guarantees the stability of a switched linear system is designed. Sufficient conditions are obtained for the stability of the switched systems when the switching law is applied in presence of polytopic type parameter uncertainty. A Lyapunov function, in quadratic form, is assigned to each subsystem such that it is non-increasing at the switching instants. During the dwell time, this function varies piecewise linearly in time. After the dwell, the system switches if the switching results in a decrease in the value of the LF. The method proposed is also applicable to robust stabilization via state-feedback. It is further extended to guarantee a bound on the L 2 -gain of the switching system; it is also used in deriving state-feedback control law that robustly achieves a prescribed L 2 -gain bound.
Very High Force Hydraulic McKibben Artificial Muscle with a p-Phenylene-2, 6-benzobisoxazole Cord Sleeve Small and lightweight actuators that generate high force and high energy are strongly required for realizing powerful robots and tools. By applying ultra-high-strength p-phenylene-2,6-benzobisoxazole fiber sleeves to McKibben artificial muscles, new hydraulic artificial muscles have been developed. While conventional McKibben muscles are driven by a maximum pneumatic pressure of 0.7 MPa, the newly developed muscles are driven by a maximum water hydraulic of pressure of 4 MPa, resulting in very high force capability. This paper presents the materials and structure of the new artificial muscle and the experimental results. The developed muscles are evaluated by four parameters - force density per volume (FDV), force density per mass (FDM), energy density per volume (EDV) and energy density per mass (EDM) - for comparisons with other conventional linear actuators. The prototype artificial muscle, which is 40 mm in diameter and 700 mm in length, can achieve a maximum contracting force of 28 kN, FDV of 32.3 x 10(-3) N/mm(3), FDM of 9.44 x 10(3) N/kg, EDV of 2600 x 10(-3) J/mm(3) and EDM of 762 x 10(3) J/kg. These values are 1.7 to 33 times larger than those of the typical conventional actuators. As the result, a high force artificial muscle of 40 mm in diameter that generates 28-kN contracting force has been developed successfully. (C) Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2010
Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams. Smart grids equipped with bi-directional communication flow are expected to provide more sophisticated consumption monitoring and energy trading. However, the issues related to the security and privacy of consumption and trading data present serious challenges. In this paper we address the problem of providing transaction security in decentralized smart grid energy trading without reliance on trus...
Stochastic QoE-aware optimization of multisource multimedia content delivery for mobile cloud The increasing popularity of mobile video streaming in wireless networks has stimulated growing demands for efficient video streaming services. However, due to the time-varying throughput and user mobility, it is still difficult to provide high quality video services for mobile users. Our proposed optimization method considers key factors such as video quality, bitrate level, and quality variations to enhance quality of experience over wireless networks. The mobile network and device parameters are estimated in order to deliver the best quality video for the mobile user. We develop a rate adaptation algorithm using Lyapunov optimization for multi-source multimedia content delivery to minimize the video rate switches and provide higher video quality. The multi-source manager algorithm is developed to select the best stream based on the path quality for each path. The node joining and cluster head election mechanism update the node information. As the proposed approach selects the optimal path, it also achieves fairness and stability among clients. The quality of experience feature metrics like bitrate level, rebuffering events, and bitrate switch frequency are employed to assess video quality. We also employ objective video quality assessment methods like VQM, MS-SSIM, and SSIMplus for video quality measurement closer to human visual assessment. Numerical results show the effectiveness of the proposed method as compared to the existing state-of-the-art methods in providing quality of experience and bandwidth utilization.
1.072593
0.066667
0.066667
0.066667
0.066667
0.066667
0.066667
0.033333
0.007407
0
0
0
0
0
An integrated feature learning approach using deep learning for travel time prediction. •Integrated supervised & unsupervised algorithm is proposed for travel time prediction.•Feature enriching algorithms have been applied to increase feature learnability.•A SAE with dropout for extracting information and increasing robustness is developed.•A deep FF MLP for travel time prediction using encoded features have been developed.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer (MVO). The main inspirations of this algorithm are based on three concepts in cosmology: white hole, black hole, and wormhole. The mathematical models of these three concepts are developed to perform exploration, exploitation, and local search, respectively. The MVO algorithm is first benchmarked on 19 challenging test problems. It is then applied to five real engineering problems to further confirm its performance. To validate the results, MVO is compared with four well-known algorithms: Grey Wolf Optimizer, Particle Swarm Optimization, Genetic Algorithm, and Gravitational Search Algorithm. The results prove that the proposed algorithm is able to provide very competitive results and outperforms the best algorithms in the literature on the majority of the test beds. The results of the real case studies also demonstrate the potential of MVO in solving real problems with unknown search spaces. Note that the source codes of the proposed MVO algorithm are publicly available at http://www.alimirjalili.com/MVO.html.
Tabu search based multi-watermarks embedding algorithm with multiple description coding Digital watermarking is a useful solution for digital rights management systems, and it has been a popular research topic in the last decade. Most watermarking related literature focuses on how to resist deliberate attacks by applying benchmarks to watermarked media that assess the effectiveness of the watermarking algorithm. Only a few papers have concentrated on the error-resilient transmission of watermarked media. In this paper, we propose an innovative algorithm for vector quantization (VQ) based image watermarking, which is suitable for error-resilient transmission over noisy channels. By incorporating watermarking with multiple description coding (MDC), the scheme we propose to embed multiple watermarks can effectively overcome channel impairments while retaining the capability for copyright and ownership protection. In addition, we employ an optimization technique, called tabu search, to optimize both the watermarked image quality and the robustness of the extracted watermarks. We have obtained promising simulation results that demonstrate the utility and practicality of our algorithm. (C) 2011 Elsevier Inc. All rights reserved.
On Deployment of Wireless Sensors on 3-D Terrains to Maximize Sensing Coverage by Utilizing Cat Swarm Optimization With Wavelet Transform. In this paper, a deterministic sensor deployment method based on wavelet transform (WT) is proposed. It aims to maximize the quality of coverage of a wireless sensor network while deploying a minimum number of sensors on a 3-D surface. For this purpose, a probabilistic sensing model and Bresenham's line of sight algorithm are utilized. The WT is realized by an adaptive thresholding approach for the generation of the initial population. Another novel aspect of the paper is that the method followed utilizes a Cat Swarm Optimization (CSO) algorithm, which mimics the behavior of cats. We have modified the CSO algorithm so that it can be used for sensor deployment problems on 3-D terrains. The performance of the proposed algorithm is compared with the Delaunay Triangulation and Genetic Algorithm based methods. The results reveal that CSO based sensor deployment which utilizes the wavelet transform method is a powerful and successful method for sensor deployment on 3-D terrains.
FPGA-Based Parallel Metaheuristic PSO Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation This paper presents a field-programmable gate array (FPGA)-based parallel metaheuristic particle swarm optimization algorithm (PPSO) and its application to global path planning for autonomous robot navigating in structured environments with obstacles. This PPSO consists of three parallel PSOs along with a communication operator in one FPGA chip. The parallel computing architecture takes advantages of maintaining better population diversity and inhibiting premature convergence in comparison with conventional PSOs. The collision-free discontinuous path generated from the PPSO planner is then smoothed using the cubic B-spline and system-on-a-programmable-chip (SoPC) technology. Experimental results are conducted to show the merit of the proposed FPGA-based PPSO path planner and smoother for global path planning of autonomous mobile robot navigation.
QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): An enhanced structure for Differential Evolution Optimization demands are ubiquitous in science and engineering. The key point is that the approach to tackle a complex optimization problem should not itself be difficult. Differential Evolution (DE) is such a simple method, and it is arguably a very powerful stochastic real-parameter algorithm for single-objective optimization. However, the performance of DE is highly dependent on control parameters and mutation strategies. Both tuning the control parameters and selecting the proper mutation strategy are still tedious but important tasks for users. In this paper, we proposed an enhanced structure for DE algorithm with less control parameters to be tuned. The crossover rate control parameter Cr is replaced by an automatically generated evolution matrix and the control parameter F can be renewed in an adaptive manner during the whole evolution. Moreover, an enhanced mutation strategy with time stamp mechanism is advanced as well in this paper. CEC2013 test suite for real-parameter single objective optimization is employed in the verification of the proposed algorithm. Experiment results show that our proposed algorithm is competitive with several well-known DE variants.
A Parallel Multi-Verse Optimizer for Application in Multilevel Image Segmentation Multi-version optimizer (MVO) inspired by the multi-verse theory is a new optimization algorithm for challenging multiple parameter optimization problems in the real world. In this paper, a novel parallel multi-verse optimizer (PMVO) with the communication strategy is proposed. The parallel mechanism is implemented to randomly divide the initial solutions into several groups, and share the information of different groups after each fixed iteration. This can significantly promote the cooperation individual of MVO algorithm, and reduce the deficiencies that the original MVO is premature convergence, search stagnation and easily trap into local optimal search space. To confirm the performance of the proposed scheme, the PMVO algorithm was compared with the other well-known optimization algorithms, such as gray wolf optimizer (GWO), particle swarm optimization (PSO), multi-version optimizer (MVO), and parallel particle swarm optimization (PPSO) under CEC2013 test suite. The experimental results prove that the PMVO is superior to the other compared algorithms. In addition, PMVO is also applied to solve complex multilevel image segmentation problems based on minimum cross entropy thresholding. The application results appear that the proposed PMVO algorithm can achieve higher quality image segmentation compared to other similar algorithms.
Firefly algorithm, stochastic test functions and design optimisation Modern optimisation algorithms are often metaheuristic, and they are very promising in solving NP-hard optimisation problems. In this paper, we show how to use the recently developed firefly algorithm to solve non-linear design problems. For the standard pressure vessel design optimisation, the optimal solution found by FA is far better than the best solution obtained previously in the literature. In addition, we also propose a few new test functions with either singularity or stochastic components but with known global optimality and thus they can be used to validate new optimisation algorithms. Possible topics for further research are also discussed.
Fuzzy logic in control systems: fuzzy logic controller. I.
ImageNet Large Scale Visual Recognition Challenge. The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.
From template to image: reconstructing fingerprints from minutiae points. Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line Integral Convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint.
Adaptive Learning in Tracking Control Based on the Dual Critic Network Design. In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value funct...
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Adaptive fuzzy tracking control for switched uncertain strict-feedback nonlinear systems. •Adaptive tracking control for switched strict-feedback nonlinear systems is proposed.•The generalized fuzzy hyperbolic model is used to approximate nonlinear functions.•The designed controller has fewer design parameters comparing with existing methods.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.057622
0.05
0.05
0.05
0.05
0.05
0.009691
0.000064
0
0
0
0
0
0
A monarch butterfly optimization-based neural network simulator for prediction of siro-spun yarn tenacity Yarn tenacity directly affects the winding and knitting efficiency as well as warp and weft breakages during weaving process and therefore, is considered as the most important parameter to be controlled during yarn spinning process. Yarn tenacity is dependent on fiber properties and process parameters. Exploring the relationship between fiber properties, process parameters and yarn tenacity is very important to optimize the selection of raw materials and improve yarn quality. In this study, an efficient monarch butterfly optimization-based neural network simulator called MBONN was developed to predict the tenacity of siro-spun yarns from some process parameters and fiber properties. To this end, an experimental dataset was obtained with fiber fineness, yarn twist factor, yarn linear density and strand spacing as the input variables and yarn tenacity as the output parameter. In the proposed MBONN, a monarch butterfly optimization algorithm is applied as a global search method to evolve weights of a multilayer perception (MLP) neural network. The prediction accuracy of the MBONN was compared with that of a MLP neural network trained with back propagation algorithm, MLP neural network trained with genetic algorithms and linear regression model. The results indicated that the prediction accuracy of the proposed MBONN is statistically superior to that of other models. The effect of fiber fineness, yarn linear density, twist factor and strand spacing on yarn tenacity was investigated using the proposed MBONN. Additionally, the observed trends in variation of yarn tenacity with fiber and process parameters were discussed with reference to the yarn internal structure. It was established that higher migration parameters result in increasing the siro-spun yarn tenacity. It was found that the yarns with higher migration parameters benefit from a more coherent self-locking structure which severely restricts fiber slippage, thereby increasing the yarn tenacity.
Multi-stage genetic programming: A new strategy to nonlinear system modeling This paper presents a new multi-stage genetic programming (MSGP) strategy for modeling nonlinear systems. The proposed strategy is based on incorporating the individual effect of predictor variables and the interactions among them to provide more accurate simulations. According to the MSGP strategy, an efficient formulation for a problem comprises different terms. In the first stage of the MSGP-based analysis, the output variable is formulated in terms of an influencing variable. Thereafter, the error between the actual and the predicted value is formulated in terms of a new variable. Finally, the interaction term is derived by formulating the difference between the actual values and the values predicted by the individually developed terms. The capabilities of MSGP are illustrated by applying it to the formulation of different complex engineering problems. The problems analyzed herein include the following: (i) simulation of pH neutralization process, (ii) prediction of surface roughness in end milling, and (iii) classification of soil liquefaction conditions. The validity of the proposed strategy is confirmed by applying the derived models to the parts of the experimental results that were not included in the analyses. Further, the external validation of the models is verified using several statistical criteria recommended by other researchers. The MSGP-based solutions are capable of effectively simulating the nonlinear behavior of the investigated systems. The results of MSGP are found to be more accurate than those of standard GP and artificial neural network-based models.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. •Four hybrid feature selection methods for classification task are proposed.•Our hybrid method combines Whale Optimization Algorithm with simulated annealing.•Eighteen UCI datasets were used in the experiments.•Our approaches result a higher accuracy by using less number of features.
Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization. •Put forward an improved artificial bee colony algorithm based on ranking selection and elite guidance.•Put forward 4 rule-based heuristic factors: Wc, Rc, TRc and TRcL.•The heuristic factors are used in population initialization to improve the quality of the initial solutions in DWTA solving.•The heuristic factor initialization method is combined with the improved ABC algorithm to solve the DWTA problem.
Self-adaptive mutation differential evolution algorithm based on particle swarm optimization Differential evolution (DE) is an effective evolutionary algorithm for global optimization, and widely applied to solve different optimization problems. However, the convergence speed of DE will be slower in the later stage of the evolution and it is more likely to get stuck at a local optimum. Moreover, the performance of DE is sensitive to its mutation strategies and control parameters. Therefore, a self-adaptive mutation differential evolution algorithm based on particle swarm optimization (DEPSO) is proposed to improve the optimization performance of DE. DEPSO can effectively utilize an improved DE/rand/1 mutation strategy with stronger global exploration ability and PSO mutation strategy with higher convergence ability. As a result, the population diversity can be maintained well in the early stage of the evolution, and the faster convergence speed can be obtained in the later stage of the evolution. The performance of the proposed DEPSO is evaluated on 30-dimensional and 100-dimensional functions. The experimental results indicate that DEPSO can significantly improve the global convergence performance of the conventional DE and thus avoid premature convergence, and its average performance is better than those of the conventional DE, PSO and the compared algorithms. Moreover, DEPSO is applied to solve arrival flights scheduling and the optimization results show that it can optimize the sequence and decrease the delay time.
An improved artificial bee colony algorithm for balancing local and global search behaviors in continuous optimization The artificial bee colony, ABC for short, algorithm is population-based iterative optimization algorithm proposed for solving the optimization problems with continuously-structured solution space. Although ABC has been equipped with powerful global search capability, this capability can cause poor intensification on found solutions and slow convergence problem. The occurrence of these issues is originated from the search equations proposed for employed and onlooker bees, which only updates one decision variable at each trial. In order to address these drawbacks of the basic ABC algorithm, we introduce six search equations for the algorithm and three of them are used by employed bees and the rest of equations are used by onlooker bees. Moreover, each onlooker agent can modify three dimensions or decision variables of a food source at each attempt, which represents a possible solution for the optimization problems. The proposed variant of ABC algorithm is applied to solve basic, CEC2005, CEC2014 and CEC2015 benchmark functions. The obtained results are compared with results of the state-of-art variants of the basic ABC algorithm, artificial algae algorithm, particle swarm optimization algorithm and its variants, gravitation search algorithm and its variants and etc. Comparisons are conducted for measurement of the solution quality, robustness and convergence characteristics of the algorithms. The obtained results and comparisons show the experimentally validation of the proposed ABC variant and success in solving the continuous optimization problems dealt with the study.
On the security of public key protocols Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security in these models are given.
QoE-Driven Edge Caching in Vehicle Networks Based on Deep Reinforcement Learning The Internet of vehicles (IoV) is a large information interaction network that collects information on vehicles, roads and pedestrians. One of the important uses of vehicle networks is to meet the entertainment needs of driving users through communication between vehicles and roadside units (RSUs). Due to the limited storage space of RSUs, determining the content cached in each RSU is a key challenge. With the development of 5G and video editing technology, short video systems have become increasingly popular. Current widely used cache update methods, such as partial file precaching and content popularity- and user interest-based determination, are inefficient for such systems. To solve this problem, this paper proposes a QoE-driven edge caching method for the IoV based on deep reinforcement learning. First, a class-based user interest model is established. Compared with the traditional file popularity- and user interest distribution-based cache update methods, the proposed method is more suitable for systems with a large number of small files. Second, a quality of experience (QoE)-driven RSU cache model is established based on the proposed class-based user interest model. Third, a deep reinforcement learning method is designed to address the QoE-driven RSU cache update issue effectively. The experimental results verify the effectiveness of the proposed algorithm.
Image information and visual quality Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.
Stabilization of switched continuous-time systems with all modes unstable via dwell time switching Stabilization of switched systems composed fully of unstable subsystems is one of the most challenging problems in the field of switched systems. In this brief paper, a sufficient condition ensuring the asymptotic stability of switched continuous-time systems with all modes unstable is proposed. The main idea is to exploit the stabilization property of switching behaviors to compensate the state divergence made by unstable modes. Then, by using a discretized Lyapunov function approach, a computable sufficient condition for switched linear systems is proposed in the framework of dwell time; it is shown that the time intervals between two successive switching instants are required to be confined by a pair of upper and lower bounds to guarantee the asymptotic stability. Based on derived results, an algorithm is proposed to compute the stability region of admissible dwell time. A numerical example is proposed to illustrate our approach.
Software-Defined Networking: A Comprehensive Survey The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms - with a focus on aspects such as resiliency, scalability, performance, security, and dependability - as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.
An ID-Based Linearly Homomorphic Signature Scheme and Its Application in Blockchain. Identity-based cryptosystems mean that public keys can be directly derived from user identifiers, such as telephone numbers, email addresses, and social insurance number, and so on. So they can simplify key management procedures of certificate-based public key infrastructures and can be used to realize authentication in blockchain. Linearly homomorphic signature schemes allow to perform linear computations on authenticated data. And the correctness of the computation can be publicly verified. Although a series of homomorphic signature schemes have been designed recently, there are few homomorphic signature schemes designed in identity-based cryptography. In this paper, we construct a new ID-based linear homomorphic signature scheme, which avoids the shortcomings of the use of public-key certificates. The scheme is proved secure against existential forgery on adaptively chosen message and ID attack under the random oracle model. The ID-based linearly homomorphic signature schemes can be applied in e-business and cloud computing. Finally, we show how to apply it to realize authentication in blockchain.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0
0
Cooperative Adaptive Dynamic Surface Control for a Class of High-Order Stochastic Nonlinear Multiagent Systems This article investigates the consensus tracking problem for high-order stochastic pure-feedback nonlinear multiagent systems (MASs) with dead zones. It should be pointed out that each follower’s virtual and actual control items are the power-exponential functions with positive odd numbers instead of linear items. Because of the structural characteristics of the followers’ dynamics, a technique ca...
Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems This paper presents a set of algorithms for fault diagnosis and fault tolerant control strategy for affine nonlinear systems subjected to an unknown time-varying fault vector. First, the design of fault diagnosis filter is performed using nonlinear observer techniques, where the system is decoupled through a nonlinear transformation and an observer is used to generate the required residual signal. By introducing an extra input to the observer, a direct estimation of the time-varying fault is obtained when the residual is controlled, by this extra input, to zero. The stability analysis of this observer is proved and some relevant sufficient conditions are obtained. Using the estimated fault vector, a fault tolerant controller is established which guarantees the stability of the closed loop system. The proposed algorithm is applied to a combined pH and consistency control system of a pilot paper machine, where simulations are performed to show the effectiveness of the proposed approach.
Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input This technical note considers the distributed tracking control problem of multiagent systems with general linear dynamics and a leader whose control input is nonzero and not available to any follower. Based on the relative states of neighboring agents, two distributed discontinuous controllers with, respectively, static and adaptive coupling gains, are designed for each follower to ensure that the states of the followers converge to the state of the leader, if the interaction graph among the followers is undirected, the leader has directed paths to all followers, and the leader's control input is bounded. A sufficient condition for the existence of the distributed controllers is that each agent is stabilizable. Simulation examples are given to illustrate the theoretical results.
Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. In this paper, adaptive neural network based dynamic surface control (DSC) is developed for a class of nonlinear strict-feedback systems with unknown direction control gains and input saturation. A Gaussian error function based saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided by utilizing DSC. Based on backstepping combined with DSC, adaptive radial basis function neural network control is developed to guarantee that all the signals in the closed-loop system are globally bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design parameters. Simulation results demonstrate the effectiveness of the proposed approach and the good performance is guaranteed even though both the saturation constraints and the wrong control direction are occurred.
Finite-Time Adaptive Fuzzy Control for Nonstrict-Feedback Nonlinear Systems Via an Event-Triggered Strategy This article addresses the finite-time adaptive fuzzy control problem for a class of nonstrict-feedback uncertain nonlinear systems via an event-triggered strategy. A novel design scheme, consisting of finite-time adaptive fuzzy controller and event-triggering mechanism (ETM), is proposed to decrease the number of data transmission and the number of control actuation updates. With the proposed event-triggered adaptive fuzzy control scheme, all the solutions of the resulting closed-loop system are guaranteed to be semi-globally bounded within finite time. Moreover, the feasibility of the proposed ETM is verified by excluding Zeno behavior. In contrast to existing results on similar problems, the restrictions on nonlinearities are relaxed and the more general uncertain nonlinear systems are considered. Finally, an example is provided to illustrate our theoretical results.
Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations The asynchronously switched multi-agent systems comprising switched agents of different dynamics and switching signals are considered under arbitrarily switching communication topologies. The practical output synchronization problem is studied for such a kind of systems due to the heterogeneity brought by both the dynamics and the switchings of agents. A switching-dependent controller with an embedded virtual reference system is proposed for each agent. The original problem is then converted into tracking problems between each agent and its reference system. The analysis of resultant tracking error systems involves the analysis of switched systems with bounded but non-attenuating state impulses. By satisfying sufficient conditions featuring the average dwell time (ADT) and the newly proposed piecewise ADT, the practical output synchronization can be achieved and the ultimate bound of the output errors can also be obtained for the considered systems. Furthermore, a realistic case where the agent switching signals undergo adverse fast-switching perturbations is studied. The perturbations may potentially invalidate the “slow-switching” based method. A regulation strategy is thus developed for each agent to render it adaption to such adversity. A payload transport task is taken as the practical example to illustrate the effectiveness of the proposed method and the adaption strategy.
Command Filtered Adaptive Backstepping Implementation of adaptive backstepping controllers requires analytic calculation of the partial derivatives of certain stabilizing functions. It is well documented that, as the order of a nonlinear system increases, analytic calculation of these derivatives becomes prohibitive. Therefore, in practice, either alternative control approaches are used or the derivatives are neglected in the implementation. Neglecting the derivatives results in the loss of all guarantees proven by Lyapunov methods for the adaptive backstepping approach and may result in instability. This paper presents a new implementation approach for adaptive backstepping control. The main objectives are to facilitate the derivation and implementation of the adaptive backstepping approach, with performance guarantees proven by Lyapunov methods, for applications that were prohibitively difficult using the standard analytic implementation approach. The new approach uses filtering methods to produce certain command signals and their derivatives which eliminates the requirement of analytic differentiation. The approach also introduces filters to generate certain compensating signals necessary to compute compensated tracking errors suitable for adaptive parameter estimation. We present a set of Lemmas and Theorems to analyze the performance both during the initialization and the operating phases. We show that the initialization phase is of finite duration that can be controlled by selection of a design parameter. We also show that all signals within the system are bounded during this short initialization phase. During the operating phase, we show that the command filtered implementation approach has theoretical properties identical to those of the conventional approach. The general approach is presented and analyzed for systems in generalized parameter strict feedback form. Extensions of the approach are presented to demonstrate the application of the method to a land vehicle trajectory following applicat- on. Application and effectiveness of the proposed method is shown by simulation results.
On the ratio of optimal integral and fractional covers It is shown that the ratio of optimal integral and fractional covers of a hypergraph does not exceed 1 + log d , where d is the maximum degree. This theorem may replace probabilistic methods in certain circumstances. Several applications are shown.
Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution Recently, the rapid advance of vehicular networks has led to the emergence of diverse delay-sensitive vehicular applications such as automatic driving, auto navigation. Note that existing resource-constrained vehicles cannot adequately meet these demands on low / ultra-low latency. By offloading parts of the vehicles’ compute-intensive tasks to the edge servers in proximity, mobile edge computing is envisioned as a promising paradigm, giving rise to the vehicular edge computing networks (VECNs). However, most existing works on task offloading in VECNs did not take the load balancing of the computation resources at the edge servers into account. To address these issues and given the high dynamics of vehicular networks, we introduce fiber-wireless (FiWi) technology to enhance VECNs, due to its advantages on centralized network management and supporting multiple communication techniques. Aiming to minimize the processing delay of the vehicles’ computation tasks, we propose a software-defined networking (SDN) based load-balancing task offloading scheme in FiWi enhanced VECNs, where SDN is introduced to provide supports for the centralized network and vehicle information management. Extensive analysis and numerical results corroborate that our proposed load-balancing scheme can achieve superior performance on processing delay reduction by utilizing the edge servers’ computation resources more efficiently.
Visual cryptography for general access structures A visual cryptography scheme for a set P of n participants is a method of encoding a secret image SI into n shadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) on SI . A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the participants in X onto transparencies, and then stacking them. The participants in a qualified set X will be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizing k out of n threshold visual cryptography schemes. Our construction for k out of n visual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography, in “Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out of n is the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
Design and simulation of a joint-coupled orthosis for regulating FES-aided gait A hybrid functional electrical stimulation (FES)/orthosis system is being developed which combines two channels of (surface-electrode-based) electrical stimulation with a computer-controlled orthosis for the purpose of restoring gait to spinal cord injured (SCI) individuals (albeit with a stability aid, such as a walker). The orthosis is an energetically passive, controllable device which 1) unidirectionally couples hip to knee flexion; 2) aids hip and knee flexion with a spring assist; and 3) incorporates sensors and modulated friction brakes, which are used in conjunction with electrical stimulation for the feedback control of joint (and therefore limb) trajectories. This paper describes the hybrid FES approach and the design of the joint coupled orthosis. A dynamic simulation of an SCI individual using the hybrid approach is described, and results from the simulation are presented that indicate the promise of the JCO approach.
Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the \"data sparsity problem\", i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into \"synthesised\" trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at this http URL
Social Robots for (Second) Language Learning in (Migrant) Primary School Children Especially these days, innovation and support from technology to relieve pressure in education is highly urgent. This study tested the potential advantage of a social robot over a tablet in (second) language learning on performance, engagement, and enjoyment. Shortages in primary education call for new technology solutions. Previous studies combined robots with tablets, to compensate for robot’s limitations, however, this study applied direct human–robot interaction. Primary school children (N = 63, aged 4–6) participated in a 3-wave field experiment with story-telling exercises, either with a semi-autonomous robot (without tablet, using WOz) or a tablet. Results showed increased learning gains over time when training with a social robot, compared to the tablet. Children who trained with a robot were more engaged in the story-telling task and enjoyed it more. Robot’s behavioral style (social or neutral) hardly differed overall, however, seems to vary for high versus low educational abilities. While social robots need sophistication before being implemented in schools, our study shows the potential of social robots as tutors in (second) language learning.
1.2
0.2
0.2
0.2
0.2
0.2
0.066667
0
0
0
0
0
0
0
Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network. The accurate forecasting of urban taxi demands, which is a hot topic in intelligent transportation research, is challenging due to the complicated spatial-temporal dependencies, the dynamic nature, and the uncertainty of traffic. To make full use of the global and local correlations between traffic flows on road sections, this paper presents a deep learning model based on a graph convolutional network, long short-term memory (LSTM), and multitask learning. First, an undirected graph model was formed by considering the spatial pattern distribution of taxi trips on road networks. Then, LSTMs were used to extract the temporal features of traffic flows. Finally, the model was trained using a multitask learning strategy to improve the model's generalizability. In the experiments, the efficiency and accuracy were verified with real-world taxi trajectory data. The experimental results showed that the model could effectively forecast the short-term taxi demands on the traffic network level and outperform state-of-the-art traffic prediction methods.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
Sustainable and Optimized Data Collection via Mobile Edge Computing for Disjoint Wireless Sensor Networks With the ever-increasing demand for Internet of Things (IoT) applications, wireless sensor networks (WSNs) have become the central means to disseminate data for analysis in the era of mobile edge computing. Mobile sinks (MSs) as edge nodes have emerged as an efficient solution to the performance enhancement of WSNs. One important task of the MSs is to collect data in a sustainable and optimized manner by visiting certain rendezvous points (RPs) inside the WSN. However, most existing works focus only on connected WSNs, while disjoint networks are the reality in many IoT applications. Moreover, none of them have considered a realistic propagation model. They have also ignored optimizing both the number of RPs and MSs. This paper proposes a novel data collection scheme while paying attention to all these issues. The scheme is specially designed for delay-harsh applications. First, we propose a convex hull-based algorithm to determine RPs for constructing an optimal tour of a MS. Then using the resulting set of RPs, we present another algorithm based on the Jaya metaheuristic to determine an optimal number of MSs and their balanced tours. Rigorous simulations show that our scheme outperforms existing algorithms in terms of various performance metrics.
The Sybil Attack Large-scale peer-to-peer systems facesecurity threats from faulty or hostile remotecomputing elements. To resist these threats, manysuch systems employ redundancy. However, if asingle faulty entity can present multiple identities,it can control a substantial fraction of the system,thereby undermining this redundancy. Oneapproach to preventing these &quot;Sybil attacks&quot; is tohave a trusted agency certify identities. Thispaper shows that, without a logically centralizedauthority, Sybil...
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
Fuzzy logic in control systems: fuzzy logic controller. I.
Switching between stabilizing controllers This paper deals with the problem of switching between several linear time-invariant (LTI) controllers—all of them capable of stabilizing a speci4c LTI process—in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to 4nd realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where con8icting requirements make a single LTI controller unsuitable. ? 2002 Published by Elsevier Science Ltd.
Tabu Search - Part I
Bidirectional recurrent neural networks In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported
An intensive survey of fair non-repudiation protocols With the phenomenal growth of the Internet and open networks in general, security services, such as non-repudiation, become crucial to many applications. Non-repudiation services must ensure that when Alice sends some information to Bob over a network, neither Alice nor Bob can deny having participated in a part or the whole of this communication. Therefore a fair non-repudiation protocol has to generate non-repudiation of origin evidences intended to Bob, and non-repudiation of receipt evidences destined to Alice. In this paper, we clearly define the properties a fair non-repudiation protocol must respect, and give a survey of the most important non-repudiation protocols without and with trusted third party (TTP). For the later ones we discuss the evolution of the TTP's involvement and, between others, describe the most recent protocol using a transparent TTP. We also discuss some ad-hoc problems related to the management of non-repudiation evidences.
Dynamic movement and positioning of embodied agents in multiparty conversations For embodied agents to engage in realistic multiparty conversation, they must stand in appropriate places with respect to other agents and the environment. When these factors change, such as an agent joining the conversation, the agents must dynamically move to a new location and/or orientation to accommodate. This paper presents an algorithm for simulating movement of agents based on observed human behavior using techniques developed for pedestrian movement in crowd simulations. We extend a previous group conversation simulation to include an agent motion algorithm. We examine several test cases and show how the simulation generates results that mirror real-life conversation settings.
An improved genetic algorithm with conditional genetic operators and its application to set-covering problem The genetic algorithm (GA) is a popular, biologically inspired optimization method. However, in the GA there is no rule of thumb to design the GA operators and select GA parameters. Instead, trial-and-error has to be applied. In this paper we present an improved genetic algorithm in which crossover and mutation are performed conditionally instead of probability. Because there are no crossover rate and mutation rate to be selected, the proposed improved GA can be more easily applied to a problem than the conventional genetic algorithms. The proposed improved genetic algorithm is applied to solve the set-covering problem. Experimental studies show that the improved GA produces better results over the conventional one and other methods.
Lane-level traffic estimations using microscopic traffic variables This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.
Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Ethical Considerations Of Applying Robots In Kindergarten Settings: Towards An Approach From A Macroperspective In child-robot interaction (cHRI) research, many studies pursue the goal to develop interactive systems that can be applied in everyday settings. For early education, increasingly, the setting of a kindergarten is targeted. However, when cHRI and research are brought into a kindergarten, a range of ethical and related procedural aspects have to be considered and dealt with. While ethical models elaborated within other human-robot interaction settings, e.g., assisted living contexts, can provide some important indicators for relevant issues, we argue that it is important to start developing a systematic approach to identify and tackle those ethical issues which rise with cHRI in kindergarten settings on a more global level and address the impact of the technology from a macroperspective beyond the effects on the individual. Based on our experience in conducting studies with children in general and pedagogical considerations on the role of the institution of kindergarten in specific, in this paper, we enfold some relevant aspects that have barely been addressed in an explicit way in current cHRI research. Four areas are analyzed and key ethical issues are identified in each area: (1) the institutional setting of a kindergarten, (2) children as a vulnerable group, (3) the caregivers' role, and (4) pedagogical concepts. With our considerations, we aim at (i) broadening the methodology of the current studies within the area of cHRI, (ii) revalidate it based on our comprehensive empirical experience with research in kindergarten settings, both laboratory and real-world contexts, and (iii) provide a framework for the development of a more systematic approach to address the ethical issues in cHRI research within kindergarten settings.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A Novel Dynamic User Admission Scheme for Multi-cell Massive MIMO Systems In this paper, we propose a novel dynamic user admission (UA) scheme to mitigate pilot contamination and reduce pilots reassignment complexity in multi-cell massive MIMO systems. Consider a dynamic user admission scenario, where some active users may leave the networks after pilot assignment, and the base stations (BSs) can admit new users. To improve the fairness of users, the harmonic asymptotic SINR utility function is adopted to measure pilot contamination during the UA. By exploiting the supermodular function, the UA problem is formulated as a supermodular minimization problem, which is typically NP-hard. Then, to handle this challenging issue, we propose a greedy algorithm by minimizing the supermodular UA function, and obtain a suboptimal UA scheme without reassigning the pilots for all users. Furthermore, we present a theoretical guarantee for general supermodular minimization problems via the greedy searching. Simulation results demonstrate the proposed UA scheme significantly outperforms other existing UA schemes, and performs closely to the optimal UA scheme.
Sub-modularity and Antenna Selection in MIMO systems In this paper, we show that the optimal receive antenna subset selection problem for maximizing the mutual information in a point-to-point MIMO system is sub-modular. Consequently, a greedy step-wise optimization approach, where at each step, an antenna that maximizes the incremental gain is added to the existing antenna subset, is guaranteed to be within a (1-1/e)-fraction of the global optimal value independent of all parameters. For a single-antenna-equipped source and destination with multiple relays, we show that the relay antenna selection problem to maximize the mutual information is modular and a greedy step-wise optimization approach leads to an optimal solution.
Achievable Rates of Full-Duplex MIMO Radios in Fast Fading Channels With Imperfect Channel Estimation We study the theoretical performance of two full-duplex multiple-input multiple-output (MIMO) radio systems: a full-duplex bi-directional communication system and a full-duplex relay system. We focus on the effect of a (digitally manageable) residual self-interference due to imperfect channel estimation (with independent and identically distributed (i.i.d.) Gaussian channel estimation error) and transmitter noise. We assume that the instantaneous channel state information (CSI) is not available the transmitters. To maximize the system ergodic mutual information, which is a nonconvex function of power allocation vectors at the nodes, a gradient projection algorithm is developed to optimize the power allocation vectors. This algorithm exploits both spatial and temporal freedoms of the source covariance matrices of the MIMO links between transmitters and receivers to achieve higher sum ergodic mutual information. It is observed through simulations that the full-duplex mode is optimal when the nominal self-interference is low, and the half-duplex mode is optimal when the nominal self-interference is high. In addition to an exact closed-form ergodic mutual information expression, we introduce a much simpler asymptotic closed-form ergodic mutual information expression, which in turn simplifies the computation of the power allocation vectors.
Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems. This paper addresses the beam allocation problem in a switched-beam based massive multiple-input-multiple-output (MIMO) system working at the millimeter wave frequency band, with the target of maximizing the sum data rate. This beam allocation problem can be formulated as a combinatorial optimization problem under two constraints that each user uses at most one beam for its data transmission and each beam serves at most one user. The brute-force search is a straightforward method to solve this optimization problem. However, for a massive MIMO system with a large number of beams $N$ , the brute-force search results in intractable complexity $O(N^{K})$ , where $K$ is the number of users. In this paper, in order to solve the beam allocation problem with affordable complexity, a suboptimal low-complexity beam allocation (LBA) algorithm is developed based on submodular optimization theory, which has been shown to be a powerful tool for solving combinatorial optimization problems. Simulation results show that our proposed LBA algorithm achieves nearly optimal sum data rate with complexity $O(K\\log N)$ . Furthermore, the average service ratio, i.e., the ratio of the number of users being served to the total number of users, is theoretically analyzed and derived as an explicit function of the ratio $N/K$ .
Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-Link Interference Mitigation Dynamic time division duplex (D-TDD) dynamically allocates the transmission directions for traffic adaptation in each cell. D-TDD systems are receiving a lot of attention because they can reduce latency and increase spectrum utilization via flexible and dynamic duplex operation in 5G New Radio (NR). However, the advantages of the D-TDD system are difficult to fully utilize due to the cross-link interference (CLI) arising from the use of different transmission directions between adjacent cells. This paper is a survey of the research from academia and the standardization efforts being undertaken to solve this CLI problem and make the D-TDD system a reality. Specifically, we categorize and present the approaches to mitigating CLI according to operational principles. Furthermore, we present the signaling necessary to apply the CLI mitigation schemes. We also present information-theoretic performance analysis of D-TDD systems in various environments. As topics for future works, we discuss the research challenges and opportunities associated with the CLI mitigation schemes and signaling design in a variety of environments. This survey is recommended for those who are in the initial stage of studying D-TDD systems and those who wish to develop a more feasible D-TDD system as a baseline for reviewing the research flow and standardization trends surrounding D-TDD systems and to identify areas of focus for future works.
Experiment-driven Characterization of Full-Duplex Wireless Systems We present an experiment-based characterization of passive suppression and active self-interference cancellation mechanisms in full-duplex wireless communication systems. In particular, we consider passive suppression due to antenna separation at the same node, and active cancellation in analog and/or digital domain. First, we show that the average amount of cancellation increases for active cance...
Computational thinking Summary form only given. My vision for the 21st century, Computational Thinking, will be a fundamental skill used by everyone in the world. To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability. Computational thinking involves solving problems, designing systems, and understanding human behavior by drawing on the concepts fundamental to computer science. Thinking like a computer scientist means more than being able to program a computer. It requires the ability to abstract and thus to think at multiple levels of abstraction. In this talk I will give many examples of computational thinking, argue that it has already influenced other disciplines, and promote the idea that teaching computational thinking can not only inspire future generations to enter the field of computer science but benefit people in all fields.
An online mechanism for multi-unit demand and its application to plug-in hybrid electric vehicle charging We develop an online mechanism for the allocation of an expiring resource to a dynamic agent population. Each agent has a non-increasing marginal valuation function for the resource, and an upper limit on the number of units that can be allocated in any period. We propose two versions on a truthful allocation mechanism. Each modifies the decisions of a greedy online assignment algorithm by sometimes cancelling an allocation of resources. One version makes this modification immediately upon an allocation decision while a second waits until the point at which an agent departs the market. Adopting a prior-free framework, we show that the second approach has better worst-case allocative efficiency and is more scalable. On the other hand, the first approach (with immediate cancellation) may be easier in practice because it does not need to reclaim units previously allocated. We consider an application to recharging plug-in hybrid electric vehicles (PHEVs). Using data from a real-world trial of PHEVs in the UK, we demonstrate higher system performance than a fixed price system, performance comparable with a standard, but non-truthful scheduling heuristic, and the ability to support 50% more vehicles at the same fuel cost than a simple randomized policy.
IoT-U: Cellular Internet-of-Things Networks Over Unlicensed Spectrum. In this paper, we consider an uplink cellular Internet-of-Things (IoT) network, where a cellular user (CU) can serve as the mobile data aggregator for a cluster of IoT devices. To be specific, the IoT devices can either transmit the sensory data to the base station (BS) directly by cellular communications, or first aggregate the data to a CU through machine-to-machine (M2M) communications before t...
A communication robot in a shopping mall This paper reports our development of a communication robot for use in a shopping mall to provide shopping information, offer route guidance, and build rapport. In the development, the major difficulties included sensing human behaviors, conversation in a noisy daily environment, and the needs of unexpected miscellaneous knowledge in the conversation. We chose a networkrobot system approach, where a single robot's poor sensing capability and knowledge are supplemented by ubiquitous sensors and a human operator. The developed robot system detects a person with floor sensors to initiate interaction, identifies individuals with radio-frequency identification (RFID) tags, gives shopping information while chatting, and provides route guidance with deictic gestures. The robotwas partially teleoperated to avoid the difficulty of speech recognition as well as to furnish a new kind of knowledge that only humans can flexibly provide. The information supplied by a human operator was later used to increase the robot's autonomy. For 25 days in a shopping mall, we conducted a field trial and gathered 2642 interactions. A total of 235 participants signed up to use RFID tags and, later, provided questionnaire responses. The questionnaire results are promising in terms of the visitors' perceived acceptability as well as the encouragement of their shopping activities. The results of the teleoperation analysis revealed that the amount of teleoperation gradually decreased, which is also promising.
Fast identification of the missing tags in a large RFID system. RFID (radio-frequency identification) is an emerging technology with extensive applications such as transportation and logistics, object tracking, and inventory management. How to quickly identify the missing RFID tags and thus their associated objects is a practically important problem in many large-scale RFID systems. This paper presents three novel methods to quickly identify the missing tags in a large-scale RFID system of thousands of tags. Our protocols can reduce the time for identifying all the missing tags by up to 75% in comparison to the state of art.
An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
An indoor localization solution using Bluetooth RSSI and multiple sensors on a smartphone. In this paper, we propose an indoor positioning system using a Bluetooth receiver, an accelerometer, a magnetic field sensor, and a barometer on a smartphone. The Bluetooth receiver is used to estimate distances from beacons. The accelerometer and magnetic field sensor are used to trace the movement of moving people in the given space. The horizontal location of the person is determined by received signal strength indications (RSSIs) and the traced movement. The barometer is used to measure the vertical position where a person is located. By combining RSSIs, the traced movement, and the vertical position, the proposed system estimates the indoor position of moving people. In experiments, the proposed approach showed excellent performance in localization with an overall error of 4.8%.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.24
0.24
0.24
0.24
0.24
0.06
0
0
0
0
0
0
0
0
Improved Training of Wasserstein GANs. Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models with continuous generators. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Progressive Growing of GANs for Improved Quality, Stability, and Variation. We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.
Semantic Image Synthesis With Spatially-Adaptive Normalization We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to "wash away" semantic information. To address the issue, we propose using the input layout. for modulating the activations in normalization layers through a spatially-adaptive,learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and align-ment with input layouts. Finally, our model allows user control over both semantic and style as synthesizing images.
Mask-Guided Portrait Editing With Conditional Gans Portrait editing is a popular subject in photo manipulation. The Generative Adversarial Network (GAN) advances the generating of realistic faces and allows more face editing. In this paper, we argue about three issues in existing techniques: diversity, quality, and controllability for portrait synthesis and editing. To address these issues, we propose a novel end-to-end learning framework that leverages conditional GANs guided by provided face masks for generating faces. The framework learns feature embeddings for every face component (e.g., mouth, hair, eye), separately, contributing to better correspondences for image translation, and local face editing. With the mask, our network is available to many applications, like face synthesis driven by mask, face Swap+ (including hair in swapping), and local manipulation. It can also boost the performance of face parsing a bit as an option of data augmentation.
Do GANs actually learn the distribution? An empirical study. Do GANS (Generative Adversarial Nets) actually learn the target distribution? The foundational paper of (Goodfellow et al 2014) suggested they do, if they were given sufficiently large deep nets, sample size, and computation time. A recent theoretical analysis in Arora et al (to appear at ICML 2017) raised doubts whether the same holds when discriminator has finite size. It showed that the training objective can approach its optimum value even if the generated distribution has very low support ---in other words, the training objective is unable to prevent mode collapse. The current note reports experiments suggesting that such problems are not merely theoretical. It presents empirical evidence that well-known GANs approaches do learn distributions of fairly low support, and thus presumably are not learning the target distribution. The main technical contribution is a new proposed test, based upon the famous birthday paradox, for estimating the support size of the generated distribution.
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right-similar to why we study the human brain-and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (AM), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).
Learning To Learn Relation For Important People Detection In Still Images Humans can easily recognize the importance of people in social event images, and they always focus on the most important individuals. However, learning to learn the relation between people in an image, and inferring the most important person based on this relation, remains undeveloped. In this work, we propose a deep imPOrtance relatIon NeTwork (POINT) that combines both relation modeling and feature learning. In particular, we infer two types of interaction modules: the person-person interaction module that learns the interaction between people and the event-person interaction module that learns to describe how a person is involved in the event occurring in an image. We then estimate the importance relations among people from both interactions and encode the relation feature from the importance relations. In this way, POINT automatically learns several types of relation features in parallel, and we aggregate these relation features and the person's feature to form the importance feature for important people classification. Extensive experimental results show that our method is effective for important people detection and verify the efficacy of learning to learn relations for important people detection.
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that have tried to either map representations between the two domains, or learn to extract features that are domain-invariant. In this work, we approach the problem in a new light by learning in an unsupervised manner a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
Glove: Global Vectors for Word Representation.
Argos: practical many-antenna base stations Multi-user multiple-input multiple-output theory predicts manyfold capacity gains by leveraging many antennas on wireless base stations to serve multiple clients simultaneously through multi-user beamforming (MUBF). However, realizing a base station with a large number antennas is non-trivial, and has yet to be achieved in the real-world. We present the design, realization, and evaluation of Argos, the first reported base station architecture that is capable of serving many terminals simultaneously through MUBF with a large number of antennas (M >> 10). Designed for extreme flexibility and scalability, Argos exploits hierarchical and modular design principles, properly partitions baseband processing, and holistically considers real-time requirements of MUBF. Argos employs a novel, completely distributed, beamforming technique, as well as an internal calibration procedure to enable implicit beamforming with channel estimation cost independent of the number of base station antennas. We report an Argos prototype with 64 antennas and capable of serving 15 clients simultaneously. We experimentally demonstrate that by scaling from 1 to 64 antennas the prototype can achieve up to 6.7 fold capacity gains while using a mere 1/64th of the transmission power.
Metrics for evaluating video streaming quality in lossy IEEE 802.11 wireless networks Peak Signal-to-Noise Ratio (PSNR) is the simplest and the most widely used video quality evaluation methodology. However, traditional PSNR calculations do not take the packet loss into account. This shortcoming, which is amplified in wireless networks, contributes to the inaccuracy in evaluating video streaming quality in wireless communications. Such inaccuracy in PSNR calculations adversely affects the development of video communications in wireless networks. This paper proposes a novel video quality evaluation methodology. As it not only considers the PSNR of a video, but also with modificatioIls to handle the packet loss issue, we name this evaluation method MPSNR. MPSNR rectifies the inaccuracies in traditional PSNR computation, and helps us to approximate subjective video quality, Mean Opinion Score (MOS), more accurately. Using PSNR values calculated from MPSNR and simple network measurements, we apply linear regression techniques to derive two specific objective video quality metrics, PSNR-based Objective MOS (POMOS) and Rates-based Objective MOS (ROMOS). Through extensive experiments and human subjective tests, we show that the two metrics demonstrate high correlation with MOS. POMOS takes the averaged PSNR value of a video calculated from MPSNR as the only input. Despite its simplicity, it has a Pearson correlation of 0.8664 with the MOS. By adding a few other simple network measurements, such as the proportion of distorted frames in a video, ROMOS achieves an even higher Pearson correlation (0.9350) with the MOS. Compared with the PSNR metric from the traditional PSNR calculations, our metrics evaluate video streaming quality in wireless networks with a much higher accuracy while retaining the simplicity of PSNR calculation.
A Generalized Likelihood Ratio Chart for Monitoring Bernoulli Processes. This paper considers the problem of monitoring the proportion p of nonconforming items when a continuous stream of Bernoulli observations is available and the objective is to effectively detect a wide range of increases in p. The proposed control chart is based on a generalized likelihood ratio (GLR) statistic obtained from a moving window of past Bernoulli observations. The Phase II performance of this chart in detecting sustained increases in p is evaluated using the steady state average number of observations to signal. Comparisons of the Bernoulli GLR chart to the Shewhart CCC-r chart, the Bernoulli cumulative sum chart, and the Bernoulli exponentially weighted moving average chart show that the overall performance of the Bernoulli GLR chart is better than its competitors. In addition, methods are provided for designing the Bernoulli GLR chart so that this chart can be easily applied in practice. Copyright (C) 2012 John Wiley & Sons, Ltd.
Distributed Kalman consensus filter with event-triggered communication: Formulation and stability analysis. •The problem of distributed state estimation in sensor networks with event-triggered communication schedules on both sensor-to-estimator channel and estimator-to-estimator channel is studied.•An event-triggered KCF is designed by deriving the optimal Kalman gain matrix which minimizes the mean squared error.•A computational scalable form of the proposed filter is presented by some approximations.•An appropriate choice of the consensus gain matrix is provided to ensure the stochastic stability of the proposed filter.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.033218
0.031916
0.024571
0.021333
0.020667
0.014222
0.011
0.00275
0
0
0
0
0
0
Unsupervised Semantic-Preserving Adversarial Hashing for Image Search. Hashing plays a pivotal role in nearest-neighbor searching for large-scale image retrieval. Recently, deep learning-based hashing methods have achieved promising performance. However, most of these deep methods involve discriminative models, which require large-scale, labeled training datasets, thus hindering their real-world applications. In this paper, we propose a novel strategy to exploit the ...
Space-time super-resolution. We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By "temporal super-resolution," we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in "slow-motion." The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial "ringing" effect?
Transient attributes for high-level understanding and editing of outdoor scenes We live in a dynamic visual world where the appearance of scenes changes dramatically from hour to hour or season to season. In this work we study \"transient scene attributes\" -- high level properties which affect scene appearance, such as \"snow\", \"autumn\", \"dusk\", \"fog\". We define 40 transient attributes and use crowdsourcing to annotate thousands of images from 101 webcams. We use this \"transient attribute database\" to train regressors that can predict the presence of attributes in novel images. We demonstrate a photo organization method based on predicted attributes. Finally we propose a high-level image editing method which allows a user to adjust the attributes of a scene, e.g. change a scene to be \"snowy\" or \"sunset\". To support attribute manipulation we introduce a novel appearance transfer technique which is simple and fast yet competitive with the state-of-the-art. We show that we can convincingly modify many transient attributes in outdoor scenes.
Semantic Understanding of Scenes through the ADE20K Dataset. Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.
Sync-DRAW: Automatic Video Generation using Deep Recurrent Attentive Architectures. This paper introduces a novel approach for generating videos called Synchronized Deep Recurrent Attentive Writer (Sync-DRAW). Sync-DRAW can also perform text-to-video generation which, to the best of our knowledge, makes it the first approach of its kind. It combines a Variational Autoencoder(VAE) with a Recurrent Attention Mechanism in a novel manner to create a temporally dependent sequence of frames that are gradually formed over time. The recurrent attention mechanism in Sync-DRAW attends to each individual frame of the video in sychronization, while the VAE learns a latent distribution for the entire video at the global level. Our experiments with Bouncing MNIST, KTH and UCF-101 suggest that Sync-DRAW is efficient in learning the spatial and temporal information of the videos and generates frames with high structural integrity, and can generate videos from simple captions on these datasets.
Dynamic Facial Expression Generation on Hilbert Hypersphere With Conditional Wasserstein Generative Adversarial Nets In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, w...
Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images Various combinations of cameras enrich computational photography, among which reference-based superresolution (RefSR) plays a critical role in multiscale imaging systems. However, existing RefSR approaches fail to accomplish high-fidelity super-resolution under a large resolution gap, e.g., 8x upscaling, due to the lower consideration of the underlying scene structure. In this paper, we aim to solve the RefSR problem in actual multiscale camera systems inspired by multiplane image (MPI) representation. Specifically, we propose Cross-MPI, an end-to-end RefSR network composed of a novel plane-aware attention-based MPI mechanism, a multiscale guided upsampling module as well as a super-resolution (SR) synthesis and fusion module. Instead of using a direct and exhaustive matching between the cross-scale stereo, the proposed plane-aware attention mechanism fully utilizes the concealed scene structure for efficient attention-based correspondence searching. Further combined with a gentle coarse-to-fine guided upsampling strategy, the proposed Cross-MPI can achieve a robust and accurate detail transmission. Experimental results on both digitally synthesized and optical zoom cross-scale data show that the Cross-MPI framework can achieve superior performance against the existing RefSR methods and is a real fit for actual multiscale camera systems even with large-scale differences.
Hierarchical Cross-Modal Talking Face Generation With Dynamic Pixel-Wise Loss We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics,and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons.
BLEU: a method for automatic evaluation of machine translation Human evaluations of machine translation are extensive but expensive. Human evaluations can take months to finish and involve human labor that can not be reused. We propose a method of automatic machine translation evaluation that is quick, inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run. We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.
Witness indistinguishable and witness hiding protocols
Multimodal graph-based reranking for web image search. This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integrate the learning of relevance scores, weights of modalities, and the distance metric and its scaling for each modality into a unified scheme. In this way, the effects of different modalities can be adaptively modulated and better reranking performance can be achieved. We conduct experiments on a large dataset that contains more than 1000 queries and 1 million images to evaluate our approach. Experimental results demonstrate that the proposed reranking approach is more robust than using each individual modality, and it also performs better than many existing methods.
A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. This paper is concerned with event-triggered sampled-data consensus for distributed multi-agent systems with directed graph. A novel distributed event-triggered sampled-data transmission strategy is proposed, which allows the event-triggering condition to be intermittently examined at constant sampling instants. Based on this novel strategy, a sampled-data consensus control protocol is presented, with which the consensus of distributed multi-agent systems can be transformed into the stability of a system with a time-varying delay. Then, a sufficient condition on the consensus of the multi-agent system is derived. Correspondingly, a co-design algorithm for obtaining both the parameters of the distributed event-triggered transmission strategy and the consensus controller gain is proposed. Two numerical examples are given to show the effectiveness of the proposed method.
Driver Gaze Zone Estimation Using Convolutional Neural Networks: A General Framework and Ablative Analysis Driver gaze has been shown to be an excellent surrogate for driver attention in intelligent vehicles. With the recent surge of highly autonomous vehicles, driver gaze can be useful for determining the handoff time to a human driver. While there has been significant improvement in personalized driver gaze zone estimation systems, a generalized system which is invariant to different subjects, perspe...
Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
1.11
0.1
0.1
0.1
0.1
0.1
0.1
0.06
0.000312
0
0
0
0
0
A Novel Fuzzy Observer-Based Steering Control Approach for Path Tracking in Autonomous Vehicles. In this paper, the problem of steering control is investigated for vehicle path tracking in the presence of parametric uncertainties and nonlinearities. In practice, the vehicle mass varies due to the number of passengers or amount of payload, while the vehicle velocity also changes during normal cruising, which significantly influences vehicle dynamics. Moreover, the vehicle dynamics are strongly...
A predictive controller for autonomous vehicle path tracking This paper presents a model predictive controller (MPC) structure for solving the path-tracking problem of terrestrial autonomous vehicles. To achieve the desired performance during high-speed driving, the controller architecture considers both the kinematic and the dynamic control in a cascade structure. Our study contains a comparative study between two kinematic linear predictive control strategies: The first strategy is based on the successive linearization concept, and the other strategy combines a local reference frame with an approaching path strategy. Our goal is to search for the strategy that best comprises the performance and hardware-cost criteria. For the dynamic controller, a decentralized predictive controller based on a linearized model of the vehicle is used. Practical experiments obtained using an autonomous "Mini-Baja" vehicle equipped with an embedded computing system are presented. These results confirm that the proposed MPC structure is the solution that better matches the target criteria.
An Efficient Visibility Enhancement Algorithm for Road Scenes Captured by Intelligent Transportation Systems The visibility of images of outdoor road scenes will generally become degraded when captured during inclement weather conditions. Drivers often turn on the headlights of their vehicles and streetlights are often activated, resulting in localized light sources in images capturing road scenes in these conditions. Additionally, sandstorms are also weather events that are commonly encountered when driving in some regions. In sandstorms, atmospheric sand has a propensity to irregularly absorb specific portions of a spectrum, thereby causing color-shift problems in the captured image. Traditional state-of-the-art restoration techniques are unable to effectively cope with these hazy road images that feature localized light sources or color-shift problems. In response, we present a novel and effective haze removal approach to remedy problems caused by localized light sources and color shifts, which thereby achieves superior restoration results for single hazy images. The performance of the proposed method has been proven through quantitative and qualitative evaluations. Experimental results demonstrate that the proposed haze removal technique can more effectively recover scene radiance while demanding fewer computational costs than traditional state-of-the-art haze removal techniques.
Automatic Detection and Classification of Road Lane Markings Using Onboard Vehicular Cameras This paper presents a new approach for road lane classification using an onboard camera. Initially, lane boundaries are detected using a linear–parabolic lane model, and an automatic on-the-fly camera calibration procedure is applied. Then, an adaptive smoothing scheme is applied to reduce noise while keeping close edges separated, and pairs of local maxima–minima of the gradient are used as cues to identify lane markings. Finally, a Bayesian classifier based on mixtures of Gaussians is applied to classify the lane markings present at each frame of a video sequence as dashed, solid, dashed solid, solid dashed, or double solid. Experimental results indicate an overall accuracy of over 96% using a variety of video sequences acquired with different devices and resolutions.
Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night. Pedestrian-vehicle accidents that occur at night are a major social problem worldwide. Advanced driver assistance systems that are equipped with cameras have been designed to automatically prevent such accidents. Among the various types of cameras used in such systems, far-infrared (FIR) cameras are favorable because they are invariant to illumination changes. Therefore, this paper focuses on a pedestrian nighttime tracking system with an FIR camera that is able to discern thermal energy and is mounted on the forward roof part of a vehicle. Since the temperature difference between the pedestrian and background depends on the season and the weather, we therefore propose two models to detect pedestrians according to the season and the weather, which are determined using Weber–Fechner's law. For tracking pedestrians, we perform real-time online learning to track pedestrians using boosted random ferns and update the trackers at each frame. In particular, we link detection responses to trajectories based on similarities in position, size, and appearance. There is no standard data set for evaluating the tracking performance using an FIR camera; thus, we created the Keimyung University tracking data set (KMUTD) by combining the KMU sudden pedestrian crossing (SPC) data set [21] for summer nights with additional tracking data for winter nights. The KMUTD contains video sequences involving a moving camera, moving pedestrians, sudden shape deformations, unexpected motion changes, and partial or full occlusions between pedestrians at night. The proposed algorithm is successfully applied to various pedestrian video sequences of the KMUTD; specifically, the proposed algorithm yields more accurate tracking performance than other existing methods.
Effects of Different Alcohol Dosages on Steering Behavior in Curve Driving. Objective: The aim of this article is to explore the detailed characteristics of steering behavior in curve driving at different alcohol dosages. Background: Improper operation of the steering wheel is a contributing factor to increased crash risks on curves. Method: The experiments were conducted using a driving simulator. Twenty-five licensed drivers were recruited to perform the experiments at the four different breath alcohol concentration (BrAC) levels. The steering angle (SA), steering speed (SS), steering reversal rate (SRR), and peak-to-peak value of the steering angle (PP) were used to characterize the steering behavior. The vehicle's speed and the number of lane exceedances per kilometer were also used to examine the driving performance. Results: The SSs on the 200 m (chi(2)(3) = 20.67, p < .001), 500 m (chi(2)(3) = 22.42, p < .001), and 800 m (chi(2)(3) = 22.86, p < .001) radius curves were significantly faster for drivers under the influence of alcohol compared with those given a placebo. There were significant effects of alcohol on the SRR and PP on the 200 m, 500 m, and 800 m radius curves. Conclusion: For all of the curves, the SS, SRR, and PP had a tendency to increase as the BrAC increased. The large PP at a high BrAC, accompanied by the high speed, SS, and SRR, resulted in a high probability of lane exceedance. The use of measures of SS, SRR, and PP aided in the improvement of the accuracy of the intoxication detection for the different types of curves. Application: The most important application is to provide guidance for detecting alcohol-impaired-driving.
Risky Driver Recognition Based on Vehicle Speed Time Series. Risky driving is a major cause of traffic accidents. In this paper, we propose a new method that recognizes risky driving behaviors purely based on vehicle speed time series. This method first retrieves the important distribution pattern of the sampled positive speed-change (value and duration) tuples for individual drivers within different speed ranges. Then, it identifies the risky drivers based...
Driver Fatigue Detection Systems: A Review Driver fatigue has been attributed to traffic accidents; therefore, fatigue-related traffic accidents have a higher fatality rate and cause more damage to the surroundings compared with accidents where the drivers are alert. Recently, many automobile companies have installed driver assistance technologies in vehicles for driver assistance. Third party companies are also manufacturing fatigue detection devices; however, much research is still required for improvement. In the field of driver fatigue detection, continuous research is being performed and several articles propose promising results in constrained environments, still much progress is required. This paper presents state-of-the-art review of recent advancement in the field of driver fatigue detection. Methods are categorized into five groups, i.e., subjective reporting, driver biological features, driver physical features, vehicular features while driving, and hybrid features depending on the features used for driver fatigue detection. Various approaches have been compared for fatigue detection, and areas open for improvements are deduced.
The ApolloScape Dataset for Autonomous Driving Scene parsing aims to assign a class (semantic) label for each pixel in an image. It is a comprehensive analysis of an image. Given the rise of autonomous driving, pixel-accurate environmental perception is expected to be a key enabling technical piece. However, providing a large scale dataset for the design and evaluation of scene parsing algorithms, in particular for outdoor scenes, has been difficult. The per-pixel labelling process is prohibitively expensive, limiting the scale of existing ones. In this paper, we present a large-scale open dataset, ApolloScape, that consists of RGB videos and corresponding dense 3D point clouds. Comparing with existing datasets, our dataset has the following unique properties. The first is its scale, our initial release contains over 140K images - each with its per-pixel semantic mask, up to 1M is scheduled. The second is its complexity. Captured in various traffic conditions, the number of moving objects averages from tens to over one hundred (Figure 1). And the third is the 3D attribute, each image is tagged with high-accuracy pose information at cm accuracy and the static background point cloud has mm relative accuracy. We are able to label these many images by an interactive and efficient labelling pipeline that utilizes the high-quality 3D point cloud. Moreover, our dataset also contains different lane markings based on the lane colors and styles. We expect our new dataset can deeply benefit various autonomous driving related applications that include but not limited to 2D/3D scene understanding, localization, transfer learning, and driving simulation.
Online Palmprint Identification Biometrics-based personal identification is regarded as an effective method for automatically recognizing, with a high confidence, a person's identity. This paper presents a new biometric approach to online personal identification using palmprint technology. In contrast to the existing methods, our online palmprint identification system employs low-resolution palmprint images to achieve effective personal identification. The system consists of two parts: a novel device for online palmprint image acquisition and an efficient algorithm for fast palmprint recognition. A robust image coordinate system is defined to facilitate image alignment for feature extraction. In addition, a 2D Gabor phase encoding scheme is proposed for palmprint feature extraction and representation. The experimental results demonstrate the feasibility of the proposed system.
Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.
Multimodal Feature-Based Surface Material Classification. When a tool is tapped on or dragged over an object surface, vibrations are induced in the tool, which can be captured using acceleration sensors. The tool-surface interaction additionally creates audible sound waves, which can be recorded using microphones. Features extracted from camera images provide additional information about the surfaces. We present an approach for tool-mediated surface clas...
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.
Sustainable and Efficient Data Collection from WSNs to Cloud. The development of cloud computing pours great vitality into traditional wireless sensor networks (WSNs). The integration of WSNs and cloud computing has received a lot of attention from both academia and industry. However, collecting data from WSNs to cloud is not sustainable. Due to the weak communication ability of WSNs, uploading big sensed data to the cloud within the limited time becomes a b...
1.22
0.22
0.22
0.22
0.22
0.22
0.22
0.073333
0.0025
0
0
0
0
0
CellSense: A Probabilistic RSSI-Based GSM Positioning System Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, a probabilistic RSSI-based fingerprinting location determination system for GSM phones. We discuss the challenges of implementing a probabilistic fingerprinting localization technique in GSM networks and present the details of the CellSense system and how it addresses the challenges. To evaluate our proposed system, we implemented CellSense on Android-based phones. Results for two different testbeds, representing urban and rural environments, show that CellSense provides at least 23.8% enhancement in accuracy in rural areas and at least 86.4% in urban areas compared to other RSSI-based GSM localization systems. This comes with a minimal increase in computational requirements. We also evaluate the effect of changing the different system parameters on the accuracy-complexity tradeoff.
Using mobile phone barometer for low-power transportation context detection Accelerometer is the predominant sensor used for low-power context detection on smartphones. Although low-power, accelerometer is orientation and position-dependent, requires a high sampling rate, and subsequently complex processing and training to achieve good accuracy. We present an alternative approach for context detection using only the smartphone's barometer, a relatively new sensor now present in an increasing number of devices. The barometer is independent of phone position and orientation. Using a low sampling rate of 1 Hz, and simple processing based on intuitive logic, we demonstrate that it is possible to use the barometer for detecting the basic user activities of IDLE, WALKING, and VEHICLE at extremely low-power. We evaluate our approach using 47 hours of real-world transportation traces from 3 countries and 13 individuals, as well as more than 900 km of elevation data pulled from Google Maps from 5 cities, comparing power and accuracy to Google's accelerometer-based Activity Recognition algorithm, and to Future Urban Mobility Survey's (FMS) GPS-accelerometer server-based application. Our barometer-based approach uses 32 mW lower power compared to Google, and has comparable accuracy to both Google and FMS. This is the first paper that uses only the barometer for context detection.
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. One camera and one low-cost inertial measurement unit (IMU) form a monocular visual-inertial system (VINS), which is the minimum sensor suite (in size, weight, and power) for the metric six degrees-of-freedom (DOF) state estimation. In this paper, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initia...
Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization? Accurate visual localization is a key technology for autonomous navigation. 3D structure-based methods employ 3D models of the scene to estimate the full 6 degree-of-freedom (DOF) pose of a camera very accurately. However, constructing (and extending) large-scale 3D models is still a significant challenge. In contrast, 2D image retrieval-based methods only require a database of geo-tagged images, which is trivial to construct and to maintain. They are often considered inaccurate since they only approximate the positions of the cameras. Yet, the exact camera pose can theoretically be recovered when enough relevant database images are retrieved. In this paper, we demonstrate experimentally that large-scale 3D models are not strictly necessary for accurate visual localization. We create reference poses for a large and challenging urban dataset. Using these poses, we show that combining image-based methods with local reconstructions results in a higher pose accuracy compared to state-of-the-art structure-based methods, albeight at higher run-time costs. We show that some of these run-time costs can be alleviated by exploiting known database image poses. Our results suggest that we might want to reconsider the need for large-scale 3D models in favor of more local models, but also that further research is necessary to accelerate the local reconstruction process.
Improving image-based localization by active correspondence search We propose a powerful pipeline for determining the pose of a query image relative to a point cloud reconstruction of a large scene consisting of more than one million 3D points. The key component of our approach is an efficient and effective search method to establish matches between image features and scene points needed for pose estimation. Our main contribution is a framework for actively searching for additional matches, based on both 2D-to-3D and 3D-to-2D search. A unified formulation of search in both directions allows us to exploit the distinct advantages of both strategies, while avoiding their weaknesses. Due to active search, the resulting pipeline is able to close the gap in registration performance observed between efficient search methods and approaches that are allowed to run for multiple seconds, without sacrificing run-time efficiency. Our method achieves the best registration performance published so far on three standard benchmark datasets, with run-times comparable or superior to the fastest state-of-the-art methods.
Photo tourism: exploring photo collections in 3D We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses image-based rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.
A fast and elitist multiobjective genetic algorithm: NSGA-II Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed
Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
Communication theory of secrecy systems THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Empirical Modelling of Genetic Algorithms This paper addresses the problem of reliably setting genetic algorithm parameters for consistent labelling problems. Genetic algorithm parameters are notoriously difficult to determine. This paper proposes a robust empirical framework, based on the analysis of factorial experiments. The use of a graeco-latin square permits an initial study of a wide range of parameter settings. This is followed by fully crossed factorial experiments with narrower ranges, which allow detailed analysis by logistic regression. The empirical models derived can be used to determine optimal algorithm parameters and to shed light on interactions between the parameters and their relative importance. Re-fined models are produced, which are shown to be robust under extrapolation to up to triple the problem size.
GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation Although a large number of WiFi fingerprinting based indoor localization systems have been proposed, our field experience with Google Maps Indoor (GMI), the only system available for public testing, shows that it is far from mature for indoor navigation. In this paper, we first report our field studies with GMI, as well as experiment results aiming to explain our unsatisfactory GMI experience. Then motivated by the obtained insights, we propose GROPING as a self-contained indoor navigation system independent of any infrastructural support. GROPING relies on geomagnetic fingerprints that are far more stable than WiFi fingerprints, and it exploits crowdsensing to construct floor maps rather than expecting individual venues to supply digitized maps. Based on our experiments with 20 participants in various floors of a big shopping mall, GROPING is able to deliver a sufficient accuracy for localization and thus provides smooth navigation experience.
Inter-class sparsity based discriminative least square regression Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification.
Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton Soft lower limb exoskeletons (LLEs) are wearable devices that have good potential in walking rehabilitation and augmentation. While a few studies focused on the structure design and assistance force optimization of the soft LLEs, rarely work has been conducted on the hardware circuits design. The main purpose of this work is to present a new soft LLE for walking efficiency improvement and introduce its hardware circuits design. A soft LLE for hip flexion assistance and a hardware circuits system with scalability were proposed. To assess the efficacy of the soft LLE, the experimental tests that evaluate the sensor data acquisition, force tracking performance, lower limb muscle activity and metabolic cost were conducted. The time error in the peak assistance force was just 1%. The reduction in the normalized root-mean-square EMG of the rectus femoris was 7.1%. The net metabolic cost in exoskeleton on condition was reduced by 7.8% relative to walking with no exoskeleton. The results show that the designed hardware circuits can be applied to the soft LLE and the soft LLE is able to improve walking efficiency of wearers.
1.2
0.2
0.2
0.2
0.1
0.028571
0
0
0
0
0
0
0
0
A General Model for Minimizing Age of Information at Network Edge Recently, a new metric, called Age of Information (AoI), has become popular to quantify the freshness of information collected at network edge. AoI research is still in its infancy and most prior efforts assume overly simplified models in their investigation. In this paper, we consider a more general model for AoI research that is closer to what happens in the real world. Specifically, we consider general and heterogeneous sampling behaviors among source nodes, varying sample size, and multiple data transmission units in each time slot. Under this much general setting, we develop new theoretical results (in terms of properties and performance bounds) and a new near-optimal low-complexity scheduling algorithm. Our results make a major advance of AoI research in terms of more realistic models.
Age-Minimal Transmission for Energy Harvesting Sensors With Finite Batteries: Online Policies An energy-harvesting sensor node that is sending status updates to a destination is considered. The sensor is equipped with a battery of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">finite</italic> size to save its incoming energy, and consumes one unit of energy per status update transmission, which is delivered to the destination instantly over an error-free channel. The setting is <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">online</italic> in which the harvested energy is revealed to the sensor causally over time after it arrives, and the goal is to design status update transmission times (policy) such that the long term average <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">age of information</italic> (AoI) is minimized. The AoI is defined as the time elapsed since the latest update has reached at the destination. Two energy arrival models are considered: a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">random battery recharge</italic> (RBR) model, and an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">incremental battery recharge</italic> (IBR) model. In both models, energy arrives according to a Poisson process with unit rate, with values that completely fill up the battery in the RBR model, and with values that fill up the battery incrementally in a unit-by-unit fashion in the IBR model. The key approach to characterizing the optimal status update policy for both models is showing the optimality of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">renewal policies</italic> , in which the inter-update times follow a renewal process in a certain manner that depends on the energy arrival model and the battery size. It is then shown that the optimal renewal policy has an energy-dependent <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">threshold</italic> structure, in which the sensor sends a status update only if the AoI grows above a certain threshold that depends on the energy available in its battery. For both the random and the incremental battery recharge models, the optimal energy-dependent thresholds are characterized <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">explicitly</italic> , i.e., in closed-form, in terms of the optimal long term average AoI. It is also shown that the optimal thresholds are monotonically decreasing in the energy available in the battery, and that the smallest threshold, which comes in effect when the battery is full, is equal to the optimal long term average AoI.
Age-optimal Sampling and Transmission Scheduling in Multi-Source Systems. In this paper, we consider the problem of minimizing the age of information in a multi-source system, where samples are taken from multiple sources and sent to a destination via a channel with random delay. Due to interference, only one source can be scheduled at a time. We consider the problem of finding a decision policy that determines the sampling times and transmission order of the sources for minimizing the total average peak age (TaPA) and the total average age (TaA) of the sources. Our investigation of this problem results in an important separation principle: The optimal scheduling strategy and the optimal sampling strategy are independent of each other. In particular, we prove that, for any given sampling strategy, the Maximum Age First (MAF) scheduling strategy provides the best age performance among all scheduling strategies. This transforms our overall optimization problem into an optimal sampling problem, given that the decision policy follows the MAF scheduling strategy. While the zero-wait sampling strategy (in which a sample is generated once the channel becomes idle) is shown to be optimal for minimizing the TaPA, it does not always minimize the TaA. We use Dynamic Programming (DP) to investigate the optimal sampling problem for minimizing the TaA. Finally, we provide an approximate analysis of Bellman's equation to approximate the TaA-optimal sampling strategy by a water-filling solution which is shown to be very close to optimal through numerical evaluations.
Minimizing Age-of-Information with Throughput Requirements in Multi-Path Network Communication We consider the scenario where a sender periodically sends a batch of data to a receiver over a multi-hop network, possibly using multiple paths. Our objective is to minimize peak/average Age-of-Information (AoI) subject to throughput requirements. The consideration of batch generation and multi-path communication differentiates our AoI study from existing ones. We first show that our AoI minimization problems are NP-hard, but only in the weak sense, as we develop an optimal algorithm with a pseudo-polynomial time complexity. We then prove that minimizing AoI and minimizing maximum delay are "roughly" equivalent, in the sense that any optimal solution of the latter is an approximate solution of the former with bounded optimality loss. We leverage this understanding to design a general approximation framework for our problems. It can build upon any α-approximation algorithm of the maximum delay minimization problem, e.g., the algorithm in [13] with α = 1 + ε given any user-defined ε > 0, to construct an (α + c)-approximate solution for minimizing AoI. Here c is a constant depending on the throughput requirements. Simulations over various network topologies validate the effectiveness of our approach.
Cost of not splitting in routing: characterization and estimation This paper studies the performance difference of joint routing and congestion control when either single-path routes or multipath routes are used. Our performance metric is the total utility achieved by jointly optimizing transmission rates using congestion control and paths using source routing. In general, this performance difference is strictly positive and hard to determine--in fact an NP-hard problem. To better estimate this performance gap, we develop analytical bounds to this "cost of not splitting" in routing. We prove that the number of paths needed for optimal multipath routing differs from that of optimal single-path routing by no more than the number of links in the network. We provide a general bound on the performance loss, which is independent of the number of source-destination pairs when the latter is larger than the number of links in a network. We also propose a vertex projection method and combine it with a greedy branch-and-bound algorithm to provide progressively tighter bounds on the performance loss. Numerical examples are used to show the effectiveness of our approximation technique and estimation algorithms.
Minimum Age TDMA Scheduling We consider a transmission scheduling problem in which multiple systems receive update information through a shared Time Division Multiple Access (TDMA) channel. To provide timely delivery of update information, the problem asks for a schedule that minimizes the overall age of information. We call this problem the Min-Age problem. This problem is first studied by He et at. [IEEE Trans. Inform. Theory, 2018], who identified several special cases where the problem can be solved optimally in polynomial time. Our contribution is threefold. First, we introduce a new job scheduling problem called the Min-WCS problem, and we prove that, for any constant r ≥ 1, every r-approximation algorithm for the Min-WCS problem can be transformed into an r-approximation algorithm for the Min-Age problem. Second, we give a randomized 2.733-approximation algorithm and a dynamic-programming-based exact algorithm for the Min-WCS problem. Finally, we prove that the Min-Age problem is NP-hard.
Delivering Deep Learning to Mobile Devices via Offloading Deep learning has the potential to make Augmented Reality (AR) devices smarter, but few AR apps use such technology today because it is compute-intensive, and front-end devices cannot deliver sufficient compute power. We propose a distributed framework that ties together front-end devices with more powerful back-end \"helpers\" that allow deep learning to be executed locally or to be offloaded. This framework should be able to intelligently use current estimates of network conditions and back-end server loads, in conjunction with the application's requirements, to determine an optimal strategy. This work reports our preliminary investigation in implementing such a framework, in which the front-end is assumed to be smartphones. Our specific contributions include: (1) development of an Android application that performs real-time object detection, either locally on the smartphone or remotely on a server; and (2) characterization of the tradeoffs between object detection accuracy, latency, and battery drain, based on the system parameters of video resolution, deep learning model size, and offloading decision.
Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering Grid navigation spaces nested with the radio-frequency identification (RFID) tags are promising for industrial and other needs, because each tag can deliver information about a local two-dimensional or three-dimensional surrounding. The approach, however, requires high accuracy in vehicle self-localization. Otherwise, errors may lead to collisions; possibly even fatal. We propose a new extended finite impulse response (EFIR) filtering algorithm and show that it meets this need. The EFIR filter requires an optimal averaging interval, but does not involve the noise statistics which are often not well known to the engineer. It is more accurate than the extended Kalman filter (EKF) under real operation conditions and its iterative algorithm has the Kalman form. Better performance of the proposed EFIR filter is demonstrated based on extensive simulations in a comparison to EKF, which is widely used in RFID tag grids. We also show that errors in noise covariances may provoke divergence in EKF, whereas the EFIR filter remains stable and is thus more robust.
A Privacy-Preserving and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing. With the increasing importance of images in people’s daily life, content-based image retrieval (CBIR) has been widely studied. Compared with text documents, images consume much more storage space. Hence, its maintenance is considered to be a typical example for cloud storage outsourcing. For privacy-preserving purposes, sensitive images, such as medical and personal images, need to be encrypted before outsourcing, which makes the CBIR technologies in plaintext domain to be unusable. In this paper, we propose a scheme that supports CBIR over encrypted images without leaking the sensitive information to the cloud server. First, feature vectors are extracted to represent the corresponding images. After that, the pre-filter tables are constructed by locality-sensitive hashing to increase search efficiency. Moreover, the feature vectors are protected by the secure kNN algorithm, and image pixels are encrypted by a standard stream cipher. In addition, considering the case that the authorized query users may illegally copy and distribute the retrieved images to someone unauthorized, we propose a watermark-based protocol to deter such illegal distributions. In our watermark-based protocol, a unique watermark is directly embedded into the encrypted images by the cloud server before images are sent to the query user. Hence, when image copy is found, the unlawful query user who distributed the image can be traced by the watermark extraction. The security analysis and the experiments show the security and efficiency of the proposed scheme.
Grey Wolf Optimizer. This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces.
J-RoC: A Joint Routing and Charging scheme to prolong sensor network lifetime The emerging wireless charging technology creates a controllable and perpetual energy source to provide wireless power over distance. Schemes have been proposed to make use of wireless charging to prolong the sensor network lifetime. Unfortunately, existing schemes only passively replenish sensors that are deficient in energy supply, and cannot fully leverage the strengths of this technology. To address the limitation, we propose J-RoC - a practical and efficient Joint Routing and Charging scheme. Through proactively guiding the routing activities in the network and delivering energy to where it is needed, J-RoC not only replenishes energy into the network but also effectively improves the network energy utilization, thus prolonging the network lifetime. To evaluate the performance of the J-RoC scheme, we conduct experiments in a small-scale testbed and simulations in large-scale networks. Evaluation results demonstrate that J-RoC significantly elongates the network lifetime compared to existing wireless charging based schemes.
An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS. Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.
Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL.
Energy harvesting algorithm considering max flow problem in wireless sensor networks. In Wireless Sensor Networks (WSNs), sensor nodes with poor energy always have bad effect on the data rate or max flow. These nodes are called bottleneck nodes. In this paper, in order to increase the max flow, we assume an energy harvesting WSNs environment to investigate the cooperation of multiple Mobile Chargers (MCs). MCs are mobile robots that use wireless charging technology to charge sensor nodes in WSNs. This means that in energy harvesting WSNs environments, sensor nodes can obtain energy replenishment by using MCs or collecting energy from nature by themselves. In our research, we use MCs to improve the energy of the sensor nodes by performing multiple rounds of unified scheduling, and finally achieve the purpose of increasing the max flow at sinks. Firstly, we model this problem as a Linear Programming (LP) to search the max flow in a round of charging scheduling and prove that the problem is NP-hard. In order to solve the problem, we propose a heuristic approach: deploying MCs in units of paths with the lowest energy node priority. To reduce the energy consumption of MCs and increase the charging efficiency, we also take the optimization of MCs’ moving distance into our consideration. Finally, we extend the method to multiple rounds of scheduling called BottleNeck. Simulation results show that Bottleneck performs well at increasing max flow.
1.1
0.1
0.1
0.1
0.1
0.1
0.05
0
0
0
0
0
0
0
Revive: Rebalancing Off-Blockchain Payment Networks. Scaling the transaction throughput of decentralized blockchain ledgers such as Bitcoin and Ethereum has been an ongoing challenge. Two-party duplex payment channels have been designed and used as building blocks to construct linked payment networks, which allow atomic and trust-free payments between parties without exhausting the resources of the blockchain. Once a payment channel, however, is depleted (e.g., because transactions were mostly unidirectional) the channel would need to be closed and re-funded to allow for new transactions. Users are envisioned to entertain multiple payment channels with different entities, and as such, instead of refunding a channel (which incurs costly on-chain transactions), a user should be able to leverage his existing channels to rebalance a poorly funded channel. To the best of our knowledge, we present the first solution that allows an arbitrary set of users in a payment channel network to securely rebalance their channels, according to the preferences of the channel owners. Except in the case of disputes (similar to conventional payment channels), our solution does not require on-chain transactions and therefore increases the scalability of existing blockchains. In our security analysis, we show that an honest participant cannot lose any of its funds while rebalancing. We finally provide a proof of concept implementation and evaluation for the Ethereum network.
Witness indistinguishable and witness hiding protocols
Proofs of Storage from Homomorphic Identification Protocols Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where `tags' on multiple messages can be homomorphically combined to yield a `tag' on any linear combination of these messages. We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).
Publicly Verifiable Computation of Polynomials Over Outsourced Data With Multiple Sources. Among all types of computations, the polynomial function evaluation is a fundamental, yet an important one due to its wide usage in the engineering and scientific problems. In this paper, we investigate publicly verifiable outsourced computation for polynomial evaluation with the support of multiple data sources. Our proposed verification scheme is universally applicable to all types of polynomial...
Bitcoin-based fair payments for outsourcing computations of fog devices. Fog computing can be viewed as an extension of cloud computing that enables transactions and resources at the edge of the network. In the paradigms of fog computing, the fog user (outsourcer) with resource-constraint devices can outsource the distributed computation tasks to the untrusted fog nodes (workers) and pays for them. Recently, plenty of research work has been done on fair payments. However, all existing solutions adopt the traditional e-cash system to generate payment token, which needs a trusted authority (i.e. a bank) to prevent double-spending. The bank will become the bottleneck of the payments system. In this paper, we propose a new fair payment scheme for outsourcing computations based on Bitcoin. Due to the advantages of Bitcoin syntax, the users can transact directly without needing a bank. Besides, the proposed construction can guarantee that no matter how a malicious outsourcer behaves, the honest workers will be paid if he completed the computing tasks.
Cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. With the development of cloud computing and wireless body area networks (WBANs), wearable equipments are able to become new intelligent terminals to provide services for users, which plays an important role to improve the human health-care service. However, The traditional WBANs devices have limited computing and storage capabilities. These restrictions limit the services that WBANs can provide to users. Thus the concept of Cloud-aided WBANs has been proposed to enhance the capabilities of WBANs. In addition, due to the openness of the cloud computing environment, the protection of the user's physiological information and privacy remains a major concern. In previous authentication protocols, few of them can protect the user's private information in insecure channel. In this paper, we propose a cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. Our protocol ensures that no one can obtain user's real identity except for the network manager in the registration phase. Moreover, in the authentication phase, the network manager cannot know the user's real identity. Note that, through the security analysis, we can conclude that our protocol can provide stronger security protection of private information than most of existing schemes in insecure channel.
A Survey on Big Data Market: Pricing, Trading and Protection. Big data is considered to be the key to unlocking the next great waves of growth in productivity. The amount of collected data in our world has been exploding due to a number of new applications and technologies that permeate our daily lives, including mobile and social networking applications, and Internet of Thing-based smart-world systems (smart grid, smart transportation, smart cities, and so on). With the exponential growth of data, how to efficiently utilize the data becomes a critical issue. This calls for the development of a big data market that enables efficient data trading. Via pushing data as a kind of commodity into a digital market, the data owners and consumers are able to connect with each other, sharing and further increasing the utility of data. Nonetheless, to enable such an effective market for data trading, several challenges need to be addressed, such as determining proper pricing for the data to be sold or purchased, designing a trading platform and schemes to enable the maximization of social welfare of trading participants with efficiency and privacy preservation, and protecting the traded data from being resold to maintain the value of the data. In this paper, we conduct a comprehensive survey on the lifecycle of data and data trading. To be specific, we first study a variety of data pricing models, categorize them into different groups, and conduct a comprehensive comparison of the pros and cons of these models. Then, we focus on the design of data trading platforms and schemes, supporting efficient, secure, and privacy-preserving data trading. Finally, we review digital copyright protection mechanisms, including digital copyright identifier, digital rights management, digital encryption, watermarking, and others, and outline challenges in data protection in the data trading lifecycle.
Probabilistic encryption A new probabilistic model of data encryption is introduced. For this model, under suitable complexity assumptions, it is proved that extracting any information about the cleartext from the cyphertext is hard on the average for an adversary with polynomially bounded computational resources. The proof holds for any message space with any probability distribution. The first implementation of this model is presented. The security of this implementation is proved under the interactability assumptin of deciding Quadratic Residuosity modulo composite numbers whose factorization is unknown.
A Game-Theoretical Approach for User Allocation in Edge Computing Environment Edge Computing provides mobile and Internet-of-Things (IoT) app vendors with a new distributed computing paradigm which allows an app vendor to deploy its app at hired edge servers distributed near app users at the edge of the cloud. This way, app users can be allocated to hired edge servers nearby to minimize network latency and energy consumption. A cost-effective edge user allocation (EUA) requires maximum app users to be served with minimum overall system cost. Finding a centralized optimal solution to this EUA problem is NP-hard. Thus, we propose EUAGame, a game-theoretic approach that formulates the EUA problem as a potential game. We analyze the game and show that it admits a Nash equilibrium. Then, we design a novel decentralized algorithm for finding a Nash equilibrium in the game as a solution to the EUA problem. The performance of this algorithm is theoretically analyzed and experimentally evaluated. The results show that the EUA problem can be solved effectively and efficiently.
Grey Wolf Optimizer. This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces.
Development of a UAV-LiDAR System with Application to Forest Inventory We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m(2)) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points per m(2), to 0.15 m when the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
A review on interval type-2 fuzzy logic applications in intelligent control. A review of the applications of interval type-2 fuzzy logic in intelligent control has been considered in this paper. The fundamental focus of the paper is based on the basic reasons for using type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this review, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy controllers. We also mention alternative approaches to designing type-2 fuzzy controllers without optimization techniques.
Neural network adaptive tracking control for a class of uncertain switched nonlinear systems. •Study the method of the tracking control of the switched uncertain nonlinear systems under arbitrary switching signal controller.•A multilayer neural network adaptive controller with multilayer weight norm adaptive estimation is been designed.•The adaptive law is expand from calculation the second layer weight of neural network to both of the two layers weight.•The controller proposed improve the tracking error performance of the closed-loop system greatly.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.202178
0.202178
0.202178
0.202178
0.102142
0.04162
0.000789
0
0
0
0
0
0
0
Randomized cuts for 3D mesh analysis The goal of this paper is to investigate a new shape analysis method based on randomized cuts of 3D surface meshes. The general strategy is to generate a random set of mesh segmentations and then to measure how often each edge of the mesh lies on a segmentation boundary in the randomized set. The resulting "partition function" defined on edges provides a continuous measure of where natural part boundaries occur in a mesh, and the set of "most consistent cuts" provides a stable list of global shape features. The paper describes methods for generating random distributions of mesh segmentations, studies sensitivity of the resulting partition functions to noise, tessellation, pose, and intra-class shape variations, and investigates applications in mesh visualization, segmentation, deformation, and registration.
Hierarchical mesh segmentation based on fitting primitives In this paper, we describe a hierarchical face clustering algorithm for triangle meshes based on fitting primitives belonging to an arbitrary set. The method proposed is completely automatic, and generates a binary tree of clusters, each of which is fitted by one of the primitives employed. Initially, each triangle represents a single cluster; at every iteration, all the pairs of adjacent clusters are considered, and the one that can be better approximated by one of the primitives forms a new single cluster. The approximation error is evaluated using the same metric for all the primitives, so that it makes sense to choose which is the most suitable primitive to approximate the set of triangles in a cluster.Based on this approach, we have implemented a prototype that uses planes, spheres and cylinders, and have experimented that for meshes made of 100 K faces, the whole binary tree of clusters can be built in about 8 s on a standard PC.The framework described here has natural application in reverse engineering processes, but it has also been tested for surface denoising, feature recovery and character skinning.
A new CAD mesh segmentation method, based on curvature tensor analysis This paper presents a new and efficient algorithm for the decomposition of 3D arbitrary triangle meshes and particularly optimized triangulated CAD meshes. The algorithm is based on the curvature tensor field analysis and presents two distinct complementary steps: a region based segmentation, which is an improvement of that presented by Lavoue et al. [Lavoue G, Dupont F, Baskurt A. Constant curvature region decomposition of 3D-meshes by a mixed approach vertex-triangle, J WSCG 2004;12(2):245-52] and which decomposes the object into near constant curvature patches, and a boundary rectification based on curvature tensor directions, which corrects boundaries by suppressing their artefacts or discontinuities. Experiments conducted on various models including both CAD and natural objects, show satisfactory results. Resulting segmented patches, by virtue of their properties (homogeneous curvature, clean boundaries) are particularly adapted to computer graphics tasks like parametric or subdivision surface fitting in an adaptive compression objective.
3D Mesh Labeling via Deep Convolutional Neural Networks This article presents a novel approach for 3D mesh labeling by using deep Convolutional Neural Networks (CNNs). Many previous methods on 3D mesh labeling achieve impressive performances by using predefined geometric features. However, the generalization abilities of such low-level features, which are heuristically designed to process specific meshes, are often insufficient to handle all types of meshes. To address this problem, we propose to learn a robust mesh representation that can adapt to various 3D meshes by using CNNs. In our approach, CNNs are first trained in a supervised manner by using a large pool of classical geometric features. In the training process, these low-level features are nonlinearly combined and hierarchically compressed to generate a compact and effective representation for each triangle on the mesh. Based on the trained CNNs and the mesh representations, a label vector is initialized for each triangle to indicate its probabilities of belonging to various object parts. Eventually, a graph-based mesh-labeling algorithm is adopted to optimize the labels of triangles by considering the label consistencies. Experimental results on several public benchmarks show that the proposed approach is robust for various 3D meshes, and outperforms state-of-the-art approaches as well as classic learning algorithms in recognizing mesh labels.
Identification and Analysis of Driver Postures for In-Vehicle Driving Activities and Secondary Tasks Recognition. Driver decisions and behaviors regarding the surrounding traffic are critical to traffic safety. It is important for an intelligent vehicle to understand driver behavior and assist in driving tasks according to their status. In this paper, the consumer range camera Kinect is used to monitor drivers and identify driving tasks in a real vehicle. Specifically, seven common tasks performed by multiple...
Fuzzy logic in control systems: fuzzy logic controller. I.
Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks The positioning methods based on received signal strength (RSS) measurements, link the RSS values to the position of the mobile station(MS) to be located. Their accuracy depends on the suitability of the propagation models used for the actual propagation conditions. In indoor wireless networks, these propagation conditions are very difficult to predict due to the unwieldy and dynamic nature of the RSS. In this paper, we present a novel method which dynamically estimates the propagation models that best fit the propagation environments, by using only RSS measurements obtained in real time. This method is based on maximizing compatibility of the MS to access points (AP) distance estimates. Once the propagation models are estimated in real time, it is possible to accurately determine the distance between the MS and each AP. By means of these distance estimates, the location of the MS can be obtained by trilateration. The method proposed coupled with simulations and measurements in a real indoor environment, demonstrates its feasibility and suitability, since it outperforms conventional RSS-based indoor location methods without using any radio map information nor a calibration stage.
New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. In this paper we describe the design of a fuzzy logic controller for the ball and beam system using a modified Ant Colony Optimization (ACO) method for optimizing the type of membership functions, the parameters of the membership functions and the fuzzy rules. This is achieved by applying a systematic and hierarchical optimization approach modifying the conventional ACO algorithm using an ant set partition strategy. The simulation results show that the proposed algorithm achieves better results than the classical ACO algorithm for the design of the fuzzy controller.
Integrating structured biological data by Kernel Maximum Mean Discrepancy Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments. Availability: Contact: kb@dbs.ifi.lmu.de
Noninterference for a Practical DIFC-Based Operating System The Flume system is an implementation of decentralized information flow control (DIFC) at the operating system level. Prior work has shown Flume can be implemented as a practical extension to the Linux operating system, allowing real Web applications to achieve useful security guarantees. However, the question remains if the Flume system is actually secure. This paper compares Flume with other recent DIFC systems like Asbestos, arguing that the latter is inherently susceptible to certain wide-bandwidth covert channels, and proving their absence in Flume by means of a noninterference proof in the communicating sequential processes formalism.
Efficient and reliable low-power backscatter networks There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors. This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality --i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.
A Model Predictive Control Approach to Microgrid Operation Optimization. Microgrids are subsystems of the distribution grid, which comprises generation capacities, storage devices, and controllable loads, operating as a single controllable system either connected or isolated from the utility grid. In this paper, we present a study on applying a model predictive control approach to the problem of efficiently optimizing microgrid operations while satisfying a time-varying request and operation constraints. The overall problem is formulated using mixed-integer linear programming (MILP), which can be solved in an efficient way by using commercial solvers without resorting to complex heuristics or decompositions techniques. Then, the MILP formulation leads to significant improvements in solution quality and computational burden. A case study of a microgrid is employed to assess the performance of the online optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid located in Athens, Greece. The experimental results show the feasibility and the effectiveness of the proposed approach.
Surrogate-assisted hierarchical particle swarm optimization. Meta-heuristic algorithms, which require a large number of fitness evaluations before locating the global optimum, are often prevented from being applied to computationally expensive real-world problems where one fitness evaluation may take from minutes to hours, or even days. Although many surrogate-assisted meta-heuristic optimization algorithms have been proposed, most of them were developed for solving expensive problems up to 30 dimensions. In this paper, we propose a surrogate-assisted hierarchical particle swarm optimizer for high-dimensional problems consisting of a standard particle swarm optimization (PSO) algorithm and a social learning particle swarm optimization algorithm (SL-PSO), where the PSO and SL-PSO work together to explore and exploit the search space, and simultaneously enhance the global and local performance of the surrogate model. Our experimental results on seven benchmark functions of dimensions 30, 50 and 100 demonstrate that the proposed method is competitive compared with the state-of-the-art algorithms under a limited computational budget.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.033333
0
0
0
0
0
0
0
0
0
Mode decomposition based deep learning model for multi-section traffic prediction Road traffic prediction plays a vital role in real-time traffic management of an intelligent transportation system (ITS). Many prediction models achieve fine results. However, most ignore the intrinsic characteristics of traffic parameter data and do not consider the spatiotemporal effects of road sections, which can reflect the situation of all road traffic. Therefore, multi-section traffic prediction is still an open problem. In this paper, empirical mode decomposition (EMD) is employed to decompose the information of traffic parameters into many intrinsic mode function (IMF) components, which represent the original road traffic information in periodic and random sequences. Then, by considering the superiority of deep learning in multi-dimensional data processing, which can handle the spatiotemporal effects, a prediction model based on a convolutional neural network (CNN) is proposed to achieve the prediction of periodic and random sequences, whose results are combined to obtain the final prediction. The dataset from the Caltrans Performance Measurement System is used to validate the model. The proposed prediction model is compared to several well-known models, such as PCA-BP, Lasso-BP, and standard CNN. Experiments show that the proposed prediction model achieves higher accuracy.
Knowledge harvesting in the big-data era The proliferation of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web and text sources have enabled the automatic construction of very large knowledge bases. Endeavors of this kind include projects such as DBpedia, Freebase, KnowItAll, ReadTheWeb, and YAGO. These projects provide automatically constructed knowledge bases of facts about named entities, their semantic classes, and their mutual relationships. They contain millions of entities and hundreds of millions of facts about them. Such world knowledge in turn enables cognitive applications and knowledge-centric services like disambiguating natural-language text, semantic search for entities and relations in Web and enterprise data, and entity-oriented analytics over unstructured contents. Prominent examples of how knowledge bases can be harnessed include the Google Knowledge Graph and the IBM Watson question answering system. This tutorial presents state-of-the-art methods, recent advances, research opportunities, and open challenges along this avenue of knowledge harvesting and its applications. Particular emphasis will be on the twofold role of knowledge bases for big-data analytics: using scalable distributed algorithms for harvesting knowledge from Web and text sources, and leveraging entity-centric knowledge for deeper interpretation of and better intelligence with Big Data.
Reservoir computing approaches to recurrent neural network training Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current “brand-names” of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed “map” of it.
Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes" Comparison of generative and discriminative classifiers is an ever-lasting topic. As an important contribution to this topic, based on their theoretical and empirical comparisons between the naïve Bayes classifier and linear logistic regression, Ng and Jordan (NIPS 841---848, 2001) claimed that there exist two distinct regimes of performance between the generative and discriminative classifiers with regard to the training-set size. In this paper, our empirical and simulation studies, as a complement of their work, however, suggest that the existence of the two distinct regimes may not be so reliable. In addition, for real world datasets, so far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation x into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either p(y|x) or p(x, y) for the data. This can be to some extent a demonstration of why Efron (J Am Stat Assoc 70(352):892---898, 1975) and O'Neill (J Am Stat Assoc 75(369):154---160, 1980) prefer normal-based linear discriminant analysis (LDA) when no model mis-specification occurs but other empirical studies may prefer linear logistic regression instead. Furthermore, we suggest that pairing of either LDA assuming a common diagonal covariance matrix (LDA-驴) or the naïve Bayes classifier and linear logistic regression may not be perfect, and hence it may not be reliable for any claim that was derived from the comparison between LDA-驴 or the naïve Bayes classifier and linear logistic regression to be generalised to all generative and discriminative classifiers.
Dest-ResNet: A Deep Spatiotemporal Residual Network for Hotspot Traffic Speed Prediction. With the ever-increasing urbanization process, the traffic jam has become a common problem in the metropolises around the world, making the traffic speed prediction a crucial and fundamental task. This task is difficult due to the dynamic and intrinsic complexity of the traffic environment in urban cities, yet the emergence of crowd map query data sheds new light on it. In general, a burst of crowd map queries for the same destination in a short duration (called "hotspot'') could lead to traffic congestion. For example, queries of the Capital Gym burst on weekend evenings lead to traffic jams around the gym. However, unleashing the power of crowd map queries is challenging due to the innate spatiotemporal characteristics of the crowd queries. To bridge the gap, this paper firstly discovers hotspots underlying crowd map queries. These discovered hotspots address the spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal Residual Network) is proposed for hotspot traffic speed prediction. Dest-ResNet is a sequence learning framework that jointly deals with two sequences in different modalities, i.e., the traffic speed sequence and the query sequence. The main idea of Dest-ResNet is to learn to explain and amend the errors caused when the unimodal information is applied individually. In this way, Dest-ResNet addresses the temporal causal correlation between queries and the traffic speed. As a result, Dest-ResNet shows a 30% relative boost over the state-of-the-art methods on real-world datasets from Baidu Map.
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models.
Discovering spatio-temporal causal interactions in traffic data streams The detection of outliers in spatio-temporal traffic data is an important research problem in the data mining and knowledge discovery community. However to the best of our knowledge, the discovery of relationships, especially causal interactions, among detected traffic outliers has not been investigated before. In this paper we propose algorithms which construct outlier causality trees based on temporal and spatial properties of detected outliers. Frequent substructures of these causality trees reveal not only recurring interactions among spatio-temporal outliers, but potential flaws in the design of existing traffic networks. The effectiveness and strength of our algorithms are validated by experiments on a very large volume of real taxi trajectories in an urban road network.
A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot Central idea is to avoid or slow down full convergence through the dynamic variation of parameters.Performance of different ACO variants was observed to choose one as the basis to the proposed approach.Convergence fuzzy controller with the objective of maintaining diversity to avoid premature convergence was created. Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The present paper explores a new fuzzy approach for diversity control in Ant Colony Optimization. The main idea is to avoid or slow down full convergence through the dynamic variation of a particular parameter. The performance of different variants of the Ant Colony Optimization algorithm is analyzed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence is created. Encouraging results on several traveling salesman problem instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Adaptive Navigation Support Adaptive navigation support is a specific group of technologies that support user navigation in hyperspace, by adapting to the goals, preferences and knowledge of the individual user. These technologies, originally developed in the field of adaptive hypermedia, are becoming increasingly important in several adaptive Web applications, ranging from Web-based adaptive hypermedia to adaptive virtual reality. This chapter provides a brief introduction to adaptive navigation support, reviews major adaptive navigation support technologies and mechanisms, and illustrates these with a range of examples.
Learning to Predict Driver Route and Destination Intent For many people, driving is a routine activity where people drive to the same destinations using the same routes on a regular basis. Many drivers, for example, will drive to and from work along a small set of routes, at about the same time every day of the working week. Similarly, although a person may shop on different days or at different times, they will often visit the same grocery store(s). In this paper, we present a novel approach to predicting driver intent that exploits the predictable nature of everyday driving. Our approach predicts a driver's intended route and destination through the use of a probabilistic model learned from observation of their driving habits. We show that by using a low-cost GPS sensor and a map database, it is possible to build a hidden Markov model (HMM) of the routes and destinations used by the driver. Furthermore, we show that this model can be used to make accurate predictions of the driver's destination and route through on-line observation of their GPS position during the trip. We present a thorough evaluation of our approach using a corpus of almost a month of real, everyday driving. Our results demonstrate the effectiveness of the approach, achieving approximately 98% accuracy in most cases. Such high performance suggests that the method can be harnessed for improved safety monitoring, route planning taking into account traffic density, and better trip duration prediction
A Minimal Set Of Coordinates For Describing Humanoid Shoulder Motion The kinematics of the anatomical shoulder are analysed and modelled as a parallel mechanism similar to a Stewart platform. A new method is proposed to describe the shoulder kinematics with minimal coordinates and solve the indeterminacy. The minimal coordinates are defined from bony landmarks and the scapulothoracic kinematic constraints. Independent from one another, they uniquely characterise the shoulder motion. A humanoid mechanism is then proposed with identical kinematic properties. It is then shown how minimal coordinates can be obtained for this mechanism and how the coordinates simplify both the motion-planning task and trajectory-tracking control. Lastly, the coordinates are also shown to have an application in the field of biomechanics where they can be used to model the scapulohumeral rhythm.
Massive MIMO Antenna Selection: Switching Architectures, Capacity Bounds, and Optimal Antenna Selection Algorithms. Antenna selection is a multiple-input multiple-output (MIMO) technology, which uses radio frequency (RF) switches to select a good subset of antennas. Antenna selection can alleviate the requirement on the number of RF transceivers, thus being attractive for massive MIMO systems. In massive MIMO antenna selection systems, RF switching architectures need to be carefully considered. In this paper, w...
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.2
0.2
0.2
0.2
0.2
0.2
0.2
0.028571
0
0
0
0
0
0
The FERET Evaluation Methodology for Face-Recognition Algorithms Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.
A survey on deep learning based face recognition. Deep learning, in particular the deep convolutional neural networks, has received increasing interests in face recognition recently, and a number of deep learning methods have been proposed. This paper summarizes about 330 contributions in this area. It reviews major deep learning concepts pertinent to face image analysis and face recognition, and provides a concise overview of studies on specific face recognition problems, such as handling variations in pose, age, illumination, expression, and heterogeneous face matching. A summary of databases used for deep face recognition is given as well. Finally, some open challenges and directions are discussed for future research.
Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans. Recent developments in deep convolutional neural networks (DCNNs) have shown impressive performance improvements on various object detection/recognition problems. This has been made possible due to the availability of large annotated data and a better understanding of the nonlinear mapping between images and class labels, as well as the affordability of powerful graphics processing units (GPUs). T...
Recent advances in ear biometrics In this paper, a relatively new form of biometrics - ear biometrics - is introduced and compared with popular forms of biometrics such as face and fingerprint. A review of the leading works including those, which appear in the research world very lately, is given. In the end, a proposal for possible future research directions is discussed.
A Skin-Color and Template Based Technique for Automatic Ear Detection This paper proposes an efficient skin-color and template based technique for automatic ear detection in a side face image. The technique first separates skin regions from non skin regions and then searches for the ear within skin regions. Ear detection process involves three major steps. First, Skin Segmentation to eliminate all non-skin pixels from the image, second Ear Localization to perform ear detection using template matching approach, and third Ear Verification to validate the ear detection using the Zernike moments based shape descriptor. To handle the detection of ears of various shapes and sizes, an ear template is created considering the ears of various shapes (triangular, round, oval and rectangular) and resized automatically to a size suitable for the detection. Proposed technique is tested on the IIT Kanpur ear database consisting of 150 side face images and gives 94% accuracy.
Enhancing security and privacy in biometrics-based authentication systems Because biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. It is important that such biometrics-based authentication systems be designed to withstand attacks when employed in security-critical applications, especially in unattended remote applications such as e-commerce. In this paper we outline the inherent strengths of biometrics-based authentication, identify the weak links in systems employing biometrics-based authentication, and present new solutions for eliminating some of these weak links. Although, for illustration purposes, fingerprint authentication is used throughout, our analysis extends to other biometrics-based methods.
A novel geometric feature extraction method for ear recognition. We proposed a novel geometric feature extraction approach for ear image.Both the maximum and the minimum ear height lines are used to characterize the contour of outer helix.Our method achieves recognition rate of 98.33 on the USTB subset1 and of 99.6 on the IIT Delhi database.Our geometric method can be combined with the appearance approaches to improve the recognition performance. The discriminative ability of geometric features can be well supported by empirical studies in ear recognition. Recently, a number of methods have been suggested for geometric feature extraction from ear images. However, these methods usually have relatively high feature dimension or are sensitive to rotation and scale variations. In this paper, we propose a novel geometric feature extraction method to address these issues. First, our studies show that the minimum Ear Height Line (EHL) is also helpful to characterize the contour of outer helix, and the combination of maximal EHL and minimum EHL can achieve better recognition performance. Second, we further extract three ratio-based features which are robust to scale variation. Our method has the feature dimension of six, and thus is efficient in matching for real-time ear recognition. Experimental results on two popular databases, i.e. USTB subset1 and IIT Delhi, show that the proposed approach can achieve promising recognition rates of 98.33% and 99.60%, respectively.
Multi-column Deep Neural Networks for Image Classification Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Deep learning Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning. Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, constructing a pattern-recognition or machine-learning system required careful engineering and considerable domain expertise to design a feature extractor that transformed the raw data (such as the pixel values of an image) into a suitable internal representation or feature vector from which the learning subsystem, often a classifier, could detect or classify patterns in the input. Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned. For classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations. An image, for example, comes in the form of an array of pixel values, and the learned features in the first layer of representation typically represent the presence or absence of edges at particular orientations and locations in the image. The second layer typically detects motifs by spotting particular arrangements of edges, regardless of small variations in the edge positions. The third layer may assemble motifs into larger combinations that correspond to parts of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of deep learning is that these layers of features are not designed by human engineers: they are learned from data using a general-purpose learning procedure. Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years. It has turned out to be very good at discovering intricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition1, 2, 3, 4 and speech recognition5, 6, 7, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules8, analysing particle accelerator data9, 10, reconstructing brain circuits11, and predicting the effects of mutations in non-coding DNA on gene expression and disease12, 13. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding14, particularly topic classification, sentiment analysis, question answering15 and language translation16, 17. We think that deep learning will have many more successes in the near future because it requires very little engineering by hand, so it can easily take advantage of increases in the amount of available computation and data. New learning algorithms and architectures that are currently being developed for deep neural networks will only accelerate this progress. The most common form of machine learning, deep or not, is supervised learning. Imagine that we want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets, each labelled with its category. During training, the machine is shown an image and produces an output in the form of a vector of scores, one for each category. We want the desired category to have the highest score of all categories, but this is unlikely to happen before training. We compute an objective function that measures the error (or distance) between the output scores and the desired pattern of scores. The machine then modifies its internal adjustable parameters to reduce this error. These adjustable parameters, often called weights, are real numbers that can be seen as 'knobs' that define the input–output function of the machine. In a typical deep-learning system, there may be hundreds of millions of these adjustable weights, and hundreds of millions of labelled examples with which to train the machine. To properly adjust the weight vector, the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error would increase or decrease if the weight were increased by a tiny amount. The weight vector is then adjusted in the opposite direction to the gradient vector. The objective function, averaged over all the training examples, can be seen as a kind of hilly landscape in the high-dimensional space of weight values. The negative gradient vector indicates the direction of steepest descent in this landscape, taking it closer to a minimum, where the output error is low on average. In practice, most practitioners use a procedure called stochastic gradient descent (SGD). This consists of showing the input vector for a few examples, computing the outputs and the errors, computing the average gradient for those examples, and adjusting the weights accordingly. The process is repeated for many small sets of examples from the training set until the average of the objective function stops decreasing. It is called stochastic because each small set of examples gives a noisy estimate of the average gradient over all examples. This simple procedure usually finds a good set of weights surprisingly quickly when compared with far more elaborate optimization techniques18. After training, the performance of the system is measured on a different set of examples called a test set. This serves to test the generalization ability of the machine — its ability to produce sensible answers on new inputs that it has never seen during training. Many of the current practical applications of machine learning use linear classifiers on top of hand-engineered features. A two-class linear classifier computes a weighted sum of the feature vector components. If the weighted sum is above a threshold, the input is classified as belonging to a particular category. Since the 1960s we have known that linear classifiers can only carve their input space into very simple regions, namely half-spaces separated by a hyperplane19. But problems such as image and speech recognition require the input–output function to be insensitive to irrelevant variations of the input, such as variations in position, orientation or illumination of an object, or variations in the pitch or accent of speech, while being very sensitive to particular minute variations (for example, the difference between a white wolf and a breed of wolf-like white dog called a Samoyed). At the pixel level, images of two Samoyeds in different poses and in different environments may be very different from each other, whereas two images of a Samoyed and a wolf in the same position and on similar backgrounds may be very similar to each other. A linear classifier, or any other 'shallow' classifier operating on raw pixels could not possibly distinguish the latter two, while putting the former two in the same category. This is why shallow classifiers require a good feature extractor that solves the selectivity–invariance dilemma — one that produces representations that are selective to the aspects of the image that are important for discrimination, but that are invariant to irrelevant aspects such as the pose of the animal. To make classifiers more powerful, one can use generic non-linear features, as with kernel methods20, but generic features such as those arising with the Gaussian kernel do not allow the learner to generalize well far from the training examples21. The conventional option is to hand design good feature extractors, which requires a considerable amount of engineering skill and domain expertise. But this can all be avoided if good features can be learned automatically using a general-purpose learning procedure. This is the key advantage of deep learning. A deep-learning architecture is a multilayer stack of simple modules, all (or most) of which are subject to learning, and many of which compute non-linear input–output mappings. Each module in the stack transforms its input to increase both the selectivity and the invariance of the representation. With multiple non-linear layers, say a depth of 5 to 20, a system can implement extremely intricate functions of its inputs that are simultaneously sensitive to minute details — distinguishing Samoyeds from white wolves — and insensitive to large irrelevant variations such as the background, pose, lighting and surrounding objects. From the earliest days of pattern recognition22, 23, the aim of researchers has been to replace hand-engineered features with trainable multilayer networks, but despite its simplicity, the solution was not widely understood until the mid 1980s. As it turns out, multilayer architectures can be trained by simple stochastic gradient descent. As long as the modules are relatively smooth functions of their inputs and of their internal weights, one can compute gradients using the backpropagation procedure. The idea that this could be done, and that it worked, was discovered independently by several different groups during the 1970s and 1980s24, 25, 26, 27. The backpropagation procedure to compute the gradient of an objective function with respect to the weights of a multilayer stack of modules is nothing more than a practical application of the chain rule for derivatives. The key insight is that the derivative (or gradient) of the objective with respect to the input of a module can be computed by working backwards from the gradient with respect to the output of that module (or the input of the subsequent module) (Fig. 1). The backpropagation equation can be applied repeatedly to propagate gradients through all modules, starting from the output at the top (where the network produces its prediction) all the way to the bottom (where the external input is fed). Once these gradients have been computed, it is straightforward to compute the gradients with respect to the weights of each module. Many applications of deep learning use feedforward neural network architectures (Fig. 1), which learn to map a fixed-size input (for example, an image) to a fixed-size output (for example, a probability for each of several categories). To go from one layer to the next, a set of units compute a weighted sum of their inputs from the previous layer and pass the result through a non-linear function. At present, the most popular non-linear function is the rectified linear unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). In past decades, neural nets used smoother non-linearities, such as tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster in networks with many layers, allowing training of a deep supervised network without unsupervised pre-training28. Units that are not in the input or output layer are conventionally called hidden units. The hidden layers can be seen as distorting the input in a non-linear way so that categories become linearly separable by the last layer (Fig. 1). In the late 1990s, neural nets and backpropagation were largely forsaken by the machine-learning community and ignored by the computer-vision and speech-recognition communities. It was widely thought that learning useful, multistage, feature extractors with little prior knowledge was infeasible. In particular, it was commonly thought that simple gradient descent would get trapped in poor local minima — weight configurations for which no small change would reduce the average error. In practice, poor local minima are rarely a problem with large networks. Regardless of the initial conditions, the system nearly always reaches solutions of very similar quality. Recent theoretical and empirical results strongly suggest that local minima are not a serious issue in general. Instead, the landscape is packed with a combinatorially large number of saddle points where the gradient is zero, and the surface curves up in most dimensions and curves down in the remainder29, 30. The analysis seems to show that saddle points with only a few downward curving directions are present in very large numbers, but almost all of them have very similar values of the objective function. Hence, it does not much matter which of these saddle points the algorithm gets stuck at. Interest in deep feedforward networks was revived around 2006 (refs 31,32,33,34) by a group of researchers brought together by the Canadian Institute for Advanced Research (CIFAR). The researchers introduced unsupervised learning procedures that could create layers of feature detectors without requiring labelled data. The objective in learning each layer of feature detectors was to be able to reconstruct or model the activities of feature detectors (or raw inputs) in the layer below. By 'pre-training' several layers of progressively more complex feature detectors using this reconstruction objective, the weights of a deep network could be initialized to sensible values. A final layer of output units could then be added to the top of the network and the whole deep system could be fine-tuned using standard backpropagation33, 34, 35. This worked remarkably well for recognizing handwritten digits or for detecting pedestrians, especially when the amount of labelled data was very limited36. The first major application of this pre-training approach was in speech recognition, and it was made possible by the advent of fast graphics processing units (GPUs) that were convenient to program37 and allowed researchers to train networks 10 or 20 times faster. In 2009, the approach was used to map short temporal windows of coefficients extracted from a sound wave to a set of probabilities for the various fragments of speech that might be represented by the frame in the centre of the window. It achieved record-breaking results on a standard speech recognition benchmark that used a small vocabulary38 and was quickly developed to give record-breaking results on a large vocabulary task39. By 2012, versions of the deep net from 2009 were being developed by many of the major speech groups6 and were already being deployed in Android phones. For smaller data sets, unsupervised pre-training helps to prevent overfitting40, leading to significantly better generalization when the number of labelled examples is small, or in a transfer setting where we have lots of examples for some 'source' tasks but very few for some 'target' tasks. Once deep learning had been rehabilitated, it turned out that the pre-training stage was only needed for small data sets. There was, however, one particular type of deep, feedforward network that was much easier to train and generalized much better than networks with full connectivity between adjacent layers. This was the convolutional neural network (ConvNet)41, 42. It achieved many practical successes during the period when neural networks were out of favour and it has recently been widely adopted by the computer-vision community. ConvNets are designed to process data that come in the form of multiple arrays, for example a colour image composed of three 2D arrays containing pixel intensities in the three colour channels. Many data modalities are in the form of multiple arrays: 1D for signals and sequences, including language; 2D for images or audio spectrograms; and 3D for video or volumetric images. There are four key ideas behind ConvNets that take advantage of the properties of natural signals: local connections, shared weights, pooling and the use of many layers. The architecture of a typical ConvNet (Fig. 2) is structured as a series of stages. The first few stages are composed of two types of layers: convolutional layers and pooling layers. Units in a convolutional layer are organized in feature maps, within which each unit is connected to local patches in the feature maps of the previous layer through a set of weights called a filter bank. The result of this local weighted sum is then passed through a non-linearity such as a ReLU. All units in a feature map share the same filter bank. Different feature maps in a layer use different filter banks. The reason for this architecture is twofold. First, in array data such as images, local groups of values are often highly correlated, forming distinctive local motifs that are easily detected. Second, the local statistics of images and other signals are invariant to location. In other words, if a motif can appear in one part of the image, it could appear anywhere, hence the idea of units at different locations sharing the same weights and detecting the same pattern in different parts of the array. Mathematically, the filtering operation performed by a feature map is a discrete convolution, hence the name. Although the role of the convolutional layer is to detect local conjunctions of features from the previous layer, the role of the pooling layer is to merge semantically similar features into one. Because the relative positions of the features forming a motif can vary somewhat, reliably detecting the motif can be done by coarse-graining the position of each feature. A typical pooling unit computes the maximum of a local patch of units in one feature map (or in a few feature maps). Neighbouring pooling units take input from patches that are shifted by more than one row or column, thereby reducing the dimension of the representation and creating an invariance to small shifts and distortions. Two or three stages of convolution, non-linearity and pooling are stacked, followed by more convolutional and fully-connected layers. Backpropagating gradients through a ConvNet is as simple as through a regular deep network, allowing all the weights in all the filter banks to be trained. Deep neural networks exploit the property that many natural signals are compositional hierarchies, in which higher-level features are obtained by composing lower-level ones. In images, local combinations of edges form motifs, motifs assemble into parts, and parts form objects. Similar hierarchies exist in speech and text from sounds to phones, phonemes, syllables, words and sentences. The pooling allows representations to vary very little when elements in the previous layer vary in position and appearance. The convolutional and pooling layers in ConvNets are directly inspired by the classic notions of simple cells and complex cells in visual neuroscience43, and the overall architecture is reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway44. When ConvNet models and monkeys are shown the same picture, the activations of high-level units in the ConvNet explains half of the variance of random sets of 160 neurons in the monkey's inferotemporal cortex45. ConvNets have their roots in the neocognitron46, the architecture of which was somewhat similar, but did not have an end-to-end supervised-learning algorithm such as backpropagation. A primitive 1D ConvNet called a time-delay neural net was used for the recognition of phonemes and simple words47, 48. There have been numerous applications of convolutional networks going back to the early 1990s, starting with time-delay neural networks for speech recognition47 and document reading42. The document reading system used a ConvNet trained jointly with a probabilistic model that implemented language constraints. By the late 1990s this system was reading over 10% of all the cheques in the United States. A number of ConvNet-based optical character recognition and handwriting recognition systems were later deployed by Microsoft49. ConvNets were also experimented with in the early 1990s for object detection in natural images, including faces and hands50, 51, and for face recognition52. Since the early 2000s, ConvNets have been applied with great success to the detection, segmentation and recognition of objects and regions in images. These were all tasks in which labelled data was relatively abundant, such as traffic sign recognition53, the segmentation of biological images54 particularly for connectomics55, and the detection of faces, text, pedestrians and human bodies in natural images36, 50, 51, 56, 57, 58. A major recent practical success of ConvNets is face recognition59. Importantly, images can be labelled at the pixel level, which will have applications in technology, including autonomous mobile robots and self-driving cars60, 61. Companies such as Mobileye and NVIDIA are using such ConvNet-based methods in their upcoming vision systems for cars. Other applications gaining importance involve natural language understanding14 and speech recognition7. Despite these successes, ConvNets were largely forsaken by the mainstream computer-vision and machine-learning communities until the ImageNet competition in 2012. When deep convolutional networks were applied to a data set of about a million images from the web that contained 1,000 different classes, they achieved spectacular results, almost halving the error rates of the best competing approaches1. This success came from the efficient use of GPUs, ReLUs, a new regularization technique called dropout62, and techniques to generate more training examples by deforming the existing ones. This success has brought about a revolution in computer vision; ConvNets are now the dominant approach for almost all recognition and detection tasks4, 58, 59, 63, 64, 65 and approach human performance on some tasks. A recent stunning demonstration combines ConvNets and recurrent net modules for the generation of image captions (Fig. 3). Recent ConvNet architectures have 10 to 20 layers of ReLUs, hundreds of millions of weights, and billions of connections between units. Whereas training such large networks could have taken weeks only two years ago, progress in hardware, software and algorithm parallelization have reduced training times to a few hours. The performance of ConvNet-based vision systems has caused most major technology companies, including Google, Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly growing number of start-ups to initiate research and development projects and to deploy ConvNet-based image understanding products and services. ConvNets are easily amenable to efficient hardware implementations in chips or field-programmable gate arrays66, 67. A number of companies such as NVIDIA, Mobileye, Intel, Qualcomm and Samsung are developing ConvNet chips to enable real-time vision applications in smartphones, cameras, robots and self-driving cars. Deep-learning theory shows that deep nets have two different exponential advantages over classic learning algorithms that do not use distributed representations21. Both of these advantages arise from the power of composition and depend on the underlying data-generating distribution having an appropriate componential structure40. First, learning distributed representations enable generalization to new combinations of the values of learned features beyond those seen during training (for example, 2n combinations are possible with n binary features)68, 69. Second, composing layers of representation in a deep net brings the potential for another exponential advantage70 (exponential in the depth). The hidden layers of a multilayer neural network learn to represent the network's inputs in a way that makes it easy to predict the target outputs. This is nicely demonstrated by training a multilayer neural network to predict the next word in a sequence from a local context of earlier words71. Each word in the context is presented to the network as a one-of-N vector, that is, one component has a value of 1 and the rest are 0. In the first layer, each word creates a different pattern of activations, or word vectors (Fig. 4). In a language model, the other layers of the network learn to convert the input word vectors into an output word vector for the predicted next word, which can be used to predict the probability for any word in the vocabulary to appear as the next word. The network learns word vectors that contain many active components each of which can be interpreted as a separate feature of the word, as was first demonstrated27 in the context of learning distributed representations for symbols. These semantic features were not explicitly present in the input. They were discovered by the learning procedure as a good way of factorizing the structured relationships between the input and output symbols into multiple 'micro-rules'. Learning word vectors turned out to also work very well when the word sequences come from a large corpus of real text and the individual micro-rules are unreliable71. When trained to predict the next word in a news story, for example, the learned word vectors for Tuesday and Wednesday are very similar, as are the word vectors for Sweden and Norway. Such representations are called distributed representations because their elements (the features) are not mutually exclusive and their many configurations correspond to the variations seen in the observed data. These word vectors are composed of learned features that were not determined ahead of time by experts, but automatically discovered by the neural network. Vector representations of words learned from text are now very widely used in natural language applications14, 17, 72, 73, 74, 75, 76. The issue of representation lies at the heart of the debate between the logic-inspired and the neural-network-inspired paradigms for cognition. In the logic-inspired paradigm, an instance of a symbol is something for which the only property is that it is either identical or non-identical to other symbol instances. It has no internal structure that is relevant to its use; and to reason with symbols, they must be bound to the variables in judiciously chosen rules of inference. By contrast, neural networks just use big activity vectors, big weight matrices and scalar non-linearities to perform the type of fast 'intuitive' inference that underpins effortless commonsense reasoning. Before the introduction of neural language models71, the standard approach to statistical modelling of language did not exploit distributed representations: it was based on counting frequencies of occurrences of short symbol sequences of length up to N (called N-grams). The number of possible N-grams is on the order of VN, where V is the vocabulary size, so taking into account a context of more than a handful of words would require very large training corpora. N-grams treat each word as an atomic unit, so they cannot generalize across semantically related sequences of words, whereas neural language models can because they associate each word with a vector of real valued features, and semantically related words end up close to each other in that vector space (Fig. 4). When backpropagation was first introduced, its most exciting use was for training recurrent neural networks (RNNs). For tasks that involve sequential inputs, such as speech and language, it is often better to use RNNs (Fig. 5). RNNs process an input sequence one element at a time, maintaining in their hidden units a 'state vector' that implicitly contains information about the history of all the past elements of the sequence. When we consider the outputs of the hidden units at different discrete time steps as if they were the outputs of different neurons in a deep multilayer network (Fig. 5, right), it becomes clear how we can apply backpropagation to train RNNs. RNNs are very powerful dynamic systems, but training them has proved to be problematic because the backpropagated gradients either grow or shrink at each time step, so over many time steps they typically explode or vanish77, 78. Thanks to advances in their architecture79, 80 and ways of training them81, 82, RNNs have been found to be very good at predicting the next character in the text83 or the next word in a sequence75, but they can also be used for more complex tasks. For example, after reading an English sentence one word at a time, an English 'encoder' network can be trained so that the final state vector of its hidden units is a good representation of the thought expressed by the sentence. This thought vector can then be used as the initial hidden state of (or as extra input to) a jointly trained French 'decoder' network, which outputs a probability distribution for the first word of the French translation. If a particular first word is chosen from this distribution and provided as input to the decoder network it will then output a probability distribution for the second word of the translation and so on until a full stop is chosen17, 72, 76. Overall, this process generates sequences of French words according to a probability distribution that depends on the English sentence. This rather naive way of performing machine translation has quickly become competitive with the state-of-the-art, and this raises serious doubts about whether understanding a sentence requires anything like the internal symbolic expressions that are manipulated by using inference rules. It is more compatible with the view that everyday reasoning involves many simultaneous analogies that each contribute plausibility to a conclusion84, 85. Instead of translating the meaning of a French sentence into an English sentence, one can learn to 'translate' the meaning of an image into an English sentence (Fig. 3). The encoder here is a deep ConvNet that converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN similar to the ones used for machine translation and neural language modelling. There has been a surge of interest in such systems recently (see examples mentioned in ref. 86). RNNs, once unfolded in time (Fig. 5), can be seen as very deep feedforward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long78. To correct for that, one idea is to augment the network with an explicit memory. The first proposal of this kind is the long short-term memory (LSTM) networks that use special hidden units, the natural behaviour of which is to remember inputs for a long time79. A special unit called the memory cell acts like an accumulator or a gated leaky neuron: it has a connection to itself at the next time step that has a weight of one, so it copies its own real-valued state and accumulates the external signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear the content of the memory. LSTM networks have subsequently proved to be more effective than conventional RNNs, especially when they have several layers for each time step87, enabling an entire speech recognition system that goes all the way from acoustics to the sequence of characters in the transcription. LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks that perform so well at machine translation17, 72, 76. Over the past year, several authors have made different proposals to augment RNNs with a memory module. Proposals include the Neural Turing Machine in which the network is augmented by a 'tape-like' memory that the RNN can choose to read from or write to88, and memory networks, in which a regular network is augmented by a kind of associative memory89. Memory networks have yielded excellent performance on standard question-answering benchmarks. The memory is used to remember the story about which the network is later asked to answer questions. Beyond simple memorization, neural Turing machines and memory networks are being used for tasks that would normally require reasoning and symbol manipulation. Neural Turing machines can be taught 'algorithms'. Among other things, they can learn to output a sorted list of symbols when their input consists of an unsorted sequence in which each symbol is accompanied by a real value that indicates its priority in the list88. Memory networks can be trained to keep track of the state of the world in a setting similar to a text adventure game and after reading a story, they can answer questions that require complex inference90. In one test example, the network is shown a 15-sentence version of the The Lord of the Rings and correctly answers questions such as “where is Frodo now?”89. Unsupervised learning91, 92, 93, 94, 95, 96, 97, 98 had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. Although we have not focused on it in this Review, we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object. Human vision is an active process that sequentially samples the optic array in an intelligent, task-specific way using a small, high-resolution fovea with a large, low-resolution surround. We expect much of the future progress in vision to come from systems that are trained end-to-end and combine ConvNets with RNNs that use reinforcement learning to decide where to look. Systems combining deep learning and reinforcement learning are in their infancy, but they already outperform passive vision systems99 at classification tasks and produce impressive results in learning to play many different video games100. Natural language understanding is another area in which deep learning is poised to make a large impact over the next few years. We expect systems that use RNNs to understand sentences or whole documents will become much better when they learn strategies for selectively attending to one part at a time76, 86. Ultimately, major progress in artificial intelligence will come about through systems that combine representation learning with complex reasoning. Although deep learning and simple reasoning have been used for speech and handwriting recognition for a long time, new paradigms are needed to replace rule-based manipulation of symbolic expressions by operations on large vectors101. Download references The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute For Advanced Research (CIFAR), the National Science Foundation and Office of Naval Research for support. Y.L. and Y.B. are CIFAR fellows. Reprints and permissions information is available at www.nature.com/reprints.
Reciprocal N-body Collision Avoidance In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace. In our formulation, each robot acts fully in- dependently, and does not communicate with other robots. Based on the definition of velocity obstacles (5), we derive sufficient conditions for collision-free motion by reducing the problem to solving a low-dimensional linear program. We test our approach on several dense and complex simulation scenarios involving thousands of robots and compute collision-free actions for all of them in only a few millisec- onds. To the best of our knowledge, this method is the first that can guarantee local collision-free motion for a large number of robots in a cluttered workspace.
Development of a UAV-LiDAR System with Application to Forest Inventory We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m(2)) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points per m(2), to 0.15 m when the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. Existing studies on wireless sensor networks (WSNs) have revealed that the limited battery capacity of sensor nodes (SNs) hinders their perpetual operation. Recent findings in the domain of wireless energy transfer (WET) have attracted a lot of attention of academia and industry to cater the lack of energy in the WSNs. The main idea of WET is to restore the energy of SNs using one or more wireless mobile chargers (MCs), which leads to a new paradigm of wireless rechargeable sensor networks (WRSNs). The determination of an optimal order of charging the SNs (i.e., charging schedule) in an on-demand WRSN is a well-known NP-hard problem. Moreover, care must be taken while designing the charging schedule of an MC as requesting SNs introduce both spatial and temporal constraints. In this paper, we first present a Linear Programming (LP) formulation for the problem of scheduling an MC and then propose an efficient solution based on gravitational search algorithm (GSA). Our method is presented with a novel agent representation scheme and an efficient fitness function. We perform extensive simulations on the proposed scheme to demonstrate its effectiveness over two state-of-the-art algorithms, namely first come first serve (FCFS) and nearest job next with preemption (NJNP). The simulation results reveal that the proposed scheme outperforms both the existing algorithms in terms of charging latency. The virtue of our scheme is also proved by the well-known statistical test, analysis of variance (ANOVA), followed by post hoc analysis.
Robot tutor and pupils’ educational ability: Teaching the times tables Research shows promising results of educational robots in language and STEM tasks. In language, more research is available, occasionally in view of individual differences in pupils’ educational ability levels, and learning seems to improve with more expressive robot behaviors. In STEM, variations in robots’ behaviors have been examined with inconclusive results and never while systematically investigating how differences in educational abilities match with different robot behaviors. We applied an autonomously tutoring robot (without tablet, partly WOz) in a 2 × 2 experiment of social vs. neutral behavior in above-average vs. below-average schoolchildren (N = 86; age 8–10 years) while rehearsing the multiplication tables on a one-to-one basis. The standard school test showed that on average, pupils significantly improved their performance even after 3 occasions of 5-min exercises. Beyond-average pupils profited most from a robot tutor, whereas those below average in multiplication benefited more from a robot that showed neutral rather than more social behavior.
1.056614
0.05
0.025
0.021841
0.016288
0.008333
0.005
0.000003
0
0
0
0
0
0
A provably secure content distribution framework for portable DRM systems The growing demand for digital content using smart devices has taken the attenuation towards the enforcement of rights in digital content distribution. Digital rights management (DRM) systems support copyrights and try to control the access of digital content in a user-friendly way. However, user-friendly systems should also support user’s rights along with system requirements. The portable DRM architecture has the potential to support user’s rights. One of the critical challenges in portable DRM systems is the anonymous and secure delivery of digital content. To address this issue, a smart card-based content distribution framework is presented, which supports mutual authentication and secure session establishment. The security proof of the proposed scheme is presented in a random oracle model with rigorous informal security analysis, which signals that the proposed scheme has desirable attributes of security. Moreover, the security analysis is also performed using a widely adopted simulation tool, namely, “Automated Validation of Internet Security Protocol and Application (AVISPA)”. The study of performance has been conducted, which signals that the proposed scheme is also addressing the requirements of efficiency.
A Certificateless Authenticated Key Agreement Protocol for Digital Rights Management System.
An Improved RSA Based User Authentication and Session Key Agreement Protocol Usable in TMIS. Recently, Giri et al.'s proposed a RSA cryptosystem based remote user authentication scheme for telecare medical information system and claimed that the protocol is secure against all the relevant security attacks. However, we have scrutinized the Giri et al.'s protocol and pointed out that the protocol is not secure against off-line password guessing attack, privileged insider attack and also suffers from anonymity problem. Moreover, the extension of password guessing attack leads to more security weaknesses. Therefore, this protocol needs improvement in terms of security before implementing in real-life application. To fix the mentioned security pitfalls, this paper proposes an improved scheme over Giri et al.'s scheme, which preserves user anonymity property. We have then simulated the proposed protocol using widely-accepted AVISPA tool which ensures that the protocol is SAFE under OFMC and CL-AtSe models, that means the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The informal cryptanalysis has been also presented, which confirmed that the proposed protocol provides well security protection on the relevant security attacks. The performance analysis section compares the proposed protocol with other existing protocols in terms of security and it has been observed that the protocol provides more security and achieves additional functionalities such as user anonymity and session key verification.
A privacy enabling content distribution framework for digital rights management
Privacy Preserving Location-based Content Distribution Framework for Digital Rights Management Systems Advancement in network technology provides an opportunity for e-commerce industries to sell digital content. However, multimedia content has the drawback of easy copy and redistribution, which causes rampant piracy. Digital rights management (DRM) systems are developed to address content piracy. Basically, DRM focuses to control content consumption and distribution. In general, to provide copyrigh...
Computational Efficient Authenticated Digital Content Distribution Frameworks for DRM Systems: Review and Outlook Advancement in digital technologies presents a user-friendly environment for the digital content distribution. However, it makes digital content prone to piracy issues. Digital rights management (DRM) systems aim to ensure the authorized content usage. As the digital content broadcasts through the public network, a secure and authorized content access mechanism is required. As digital media users ...
Probabilistic encryption A new probabilistic model of data encryption is introduced. For this model, under suitable complexity assumptions, it is proved that extracting any information about the cleartext from the cyphertext is hard on the average for an adversary with polynomially bounded computational resources. The proof holds for any message space with any probability distribution. The first implementation of this model is presented. The security of this implementation is proved under the interactability assumptin of deciding Quadratic Residuosity modulo composite numbers whose factorization is unknown.
A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.
Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions The ever-increasing number of resource-constrained machine-type communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced mobile broadband (eMBB), massive machine type communications (mMTCs), and ultra-reliable and low latency communications (URLLCs), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include quality of service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead, and radio access network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy random access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions toward addressing RAN congestion problem, and then identify potential advantages, challenges, and use cases for the applications of emerging machine learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning approach in the mMTC scenario along with the recent advances toward enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions.
Priced Oblivious Transfer: How to Sell Digital Goods We consider the question of protecting the privacy of customers buying digital goods. More specifically, our goal is to allow a buyer to purchase digital goods from a vendor without letting the vendor learn what, and to the extent possible also when and how much, it is buying. We propose solutions which allow the buyer, after making an initial deposit, to engage in an unlimited number of priced oblivious-transfer protocols, satisfying the following requirements: As long as the buyer's balance contains sufficient funds, it will successfully retrieve the selected item and its balance will be debited by the item's price. However, the buyer should be unable to retrieve an item whose cost exceeds its remaining balance. The vendor should learn nothing except what must inevitably be learned, namely, the amount of interaction and the initial deposit amount (which imply upper bounds on the quantity and total price of all information obtained by the buyer). In particular, the vendor should be unable to learn what the buyer's current balance is or when it actually runs out of its funds. The technical tools we develop, in the process of solving this problem, seem to be of independent interest. In particular, we present the first one-round (two-pass) protocol for oblivious transfer that does not rely on the random oracle model (a very similar protocol was independently proposed by Naor and Pinkas [21]). This protocol is a special case of a more general "conditional disclosure" methodology, which extends a previous approach from [11] and adapts it to the 2-party setting.
Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Rapid arm-reaching movements serve as an excellent test bed for any theory about trajectory formation. How are these movements planned? A minimum acceleration criterion has been examined in the past, and the solution obtained, based on the Euler-Poisson equation, failed to predict that the hand would begin and end the movement at rest (i.e., with zero acceleration). Therefore, this criterion was rejected in favor of the minimum jerk, which was proved to be successful in describing many features of human movements. This letter follows an alternative approach and solves the minimum acceleration problem with constraints using Pontryagin's minimum principle. We use the minimum principle to obtain minimum acceleration trajectories and use the jerk as a control signal. In order to find a solution that does not include nonphysiological impulse functions, constraints on the maximum and minimum jerk values are assumed. The analytical solution provides a three-phase piecewise constant jerk signal (bang-bang control) where the magnitude of the jerk and the two switching times depend on the magnitude of the maximum and minimum available jerk values. This result fits the observed trajectories of reaching movements and takes into account both the extrinsic coordinates and the muscle limitations in a single framework. The minimum acceleration with constraints principle is discussed as a unifying approach for many observations about the neural control of movements.
Wireless Networks with RF Energy Harvesting: A Contemporary Survey Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations, and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RFEHNs according to the network types, i.e., single-hop networks, multi-antenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.
Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network. In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F-score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.
A Muscle Synergy-Driven ANFIS Approach to Predict Continuous Knee Joint Movement Continuous motion prediction plays a significant role in realizing seamless control of robotic exoskeletons and orthoses. Explicitly modeling the relationship between coordinated muscle activations from surface electromyography (sEMG) and human limb movements provides a new path of sEMG-based human–machine interface. Instead of the numeric features from individual channels, we propose a muscle synergy-driven adaptive network-based fuzzy inference system (ANFIS) approach to predict continuous knee joint movements, in which muscle synergy reflects the motor control information to coordinate muscle activations for performing movements. Four human subjects participated in the experiment while walking at five types of speed: 2.0 km/h, 2.5 km/h, 3.0 km/h, 3.5 km/h, and 4.0 km/h. The study finds that the acquired muscle synergies associate the muscle activations with human joint movements in a low-dimensional space and have been further utilized for predicting knee joint angles. The proposed approach outperformed commonly used numeric features from individual sEMG channels with an average correlation coefficient of 0.92 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \pm $</tex-math></inline-formula> 0.05. Results suggest that the correlation between muscle activations and knee joint movements is captured by the muscle synergy-driven ANFIS model and can be utilized for the estimation of continuous joint angles.
1.2
0.2
0.2
0.2
0.2
0.1
0
0
0
0
0
0
0
0