blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
214
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
21 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
141k
586M
star_events_count
int64
0
30.4k
fork_events_count
int64
0
9.67k
gha_license_id
stringclasses
8 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
50 values
src_encoding
stringclasses
23 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
29 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
fe9ea1343ffb2efd781be79b6d1c72a994733d25
449d555969bfd7befe906877abab098c6e63a0e8
/3862/CH9/EX9.6/Ex9_6.sce
6d9c4a4b1bde3fba3954b7dc5efa9bc67d3bd90f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
653
sce
Ex9_6.sce
clear //variable declaration //As supports A and B are simple supports and loading is only in vertical direction, the reactions RA and RB are in vertical directions only. //summation of all horizontal forces is zero & vertical forces is zero. P1=(30) //vertical down Load at 1m from A,KN P2=(40) //vertical down Load at 6.5m from A,KN Pu=(20) //uniform distributed load from 2m to 5m from A,KN/m(in 3m of span). Rb=(Pu*3*3.5+P1*1+P2*6.5)/5 printf("\n RB= %0.2f KN",Rb) Ra=Pu*3+P1+P2-Rb printf("\n RA= %0.2f KN",Ra)
6aa6b7f02d71f785a276a52b2123b35c5a8f2534
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.5/Unix-Windows/scilab-2.5/examples/man-examples/help.sce
2f03a447499dcef5a1b5dc616728b5365a28fa95
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
120
sce
help.sce
%helps = [%helps; "../../examples/man-examples/helpdir1", "Title1";"../../examples/man-examples/helpdir2", "Title2";];
15c8343117b3c4569371ca6779f25adfc5bc61d3
449d555969bfd7befe906877abab098c6e63a0e8
/2825/CH5/EX5.3/Ex5_3.sce
862b07c7ad1262b33d79d83a3af6f331251c610c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
682
sce
Ex5_3.sce
//Ex5_3 Pg-279 clc Ic=12.427*10^(-3) //collector current in A Ib=200*10^(-6) //base current in A ICBO=7*10^(-6) //collector to base leakage current in A Beta=(Ic-ICBO)/(Ib+ICBO) //Dc emitter current gain factor (value in texbook is wrong) printf("\n Dc emitter current gain factor beta = %.0f",Beta) Ie=Ic+Ib //emitter current printf("\n Emitter current = %.1f mA",Ie*10^3) alpha_dc=(Ic-ICBO)/(Ib+Ic) //common current gain factor printf("\n Common current gain factor alpha_dc = %.2f",alpha_dc) Ib=150*10^(-6) //new base current Ic=Beta*Ib+(Beta+1)*ICBO //collector current (value in textbook is wrong) printf("\n Collector current = %.3f mA \n",Ic*10^3)
2765c32171a78c2b876886aa86127b4541a757e5
449d555969bfd7befe906877abab098c6e63a0e8
/3886/CH6/EX6.14/6_14.sce
68df5a803ea57fab480506059bf1c0c54f4e2b3f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
248
sce
6_14.sce
//Force required at the end of lever d=40 //mm p=20/3 //mm W=40000 //N R=400 //mm mu=0.12 theta=atand(p/(%pi*d)) //degree P=(d*W*(mu+tand(theta)))/(2*R*(1-mu*tand(theta))) //N printf("Force required at the end of lever P=%0.2f N",P)
16ab24589eaeaf737d9ce6a060b62a531b7a9220
891e9f4e3fce67f553f07f24cef2e802423770b9
/fgoalattain/fgoalattainTests/demo4.sce
00888369f1054e705649bc3c90c39bf80efef2d0
[]
no_license
animeshbaranawal/FOSSEE
ae6b6c1a39803ad0fb26780b7f960a62431c71d2
75b1b18dcfd935f7ebbe89b44573c8076dae4267
refs/heads/master
2022-06-24T14:20:49.508846
2022-05-30T17:13:09
2022-05-30T17:13:09
50,281,099
1
0
null
null
null
null
UTF-8
Scilab
false
false
384
sce
demo4.sce
function f4=objfun4(x) f4(1)=x(2)-x(4)*x(4)*x(3); f4(2)=x(1)*x(3)-x(2)*x(2); f4(3)=x(5)*x(1)+x(4)*x(3); f4(4)=x(3)^2+x(1)-x(2)*x(3); endfunction x0=[3,1,-8,-3,0]; goal=[9,0,7,9]; weight=[5,8,0,8]; A=[7,0,-3,5,2]; b=[6]; Aeq=[8,6,-4,0,2]; beq=[9]; lb=[4,6,1,7,6]; ub=[10,11,12,13,14]; [z,gval,attainfactor,exitflag,output,lambda]=fgoalattain(objfun4,x0,goal,weight,A,b,Aeq,beq,lb,ub)
713824089582590825d610a2a9f49d72d099d56d
449d555969bfd7befe906877abab098c6e63a0e8
/1151/CH7/EX7.6/example_6.sce
2bec3798ed1230805ef232dfe0a0ba2f38a8ce7d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
271
sce
example_6.sce
s=poly(0,'s') a=(1+4*s); b=s^2*(1+s)*(1+2*s); d=a/b; h=syslin('c',d); clf(); nyquist(h) // add a datatip ax=gca(); h_h=ax.children($).children(2);//handle on Nyquist curve of h tip=datatipCreate(h_h,[1.331,0.684]); datatipSetOrientation(tip,"upper left");
81d03bc847a08094680a14ff69cd9621b0c75a9d
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/PDE2.prev.tst
ce76aa8dc282d5dffa2bb6a963718439865feac4
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
52
tst
PDE2.prev.tst
(x^3 + x^2*y + y^2).derivative("x", 2) = 6*x + 2*y
545ba09e32dca85a379e9a1304a2259e4c3b99d6
449d555969bfd7befe906877abab098c6e63a0e8
/1271/CH17/EX17.6/example17_6.sce
de93a891f64aac0920bb91e41123483ee1789feb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
307
sce
example17_6.sce
clc // Given that a = 4.28e-10 // cell side of Na in m e = 1.6e-19 // charge on an electron in C // Sample Problem 6 on page no. 17.20 printf("\n # PROBLEM 6 # \n") printf("Standard formula used \n") printf("R_h = 1/(n*e) \n") n = (2 / a^3) R = -(1 / (n * e)) printf("\n Hall coefficient is %e m^3/C.",R)
7c095c27d0ab9896a2570aac015f89a5caac4d16
717ddeb7e700373742c617a95e25a2376565112c
/3424/CH9/EX9.1/Ex9_1.sce
f1bc6d380f6a79989f919445ffa156a7ae9d9652
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
457
sce
Ex9_1.sce
clc //Initialization of variables T = 90 // degrees U = 25 //ft/s //Calculations funcprot(0) function y1=f1(x1),y1=(20*1.24*(10^-3))/(x1^0.5),endfunction I1=intg(0,4,f1) function x=f(y),x=((0.744*(1-((y^2)/(4)))-(-0.893)))*10,endfunction I=intg(-2,2,f) // Results printf("No lift generated ") printf ("\ndrag generated when parallel to upstream flow is %.4f lb",I1) printf ("\ndrag generated when perpendicular to upstream flow is %.1f lb",I)
fa4f6ac644ee24716637df2380078884573a5894
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.0/Unix/scilab-2.0/macros/sci2for/freewrk.sci
262fb87278edfe8dc72dae70bcb1ce04bddc02b1
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
598
sci
freewrk.sci
//[nwrk]=freewrk(nwrk,name) //cette macro libere la place occuppe par la variable dont le nom est //donne dans names //! // write(6,'-----------------'+name);pause if part(name,1:7)=='work(iw' then ext=part(name,8:length(name)-1) if isnum(ext) then nb=evstr(ext) nw2=nwrk(2); nw2(2,nb)='0' // write(6,'libere :'+nw2(1,nb)) nwrk(2)=nw2 end elseif part(name,1:9)=='iwork(iiw' then ext=part(name,10:length(name)-1) if isnum(ext) then nb=evstr(ext) nw5=nwrk(5) nw5(2,nb)='0' nwrk(5)=nw5 end end //end
8531d0122b54be7249aefddc52aa4b2f245f64fc
449d555969bfd7befe906877abab098c6e63a0e8
/548/CH5/EX5.13/5_13.sce
1786eae9358436514f5de98ad44dff1025ee5291
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
268
sce
5_13.sce
pathname=get_absolute_file_path('5_13.sce') filename=pathname+filesep()+'5_13data.sci' exec(filename) L=q*S*4*a/sqrt(M^2-1); disp(L,"L=","L=q*S*4*a/sqrt(M^2-1)","Lift exerted on airplane L:") printf("\Answer:\n") printf("\n\Lift exerted on airplane: %f N\n\n",L)
8c6cfb7c25175e6e8b130ab528a341d0a9443419
449d555969bfd7befe906877abab098c6e63a0e8
/2339/CH1/EX1.1.7/Ex1_7.sce
61849dd7966c2e56c6cab03ef517948b1a572d1e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
176
sce
Ex1_7.sce
clc clear m=2; //mass in kg T1=30+273; //Temperature in K T2=60+273; Cp=4.187; T=T2/T1; X=double(log(T)); S=m*Cp*X; printf('Entropy Change of Water: %1.4f kJ/K',S);
466ff264aa435e156d897c3337bea82f5ee3d9ba
638792a4fe4462b8d15e3374e76b149c6f5ee3e0
/PictureBADE/PictureBADE_practice.sce
52775e0650424cec510813c1cc7a28d9028f56ca
[]
no_license
katielavigne/fMRI_tasks
8cdb3bc63486a2b44118bc8b4c67b5799cd5080b
abd1f0b089f454531723186d50afdfa17912321c
refs/heads/main
2023-09-01T12:59:35.488292
2021-11-03T12:26:15
2021-11-03T12:26:15
424,210,826
0
0
null
null
null
null
UTF-8
Scilab
false
false
5,308
sce
PictureBADE_practice.sce
scenario="PictureBADE_practice"; pcl_file = "PictureBADE_practice.pcl"; scenario_type = fMRI_emulation; # set for debugging #scenario_type=fMRI; # set for testing no_logfile = false; # set for testing active_buttons = 3; button_codes = 3, 1, 9; scan_period = 2000; # TR pulses_per_scan = 1; pulse_code = 1; pulse_width=indefinite_port_code; response_logging = log_active; # prevents responses in trials with "all_responses = false" from being included in logfile default_background_color=0,0,0; default_font="arial"; default_font_size = 28; default_text_color = 255,255,255; begin; ########################### ###VARIABLE DECLARATIONS### ########################### $text_x='0'; $text_y='-25'; $img_x='0'; $img_y='125'; $box_outline_height='30'; $box_outline_width='30'; $yes_x='-50'; $no_x='50'; $rating_y='-75'; ########################### ###GRAPHICS DECLARATIONS### ########################### box{height = $box_outline_height; width = $box_outline_width; color = 255, 255, 255;} rating_outline; #outline for rating boxes box{height = '$box_outline_height-5'; width = '$box_outline_width-5'; color = 0, 0, 0;} rating_yes; # colours of rating boxes are modified box{height = '$box_outline_height-5'; width = '$box_outline_width-5'; color = 0, 0, 0;} rating_no; # when rating is made (black to white) text {caption = "+"; font_size = 36;}fixation; text {caption = "Thank you!";}thanks; text {caption = "2nd Practice: You have 4 seconds to respond";}pracB; text {caption = "Final Practice: You have 2.5 seconds to respond";}pracC; text {caption = "More Practice?";}prac_more; ######################## ##PICTURE DECLARATIONS## ######################## picture {} default; picture {text fixation; x = 0; y = $img_y;}fixation_pic; bitmap {filename="BADEscreenshot.bmp";} screenshot; picture{ bitmap screenshot; x=0; y=0; text {caption="Index finger for yes"; font_size=18; font="arial"; }instructions_txtL; x=-250; y=0; text {caption="Middle finger for no"; font_size=18; font="arial"; }instructions_txtR; x=250; y=0; text {caption="INSTRUCTIONS"; font_size=18; font="arial"; }instrct; x = 0; y = 255; }instructions_pic1; picture{ bitmap screenshot; x=0; y=0; text instructions_txtL; x=-250; y=0; text instructions_txtR; x=250; y=0; text {caption="STARTING..."; font_size=16; font="arial"; }starting; x = 0; y = 325; }instructions_pic2; ###################### ##TRIAL DECLARATIONS## ###################### trial{ trial_type = specific_response; trial_duration = forever; terminator_button = 3; stimulus_event{ picture instructions_pic1; }instructions_event; }instructions_trial; trial { all_responses = false; # responses made in this trial will be ignored picture fixation_pic; code = "fixation"; duration = 1000; }fixation_trial; trial { trial_type = specific_response; trial_duration = forever; terminator_button = 3; picture {text pracB; x = 0; y = 0;}pic_pracB; code = "practiceBinstr"; }pracBinstr; trial { trial_type = specific_response; trial_duration = forever; terminator_button = 3; picture {text pracC; x = 0; y = 0;}pic_pracC; code = "practiceCinstr"; }pracCinstr; trial{ trial_type = first_response; trial_duration = forever; stimulus_event{ picture {text prac_more; x=0; y=0; box rating_outline; x = $yes_x; y = $rating_y; box rating_outline; x = $no_x; y = $rating_y; box rating_yes; x = $yes_x; y = $rating_y; box rating_no; x = $no_x; y = $rating_y; text {caption = "YES"; font_size = 18;} yes; x = $yes_x; y = '$rating_y-50'; text {caption = "NO"; font_size = 18;} no; x = $no_x; y = '$rating_y-50'; }moreprac_pic; code = "debug"; # modified in PCL }more_prac_picture_event; }moreprac_pic_trial; trial{ trial_duration = 1000; picture moreprac_pic; }response_prac_event; trial { all_responses = false; # responses made in this trial will be ignored stimulus_event{ picture fixation_pic; code = "ITI"; } ITI_event; }ITI_trial; trial{ trial_type = first_response; trial_duration = forever; stimulus_event{ picture {text { caption = "debug your pcl file"; } img_txt ; x=$text_x ; y=$text_y; bitmap { filename = "bat_img3.png"; preload = true; height = 225; scale_factor = scale_to_height;} img ; x=$img_x;y=$img_y; box rating_outline; x = $yes_x; y = $rating_y; box rating_outline; x = $no_x; y = $rating_y; box rating_yes; x = $yes_x; y = $rating_y; box rating_no; x = $no_x; y = $rating_y; text yes; x = $yes_x; y = '$rating_y-50'; text no; x = $no_x; y = '$rating_y-50'; }pic; code = "debug"; # modified in PCL }pic_picture_event; }generic_pic_trial; trial{ trial_duration = 1000; # modified in PCL based on RTs picture pic; }response_trial_event; trial{ trial_duration = 1000; all_responses = false; # responses made in this trial will be ignored stimulus_event{ picture {text img_txt ; x=$text_x ; y=$text_y; bitmap img ; x=$img_x;y=$img_y; }finalpic; code = "debug"; # modified in PCL }finalpic_picture_event; }generic_finalpic_trial; trial { all_responses = false; # responses made in this trial will be ignored picture {text thanks; x = 0; y = 0;}pic_thanks; code = "thanks"; duration = 2000; }end_trial; #trial { # trial_duration = 1000; # picture display_pic; duration=1000;} display_pictr;
9169cdba95bbf8981e749ab2278e26cf35f041b5
449d555969bfd7befe906877abab098c6e63a0e8
/2471/CH4/EX4.8/Ex4_8.sce
418ccce061191e1361c14ef8d254096ef0bee177
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
545
sce
Ex4_8.sce
clear ; clc; // Example 4.8 printf('Example 4.8\n\n'); printf('Page No. 103\n\n'); // given d = 0.100;// Diameter of pipe in m T1 = 383;// Surface temperature in Kelvin T2 = 288;// Surrounding air temperature in Kelvin e = 0.9;// Emissivity of pipe A = %pi * d;// Surface Area per unit length in m^2/m // By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*A*((T1/100)^4-(T2/100)^4) Q = 5.669*e*A*((T1/100)^4-(T2/100)^4);// in W/m printf('The radiative heat loss per unit length is %.0f W/sq.m',ceil(Q))
a2aa4c99f2bef0a4d3d167c22f55215bf7e3a5b3
449d555969bfd7befe906877abab098c6e63a0e8
/1286/CH9/EX9.18/9_18.sce
4225244ba4d7a05be95412ed03066cab058a5895
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
234
sce
9_18.sce
clc //initialisation of variables T1=40//k T2=120//k c1=0.076 c2=0.00026 c3=0.15 //CALCULATIONS r1=c1*(T2-T1) r2=(c2/2)*(T2^2-T1^2) r3=c3*log(T2/T1) ds=5*(r1-r2-r3) //results printf(' change in entropy = % 1f cal/k',ds)
f883b9bf4fd851755af9a16a6f920322d81bd393
449d555969bfd7befe906877abab098c6e63a0e8
/2234/CH3/EX3.5/ex3_5.sce
fce06ff60a325ce31abdc0363ba209df71dcdb47
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
261
sce
ex3_5.sce
clc; u=14; //object distance in cm f=-21; //focal distance in cm v=(-5/42); //simplifying(1/f)=(1/v)-(1/u) I=(3*-8.4)/(-14); //using m=(1/0)=(v/u); disp(v,"Image distance in cm = "); //displaying result disp(I,"I in cm = "); //displaying result
79ded7e9801a341269738922605cfc69c2651a40
449d555969bfd7befe906877abab098c6e63a0e8
/1739/CH8/EX8.3/Exa8_3.sce
43baf74d980e92221cd71feb546bf1724645ae30
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
296
sce
Exa8_3.sce
//Exa 8.3 clc; clear; close; //Given data : lambda=1300;//in nm lambda=lambda*10^-9;//in meter ETA=90;//quantum efficiency in % h=6.63*10^-34;//Planks constant q=1.6*10^-19;//in coulamb c=3*10^8;//in m/s R=(ETA/100)*q*lambda/(h*c);//in A/W disp(R,"Responsivity of InGaAs in A/W : ");
60412526c32feef687eb01ced7257faf0e7f6588
449d555969bfd7befe906877abab098c6e63a0e8
/1061/CH4/EX4.3/Ex4_3.sce
f386adfa2d4d1afca948161b278f03b2b5417243
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
874
sce
Ex4_3.sce
//Ex:4.3 clc; clear; close; n=1.46;// core refractive index p=0.286;// photoelastic coeff b=7*10^-11;// isothermal compressibility k=1.381*10^-23;// boltzmann's constant tf=1400;// fictive temperature in k y1=0.85*10^-6;// wavelength in m yr=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y1^4); e=2.718281828; akm=e^(-yr*10^3); at=10*log(1/akm)/log(10);// attenuation at y=0.85 um y2=1.55*10^-6;// wavelength in m yr1=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y2^4); akm1=e^(-yr1*10^3); at1=10*log(1/akm1)/log(10);// attenuation at y=1.55 um y3=1.30*10^-6;// wavelength in m yr2=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y3^4); akm2=e^(-yr2*10^3); at2=10*log(1/akm2)/log(10);// attenuation at y=1.30 um printf("The Loss of an optical fiber =%f dB/km", at); printf("\n The Loss of an optical fiber =%f dB/km", at1); printf("\n The Loss of an optical fiber =%f dB/km", at2);
69bcd63ff2cd773bf47dec0b915001b7821f9810
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set11/s_Fundamentals_Of_Nuclear_Science_And_Engineering_J._K._Shultis_And_R._E._Faw_3535.zip/Fundamentals_Of_Nuclear_Science_And_Engineering_J._K._Shultis_And_R._E._Faw_3535/CH7/EX7.6/Ex7_6.sce
d3338c11efe88f7eb6a356e6e7f79e65bc616355
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
178
sce
Ex7_6.sce
errcatch(-1,"stop");mode(2);//Chapter 7, Example 7.6, Page 206 // Energy required Z = 79 E = 700/Z printf("E = %f MeV\n",E) //Answers may vary due to round off error exit();
5ab97abe9293303dd4601167a0a5af51f0c6a7c3
449d555969bfd7befe906877abab098c6e63a0e8
/2825/CH6/EX6.3/Ex6_3.sce
603e1a3bd71dd251d96da9696dfe5235afdc2fcb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
626
sce
Ex6_3.sce
//Ex6_3 Pg-336 clc Rb=200*10^(3) //base resistance in ohm Vcc=10 //supply voltage in V Vbe=0.7 //voltage drop in V Rl=2*10^(3) //load resistor in ohm Beta=50 //transistor gain disp("If Beta=50") Ib=(Vcc-Vbe)/Rb //base current in A Ic=Beta*Ib //collector current Vce=Vcc-Ic*Rl //collector emitter voltage printf("\n The operating point coordinates are [%.2f V, %.2f mA]\n ",Vce,Ic*10^3) disp("If Beta=60") Beta2=60 //second transistor gain Ic2=Beta2*Ib //collector current Vce2=Vcc-Ic2*Rl //collector emitter voltage printf("\n The operating point coordinates are [%.2f V, %.2f mA]\n ",Vce2,Ic2*10^3)
6048c4c5f9d0e7593b1a98a77afcd43d1fbdd871
449d555969bfd7befe906877abab098c6e63a0e8
/1748/CH2/EX2.47/Exa2_47.sce
67e4b3481001852d6ca02d0aa34b4a9329f50087
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
400
sce
Exa2_47.sce
//Exa 2.47 clc; clear; close; //Given data : format('v',6); Output=10;//in H.P. Output=Output*735.5;//in watts cosfi=0.8;//unitless ETA=0.83;//unitless ISCbyIFL=3.5;//ratio of SC current to full load current VL=500;//in volt Input=Output/ETA;//in watts IFL=Input/(sqrt(3)*VL*cosfi);//in Ampere ISC=IFL*ISCbyIFL;//in Ampere Is=ISC/3;//in Ampere disp(Is,"Strting current(in Ampere) :");
a720b60f7154ce19a9ffe82ef0acad76b531b883
449d555969bfd7befe906877abab098c6e63a0e8
/2165/CH2/EX2.5/2_5.sce
bd2c77fb534cd3348189177ad703da9ceefd1886
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
201
sce
2_5.sce
clc //initialisation of variables v=15//in S=(5*14/100)//ln lam=1.4//in v1=1.7//in //CALCULATIONS N=(1-0.38)*100//percent //RESULTS printf('the ideal effiecncy for an engine =% f percent',N)
33eefe09d95692402bfb140f12852d66d13a73e4
449d555969bfd7befe906877abab098c6e63a0e8
/3257/CH2/EX2.4/Ex2_4.sce
a067740d17932cefa853edb60ad90b5cf80dcf12
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
434
sce
Ex2_4.sce
// Elimination of stress by tension clc sigma_t = 140 // in MPa sigma_c = -140 // in MPa l = 0.25 // length of specimen in m Y = 150 // yield stress of material in MPa E = 70 // Youngs modulus in GPa printf("\ Example 2.4") epsilon_tot = (sigma_c*1e6)/(E*1e9) + Y*1e6/(E*1e9) // total strain l_f = l*exp(epsilon_tot) printf("\n Stretched length should be %0.4f m",l_f) // Numerical value of answer in book is 0.2510
06eb2fe589af3fc77db14ccf4577fb8258d99962
c49a028f382c3baddcd641c1972dd72bb60eaadc
/exp_3_1.sce
eb6dbeba2609b6341580cc65b32b126167eef15b
[]
no_license
BhautikDonga/SCILAB
484fcc9ac58885a4ccc549ccc85e2a4a507d5d0a
b330ca555276eb57c1e88ffc745ecfa3b8ebfa0c
refs/heads/master
2020-04-07T15:48:23.036273
2018-12-05T01:27:34
2018-12-05T01:27:34
158,501,669
1
0
null
null
null
null
UTF-8
Scilab
false
false
260
sce
exp_3_1.sce
//Solution of Simultaneous Linear Equations //from kvl //5I1-3I2=5 , 3I1 - 9I2 +I3 = 2 , I2-7I3 = 4 A = [5 -3 0;-3 9 -1;0 -1 7]; B = [5;-2;-4]; X = A\B; // X= inv(A)*B disp(X) C = [31 -6; -1 41]; D = [75;90]; Y = C\D; // Y = inv(C)*D disp(Y)
6e6ac953ce20d16d7c695f048b6cc0e7ae232b99
449d555969bfd7befe906877abab098c6e63a0e8
/3808/CH1/EX1.2/Ex1_2.sce
8b6daded15dc84b7e69182921be303d8e7725453
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
346
sce
Ex1_2.sce
//Chapter 01: The Foundations: Logic and Proofs clc; clear; mprintf("1. What time is it? \n") mprintf("2. Read this carefully. \n") mprintf("3. x+1=2.\n") mprintf("4. x+y=Z.\n") mprintf("Sentences 1 and 2 are not propositions since they are not declarative.\nSentences 3 and 4 are neither true nor false and so they are not propositions.")
6324bf47233a82a819b47cdaa1e492438b2c63e9
449d555969bfd7befe906877abab098c6e63a0e8
/3683/CH5/EX5.5/Ex5_5.sce
eb94682de01b1c60257bc39df6f10c4cd95ee5ab
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
689
sce
Ex5_5.sce
dia=300//in mm Asc=8*0.785*20^2//8-20 mm dia bars, in sq mm helical_dia=8//in mm pitch=25//in mm cover=40//in mm sigma_cc=5//in MPa sigma_sc=130//in MPa fck=25//in MPa fy=250//in MPa Ag=0.785*dia^2//in sq mm Ac=Ag-Asc//in sq mm P=sigma_cc*Ac + sigma_sc*Asc//in N //to find volume of helical reinforcement core_dia=dia-2*cover+2*helical_dia//in mm l=%pi*core_dia//length of helical steel for one revolution, in mm Ab=l*0.785*helical_dia^2/pitch//volume of helical reinforcement per mm height of column, in mm^3 Ak=0.785*core_dia^2-Asc//in sq mm Ac=0.785*core_dia^2//in sq mm m=Ab/Ak n=0.36*(Ag/Ac-1)*fck/fy //as m > n P=1.05*P//in N mprintf("Safe load=%f kN",P/10^3)
114d2bcf85d56bb31b895cd0e3cb7d1c739dd02b
449d555969bfd7befe906877abab098c6e63a0e8
/2912/CH6/EX6.7/Ex6_7.sce
714ad448cae84207a8d1e57f8268867619dc36cf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
783
sce
Ex6_7.sce
//chapter 6 //example 6.7 //Calculate velocity of electron and proton //page 148-149 clear; clc; //given E=10; // in eV (kinetic energy for each electron and proton) m_e=9.1E-31; // in Kg (mass of electron) m_p=1.67E-27; // in Kg (mass of proton) e=1.6E-19; // in C (charge of electron) //calculate E=E*e; // changing unit from eV to J // since E=m*v^2/2 // therefore v=sqrt(2E/m) v_e=sqrt(2*E/m_e); // calculation of kinetic energy of electron printf('\nThe kinetic energy of electron is \tv_e=%1.3E m/s',v_e); v_p=sqrt(2*E/m_p); // calculation of kinetic energy of proton printf('\nThe kinetic energy of proton is \tv_p=%1.3E m/s',v_p); // Note: The answer in the book for both kinetic energy of electron and that of proton is wrong due to calculation mistake
3597a9ca938e1e57122d6e98599d325b7af33380
449d555969bfd7befe906877abab098c6e63a0e8
/3014/CH2/EX2.9/Ex2_9.sce
7bed2b03a2cf9adb1621eab697db9f7e47beaf61
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
471
sce
Ex2_9.sce
clc //given that v = 5e3 // Velocity of moving electron in m/s v_error = 0.003 //Percentage error in measurement of velocity m = 9.1e-31 // mass of electron in kg h = 6.63e-34 // Plank constant printf("Example 2.9") h_bar = h / (2*%pi) // constant p = m*v del_p = v_error*p/100 // calculation of uncertainty in momentum del_x = h_bar/(2*del_p) // Calculation of uncertainty in position printf("\n Uncertainty in position of particle is %e m.\n\n\n",del_x)
6a93c87a0166d755a7eba45aaeda83d511eef2ee
c565d26060d56f516d954d4b378b8699c31a71ef
/Vikas_self/report_tex/PID_results/pidselftuned40to45.sce
c5c982bda936258bca3b348118f4ca3eb9e24098
[]
no_license
rupakrokade/sbhs-manual
26d6e458c5d6aaba858c3cb2d07ff646d90645ce
5aad4829d5ba1cdf9cc62d72f794fab2b56dd786
refs/heads/master
2021-01-23T06:25:53.904684
2015-10-24T11:57:04
2015-10-24T11:57:04
5,258,478
0
0
null
2012-11-16T11:45:07
2012-08-01T11:36:17
Scilab
UTF-8
Scilab
false
false
77,895
sce
pidselftuned40to45.sce
0.100E+00 0.338E+02 0.490E+02 0.620E+01 0.500E+00 0.338E+02 0.000E+00 0.620E+01 0.900E+00 0.338E+02 0.128E+02 0.620E+01 0.130E+01 0.337E+02 0.256E+02 0.620E+01 0.170E+01 0.337E+02 0.486E+02 0.630E+01 0.210E+01 0.337E+02 0.490E+02 0.630E+01 0.250E+01 0.336E+02 0.490E+02 0.630E+01 0.290E+01 0.336E+02 0.490E+02 0.640E+01 0.330E+01 0.334E+02 0.490E+02 0.640E+01 0.370E+01 0.336E+02 0.490E+02 0.660E+01 0.410E+01 0.336E+02 0.273E+02 0.640E+01 0.450E+01 0.336E+02 0.490E+02 0.640E+01 0.490E+01 0.336E+02 0.490E+02 0.640E+01 0.530E+01 0.334E+02 0.490E+02 0.640E+01 0.570E+01 0.334E+02 0.490E+02 0.660E+01 0.610E+01 0.336E+02 0.477E+02 0.660E+01 0.650E+01 0.336E+02 0.411E+02 0.640E+01 0.690E+01 0.336E+02 0.490E+02 0.640E+01 0.730E+01 0.336E+02 0.490E+02 0.640E+01 0.770E+01 0.337E+02 0.490E+02 0.640E+01 0.810E+01 0.337E+02 0.490E+02 0.630E+01 0.850E+01 0.337E+02 0.490E+02 0.630E+01 0.890E+01 0.338E+02 0.490E+02 0.630E+01 0.930E+01 0.339E+02 0.490E+02 0.620E+01 0.970E+01 0.338E+02 0.490E+02 0.610E+01 0.101E+02 0.338E+02 0.490E+02 0.620E+01 0.105E+02 0.339E+02 0.490E+02 0.620E+01 0.109E+02 0.340E+02 0.490E+02 0.610E+01 0.113E+02 0.341E+02 0.490E+02 0.600E+01 0.117E+02 0.344E+02 0.490E+02 0.590E+01 0.121E+02 0.343E+02 0.385E+02 0.560E+01 0.125E+02 0.344E+02 0.490E+02 0.570E+01 0.129E+02 0.345E+02 0.434E+02 0.560E+01 0.133E+02 0.346E+02 0.490E+02 0.550E+01 0.137E+02 0.346E+02 0.490E+02 0.540E+01 0.141E+02 0.347E+02 0.490E+02 0.540E+01 0.145E+02 0.347E+02 0.490E+02 0.530E+01 0.149E+02 0.348E+02 0.490E+02 0.530E+01 0.153E+02 0.350E+02 0.490E+02 0.520E+01 0.157E+02 0.351E+02 0.470E+02 0.500E+01 0.161E+02 0.352E+02 0.490E+02 0.490E+01 0.165E+02 0.352E+02 0.490E+02 0.480E+01 0.169E+02 0.354E+02 0.490E+02 0.480E+01 0.173E+02 0.355E+02 0.394E+02 0.460E+01 0.177E+02 0.355E+02 0.490E+02 0.450E+01 0.181E+02 0.357E+02 0.490E+02 0.450E+01 0.185E+02 0.359E+02 0.389E+02 0.430E+01 0.189E+02 0.359E+02 0.421E+02 0.410E+01 0.193E+02 0.360E+02 0.490E+02 0.410E+01 0.197E+02 0.361E+02 0.475E+02 0.400E+01 0.201E+02 0.362E+02 0.490E+02 0.390E+01 0.205E+02 0.364E+02 0.490E+02 0.380E+01 0.209E+02 0.365E+02 0.446E+02 0.360E+01 0.213E+02 0.365E+02 0.490E+02 0.350E+01 0.217E+02 0.366E+02 0.490E+02 0.350E+01 0.221E+02 0.368E+02 0.464E+02 0.340E+01 0.225E+02 0.369E+02 0.414E+02 0.320E+01 0.229E+02 0.372E+02 0.490E+02 0.310E+01 0.233E+02 0.373E+02 0.347E+02 0.280E+01 0.237E+02 0.374E+02 0.490E+02 0.270E+01 0.241E+02 0.375E+02 0.490E+02 0.260E+01 0.245E+02 0.375E+02 0.490E+02 0.250E+01 0.249E+02 0.376E+02 0.490E+02 0.250E+01 0.253E+02 0.377E+02 0.448E+02 0.240E+01 0.257E+02 0.380E+02 0.467E+02 0.230E+01 0.261E+02 0.380E+02 0.315E+02 0.200E+01 0.265E+02 0.381E+02 0.490E+02 0.200E+01 0.269E+02 0.383E+02 0.440E+02 0.190E+01 0.273E+02 0.383E+02 0.367E+02 0.170E+01 0.277E+02 0.384E+02 0.490E+02 0.170E+01 0.281E+02 0.386E+02 0.436E+02 0.160E+01 0.285E+02 0.388E+02 0.358E+02 0.140E+01 0.289E+02 0.388E+02 0.338E+02 0.120E+01 0.293E+02 0.389E+02 0.479E+02 0.120E+01 0.297E+02 0.389E+02 0.417E+02 0.110E+01 0.301E+02 0.391E+02 0.490E+02 0.110E+01 0.305E+02 0.390E+02 0.346E+02 0.900E+00 0.309E+02 0.393E+02 0.490E+02 0.100E+01 0.313E+02 0.394E+02 0.207E+02 0.700E+00 0.317E+02 0.394E+02 0.314E+02 0.600E+00 0.321E+02 0.394E+02 0.383E+02 0.600E+00 0.325E+02 0.395E+02 0.393E+02 0.600E+00 0.329E+02 0.396E+02 0.323E+02 0.500E+00 0.333E+02 0.395E+02 0.310E+02 0.400E+00 0.337E+02 0.397E+02 0.454E+02 0.500E+00 0.341E+02 0.397E+02 0.246E+02 0.300E+00 0.345E+02 0.398E+02 0.367E+02 0.300E+00 0.349E+02 0.400E+02 0.293E+02 0.200E+00 0.353E+02 0.400E+02 0.198E+02 0.000E+00 0.357E+02 0.400E+02 0.313E+02 0.000E+00 0.361E+02 0.401E+02 0.313E+02 0.000E+00 0.365E+02 0.401E+02 0.235E+02 -0.100E+00 0.369E+02 0.402E+02 0.290E+02 -0.100E+00 0.373E+02 0.402E+02 0.211E+02 -0.200E+00 0.377E+02 0.402E+02 0.265E+02 -0.200E+00 0.381E+02 0.403E+02 0.262E+02 -0.200E+00 0.385E+02 0.403E+02 0.182E+02 -0.300E+00 0.389E+02 0.404E+02 0.234E+02 -0.300E+00 0.393E+02 0.404E+02 0.152E+02 -0.400E+00 0.397E+02 0.404E+02 0.202E+02 -0.400E+00 0.401E+02 0.405E+02 0.196E+02 -0.400E+00 0.405E+02 0.405E+02 0.113E+02 -0.500E+00 0.409E+02 0.404E+02 0.161E+02 -0.500E+00 0.413E+02 0.405E+02 0.231E+02 -0.400E+00 0.417E+02 0.405E+02 0.914E+01 -0.500E+00 0.421E+02 0.405E+02 0.140E+02 -0.500E+00 0.425E+02 0.405E+02 0.132E+02 -0.500E+00 0.429E+02 0.404E+02 0.124E+02 -0.500E+00 0.433E+02 0.405E+02 0.193E+02 -0.400E+00 0.437E+02 0.404E+02 0.541E+01 -0.500E+00 0.441E+02 0.404E+02 0.180E+02 -0.400E+00 0.445E+02 0.403E+02 0.117E+02 -0.400E+00 0.449E+02 0.403E+02 0.188E+02 -0.300E+00 0.453E+02 0.402E+02 0.126E+02 -0.300E+00 0.457E+02 0.401E+02 0.199E+02 -0.200E+00 0.461E+02 0.400E+02 0.217E+02 -0.100E+00 0.465E+02 0.398E+02 0.236E+02 0.000E+00 0.469E+02 0.398E+02 0.335E+02 0.200E+00 0.473E+02 0.397E+02 0.223E+02 0.200E+00 0.477E+02 0.397E+02 0.305E+02 0.300E+00 0.481E+02 0.396E+02 0.252E+02 0.300E+00 0.485E+02 0.397E+02 0.336E+02 0.400E+00 0.489E+02 0.395E+02 0.205E+02 0.300E+00 0.493E+02 0.396E+02 0.428E+02 0.500E+00 0.497E+02 0.395E+02 0.240E+02 0.400E+00 0.501E+02 0.395E+02 0.385E+02 0.500E+00 0.505E+02 0.394E+02 0.335E+02 0.500E+00 0.509E+02 0.393E+02 0.423E+02 0.600E+00 0.513E+02 0.393E+02 0.454E+02 0.700E+00 0.517E+02 0.393E+02 0.406E+02 0.700E+00 0.521E+02 0.391E+02 0.418E+02 0.700E+00 0.525E+02 0.393E+02 0.490E+02 0.900E+00 0.529E+02 0.391E+02 0.226E+02 0.700E+00 0.533E+02 0.391E+02 0.490E+02 0.900E+00 0.537E+02 0.391E+02 0.386E+02 0.900E+00 0.541E+02 0.391E+02 0.401E+02 0.900E+00 0.545E+02 0.391E+02 0.416E+02 0.900E+00 0.549E+02 0.390E+02 0.431E+02 0.900E+00 0.553E+02 0.391E+02 0.490E+02 0.100E+01 0.557E+02 0.391E+02 0.366E+02 0.900E+00 0.561E+02 0.393E+02 0.440E+02 0.900E+00 0.565E+02 0.393E+02 0.295E+02 0.700E+00 0.569E+02 0.393E+02 0.424E+02 0.700E+00 0.573E+02 0.393E+02 0.436E+02 0.700E+00 0.577E+02 0.394E+02 0.447E+02 0.700E+00 0.581E+02 0.395E+02 0.379E+02 0.600E+00 0.585E+02 0.395E+02 0.367E+02 0.500E+00 0.589E+02 0.394E+02 0.434E+02 0.500E+00 0.593E+02 0.395E+02 0.490E+02 0.600E+00 0.597E+02 0.395E+02 0.362E+02 0.500E+00 0.601E+02 0.396E+02 0.428E+02 0.500E+00 0.605E+02 0.396E+02 0.357E+02 0.400E+00 0.609E+02 0.396E+02 0.422E+02 0.400E+00 0.613E+02 0.396E+02 0.428E+02 0.400E+00 0.617E+02 0.397E+02 0.435E+02 0.400E+00 0.621E+02 0.398E+02 0.362E+02 0.300E+00 0.625E+02 0.398E+02 0.346E+02 0.200E+00 0.629E+02 0.398E+02 0.407E+02 0.200E+00 0.633E+02 0.400E+02 0.410E+02 0.200E+00 0.637E+02 0.400E+02 0.257E+02 0.000E+00 0.641E+02 0.401E+02 0.372E+02 0.000E+00 0.645E+02 0.401E+02 0.294E+02 -0.100E+00 0.649E+02 0.401E+02 0.350E+02 -0.100E+00 0.653E+02 0.402E+02 0.348E+02 -0.100E+00 0.657E+02 0.403E+02 0.269E+02 -0.200E+00 0.661E+02 0.403E+02 0.246E+02 -0.300E+00 0.665E+02 0.403E+02 0.298E+02 -0.300E+00 0.669E+02 0.403E+02 0.293E+02 -0.300E+00 0.673E+02 0.403E+02 0.288E+02 -0.300E+00 0.677E+02 0.404E+02 0.283E+02 -0.300E+00 0.681E+02 0.405E+02 0.202E+02 -0.400E+00 0.685E+02 0.405E+02 0.175E+02 -0.500E+00 0.689E+02 0.407E+02 0.224E+02 -0.500E+00 0.693E+02 0.405E+02 0.639E+01 -0.700E+00 0.697E+02 0.405E+02 0.319E+02 -0.500E+00 0.701E+02 0.407E+02 0.198E+02 -0.500E+00 0.705E+02 0.407E+02 0.385E+01 -0.700E+00 0.709E+02 0.407E+02 0.139E+02 -0.700E+00 0.713E+02 0.405E+02 0.128E+02 -0.700E+00 0.717E+02 0.405E+02 0.271E+02 -0.500E+00 0.721E+02 0.405E+02 0.150E+02 -0.500E+00 0.725E+02 0.405E+02 0.143E+02 -0.500E+00 0.729E+02 0.405E+02 0.135E+02 -0.500E+00 0.733E+02 0.405E+02 0.127E+02 -0.500E+00 0.737E+02 0.404E+02 0.119E+02 -0.500E+00 0.741E+02 0.404E+02 0.188E+02 -0.400E+00 0.745E+02 0.403E+02 0.125E+02 -0.400E+00 0.749E+02 0.403E+02 0.196E+02 -0.300E+00 0.753E+02 0.402E+02 0.135E+02 -0.300E+00 0.757E+02 0.402E+02 0.208E+02 -0.200E+00 0.761E+02 0.401E+02 0.147E+02 -0.200E+00 0.765E+02 0.401E+02 0.222E+02 -0.100E+00 0.769E+02 0.400E+02 0.163E+02 -0.100E+00 0.773E+02 0.400E+02 0.240E+02 0.000E+00 0.777E+02 0.400E+02 0.182E+02 0.000E+00 0.781E+02 0.398E+02 0.182E+02 0.000E+00 0.785E+02 0.398E+02 0.340E+02 0.200E+00 0.789E+02 0.397E+02 0.227E+02 0.200E+00 0.793E+02 0.397E+02 0.310E+02 0.300E+00 0.797E+02 0.396E+02 0.256E+02 0.300E+00 0.801E+02 0.396E+02 0.341E+02 0.400E+00 0.805E+02 0.394E+02 0.289E+02 0.400E+00 0.809E+02 0.394E+02 0.455E+02 0.600E+00 0.813E+02 0.394E+02 0.348E+02 0.600E+00 0.817E+02 0.393E+02 0.357E+02 0.600E+00 0.821E+02 0.393E+02 0.447E+02 0.700E+00 0.825E+02 0.393E+02 0.400E+02 0.700E+00 0.829E+02 0.393E+02 0.411E+02 0.700E+00 0.833E+02 0.393E+02 0.423E+02 0.700E+00 0.837E+02 0.391E+02 0.434E+02 0.700E+00 0.841E+02 0.391E+02 0.490E+02 0.900E+00 0.845E+02 0.393E+02 0.386E+02 0.900E+00 0.849E+02 0.390E+02 0.240E+02 0.700E+00 0.853E+02 0.391E+02 0.490E+02 0.100E+01 0.857E+02 0.391E+02 0.247E+02 0.900E+00 0.861E+02 0.393E+02 0.322E+02 0.900E+00 0.865E+02 0.393E+02 0.176E+02 0.700E+00 0.869E+02 0.391E+02 0.305E+02 0.700E+00 0.873E+02 0.391E+02 0.479E+02 0.900E+00 0.877E+02 0.391E+02 0.375E+02 0.900E+00 0.881E+02 0.393E+02 0.389E+02 0.900E+00 0.885E+02 0.393E+02 0.244E+02 0.700E+00 0.889E+02 0.391E+02 0.373E+02 0.700E+00 0.893E+02 0.393E+02 0.490E+02 0.900E+00 0.897E+02 0.393E+02 0.226E+02 0.700E+00 0.901E+02 0.393E+02 0.356E+02 0.700E+00 0.905E+02 0.393E+02 0.367E+02 0.700E+00 0.909E+02 0.394E+02 0.379E+02 0.700E+00 0.913E+02 0.393E+02 0.310E+02 0.600E+00 0.917E+02 0.393E+02 0.459E+02 0.700E+00 0.921E+02 0.394E+02 0.412E+02 0.700E+00 0.925E+02 0.394E+02 0.343E+02 0.600E+00 0.929E+02 0.394E+02 0.412E+02 0.600E+00 0.933E+02 0.395E+02 0.421E+02 0.600E+00 0.937E+02 0.395E+02 0.352E+02 0.500E+00 0.941E+02 0.396E+02 0.418E+02 0.500E+00 0.945E+02 0.396E+02 0.347E+02 0.400E+00 0.949E+02 0.396E+02 0.412E+02 0.400E+00 0.953E+02 0.397E+02 0.418E+02 0.400E+00 0.957E+02 0.397E+02 0.346E+02 0.300E+00 0.961E+02 0.397E+02 0.409E+02 0.300E+00 0.965E+02 0.398E+02 0.413E+02 0.300E+00 0.969E+02 0.398E+02 0.339E+02 0.200E+00 0.973E+02 0.398E+02 0.401E+02 0.200E+00 0.977E+02 0.398E+02 0.404E+02 0.200E+00 0.981E+02 0.400E+02 0.407E+02 0.200E+00 0.985E+02 0.401E+02 0.254E+02 0.000E+00 0.989E+02 0.401E+02 0.290E+02 -0.100E+00 0.993E+02 0.401E+02 0.346E+02 -0.100E+00 0.997E+02 0.401E+02 0.344E+02 -0.100E+00 0.100E+03 0.403E+02 0.343E+02 -0.100E+00 0.101E+03 0.402E+02 0.187E+02 -0.300E+00 0.101E+03 0.403E+02 0.373E+02 -0.200E+00 0.101E+03 0.403E+02 0.236E+02 -0.300E+00 0.102E+03 0.404E+02 0.288E+02 -0.300E+00 0.102E+03 0.404E+02 0.207E+02 -0.400E+00 0.103E+03 0.405E+02 0.257E+02 -0.400E+00 0.103E+03 0.405E+02 0.174E+02 -0.500E+00 0.103E+03 0.405E+02 0.223E+02 -0.500E+00 0.104E+03 0.407E+02 0.215E+02 -0.500E+00 0.104E+03 0.407E+02 0.550E+01 -0.700E+00 0.105E+03 0.405E+02 0.156E+02 -0.700E+00 0.105E+03 0.407E+02 0.298E+02 -0.500E+00 0.105E+03 0.407E+02 0.266E+01 -0.700E+00 0.106E+03 0.407E+02 0.127E+02 -0.700E+00 0.106E+03 0.407E+02 0.117E+02 -0.700E+00 0.107E+03 0.405E+02 0.106E+02 -0.700E+00 0.107E+03 0.405E+02 0.248E+02 -0.500E+00 0.107E+03 0.405E+02 0.128E+02 -0.500E+00 0.108E+03 0.405E+02 0.120E+02 -0.500E+00 0.108E+03 0.404E+02 0.112E+02 -0.500E+00 0.109E+03 0.404E+02 0.181E+02 -0.400E+00 0.109E+03 0.404E+02 0.118E+02 -0.400E+00 0.109E+03 0.403E+02 0.112E+02 -0.400E+00 0.110E+03 0.402E+02 0.183E+02 -0.300E+00 0.110E+03 0.402E+02 0.199E+02 -0.200E+00 0.111E+03 0.401E+02 0.139E+02 -0.200E+00 0.111E+03 0.401E+02 0.213E+02 -0.100E+00 0.111E+03 0.400E+02 0.154E+02 -0.100E+00 0.112E+03 0.400E+02 0.231E+02 0.000E+00 0.112E+03 0.398E+02 0.174E+02 0.000E+00 0.113E+03 0.398E+02 0.331E+02 0.200E+00 0.113E+03 0.397E+02 0.219E+02 0.200E+00 0.113E+03 0.397E+02 0.301E+02 0.300E+00 0.114E+03 0.396E+02 0.248E+02 0.300E+00 0.114E+03 0.396E+02 0.332E+02 0.400E+00 0.115E+03 0.396E+02 0.280E+02 0.400E+00 0.115E+03 0.395E+02 0.286E+02 0.400E+00 0.115E+03 0.395E+02 0.373E+02 0.500E+00 0.116E+03 0.394E+02 0.322E+02 0.500E+00 0.116E+03 0.393E+02 0.410E+02 0.600E+00 0.117E+03 0.394E+02 0.441E+02 0.700E+00 0.117E+03 0.393E+02 0.314E+02 0.600E+00 0.117E+03 0.393E+02 0.463E+02 0.700E+00 0.118E+03 0.393E+02 0.416E+02 0.700E+00 0.118E+03 0.393E+02 0.427E+02 0.700E+00 0.119E+03 0.393E+02 0.439E+02 0.700E+00 0.119E+03 0.393E+02 0.450E+02 0.700E+00 0.119E+03 0.391E+02 0.462E+02 0.700E+00 0.120E+03 0.391E+02 0.490E+02 0.900E+00 0.120E+03 0.393E+02 0.386E+02 0.900E+00 0.121E+03 0.393E+02 0.240E+02 0.700E+00 0.121E+03 0.393E+02 0.370E+02 0.700E+00 0.121E+03 0.391E+02 0.381E+02 0.700E+00 0.122E+03 0.393E+02 0.490E+02 0.900E+00 0.122E+03 0.391E+02 0.226E+02 0.700E+00 0.123E+03 0.393E+02 0.490E+02 0.900E+00 0.123E+03 0.393E+02 0.226E+02 0.700E+00 0.123E+03 0.394E+02 0.356E+02 0.700E+00 0.124E+03 0.394E+02 0.287E+02 0.600E+00 0.124E+03 0.394E+02 0.356E+02 0.600E+00 0.125E+03 0.395E+02 0.365E+02 0.600E+00 0.125E+03 0.395E+02 0.296E+02 0.500E+00 0.125E+03 0.395E+02 0.362E+02 0.500E+00 0.126E+03 0.395E+02 0.370E+02 0.500E+00 0.126E+03 0.396E+02 0.378E+02 0.500E+00 0.127E+03 0.396E+02 0.307E+02 0.400E+00 0.127E+03 0.396E+02 0.372E+02 0.400E+00 0.127E+03 0.396E+02 0.378E+02 0.400E+00 0.128E+03 0.396E+02 0.385E+02 0.400E+00 0.128E+03 0.396E+02 0.391E+02 0.400E+00 0.129E+03 0.397E+02 0.398E+02 0.400E+00 0.129E+03 0.398E+02 0.325E+02 0.300E+00 0.129E+03 0.398E+02 0.309E+02 0.200E+00 0.130E+03 0.397E+02 0.370E+02 0.200E+00 0.130E+03 0.398E+02 0.453E+02 0.300E+00 0.131E+03 0.398E+02 0.321E+02 0.200E+00 0.131E+03 0.398E+02 0.382E+02 0.200E+00 0.131E+03 0.398E+02 0.385E+02 0.200E+00 0.132E+03 0.400E+02 0.388E+02 0.200E+00 0.132E+03 0.400E+02 0.235E+02 0.000E+00 0.133E+03 0.401E+02 0.350E+02 0.000E+00 0.133E+03 0.401E+02 0.272E+02 -0.100E+00 0.133E+03 0.402E+02 0.328E+02 -0.100E+00 0.134E+03 0.401E+02 0.249E+02 -0.200E+00 0.134E+03 0.402E+02 0.381E+02 -0.100E+00 0.135E+03 0.402E+02 0.245E+02 -0.200E+00 0.135E+03 0.403E+02 0.298E+02 -0.200E+00 0.135E+03 0.403E+02 0.218E+02 -0.300E+00 0.136E+03 0.402E+02 0.270E+02 -0.300E+00 0.136E+03 0.403E+02 0.343E+02 -0.200E+00 0.137E+03 0.403E+02 0.206E+02 -0.300E+00 0.137E+03 0.403E+02 0.258E+02 -0.300E+00 0.137E+03 0.403E+02 0.253E+02 -0.300E+00 0.138E+03 0.403E+02 0.248E+02 -0.300E+00 0.138E+03 0.403E+02 0.243E+02 -0.300E+00 0.139E+03 0.403E+02 0.239E+02 -0.300E+00 0.139E+03 0.404E+02 0.234E+02 -0.300E+00 0.139E+03 0.403E+02 0.152E+02 -0.400E+00 0.140E+03 0.403E+02 0.280E+02 -0.300E+00 0.140E+03 0.404E+02 0.219E+02 -0.300E+00 0.141E+03 0.402E+02 0.137E+02 -0.400E+00 0.141E+03 0.404E+02 0.343E+02 -0.200E+00 0.141E+03 0.404E+02 0.726E+01 -0.400E+00 0.142E+03 0.403E+02 0.179E+02 -0.400E+00 0.142E+03 0.403E+02 0.250E+02 -0.300E+00 0.143E+03 0.404E+02 0.189E+02 -0.300E+00 0.143E+03 0.404E+02 0.107E+02 -0.400E+00 0.143E+03 0.402E+02 0.157E+02 -0.400E+00 0.144E+03 0.402E+02 0.306E+02 -0.200E+00 0.144E+03 0.402E+02 0.189E+02 -0.200E+00 0.145E+03 0.402E+02 0.186E+02 -0.200E+00 0.145E+03 0.401E+02 0.183E+02 -0.200E+00 0.145E+03 0.401E+02 0.257E+02 -0.100E+00 0.146E+03 0.401E+02 0.199E+02 -0.100E+00 0.146E+03 0.400E+02 0.197E+02 -0.100E+00 0.147E+03 0.400E+02 0.273E+02 0.000E+00 0.147E+03 0.400E+02 0.216E+02 0.000E+00 0.147E+03 0.398E+02 0.216E+02 0.000E+00 0.148E+03 0.400E+02 0.373E+02 0.200E+00 0.148E+03 0.398E+02 0.106E+02 0.000E+00 0.149E+03 0.397E+02 0.379E+02 0.200E+00 0.149E+03 0.396E+02 0.345E+02 0.300E+00 0.149E+03 0.397E+02 0.371E+02 0.400E+00 0.150E+03 0.396E+02 0.240E+02 0.300E+00 0.150E+03 0.396E+02 0.383E+02 0.400E+00 0.151E+03 0.396E+02 0.331E+02 0.400E+00 0.151E+03 0.396E+02 0.337E+02 0.400E+00 0.151E+03 0.395E+02 0.344E+02 0.400E+00 0.152E+03 0.395E+02 0.430E+02 0.500E+00 0.152E+03 0.395E+02 0.380E+02 0.500E+00 0.153E+03 0.395E+02 0.388E+02 0.500E+00 0.153E+03 0.395E+02 0.396E+02 0.500E+00 0.153E+03 0.395E+02 0.404E+02 0.500E+00 0.154E+03 0.394E+02 0.412E+02 0.500E+00 0.154E+03 0.395E+02 0.490E+02 0.600E+00 0.155E+03 0.395E+02 0.362E+02 0.500E+00 0.155E+03 0.396E+02 0.428E+02 0.500E+00 0.155E+03 0.395E+02 0.357E+02 0.400E+00 0.156E+03 0.396E+02 0.490E+02 0.500E+00 0.156E+03 0.396E+02 0.361E+02 0.400E+00 0.157E+03 0.397E+02 0.425E+02 0.400E+00 0.157E+03 0.397E+02 0.353E+02 0.300E+00 0.157E+03 0.398E+02 0.416E+02 0.300E+00 0.158E+03 0.397E+02 0.342E+02 0.200E+00 0.158E+03 0.398E+02 0.482E+02 0.300E+00 0.159E+03 0.398E+02 0.350E+02 0.200E+00 0.159E+03 0.400E+02 0.411E+02 0.200E+00 0.159E+03 0.400E+02 0.258E+02 0.000E+00 0.160E+03 0.398E+02 0.373E+02 0.000E+00 0.160E+03 0.400E+02 0.490E+02 0.200E+00 0.161E+03 0.400E+02 0.222E+02 0.000E+00 0.161E+03 0.401E+02 0.337E+02 0.000E+00 0.161E+03 0.401E+02 0.259E+02 -0.100E+00 0.162E+03 0.402E+02 0.315E+02 -0.100E+00 0.162E+03 0.402E+02 0.236E+02 -0.200E+00 0.163E+03 0.403E+02 0.289E+02 -0.200E+00 0.163E+03 0.402E+02 0.209E+02 -0.300E+00 0.163E+03 0.403E+02 0.339E+02 -0.200E+00 0.164E+03 0.402E+02 0.202E+02 -0.300E+00 0.164E+03 0.404E+02 0.331E+02 -0.200E+00 0.165E+03 0.403E+02 0.118E+02 -0.400E+00 0.165E+03 0.403E+02 0.302E+02 -0.300E+00 0.165E+03 0.404E+02 0.241E+02 -0.300E+00 0.166E+03 0.404E+02 0.159E+02 -0.400E+00 0.166E+03 0.404E+02 0.209E+02 -0.400E+00 0.167E+03 0.404E+02 0.203E+02 -0.400E+00 0.167E+03 0.404E+02 0.197E+02 -0.400E+00 0.167E+03 0.404E+02 0.191E+02 -0.400E+00 0.168E+03 0.403E+02 0.184E+02 -0.400E+00 0.168E+03 0.404E+02 0.255E+02 -0.300E+00 0.169E+03 0.403E+02 0.117E+02 -0.400E+00 0.169E+03 0.403E+02 0.245E+02 -0.300E+00 0.169E+03 0.403E+02 0.183E+02 -0.300E+00 0.170E+03 0.402E+02 0.179E+02 -0.300E+00 0.170E+03 0.402E+02 0.251E+02 -0.200E+00 0.171E+03 0.402E+02 0.191E+02 -0.200E+00 0.171E+03 0.402E+02 0.188E+02 -0.200E+00 0.171E+03 0.402E+02 0.185E+02 -0.200E+00 0.172E+03 0.402E+02 0.182E+02 -0.200E+00 0.172E+03 0.401E+02 0.179E+02 -0.200E+00 0.173E+03 0.401E+02 0.253E+02 -0.100E+00 0.173E+03 0.401E+02 0.194E+02 -0.100E+00 0.173E+03 0.401E+02 0.193E+02 -0.100E+00 0.174E+03 0.400E+02 0.191E+02 -0.100E+00 0.174E+03 0.398E+02 0.268E+02 0.000E+00 0.175E+03 0.398E+02 0.367E+02 0.200E+00 0.175E+03 0.398E+02 0.255E+02 0.200E+00 0.175E+03 0.398E+02 0.258E+02 0.200E+00 0.176E+03 0.397E+02 0.261E+02 0.200E+00 0.176E+03 0.397E+02 0.344E+02 0.300E+00 0.177E+03 0.397E+02 0.290E+02 0.300E+00 0.177E+03 0.396E+02 0.295E+02 0.300E+00 0.177E+03 0.397E+02 0.379E+02 0.400E+00 0.178E+03 0.396E+02 0.249E+02 0.300E+00 0.178E+03 0.396E+02 0.391E+02 0.400E+00 0.179E+03 0.396E+02 0.339E+02 0.400E+00 0.179E+03 0.396E+02 0.346E+02 0.400E+00 0.179E+03 0.396E+02 0.352E+02 0.400E+00 0.180E+03 0.395E+02 0.359E+02 0.400E+00 0.180E+03 0.395E+02 0.445E+02 0.500E+00 0.181E+03 0.396E+02 0.395E+02 0.500E+00 0.181E+03 0.396E+02 0.323E+02 0.400E+00 0.181E+03 0.395E+02 0.388E+02 0.400E+00 0.182E+03 0.396E+02 0.474E+02 0.500E+00 0.182E+03 0.395E+02 0.345E+02 0.400E+00 0.183E+03 0.396E+02 0.489E+02 0.500E+00 0.183E+03 0.396E+02 0.360E+02 0.400E+00 0.183E+03 0.397E+02 0.425E+02 0.400E+00 0.184E+03 0.397E+02 0.352E+02 0.300E+00 0.184E+03 0.397E+02 0.415E+02 0.300E+00 0.185E+03 0.397E+02 0.420E+02 0.300E+00 0.185E+03 0.398E+02 0.425E+02 0.300E+00 0.185E+03 0.397E+02 0.351E+02 0.200E+00 0.186E+03 0.398E+02 0.490E+02 0.300E+00 0.186E+03 0.398E+02 0.358E+02 0.200E+00 0.187E+03 0.398E+02 0.419E+02 0.200E+00 0.187E+03 0.398E+02 0.423E+02 0.200E+00 0.187E+03 0.400E+02 0.426E+02 0.200E+00 0.188E+03 0.400E+02 0.273E+02 0.000E+00 0.188E+03 0.401E+02 0.388E+02 0.000E+00 0.189E+03 0.401E+02 0.310E+02 -0.100E+00 0.189E+03 0.401E+02 0.365E+02 -0.100E+00 0.189E+03 0.402E+02 0.364E+02 -0.100E+00 0.190E+03 0.401E+02 0.285E+02 -0.200E+00 0.190E+03 0.403E+02 0.416E+02 -0.100E+00 0.191E+03 0.403E+02 0.204E+02 -0.300E+00 0.191E+03 0.404E+02 0.312E+02 -0.300E+00 0.191E+03 0.404E+02 0.231E+02 -0.400E+00 0.192E+03 0.405E+02 0.281E+02 -0.400E+00 0.192E+03 0.405E+02 0.198E+02 -0.500E+00 0.193E+03 0.405E+02 0.247E+02 -0.500E+00 0.193E+03 0.407E+02 0.239E+02 -0.500E+00 0.193E+03 0.405E+02 0.790E+01 -0.700E+00 0.194E+03 0.405E+02 0.334E+02 -0.500E+00 0.194E+03 0.407E+02 0.213E+02 -0.500E+00 0.195E+03 0.407E+02 0.536E+01 -0.700E+00 0.195E+03 0.407E+02 0.154E+02 -0.700E+00 0.195E+03 0.407E+02 0.144E+02 -0.700E+00 0.196E+03 0.408E+02 0.133E+02 -0.700E+00 0.196E+03 0.408E+02 0.462E+01 -0.800E+00 0.197E+03 0.407E+02 0.895E+01 -0.800E+00 0.197E+03 0.407E+02 0.153E+02 -0.700E+00 0.197E+03 0.405E+02 0.864E+01 -0.700E+00 0.198E+03 0.405E+02 0.229E+02 -0.500E+00 0.198E+03 0.405E+02 0.108E+02 -0.500E+00 0.199E+03 0.405E+02 0.100E+02 -0.500E+00 0.199E+03 0.404E+02 0.926E+01 -0.500E+00 0.199E+03 0.404E+02 0.162E+02 -0.400E+00 0.200E+03 0.404E+02 0.989E+01 -0.400E+00 0.200E+03 0.403E+02 0.000E+00 0.470E+01 0.201E+03 0.403E+02 0.173E+01 0.470E+01 0.201E+03 0.403E+02 0.914E+01 0.470E+01 0.201E+03 0.403E+02 0.165E+02 0.470E+01 0.202E+03 0.402E+02 0.239E+02 0.470E+01 0.202E+03 0.401E+02 0.391E+02 0.480E+01 0.203E+03 0.400E+02 0.488E+02 0.490E+01 0.203E+03 0.398E+02 0.490E+02 0.500E+01 0.203E+03 0.398E+02 0.490E+02 0.520E+01 0.204E+03 0.398E+02 0.458E+02 0.520E+01 0.204E+03 0.397E+02 0.490E+02 0.520E+01 0.205E+03 0.396E+02 0.490E+02 0.530E+01 0.205E+03 0.397E+02 0.490E+02 0.540E+01 0.205E+03 0.396E+02 0.440E+02 0.530E+01 0.206E+03 0.396E+02 0.490E+02 0.540E+01 0.206E+03 0.395E+02 0.490E+02 0.540E+01 0.207E+03 0.396E+02 0.490E+02 0.550E+01 0.207E+03 0.395E+02 0.441E+02 0.540E+01 0.207E+03 0.395E+02 0.490E+02 0.550E+01 0.208E+03 0.395E+02 0.490E+02 0.550E+01 0.208E+03 0.395E+02 0.490E+02 0.550E+01 0.209E+03 0.396E+02 0.490E+02 0.550E+01 0.209E+03 0.396E+02 0.490E+02 0.540E+01 0.209E+03 0.395E+02 0.490E+02 0.540E+01 0.210E+03 0.396E+02 0.490E+02 0.550E+01 0.210E+03 0.396E+02 0.441E+02 0.540E+01 0.211E+03 0.396E+02 0.490E+02 0.540E+01 0.211E+03 0.396E+02 0.490E+02 0.540E+01 0.211E+03 0.396E+02 0.490E+02 0.540E+01 0.212E+03 0.397E+02 0.490E+02 0.540E+01 0.212E+03 0.398E+02 0.490E+02 0.530E+01 0.213E+03 0.397E+02 0.490E+02 0.520E+01 0.213E+03 0.397E+02 0.490E+02 0.530E+01 0.213E+03 0.398E+02 0.490E+02 0.530E+01 0.214E+03 0.400E+02 0.490E+02 0.520E+01 0.214E+03 0.400E+02 0.474E+02 0.500E+01 0.215E+03 0.401E+02 0.490E+02 0.500E+01 0.215E+03 0.401E+02 0.490E+02 0.490E+01 0.215E+03 0.400E+02 0.490E+02 0.490E+01 0.216E+03 0.401E+02 0.490E+02 0.500E+01 0.216E+03 0.402E+02 0.434E+02 0.490E+01 0.217E+03 0.402E+02 0.490E+02 0.480E+01 0.217E+03 0.402E+02 0.490E+02 0.480E+01 0.217E+03 0.403E+02 0.490E+02 0.480E+01 0.218E+03 0.403E+02 0.488E+02 0.470E+01 0.218E+03 0.405E+02 0.490E+02 0.470E+01 0.219E+03 0.404E+02 0.410E+02 0.450E+01 0.219E+03 0.407E+02 0.490E+02 0.460E+01 0.219E+03 0.407E+02 0.277E+02 0.430E+01 0.220E+03 0.408E+02 0.490E+02 0.430E+01 0.220E+03 0.408E+02 0.481E+02 0.420E+01 0.221E+03 0.409E+02 0.490E+02 0.420E+01 0.221E+03 0.409E+02 0.479E+02 0.410E+01 0.221E+03 0.410E+02 0.490E+02 0.410E+01 0.222E+03 0.410E+02 0.478E+02 0.400E+01 0.222E+03 0.411E+02 0.490E+02 0.400E+01 0.223E+03 0.411E+02 0.476E+02 0.390E+01 0.223E+03 0.414E+02 0.490E+02 0.390E+01 0.223E+03 0.412E+02 0.327E+02 0.360E+01 0.224E+03 0.414E+02 0.490E+02 0.380E+01 0.224E+03 0.415E+02 0.291E+02 0.360E+01 0.225E+03 0.415E+02 0.379E+02 0.350E+01 0.225E+03 0.416E+02 0.486E+02 0.350E+01 0.225E+03 0.416E+02 0.465E+02 0.340E+01 0.226E+03 0.418E+02 0.490E+02 0.340E+01 0.226E+03 0.418E+02 0.395E+02 0.320E+01 0.227E+03 0.419E+02 0.490E+02 0.320E+01 0.227E+03 0.419E+02 0.465E+02 0.310E+01 0.227E+03 0.421E+02 0.490E+02 0.310E+01 0.228E+03 0.421E+02 0.391E+02 0.290E+01 0.228E+03 0.423E+02 0.490E+02 0.290E+01 0.229E+03 0.422E+02 0.389E+02 0.270E+01 0.229E+03 0.424E+02 0.490E+02 0.280E+01 0.229E+03 0.424E+02 0.336E+02 0.260E+01 0.230E+03 0.424E+02 0.478E+02 0.260E+01 0.230E+03 0.424E+02 0.490E+02 0.260E+01 0.231E+03 0.425E+02 0.490E+02 0.260E+01 0.231E+03 0.426E+02 0.457E+02 0.250E+01 0.231E+03 0.426E+02 0.474E+02 0.240E+01 0.232E+03 0.426E+02 0.490E+02 0.240E+01 0.232E+03 0.427E+02 0.490E+02 0.240E+01 0.233E+03 0.427E+02 0.454E+02 0.230E+01 0.233E+03 0.429E+02 0.490E+02 0.230E+01 0.233E+03 0.429E+02 0.383E+02 0.210E+01 0.234E+03 0.429E+02 0.490E+02 0.210E+01 0.234E+03 0.430E+02 0.490E+02 0.210E+01 0.235E+03 0.430E+02 0.450E+02 0.200E+01 0.235E+03 0.430E+02 0.490E+02 0.200E+01 0.235E+03 0.431E+02 0.490E+02 0.200E+01 0.236E+03 0.431E+02 0.449E+02 0.190E+01 0.236E+03 0.431E+02 0.490E+02 0.190E+01 0.237E+03 0.432E+02 0.490E+02 0.190E+01 0.237E+03 0.433E+02 0.448E+02 0.180E+01 0.237E+03 0.433E+02 0.455E+02 0.170E+01 0.238E+03 0.434E+02 0.490E+02 0.170E+01 0.238E+03 0.434E+02 0.445E+02 0.160E+01 0.239E+03 0.434E+02 0.490E+02 0.160E+01 0.239E+03 0.436E+02 0.490E+02 0.160E+01 0.239E+03 0.436E+02 0.376E+02 0.140E+01 0.240E+03 0.436E+02 0.490E+02 0.140E+01 0.240E+03 0.436E+02 0.490E+02 0.140E+01 0.241E+03 0.437E+02 0.490E+02 0.140E+01 0.241E+03 0.437E+02 0.441E+02 0.130E+01 0.241E+03 0.438E+02 0.490E+02 0.130E+01 0.242E+03 0.438E+02 0.440E+02 0.120E+01 0.242E+03 0.438E+02 0.490E+02 0.120E+01 0.243E+03 0.438E+02 0.490E+02 0.120E+01 0.243E+03 0.438E+02 0.490E+02 0.120E+01 0.243E+03 0.438E+02 0.490E+02 0.120E+01 0.244E+03 0.439E+02 0.490E+02 0.120E+01 0.244E+03 0.439E+02 0.439E+02 0.110E+01 0.245E+03 0.439E+02 0.490E+02 0.110E+01 0.245E+03 0.440E+02 0.490E+02 0.110E+01 0.245E+03 0.438E+02 0.438E+02 0.100E+01 0.246E+03 0.439E+02 0.490E+02 0.120E+01 0.246E+03 0.439E+02 0.340E+02 0.110E+01 0.247E+03 0.439E+02 0.405E+02 0.110E+01 0.247E+03 0.438E+02 0.420E+02 0.110E+01 0.247E+03 0.439E+02 0.490E+02 0.120E+01 0.248E+03 0.438E+02 0.389E+02 0.110E+01 0.248E+03 0.439E+02 0.490E+02 0.120E+01 0.249E+03 0.438E+02 0.389E+02 0.110E+01 0.249E+03 0.439E+02 0.490E+02 0.120E+01 0.249E+03 0.439E+02 0.389E+02 0.110E+01 0.250E+03 0.439E+02 0.454E+02 0.110E+01 0.250E+03 0.439E+02 0.469E+02 0.110E+01 0.251E+03 0.439E+02 0.484E+02 0.110E+01 0.251E+03 0.439E+02 0.490E+02 0.110E+01 0.251E+03 0.439E+02 0.490E+02 0.110E+01 0.252E+03 0.439E+02 0.490E+02 0.110E+01 0.252E+03 0.439E+02 0.490E+02 0.110E+01 0.253E+03 0.439E+02 0.490E+02 0.110E+01 0.253E+03 0.439E+02 0.490E+02 0.110E+01 0.253E+03 0.439E+02 0.490E+02 0.110E+01 0.254E+03 0.438E+02 0.490E+02 0.110E+01 0.254E+03 0.439E+02 0.490E+02 0.120E+01 0.255E+03 0.439E+02 0.389E+02 0.110E+01 0.255E+03 0.439E+02 0.454E+02 0.110E+01 0.255E+03 0.439E+02 0.469E+02 0.110E+01 0.256E+03 0.438E+02 0.484E+02 0.110E+01 0.256E+03 0.439E+02 0.490E+02 0.120E+01 0.257E+03 0.439E+02 0.389E+02 0.110E+01 0.257E+03 0.439E+02 0.454E+02 0.110E+01 0.257E+03 0.439E+02 0.469E+02 0.110E+01 0.258E+03 0.439E+02 0.484E+02 0.110E+01 0.258E+03 0.439E+02 0.490E+02 0.110E+01 0.259E+03 0.439E+02 0.490E+02 0.110E+01 0.259E+03 0.439E+02 0.490E+02 0.110E+01 0.259E+03 0.439E+02 0.490E+02 0.110E+01 0.260E+03 0.440E+02 0.490E+02 0.110E+01 0.260E+03 0.440E+02 0.438E+02 0.100E+01 0.261E+03 0.439E+02 0.490E+02 0.100E+01 0.261E+03 0.439E+02 0.490E+02 0.110E+01 0.261E+03 0.440E+02 0.456E+02 0.110E+01 0.262E+03 0.440E+02 0.403E+02 0.100E+01 0.262E+03 0.440E+02 0.467E+02 0.100E+01 0.263E+03 0.440E+02 0.480E+02 0.100E+01 0.263E+03 0.440E+02 0.490E+02 0.100E+01 0.263E+03 0.440E+02 0.490E+02 0.100E+01 0.264E+03 0.441E+02 0.490E+02 0.100E+01 0.264E+03 0.441E+02 0.437E+02 0.900E+00 0.265E+03 0.441E+02 0.490E+02 0.900E+00 0.265E+03 0.441E+02 0.490E+02 0.900E+00 0.265E+03 0.441E+02 0.490E+02 0.900E+00 0.266E+03 0.441E+02 0.490E+02 0.900E+00 0.266E+03 0.441E+02 0.490E+02 0.900E+00 0.267E+03 0.441E+02 0.490E+02 0.900E+00 0.267E+03 0.441E+02 0.490E+02 0.900E+00 0.267E+03 0.443E+02 0.490E+02 0.900E+00 0.268E+03 0.443E+02 0.369E+02 0.700E+00 0.268E+03 0.441E+02 0.476E+02 0.700E+00 0.269E+03 0.441E+02 0.490E+02 0.900E+00 0.269E+03 0.443E+02 0.404E+02 0.900E+00 0.269E+03 0.441E+02 0.283E+02 0.700E+00 0.270E+03 0.443E+02 0.490E+02 0.900E+00 0.270E+03 0.443E+02 0.271E+02 0.700E+00 0.271E+03 0.443E+02 0.379E+02 0.700E+00 0.271E+03 0.443E+02 0.388E+02 0.700E+00 0.271E+03 0.443E+02 0.398E+02 0.700E+00 0.272E+03 0.443E+02 0.407E+02 0.700E+00 0.272E+03 0.443E+02 0.417E+02 0.700E+00 0.273E+03 0.441E+02 0.426E+02 0.700E+00 0.273E+03 0.443E+02 0.490E+02 0.900E+00 0.273E+03 0.443E+02 0.271E+02 0.700E+00 0.274E+03 0.443E+02 0.379E+02 0.700E+00 0.274E+03 0.441E+02 0.388E+02 0.700E+00 0.275E+03 0.443E+02 0.490E+02 0.900E+00 0.275E+03 0.441E+02 0.271E+02 0.700E+00 0.275E+03 0.441E+02 0.490E+02 0.900E+00 0.276E+03 0.441E+02 0.404E+02 0.900E+00 0.276E+03 0.441E+02 0.416E+02 0.900E+00 0.277E+03 0.441E+02 0.428E+02 0.900E+00 0.277E+03 0.440E+02 0.441E+02 0.900E+00 0.277E+03 0.441E+02 0.490E+02 0.100E+01 0.278E+03 0.441E+02 0.387E+02 0.900E+00 0.278E+03 0.441E+02 0.449E+02 0.900E+00 0.279E+03 0.441E+02 0.461E+02 0.900E+00 0.279E+03 0.441E+02 0.474E+02 0.900E+00 0.279E+03 0.440E+02 0.486E+02 0.900E+00 0.280E+03 0.441E+02 0.490E+02 0.100E+01 0.280E+03 0.441E+02 0.387E+02 0.900E+00 0.281E+03 0.441E+02 0.449E+02 0.900E+00 0.281E+03 0.440E+02 0.461E+02 0.900E+00 0.281E+03 0.441E+02 0.490E+02 0.100E+01 0.282E+03 0.441E+02 0.387E+02 0.900E+00 0.282E+03 0.443E+02 0.449E+02 0.900E+00 0.283E+03 0.441E+02 0.328E+02 0.700E+00 0.283E+03 0.443E+02 0.490E+02 0.900E+00 0.283E+03 0.443E+02 0.271E+02 0.700E+00 0.284E+03 0.444E+02 0.379E+02 0.700E+00 0.284E+03 0.444E+02 0.322E+02 0.600E+00 0.285E+03 0.444E+02 0.379E+02 0.600E+00 0.285E+03 0.444E+02 0.387E+02 0.600E+00 0.285E+03 0.444E+02 0.395E+02 0.600E+00 0.286E+03 0.444E+02 0.403E+02 0.600E+00 0.286E+03 0.444E+02 0.411E+02 0.600E+00 0.287E+03 0.444E+02 0.419E+02 0.600E+00 0.287E+03 0.444E+02 0.427E+02 0.600E+00 0.287E+03 0.444E+02 0.435E+02 0.600E+00 0.288E+03 0.443E+02 0.444E+02 0.600E+00 0.288E+03 0.444E+02 0.490E+02 0.700E+00 0.289E+03 0.443E+02 0.384E+02 0.600E+00 0.289E+03 0.443E+02 0.490E+02 0.700E+00 0.289E+03 0.443E+02 0.451E+02 0.700E+00 0.290E+03 0.443E+02 0.460E+02 0.700E+00 0.290E+03 0.443E+02 0.470E+02 0.700E+00 0.291E+03 0.443E+02 0.479E+02 0.700E+00 0.291E+03 0.441E+02 0.489E+02 0.700E+00 0.291E+03 0.441E+02 0.490E+02 0.900E+00 0.292E+03 0.441E+02 0.404E+02 0.900E+00 0.292E+03 0.441E+02 0.416E+02 0.900E+00 0.293E+03 0.441E+02 0.428E+02 0.900E+00 0.293E+03 0.441E+02 0.441E+02 0.900E+00 0.293E+03 0.441E+02 0.453E+02 0.900E+00 0.294E+03 0.443E+02 0.465E+02 0.900E+00 0.294E+03 0.441E+02 0.344E+02 0.700E+00 0.295E+03 0.441E+02 0.490E+02 0.900E+00 0.295E+03 0.441E+02 0.404E+02 0.900E+00 0.295E+03 0.441E+02 0.416E+02 0.900E+00 0.296E+03 0.440E+02 0.428E+02 0.900E+00 0.296E+03 0.441E+02 0.490E+02 0.100E+01 0.297E+03 0.440E+02 0.387E+02 0.900E+00 0.297E+03 0.440E+02 0.490E+02 0.100E+01 0.297E+03 0.441E+02 0.454E+02 0.100E+01 0.298E+03 0.441E+02 0.401E+02 0.900E+00 0.298E+03 0.441E+02 0.462E+02 0.900E+00 0.299E+03 0.440E+02 0.475E+02 0.900E+00 0.299E+03 0.441E+02 0.490E+02 0.100E+01 0.299E+03 0.441E+02 0.387E+02 0.900E+00 0.300E+03 0.441E+02 0.449E+02 0.900E+00 0.300E+03 0.440E+02 0.461E+02 0.900E+00 0.300E+03 0.441E+02 0.490E+02 0.100E+01 0.301E+03 0.441E+02 0.387E+02 0.900E+00 0.301E+03 0.440E+02 0.449E+02 0.900E+00 0.302E+03 0.440E+02 0.490E+02 0.100E+01 0.302E+03 0.441E+02 0.454E+02 0.100E+01 0.302E+03 0.440E+02 0.401E+02 0.900E+00 0.303E+03 0.440E+02 0.490E+02 0.100E+01 0.303E+03 0.440E+02 0.454E+02 0.100E+01 0.304E+03 0.441E+02 0.468E+02 0.100E+01 0.304E+03 0.441E+02 0.415E+02 0.900E+00 0.304E+03 0.441E+02 0.476E+02 0.900E+00 0.305E+03 0.440E+02 0.489E+02 0.900E+00 0.305E+03 0.440E+02 0.490E+02 0.100E+01 0.306E+03 0.441E+02 0.454E+02 0.100E+01 0.306E+03 0.441E+02 0.401E+02 0.900E+00 0.306E+03 0.441E+02 0.462E+02 0.900E+00 0.307E+03 0.441E+02 0.475E+02 0.900E+00 0.307E+03 0.441E+02 0.487E+02 0.900E+00 0.308E+03 0.441E+02 0.490E+02 0.900E+00 0.308E+03 0.443E+02 0.490E+02 0.900E+00 0.308E+03 0.443E+02 0.369E+02 0.700E+00 0.309E+03 0.443E+02 0.476E+02 0.700E+00 0.309E+03 0.443E+02 0.486E+02 0.700E+00 0.310E+03 0.443E+02 0.490E+02 0.700E+00 0.310E+03 0.443E+02 0.490E+02 0.700E+00 0.310E+03 0.444E+02 0.490E+02 0.700E+00 0.311E+03 0.443E+02 0.433E+02 0.600E+00 0.311E+03 0.444E+02 0.490E+02 0.700E+00 0.312E+03 0.444E+02 0.384E+02 0.600E+00 0.312E+03 0.444E+02 0.441E+02 0.600E+00 0.312E+03 0.445E+02 0.449E+02 0.600E+00 0.313E+03 0.445E+02 0.391E+02 0.500E+00 0.313E+03 0.444E+02 0.447E+02 0.500E+00 0.314E+03 0.444E+02 0.490E+02 0.600E+00 0.314E+03 0.444E+02 0.449E+02 0.600E+00 0.314E+03 0.444E+02 0.457E+02 0.600E+00 0.315E+03 0.445E+02 0.466E+02 0.600E+00 0.315E+03 0.445E+02 0.408E+02 0.500E+00 0.316E+03 0.445E+02 0.463E+02 0.500E+00 0.316E+03 0.445E+02 0.470E+02 0.500E+00 0.316E+03 0.445E+02 0.476E+02 0.500E+00 0.317E+03 0.446E+02 0.483E+02 0.500E+00 0.317E+03 0.446E+02 0.424E+02 0.400E+00 0.318E+03 0.445E+02 0.478E+02 0.400E+00 0.318E+03 0.446E+02 0.490E+02 0.500E+00 0.318E+03 0.446E+02 0.382E+02 0.400E+00 0.319E+03 0.446E+02 0.436E+02 0.400E+00 0.319E+03 0.447E+02 0.442E+02 0.400E+00 0.320E+03 0.446E+02 0.381E+02 0.300E+00 0.320E+03 0.446E+02 0.490E+02 0.400E+00 0.320E+03 0.446E+02 0.447E+02 0.400E+00 0.321E+03 0.447E+02 0.452E+02 0.400E+00 0.321E+03 0.446E+02 0.392E+02 0.300E+00 0.322E+03 0.446E+02 0.490E+02 0.400E+00 0.322E+03 0.447E+02 0.447E+02 0.400E+00 0.322E+03 0.447E+02 0.387E+02 0.300E+00 0.323E+03 0.448E+02 0.439E+02 0.300E+00 0.323E+03 0.447E+02 0.377E+02 0.200E+00 0.324E+03 0.448E+02 0.490E+02 0.300E+00 0.324E+03 0.448E+02 0.380E+02 0.200E+00 0.324E+03 0.448E+02 0.431E+02 0.200E+00 0.325E+03 0.448E+02 0.434E+02 0.200E+00 0.325E+03 0.450E+02 0.437E+02 0.200E+00 0.326E+03 0.450E+02 0.309E+02 0.000E+00 0.326E+03 0.450E+02 0.405E+02 0.000E+00 0.326E+03 0.450E+02 0.405E+02 0.000E+00 0.327E+03 0.450E+02 0.405E+02 0.000E+00 0.327E+03 0.451E+02 0.405E+02 0.000E+00 0.328E+03 0.451E+02 0.340E+02 -0.100E+00 0.328E+03 0.451E+02 0.386E+02 -0.100E+00 0.328E+03 0.450E+02 0.385E+02 -0.100E+00 0.329E+03 0.451E+02 0.449E+02 0.000E+00 0.329E+03 0.451E+02 0.336E+02 -0.100E+00 0.330E+03 0.451E+02 0.382E+02 -0.100E+00 0.330E+03 0.451E+02 0.381E+02 -0.100E+00 0.330E+03 0.451E+02 0.380E+02 -0.100E+00 0.331E+03 0.451E+02 0.379E+02 -0.100E+00 0.331E+03 0.451E+02 0.377E+02 -0.100E+00 0.332E+03 0.451E+02 0.376E+02 -0.100E+00 0.332E+03 0.452E+02 0.375E+02 -0.100E+00 0.332E+03 0.451E+02 0.309E+02 -0.200E+00 0.333E+03 0.452E+02 0.418E+02 -0.100E+00 0.333E+03 0.451E+02 0.305E+02 -0.200E+00 0.334E+03 0.452E+02 0.415E+02 -0.100E+00 0.334E+03 0.452E+02 0.302E+02 -0.200E+00 0.334E+03 0.452E+02 0.346E+02 -0.200E+00 0.335E+03 0.451E+02 0.344E+02 -0.200E+00 0.335E+03 0.452E+02 0.406E+02 -0.100E+00 0.336E+03 0.452E+02 0.293E+02 -0.200E+00 0.336E+03 0.452E+02 0.337E+02 -0.200E+00 0.336E+03 0.451E+02 0.335E+02 -0.200E+00 0.337E+03 0.451E+02 0.397E+02 -0.100E+00 0.337E+03 0.451E+02 0.348E+02 -0.100E+00 0.338E+03 0.451E+02 0.347E+02 -0.100E+00 0.338E+03 0.450E+02 0.345E+02 -0.100E+00 0.338E+03 0.450E+02 0.409E+02 0.000E+00 0.339E+03 0.451E+02 0.361E+02 0.000E+00 0.339E+03 0.450E+02 0.296E+02 -0.100E+00 0.340E+03 0.450E+02 0.408E+02 0.000E+00 0.340E+03 0.450E+02 0.360E+02 0.000E+00 0.340E+03 0.448E+02 0.360E+02 0.000E+00 0.341E+03 0.448E+02 0.490E+02 0.200E+00 0.341E+03 0.448E+02 0.397E+02 0.200E+00 0.342E+03 0.447E+02 0.399E+02 0.200E+00 0.342E+03 0.448E+02 0.468E+02 0.300E+00 0.342E+03 0.447E+02 0.358E+02 0.200E+00 0.343E+03 0.447E+02 0.475E+02 0.300E+00 0.343E+03 0.447E+02 0.430E+02 0.300E+00 0.344E+03 0.448E+02 0.434E+02 0.300E+00 0.344E+03 0.448E+02 0.373E+02 0.200E+00 0.344E+03 0.447E+02 0.424E+02 0.200E+00 0.345E+03 0.447E+02 0.490E+02 0.300E+00 0.345E+03 0.447E+02 0.446E+02 0.300E+00 0.346E+03 0.447E+02 0.450E+02 0.300E+00 0.346E+03 0.446E+02 0.454E+02 0.300E+00 0.346E+03 0.447E+02 0.490E+02 0.400E+00 0.347E+03 0.447E+02 0.381E+02 0.300E+00 0.347E+03 0.446E+02 0.434E+02 0.300E+00 0.348E+03 0.446E+02 0.490E+02 0.400E+00 0.348E+03 0.446E+02 0.447E+02 0.400E+00 0.348E+03 0.447E+02 0.452E+02 0.400E+00 0.349E+03 0.446E+02 0.392E+02 0.300E+00 0.349E+03 0.446E+02 0.490E+02 0.400E+00 0.350E+03 0.446E+02 0.447E+02 0.400E+00 0.350E+03 0.446E+02 0.452E+02 0.400E+00 0.350E+03 0.446E+02 0.458E+02 0.400E+00 0.351E+03 0.447E+02 0.463E+02 0.400E+00 0.351E+03 0.447E+02 0.403E+02 0.300E+00 0.352E+03 0.446E+02 0.455E+02 0.300E+00 0.352E+03 0.447E+02 0.490E+02 0.400E+00 0.352E+03 0.447E+02 0.381E+02 0.300E+00 0.353E+03 0.447E+02 0.434E+02 0.300E+00 0.353E+03 0.448E+02 0.438E+02 0.300E+00 0.354E+03 0.448E+02 0.376E+02 0.200E+00 0.354E+03 0.448E+02 0.427E+02 0.200E+00 0.354E+03 0.448E+02 0.430E+02 0.200E+00 0.355E+03 0.448E+02 0.432E+02 0.200E+00 0.355E+03 0.448E+02 0.435E+02 0.200E+00 0.356E+03 0.448E+02 0.438E+02 0.200E+00 0.356E+03 0.450E+02 0.440E+02 0.200E+00 0.356E+03 0.450E+02 0.313E+02 0.000E+00 0.357E+03 0.450E+02 0.409E+02 0.000E+00 0.357E+03 0.450E+02 0.409E+02 0.000E+00 0.358E+03 0.451E+02 0.409E+02 0.000E+00 0.358E+03 0.451E+02 0.344E+02 -0.100E+00 0.358E+03 0.451E+02 0.390E+02 -0.100E+00 0.359E+03 0.451E+02 0.389E+02 -0.100E+00 0.359E+03 0.451E+02 0.387E+02 -0.100E+00 0.360E+03 0.450E+02 0.386E+02 -0.100E+00 0.360E+03 0.451E+02 0.450E+02 0.000E+00 0.360E+03 0.450E+02 0.337E+02 -0.100E+00 0.361E+03 0.451E+02 0.449E+02 0.000E+00 0.361E+03 0.451E+02 0.336E+02 -0.100E+00 0.362E+03 0.451E+02 0.383E+02 -0.100E+00 0.362E+03 0.451E+02 0.381E+02 -0.100E+00 0.362E+03 0.451E+02 0.380E+02 -0.100E+00 0.363E+03 0.450E+02 0.379E+02 -0.100E+00 0.363E+03 0.450E+02 0.442E+02 0.000E+00 0.364E+03 0.451E+02 0.395E+02 0.000E+00 0.364E+03 0.450E+02 0.330E+02 -0.100E+00 0.364E+03 0.450E+02 0.441E+02 0.000E+00 0.365E+03 0.450E+02 0.394E+02 0.000E+00 0.365E+03 0.450E+02 0.394E+02 0.000E+00 0.366E+03 0.450E+02 0.394E+02 0.000E+00 0.366E+03 0.450E+02 0.394E+02 0.000E+00 0.366E+03 0.448E+02 0.394E+02 0.000E+00 0.367E+03 0.450E+02 0.490E+02 0.200E+00 0.367E+03 0.448E+02 0.267E+02 0.000E+00 0.368E+03 0.448E+02 0.490E+02 0.200E+00 0.368E+03 0.448E+02 0.397E+02 0.200E+00 0.368E+03 0.448E+02 0.399E+02 0.200E+00 0.369E+03 0.448E+02 0.402E+02 0.200E+00 0.369E+03 0.448E+02 0.405E+02 0.200E+00 0.370E+03 0.448E+02 0.407E+02 0.200E+00 0.370E+03 0.448E+02 0.410E+02 0.200E+00 0.370E+03 0.447E+02 0.413E+02 0.200E+00 0.371E+03 0.448E+02 0.481E+02 0.300E+00 0.371E+03 0.447E+02 0.371E+02 0.200E+00 0.372E+03 0.448E+02 0.488E+02 0.300E+00 0.372E+03 0.447E+02 0.378E+02 0.200E+00 0.372E+03 0.447E+02 0.490E+02 0.300E+00 0.373E+03 0.447E+02 0.446E+02 0.300E+00 0.373E+03 0.446E+02 0.450E+02 0.300E+00 0.374E+03 0.447E+02 0.490E+02 0.400E+00 0.374E+03 0.446E+02 0.381E+02 0.300E+00 0.374E+03 0.447E+02 0.490E+02 0.400E+00 0.375E+03 0.446E+02 0.381E+02 0.300E+00 0.375E+03 0.447E+02 0.490E+02 0.400E+00 0.376E+03 0.447E+02 0.381E+02 0.300E+00 0.376E+03 0.447E+02 0.434E+02 0.300E+00 0.376E+03 0.447E+02 0.438E+02 0.300E+00 0.377E+03 0.447E+02 0.442E+02 0.300E+00 0.377E+03 0.447E+02 0.446E+02 0.300E+00 0.378E+03 0.448E+02 0.450E+02 0.300E+00 0.378E+03 0.447E+02 0.388E+02 0.200E+00 0.378E+03 0.447E+02 0.490E+02 0.300E+00 0.379E+03 0.448E+02 0.446E+02 0.300E+00 0.379E+03 0.448E+02 0.384E+02 0.200E+00 0.380E+03 0.448E+02 0.435E+02 0.200E+00 0.380E+03 0.448E+02 0.438E+02 0.200E+00 0.380E+03 0.448E+02 0.440E+02 0.200E+00 0.381E+03 0.450E+02 0.443E+02 0.200E+00 0.381E+03 0.450E+02 0.316E+02 0.000E+00 0.382E+03 0.448E+02 0.411E+02 0.000E+00 0.382E+03 0.448E+02 0.490E+02 0.200E+00 0.382E+03 0.450E+02 0.397E+02 0.200E+00 0.383E+03 0.450E+02 0.269E+02 0.000E+00 0.383E+03 0.448E+02 0.365E+02 0.000E+00 0.384E+03 0.450E+02 0.490E+02 0.200E+00 0.384E+03 0.450E+02 0.267E+02 0.000E+00 0.384E+03 0.450E+02 0.363E+02 0.000E+00 0.385E+03 0.450E+02 0.363E+02 0.000E+00 0.385E+03 0.450E+02 0.363E+02 0.000E+00 0.386E+03 0.448E+02 0.363E+02 0.000E+00 0.386E+03 0.448E+02 0.490E+02 0.200E+00 0.386E+03 0.448E+02 0.397E+02 0.200E+00 0.387E+03 0.450E+02 0.399E+02 0.200E+00 0.387E+03 0.448E+02 0.272E+02 0.000E+00 0.388E+03 0.450E+02 0.490E+02 0.200E+00 0.388E+03 0.448E+02 0.267E+02 0.000E+00 0.388E+03 0.448E+02 0.490E+02 0.200E+00 0.389E+03 0.448E+02 0.397E+02 0.200E+00 0.389E+03 0.448E+02 0.399E+02 0.200E+00 0.390E+03 0.447E+02 0.402E+02 0.200E+00 0.390E+03 0.447E+02 0.470E+02 0.300E+00 0.390E+03 0.447E+02 0.426E+02 0.300E+00 0.391E+03 0.447E+02 0.430E+02 0.300E+00 0.391E+03 0.448E+02 0.434E+02 0.300E+00 0.392E+03 0.450E+02 0.373E+02 0.200E+00 0.392E+03 0.450E+02 0.293E+02 0.000E+00 0.392E+03 0.448E+02 0.388E+02 0.000E+00 0.393E+03 0.448E+02 0.490E+02 0.200E+00 0.393E+03 0.448E+02 0.397E+02 0.200E+00 0.394E+03 0.448E+02 0.399E+02 0.200E+00 0.394E+03 0.450E+02 0.402E+02 0.200E+00 0.394E+03 0.450E+02 0.275E+02 0.000E+00 0.395E+03 0.450E+02 0.370E+02 0.000E+00 0.395E+03 0.450E+02 0.370E+02 0.000E+00 0.396E+03 0.450E+02 0.370E+02 0.000E+00 0.396E+03 0.450E+02 0.370E+02 0.000E+00 0.396E+03 0.448E+02 0.370E+02 0.000E+00 0.397E+03 0.448E+02 0.490E+02 0.200E+00 0.397E+03 0.448E+02 0.397E+02 0.200E+00 0.398E+03 0.448E+02 0.399E+02 0.200E+00 0.398E+03 0.448E+02 0.402E+02 0.200E+00 0.398E+03 0.448E+02 0.405E+02 0.200E+00 0.399E+03 0.448E+02 0.407E+02 0.200E+00 0.399E+03 0.448E+02 0.410E+02 0.200E+00 0.400E+03 0.447E+02 0.413E+02 0.200E+00 0.400E+03 0.447E+02 0.481E+02 0.300E+00 0.400E+03 0.447E+02 0.437E+02 0.300E+00 0.401E+03 0.447E+02 0.441E+02 0.300E+00 0.401E+03 0.448E+02 0.445E+02 0.300E+00 0.402E+03 0.447E+02 0.383E+02 0.200E+00 0.402E+03 0.447E+02 0.490E+02 0.300E+00 0.402E+03 0.447E+02 0.446E+02 0.300E+00 0.403E+03 0.446E+02 0.450E+02 0.300E+00 0.403E+03 0.446E+02 0.490E+02 0.400E+00 0.404E+03 0.446E+02 0.447E+02 0.400E+00 0.404E+03 0.446E+02 0.452E+02 0.400E+00 0.404E+03 0.447E+02 0.458E+02 0.400E+00 0.405E+03 0.446E+02 0.397E+02 0.300E+00 0.405E+03 0.448E+02 0.490E+02 0.400E+00 0.406E+03 0.448E+02 0.316E+02 0.200E+00 0.406E+03 0.448E+02 0.415E+02 0.200E+00 0.406E+03 0.448E+02 0.418E+02 0.200E+00 0.407E+03 0.448E+02 0.421E+02 0.200E+00 0.407E+03 0.448E+02 0.423E+02 0.200E+00 0.408E+03 0.448E+02 0.426E+02 0.200E+00 0.408E+03 0.448E+02 0.429E+02 0.200E+00 0.408E+03 0.448E+02 0.431E+02 0.200E+00 0.409E+03 0.448E+02 0.434E+02 0.200E+00 0.409E+03 0.448E+02 0.437E+02 0.200E+00 0.410E+03 0.448E+02 0.439E+02 0.200E+00 0.410E+03 0.447E+02 0.442E+02 0.200E+00 0.410E+03 0.447E+02 0.490E+02 0.300E+00 0.411E+03 0.448E+02 0.446E+02 0.300E+00 0.411E+03 0.447E+02 0.384E+02 0.200E+00 0.412E+03 0.448E+02 0.490E+02 0.300E+00 0.412E+03 0.448E+02 0.380E+02 0.200E+00 0.412E+03 0.448E+02 0.431E+02 0.200E+00 0.413E+03 0.450E+02 0.434E+02 0.200E+00 0.413E+03 0.450E+02 0.307E+02 0.000E+00 0.414E+03 0.448E+02 0.402E+02 0.000E+00 0.414E+03 0.448E+02 0.490E+02 0.200E+00 0.414E+03 0.450E+02 0.397E+02 0.200E+00 0.415E+03 0.448E+02 0.269E+02 0.000E+00 0.415E+03 0.448E+02 0.490E+02 0.200E+00 0.416E+03 0.448E+02 0.397E+02 0.200E+00 0.416E+03 0.450E+02 0.399E+02 0.200E+00 0.416E+03 0.448E+02 0.272E+02 0.000E+00 0.417E+03 0.448E+02 0.490E+02 0.200E+00 0.417E+03 0.450E+02 0.397E+02 0.200E+00 0.418E+03 0.450E+02 0.269E+02 0.000E+00 0.418E+03 0.448E+02 0.365E+02 0.000E+00 0.418E+03 0.450E+02 0.490E+02 0.200E+00 0.419E+03 0.448E+02 0.267E+02 0.000E+00 0.419E+03 0.448E+02 0.490E+02 0.200E+00 0.420E+03 0.448E+02 0.397E+02 0.200E+00 0.420E+03 0.450E+02 0.399E+02 0.200E+00 0.420E+03 0.450E+02 0.272E+02 0.000E+00 0.421E+03 0.450E+02 0.367E+02 0.000E+00 0.421E+03 0.450E+02 0.367E+02 0.000E+00 0.422E+03 0.450E+02 0.367E+02 0.000E+00 0.422E+03 0.451E+02 0.367E+02 0.000E+00 0.422E+03 0.448E+02 0.303E+02 -0.100E+00 0.423E+03 0.448E+02 0.490E+02 0.200E+00 0.423E+03 0.450E+02 0.348E+02 0.200E+00 0.424E+03 0.448E+02 0.221E+02 0.000E+00 0.424E+03 0.450E+02 0.448E+02 0.200E+00 0.424E+03 0.448E+02 0.225E+02 0.000E+00 0.425E+03 0.448E+02 0.452E+02 0.200E+00 0.425E+03 0.448E+02 0.359E+02 0.200E+00 0.426E+03 0.448E+02 0.362E+02 0.200E+00 0.426E+03 0.450E+02 0.364E+02 0.200E+00 0.426E+03 0.448E+02 0.237E+02 0.000E+00 0.427E+03 0.450E+02 0.464E+02 0.200E+00 0.427E+03 0.448E+02 0.241E+02 0.000E+00 0.428E+03 0.448E+02 0.468E+02 0.200E+00 0.428E+03 0.448E+02 0.375E+02 0.200E+00 0.428E+03 0.448E+02 0.377E+02 0.200E+00 0.429E+03 0.448E+02 0.380E+02 0.200E+00 0.429E+03 0.448E+02 0.383E+02 0.200E+00 0.430E+03 0.448E+02 0.385E+02 0.200E+00 0.430E+03 0.448E+02 0.388E+02 0.200E+00 0.430E+03 0.447E+02 0.391E+02 0.200E+00 0.431E+03 0.447E+02 0.459E+02 0.300E+00 0.431E+03 0.447E+02 0.415E+02 0.300E+00 0.432E+03 0.447E+02 0.419E+02 0.300E+00 0.432E+03 0.446E+02 0.423E+02 0.300E+00 0.432E+03 0.447E+02 0.490E+02 0.400E+00 0.433E+03 0.447E+02 0.381E+02 0.300E+00 0.433E+03 0.446E+02 0.434E+02 0.300E+00 0.434E+03 0.447E+02 0.490E+02 0.400E+00 0.434E+03 0.446E+02 0.381E+02 0.300E+00 0.434E+03 0.446E+02 0.490E+02 0.400E+00 0.435E+03 0.446E+02 0.447E+02 0.400E+00 0.435E+03 0.446E+02 0.452E+02 0.400E+00 0.436E+03 0.445E+02 0.458E+02 0.400E+00 0.436E+03 0.446E+02 0.490E+02 0.500E+00 0.436E+03 0.446E+02 0.382E+02 0.400E+00 0.437E+03 0.445E+02 0.436E+02 0.400E+00 0.437E+03 0.445E+02 0.490E+02 0.500E+00 0.438E+03 0.446E+02 0.448E+02 0.500E+00 0.438E+03 0.445E+02 0.389E+02 0.400E+00 0.438E+03 0.447E+02 0.490E+02 0.500E+00 0.439E+03 0.446E+02 0.317E+02 0.300E+00 0.439E+03 0.447E+02 0.484E+02 0.400E+00 0.440E+03 0.446E+02 0.375E+02 0.300E+00 0.440E+03 0.446E+02 0.490E+02 0.400E+00 0.440E+03 0.447E+02 0.447E+02 0.400E+00 0.441E+03 0.446E+02 0.387E+02 0.300E+00 0.441E+03 0.446E+02 0.490E+02 0.400E+00 0.442E+03 0.446E+02 0.447E+02 0.400E+00 0.442E+03 0.446E+02 0.452E+02 0.400E+00 0.442E+03 0.446E+02 0.458E+02 0.400E+00 0.443E+03 0.446E+02 0.463E+02 0.400E+00 0.443E+03 0.446E+02 0.468E+02 0.400E+00 0.444E+03 0.446E+02 0.474E+02 0.400E+00 0.444E+03 0.446E+02 0.479E+02 0.400E+00 0.444E+03 0.446E+02 0.485E+02 0.400E+00 0.445E+03 0.446E+02 0.490E+02 0.400E+00 0.445E+03 0.446E+02 0.490E+02 0.400E+00 0.446E+03 0.446E+02 0.490E+02 0.400E+00 0.446E+03 0.446E+02 0.490E+02 0.400E+00 0.446E+03 0.446E+02 0.490E+02 0.400E+00 0.447E+03 0.446E+02 0.490E+02 0.400E+00 0.447E+03 0.447E+02 0.490E+02 0.400E+00 0.448E+03 0.447E+02 0.430E+02 0.300E+00 0.448E+03 0.446E+02 0.482E+02 0.300E+00 0.448E+03 0.446E+02 0.490E+02 0.400E+00 0.449E+03 0.447E+02 0.447E+02 0.400E+00 0.449E+03 0.446E+02 0.387E+02 0.300E+00 0.450E+03 0.446E+02 0.490E+02 0.400E+00 0.450E+03 0.447E+02 0.447E+02 0.400E+00 0.450E+03 0.446E+02 0.387E+02 0.300E+00 0.451E+03 0.447E+02 0.490E+02 0.400E+00 0.451E+03 0.447E+02 0.381E+02 0.300E+00 0.452E+03 0.447E+02 0.434E+02 0.300E+00 0.452E+03 0.447E+02 0.438E+02 0.300E+00 0.452E+03 0.447E+02 0.442E+02 0.300E+00 0.453E+03 0.447E+02 0.446E+02 0.300E+00 0.453E+03 0.447E+02 0.450E+02 0.300E+00 0.454E+03 0.446E+02 0.454E+02 0.300E+00 0.454E+03 0.447E+02 0.490E+02 0.400E+00 0.454E+03 0.447E+02 0.381E+02 0.300E+00 0.455E+03 0.447E+02 0.434E+02 0.300E+00 0.455E+03 0.448E+02 0.438E+02 0.300E+00 0.456E+03 0.447E+02 0.376E+02 0.200E+00 0.456E+03 0.448E+02 0.490E+02 0.300E+00 0.456E+03 0.447E+02 0.380E+02 0.200E+00 0.457E+03 0.448E+02 0.490E+02 0.300E+00 0.457E+03 0.448E+02 0.380E+02 0.200E+00 0.458E+03 0.448E+02 0.431E+02 0.200E+00 0.458E+03 0.450E+02 0.434E+02 0.200E+00 0.458E+03 0.450E+02 0.307E+02 0.000E+00 0.459E+03 0.448E+02 0.402E+02 0.000E+00 0.459E+03 0.450E+02 0.490E+02 0.200E+00 0.460E+03 0.448E+02 0.267E+02 0.000E+00 0.460E+03 0.450E+02 0.490E+02 0.200E+00 0.460E+03 0.448E+02 0.267E+02 0.000E+00 0.461E+03 0.450E+02 0.490E+02 0.200E+00 0.461E+03 0.450E+02 0.267E+02 0.000E+00 0.462E+03 0.450E+02 0.363E+02 0.000E+00 0.462E+03 0.450E+02 0.363E+02 0.000E+00 0.462E+03 0.450E+02 0.363E+02 0.000E+00 0.463E+03 0.450E+02 0.363E+02 0.000E+00 0.463E+03 0.448E+02 0.363E+02 0.000E+00 0.464E+03 0.450E+02 0.490E+02 0.200E+00 0.464E+03 0.448E+02 0.267E+02 0.000E+00 0.464E+03 0.448E+02 0.490E+02 0.200E+00 0.465E+03 0.450E+02 0.397E+02 0.200E+00 0.465E+03 0.450E+02 0.269E+02 0.000E+00 0.466E+03 0.450E+02 0.365E+02 0.000E+00 0.466E+03 0.450E+02 0.365E+02 0.000E+00 0.466E+03 0.450E+02 0.365E+02 0.000E+00 0.467E+03 0.450E+02 0.365E+02 0.000E+00 0.467E+03 0.448E+02 0.365E+02 0.000E+00 0.468E+03 0.448E+02 0.490E+02 0.200E+00 0.468E+03 0.448E+02 0.397E+02 0.200E+00 0.468E+03 0.450E+02 0.399E+02 0.200E+00 0.469E+03 0.450E+02 0.272E+02 0.000E+00 0.469E+03 0.448E+02 0.367E+02 0.000E+00 0.470E+03 0.447E+02 0.490E+02 0.200E+00 0.470E+03 0.448E+02 0.462E+02 0.300E+00 0.470E+03 0.447E+02 0.352E+02 0.200E+00 0.471E+03 0.448E+02 0.469E+02 0.300E+00 0.471E+03 0.448E+02 0.359E+02 0.200E+00 0.472E+03 0.448E+02 0.410E+02 0.200E+00 0.472E+03 0.448E+02 0.413E+02 0.200E+00 0.472E+03 0.448E+02 0.416E+02 0.200E+00 0.473E+03 0.448E+02 0.418E+02 0.200E+00 0.473E+03 0.448E+02 0.421E+02 0.200E+00 0.474E+03 0.448E+02 0.424E+02 0.200E+00 0.474E+03 0.448E+02 0.426E+02 0.200E+00 0.474E+03 0.448E+02 0.429E+02 0.200E+00 0.475E+03 0.448E+02 0.432E+02 0.200E+00 0.475E+03 0.448E+02 0.434E+02 0.200E+00 0.476E+03 0.450E+02 0.437E+02 0.200E+00 0.476E+03 0.448E+02 0.310E+02 0.000E+00 0.476E+03 0.448E+02 0.490E+02 0.200E+00 0.477E+03 0.450E+02 0.397E+02 0.200E+00 0.477E+03 0.450E+02 0.269E+02 0.000E+00 0.478E+03 0.450E+02 0.365E+02 0.000E+00 0.478E+03 0.450E+02 0.365E+02 0.000E+00 0.478E+03 0.450E+02 0.365E+02 0.000E+00 0.479E+03 0.450E+02 0.365E+02 0.000E+00 0.479E+03 0.451E+02 0.365E+02 0.000E+00 0.480E+03 0.450E+02 0.300E+02 -0.100E+00 0.480E+03 0.450E+02 0.411E+02 0.000E+00 0.480E+03 0.450E+02 0.364E+02 0.000E+00 0.481E+03 0.450E+02 0.364E+02 0.000E+00 0.481E+03 0.451E+02 0.364E+02 0.000E+00 0.482E+03 0.450E+02 0.299E+02 -0.100E+00 0.482E+03 0.450E+02 0.410E+02 0.000E+00 0.482E+03 0.451E+02 0.362E+02 0.000E+00 0.483E+03 0.450E+02 0.298E+02 -0.100E+00 0.483E+03 0.451E+02 0.409E+02 0.000E+00 0.484E+03 0.450E+02 0.297E+02 -0.100E+00 0.484E+03 0.450E+02 0.408E+02 0.000E+00 0.484E+03 0.450E+02 0.360E+02 0.000E+00 0.485E+03 0.450E+02 0.360E+02 0.000E+00 0.485E+03 0.451E+02 0.360E+02 0.000E+00 0.486E+03 0.451E+02 0.296E+02 -0.100E+00 0.486E+03 0.450E+02 0.342E+02 -0.100E+00 0.486E+03 0.450E+02 0.406E+02 0.000E+00 0.487E+03 0.451E+02 0.358E+02 0.000E+00 0.487E+03 0.450E+02 0.293E+02 -0.100E+00 0.488E+03 0.450E+02 0.405E+02 0.000E+00 0.488E+03 0.450E+02 0.357E+02 0.000E+00 0.488E+03 0.450E+02 0.357E+02 0.000E+00 0.489E+03 0.448E+02 0.357E+02 0.000E+00 0.489E+03 0.448E+02 0.488E+02 0.200E+00 0.490E+03 0.448E+02 0.394E+02 0.200E+00 0.490E+03 0.448E+02 0.397E+02 0.200E+00 0.490E+03 0.447E+02 0.399E+02 0.200E+00 0.491E+03 0.447E+02 0.468E+02 0.300E+00 0.491E+03 0.447E+02 0.424E+02 0.300E+00 0.492E+03 0.447E+02 0.428E+02 0.300E+00 0.492E+03 0.447E+02 0.432E+02 0.300E+00 0.492E+03 0.447E+02 0.436E+02 0.300E+00 0.493E+03 0.446E+02 0.440E+02 0.300E+00 0.493E+03 0.447E+02 0.490E+02 0.400E+00 0.494E+03 0.446E+02 0.381E+02 0.300E+00 0.494E+03 0.446E+02 0.490E+02 0.400E+00 0.494E+03 0.446E+02 0.447E+02 0.400E+00 0.495E+03 0.447E+02 0.452E+02 0.400E+00 0.495E+03 0.446E+02 0.392E+02 0.300E+00 0.496E+03 0.446E+02 0.490E+02 0.400E+00 0.496E+03 0.446E+02 0.447E+02 0.400E+00 0.496E+03 0.446E+02 0.452E+02 0.400E+00 0.497E+03 0.446E+02 0.458E+02 0.400E+00 0.497E+03 0.445E+02 0.463E+02 0.400E+00 0.498E+03 0.446E+02 0.490E+02 0.500E+00 0.498E+03 0.446E+02 0.382E+02 0.400E+00 0.498E+03 0.446E+02 0.436E+02 0.400E+00 0.499E+03 0.447E+02 0.442E+02 0.400E+00 0.499E+03 0.446E+02 0.381E+02 0.300E+00 0.500E+03 0.446E+02 0.490E+02 0.400E+00 0.500E+03 0.446E+02 0.447E+02 0.400E+00 0.500E+03 0.446E+02 0.452E+02 0.400E+00 0.501E+03 0.446E+02 0.458E+02 0.400E+00 0.501E+03 0.445E+02 0.463E+02 0.400E+00 0.502E+03 0.445E+02 0.490E+02 0.500E+00 0.502E+03 0.445E+02 0.448E+02 0.500E+00 0.502E+03 0.445E+02 0.455E+02 0.500E+00 0.503E+03 0.445E+02 0.462E+02 0.500E+00 0.503E+03 0.445E+02 0.468E+02 0.500E+00 0.504E+03 0.445E+02 0.475E+02 0.500E+00 0.504E+03 0.446E+02 0.482E+02 0.500E+00 0.504E+03 0.445E+02 0.423E+02 0.400E+00 0.505E+03 0.446E+02 0.490E+02 0.500E+00 0.505E+03 0.445E+02 0.382E+02 0.400E+00 0.506E+03 0.446E+02 0.490E+02 0.500E+00 0.506E+03 0.446E+02 0.382E+02 0.400E+00 0.506E+03 0.446E+02 0.436E+02 0.400E+00 0.507E+03 0.446E+02 0.442E+02 0.400E+00 0.507E+03 0.446E+02 0.447E+02 0.400E+00 0.508E+03 0.446E+02 0.452E+02 0.400E+00 0.508E+03 0.446E+02 0.458E+02 0.400E+00 0.508E+03 0.447E+02 0.463E+02 0.400E+00 0.509E+03 0.447E+02 0.403E+02 0.300E+00 0.509E+03 0.447E+02 0.455E+02 0.300E+00 0.510E+03 0.448E+02 0.459E+02 0.300E+00 0.510E+03 0.448E+02 0.398E+02 0.200E+00 0.510E+03 0.448E+02 0.448E+02 0.200E+00 0.511E+03 0.448E+02 0.451E+02 0.200E+00 0.511E+03 0.448E+02 0.454E+02 0.200E+00 0.512E+03 0.448E+02 0.456E+02 0.200E+00 0.512E+03 0.448E+02 0.459E+02 0.200E+00 0.512E+03 0.448E+02 0.462E+02 0.200E+00 0.513E+03 0.448E+02 0.464E+02 0.200E+00 0.513E+03 0.448E+02 0.467E+02 0.200E+00 0.514E+03 0.447E+02 0.470E+02 0.200E+00 0.514E+03 0.448E+02 0.490E+02 0.300E+00 0.514E+03 0.448E+02 0.380E+02 0.200E+00 0.515E+03 0.448E+02 0.431E+02 0.200E+00 0.515E+03 0.448E+02 0.434E+02 0.200E+00 0.516E+03 0.448E+02 0.437E+02 0.200E+00 0.516E+03 0.447E+02 0.439E+02 0.200E+00 0.516E+03 0.448E+02 0.490E+02 0.300E+00 0.517E+03 0.448E+02 0.380E+02 0.200E+00 0.517E+03 0.448E+02 0.431E+02 0.200E+00 0.518E+03 0.448E+02 0.434E+02 0.200E+00 0.518E+03 0.450E+02 0.437E+02 0.200E+00 0.518E+03 0.447E+02 0.309E+02 0.000E+00 0.519E+03 0.448E+02 0.490E+02 0.300E+00 0.519E+03 0.448E+02 0.284E+02 0.200E+00 0.520E+03 0.448E+02 0.335E+02 0.200E+00 0.520E+03 0.450E+02 0.338E+02 0.200E+00 0.520E+03 0.448E+02 0.210E+02 0.000E+00 0.521E+03 0.450E+02 0.437E+02 0.200E+00 0.521E+03 0.450E+02 0.215E+02 0.000E+00 0.522E+03 0.450E+02 0.310E+02 0.000E+00 0.522E+03 0.448E+02 0.310E+02 0.000E+00 0.522E+03 0.448E+02 0.441E+02 0.200E+00 0.523E+03 0.448E+02 0.348E+02 0.200E+00 0.523E+03 0.448E+02 0.350E+02 0.200E+00 0.524E+03 0.447E+02 0.353E+02 0.200E+00 0.524E+03 0.448E+02 0.421E+02 0.300E+00 0.524E+03 0.447E+02 0.312E+02 0.200E+00 0.525E+03 0.447E+02 0.428E+02 0.300E+00 0.525E+03 0.446E+02 0.384E+02 0.300E+00 0.526E+03 0.447E+02 0.454E+02 0.400E+00 0.526E+03 0.446E+02 0.345E+02 0.300E+00 0.526E+03 0.447E+02 0.464E+02 0.400E+00 0.527E+03 0.446E+02 0.355E+02 0.300E+00 0.527E+03 0.445E+02 0.474E+02 0.400E+00 0.528E+03 0.445E+02 0.490E+02 0.500E+00 0.528E+03 0.445E+02 0.448E+02 0.500E+00 0.528E+03 0.445E+02 0.455E+02 0.500E+00 0.529E+03 0.446E+02 0.462E+02 0.500E+00 0.529E+03 0.444E+02 0.402E+02 0.400E+00 0.530E+03 0.445E+02 0.490E+02 0.600E+00 0.530E+03 0.445E+02 0.335E+02 0.500E+00 0.530E+03 0.444E+02 0.390E+02 0.500E+00 0.531E+03 0.445E+02 0.463E+02 0.600E+00 0.531E+03 0.444E+02 0.357E+02 0.500E+00 0.532E+03 0.445E+02 0.479E+02 0.600E+00 0.532E+03 0.444E+02 0.372E+02 0.500E+00 0.532E+03 0.445E+02 0.490E+02 0.600E+00 0.533E+03 0.446E+02 0.383E+02 0.500E+00 0.533E+03 0.446E+02 0.373E+02 0.400E+00 0.534E+03 0.445E+02 0.426E+02 0.400E+00 0.534E+03 0.446E+02 0.490E+02 0.500E+00 0.534E+03 0.445E+02 0.382E+02 0.400E+00 0.535E+03 0.446E+02 0.490E+02 0.500E+00 0.535E+03 0.445E+02 0.382E+02 0.400E+00 0.536E+03 0.446E+02 0.490E+02 0.500E+00 0.536E+03 0.445E+02 0.382E+02 0.400E+00 0.536E+03 0.446E+02 0.490E+02 0.500E+00 0.537E+03 0.446E+02 0.382E+02 0.400E+00 0.537E+03 0.446E+02 0.436E+02 0.400E+00 0.538E+03 0.446E+02 0.442E+02 0.400E+00 0.538E+03 0.445E+02 0.447E+02 0.400E+00 0.538E+03 0.445E+02 0.490E+02 0.500E+00 0.539E+03 0.445E+02 0.448E+02 0.500E+00 0.539E+03 0.446E+02 0.455E+02 0.500E+00 0.540E+03 0.446E+02 0.396E+02 0.400E+00 0.540E+03 0.446E+02 0.450E+02 0.400E+00 0.540E+03 0.446E+02 0.455E+02 0.400E+00 0.541E+03 0.446E+02 0.460E+02 0.400E+00 0.541E+03 0.447E+02 0.466E+02 0.400E+00 0.542E+03 0.446E+02 0.405E+02 0.300E+00 0.542E+03 0.446E+02 0.490E+02 0.400E+00 0.542E+03 0.446E+02 0.447E+02 0.400E+00 0.543E+03 0.447E+02 0.452E+02 0.400E+00 0.543E+03 0.447E+02 0.392E+02 0.300E+00 0.544E+03 0.447E+02 0.444E+02 0.300E+00 0.544E+03 0.448E+02 0.448E+02 0.300E+00 0.544E+03 0.448E+02 0.387E+02 0.200E+00 0.545E+03 0.448E+02 0.438E+02 0.200E+00 0.545E+03 0.447E+02 0.440E+02 0.200E+00 0.546E+03 0.447E+02 0.490E+02 0.300E+00 0.546E+03 0.447E+02 0.446E+02 0.300E+00 0.546E+03 0.448E+02 0.450E+02 0.300E+00 0.547E+03 0.447E+02 0.388E+02 0.200E+00 0.547E+03 0.448E+02 0.490E+02 0.300E+00 0.548E+03 0.448E+02 0.380E+02 0.200E+00 0.548E+03 0.448E+02 0.431E+02 0.200E+00 0.548E+03 0.448E+02 0.434E+02 0.200E+00 0.549E+03 0.448E+02 0.437E+02 0.200E+00 0.549E+03 0.448E+02 0.439E+02 0.200E+00 0.550E+03 0.448E+02 0.442E+02 0.200E+00 0.550E+03 0.448E+02 0.445E+02 0.200E+00 0.550E+03 0.448E+02 0.447E+02 0.200E+00 0.551E+03 0.448E+02 0.450E+02 0.200E+00 0.551E+03 0.450E+02 0.453E+02 0.200E+00 0.552E+03 0.448E+02 0.325E+02 0.000E+00 0.552E+03 0.450E+02 0.490E+02 0.200E+00 0.552E+03 0.450E+02 0.267E+02 0.000E+00 0.553E+03 0.448E+02 0.363E+02 0.000E+00 0.553E+03 0.450E+02 0.490E+02 0.200E+00 0.554E+03 0.451E+02 0.267E+02 0.000E+00 0.554E+03 0.451E+02 0.298E+02 -0.100E+00 0.554E+03 0.450E+02 0.344E+02 -0.100E+00 0.555E+03 0.450E+02 0.407E+02 0.000E+00 0.555E+03 0.450E+02 0.360E+02 0.000E+00 0.556E+03 0.451E+02 0.360E+02 0.000E+00 0.556E+03 0.450E+02 0.295E+02 -0.100E+00 0.556E+03 0.450E+02 0.406E+02 0.000E+00 0.557E+03 0.448E+02 0.359E+02 0.000E+00 0.557E+03 0.450E+02 0.490E+02 0.200E+00 0.558E+03 0.448E+02 0.267E+02 0.000E+00 0.558E+03 0.450E+02 0.490E+02 0.200E+00 0.558E+03 0.450E+02 0.267E+02 0.000E+00 0.559E+03 0.448E+02 0.363E+02 0.000E+00 0.559E+03 0.450E+02 0.490E+02 0.200E+00 0.560E+03 0.448E+02 0.267E+02 0.000E+00 0.560E+03 0.448E+02 0.490E+02 0.200E+00 0.560E+03 0.448E+02 0.397E+02 0.200E+00 0.561E+03 0.448E+02 0.399E+02 0.200E+00 0.561E+03 0.448E+02 0.402E+02 0.200E+00 0.562E+03 0.448E+02 0.405E+02 0.200E+00 0.562E+03 0.447E+02 0.407E+02 0.200E+00 0.562E+03 0.447E+02 0.476E+02 0.300E+00 0.563E+03 0.447E+02 0.431E+02 0.300E+00 0.563E+03 0.446E+02 0.435E+02 0.300E+00 0.564E+03 0.446E+02 0.490E+02 0.400E+00 0.564E+03 0.446E+02 0.447E+02 0.400E+00 0.564E+03 0.446E+02 0.452E+02 0.400E+00 0.565E+03 0.446E+02 0.458E+02 0.400E+00 0.565E+03 0.445E+02 0.463E+02 0.400E+00 0.566E+03 0.445E+02 0.490E+02 0.500E+00 0.566E+03 0.445E+02 0.448E+02 0.500E+00 0.566E+03 0.445E+02 0.455E+02 0.500E+00 0.567E+03 0.445E+02 0.462E+02 0.500E+00 0.567E+03 0.445E+02 0.468E+02 0.500E+00 0.568E+03 0.445E+02 0.475E+02 0.500E+00 0.568E+03 0.445E+02 0.482E+02 0.500E+00 0.568E+03 0.445E+02 0.489E+02 0.500E+00 0.569E+03 0.445E+02 0.490E+02 0.500E+00 0.569E+03 0.444E+02 0.490E+02 0.500E+00 0.570E+03 0.445E+02 0.490E+02 0.600E+00 0.570E+03 0.445E+02 0.383E+02 0.500E+00 0.570E+03 0.445E+02 0.439E+02 0.500E+00 0.571E+03 0.445E+02 0.445E+02 0.500E+00 0.571E+03 0.445E+02 0.452E+02 0.500E+00 0.572E+03 0.445E+02 0.459E+02 0.500E+00 0.572E+03 0.445E+02 0.466E+02 0.500E+00 0.572E+03 0.446E+02 0.472E+02 0.500E+00 0.573E+03 0.445E+02 0.413E+02 0.400E+00 0.573E+03 0.446E+02 0.490E+02 0.500E+00 0.574E+03 0.446E+02 0.382E+02 0.400E+00 0.574E+03 0.446E+02 0.436E+02 0.400E+00 0.574E+03 0.446E+02 0.442E+02 0.400E+00 0.575E+03 0.446E+02 0.447E+02 0.400E+00 0.575E+03 0.446E+02 0.452E+02 0.400E+00 0.576E+03 0.446E+02 0.458E+02 0.400E+00 0.576E+03 0.446E+02 0.463E+02 0.400E+00 0.576E+03 0.446E+02 0.468E+02 0.400E+00 0.577E+03 0.446E+02 0.474E+02 0.400E+00 0.577E+03 0.447E+02 0.479E+02 0.400E+00 0.578E+03 0.446E+02 0.419E+02 0.300E+00 0.578E+03 0.447E+02 0.490E+02 0.400E+00 0.578E+03 0.447E+02 0.381E+02 0.300E+00 0.579E+03 0.447E+02 0.434E+02 0.300E+00 0.579E+03 0.448E+02 0.438E+02 0.300E+00 0.580E+03 0.448E+02 0.376E+02 0.200E+00 0.580E+03 0.448E+02 0.427E+02 0.200E+00 0.580E+03 0.450E+02 0.430E+02 0.200E+00 0.581E+03 0.448E+02 0.302E+02 0.000E+00 0.581E+03 0.450E+02 0.490E+02 0.200E+00 0.582E+03 0.450E+02 0.267E+02 0.000E+00 0.582E+03 0.450E+02 0.363E+02 0.000E+00 0.582E+03 0.450E+02 0.363E+02 0.000E+00 0.583E+03 0.450E+02 0.363E+02 0.000E+00 0.583E+03 0.450E+02 0.363E+02 0.000E+00 0.584E+03 0.450E+02 0.363E+02 0.000E+00 0.584E+03 0.448E+02 0.363E+02 0.000E+00 0.584E+03 0.448E+02 0.490E+02 0.200E+00 0.585E+03 0.450E+02 0.397E+02 0.200E+00 0.585E+03 0.448E+02 0.269E+02 0.000E+00 0.586E+03 0.448E+02 0.490E+02 0.200E+00 0.586E+03 0.448E+02 0.397E+02 0.200E+00 0.586E+03 0.448E+02 0.399E+02 0.200E+00 0.587E+03 0.447E+02 0.402E+02 0.200E+00 0.587E+03 0.448E+02 0.470E+02 0.300E+00 0.588E+03 0.448E+02 0.361E+02 0.200E+00 0.588E+03 0.448E+02 0.411E+02 0.200E+00 0.588E+03 0.448E+02 0.414E+02 0.200E+00 0.589E+03 0.448E+02 0.417E+02 0.200E+00 0.589E+03 0.448E+02 0.419E+02 0.200E+00 0.590E+03 0.448E+02 0.422E+02 0.200E+00 0.590E+03 0.447E+02 0.425E+02 0.200E+00 0.590E+03 0.447E+02 0.490E+02 0.300E+00 0.591E+03 0.447E+02 0.446E+02 0.300E+00 0.591E+03 0.448E+02 0.450E+02 0.300E+00 0.592E+03 0.447E+02 0.388E+02 0.200E+00 0.592E+03 0.448E+02 0.490E+02 0.300E+00 0.592E+03 0.448E+02 0.380E+02 0.200E+00 0.593E+03 0.448E+02 0.431E+02 0.200E+00 0.593E+03 0.447E+02 0.434E+02 0.200E+00 0.594E+03 0.447E+02 0.490E+02 0.300E+00 0.594E+03 0.447E+02 0.446E+02 0.300E+00 0.594E+03 0.448E+02 0.450E+02 0.300E+00 0.595E+03 0.448E+02 0.388E+02 0.200E+00 0.595E+03 0.446E+02 0.439E+02 0.200E+00 0.596E+03 0.448E+02 0.490E+02 0.400E+00 0.596E+03 0.447E+02 0.268E+02 0.200E+00 0.596E+03 0.447E+02 0.433E+02 0.300E+00 0.597E+03 0.447E+02 0.389E+02 0.300E+00 0.597E+03 0.447E+02 0.393E+02 0.300E+00 0.598E+03 0.446E+02 0.397E+02 0.300E+00 0.598E+03 0.447E+02 0.467E+02 0.400E+00 0.598E+03 0.447E+02 0.358E+02 0.300E+00 0.599E+03 0.447E+02 0.411E+02 0.300E+00 0.599E+03 0.446E+02 0.415E+02 0.300E+00 0.600E+03 0.447E+02 0.485E+02 0.400E+00 0.600E+03 0.446E+02 0.376E+02 0.300E+00 0.600E+03 0.446E+02 0.490E+02 0.400E+00 0.601E+03 0.445E+02 0.447E+02 0.400E+00 0.601E+03 0.446E+02 0.490E+02 0.500E+00 0.602E+03 0.446E+02 0.382E+02 0.400E+00 0.602E+03 0.445E+02 0.436E+02 0.400E+00 0.602E+03 0.445E+02 0.490E+02 0.500E+00 0.603E+03 0.445E+02 0.448E+02 0.500E+00 0.603E+03 0.444E+02 0.455E+02 0.500E+00 0.604E+03 0.445E+02 0.490E+02 0.600E+00 0.604E+03 0.444E+02 0.383E+02 0.500E+00 0.604E+03 0.444E+02 0.490E+02 0.600E+00 0.605E+03 0.445E+02 0.449E+02 0.600E+00 0.605E+03 0.445E+02 0.391E+02 0.500E+00 0.606E+03 0.445E+02 0.447E+02 0.500E+00 0.606E+03 0.444E+02 0.453E+02 0.500E+00 0.606E+03 0.444E+02 0.490E+02 0.600E+00 0.607E+03 0.445E+02 0.449E+02 0.600E+00 0.607E+03 0.445E+02 0.391E+02 0.500E+00 0.608E+03 0.444E+02 0.447E+02 0.500E+00 0.608E+03 0.445E+02 0.490E+02 0.600E+00 0.608E+03 0.445E+02 0.383E+02 0.500E+00 0.609E+03 0.445E+02 0.439E+02 0.500E+00 0.609E+03 0.445E+02 0.445E+02 0.500E+00 0.610E+03 0.445E+02 0.452E+02 0.500E+00 0.610E+03 0.445E+02 0.459E+02 0.500E+00 0.610E+03 0.446E+02 0.466E+02 0.500E+00 0.611E+03 0.445E+02 0.407E+02 0.400E+00 0.611E+03 0.445E+02 0.490E+02 0.500E+00 0.612E+03 0.446E+02 0.448E+02 0.500E+00 0.612E+03 0.446E+02 0.389E+02 0.400E+00 0.612E+03 0.446E+02 0.443E+02 0.400E+00 0.613E+03 0.445E+02 0.448E+02 0.400E+00 0.613E+03 0.446E+02 0.490E+02 0.500E+00 0.614E+03 0.446E+02 0.382E+02 0.400E+00 0.614E+03 0.446E+02 0.436E+02 0.400E+00 0.614E+03 0.446E+02 0.442E+02 0.400E+00 0.615E+03 0.446E+02 0.447E+02 0.400E+00 0.615E+03 0.445E+02 0.452E+02 0.400E+00 0.616E+03 0.446E+02 0.490E+02 0.500E+00 0.616E+03 0.446E+02 0.382E+02 0.400E+00 0.616E+03 0.446E+02 0.436E+02 0.400E+00 0.617E+03 0.446E+02 0.442E+02 0.400E+00 0.617E+03 0.446E+02 0.447E+02 0.400E+00 0.618E+03 0.446E+02 0.452E+02 0.400E+00 0.618E+03 0.446E+02 0.458E+02 0.400E+00 0.618E+03 0.446E+02 0.463E+02 0.400E+00 0.619E+03 0.446E+02 0.468E+02 0.400E+00 0.619E+03 0.446E+02 0.474E+02 0.400E+00 0.620E+03 0.446E+02 0.479E+02 0.400E+00 0.620E+03 0.446E+02 0.485E+02 0.400E+00 0.620E+03 0.446E+02 0.490E+02 0.400E+00 0.621E+03 0.446E+02 0.490E+02 0.400E+00 0.621E+03 0.446E+02 0.490E+02 0.400E+00 0.622E+03 0.446E+02 0.490E+02 0.400E+00 0.622E+03 0.447E+02 0.490E+02 0.400E+00 0.622E+03 0.447E+02 0.430E+02 0.300E+00 0.623E+03 0.448E+02 0.482E+02 0.300E+00 0.623E+03 0.448E+02 0.421E+02 0.200E+00 0.624E+03 0.447E+02 0.471E+02 0.200E+00 0.624E+03 0.448E+02 0.490E+02 0.300E+00 0.624E+03 0.448E+02 0.380E+02 0.200E+00 0.625E+03 0.448E+02 0.431E+02 0.200E+00 0.625E+03 0.448E+02 0.434E+02 0.200E+00 0.626E+03 0.448E+02 0.437E+02 0.200E+00 0.626E+03 0.448E+02 0.439E+02 0.200E+00 0.626E+03 0.448E+02 0.442E+02 0.200E+00 0.627E+03 0.448E+02 0.445E+02 0.200E+00 0.627E+03 0.450E+02 0.447E+02 0.200E+00 0.628E+03 0.448E+02 0.320E+02 0.000E+00 0.628E+03 0.450E+02 0.490E+02 0.200E+00 0.628E+03 0.450E+02 0.267E+02 0.000E+00 0.629E+03 0.450E+02 0.363E+02 0.000E+00 0.629E+03 0.450E+02 0.363E+02 0.000E+00 0.630E+03 0.450E+02 0.363E+02 0.000E+00 0.630E+03 0.450E+02 0.363E+02 0.000E+00 0.630E+03 0.450E+02 0.363E+02 0.000E+00 0.631E+03 0.450E+02 0.363E+02 0.000E+00 0.631E+03 0.450E+02 0.363E+02 0.000E+00 0.632E+03 0.448E+02 0.363E+02 0.000E+00 0.632E+03 0.450E+02 0.490E+02 0.200E+00 0.632E+03 0.447E+02 0.267E+02 0.000E+00 0.633E+03 0.448E+02 0.490E+02 0.300E+00 0.633E+03 0.448E+02 0.284E+02 0.200E+00 0.634E+03 0.448E+02 0.335E+02 0.200E+00 0.634E+03 0.450E+02 0.338E+02 0.200E+00 0.634E+03 0.448E+02 0.210E+02 0.000E+00 0.635E+03 0.448E+02 0.437E+02 0.200E+00 0.635E+03 0.448E+02 0.344E+02 0.200E+00 0.636E+03 0.448E+02 0.347E+02 0.200E+00 0.636E+03 0.447E+02 0.349E+02 0.200E+00 0.636E+03 0.447E+02 0.418E+02 0.300E+00 0.637E+03 0.447E+02 0.373E+02 0.300E+00 0.637E+03 0.447E+02 0.377E+02 0.300E+00 0.638E+03 0.446E+02 0.381E+02 0.300E+00 0.638E+03 0.446E+02 0.451E+02 0.400E+00 0.638E+03 0.446E+02 0.408E+02 0.400E+00 0.639E+03 0.446E+02 0.414E+02 0.400E+00 0.639E+03 0.445E+02 0.419E+02 0.400E+00 0.640E+03 0.446E+02 0.490E+02 0.500E+00 0.640E+03 0.445E+02 0.382E+02 0.400E+00 0.640E+03 0.446E+02 0.490E+02 0.500E+00 0.641E+03 0.445E+02 0.382E+02 0.400E+00 0.641E+03 0.445E+02 0.490E+02 0.500E+00 0.642E+03 0.446E+02 0.448E+02 0.500E+00 0.642E+03 0.446E+02 0.389E+02 0.400E+00 0.642E+03 0.445E+02 0.443E+02 0.400E+00 0.643E+03 0.444E+02 0.490E+02 0.500E+00 0.643E+03 0.444E+02 0.490E+02 0.600E+00 0.644E+03 0.445E+02 0.449E+02 0.600E+00 0.644E+03 0.444E+02 0.391E+02 0.500E+00 0.644E+03 0.445E+02 0.490E+02 0.600E+00 0.645E+03 0.446E+02 0.383E+02 0.500E+00 0.645E+03 0.445E+02 0.373E+02 0.400E+00 0.646E+03 0.445E+02 0.490E+02 0.500E+00 0.646E+03 0.446E+02 0.448E+02 0.500E+00 0.646E+03 0.446E+02 0.389E+02 0.400E+00 0.647E+03 0.445E+02 0.443E+02 0.400E+00 0.647E+03 0.446E+02 0.490E+02 0.500E+00 0.648E+03 0.445E+02 0.382E+02 0.400E+00 0.648E+03 0.447E+02 0.490E+02 0.500E+00 0.648E+03 0.446E+02 0.317E+02 0.300E+00 0.649E+03 0.447E+02 0.484E+02 0.400E+00 0.649E+03 0.446E+02 0.375E+02 0.300E+00 0.650E+03 0.446E+02 0.490E+02 0.400E+00 0.650E+03 0.447E+02 0.447E+02 0.400E+00 0.650E+03 0.446E+02 0.387E+02 0.300E+00 0.651E+03 0.446E+02 0.490E+02 0.400E+00 0.651E+03 0.446E+02 0.447E+02 0.400E+00 0.652E+03 0.447E+02 0.452E+02 0.400E+00 0.652E+03 0.447E+02 0.392E+02 0.300E+00 0.652E+03 0.448E+02 0.444E+02 0.300E+00 0.653E+03 0.448E+02 0.383E+02 0.200E+00 0.653E+03 0.447E+02 0.434E+02 0.200E+00 0.654E+03 0.447E+02 0.490E+02 0.300E+00 0.654E+03 0.447E+02 0.446E+02 0.300E+00 0.654E+03 0.448E+02 0.450E+02 0.300E+00 0.655E+03 0.447E+02 0.388E+02 0.200E+00 0.655E+03 0.448E+02 0.490E+02 0.300E+00 0.656E+03 0.448E+02 0.380E+02 0.200E+00 0.656E+03 0.448E+02 0.431E+02 0.200E+00 0.656E+03 0.448E+02 0.434E+02 0.200E+00 0.657E+03 0.450E+02 0.437E+02 0.200E+00 0.657E+03 0.448E+02 0.309E+02 0.000E+00 0.658E+03 0.448E+02 0.490E+02 0.200E+00 0.658E+03 0.448E+02 0.397E+02 0.200E+00 0.658E+03 0.448E+02 0.399E+02 0.200E+00 0.659E+03 0.448E+02 0.402E+02 0.200E+00 0.659E+03 0.448E+02 0.405E+02 0.200E+00 0.660E+03 0.448E+02 0.407E+02 0.200E+00 0.660E+03 0.448E+02 0.410E+02 0.200E+00 0.660E+03 0.448E+02 0.413E+02 0.200E+00 0.661E+03 0.448E+02 0.415E+02 0.200E+00 0.661E+03 0.448E+02 0.418E+02 0.200E+00 0.662E+03 0.448E+02 0.421E+02 0.200E+00 0.662E+03 0.450E+02 0.423E+02 0.200E+00 0.662E+03 0.448E+02 0.296E+02 0.000E+00 0.663E+03 0.450E+02 0.490E+02 0.200E+00 0.663E+03 0.448E+02 0.267E+02 0.000E+00 0.664E+03 0.450E+02 0.490E+02 0.200E+00 0.664E+03 0.448E+02 0.267E+02 0.000E+00 0.664E+03 0.450E+02 0.490E+02 0.200E+00 0.665E+03 0.450E+02 0.267E+02 0.000E+00 0.665E+03 0.448E+02 0.363E+02 0.000E+00 0.666E+03 0.450E+02 0.490E+02 0.200E+00 0.666E+03 0.448E+02 0.267E+02 0.000E+00 0.666E+03 0.450E+02 0.490E+02 0.200E+00 0.667E+03 0.450E+02 0.267E+02 0.000E+00 0.667E+03 0.451E+02 0.363E+02 0.000E+00 0.668E+03 0.451E+02 0.298E+02 -0.100E+00 0.668E+03 0.451E+02 0.344E+02 -0.100E+00 0.668E+03 0.451E+02 0.343E+02 -0.100E+00 0.669E+03 0.451E+02 0.342E+02 -0.100E+00 0.669E+03 0.451E+02 0.340E+02 -0.100E+00 0.670E+03 0.452E+02 0.339E+02 -0.100E+00 0.670E+03 0.451E+02 0.273E+02 -0.200E+00 0.670E+03 0.452E+02 0.383E+02 -0.100E+00 0.671E+03 0.452E+02 0.269E+02 -0.200E+00 0.671E+03 0.452E+02 0.314E+02 -0.200E+00 0.672E+03 0.452E+02 0.312E+02 -0.200E+00 0.672E+03 0.452E+02 0.309E+02 -0.200E+00 0.672E+03 0.451E+02 0.306E+02 -0.200E+00 0.673E+03 0.452E+02 0.368E+02 -0.100E+00 0.673E+03 0.452E+02 0.255E+02 -0.200E+00 0.674E+03 0.451E+02 0.300E+02 -0.200E+00 0.674E+03 0.451E+02 0.362E+02 -0.100E+00 0.674E+03 0.450E+02 0.313E+02 -0.100E+00 0.675E+03 0.450E+02 0.377E+02 0.000E+00 0.675E+03 0.448E+02 0.329E+02 0.000E+00 0.676E+03 0.448E+02 0.460E+02 0.200E+00 0.676E+03 0.448E+02 0.367E+02 0.200E+00 0.676E+03 0.447E+02 0.369E+02 0.200E+00 0.677E+03 0.445E+02 0.438E+02 0.300E+00 0.677E+03 0.447E+02 0.490E+02 0.500E+00 0.678E+03 0.446E+02 0.269E+02 0.300E+00 0.678E+03 0.445E+02 0.436E+02 0.400E+00 0.678E+03 0.445E+02 0.459E+02 0.500E+00 0.679E+03 0.445E+02 0.417E+02 0.500E+00 0.679E+03 0.444E+02 0.423E+02 0.500E+00 0.680E+03 0.445E+02 0.490E+02 0.600E+00 0.680E+03 0.444E+02 0.383E+02 0.500E+00 0.680E+03 0.444E+02 0.490E+02 0.600E+00 0.681E+03 0.444E+02 0.449E+02 0.600E+00 0.681E+03 0.444E+02 0.457E+02 0.600E+00 0.682E+03 0.444E+02 0.466E+02 0.600E+00 0.682E+03 0.444E+02 0.474E+02 0.600E+00 0.682E+03 0.444E+02 0.482E+02 0.600E+00 0.683E+03 0.443E+02 0.490E+02 0.600E+00 0.683E+03 0.443E+02 0.490E+02 0.700E+00 0.684E+03 0.443E+02 0.451E+02 0.700E+00 0.684E+03 0.443E+02 0.460E+02 0.700E+00 0.684E+03 0.444E+02 0.470E+02 0.700E+00 0.685E+03 0.443E+02 0.413E+02 0.600E+00 0.685E+03 0.443E+02 0.490E+02 0.700E+00 0.686E+03 0.444E+02 0.451E+02 0.700E+00 0.686E+03 0.443E+02 0.394E+02 0.600E+00 0.686E+03 0.444E+02 0.490E+02 0.700E+00 0.687E+03 0.444E+02 0.384E+02 0.600E+00 0.687E+03 0.444E+02 0.441E+02 0.600E+00 0.688E+03 0.444E+02 0.449E+02 0.600E+00 0.688E+03 0.445E+02 0.457E+02 0.600E+00 0.688E+03 0.444E+02 0.399E+02 0.500E+00 0.689E+03 0.445E+02 0.490E+02 0.600E+00 0.689E+03 0.444E+02 0.383E+02 0.500E+00 0.690E+03 0.445E+02 0.490E+02 0.600E+00 0.690E+03 0.445E+02 0.383E+02 0.500E+00 0.690E+03 0.444E+02 0.439E+02 0.500E+00 0.691E+03 0.445E+02 0.490E+02 0.600E+00 0.691E+03 0.444E+02 0.383E+02 0.500E+00 0.692E+03 0.444E+02 0.490E+02 0.600E+00 0.692E+03 0.445E+02 0.449E+02 0.600E+00
a69c0aa3703521c9a1a70977a172c6c62c507e39
449d555969bfd7befe906877abab098c6e63a0e8
/409/CH11/EX11.3/Example11_3.sce
4d704dcc5e8466e293b702e0400cb4fef02fe4a6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,863
sce
Example11_3.sce
clear ; clc; // Example 11.3 printf('Example 11.3\n\n'); //Page no. 318 // Solution P = 6205 ;//[lb mol/hr] //Given amt_F = 560 ;//[bbl] // Fuel oil(F) analysis C_F = 0.50 ;// [mol fraction] H2_F = 0.47 ;//[mol fraction] S_F = 0.03 ;//[mol fraction] // Natural Gas(G) analysis CH4_G = 0.96 ;//[mol fraction] C2H2_G = 0.02 ;//[mol fraction] CO2_G = 0.02 ;//[mol fraction] // Analysis of air into Gas furnace(A) O2_A = 0.21 ;//[mol fraction] N2_A = 0.79 ;//[mol fraction] // Analysis of air into Oil furnace(A1) O2_A1 = 0.20 ;//[mol fraction] N2_A1 = 0.76 ;//[mol fraction] CO2_A1 = 0.04 ;//[mol fraction] //Stack gas(P) analysis N2_P = .8493 ;//[mol fraction] O2_P = .0413 ;//[mol fraction] SO2_P = .0010 ;// [mol fraction] CO2_P = .1084 ;//[mol fraction] // Degree of freedom analysis n_un = 5;// Number of unknowns in the given problem(excluding extent of reactions) n_ie = 5 ;// Number of independent equations d_o_f = n_un-n_ie; // Number of degree of freedom printf('Number of degree of freedom for the given system is %i .\n',d_o_f); // Elemental mole balance for 2N,2H,2O,S and C // Use S balance to get F F = P* SO2_P/S_F ;// [lb mol/hr] //Solve other four balances to get G //2H: G*(2*CH4_G+C2H2_G)+F*H2_F-W*1 //2N: A*N2_A+A1*N2_A1 = P*N2_P //2O: A*(O2_A)+A1*(O2_A1+CO2_A1)+G*CO2_G-W*(1/2) = P*(O2_P+CO2_P+SO2_P) //C: G*(CH4_G+2*C2H2_G+CO2_G)+F*C_F+A1*CO2_A1 = P*CO2_P //Solving above eqns. by matrix method[G W A A1] a = [2*CH4_G+C2H2_G -1 0 0;0 0 N2_A N2_A1;CO2_G -.5 O2_A O2_A1+CO2_A1;CH4_G+2*C2H2_G+CO2_G 0 0 CO2_A1];// matrix of coefficients b = [-F*H2_F;P*N2_P;P*(O2_P+CO2_P+SO2_P);(P*CO2_P-F*C_F)];// matrix of constants x = a\b ;// matrix of solutions x(1) = G,x(2) = W,x(3) = A & x(3) = A1 G = x(1);//[lb mol/hr] m_F = 7.91 ;// Molecular wt. of fuel oil-[lb] Fc = (F*m_F)/(7.578*42);// Fuel gas consumed -[bbl/hr] time = amt_F/Fc ;// Time for which available fuel gas lasts-[hr] printf('(1) Fuel gas consumed(F) is %.2f bbl/hr .\n',Fc); printf('(2) Time for which available fuel gas lasts is %.0f hr .\n',time); // For increase in arsenic and mercury level F_oil = Fc*42; //[gal/hr] Em_ars2 = (3.96 *10^(-4))/1000 ;// [lb/gal] Em_Hg2 = (5.92 *10^(-4))/1000 ;// [lb/gal] ars_F = F_oil*Em_ars2 ;// Arsenic produced on burning oil-[lb] Hg_F = F_oil*Em_Hg2 ;//Mercury produced on burning oil-[lb] G_gas = G*359 ;//[ft^3/hr] Em_ars1 = (2.30 *10^(-4))/10^6 ;// [lb/ft^3] Em_Hg1 = (1.34 *10^(-4))/10^6 ;// [lb/ft^3] ars_G = G_gas*Em_ars1; // Arsenic produced on burning Natural gas-[lb] Hg_G = G_gas*Em_Hg1 ;//Mercury produced on burning Natural Gas-[lb] in_ars = ((ars_F-ars_G)/ars_G)*100 ;//[% increase in Arsenic emission] in_Hg = ((Hg_F-Hg_G)/Hg_G)*100 ; //[% increase in Mercury emission] printf('(3) Increase in Arsenic emission is %.1f %% .\n',in_ars); printf('(4) Increase in Mercury emission is %.1f %% .\n',in_Hg);
1202c8d3bcbb8365bcbd7cdb7b0bbb4dc316229f
449d555969bfd7befe906877abab098c6e63a0e8
/995/CH1/EX1.25/Ex1_25.sce
351ebcff62600a654bba0be9b9cc58376e6a4ba1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
247
sce
Ex1_25.sce
//Ex:1.25 clc; clear; close; B1=0.6;//in Tesla u1=B1/800; u_r1=u1/(4*%pi*10^-7); printf("reltive permitivity at 0.6T = %f",u_r1); B2=1.6;//in Tesla u2=0.2/4000; u_r2=u2 /(4*%pi*10^-7); printf("\n reltive permitivity at 1.6T = %f",u_r2);
d9223fb7d229207b5b3f8413c5dbc51975a7a7a7
0fea4b1807b35c0ef50433aa99f483c2de5777df
/assignment 2/assignment2_2(4 fundamental sub spaces).sce
a831ce51ead7bbff55829d6b47735475e2dca85b
[]
no_license
shivansh8/Scilab
319fdfcbec1cc24b4c3c9d4385112ade99419c73
7922ffe14c554718cc7682b6419db9bce8261213
refs/heads/master
2020-12-29T06:10:48.542794
2020-04-05T14:19:06
2020-04-05T14:19:06
238,486,140
0
0
null
null
null
null
UTF-8
Scilab
false
false
808
sce
assignment2_2(4 fundamental sub spaces).sce
//clear ;close;clc; str = input("Enter a space-separated 3x3 matrix in this order a11 a12 a13 .a32 33 ", "string") v = evstr(strsplit(str, " ")) a11=v(1) a12=v(2) a13=v(3) a21=v(4) a22=v(5) a23=v(6) a31=v(7) a32=v(8) a33=v(9) A=[a11 a12 a13;a21 a22 a23;a31 a32 a33]; function ffss(A) disp(A,"A="); [m,n]=size(A); disp(m,"m="); disp(n,"n="); [vv,pivot]=rref(A); //disp(vv,pivot,"vv-pivot:"); // disp(rref(A),"rref(a)"); disp(vv,"vv"); r=length(pivot); disp(r,"rank="); coluspa=A(:,pivot); disp(coluspa,"column space="); nullspa=kernel(A); disp(nullspa,"null space="); rowspa=vv(1:r,:)'; disp(rowspa,"rowspace="); leftnspa=kernel(A'); disp(leftnspa,"left null spaec="); endfunction ffss(A);
ff83dc198e7fceb1c37b5f53d27680ef9c9708da
449d555969bfd7befe906877abab098c6e63a0e8
/964/CH21/EX21.9/21_9.sce
c9a62a048edde9d08e5e9e1bc75d9e442394325a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
495
sce
21_9.sce
clc; clear; function t=f(x,y) t=2*x*y+2*x-x^2-2*y^2+72 endfunction len=8;//m,length wid=6;//m,width a=0; b=len; n=2; h=(b-a)/n; a1=0; b1=wid; h1=(b1-a1)/n; fa=f(a,0); fb=f(b,0); fh=f(h,0); lx1=(b-a)*(fa+2*fh+fb)/(2*n); fa=f(a,h1); fb=f(b,h1); fh=f(h,h1); lx2=(b-a)*(fa+2*fh+fb)/(2*n); fa=f(a,b1); fb=f(b,b1); fh=f(h,b1); lx3=(b-a)*(fa+2*fh+fb)/(2*n); l=(b1-a1)*(lx1+2*lx2+lx3)/(2*n); avg_temp=l/(len*wid); disp(avg_temp,"The average termperature is=")
d54591392e0815ae657be417b815edf4a50bc05b
449d555969bfd7befe906877abab098c6e63a0e8
/3769/CH24/EX24.20/Ex24_20.sce
91f714c1898487b8e2fb335f56e687d00b227722
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
159
sce
Ex24_20.sce
clear //Given E2=18.70 E1=16.70 h=6.62*10**-34 c=3*10**8 //Calculation E=E2-E1 l=(h*c)/(E*1.6*10**-19) //Result printf("\n Wavelength is %0.0f nm",l*10**9)
15cc71e5e7915550dc51cd7cf2c6ee1689ede080
449d555969bfd7befe906877abab098c6e63a0e8
/2705/CH1/EX1.5/Ex1_5.sce
2e651d7e182c5a27f1a6503afefcd3caecc7d84f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
337
sce
Ex1_5.sce
clear; clc; disp('Example 1.5'); // Given values m = 5; // mass, [kg] t1 = 15; // inital temperature, [C] t2 = 100; // final temperature, [C] c = 450; // specific heat capacity, [J/kg K] // solution // using heat transfer equation,[1] Q = m*c*(t2-t1); // [J] mprintf('\n The heat required is = %f kJ\n',Q*10^-3); //End
844893b45b1251e72fbbb1e4e30a73aa2a80f611
449d555969bfd7befe906877abab098c6e63a0e8
/2081/CH9/EX9.15/Ex9_15.sce
6f47dd6ecfcd08b4028f2425f8969f82f07e7f4b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,107
sce
Ex9_15.sce
Bc1=30*10^3;cimin1=18 Bc2=25*10^3;cimin2=14 Bc3=12.5*10^3;cimin3=12 Bc4=6.25*10^3;cimin4=9 Y=4//path propogation constant BcI=6.25*10^3 cieq1=cimin1+20*log10(Bc1/BcI) cieq2=cimin2+20*log10(Bc2/BcI) cieq3=cimin3+20*log10(Bc3/BcI) cieq4=cimin4+20*log10(Bc4/BcI) disp(cieq1,'(C/I)eq in dB for system I') disp(cieq2,'(C/I)eq in dB for system II') disp(cieq3,'(C/I)eq in dB for system III') disp(cieq4,'(C/I)eq in dB for system IV') if cieq1<cieq2 then if cieq1<cieq3 then if cieq1<cieq4 then disp(,'System I offers the best capacity') end end elseif cieq2<cieq3 then if cieq2<cieq4 then if cieq2<cieq1 then disp(,'System II offers the best capacity') end end elseif cieq3<cieq4 then if cieq3<cieq1 then if cieq3<cieq2 then disp(,'System II offers the best capacity') end end elseif cieq4<cieq3 then if cieq4<cieq1 then if cieq4<cieq2 then disp(,'System IV offers the best capacity') end end end
e4ff684a589610c6fa2f443740bf76c4e83e8b5f
eec3a6e2cd91307fd7a55b7fc83bb86b35f86a6c
/warp.sci
d027d95863a75192baeda3db13448dfa71eafcbd
[]
no_license
Matthieu-71/PowerSubsystemSimulation
d1a5171ff763ca42db9d701f893d3ab257a1b882
cdcff61d4a11509f5d9023fb295af6b8092a3c66
refs/heads/master
2020-03-16T23:33:28.836945
2018-05-24T00:10:57
2018-05-24T00:10:57
133,082,402
2
2
null
null
null
null
UTF-8
Scilab
false
false
8,480
sci
warp.sci
function handle = warp(varargin) //WARP Display image as texture-mapped surface. // WARP(X,MAP) displays the indexed image X with colormap MAP as // a texture map on a simple rectangular surface. // // WARP(I,N) displays the intensity image I with gray scale // colormap of length N as a texture map on a simple rectangular // surface. // // WARP(BW) displays the binary image BW as a texture map on a // simple rectangular surface. // // WARP(RGB) displays the RGB image in the array RGB as a // texture map on a simple rectangular surface. // // WARP(z,...) displays the image on the surface z. // // WARP(x,y,z,...) displays the image on the surface (x,y,z). // // H = WARP(...) returns a handle to the texture mapped // surface. // // Class Support // ------------- // The input image can be of class logical, uint8, uint16, or double. // // Remarks // ------- // Texture-mapped surfaces generally render more slowly than // images. // // // See also IMSHOW, IMAGE, IMAGESC, SURF. // Copyright 1993-2016 The MathWorks, Inc. [x,y,z,cdata,cdatamapping,clim,map,likeimage] = parse_inputs(varargin{:}); axHandle = newplot; set(axHandle, 'YDir', 'reverse'); h = surface(x,y,z,cdata,'EdgeColor','none','FaceColor','texturemap', ... 'CDataMapping',cdatamapping); if (~isempty(clim)) set(axHandle, 'CLim', clim); end if (~isempty(map)) axHandle.ColorSpace.Colormap = map; end if likeimage & ~ishold view(2) axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))]) else view(3) end if nargout, handle = h; end //----------------------------------------------------------- // Subfunction PARSE_INPUTS //----------------------------------------------------------- function [x,y,z,cdata,cdatamapping,clim,map,likeimage] = ... parse_inputs(varargin) x = []; y = []; z = []; map = []; cdatamapping = 'direct'; clim = []; likeimage = 0; if (get(0,'ScreenDepth') > 16) defGrayMapLength = 256; else defGrayMapLength = 64; end switch nargin case 0 error(message('images:warp:notEnoughInputs')) case 1 // warp(I) // warp(RGB) likeimage = 1; if ((ndims(varargin{1}) == 3) & (size(varargin{1},3) == 3)) // warp(RGB) cdata = varargin{1}; if (~isa(cdata,'double')) cdata = im2double(cdata); end else // warp(I) cdata = varargin{1}; cdatamapping = 'scaled'; clim = [0 1]; if (~isa(cdata,'double')) cdata = im2double(cdata); end map = gray(defGrayMapLength); end case 2 // warp(X,map) // warp(I,N) // warp(z,I) // warp(z,RGB) // warp(I,[a b]) if ((ndims(varargin{2}) == 3) & (size(varargin{2},3) == 3)) // warp(z,RGB) z = varargin{1}; cdata = varargin{2}; if (~isa(cdata,'double')) cdata = im2double(cdata); end elseif (numel(varargin{2}) == 1) // warp(I,N) cdata = varargin{1}; map = gray(varargin{2}); cdatamapping = 'scaled'; clim = [0 1]; if (~isa(cdata,'double')) cdata = im2double(cdata); end likeimage = 1; elseif (isequal(size(varargin{2}), [1 2])) // warp(I,[a b]) cdata = varargin{1}; cdatamapping = 'scaled'; clim = varargin{2}; map = gray(defGrayMapLength); if isa(cdata,'uint8') cdata = im2double(cdata); clim = clim/255.0; elseif isa(cdata,'uint16') cdata = im2double(cdata); clim = clim/65535.0; elseif islogical(cdata) cdata = im2double(cdata); end likeimage = 1; elseif (size(varargin{2},2) == 3) // warp(X,map) cdata = varargin{1}; map = varargin{2}; cdatamapping = 'direct'; if ~isa(cdata,'double') cdata = im2double(cdata, 'indexed'); end likeimage = 1; else // warp(z,I) z = varargin{1}; cdata = varargin{2}; cdatamapping = 'scaled'; clim = [0 1]; if ~isa(cdata,'double') cdata = im2double(cdata, 'indexed'); end map = gray(defGrayMapLength); end case 3 // warp(z,X,map) // warp(z,I,N) // warp(z,I,[a b]) if (numel(varargin{3}) == 1) // warp(z,I,N) z = varargin{1}; cdata = varargin{2}; map = gray(varargin{3}); cdatamapping = 'scaled'; clim = [0 1]; if ~isa(cdata,'double') cdata = im2double(cdata); end elseif (isequal(size(varargin{3}), [1 2])) // warp(z,I,[a b]) z = varargin{1}; cdata = varargin{2}; cdatamapping = 'scaled'; clim = varargin{3}; map = gray(defGrayMapLength); if isa(cdata,'uint8') cdata = im2double(cdata); clim = clim/255.0; elseif isa(cdata,'uint16') cdata = im2double(cdata); clim = clim/65535.0; elseif islogical(cdata) cdata = im2double(cdata); end elseif (size(varargin{3},2) == 3) // warp(z,X,map) z = varargin{1}; cdata = varargin{2}; map = varargin{3}; cdatamapping = 'direct'; if ~isa(cdata,'double') cdata = im2double(cdata, 'indexed'); end else error(message('images:warp:invalidInputs')) end case 4 // warp(x,y,z,I) // warp(x,y,z,RGB) if ((ndims(varargin{4}) == 3) & (size(varargin{4},3) == 3)) // warp(x,y,z,RGB) x = varargin{1}; y = varargin{2}; z = varargin{3}; cdata = varargin{4}; if ~isa(cdata,'double') cdata = im2double(cdata); end else // warp(x,y,z,I) x = varargin{1}; y = varargin{2}; z = varargin{3}; cdata = varargin{4}; cdatamapping = 'scaled'; clim = [0 1]; map = gray(defGrayMapLength); if ~isa(cdata,'double') cdata = im2double(cdata); end end case 5 // warp(x,y,z,X,map) // warp(x,y,z,I,N) // warp(x,y,z,I,[a b]) if (numel(varargin{5}) == 1) // warp(x,y,z,I,N) x = varargin{1}; y = varargin{2}; z = varargin{3}; cdata = varargin{4}; map = gray(varargin{5}); cdatamapping = 'scaled'; clim = [0 1]; if ~isa(cdata,'double') cdata = im2double(cdata); end elseif (isequal(size(varargin{5}), [1 2])) // warp(x,y,z,I,[a b]) x = varargin{1}; y = varargin{2}; z = varargin{3}; cdata = varargin{4}; cdatamapping = 'scaled'; clim = varargin{5}; map = gray(defGrayMapLength); if isa(cdata,'uint8') cdata = im2double(cdata); clim = clim/255.0; elseif isa(cdata,'uint16') cdata = im2double(cdata); clim = clim/65535.0; elseif islogical(cdata) cdata = im2double(cdata); end elseif (size(varargin{5},2) == 3) // warp(x,y,z,X,map) x = varargin{1}; y = varargin{2}; z = varargin{3}; cdata = varargin{4}; map = varargin{5}; cdatamapping = 'direct'; if ~isa(cdata,'double') cdata = im2double(cdata, 'indexed'); end else error(message('images:warp:invalidInputs')) end otherwise error(message('images:warp:tooManyInputs')) end siz = size(cdata); M = siz(1); N = siz(2); if (isempty(z)) // The surface displays most quickly when we use // a simple 2-by-2 z matrix, but that uses up a // large amount of printer memory when printed. // In IPT v1, the z matrix was the same size as // the image; this solution took a long time to // display. The factor of 4 below is a compromise. // -sle, September 1996 p = max(floor(min(size(cdata))/4),2); z = zeros(p); x = linspace(1,N,p); y = linspace(1,M,p); end if (isempty(x)) [x,y] = meshgrid(1:size(z,2), 1:size(z,1)); end if ((length(x) == 2) & (length(y) == 2)) [x,y] = meshgrid(linspace(x(1),x(2),size(z,2)), ... linspace(y(1),y(2),size(z,1))); end
5789a4c759421f33b57d9d3c8271217061dad7a8
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set11/s_Fundamentals_Of_Engineering_Electromagnetics_S._Bhooshan_980.zip/Fundamentals_Of_Engineering_Electromagnetics_S._Bhooshan_980/CH6/EX6.5/6_5.sce
55b7b96d95f60b36bb4230dab53a3d41560e485c
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
188
sce
6_5.sce
errcatch(-1,"stop");mode(2);; ; format('e',11) rho_m=-9.39*10^9; J=1.2732*10^6; v=abs(J/rho_m); disp(v,"magnitude of the velosity of the mobile charge carriers(in m/s)="); exit();
f92a881fe3967729888ad58df86e581e4c3e77e3
449d555969bfd7befe906877abab098c6e63a0e8
/704/CH3/EX3.9/ex3_9.sce
356d09c4fbec199777340e633b26318145bcae71
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
691
sce
ex3_9.sce
//Caption:Calculate (a)Primary and secondary currents on full load (b)the maximum value of flux (c)the number of primary turns. //Exam:3.9 clc; clear; close; O_p=200;//Rated output (in KVA) V_1=3300;//Primary voltage (in Volts) V_2=240;//Secondary voltage (in Volts) N_2=100;//Secondary turns f=50;//supply frequency(in Hz) I_1=O_p*1000/V_1;//Primary current(in Amp) disp(I_1,'Primary current on full load (in Amp)='); I_2=O_p*1000/V_2;//secondary current(in Amp) disp(I_2,'secondary current on full load (in Amp)='); F_x=V_2/(4.44*f*N_2);//Maximum value of flux(in Wb) disp(F_x,'Maximum value of flux(in Wb)='); N_1=N_2*(V_1/V_2);//Primary turns disp(N_1,'Primary turns=');
06ec7eb19788c12756592ee126168c071268699f
b387571bdd041f3b3d606bee94a06f97e87cab34
/Calculo Numerico/Scilab/Prova_M2/Questao 5 - a.sce
8fc462155d9fb3dadad3eb2d0719f5a53814a6a5
[]
no_license
GuilhermeGueds/Faculdade
6704a9ce91f7cc7874e3fbaefa28555076fab7d7
6f84829ea031f80eb04ea2acf78af834d25cd4f9
refs/heads/master
2020-03-13T17:52:39.274865
2018-08-31T17:00:27
2018-08-31T17:00:27
131,225,712
0
1
null
null
null
null
UTF-8
Scilab
false
false
2,152
sce
Questao 5 - a.sce
clear clc function s = Ordem(x,y) // Função para achar a ordem nPontos = length(x) T = zeros(nPontos,nPontos) T(:,1) = y; for j = 2:nPontos for i = 1:(nPontos - j + 1) T(i,j) = (T(i+1,j-1) - T(i,j-1)) / (x(j + i-1) - x(i)) end end for i = 1:nPontos printf('\n\n\n') for j = 1:(nPontos) if(T(i,j)<>0)then printf('%f ' ,T(i,j)); end end end disp("----------------------------------------------------------","") //disp(T) s = T(1,:); endfunction function y = P(A,x,Ordem) // Obter o f(x) Apartier de um ponto y = Ordem(1) for i=2:length(Ordem) produto = Ordem(i); for j=1:i-1 produto = produto*(A-x(j)) end y = y+produto end endfunction function e = EstimarErro(x,A,ordem) // Obter estimativa para erro n = length(x) erro =1 for i=1:n erro = abs( erro * (A-x(i)) ) end e = abs(erro*ordem) endfunction //-------------------------------------------------------------------------- x = [20,32,59,62] //x y = [136.2,226.2,403.9,440.4] //f(x) A = 70 //ponto para achar p = poly(0,'x') //------------------------------------------------------------------------------ printf(" Ordem Completa:") ordem = Ordem(x,y) // acha as ordens //------------------------------------------------------------------------------ n = -1 + length(x) printf(" Ordem: %d",n) ordem = Ordem(x,y) // acha as ordens //------------------------------------------------------------------------------ polinomio = P(p,x,ordem) // calcula f(x) em forma de polinomio disp(polinomio,'Polinomio:') disp('') resultado = P(A,x,ordem) // calcula f(x) no ponto escolhido //----------------------------------------------------------------------------- disp('Resultado:') printf(' f(%.2f) = %f',A,resultado) disp('') //-----------------------------------------------------------------------------
7ff2f66cd138dd95087a85078615588295264c5c
3c47dba28e5d43bda9b77dca3b741855c25d4802
/microdaq/etc/mlink/MLink.sce
ea9489ab02568004eeb8651facf94067772ed2bb
[ "BSD-3-Clause" ]
permissive
microdaq/Scilab
78dd3b4a891e39ec20ebc4e9b77572fd12c90947
ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf
refs/heads/master
2021-09-29T11:55:21.963637
2019-10-18T09:47:29
2019-10-18T09:47:29
35,049,912
6
3
BSD-3-Clause
2019-10-18T09:47:30
2015-05-04T17:48:48
Scilab
UTF-8
Scilab
false
false
4,623
sce
MLink.sce
// Copyright (c) 2015, Embedded Solutions // All rights reserved. // This file is released under the 3-clause BSD license. See COPYING-BSD. function MLink() global %microdaq; etc_tlbx = mdaqToolboxPath(); etc_tlbx = etc_tlbx + filesep()+'etc'+filesep()+'mlink'+.. filesep()+'MLink'+filesep(); MLink_path = etc_tlbx + 'MLink'; [version, opts] = getversion(); if opts(2) == "x64" then MLink_path = strcat([MLink_path, "64"]); else MLink_path = strcat([MLink_path, "32"]) end [OS,version] = getos() if (getos() == "Windows") then MLink_path = strcat([MLink_path, ".dll"]) end if (getos() == "Linux") then MLink_path = strcat([MLink_path, ".so"]) end // NOT SUPPORTED if (getos() == "SunOS") then disp("Solaris is not supported!"); end if (getos() == "Darwin") then MLink_path = strcat([MLink_path, ".dylib"]) end // Link library %microdaq.private.mlink_link_id = link(MLink_path, ["sci_mlink_error".. "sci_mlink_connect".. "sci_mlink_disconnect".. "sci_mlink_disconnect_all".. "sci_mlink_dsp_load".. "sci_mlink_dsp_start".. "sci_mlink_dsp_upload".. "sci_mlink_dsp_stop".. "sci_mlink_dsp_profile_get".. "sci_mlink_dsp_param".. "sci_mlink_dsp_is_done".. "sci_mlink_dsp_wait_until_done".. "sci_mlink_set_obj".. "sci_client_connect".. "sci_client_disconnect".. "sci_mlink_mem_set2".. "sci_mlink_mem_get2".. "sci_mlink_ai_read".. "sci_mlink_ao_write".. "sci_mlink_ai_scan_init".. "sci_mlink_ai_scan_get_ch_count".. "sci_mlink_ai_scan".. "sci_mlink_ai_scan_stop".. "sci_mlink_ai_wait_until_done".. "sci_mlink_ai_is_done".. "sci_mlink_dio_set".. "sci_mlink_dio_get".. "sci_mlink_dio_set_dir".. "sci_mlink_dio_set_func".. "sci_mlink_led_set".. "sci_mlink_func_key_get".. "sci_mlink_enc_reset".. "sci_mlink_enc_get".. "sci_mlink_pwm_config".. "sci_mlink_pwm_set".. "sci_mlink_pru_reg_get".. "sci_mlink_pru_reg_set".. "sci_mlink_hwid".. "sci_mlink_fw_version".. "sci_mlink_lib_version".. "sci_mlink_fw_upload".. "sci_mlink_udp_open".. "sci_mlink_udp_recv".. "sci_mlink_udp_close".. "sci_mlink_ao_scan_init".. "sci_mlink_ao_scan".. "sci_mlink_ao_scan_stop".. "sci_mlink_ao_scan_data".. "sci_mlink_ao_is_done".. "sci_mlink_ao_wait_until_done".. "sci_mlink_ao_check_params".. "sci_mlink_ai_check_params".. "sci_mlink_dsp_run".. "sci_mlink_dsp_init".. "sci_mlink_dsp_signal_read".. "sci_mlink_dsp_mem_write".. "sci_mlink_scan_trigger_clear".. "sci_mlink_scan_trigger_dio".. "sci_mlink_scan_trigger_dio_pattern".. "sci_mlink_scan_trigger_encoder".. "sci_mlink_scan_trigger_external_start".. "sci_mlink_ai_scan_sync".. ], 'c'); endfunction MLink(); clear MLink
04da8133c028c7182e48da6a5ea7f9b662c274e9
449d555969bfd7befe906877abab098c6e63a0e8
/2024/CH2/EX2.1/2_1.sce
ac0896cc5b9696e5d07b3723d041ed1ec57d31da
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
238
sce
2_1.sce
clc //Initialization of variables m=32.1739 //lbm z=100 //ft g=32.1739 //calculations PE=m*z PE2=m*z/g //results printf("Potential energy = %.2f g/g0 ft lbf",PE) printf("\n in other units, Potential energy = %d g ft slug",PE2)
0032606b34c2e86bd27ae04ceaf006c554f9941a
8409f47affbce56ae5b00d9f697b52364fdcec7e
/boolean-logic/HalfAdder.tst
f3cc8d1ba2a1b63aad10237ed212fc990e28157a
[]
no_license
oleiade/Bam
1609eca5f6247c10cef17375704547282537d1e0
84fcab3751b5b344afacdd3647e8071616f9f0b6
refs/heads/master
2021-01-19T22:33:50.345657
2013-10-26T16:05:22
2013-10-26T16:05:22
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
206
tst
HalfAdder.tst
load HalfAdder.hdl, output-file HalfAdder.out, output-list a b sum carry; set a 0, set b 0, eval, output; set a 0, set b 1, eval, output; set a 1, set b 0, eval, output; set a 1, set b 1, eval, output;
2d288af7cc19dd808252d74e4c3408dbec7c15df
449d555969bfd7befe906877abab098c6e63a0e8
/716/CH7/EX7.22/Solved_Ex_7_22.sce
9dd72f9711246e6f6b045396b9d2a684038a25da
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
202
sce
Solved_Ex_7_22.sce
//Sketch Pole-zero plot of z-domain signal,(1+0.8*z^(-1)+0.8*z^(-2))/(1+0.49*z^(-2)) clc; clear; z=poly(0,"z"); X=(1+0.8*z^(-1)+0.8*z^(-2))/(1+0.49*z^(-2)); disp(X,'Given z Transform=>'); plzr(X);
11b17692ec64cb93c8bd6a1a4759f12fa5d2e165
ac1f8441b0319b4a391cd5a959bd3bb7988edfa7
/data/news2015/news2015/EnHe/enhe12.tst
d7323eef21cbcf7c24abd15a5fcf5cbe7da4931e
[ "MIT" ]
permissive
SaeedNajafi/transliterator
4d58b8604fa31f52ee2dce7845e002a18214fd5e
523a087b777a5d6eec041165dabb43848f6222e6
refs/heads/master
2021-09-18T17:02:59.083727
2018-07-17T06:01:21
2018-07-17T06:01:21
129,796,130
0
0
null
null
null
null
UTF-8
Scilab
false
false
9,243
tst
enhe12.tst
strong mole dunkelman tricolour ogaryovo bergqvist susskind japan magan crossman lina hadag deinard neogene chauncey silvia vilan pollack piat wildcat krips ballista transcendentalism joselewicz bian gaidar yumjaagiin imst fertile cannibalism dangermouse precambrian cosmos chawla snape katrina dakar miquelon whipple hematuria tobago becket mascagni yochanan galilee okon oscar saransk cosplay smashing applegate organization homotherium plantago tropaion loftus gericke plaza spenta krupnik tintin ilse gluconeogenesis mansiysk lichtenstein jersey rozental magritte torat richmond majerle whedon emin coffee mavericks humanistic bleiberg jarre condition perestroika biathlon sayeret seraph chipmunks picquart harnoncourt pancake bouskilla beamon beechcraft mass vladivostok tureck universitario serialism patras emissivity eton previn shirat fiji homeopathy ideal collagen zeuxis orava oran ephor trivia hockney maelstrom reacher kreitman chikatilo supersaurus saingilo pilsen lictor judas shagor principal matterhorn oren bergelson tull kristeva hydrazine barite havnar kitsman abijam frankfort ares haram stupa carothers mace buchu morocco morgana betis jude beham darkthrone habanera mccullough theodolite ellipsoid champollion buchenwald raistlin gnaeus louganis flavell melchizedek wieland utica jawf horizons albrecht celibidache thermophile duilius askeran artichoke jolie simply paide pastel chatelier ilmenite yarmouk selenite histidine epoch siro torii gelmetti bhabha regev maurois shamgar juniors gamgee fechter totem determinant sabonis hezbollah burger cadmus hassium wyborowa television tanzanite bremerton nahari berners cytokinin clippers leeuwenhoek shakers ashton censor brassens gotlober ella mostar ketura wahl bruges salvia grandjany resheph korah chacham hamilcar lysosome etgar jharkhand homolysis prednisone downhill archaeology tetanus stack kuala frigate hypnos fall water cantata chodesh messerschmitt daliah polytechnic yiddish goleman tsakalidis daman kimberlite stargate captaincy ethnomusicology kakapo akinnuoye huberman broca redstone transposition taiko trappists muscle hawn koltur zoroaster toblerone omnipotence rowecki cutler kaniuk caliph berlitz traudl coenraad pauli boker ringelnatz genizah pavlova arno aelia blind lipopolysaccharide velites philolaus leghorn jive live blog ununquadium ornithology tuchman bayit sture imide weininger wales tonic twist zappa lindgren brandy zulu tragedy rozhdestvensky meghalaya katyusha hanikra trittico premier alessandria mitrevski westlife luntschitz rosie swiss agoracritus elite fiordland osasuna wine helminthology kimono festival supertonic nargis enthroned maus reinickendorf druid malt karenina fantastique verhoeven sagoth obote pompeius hallein ribosome vanir archosaur eniac perseus limnology inquisition dartmouth mazuwa yigael middlesbrough adrien confuciusornis alterman bacteriophage berekhat tallit zisling bischofswerda catalan manifesto zilpah mantle urbino hitlerum negev ramek bolivian steric egyptology chlamydia odalisque choreography royale mayonnaise balili coalition godsmack winters alcatraz tweed bitlis riyadh kabir gilgal chips andalus dybbuk xinjiang vincennes shuriken escudo hammerfall kaosayananda optimization geoglyph boleslav nietzsche methamphetamine volynskyi dionysios control ununbium siegel roald september sorel frangelico gothic iscar fireworks shatner scud poodle groningen alendronate snoezelen astrobiology siren placebo eliyashiv cournot smash malayalam refraction urartu bourguiba accent point kershaw sportsperson rimsky biotin abuja essequibo toledot curia taoism emulator wolfgang oldesloe italo unterwalden pimp mandate monism river fontane wedekind dyskinesia bructeri isotope paradinas moreira shishman standard corpse dadra nucleosome eemil pneumatic nasserism berserk xerophyte necropolis ascension ostinato hevel bardejov pisseleu tutong depardieu kantele engelbart lumen norwegian oreiro rashidun dinar savimbi dysplasia hahiver ragtime sporophyte degeneres noyon cyanide adjika nuweiba kokhba etiquette dunedin maxentius kirkby keeshond alberstein teledyne samsung moldavian pyatigorsk großglockner rust photon sargent nahash hauptbahnhof amoeba glissando hypertext baktus tachometer gambit yehiel champloo drachma court alternative bazargan lanka sachertorte kerem lactamase inheritance glatzer sirtaki scheel pakarinen eugen federalism paparuda winnipeg revava mariotte magnetron aegyptopithecus mechanics poltergeist polymorphism magnetosphere hadean edom braudel elvin pyroxene caridis teena summerslam symphony insei professor albano goulash carbide trampolining mahalalel ostracism chillul abendroth muktzah hippocampus hatserim hufu clytemnestra woodstock brisighella jethou antigone paderewski gleichschaltung kittel alpi tisza baddeley wyndham calcite beckinsale photochromism cymric mekhilta effector raytheon cenozoic northrop xenolith milwaukee frisia muhammad empathogen lebesgue gatcombe platonic steaua israeli pogrom jamaal flames samoa rhythm eshkol geocentric marada elbrus brutus molotov reflexology dieting chastain mihrab archaeopteryx symphonie categorical fiefdom kermeur starbuck magnetic guerrouj spritz phenethylamine kumis klaf hilberg arkhangai eponym krems mackensen whalsay jacksonville frankenstein ignoratio vaygach berel browning yonah panamax bibliotherapy ravina pedy photosphere genesis gamer kell caucasus mirs meitnerium tenacious vayechi hayarok jannings pilcomayo edgard jonze burmese jethro phytochrome janco ahijah staatsrat anapsid preferans corso attack energy herts yolanda regalim klagenfurt mead glubb ilanit sper rhin fondi vlade scotia tomasson quenya lesbos gratian sundhage polystyrene lumpur rubidium bias frankfurter militia chakraborty govi shochat ascalon fleet dmowski modica hierarchy arvydas thelonious jaana physical schattenburg flash sloughi beate arjen mchale zerach skynyrd napoca scharf gilchrist director cassiopeia sappho gemma orient dangerfield capitolina lieutenant houdini labello humorului antithesis tahini pratitya culkin operator gyllene hyginus kartlos china valois sirhan majdanek svetitskhoveli shakhtar roach melvins moroi phlogiston nitzani racha babruysk corday mariss ununseptium drapetomania jenny muezza ricimer kanna manstein khrizantema mesika rumkowski berthe benkler ansfelden zhovkva chord spitz tironut sholokhov hewitt robustus duani ansel bhubaneswar kanun hawk halmstad shamosh holtzberg phobia kharkiv buffon mapping lughnasadh galway gallico girl ornithopod statistics agreste norther darnah kartl benzema barkan masur yzerman chitin sandman hudaydah cubism guillotine hava cobalt thermodynamics racine stardust novus eino gebirtig dogville agenda mongolia gurbanguly individualist chrysoberyl condon ecotope tulchyn akon nezval skandha melanin gether hispania rize tarvisio berkovic vian schur therapsida buffalo borzage freak immortal gaudio zilber mcdyess cosmogony membrane kiss miss dunga pytheas achilles cormorant marocchinate grechko wien elser gere evergrey bordeaux nirenberg arbeitman origami microtome orff tauber optics effects filiki shiratori gentle chancellors krishnamurti bingo shafaq almon samoyed cratylus paliashvili majdal conforte magna ampoule manhigut mortara tucholsky netiquette mesudarim hell fuad teratogenesis ratosh juhuri tribune zoroastrianism amasya borsec khaldei albright broza dumars castaway panait baron bagshot cytogenetics desperation andropov eileithyia ochamchire epigoni myrtilus lysol elbegdorj averbukh marais smirnoff postnik masmuda electrode asulin jinn bazaar babur velociraptor troposphere pekahiah guth ramones killers sashimi brynner potocki mishmar elementary valine sarabande ginny salinometer periscope kenobi građanski chase bone hemoglobin akhaltsikhe berenice etoumbi benkow czerniak krupp arsenide moor westerweel nuremberg amotz frazier brezhneva bodel somua yukawa southern husayni cuvier orot parapsychology sparrow thrombosis galante elis pardes union sailor haayal shaprut tehomi lanier yetzirah delta yerushalayim euryapsida mithras offenbach captain fermion conglomerate cement traun goblin messenia anderlecht chlorus tnuva megumi deductive buccaneers agatharchides rayman pilaf gelfand mosquito keret lesseps browder onassis yoram philby saruq hipparchia emil silmarillion ulvaeus elohim lykhny ellipse amarth emmerich hanami lavrentiy vigintisexviri chromatography saparmurat pseudomorph shirer gayatri binaisa merlin barber minimal megalopolis hummer nepos yuval arrigo pune goldmark midreshet tadeusz fawzi thesis merce rhenium tabbai sakari moriendi vauvenargues pennsylvania barrett henson nathans paparizou steroid purine rawaki karavan gauss phasor wand jabberwocky gellius sycomorus cajal rysanek jakarta meister praxiteles chujiro compostela olimpico edensor phonetic ureno kooser habitus knopfler fruitarianism renaissance pankiewicz blobel bohr anthropology paulownia svevo urology bagot nouveau biophysics kapp jamaica khurtsidze patch kras flor landor tractor byte theudas sauckel gladiator galadriel gader pleistocene yated agbaje prisoner moldovenesc lilongwe kaduri asthma buck aretha stratosphere marathi peppard vayeshev courante weasley decidendi hegemony schist nouvelle creveld fforde samadhi scholem friedan kippur
963fe170d7d03c0eef8170f6b499acfa3e66b1e5
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
/ketpicscifiles6/Ratiocmyk.sci
839452f68eda4b5448572f2c658e2a33310689c5
[]
no_license
ketpic/ketcindy-scilab-support
e1646488aa840f86c198818ea518c24a66b71f81
3df21192d25809ce980cd036a5ef9f97b53aa918
refs/heads/master
2021-05-11T11:40:49.725978
2018-01-16T14:02:21
2018-01-16T14:02:21
117,643,554
1
0
null
null
null
null
UTF-8
Scilab
false
false
3,239
sci
Ratiocmyk.sci
// 11.05.28 // 15.05.03 function R=Ratiocmyk(Color) if type(Color)==1 then R=Color; return; end; Tmp=grep(Color,','); if length(Tmp)>0 R=evstr(Tmp); return; end; select Color case 'greenyellow' then R=[0.15,0,0.69,0], case 'yellow' then R=[0,0,1,0], case 'goldenrod' then R=[0,0.1,0.84,0], case 'dandelion' then R=[0,0.29,0.84,0], case 'apricot' then R=[0,0.32,0.52,0], case 'peach' then R=[0,0.5,0.7,0], case 'melon' then R=[0,0.46,0.5,0], case 'yelloworange' then R=[0,0.42,1,0], case 'orange' then R=[0,0.61,0.87,0], case 'burntorange' then R=[0,0.51,1,0], case 'bittersweet' then R=[0,0.75,1,0.24], case 'redorange' then R=[0,0.77,0.87,0], case 'mahogany' then R=[0,0.85,0.87,0.35], case 'maroon' then R=[0,0.87,0.68,0.32], case 'brickred' then R=[0,0.89,0.94,0.28], case 'red' then R=[0,1,1,0], case 'orangered' then R=[0,1,0.5,0], case 'rubinered' then R=[0,1,0.13,0], case 'wildstrawberry' then R=[0,0.96,0.39,0], case 'salmon' then R=[0,0.53,0.38,0], case 'carnationpink' then R=[0,0.63,0,0], case 'magenta' then R=[0,1,0,0], case 'violetred' then R=[0,0.81,0,0], case 'rhodamine' then R=[0,0.82,0,0], case 'mulberry' then R=[0.34,0.9,0,0.02], case 'redviolet' then R=[0.07,0.9,0,0.34], case 'fuchsia' then R=[0.47,0.91,0,0.08], case 'lavender' then R=[0,0.48,0,0], case 'thistle' then R=[0.12,0.59,0,0], case 'orchid' then R=[0.32,0.64,0,0], case 'darkorchid' then R=[0.4,0.8,0.2,0], case 'purple' then R=[0.45,0.86,0,0], case 'plum' then R=[0.5,1,0,0], case 'violet' then R=[0.79,0.88,0,0], case 'royalpurple' then R=[0.75,0.9,0,0], case 'blueviolet' then R=[0.86,0.91,0,0.04], case 'periwinkle' then R=[0.57,0.55,0,0], case 'cadetblue' then R=[0.62,0.57,0.23,0], case 'cornflowerblue' then R=[0.65,0.13,0,0], case 'midnightblue' then R=[0.98,0.13,0,0.43], case 'navyblue' then R=[0.94,0.54,0,0], case 'royalblue' then R=[1,0.5,0,0], case 'blue' then R=[1,1,0,0], case 'cerulean' then R=[0.94,0.11,0,0], case 'cyan' then R=[1,0,0,0], case 'processblue' then R=[0.96,0,0,0], case 'skyblue' then R=[0.62,0,0.12,0], case 'turquoise' then R=[0.85,0,0.2,0], case 'tealblue' then R=[0.86,0,0.34,0.02], case 'aquamarine' then R=[0.82,0,0.3,0], case 'bluegreen' then R=[0.85,0,0.33,0], case 'emerald' then R=[1,0,0.5,0], case 'junglegreen' then R=[0.99,0,0.52,0], case 'seagreen' then R=[0.69,0,0.5,0], case 'green' then R=[1,0,1,0], case 'forestgreen' then R=[0.91,0,0.88,0.12], case 'pinegreen' then R=[0.92,0,0.59,0.25], case 'limegreen' then R=[0.5,0,1,0], case 'yellowgreen' then R=[0.44,0,0.74,0], case 'springgreen' then R=[0.26,0,0.76,0], case 'olivegreen' then R=[0.64,0,0.95,0.4], case 'rawsienna' then R=[0,0.72,1,0.45], case 'sepia' then R=[0,0.83,1,0.7], case 'brown' then R=[0,0.81,1,0.6], case 'tan' then R=[0.14,0.42,0.56,0], case 'gray' then R=[0,0,0,0.5], case 'black' then R=[0,0,0,1], case 'white' then R=[0,0,0,0], else disp(Color+' may be user-defined'); R=Color; // 15.05.03 end; endfunction;
b3868e411ca4196d4604b9bbfa3c42d1a608608a
449d555969bfd7befe906877abab098c6e63a0e8
/1895/CH4/EX4.6/EXAMPLE4_6.SCE
8bb88cc9fc7653f3603f39e456d599918c9b6811
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,327
sce
EXAMPLE4_6.SCE
//ANALOG AND DIGITAL COMMUNICATION //BY Dr.SANJAY SHARMA //CHAPTER 4 //Radio Receiver clear all; clc; printf("EXAMPLE 4.6(PAGENO 153)"); //given Q = 125//quality factor //calculations //first case IF1 = 465*10^3//intermediate frequency f_s1 = 1*10^6//incoming frequency for first case in hertz f_s2 = 30*10^6//second incoming frequency for first case in hertz f_si1 = f_s1 + 2*IF1//image frequency for incoming frequency 1MHz for first case f_si2 = f_s2 + 2*IF1//image frequency for incoming frequency 30MHz for first case p1 = (f_si1/f_s1)-(f_s1/f_si1); p2 = (f_si2/f_s2)-(f_s2/f_si2); alpha1 = sqrt(1+(Q*p1)^2);//rejection ratio at 1MHz incoming frequency alpha2 = sqrt(1+(Q*p2)^2);//rejection ratio at 30MHz incoming frequency //second case f_s3 = 1*10^6//incoming frequency for second case in hertz f_si3 = (f_si1*f_s2)/f_s3//image frequency IF2 = (f_si3-f_s2)/2//intermediate frequency //results printf("\n\n(i)a.Image frequency for 1MHz incoming frequency = %.2f Hz",f_si1); printf("\n\n b.Rejection ratio for 1MHz incoming frequency = %.2f",alpha1); printf("\n\n c.Image frequency for 30MHz incoming frequency = %.2f Hz",f_si2); printf("\n\n d.Rejection ratio for 30MHz incoming frequency = %.2f",alpha2); printf("\n\n(ii)intermediate frequency for second case = %.2f Hz",IF2);
b8f6639513ae0403ec3b1f2264eccabdfa814607
449d555969bfd7befe906877abab098c6e63a0e8
/2135/CH2/EX2.2/Exa_2_2.sce
513e8aa12faa0fc252254ec73d4d9977809e0f9a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
269
sce
Exa_2_2.sce
//Exa 2.2 clc; clear; close; format('v',7); //Given Data Q1=2500;//KJ/Kg Q2=1800;//KJ/Kg Pdev=210;//MW //Power developed = Heat transfered: Pdev=m*(Q1-Q2) m=Pdev*1000/(Q1-Q2);//mass flow rate of steam in Kg/s disp(m,"Mass flow rate of steam in Kg/s : ");
276d2a7f92979ae3152b8ada1c968f9311d21d8c
449d555969bfd7befe906877abab098c6e63a0e8
/154/DEPENDENCIES/ch11_4.sce
76ad5949816cb1e340b361ffab476bd51b2439c9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
234
sce
ch11_4.sce
clc disp("Problem 11.4") printf("\n") printf("Given") disp("Veff=110V Z=10+i8 ohm") Veff=110; Z=10+%i*8 Zmag=sqrt(10^2+8^2) Zph=(atan(8/10)*180)/%pi P=(Veff^2*R)/(Zmag^2) pf=cos((Zph*%pi)/180) disp(pf,"Power factor is")
0573bbff8cb137105006bc3c09e3bf91332ac141
449d555969bfd7befe906877abab098c6e63a0e8
/2294/CH1/EX1.22/EX1_22.sce
977f731ebd5471e11987a0b65a5b749e11a812f2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,800
sce
EX1_22.sce
//Example 1.22<i> //Find whether the given signal is causal or not. clear all; clc; t=-10:10; a=.5; for i=1:length(t) if t(i)<0 then x1(i)=0; else x1(i)=exp(a.*t(i)); end end causal=%t; for i=1:length(t) if t(i)<0 & x1(i)~=0 then causal=%f; end end disp(causal,"The statement that the system is causal is:"); //Example 1.22<ii> //Find whether the given signal is causal or not. clear all; clc; t=-10:10; for i=1:length(t) if t(i)>0 then x2(i)=0; else x2(i)=exp(-2.*t(i)); end end causal=%t; for i=1:length(t) if t(i)<0 & x2(i)~=0 then causal=%f; end end disp(causal,"The statement that the system is causal is:"); //Example 1.22<iii> //Find whether the given signal is causal or not. clear all; clc; t=-10:10; c=2; for i=1:length(t) x3(i)=sin(c.*t(i)); end causal=%t; for i=1:length(t) if t(i)<0 & x3(i)~=0 then causal=%f; end end disp(causal,"The statement that the system is causal is:"); //Example 1.22<iv> //Find whether the given signal is causal or not. clear all; clc; n=-10:10; for i=1:length(n) if n(i)<-3 | n(i)>2 then x1(i)=0; else x1(i)=1; end end causal=%t; for i=1:length(n) if n(i)<0 & x1(i)~=0 then causal=%f; end end disp(causal,"The statement that the system is causal is:"); //Example 1.22<v> //Find whether the given signal is causal or not. clear all; clc; n=-10:10; for i=1:length(n) if n(i)>-2 then x2(i)=(1/2)^n(i); else x2(i)=0; end end causal=%t; for i=1:length(n) if n(i)<0 & x2(i)~=0 then causal=%f; end end disp(causal,"The statement that the system is causal is:");
e42fa0d6573739884ae8a240de4322173176f4f1
449d555969bfd7befe906877abab098c6e63a0e8
/545/CH4/EX4.17/ch_4_eg_17.sce
13d75bbbbadb810b772f4fd62c513b705342f77e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,492
sce
ch_4_eg_17.sce
clc //given rxn A+B--k1-->C // B+C--k2-->D rc_k1=1,rc_k2=1 //rate constants disp("the solution of eg 4.17 -->Plug Flow Reactor") function dA_by_dx=f1a(x,A,B,C,D), dA_by_dx=-A*B, endfunction function dB_by_dx=f2a(x,A,B,C,D), dB_by_dx=-A*B-B*C, endfunction function dC_by_dx=f3a(x,A,B,C,D), dC_by_dx=A*B-B*C, endfunction function dD_by_dx=f4a(x,A,B,C,D), dD_by_dx=B*C, endfunction A=1,B=1,C=0,D=0 for x=.1:.1:10, h=.1 //step increment of 0.1 k1=h*f1a(x,A,B,C,D) l1=h*f2a(x,A,B,C,D) m1=h*f3a(x,A,B,C,D) n1=h*f4a(x,A,B,C,D) k2=h*f1a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2) l2=h*f2a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2) m2=h*f3a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2) n2=h*f4a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2) k3=h*f1a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2) l3=h*f2a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2) m3=h*f3a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2) n3=h*f4a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2) k4=h*f1a(x+h,A+k3,B+l3,C+m3,D+n3) l4=h*f2a(x+h,A+k3,B+l3,C+m3,D+n3) m4=h*f3a(x+h,A+k3,B+l3,C+m3,D+n3) n4=h*f4a(x+h,A+k3,B+l3,C+m3,D+n3) A=A+(k1+2*k2+2*k3+k4)/6 B=B+(l1+2*l2+2*l3+l4)/6 C=C+(m1+2*m2+2*m3+m4)/6 D=D+(n1+2*n2+2*n3+n4)/6 if x==.5 |x==1|x==2|x==5 then disp(D,C,B,A,"secs is",x,"the conc. of A,B,C,D after"); end end disp(D,C,B,A,"the conc. of A,B,C,D after 10 secs respectively is");
1fb185d0338dae525dff88dbe972d16494abe562
174c3876bf92d70c7f470a079b453abf5375e084
/ficha1.sce
4df529ed659f0242fb06a46bfb4ad9ad2f1a191b
[]
no_license
diogoalexsmachado/EI_MatDiscreta_Praticas
dfa1bb8b81a9163b85cb5e007385e9ff91edcb5f
74ced6eec3b8b4cee2ad53d1bfc54809116b9e0f
refs/heads/master
2021-01-25T12:42:19.518073
2018-03-01T22:21:11
2018-03-01T22:21:11
123,493,595
0
0
null
null
null
null
UTF-8
Scilab
false
false
826
sce
ficha1.sce
// Contribuição de Thomas Ribeiro // Aula 1 - 22/02/2018 //Ficha 1 //EX 1 //a) /* x=10 y=12 z=40 r=x+z w=x+y a='mat' b='emática' c=a+b disp(x,y) //vetores A=[1 2 3; 5 6 7; 7 8 9] B=[3:0.3:8] C=linspace(3,10,5) C=B' */ //a) (35.6*64-(7^3))/(45+(5^2)) //b) (5/7)*4*(6^2)-((3^7)/((9^3)-236)) //c) (((3^2)*log10(76))/((7^3)+54))+(910^(1/3)) //d) ((cos(5*%pi/6))^2)*sin((7*%pi/8)^2)+tan((%pi/6)*log(8))/(7^(1/2)) // EX 2 // a) x=13.5 (x^3)-(2*x)+(23.5*(x^2)) //b ((14*(x^3))^(1/2))/exp((3*x)) //c log10(abs((x^2)-(x^3))) //EX 3 // a) a=15.62 b=-7.08 c=62.5 d=0.5*((a*b)-c) a+((a*b)/c)*(((a+d)^2)/(abs(a*b))^(1/2)) //b d*(exp((d/2)))+(((a*d)+(c*d))/((20/a)+(30/b)))/(a+b+c+d) //4 //a) t='O resultado obtido na alinea a) foi ' g=a+((a*b)/c)*(((a+d)^2)/(abs(a*b))^(1/2)) h=t+string(g) disp(h)
1f2742c8c26818af35e8bfe6e7b1202f43970480
449d555969bfd7befe906877abab098c6e63a0e8
/2609/CH5/EX5.6/ex_5_6.sce
ebc8f426a8d6aea71e0442ae9f0992defa423eec
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
492
sce
ex_5_6.sce
//Ex 5.6 clc; clear; close; format('v',8); R3=1;//kohm Rt=5;//kohm Ri=1.8;R1=1.8;//kohm Rf=18;R2=18;//kohm Vs=15;//V AoL=2*10^5;//Gain(for 741C) Rio=2//Mohm Ro=75//Mohm fo=5;//Hz fBW=1;//MHz Ad=Rf/Ri*(1+2*R3/Rt);//differential gain disp(Ad,"Differential gain"); Beta=(R3+Rt)/(2*R3+Rt);//unitless Rix=Rio*10^6*(1+AoL*Beta);//ohm disp(Rix,"Input impedence, Rix(ohm)"); Rof=Ro/(1+AoL/Ad);//ohm disp(Rof,"Output impedence, Rof(ohm)"); //Answer in the book is wron for Rix.
6fe0a677d8300b8eb6e1c8ebf445adaf2ea4b52e
0a4a624c2aa1241962ca0adf212284d4fbf653ec
/2nd/1.sce
ec0f691dd15a98d34f2c3332139e5340eeba3edc
[]
no_license
zy414563492/Advanced-Course-in-Computational-Algorithms
719a469c4b4f0aede9d89378408672d9ac712df5
d6f5a089883b415ecd93b18bee81aac9bec69577
refs/heads/master
2020-08-29T07:13:39.251114
2019-12-17T16:11:40
2019-12-17T16:11:40
217,963,283
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,428
sce
1.sce
clear funcprot(0) // get results from CRS & CCS format function[y] = CRS2Vec(val, col_ind, row_ptr, x) for i = 1:length(row_ptr)-1 y(i) = 0.0 for j = row_ptr(i):row_ptr(i+1)-1 y(i) = y(i) + val(j) * x(col_ind(j)); end end endfunction function[y] = CCS2Vec(val, row_ind, col_ptr, x) n = length(col_ptr)-1 y = zeros(n, 1) for j = 1:n for i = col_ptr(j):col_ptr(j+1)-1 y(row_ind(i)) = y(row_ind(i)) + val(i) * x(j); end end endfunction // CG method function[x,index] = CG(AD, AL, col_ind, row_ptr, b, x, e, k) r = b - (CRS2Vec(AL, col_ind, row_ptr, x) + CCS2Vec(AL, col_ind, row_ptr, x) + AD.*x) p = r for i = 1:k q = CRS2Vec(AL, col_ind, row_ptr, p) + CCS2Vec(AL, col_ind, row_ptr, p) + AD.*p Alpha = (r'*r)/(p'*q) x = x + Alpha * p r_new = r - Alpha * q index(i) = sqrt(r_new'*r_new)/sqrt(b'*b) if index(i) <= e break end Beta = (r_new'*r_new)/(r'*r) p = r_new + Beta * p r = r_new end endfunction // CG method with IC(0) preconditioner function[L, D] = IC0(AD, AL, col_ind, row_ptr) n = length(AD) nz = length(AL) D = AD L = zeros(nz, 1) for i = 1:n w = zeros(i-1, 1) for j = row_ptr(i):row_ptr(i+1)-1 w(col_ind(j)) = AL(j) for k=row_ptr(col_ind(j)):row_ptr(col_ind(j)+1)-1 w(col_ind(j)) = w(col_ind(j)) - L(k) * w(col_ind(k)) end L(j) = w(col_ind(j))/D(col_ind(j)) end for j=row_ptr(i):row_ptr(i+1)-1 D(i) = D(i) - L(j) * w(col_ind(j)) end end endfunction function z = LDLTsolve(L, D, r, col_ind, row_ptr) n = length(D) z = r for i=1:n for j=row_ptr(i):row_ptr(i+1)-1 z(i) = z(i) - L(j) * z(col_ind(j)) end end for i=i:n z(i) = z(i)/D(i) end for i=n:-1:1 for j=row_ptr(i+1)-1:-1:row_ptr(i) z(col_ind(j)) = z(col_ind(j)) - L(i) * z(i) end end endfunction function[x,index] = CGIC0(L, D, AD, AL, col_ind, row_ptr, b, x, e, k) r = b - (CRS2Vec(AL, col_ind, row_ptr, x) + CCS2Vec(AL, col_ind, row_ptr,x) + AD.*x) z = LDLTsolve(L, D, r, col_ind, row_ptr) p = z for i = 1:k q = CRS2Vec(AL, col_ind, row_ptr, p) + CCS2Vec(AL, col_ind, row_ptr, p) + AD.*p a = (r'*z)/(p'*q) x = x + a*p r_new = r - a*q index(i) = sqrt(r_new'*r_new)/sqrt(b'*b) if index(i) <= e break end z_new = LDLTsolve(L, D, r_new, col_ind, row_ptr) Beta = (r_new'*z_new)/(r'*z) p = z_new + Beta*p z = z_new r = r_new end endfunction exec('GenLS.sci'); density = 0.005 eTOL = 10^-12; k = 400 // roop times for N = 101 //11:10:101 x = sprand((N-1)**2, 1, density) [AD, AL, col_ind, row_ptr, b] = GenLS(N) [x_CG, index_CG] = CG(AD, AL, col_ind, row_ptr, b, x, eTOL, k) [L, D] = IC0(AD, AL, col_ind, row_ptr) [x_CGIC0, index_CGIC0] = CGIC0(L, D, AD, AL, col_ind, row_ptr, b, x, eTOL, k) // plot figure(1) clf xlabel("k") ylabel("index: log(y)") title("N: " + string(N)) plot(log10(index_CG), 'r') plot(log10(index_CGIC0), 'b') legend("index_CG", "index_CGIC0"); disp("x_CG:", x_CG) disp("x_CGIC0:", x_CGIC0) end
c2997dd1773b6ed7627c7ac40728d756641a285b
449d555969bfd7befe906877abab098c6e63a0e8
/3872/CH6/EX6.17/Ex6_17.sce
28cfbff4262c0d3b393fcb88dcfb2ec9f447d03b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,930
sce
Ex6_17.sce
//Book - Power System: Analysis & Design 5th Edition //Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye //Chapter - 6 ; Example 6.17 //Scilab Version - 6.0.0 ; OS - Windows clear; clc; linedata=[2 4 0.0090 0.10 1.72 //Entering line data from table 6.2 & 6.3 2 5 0.0045 0.05 0.88 4 5 0.00225 0.025 0.44 1 5 0.00150 0.02 0.00 3 4 0.00075 0.01 0.00]; linedata(:,3)=0 //Neglecting Line resistance linedata(:,5)=0 //Neglecting shunt suceptance //enter busdata in the order type (1.slack,2.pv,3.pq),PG,QG,PL,QL,vmag,del,Qmin and Qmax. //Data is taken from table 6.1 Busdata=[1 0 0 0 0 1 0 0 0 3 0 0 8 2.8 1 0 0 0 2 5.2 0 0.8 0.4 1.05 0 4 -2.8 3 0 0 0 0 1 0 0 0 3 0 0 0 0 1 0 0 0] sb= linedata(:,1); sb=linedata(:,1) //Starting bus number of all the lines stored in variable sb eb=linedata(:,2) //Ending bus number of all the lines stored in variable eb lz=linedata(:,3)+linedata(:,4)*%i; //lineimpedance=R+jX sa=linedata(:,5)*%i; //shunt admittance=jB since conductsnce G=0 for all lines nb=max(max(sb,eb)); ybus=zeros(nb,nb); for i=1:length(sb) m=sb(i); n=eb(i); ybus(m,m)=ybus(m,m)+1/lz(i)+sa(i)/2; ybus(n,n)=ybus(n,n)+1/lz(i)+sa(i)/2; ybus(m,n)=-1/lz(i); ybus(n,m)=ybus(m,n); end B=imag(ybus(2:nb,2:nb)) //B matrix is the imaginary part of bus admittance matrix neglecting slack bus P=Busdata(2:nb,2)-Busdata(2:nb,4) //Net power at each PV and PQ bus delta=-inv(B)*P deltad=delta*180/(%pi) //Converting delta from radian to degree disp(B, 'The B Matrix is given by:') disp(P,'The P Matrix is given by:') disp(deltad,'The values of delta in degrees is given by:')
fe5bcc416223208240c21daea444eed95fa8e3a5
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set12/s_Integrated_Circuits_P._Raja_2582.zip/Integrated_Circuits_P._Raja_2582/CH3/EX3.1/Ex3_1.sce
68a77776d65d921389e5894df1a7208e0f7785d4
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
140
sce
Ex3_1.sce
errcatch(-1,"stop");mode(2);//Ex 3.1 ;; R1=2.2;//kohm G=-100;//Voltage gain Rf=-G*R1;//kohm disp(Rf,"Value of Rf(kohm) : "); exit();
d1d2eba00196c74b2dd4f4f18e0452422da3c1cf
449d555969bfd7befe906877abab098c6e63a0e8
/680/CH7/EX7.07/7_07.sce
a50bd6ffb83a31f58f154665ea38bda626992eb5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
407
sce
7_07.sce
//Problem 7.07: //initializing the variables: n = 1000; // in lb/h MWCO2 = 44; T1 = 200; // in deg F T2 = 3200; // in deg F a = 6.214; b = 10.396E-3; c = -3.545E-6; //calculation: T1 = (T1 + 460)/1.8 T2 = (T2 + 460)/1.8 dT = T2 - T1 ndt = n/MWCO2 Q = ndt*1.8*(a*dT +(b/2)*(T2^2 - T1^2) + (c/3)*(T2^3 - T1^3)) printf("\n\nResult\n\n") printf("\n the heat transfer rate is %.2E Btu/h",Q)
be6746dc8bdcb9e4d44f185b29bcd43315b246b3
449d555969bfd7befe906877abab098c6e63a0e8
/443/DEPENDENCIES/2_2_data.sci
cd81047ac16cf299ff0ef254a120d5986cc33081
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
429
sci
2_2_data.sci
//mass of air(in kg/min) m=10; //fluid velocity at inlet(in m/s) C1=5; //fluid velocity at outlet(in m/s) C2=10; //fluid pressure at inlet(in bar) p1=1*10^5; //fluid pressure at outlet(in bar) p2=8*10^5; //specific volume at inlet(in m^3/kg) V1=0.5; //specific volume at outlet(in m^3/kg) V2=0.2; //energy lost to cooling water(in kJ/s) H=140; //internal energy of air leaving the compressor(in kJ/kg) dU=-250;
5231f0068c9bdb4eb857032b74aa44410efa5061
87749481136b7b72a47930f587f27667e0c0f97d
/Non-linear transformations/Task_1.sce
e914519a4c1700949a70a94e505091e96b201c4b
[ "MIT" ]
permissive
brooky56/Digital_Signal_Processing
cf15e5ac443a16edcb3efc8d7703cf4746dedcba
f28651e40b0a99b79e9ba27deabc4db8bfc7f08e
refs/heads/master
2022-06-30T17:59:28.072522
2020-05-11T18:58:39
2020-05-11T18:58:39
242,598,653
0
1
null
null
null
null
UTF-8
Scilab
false
false
2,527
sce
Task_1.sce
clear all; close; clf(); //----------------------------------------------------------------------------- s = chdir('C:\Users\work\OneDrive\Documents\SciLab\lab_v6') exec('CLIP_F.sce') exec('DIST_F.sci') // Our recorded IRC [signal, Fs, s_b] = wavread("C:\Users\work\OneDrive\Documents\SciLab\lab_v6\guitar.wav"); signal = signal(1, :) // Before applying filter res frequinces = (0:length(signal)-1)/length(signal) * Fs; figure(0) subplot(3,1,1) plot(signal) xlabel("Time", 'fontsize', 2) ylabel("Amplitude", 'fontsize', 2) title("Time domain original signal", 'fontsize', 3) subplot(3,1,2) plot2d("nl", frequinces, abs(fft(signal)),2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal", 'fontsize', 3) subplot(3,1,3) s = abs(fft(signal)) s(s>0.1) = 0 plot2d("nl", frequinces, s,2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal with treshold 0.1", 'fontsize', 3) //Applying CLIP filter signal_clip = CLIP_F(signal, 0.1) frequinces = (0:length(signal_clip)-1)/length(signal_clip) * Fs; figure(1) subplot(3,1,1) plot(signal_clip) xlabel("Time", 'fontsize', 2) ylabel("Amplitude", 'fontsize', 2) title("Time domain clipped signal", 'fontsize', 3) subplot(3,1,2) plot2d("nl", frequinces, abs(fft(signal_clip)), 2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal", 'fontsize', 3) subplot(3,1,3) s = abs(fft(signal_clip)) s(s>0.1)=0 plot2d("nl", frequinces, s, 2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal", 'fontsize', 3) //Play clipped sound savewave('clipped.wav', signal_clip, Fs) //Applying DISTORTION filter signal_dist = DIST_F(signal, 3, 5) frequinces = (0:length(signal_dist)-1)/length(signal_dist) * Fs; figure(2) subplot(3,1,1) plot(signal_dist) xlabel("Time", 'fontsize', 2) ylabel("Amplitude", 'fontsize', 2) title("Time domain distortion effect", 'fontsize', 3) subplot(3,1,2) plot2d("nl", frequinces, abs(fft(signal_dist)), 2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal", 'fontsize', 3) subplot(3,1,3) s = abs(fft(signal_dist)) s(s>3) = 0 plot2d("nl", frequinces, s, 2) xlabel("Frequency, Hz", 'fontsize', 2) ylabel("Freq amplitude", 'fontsize', 2) title("Frequency response of signal", 'fontsize', 3) //Play disted sound savewave('distortion.wav', signal_dist, Fs)
c16d8cb2eee9da47a1c0e5afb8813163cf3132db
fa96b6f7b84fc275c3bc6a2ec1413711285aa54a
/Segmentation techniques using various Edge Detection Operators/Robert.sce
ebe0e1ca287167286f5c407fda93383092b3ac19
[]
no_license
Sid-149/Image-Processing-and-Machine-Vision
9d4d4308b39d7bd3fb0ab8171531fbbfe4381de9
94bb83e4005b39c2f08d15e23c5be73cde01b364
refs/heads/main
2022-12-30T01:51:08.942675
2020-10-19T05:15:12
2020-10-19T05:15:12
302,541,282
0
0
null
null
null
null
UTF-8
Scilab
false
false
368
sce
Robert.sce
clc clear close im=imread('toyobjects.png') a=double(im) [r c]=size(a) w1=[-1 0;0 1] w2=[0 -1;1 0] for i=2:r-1 for j=2:c-1 a1(i-1,j-1)=sum(a(i-1:i,j-1:j).*w1) a2(i-1,j-1)=sum(a(i-1:i,j-1:j).*w2) end end robert=a1+a2 subplot(1,2,1) title('Orginal Image'); imshow(im); subplot(1,2,2) title('Robert'); imshow(uint8(robert));
835d280e8cdf3cfbea3ca04c85424cb06063af03
449d555969bfd7befe906877abab098c6e63a0e8
/548/DEPENDENCIES/5_02data.sci
eaa7c07a3f2ad009215b31cb42724b09bb7ff119
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
513
sci
5_02data.sci
//consider the same wing configuration as that of example 5.1. L=700; //Lift per unit span V=50; // velocity of flow in test section(m/s) D=1.225;//standard sea level density,Kg/m^3 q=D*V^2/2 //dynamic pressure,N/m^2 S=1.3;//wing area,m^2 Cl=L/(q*S) //coefficient of lift //from the value of Cl and wing configuration we can get angle of attack by using standard table: a=1 //angle of attack in degree //To cause zero lift Cl=0,so from standard table of Cl and Lift: a1=-2.2 //angle of attack in degree
d01b98c694de6bf0540af20a653d1edc523c7e18
048b7c76423fe27dee2e31a52bae93c95883614e
/macros/fftshift1.sci
2928850f719f784aef04943b21996300f15eee55
[]
no_license
vu2swz/FOSSEE-Signal-Processing-Toolbox
aa5f283d050be62418dddbf41552f197b9949c4c
d97a4b7e2f0f25fb5cd94bd90a3b822592179d1e
refs/heads/master
2021-08-19T20:06:19.346872
2017-11-27T09:57:21
2017-11-27T09:57:21
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
233
sci
fftshift1.sci
function y= fftshift1(X,DIM) rhs= argn(2); if(rhs <1 | rhs >2) error('Wrong number of Input arguments'); end select(rhs) case 1 then y=callOctave("fftshift",X); case 2 then y=callOctave("fftshift",X,DIM); end endfunction
21b8831e8014a5d70f16db280d65a13f57808729
449d555969bfd7befe906877abab098c6e63a0e8
/24/CH21/EX21.2/Example21_2.sce
27904f19cdc7a451bf92cdca6990e76cef2cab56
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
370
sce
Example21_2.sce
//Given that m = 1.5 //in kg TiL = 60 + 273 //in K TiR = 20 + 273 //in K Tf = 40 + 273 //in K Sc = 386 //in J/kg.K //Sample Problem 21-2 printf("**Sample Problem 21-2**\n") SL = m*Sc*integrate('1/T', 'T', TiL, Tf) SR = m*Sc*integrate('1/T', 'T', TiR, Tf) Srev = SR + SL printf("The net entropy change in the reversible process is equal to %fJ/K", Srev)
e0ecc1da16d7ba7bbb8473c1a18789d84da9f77e
449d555969bfd7befe906877abab098c6e63a0e8
/1286/CH4/EX4.8/4_8.sce
dae8433d677d39800df759dbea6c142dc46ada64
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
191
sce
4_8.sce
clc //initialisation p=0.76 v=1650//cc m=1//gm r=13600//kg/m3 //CALCULATIONS w=(p*9.81*r*(v-1)*10^-6)/4.18 ih=540-w //results printf(' internal latent heat of steam= % 1f cal',ih)
a26631316d59b0d9350436db7cd03b49b6bf24ff
449d555969bfd7befe906877abab098c6e63a0e8
/2159/CH8/EX8.3/83.sce
ba156f14b9944dcc90edbfb13b819e5672d213a0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
155
sce
83.sce
// problem 8.3 d=0.03 Fx=900 x=30 g=9.81 w=g*1000 a=3.142*d*d/4 V=((Fx*g)/(w*a*sind(x)*sind(x)))^0.5 Q=a*V disp(Q*1000,"rate of flow in m3/sec")
d05e61eddfa9bcc105eac30163deca239fc48648
8ad9380384d2751d79937ba5d6d581565596b891
/macros/uniform_sampling.sci
b8bc6ed88f8b8f74aa2a4043fef9c1c04a6057e3
[ "BSD-3-Clause" ]
permissive
iamAkshayrao/scilab_point_cloud_toolbox
1d8845f0830ddb623383c8dbfeadc8a3a35e8801
5d592a695b7976f4e63f0ae24d0a14937e474642
refs/heads/master
2022-12-17T23:14:11.513116
2020-09-25T18:57:02
2020-09-25T18:57:02
290,829,006
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,034
sci
uniform_sampling.sci
function uniform_sampling() // Performs uniform subsampling. The supported extension for the point cloud are pcd ply and vtk // // Syntax // PointCloud(InputFilename(PCD or VTK or PLY),OutputFilename(PCD or VTK or PLY),options,"uniform_sampling") // // Parameters // input PCD/PLY/VTK filename // output filename with same extension as the input filename // where options are: // -radius = use a leaf size of X,X,X to uniformly select 1 point per leaf (default: 0.01) // // Description // the input files are subsampled based on uniform fraction and output stored in the filename // // Examples // PointCloud("bun0.pcd","output_us1.pcd","-radius","0.03","uniform_sampling") // // Examples // PointCloud("bun0.pcd","output_us2.pcd","uniform_sampling") // // Examples // PointCloud("cube.ply","output_us3.ply","uniform_sampling") // // Examples // PointCloud("tum_rabbit.ply","output_us4.ply","uniform_sampling") // //Authors //Ankit Kumar //Akshay S Rao //Mohammed Rehab Sait //Aliasgar AV endfunction
4e629ff8767ae6f66f835d04d2399a213d3b1ae0
449d555969bfd7befe906877abab098c6e63a0e8
/2657/CH2/EX2.7/Ex2_7.sce
8cb791ee7a7eb1fabdbbf7dc5b201cf2c2c1577b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
944
sce
Ex2_7.sce
//Calculations on Otto cycle clc,clear //Given: P1=1.05,P2=13,P3=35 //Pressure at 1, 2, 3 in bar T1=15+273 //Temperature at 1 in K cv=0.718 //Specific heat at constant volume in kJ/kgK R=0.287 //Specific gas constant in kJ/kgK //Solution: r="V1/V2" //Compression ratio g=R/cv+1 //Specific heat ratio(gamma) r=(P2/P1)^(1/g) //By adiabatic process relation eta=1-1/r^(g-1) //Air standard efficiency T2=P2*T1/(P1*r) //Temperature at 2 in K T3=(P3/P2)*T2 //Temperature at 3 in K Q1=cv*(T3-T2) //Heat added in kJ/kg W=Q1*eta //Work done in kJ/kg V1=1*R*10^3*T1/(P1*10^5) //Ideal gas equation, Volume at 1 in m^3/kg V2=V1/r //Volume at 2 in m^3/kg V_s=V1-V2 //Swept volume in m^3/kg mep=W*1000/(V_s*10^5) //Mean effective pressire in bar //Results: printf("\n The air standard efficiency, eta = %.1f percent",eta*100) printf("\n The compression ratio, r = %d",r) printf("\n The mean effective pressure, mep = %.2f bar\n",mep)
f91a505d2ec43cafe89bc290c0167310064b3ea7
a5f0fbcba032f945a9ee629716f6487647cafd5f
/Experimentation/9 Automated_advanced_test/tests/test.sce
3ff1717c7ef22f86c37f8c429061650a9bc894f2
[]
no_license
SoumitraAgarwal/Scilab-gsoc
692c00e3fb7a5faf65082e6c23765620f4ecdf35
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
refs/heads/master
2021-04-15T17:55:48.334164
2018-08-07T13:43:26
2018-08-07T13:43:26
126,500,126
1
1
null
null
null
null
UTF-8
Scilab
false
false
417
sce
test.sce
// Demo script for linear regression getd('../') M = csvRead('Salary_Data.csv') M(or(isnan(M),'c'),:) = [] X = M(:, 1) y = M(:, 2) models = mgetl('models') params = mgetl('parameters') nummodels = size(models) nummodels = nummodels(1) for i = 1:nummodels disp('Running test for ' + models(i) + ' with params ' + params(i)) machineLearn(models(i), M, params(i)); //machinePredict('attributes.p', X) break end
7d80a44da34b8db7919bbeb9096379562d32c6c5
449d555969bfd7befe906877abab098c6e63a0e8
/1445/CH1/EX1.37/ch1_ex_37.sce
398178bc5e4a1cc7520d624eab012ed87f58189a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,239
sce
ch1_ex_37.sce
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS //Example 37 disp("CHAPTER 1"); disp("EXAMPLE 37"); //VARIABLE INITIALIZATION v1=90; //voltage source in Volts r1=8; //in Ohms r2=6; //in Ohms r3=5; //in Ohms r4=4; //in Ohms r5=8; //diagonal resistance in Ohms r6=8; //in Ohms //SOLUTION //using Thevenin's Theorem //(3)v1+(-2)v2=90...........eq (1) //(-2)v1+(4)v2=-90..........eq (2) A=[3 -2;-2 4]; b=[90;-90]; x=inv(A)*b; v1=x(1,:); v2=x(2,:); vth=v1; req1=(r1*r5)/(r1+r5); req2=req1+r4; req3=(req2*r6)/(req2+r6); rth=req3+r2; vab1=(vth*r3)/(rth+r3); disp(sprintf("By Thevenin Theorem, the value of V_ab is %f V",vab1)); //using Norton's Theorem //(13)v1+(-7)v2=270.........eq (1) //(7)v1+(-13)v2=0...........eq (2) A=[13 -7;7 -13]; b=[270;0]; x=inv(A)*b; v1=x(1,:); v2=x(2,:); req1=(r1*r5)/(r1+r5); req2=req1+r4; req3=(req2*r6)/(req2+r6); rn=req3+r2; if(v1>v2) then In=(v1-v2)/r2; else In=(v2-v1)/r2; end; vab2=(r3*In)*(rn/(rth+r3)); disp(sprintf("By Norton Theorem, the value of V_ab is %f V",vab2)); //END
cc8db5c50a9ad6261dd2283e8d510b39689d9f8c
04101e89f0980b65ec0350667a3cbf16ccd56630
/Steepest_Descent.sce
c7ed0a6f199a48558b090c81f1bc960f48a5e1bb
[]
no_license
francissinco/Numerical-Analysis-in-Scilab
a810d30dc1ba032a6a9bc37a6f5345185781380e
51f9d2da4d31e865be158bea2b7cf563ccbe21eb
refs/heads/master
2021-01-10T11:45:15.197910
2016-05-06T10:34:45
2016-05-06T10:34:45
52,008,949
0
0
null
2016-05-06T10:34:45
2016-02-18T13:27:34
Scilab
UTF-8
Scilab
false
false
964
sce
Steepest_Descent.sce
//Francis Brylle G. Sinco //MS Applied Mathematics //Math 288 //University of the Philippines - Diliman //15 January 2011 // Steepest Descent Algorithm with Backtracking (Armijo) Linesearch //INITIALIZATION OF QUANTITIES t=1;//initial guess for the steplength rho=0.5; alpha=0.5; k=1; tau=10e-8;//relative error tolerance x0=[0;0];//initial guess for the minimizer //FUNCTION DEFINITIONS function z = f(x) z = 2*x(1)^2 + 2*x(1)*x(2) + x(2)^2 + x(1) - x(2); endfunction; function g = gradient(x) g = [4*x(1)+2*x(2)+1; 2*x(1)+2*x(2)-1]; endfunction; //MAIN x=x0; d=-gradient(x); while norm(gradient(x)) > tau*norm(gradient(x0))//relative error criterion loop d = -gradient(x); while (f(x + t*d) > f(x)+ alpha*t*gradient(x)'*d) //Armijo condition loop t = rho*t; end; x = x + t*d; k=k+1; end; x//final answer (computed minimizer) k//number of iterations performed ///////////////////////////////END////////////////////////////////////
3e14380582214067fa608fa95e99b68d84c28ba7
4483ff664b4d01c53114a7fc535625c197c8f989
/green routing/comp.sce
d4a883db094e485c5b03baf4c332b61de74347c1
[]
no_license
winash1618/myproject
be9b77d4a405edce7e625a999803016b50ab99d0
2132e76e6a996bee19f356a2b68af827fa6c621b
refs/heads/master
2022-12-06T06:09:06.487979
2020-08-20T02:00:54
2020-08-20T02:00:54
288,880,158
0
0
null
null
null
null
UTF-8
Scilab
false
false
64
sce
comp.sce
clc clear a=1 b=12 [k,g,b]=myfunction() m=g+b disp(k,g,b,m)
69ee8d8cdb051c3f1cbbe090942d0c62db68739e
449d555969bfd7befe906877abab098c6e63a0e8
/3764/CH1/EX1.3/Ex1_3.sce
07e1d44da3ae3916dbb1865653a3deeefe425237
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,645
sce
Ex1_3.sce
clc // //Variable declaration Su = 600 //ultimate normal stress(MPa) FS = 3.3 //Factor of safety with respect to failure tU=350 //Ultimate shearing stress(MPa) Cx=40 //X Component of reaction at C(kN) Cy=65 //Y Component of reaction at C(kN) Smax=300 //Allowable bearing stress of the steel //Calculation C=sqrt(((40**2))+((65**2))) //Case(a) P=(15*0.6 + 50*0.3)/(0.6) //Allowable bearing stress of the steel(MPa) Sall=(Su/FS) //Allowable Stress(MPa) Sall=(Sall) //Rounding Allowable stress to 1 decimal place(MPa) Areqa=(P/(Sall*(1000))) //Cross Sectional area(m^2) Areqa=(Areqa) //Rounding cross sectional area to 5 decimal places(m^2) dAB=sqrt(((Areqa)*(4))/(22/7)) //Diameter of AB(m) dAB=dAB*1000 //Diameter of AB(mm) dAB=(dAB) //Rounding Diameter of AB(mm) //Case(b) tALL=tU/FS //Stress(MPa) tALL=(tALL) //Rounding of Stress AreqC=((C/2)/tALL) //Cross sectional area(m^2) AreqC=AreqC*1000 AreqC=(AreqC) //Rounding the cross sectional area dC=sqrt((4*AreqC)/(22/7)) //Diameter at point C dC=((dC+1)) //Rounding of the diameter at C //Case(c) Areq=((C/2)/Smax) Areq=Areq*1000 //Cross sectional area(mm^2) t=(Areq/22) //Thickness of the bracket t=(t) //Result printf("\n Case(a): Diameter of the bolt = % f mm' ,dAB) printf("\n Case(a): Dimension b at Each End of the Bar = % f mm' ,dC) printf("\n Case(a): Dimension h of the Bar = % f mm' ,t)
db354c90a2e0769e5ee4bf24c50771e8dcef771a
449d555969bfd7befe906877abab098c6e63a0e8
/1994/CH3/EX3.9/Example3_9.sce
be997a7d7988b8d16b29c95e6a5d64933e54be72
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
162
sce
Example3_9.sce
//Chapter-3,Example3_9,pg 3_38 n=4 fsmin=10*10^-3//full scale value on min. range R=1/(10^n) S=fsmin*R printf("senstivity of meter\n ") printf("s=%.7f",S)
91c3d26c4295b6237968404ac1238e6359f0df6d
449d555969bfd7befe906877abab098c6e63a0e8
/858/CH5/EX5.9/example_9.sce
235df240423c4c9f067864613b631668fe1a1282
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
271
sce
example_9.sce
clc clear printf("example 5.9 page number 191\n\n") //to find the surface temperature of earth T_sun = 5973 //in degree C d = 1.5*10^13 //in cm R = 7.1*10^10; //in cm T_earth = ((R/(2*d))^0.5)*T_sun; printf("Temperature of earth = %f C",T_earth-273)
64c723334948fd8411bb89560b7ac263534c6723
449d555969bfd7befe906877abab098c6e63a0e8
/3733/CH18/EX18.2/Ex18_2.sce
05b986b66b9b81a20ff78f663ff8854effdcbb2c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,275
sce
Ex18_2.sce
// Example 18_2 clc;funcprot(0); //Given data m_w1=400;// Quantity of cooling water in kg/min T_1=43.5;// The temperature of water at inlet in °C T_a1=18.5;// °C RH=60;// Relative humidity in % T_a2=27;// °C V=600;// Volume of air per minute in m^3/min P=4;// Power absorbed in kW C_pw=4.2;// kJ/kg°C //Calculation //The conditions of air at inlet and outlet are represented on psychrometric chart as shown in Fig.Prob.18.2 // Total heat of air at inlet + Total heat of water at inlet + heat dissipatedby motor = Total heat of air at outlet + Total heat of water at outlet // From psychrometric chart, H_a1=38.87;// kJ/kg H_a2=84.85;// kJ/kg w_1=7.8;// grams/kg w_2=22.6;// grams/kg v_s1=0.836;// m^3/kg m_a=V/v_s1;// kg/min Q=P*60;// kJ/min //T_2=y(1) function[X]=Temperature(y); X(1)=((m_w1*C_pw*(T_1-y(1)))+Q)-(m_a*((H_a2-H_a1)-(((w_2-w_1)/1000)*C_pw*y(1)))); endfunction y=[10] z=fsolve(y,Temperature); T_2=z(1);// The temperature of water coming out of the tower in °C m_m=m_a*((w_2-w_1)/1000);// The make up water required per hour in kg/min printf('\nThe temperature of water coming out of the tower=%0.2f°C \nThe make up water required per hour=%0.1f kg/min',T_2,m_m); // The answers provided in the textbook is wrong
0da8024b778d23ad877cb6bef6d29e302985bd17
449d555969bfd7befe906877abab098c6e63a0e8
/662/CH6/EX6.6/ex6_6.sce
56db81df328d08341d4443f4c2264008ac057f76
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
999
sce
ex6_6.sce
//Example 6.6 //Use of if-else statement //status, pay, pastdue,accountno, balance are not declared or predefined in the program //so these values are assumed status= input("Enter Status: ","string"); printf("Enter Pay:"); pay= scanf("%f"); if(status=='S') then tax=0.20*pay; else tax=0.14*pay; end pastdue=1200.00; accountno=9743456789; if ( pastdue > 0) then printf("account number %d is overdue", accountno); credit=0; else credit=1000.0; end x=4; balance=5678; if ( x<=3) then y=3*x^2; else y=2*(x-3)^2; end printf("%f\n", balance); circle = 1; //or circle =0 for false case if (circle) then printf("Enter radius of circle"); radius=scanf("%f"); area= 3.14159*radius*radius; printf("Area of circle = %f", area); else printf("Enter length and width seperated by space:"); [Length, width] = scanf("%f %f"); area =Length * width; printf("Area of rectangle = %f", area); end
eb883bb83c5adf2fff30d57564dfcc7d3a33104f
449d555969bfd7befe906877abab098c6e63a0e8
/2126/CH6/EX6.5/5.sce
aa716ca111caf4377accb45972d1fbe168c1622c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
990
sce
5.sce
clc clear //Input data n=2 //Number of jets D=0.25 //Diameter of turbojet in m P=3000 //Net power at turbojet in W mf_kWh=0.42 //Fuel consumption in kg/kWh CV=49000 //Calorific value in kJ/kg u=300 //Flight velocity in m/s d=0.168 //Density in kg/m^3 AFR=53 //Air fuel ratio //Calculatioon mf=mf_kWh*P/3600 //Mass flow rate of fuel in kg/s ma=AFR*mf //Mass flow rate of air in kg/s m=ma+mf //Mass flow rate of gas in kg/s Q=m/d //Volume flow rate in m^3/s Cj=(Q*4)/(2*%pi*D^2) //Jet velocity in m/s Ca=Cj-u //Absolute Jet velocity in m/s F=((m*Cj)-(ma*u))*10^-3 //Thrust in kN eff=((F*u)/(mf*CV))*100 //Overall efficiency in % eff_prop=((2*u)/(Cj+u))*100 //Propulsive efficiency of the cycle in % eff_ther=(eff/eff_prop)*100 //Efficiency of turbine in % //Output printf('(A)Absolute velocity of jet is %3.3f m/s\n (B)Resistance of the plane is %3.4f kN\n (C)Overall efficiency is %3.2f percent\n (D)Efficiency of turbine is %3.3f percent',Ca,F,eff,eff_ther)
6ba610566cfacc5f90fe100c7beb4b7545c25bc0
449d555969bfd7befe906877abab098c6e63a0e8
/1752/CH6/EX6.6/exa6_6.sce
806fd210bcf1b0be3af30a6f4fe8a073b8e276d5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
797
sce
exa6_6.sce
//Exa 6.6 clc; clear; close; //given data rho=1.205;// in kg/m^3; C_p=1006;// in J/kg K Pr=0.71; K=0.0256;// in W/mK delta=1.506*10^-5;// in m^2/s T_s=35;// in degree C T_infinite=5;// in degree C T_f=(T_s+T_infinite)/2;// in degree C T_f=T_f+273;// in K Bita=1/T_f; del_T=T_s-T_infinite; g=9.81; // Formula 1/x= 1/Lh + 1/Lv Lh=50;// in cm Lv=50;// in cm x=Lh*Lv/(Lh+Lv);// in cm x=x*10^-2;// in m // Formula Gr=(g*Bita*del_T*x^3)/delta^2; Gr=(g*Bita*del_T*x^3)/delta^2; Ra=Gr*Pr; // Formula Nu= h*x/K =0.53*Ra^(1/4) h=0.53*Ra^(1/4)*K/x;// in W/m^2K A=2*(0.5+0.5); q=h*A*del_T;// w disp("Heat loss per meter length of pipe is : "+string(q)+" watt") // Note: In the book, value of h is wrong due to place miss value of x, so the answer in the book is wrong
a5c7b6525fdaddab0878e4e1489a615fc2cf109c
ff564ea78a2c79675c15643431b097b269dbc056
/lab3.sce
06ff4ee3098c3623fdfb2ed427e6773601f5b599
[]
no_license
Ahmetov/scilab-labs
e57b4ba3e56a33861cd8ae2aae78d4c9fe3282b7
3f95354b41dae975eaccc5de830107feae5df79a
refs/heads/master
2020-09-08T17:32:05.535199
2019-11-26T12:01:32
2019-11-26T12:01:32
221,196,856
0
0
null
null
null
null
UTF-8
Scilab
false
false
9,215
sce
lab3.sce
//var 7 //распределение Пуассона; lambda = 30, maximum = 49. нормальное //7 for mas+-?? (table) select-case funct– в файл //7 u=7.5 o=2.1 lamda=null //var 6 //lab 3 var 13 for + if-then-elseif + в файл, 4 задача //------------------------ //------------------------ //------------------------ //------------------------ //2 lab------------------- fd = mopen('D:\mis_labs\a.txt', 'wt'); intervalArray = zeros(1, 400); x = 0 //???? matr = zeros(2, 49) before = 0; sArray = zeros(1, 400); for x=0:1:49 matr(1, x + 1) = x before = before + ( %e^(-30) * 30^x ) / factorial(x) matr(2, x + 1) = before end summ = 0; isum = 0; mfprintf(fd, "\nТабличный метод\n"); for i=1:1:401 r = rand() rSum = 0; for i=1:1:12 r2 = rand(); rSum = rSum + r2; end interval = 2.1*(rSum - 12/2/sqrt(1)) + 7.5; intervalArray(i) = interval; isum = isum + interval; mfprintf(fd, 'Временной интервал = %f\n', interval); for j=2:1:49 select (1) case 1 then if(matr(2,j-1)<=r & r<matr(2, j)) then z = matr(1, j-1) + (r - matr(2,j-1))*(matr(1,j) - matr(1,j-1)) / (matr(2,j) - matr(2,j-1)); sArray(i) = z; summ = summ + z; mfprintf(fd, "Табличный метод = %d\n", z); end else error("error кокой-то") end end; end; mSize = summ/400; D = 0; for i=1:1:400 D = D + ((sArray(i) - mSize)^2); end D = 1/ 399 * D; mfprintf(fd, "\nМатрица\n"); //for i=1:1:2 //матрица вывод //for j=1:1:49 //mfprintf(fd, "%f [ %d, %d]", matr(i,j), i, j) //j = j + 1 //end //mfprintf(fd, "\n") //end //2 lab------------------- //------------------------ //------------------------ //------------------------ //------------------------ i = 0; k = 4; result = [0. 0. 0. 0]; result2 = [0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0]; count = 1; mfprintf(fd, "\nТипы - адреса\n"); while i < 400 message = " тип"; tmp = rand(); tmp2 = rand(); if tmp < 0.28 then message = "1" + message; //.........................................start adress 1 correct if tmp2 < 0.01 then result2(1,1) = result2(1,1) + 1; message = message + " = адресс 1"; elseif tmp2 < 0.39 then result2(1,2) = result2(1,2) + 1; message = message + " = адресс 2"; elseif tmp2 < 0.71 then result2(1,3) = result2(1,3) + 1; message = message + " = адресс 3"; elseif tmp2 < 0.76 then result2(1,4) = result2(1,4) + 1; message = message + " = адресс 4"; elseif tmp2 < 0.94 then result2(1,5) = result2(1,5) + 1; message = message + " = адресс 5"; elseif tmp2 < 1 then result2(1,6) = result2(1,6) + 1; message = message + " = адресс 6"; end; //.........................................end adresses 1 result(1) = result(1) + 1; mfprintf(fd, message + '\n'); elseif tmp < 0.46 then message = "2" + message; //.........................................start adress 2 correct if tmp2 < 0.01 then result2(2,1) = result2(2,1) + 1; message = message + " = адресс 1"; elseif tmp2 < 0.38 then result2(2,2) = result2(2,2) + 1; message = message + " = адресс 2"; elseif tmp2 < 0.62 then result2(2,3) = result2(2,3) + 1; message = message + " = адресс 3"; elseif tmp2 < 0.86 then result2(2,4) = result2(2,4) + 1; message = message + " = адресс 4"; elseif tmp2 < 0.94 then result2(2,5) = result2(2,5) + 1; message = message + " = адресс 5"; elseif tmp2 < 1 then result2(2,6) = result2(2,6) + 1; message = message + " = адресс 6"; end; //.........................................end adresses 2 result(2) = result(2) + 1; mfprintf(fd, message + '\n'); elseif tmp < 0.67 then message = "3" + message; //.........................................start adress 3 correct if tmp2 < 0.01 then result2(3,1) = result2(3,1) + 1; message = message + " = адресс 1"; elseif tmp2 < 0.03 then result2(3,2) = result2(3,2) + 1; message = message + " = адресс 2"; elseif tmp2 < 0.06 then result2(3,3) = result2(3,3) + 1; message = message + " = адресс 3"; elseif tmp2 < 0.65 then result2(3,4) = result2(3,4) + 1; message = message + " = адресс 4"; elseif tmp2 < 0.74 then result2(3,5) = result2(3,5) + 1; message = message + " = адресс 5"; elseif tmp2 < 1 then result2(3,6) = result2(3,6) + 1; message = message + " = адресс 6"; end; //.........................................end adresses 3 result(3) = result(3) + 1; mfprintf(fd, message + '\n'); elseif tmp < 1 then message = "4" + message; //.........................................start adress 4 if tmp2 < 0.17 then result2(4,1) = result2(4,1) + 1; message = message + " = адресс 1"; elseif tmp2 < 0.36 then result2(4,2) = result2(4,2) + 1; message = message + " = адресс 2"; elseif tmp2 < 0.4 then result2(4,3) = result2(4,3) + 1; message = message + " = адресс 3"; elseif tmp2 < 0.88 then result2(4,4) = result2(4,4) + 1; message = message + " = адресс 4"; elseif tmp2 < 0.96 then result2(4,5) = result2(4,5) + 1; message = message + " = адресс 5"; elseif tmp2 < 1 then result2(4,6) = result2(4,6) + 1; message = message + " = адресс 6"; end; //.........................................end adresses 4 result(4) = result(4) + 1; mfprintf(fd, message + '\n'); end; //tmp3 = rand() //for j=2:1:50 //if matr(2,j-1) <= tmp3 & tmp3 <= matr(2,j) //z = j-1 + ((tmp3 - matr(2,j-1)) * (j - j-1) ) / ( (matr(2,j)) - matr(2, j-1) ) //mfprintf(fd, "%d", z); //disp(int(z)) //end; //end; i = i + 1; end mfprintf(fd, '\nКоличества типов\n'); mfprintf(fd, "%d %d %d %d\n\n", result(1), result(2), result(3), result(4)); mfprintf(fd, 'Вероятности\n'); mfprintf(fd, "%f %f %f %f\n", result(1) / 400, result(2) / 400, result(3) / 400, result(4) / 400); mfprintf(fd, '(----------- 2 часть ---------)\n'); mfprintf(fd, 'Коичества\n'); i = 1 j = 1 while i <= 4 while j <= 6 mfprintf(fd, "%d ", result2(i,j)) j = j + 1 end mfprintf(fd, "\n") j = 1 i = i + 1 end mfprintf(fd, 'Вероятности\n'); i = 1 j = 1 while i <= 4 while j <= 6 mfprintf(fd, "%f ", result2(i,j) / result(i)) j = j + 1 end mfprintf(fd, "\n") j = 1 i = i + 1 end mDl = 2.1 f1 = result(1) / isum; f2 = result(2) / isum; f3 = result(3) / isum; f4 = result(4) / isum; f1t = (400*0.28) / (7.5 * 400); f2t = (400*0.18) / (7.5 * 400); f3t = (400*0.17) / (7.5 * 400); f4t = (400*0.37) / (7.5 * 400); mfprintf(fd, "\n"); mfprintf(fd, "Мат. ожид. теор длин = %f\n", 30); mfprintf(fd, "Мат. ожид. практич длин = %f\n", mSize); mfprintf(fd, "Мат. ожид. теор врем интервала = 7.5\n"); mfprintf(fd, "Мат. ожид. практич врем интерв = %f\n", isum/400); mfprintf(fd, "Дисперсия теор = %f\n", mSize); mfprintf(fd, "Дисперсия пр длин = %f\n", D); mfprintf(fd, "Ско т %f\n",sqrt(mSize)); mfprintf(fd, "Ско п %f\n",sqrt(D)); mfprintf(fd, "частота 1 тип практическая %f\n",f1); mfprintf(fd, "частота 1 тип теор %f\n",f1t); mfprintf(fd, "частота 2 тип практическая %f\n",f2); mfprintf(fd, "частота 1 тип теор %f\n",f2t); mfprintf(fd, "частота 3 тип практическая %f\n",f3); mfprintf(fd, "частота 1 тип теор %f\n",f3t); mfprintf(fd, "частота 4 тип практическая %f\n",f4); mfprintf(fd, "частота 1 тип теор %f\n",f4t); //............................lab 3 sortArray = zeros(1:400); sortArray = gsort(intervalArray, 'g', 'i'); sortArray7 = zeros(1:7); rs = sortArray(400) - sortArray(1); mm = 7; h = (rs / mm - 1); u0 = sortArray(1) - h/2; for i=1:1:mm sortArray7(i) = u0 + i*h; end pArray = zeros(1:mm-1); for i=1:1:400 end for i=1:1:mm-1 sortArray7 end //............................lab 3 mclose(fd);
4866a57202a0927a87fd54b24f7b0abee62c8a94
449d555969bfd7befe906877abab098c6e63a0e8
/1049/CH12/EX12.7/ch12_7.sce
cfa6a8de9b64bc480b114f876de5a8e295072f0a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
528
sce
ch12_7.sce
clear; clc; V_t=220; n_m=1000; w_m=2*%pi*n_m/60; I_a=60; r_a=.1; K_m=(V_t-I_a*r_a)/(w_m); V_s=230; V_m=sqrt(2)*V_s; disp("for 600rpm speed"); n_m=600; w_m=2*%pi*n_m/60; a=acosd((K_m*w_m+I_a*r_a)*%pi/(2*V_m)); printf("firing angle=%.3f deg",a); disp("for -500rpm speed"); n_m=-500; w_m=2*%pi*n_m/60; a=acosd((K_m*w_m+I_a*r_a)*%pi/(2*V_m)); printf("firing angle=%.3f deg",a); I_a=I_a/2; a=150; V_t=2*V_m*cosd(a)/%pi; w_m=(V_t-I_a*r_a)/K_m; N=w_m*60/(2*%pi); printf("\nmotor speed=%.3f rpm",N);
e55c63787f1e13d9c7d2d6da44c030b5b9b590ad
449d555969bfd7befe906877abab098c6e63a0e8
/2126/CH1/EX1.25/25.sce
f002729c6da9e2c29f1984b9455cb5e5e29eae89
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
465
sce
25.sce
clc clear //Input data C=215 //Velocity in m/s T=30+273 //Static temperature in K P=5 //Static pressure in bar R=287 //Specific gas constant in J/kg-k k=1.4 //Adiabatic Constant //Calculations a=sqrt(k*R*T) //Sound Velocity in m/s M=C/a //Mach number To=T*(1+(((k-1)/2)*M^2)) //Stagnation temperature in K Po=P*(To/T)^(k/(k-1)) //Stagnation pressure in kPa //Output printf('(A)Stagnation Pressure is %3.4f bar\n (B)Mach number is %3.3f',Po,M)
22b94fcf2e1037c512c4c1e755551697d7743754
449d555969bfd7befe906877abab098c6e63a0e8
/3648/CH25/EX25.6/Ex25_6.sce
b8fe5f25c5388f1b14251262552eba13ebaf514d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
365
sce
Ex25_6.sce
//Example 25_6 clc(); clear; //To find the apparent mass of a high speed electron rati=1/3 //units in constant mo=9.6*10^-31 //units in Kg m=mo/(sqrt(1-rati^2)) //Units in Kg printf("The apparent mass of High speed electron is mo=") disp(m) printf("Kg") //In textbook answer printed wrong as m=9.*10^-31 Kg the correct answer is m=1.018*10^-30
157dc275332eec0b07661880a991bce460533069
449d555969bfd7befe906877abab098c6e63a0e8
/1970/CH9/EX9.5/CH09Exa5.sce
5945932649de706b17574daf775a8691a6b5c9e7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
764
sce
CH09Exa5.sce
// Scilab code Exa9.5 : : Page-391 (2011) clc; clear; m_40 = 39.962589; // Mass of calcium 40, atomic mass unit m_41 = 40.962275; // Mass of calcium 41, atomic mass unit m_39 = 38.970691; // Mass of calcium 39, atomic mass unit m_n = 1.008665; // Mass of the neutron, atomic mass unit BE_1d = (m_39+m_n-m_40)*931.5; // Binding energy of 1d 3/2 neutron, mega electron volts BE_1f = (m_40+m_n-m_41)*931.5; // Binding energy of 1f 7/2 neutron, mega electron volts delta = BE_1d-BE_1f; // Energy difference between neutron shells, mega electron volts printf("\nThe energy difference between neutron shells = %4.2f MeV", delta); // Result // The energy difference between neutron shells = 7.25 MeV
fa424da39121cbdf27c8640a712140abffa0c074
ad50d54a607f73a866b6c4caf7bf98c1ab53e26c
/code.sce
244457774ef85108e1526c8d0896e2c38e99505a
[]
no_license
kennethassogba/modeling-in-population-dynamics
42e2c1153e2d2553f797b7458a6a64e044b6ff1d
660127445779b0b473bebd96be3287eb7a4320cc
refs/heads/master
2022-12-11T16:52:19.552346
2022-12-10T14:34:15
2022-12-10T14:34:15
131,633,487
0
0
null
null
null
null
UTF-8
Scilab
false
false
16,609
sce
code.sce
//Kenneth et Anne-Marie //Allez dans la console scilab pour commencer clear; ////MODELES\\\\ //1. Équation logistique function y=F1(t,u) a=0.5; b=0.1; y=zeros(u); y=a*u*(1-b*u); endfunction //meme fonction mais on change les paramettres a et b function y=F2(t,u) a=7; b=0.14; y=zeros(u); y=a*u*(1-b*u); endfunction //2 Système de Lotka-Volterra function [y]=F3(t,u) a=1; b=0.2; c=0.5; d=0.1; y(1)=a*u(1)-b*u(1)*u(2); y(2)=-c*u(2)+d*u(1)*u(2); endfunction //3 Modèle logistique de Verhulst function [y]=F4(t,u) a=1; b=0.2; c=0.5; d=0.1; e=0.01; y(1)=a*u(1)-e*u(1)^2-b*u(1)*u(2); y(2)=-c*u(2)+d*u(1)*u(2); endfunction //meme fonction mais on change le paramettre e function [y]=F5(t,u) a=1; b=0.2; c=0.5; d=0.1; e=1; y(1)=a*u(1)-e*u(1)^2-b*u(1)*u(2); y(2)=-c*u(2)+d*u(1)*u(2); endfunction //4 Populations en compétition function [y]=F6(t,u) a=1; th1=3/2; th2=1/2; y(1)=u(1)*(1-u(1)-th1*u(2)); y(2)=a*u(2)*(1-u(2)-th2*u(1)); endfunction //meme fonction mais on change les paramettres a, th1 et th2 function [y]=F7(t,u) a=1/2; th1=2; th2=3; y(1)=u(1)*(1-u(1)-th1*u(2)); y(2)=a*u(2)*(1-u(2)-th2*u(1)); endfunction //5 Generalisation a 3 especes //du modele des populations en compétition function [y]=F8(t,u) a=1; b=2; //th(ij) représente l'effet de la populataion j sur la population i th12=3/2; th21=1/2; th13=3/2; th23=1/2; th31=3/2; th32=1/2; y(1)=u(1)*(1-u(1)-th12*u(2)-th13*u(3)); y(2)=a*u(2)*(1-u(2)-th21*u(1)-th23*u(3)); y(3)=b*u(3)*(1-u(3)-th31*u(1)-th32*u(2)); endfunction ////SCHEMAS\\\\ //Schéma d’Euler explicite function [sol]=EulerExplicite(u0,Temps,f) h=Temps(2)-Temps(1); u=u0; sol=u0; for iter=1:length(Temps)-1 u=u+h*f(u); sol=[sol,u]; end endfunction //Schéma d’Euler modifie function [sol]=EulerModifie(u0,Temps,f) h=Temps(2)-Temps(1); u=u0; sol=u0; for iter=1:length(Temps)-1 u=u+h*f(iter,u+(h/2)*f(iter,u)); sol=[sol,u]; end endfunction //RK4 function [sol]=RK4(u0,Temps,f) h=Temps(2)-Temps(1); sol=u0; r=u0; for iter=1:length(Temps)-1 yn1=r; yn2=yn1+h/2*f(t,yn1); yn3=yn1+h/2*f(t,yn2); yn4=yn1+h*f(t,yn3); so=yn1+h/6*(f(t,yn1)+2*f(t,yn2)+2*f(t,yn3)+f(t,yn4)); r=so; sol=[sol,r] end endfunction //RK Implicite (Crank Nicholson) function y=zer(u) y=u-u0-h/2*(F3(t,u0)+F3(t+h,u)); endfunction function [sol]=CrankNicholson(u0,Temps,f) h=Temps(2)-Temps(1); sol=u0; r=u0; for iter=1:length(Temps)-1 yy=fsolve(r,zer); r=yy; sol=[sol,r]; end endfunction //Programme principal //Parametres de discretisation //Apres avoir fait les tests en temps cours, //nous faisons passons en temps moyen (T=10) //puis en temps long pour (T=100) pour obtenir la periodicite T=10; N=1000; t=linspace(0,T,N); res=1 while(res==1) clc; clf; printf('=================MENU======================\n'); printf('=1=-Équation logistique 1.(a)Euler explicite\n'); printf('=2=-Équation logistique 1.(b)Euler modifié\n'); printf('=3=-Système de Lotka-Volterra 2.(b)Euler explicite\n'); printf('=4=-Système de Lotka-Volterra 2.(c)Schéma RK4\n'); printf('=5=-Système de Lotka-Volterra 2.(d)Schéma RK implicite\n'); printf('=6=-Modèle logistique de Verhulst 3.Euler explicite\n'); printf('=7=-Modèle logistique de Verhulst 3.Schéma RK4\n'); printf('=8=-Populations en compétition 4.Euler explicite\n'); printf('=9=-Populations en compétition 4.Schéma RK4\n'); printf('=10=-Généralisation Populations en compétition 5.Euler explicite\n'); printf('=11=-Généralisation Populations en compétition 5.Schéma RK4\n'); printf('-OTHER-\n'); printf('=12=-Representation du nombre de predateur en fonction du nombre de proies(Lotka-Volterra-RK4)\n'); printf('=13=-Representation 3D de la generalisation choisie(Competition-RK4)\n'); choix=input('\n===========Quel est votre choix?===========\n'); if(choix==1) //on se place avant le point d'equilibre 1/b //la population croit (vers le point d'equilibre) u0=9; //b=0.1 subplot(2,2,1) solN1=EulerExplicite(u0,t,F1); plot(t,solN1,'r+') y1 = ode(u0, 0, t, F1); //solution "exacte" plot(t,y1) legend(['EulerExplicite';'solution exacte ode']); xtitle("Params (a=0.5 b=0.1) Val initiale (u0=9)") u0=1; //b=0.14 subplot(2,2,2) solN2=EulerExplicite(u0,t,F2); plot(t,solN2,'r+') y2 = ode(u0, 0, t, F2); //solution "exacte" plot(t,y2) legend(['EulerExplicite';'solution exacte ode']); xtitle("Params (a=7 b=0.14) Val initiale (u0=1)") //on se place apres le point d'equilibre 1/b //la population decroit (vers le point d'equilibre) u0=11; //b=0.1 subplot(2,2,3) solN1=EulerExplicite(u0,t,F1); plot(t,solN1,'r+') y1 = ode(u0, 0, t, F1); //solution "exacte" plot(t,y1) legend(['EulerExplicite';'solution exacte ode']); xtitle("Params (a=0.5 b=0.1) Val initiale (u0=11)") u0=50; //b=0.14 subplot(2,2,4) solN2=EulerExplicite(u0,t,F2); plot(t,solN2,'r+') y2 = ode(u0, 0, t, F2); //solution "exacte" plot(t,y2) legend(['EulerExplicite';'solution exacte ode']); xtitle("Params (a=7 b=0.14) Val initiale (u0=50)") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==2) //on se place avant le point d'equilibre 1/b //la population croit (vers le point d'equilibre) u0=1; subplot(2,2,1) solN1=EulerModifie(u0,t,F1); plot(t,solN1,'r+') y1 = ode(u0, 0, t, F1); //solution "exacte" plot(t,y1) legend(['Euler Modifie';'Solution exacte ode']); xtitle("Params (a=0.5 b=0.1) Val initiale (u0=1)") u0=1; subplot(2,2,2) solN2=EulerModifie(u0,t,F2); plot(t,solN2,'r+') y2 = ode(u0, 0, t, F2); //solution "exacte" plot(t,y2) legend(['Euler Modifie';'Solution exacte ode']); xtitle("Params (a=7 b=0.14) Val initiale (u0=1)") //on se place apres le point d'equilibre 1/b //la population decroit (vers le point d'equilibre) u0=11; subplot(2,2,3) solN1=EulerModifie(u0,t,F1); plot(t,solN1,'r+') y1 = ode(u0, 0, t, F1); //solution "exacte" plot(t,y1) legend(['Euler Modifie';'Solution exacte ode']); xtitle("Params (a=0.5 b=0.1) Val initiale (u0=11)") u0=50; subplot(2,2,4) solN2=EulerModifie(u0,t,F2); plot(t,solN2,'r+') y2 = ode(u0, 0, t, F2); //solution "exacte" plot(t,y2) legend(['Euler Modifie';'Solution exacte ode']); xtitle("Params (a=7 b=0.14) Val initiale (u0=50)") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==3) //cas1 u0=[5;2]; subplot(2,2,1) solN1=EulerExplicite(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite u0=[50;20]") subplot(2,2,2) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;20]") //cas2 u0=[3;3]; subplot(2,2,3) solN1=EulerExplicite(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite u0=[30;30]") subplot(2,2,4) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[30;30]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==4) //cas1 u0=[5;2]; subplot(2,2,1) solN1=RK4(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 u0=[50;20]") subplot(2,2,2) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;20]") //cas2 u0=[3;3]; subplot(2,2,3) solN1=RK4(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 u0=[30;30]") subplot(2,2,4) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[30;30]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==5) //cas1 u0=[5;2]; subplot(2,2,1) solN1=CrankNicholson(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Crank Nicholson u0=[50;20]") subplot(2,2,2) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;20]") //cas2 u0=[3;3]; subplot(2,2,3) solN1=CrankNicholson(u0,t,F3); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Crank Nicholson u0=[30;30]") subplot(2,2,4) y1 = ode(u0, 0, t, F3); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[30;30]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==6) //cas1 //e=0.01; //a=1; u0=[10;5]; subplot(2,2,1) solN1=EulerExplicite(u0,t,F4); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite e=0.01 u0=[100;50]") subplot(2,2,2) y1 = ode(u0, 0, t, F4); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte e=0.01 u0=[100;50]") //cas2 //e=1; //a=1; u0=[0.1;0.5]; subplot(2,2,3) solN1=EulerExplicite(u0,t,F5); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite e=1 u0=[1;5]") subplot(2,2,4) y1 = ode(u0, 0, t, F5); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte e=1 u0=[1;5]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==7) //cas1 //e=0.01; //a=1; u0=[10;5]; subplot(2,2,1) solN1=RK4(u0,t,F4); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 e=0.01 u0=[100;50]") subplot(2,2,2) y1 = ode(u0, 0, t, F4); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte e=0.01 u0=[100;50]") //cas2 //e=1; //a=1; u0=[0.1;0.5]; subplot(2,2,3) solN1=RK4(u0,t,F5); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 e=1 u0=[1;5]") subplot(2,2,4) y1 = ode(u0, 0, t, F5); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte e=1 u0=[1;5]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==8) //cas1 u0=[5;3]; subplot(2,2,1) solN1=EulerExplicite(u0,t,F6); plot(t,solN1) legend(['Population 1';'Population 2']); xtitle("Euler Explicite u0=[50;30]") subplot(2,2,2) y1 = ode(u0, 0, t, F6); //solution "exacte" plot(t,y1) legend(['Population 1';'Population 2']); xtitle("Solution exacte u0=[50;30]") //cas2 u0=[6;5]; subplot(2,2,3) solN1=EulerExplicite(u0,t,F6); plot(t,solN1) legend(['Population 1';'Population 2']); xtitle("Euler Explicite u0=[60;50]") subplot(2,2,4) y1 = ode(u0, 0, t, F6); //solution "exacte" plot(t,y1) legend(['Population 1';'Population 2']); xtitle("Solution exacte u0=[60;50]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==9) //cas1 u0=[5;3]; subplot(2,2,1) solN1=RK4(u0,t,F6); plot(t,solN1) legend(['Population 1';'Population 2']); xtitle("RK4 u0=[50;30]") subplot(2,2,2) y1 = ode(u0, 0, t, F6); //solution "exacte" plot(t,y1) legend(['Population 1';'Population 2']); xtitle("Solution exacte u0=[50;30]") //cas2 u0=[6;5]; subplot(2,2,3) solN1=RK4(u0,t,F6); plot(t,solN1) legend(['Population 1';'Population 2']); xtitle("RK4 u0=[60;50]") subplot(2,2,4) y1 = ode(u0, 0, t, F6); //solution "exacte" plot(t,y1) legend(['Population 1';'Population 2']); xtitle("Solution exacte u0=[60;50]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==10) //cas1 u0=[5;3;2]; subplot(2,2,1) solN1=EulerExplicite(u0,t,F8); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite u0=[50;30;20]") subplot(2,2,2) y1 = ode(u0, 0, t, F8); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;30;20]") //cas2 u0=[5;5;5]; subplot(2,2,3) solN1=EulerExplicite(u0,t,F8); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("Euler Explicite u0=[50;50;50]") subplot(2,2,4) y1 = ode(u0, 0, t, F8); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;50;50]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==11) //cas1 u0=[5;3;2]; subplot(2,2,1) solN1=RK4(u0,t,F8); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 u0=[50;30;20]") subplot(2,2,2) y1 = ode(u0, 0, t, F8); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;30;20]") //cas2 u0=[5;5;5]; subplot(2,2,3) solN1=RK4(u0,t,F8); plot(t,solN1) legend(['Proies';'Predateurs']); xtitle("RK4 u0=[50;50;50]") subplot(2,2,4) y1 = ode(u0, 0, t, F8); //solution "exacte" plot(t,y1) legend(['Proies';'Predateurs']); xtitle("Solution exacte u0=[50;50;50]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==12) u0=[5;2]; solN1=RK4(u0,t,F3); plot(solN1(1,:),solN1(2,:)) xtitle("Representation du nombre de predateur en fonction du nombre de proies") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end if(choix==13) u0=[5;3;2]; solN1=RK4(u0,t,F8); y1 = ode(u0, 0, t, F8); //solution "exacte" param3d1([solN1(1,:),y1(1,:)],[solN1(2,:),y1(2,:)],[solN1(3,:),y1(3,:)]) xtitle("Representation 3D de la generalisation choisie(Competition-RK4) u0=[50;30;20]") printf('Continuer?\n'); res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n'); end end printf('=*=*=*==*=*=*=THE=END=*=*=*==*=*=*=\n');
2f710f2f649a2ac8a6f8f36ff76cfa2a3e5da34a
449d555969bfd7befe906877abab098c6e63a0e8
/629/CH8/EX8.5/example8_5.sce
8b3ce150b66a58686eedd81993527c9d827bf5d4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
333
sce
example8_5.sce
clear clc //Example 8.5 REYNOLDS-NUMBER SIMILITUDE OF A VALVE //p-prototype, m-model Lmp=1/6; //Lmp=(Lm/Lp) //Vm*Lm/vm=Vp*Lp/vp, vm=vp Vmp=1/Lmp //Vmp=(Vm/Vp) Qp=700; //[cfs] Amp=(Lmp)^2 //Ratio of areas, Amp=(Am/Ap) //Discharge Qm=Qp*Vmp*Amp //[cfs] printf("\n The flow rate required for the model, Q = %.f cfs.\n",Qm)
8670e4a30523a6a75879c0329dfeef7a727fd5bb
449d555969bfd7befe906877abab098c6e63a0e8
/257/CH6/EX6.26/example6_26.sce
0c176fe4b366e8a9aace760bf5ebd4ed04424754
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
208
sce
example6_26.sce
syms R1 R2 R3 C1 C2 s; T1=1/(R1*R2*R3*C1*C2*s^2) L1=-1/(s*R1*C1); L2=-1/(s*R2*C1); L3=-1/(s*R2*C2); delta=1-(L1+L2+L3+L4)+(L1*L3 + L1*L4) del1=1; TF=(T1*del1)/delta ; disp(TF,"Vo/VI = ")
3c27db85cebe4d229d7b743bec2431731cc024e4
449d555969bfd7befe906877abab098c6e63a0e8
/3204/CH2/EX2.23/Ex2_23.sce
ec4c6aa1b4653125cda0e061d2b043c9dafd563d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
437
sce
Ex2_23.sce
//Initilization of variables W=1000 //N r=0.30 //m //radius of the wheel h=0.15 //m //height of the obstacle //Calculations theta=asind(1) //degree //P is mini when sin(theta)=1 from eq'n of P Pmini=(W*sqrt((2*r*h)-(h^2)))/(r*sind(theta)) //N //Results clc printf('The least force required to just turn the wheel over the block is %f N \n',Pmini) printf('The angle wich should be made by Pmini with AC is %f degree \n',theta)
8454ae6adff77e824cf5c5e84028c7e2e9293460
449d555969bfd7befe906877abab098c6e63a0e8
/2195/CH7/EX7.5.8/ex_7_5_8.sce
bde956785d9fcb9559b07e368e0f0150a526c79d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
449
sce
ex_7_5_8.sce
//Example 7.5.8: LIMITING VALUE OF RESISTANCE clc; clear; close; format('v',8) P=100;//OHMS Q=P;// S=230;//IN OHMS DP=0.02;//ERROR IN PERCENTAGE DS=0.01;//IN PERCENTAGE R=(P/Q)*S;//unkow resistance in ohms dr=(DP+DP+DS);//relative limiting error in unknow resistance in percentage ± drm=(dr/100)*R;//magnitude of error R1=R+drm;//in ohms R2=R-drm;//in ohms disp("limiting value of unknown resistance is "+string(R1)+" ohms to "+string(R2)+" ohms")
fe3d53f803033eb1ee152edffab22798a8c0d62a
449d555969bfd7befe906877abab098c6e63a0e8
/2318/CH2/EX2.8/ex_2_8.sce
b6df3cf8ae96684907462a3abb6d380c2ea666d3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
755
sce
ex_2_8.sce
//Example 2.8://resistance,impedance,power,power factor ,voltage and power factor clc; clear; close; v=300;//volts i2=2.5;//amperes r=v/i2;//ohms disp(r,"resistance in ohm is") i3=4;//amperes zl=v/i3;//ohms disp(zl,"load impedance in ohm is") v=300;//volts i2=2.5;//amperes r=v/i2;//ohms i1=5.6;//amperes z=v/i1;//ohms disp(z,"impedance of combination in ohm is") i3=4;//amperes pl=((i1^2-i2^2-i3^2)*r)/2;//in watts disp(pl,"power absorbed by the load in W is") pl=((i1^2-i2^2-i3^2)*r)/2;//in watts pfl=((i1^2-i2^2-i3^2)/(2*i2*i3));//power factor disp(pfl,"power factor of the load is") pr=i2^2*r;//in watts tps=pl+pr;//in watts disp(tps,"total power supply is,(W)=") tps=pl+pr;//in watts tpf=tps/(v*i1);//power factor disp(tpf,"total power factor is")
bf7a9114e917f6538205cb07e7cce4e72377d155
449d555969bfd7befe906877abab098c6e63a0e8
/3850/CH45/EX45.3/Ex45_3.sce
b13d4bd04982c3e6ec7b0bbd615a6fcd637dbf0a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,222
sce
Ex45_3.sce
//To calculate the Approximate value of Dynamic Resistance of P N Junction under Forward Bias //Example 45.3 clear; clc; //(a)Case-I: Forward Bias of 1 V is applied ///////////////////////////////////////////////////////////////////////////// i1=10*10^-3;//Current in Amperes at 1 Volt i2=15*10^-3;//Current in Amperes at 1.2 Volts delI=i2-i1;//Net Change in Current in Amperes v1=1;//Voltage at the Initial Point v2=1.2;//Voltage at the Final point delV=v2-v1;//Net Change in Voltage R=delV/delI;//Dynamic Resitance in ohms printf("(a) Dynamic Resistance when a forward bias of 1 V is applied at the p-n junction = %.0f ohms",R); //(b)Case-II: Forward Bias of 2 V is applied //////////////////////////////////////////////////////////////////////////// v3=2;//Voltage at the Initial Point v4=2.1;//Voltage at the Final point delV1=v4-v3;//Net Change in Voltage i3=400*10^-3;//Current in Amperes at 2 Volt i4=800*10^-3;//Current in Amperes at 2.1 Volt delI1=i4-i3;//Net Change in Current in Amperes R1=delV1/delI1;//Dynamic Resitance in ohms printf("\n (b) Dynamic Resistance when a forward bias of 2 V is applied at the p-n junction = %.2f ohms",R1);
bfc5041cb5db3978622791c5d1f9334ab4e90ef1
76bedce072d7e5551343d8247181b569097a2364
/scripts/Создать загрузочную флешку.tst
bf396adc9c61a6769c48d0da6b7ace3bd6dd1fd3
[]
no_license
discipleartem/my_python_recipe_book
722d685b8af4a2293aa33a6749d876cf53519592
9f66b783ac20e4a0eb0ecca0ec860a4fb7ff3936
refs/heads/master
2021-05-25T12:15:18.583992
2020-07-18T07:48:32
2020-07-18T07:48:32
127,413,473
0
0
null
null
null
null
UTF-8
Scilab
false
false
489
tst
Создать загрузочную флешку.tst
Создать загрузочную флешку 1) sudo fdisk -l у меня: Device Boot Start End Sectors Size Id Type /dev/sdc4 * 256 15814655 15814400 7,6G b W95 FAT32 2) dd if=~/Downloads/ubuntu.iso of=/dev/sdb1 Здесь я подразумеваю? что ~/Downloads/ubuntu.iso - это установочный образ, а /dev/sdb1 - ваша флешка. у меня: sudo dd if=~/Downloads/Win10_1903_V2_Russian_x64.iso of=/dev/sdc4 все
75cc5a551a43f8e49401110ccdd1f2c08261fc03
449d555969bfd7befe906877abab098c6e63a0e8
/858/CH3/EX3.26/example_26.sce
f5fdcf056392ac7c302251d83d15eb2d70306ece
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
536
sce
example_26.sce
clc clear printf("example 3.26 page number 114\n\n") //to find the outlet temperature of water q_NTP = 10*(200/101.3)*(273/313); m_CO2 = 44*(q_NTP/22.4); s_CO2 = 0.85 //in kJ/kg K Q = m_CO2*s_CO2*(40-20) //Q = ms*delta_T d0 = 0.023 //in mm A0 = (3.14/4)*d0^2; di = 0.035 //in mm Ai = (3.14/4)*di^2; A_annular = Ai-A0; u = 0.15 //in m/s m_water = A_annular*(u*3600)*1000 //in kg/hr s_water = 4.19 //in kJ/kg K t = 15+(Q/(m_water*s_water)); printf("exit water temperature = %f degree C",t)
bc63eee41e3c69a305b86288bc98a52321cb8986
262ac6443426f24d5d9b13945d080affb0bd6d9b
/opgaves/cyclus/edit-me.sce
0076ea271924b69829f6209454d820c86962bad7
[]
no_license
slegers/Scilab
9ebd1d486f28cf66e04b1552ad6e94ea4bc98a0b
1b5dc3434def66355dafeb97c01916736a936301
refs/heads/master
2021-01-12T01:42:01.493578
2017-01-09T10:54:09
2017-01-09T10:54:09
78,420,343
0
0
null
null
null
null
UTF-8
Scilab
false
false
959
sce
edit-me.sce
function [teller,noemer] = solve(n_elementen,min_cycles) // Reken uit hoeveel kans er bestaat dat een permutatie // van {{{n}}} elementen een cyclus bevat van meer (>=) dan {{{k}}} elementen. // // De kans moet uitgedrukt worden als een vereenvoudigde breuk. // Bijvoorbeeld, 6/8 wordt teller=3, noemer=4. // Dummy toekenningen aan outputvariabelen if (min_cycles > n_elementen) then teller = 0; noemer = 1; elseif (min_cycles == 0 | min_cycles == 1) then teller = 1; noemer = 1; elseif (min_cycles == 2) then noemer = factorial(n_elementen); teller = noemer - 1; else teller = 0; noemer = factorial(n_elementen) for i = min_cycles:n_elementen teller = teller + noemer/i; end div = gcd([teller, noemer]); noemer = double(noemer/div); teller = double(teller/div); end endfunction
f65b4c0c58ec54a9e1a8632815173ae4f21b3acf
1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08
/Scilab/PCIeGen3/HSpiceUtilities/ACAnalysisToFTConv.sci
6ba324f0a7b5dd36f9c62e34c00f0081a0c45027
[]
no_license
lrayzman/SI-Scripts
5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d
9ab161c6deff2a27c9da906e37aa68964fabb036
refs/heads/master
2020-09-25T16:23:23.389526
2020-02-09T02:13:46
2020-02-09T02:13:46
66,975,754
0
0
null
null
null
null
UTF-8
Scilab
false
false
11,737
sci
ACAnalysisToFTConv.sci
// HSpice AC Analysis Frequency Response to S-parameter converter // // (c)2009 L. Rayzman // Created : 05/14/2009 // Last Modified: 05/14/2009 // // TODO: // clear; //////////////////////////////////////Extraction Function//////////////////////////////////// function [f, D, Desc] = extract_from_CSDF_Freq(filename) // Extracts waveform data from CSDF ASCII files // // Inputs: // filename - Filename of the CSDF file // // Outputs: // f - time points // D - Frequency data matrix // Desc - Title and names of the waveforms (string) stopflag = %F; // Stop loop flag readline=emptystr(); tempstr=emptystr(); // Temporary string ttlstr=emptystr(); // Title nodecount=0; // Nodecount idxcnt=1; // Timestamp index count; f=[]; // Initialize function output vectors D=[]; //Open File [fhandle,err]=mopen(filename, "r"); if err<0 then error("Header Parser: Unable to open data file"); end // //Parse the header // //Find start of header while stopflag == %F, if meof(fhandle) then //If end of file, stop stopflag = %T; error("Header Parser: Unable to find start of header in file"); else readline=mgetl(fhandle,1) if (convstr(part(readline,[1:2]),"u") == "#H") then //If reached start of header stopflag = %T; end end end stopflag=%F; // Reset stop flag //Read in the Title Line while stopflag == %F, if meof(fhandle) then //If end of file, stop stopflag = %T; error("Header Parser: Unable to find title line in header"); else readline=mgetl(fhandle,1) if (convstr(part(readline,[1:5]),"u") == "TITLE") then //If reached nodecount line tempstr=tokens(readline, "''"); ttlstr=tempstr(2); stopflag = %T; end end end stopflag=%F; // Reset stop flag //Read in nodecount while stopflag == %F, if meof(fhandle) then //If end of file, stop stopflag = %T; error("Header Parser: Unable to find nodecount line in header"); else readline=mgetl(fhandle,1) if (convstr(part(readline,[1:5]),"u") == "NODES") then //If reached nodecount tempstr=tokens(readline, "''"); nodecount=sscanf(tempstr(2),"%d"); stopflag = %T; end end end nodenames=emptystr(1, nodecount); // Nodenames stopflag=%F; // Reset stop flag // Look For Node name line while stopflag == %F, if meof(fhandle) then //If end of file, stop stopflag = %T; error("Header Parser: Unable to find nodenames line in header"); else readline=mgetl(fhandle,1) if (convstr(part(readline,[1:2]),"u") == "#N") then //If reached nodename line tempstr=strsplit(readline,2); //Process first nodename line tempstr=tempstr(2); readline=mgetl(fhandle,1); //Process subsequent lines until start of data portion while (part(readline, 1) ~= "#") & (~meof(fhandle)), tempstr = tempstr + readline; readline=mgetl(fhandle,1); end stopflag = %T; tempstr=strcat(tokens(tempstr)); // Process all names nodenames=tokens(tempstr, "''"); end end end if size(nodenames,1) ~= nodecount then error("Header Parser: Node count does not match number of node names"); end Desc = [ttlstr,nodenames']; stopflag=%F; // Reset stop flag while stopflag == %F, if meof(fhandle) then //If end of file, stop stopflag = %T; error("Data Parser: Premature end of file"); else if (convstr(part(readline,[1:2]),"u") == "#C") then //If reached data line for current frequency point tempstr=strsplit(readline,2); //Process data linet tempstr=tempstr(2); readline=mgetl(fhandle,1); //Process subsequent lines until start of next timestep while (part(readline, [1:2]) ~= "#C") & (part(readline, [1:2]) ~= "#;") & (~meof(fhandle)) , tempstr = tempstr + readline; readline=mgetl(fhandle,1); end tempstr=tokens(tempstr); // Process all data entries f(idxcnt)=sscanf(tempstr(1), "%f"); // Get frequency point if sscanf(tempstr(2), "%d") ~= nodecount then error("Data Parser: Reported node count does not match the count in data"); end for k=1:((size(tempstr,1)-2)/2), D(idxcnt,k)=sscanf(tempstr(2*k+1), "%f"); end idxcnt = idxcnt + 1; end if (convstr(part(readline,[1:2]),"u") == "#;") then // End of file stopflag = %T; end end end mclose(fhandle); // Cleanup variables clear stopflag; clear readline; clear tempstr; clear ttlstr; clear nodecount; clear idxcnt; endfunction ///////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////Main Routine//////////////////////////////////// facdata = emptystr(); // Filename(s) of the pulse response *.ac* file(s) fmatvardata = emptystr(); // Filename of frequency matrix file dialogstr=emptystr(); // Temporary string for storing dialog information waveformstr=emptystr(); // Node to be converted frdata=[]; // Extracted frequency data Desc=[]; // Node name D=[]; // Extracted frequency data waveidx=0; // Index of the node in the extracted data FTable=[]; // All frequency data /////////////////// // Get Scilab Version /////////////////// version_str=getversion(); version_str=tokens(version_str,'-'); version_str=tokens(version_str(2),'.'); version(1)=msscanf(version_str(1), '%d'); version(2)=msscanf(version_str(2), '%d'); /////////////////// // Setup files/directories /////////////////// if (version(1)==5) & (version(2) >= 1) then // tr* file(s) facdata=uigetfile("*.ac*", "", "Please choose pulse response *.ac* file(s)", %t); else facdata=tk_getfile("*.ac*", Title="Please choose pulse response *.ac* file(s)", multip="1"); end if facdata==emptystr() then if (version(1)==5) & (version(2) >= 1) then messagebox("Invalid file selection. Script aborted", "","error","Abort"); else buttondialog("Invalid file selection. Script aborted", "Abort"); end abort; end ffreqdata=tk_savefile("*.ft", strsubst(fileparts(facdata(1), "path"),"\","/"), Title="Please choose converted frequency file"); // Touchstone file if ffreqdata==emptystr() then if (version(1)==5) & (version(2) >= 1) then messagebox("Invalid file selection. Script aborted", "","error","Abort"); else buttondialog("Invalid file selection. Script aborted", "Abort"); end abort; end if length(fileparts(ffreqdata, "extension"))==0 then ffreqdata=strcat([ffreqdata ".ft"]); end olddir=getcwd(); chdir(fileparts(facdata(1), "path")); //////////////////// // Waveform Info /////////////////// dialogstr=x_mdialog(['Enter waveform parameters:'], ['Waveform Name'],['VDB(outp, outn)']); if length(dialogstr)==0 then if (version(1)==5) & (version(2) >= 1) then messagebox("Invalid parameters selection. Script aborted", "","error","Abort"); else buttondialog("Invalid parameters selection. Script aborted", "Abort"); end chdir(olddir); abort; end waveformstr=strcat(tokens(dialogstr(1), " ")); // Strip spaces in the waveform string waveformstr=strcat(tokens(waveformstr, "(")); // Strip '(' in the waveform string waveformstr=strcat(tokens(waveformstr, ")")); // Strip '(' in the waveform string if (convstr(part(waveformstr,[1:3]),"u") == "VDB") then // Clean up the node name waveformstr=part(waveformstr,[4:length(waveformstr)]); end if (convstr(part(waveformstr,[1:2]),"u") == "VP") then // Clean up the node name waveformstr=part(waveformstr,[3:length(waveformstr)]); end /////////////////// // Main Conversion /////////////////// // Create multi-dim FT matrix numoffiles=size(facdata,1); for f=1:numoffiles, //For each ac* pulse response file currenttime=getdate(); printf("\n****Starting conversion of frequency file %d of %d at %0.2d:%0.2d:%0.2d\n", f, numoffiles, currenttime(7), currenttime(8), currenttime(9)); [frdata, D, Desc] = extract_from_CSDF_Freq(facdata(f)); // Extract frequency data waveidx=grep(Desc, strcat(["vdb(" waveformstr ")"]))-1; if waveidx==-1 then if (version(1)==5) & (version(2) >= 1) then messagebox("Unable to find waveform. Script aborted", "","error","Abort"); else buttondialog("nable to find waveform. Script aborted", "Abort"); end chdir(olddir); abort; end // Append to matrix FTable=lstcat(FTable,[frdata D(:,1)+%i*D(:,2)]); //Plot clf(); bode(frdata(find(frdata>=1e7)), D(find(frdata>=1e7), waveidx), D(find(frdata>=1e7), waveidx+1)); //Plot from min of 10MHz grph=gcf(); //Set pretty colors grph.children(1).children.children.foreground=2; grph.children(2).children.children.foreground=2; end // Clear out the initial empty matrix FTable(1)=null(); // Save matrix file save(ffreqdata, FTable); //Restore original directory chdir(olddir); //clean up clear FTable; clear facdata; clear fmatvardata; clear dialogstr; clear waveformstr; clear frdata; clear Desc; clear D; clear waveidx;
0cf785ddfa0fc2ca92399e37a1d5b2e49cf54ea4
b4980b761e4b88d097e526fe06ebef2383d3d613
/lab02/OneBitErrorDetection/OneBitErrorDetection.tst
62cee82edaadce1e64995d7ff33c6bc4b73f9fc2
[]
no_license
Vineeth-Kada/Computer-Systems-Design
aa42b053c709fdbf06713dc3e1e2649faa02c65d
4c05e393e057ffb1540c74a53a0cb17f7129d8f8
refs/heads/main
2023-06-17T06:27:02.442583
2021-07-15T10:43:37
2021-07-15T10:43:37
289,896,111
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,584
tst
OneBitErrorDetection.tst
load OneBitErrorDetection.hdl, output-file OneBitErrorDetection.out, compare-to OneBitErrorDetection.cmp, output-list x0%B3.1.3 x1%B3.1.3 x2%B3.1.3 x3%B3.1.3 x4%B3.1.3 x5%B3.1.3 x6%B3.1.3 x7%B3.1.3 y0%B3.1.3 y1%B3.1.3 y2%B3.1.3 y3%B3.1.3 y4%B3.1.3 y5%B3.1.3 y6%B3.1.3 y7%B3.1.3 pg%B3.1.3 pc%B3.1.3 z%B3.1.3; /*Data Set 1*/ /*No error*/ set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0, set y0 0, set y1 0, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output; /*One Bit Error*/ set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0, set y0 1, set y1 0, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output; set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0, set y0 0, set y1 1, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output; /*Data Set 2*/ /*No error*/ set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1, set y0 0, set y1 1, set y2 0, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output; /*One Bit Error*/ set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1, set y0 1, set y1 1, set y2 0, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output; set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1, set y0 0, set y1 1, set y2 1, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output; /*Data Set 3*/ /*No error*/ set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0, set y0 0, set y1 1, set y2 1, set y3 0, set y4 0, set y5 1, set y6 1, set y7 0, eval, output; /*One Bit Error*/ set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0, set y0 1, set y1 1, set y2 1, set y3 0, set y4 0, set y5 1, set y6 1, set y7 0, eval, output; set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0, set y0 0, set y1 1, set y2 1, set y3 0, set y4 0, set y5 0, set y6 1, set y7 0, eval, output; /*Data Set 4*/ /*No error*/ set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0, set y0 1, set y1 1, set y2 1, set y3 1, set y4 0, set y5 0, set y6 0, set y7 0, eval, output; /*One Bit Error*/ set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0, set y0 1, set y1 1, set y2 1, set y3 1, set y4 1, set y5 0, set y6 0, set y7 0, eval, output; set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0, set y0 1, set y1 1, set y2 1, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
387fed94ff69bef0c7b09dd25e6e1d8d50ac92a2
449d555969bfd7befe906877abab098c6e63a0e8
/3564/CH1/EX1.4/Ex1_4.sce
9399f2639d38413ffe0a75f10639ef04f5d0175b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
894
sce
Ex1_4.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Introduction to Fluid Mechanics, 3rd Ed. William S. Janna Chapter - 1 Example # 1.4 ") //Solving part a disp("Part a)") disp("Part a is theoretical and does not require computation") disp("Final result is pi - p0 = 2*sigma/R") //Solving part b disp("Part b)") //Diameter of droplet in cm d = 0.01;//Authors have used 0.01 diameter for calculation while the diameter quoted in question is 0.1 //Using Appendix table A.5 for properties of water //Surface tension sigma in N/m sigma = 71.97/1000; //Atmospheric pressure for droplet in N/m2 is p0 = 101300; //Radius of droplet in m R = 0.01*(d/2); //Calculating pressure inside the droplet in N/m2 disp("Pressure inside the droplet in N/m2 is") pi = p0+(2*sigma)/R //Answer varies slightly because of round-off error
319abfd28482b0857c2fe521dcb2b8e3d5b58a2b
449d555969bfd7befe906877abab098c6e63a0e8
/599/CH2/EX2.13/example2_13.sce
3f5ab1c4d9c28ef932e105fc5ece14a145216bcc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,601
sce
example2_13.sce
clear; clc; printf("\t Example 2.13\n"); //position 1 moles molefraction weight // acetic acid 0.15 0.0288 9 // water 5 0.9712 91 //position 2 moles molefraction weight // aceitic acid 0.05 0.0092 4 // water 5.389 0.9908 96 T=290; //temperature in kelvin z=2*10^-3; //film thickness sorrounding the water xa2=0.0092; //mole fraction of ethanol at pos.2 xa1=0.0288; //mole fraction of ethanol at pos.1 w1=60; //molecular weight of acetic acid w2=18; //molecular weight of water Dab=0.95*10^-9; //diffusivity of acetic water sol.in m^2/s //av=d/m Mavg1=xa1*w1+(1-xa1)*w2; //average molecular wght of solution at pos 1 d1=1012; // density of 10 % acid av1=d1/Mavg1; //value of (d/m) of copper solution //for position 2 d2=1003; //density of 4% acid Mavg2=xa2*w1+(1-xa2)*w2; //average molecular wght of solution at pos.2 av2=d2/Mavg2; //value of (d/m) of water allavg=(av1+av2)/2; //average value of d/m //assuming water to be non diffusing Na=Dab*(allavg)*log((1-xa2)/(1-xa1))/z; //diffusion rate of acetic acid aacross film of non diffusing water sol. printf("\n diffusion rate of acetic acid aacross film of non diffusing water sol. :%f *10^-7 kmol/m^2*s",Na/10^-7); //end
4fb04ea79b7fb91873625370883fc92a756246f3
449d555969bfd7befe906877abab098c6e63a0e8
/1244/CH1/EX1.13/Example113.sce
87d4f8f44708f879ce3f1ccf389c3c72484b8e10
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
705
sce
Example113.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.13 ") //Temperature of air in degree K Tair = 300; //Heat transfer coefficient in W/m2K h = 10; disp("Part a") //Radiation solar flux in W/m2 q = 500; //Ambient temperature in K Tsurr = 50; disp("Solving energy balance equaiton by trial and error for the roof temperature, we get temp. in degree K") //Room temperature in degree K Troof = 303 disp("Part b") //No heat flux, energy balance equaiton is modified disp("Room temperature in degree K") //Room temperature in degree K Troof = 270
8faa81a7a22265f201fc9f4f992d8da50597a77e
a159f59d19e2b03b234e9c2977ba4a932180e648
/Software/GreenScilabV0.9/bin/gl_draw_phy_direct.sci
6bc2368ae28194748c1919093b661ac5ad047c96
[]
no_license
OpenAgricultureFoundation/openag_sim
e052bbcc31b1d7f9b84add066327b479785f8723
425e678b55e24b5848d17181d25770175b8c2c3f
refs/heads/master
2021-07-01T06:25:08.753260
2017-09-20T21:44:18
2017-09-20T21:44:18
80,540,145
0
1
null
null
null
null
UTF-8
Scilab
false
false
28,232
sci
gl_draw_phy_direct.sci
currenttime=timer(); StrFileName=GL_SYS_DIR+'str'+SEPARATOR+FileID+'.str'; StrInf=GL_SYS_DIR+'str'+SEPARATOR+'inftemporary.str'; StrBlock=GL_SYS_DIR+'str'+SEPARATOR+'blocktemporary.str'; [fidInf, err] = mopen(StrInf, 'wb'); [fidBl, %v] = mopen(StrBlock, 'wb'); nr=max(b_o(:))+1; I_D=sqrt(I_S/%pi)*2; //get diamater of stem according to section area V=[];ID=[];Age=[];gs=[];mr=[];O=[];Sz=[]; printf('Processing geometrical structure with physiological age: '); NumStr=0;//number of structures if Flag_geo_full==0 then //compute only plant geometry at age N i0=N; else i0=1; end StateO=Gl_StateOccupy(Tu_O); for p = maxp:-1:1; //for substructure of each phy_age printf(' %4d ',p); for i =i0:N; //for substructure p of each chr_age for g=1:InitNum(p); //for each initial angle if InitNum(p)>1 then //get the absolute initial angle InitAngle=InitMin(p)+(g-1)*(InitMax(p)-InitMin(p))/(InitNum(p)-1); else // if only one initial gangle, take the min one InitAngle=InitMin(p); end L0=min(i,Nu_Ma(p)); //number of actural G.U. in axis, no more than Nu_Ma(p) L0=L0*u(p);h0=L0; //bending according to number of microstate, and each microstate has a value theta=Draw_bending(p,L0,h0,Ey,InitAngle,fp,End_Ang(p),End_N(p)*u(p),InitNum(p)); //angle of each metamer to z axis from bottom to top if p==1 & Nu_O(4,1,1)==0 then //main axis and no reiteration j1=i;j2=i; //for main plant we need only one at that given age i. This can save time. else j1=1;j2=i; //for branch, at given plant age i, branches with age 1 to i-1 may exist. for reiteration, we need the main structure with age i end for j=j1:j2; //for each possible chr_age of axis. When p is substructure inside another structure, at given plant chr_age i, the substructure can have chr_age ranging 1-(i-1)) for m=1:nr; //for each reiteration order if flagr(p)==0 then //case of branch,no need to cut it, this can save time k0=j; else //case of infloresence, we need intermediate part from top of the structure, so I calculate each cut from top 1 to j for substructure with age j k0=1; end; for k=k0:j; NO=0; //number of organs(internode, leaf, or substructure) mr=[]; if j>Nu_Ma(p,1) then //chr_age>Nu_Ma(p,1), terminal structure may exit b=st_j(p); //defined jump state if b>=p & b<=maxp then //if it is in reasonable scope age=[b min(k,j-Nu_Ma(p,1)) min(k,j-Nu_Ma(p,1)) i]; //phy_age,chr_age,chr_age of terminal structure and chr_age of main structure //w3=Nu_Ma(p)*Ang_Ph(p); phylotaxy is related with number of G.U.(maybe internode better?) previously w3=0; //let terminal structure stay in same plane with axis Vz=[cos(w3) -sin(w3) 0;sin(w3) cos(w3) 0; 0 0 1]; //z-axis rotation matrix, counterclockwise. %Vz=[cos(w3) sin(w3) 0;-sin(w3) cos(w3) 0; 0 0 1]; ap=theta(Nu_Ma(p)*u(p)); //terminal angle of axis Vy=[cos(ap) 0 sin(ap);0 1 0;-sin(ap) 0 cos(ap)]; //y-axis rotation matrix, counterclockwise. VO=Vy*Vz; //compound matrix. sequence of multiply can't be changed [VO,g_O]=Draw_AngleShift(VO,InitMax(b),InitMin(b),InitNum(b));//choose a nearest angle ID g_O if p<b then //normal terminal substructure m_O=m; else //reiteration if m<=b_o(p) then m_O=m+1; //eiteration id of less reiterated structure, otherwise reiteration can't be stopped end; end; sz_O=[0 0]; //no size information for substructure o=[0 0 0]; //terminal structure is add before the main axis, so its position is 0. [NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,4,age,g_O,m_O,VO,o,sz_O); //write information into matrices and vectors end; //end for terminal substructure end; Posi=1; //increasing number of metamer in axis Sumi=sum(max(1,k-Nu_Ma(p,1)):k)*sum(Nu_I(p,:)); //total number of metamer in axis if j>Nu_Ma(p,1) then //age1 is chr_age of top G.U. in axis, 1 if axis is young, otherwise j-Nu_Ma(p,1)+1; age1=j-Nu_Ma(p,1)+1; else age1=1; end ; for kk=age1:k; //for each G.U. in axis from top Ir=I_D(p,kk,j,i); //diameter of G.U age=[p kk j i]; // phy_age and chr_age of G.U., chr_age of substructure and plant if Flag_Bending_by_node(p)==0 then //save by G.U. sz=[u(p)*I_H(p,kk,i) I_D(p,kk,j,i)];//length and diameter of G.U. ap=theta((j-kk)*u(p)+1); //angle to z-axis of G.U. *number of G.U. below current one is j-kk if k<j then //if k<Nu_Ma(p) if the branch's length is smaller than its full length //ap=ap-theta( (i-k) *u(p));%changed 2004.5.26 ap=ap-theta( (j-k) *u(p)); end; VI=[sin(ap) 0 cos(ap) ;0 1 0;cos(ap) 0 -sin(ap)]; //3 direction of G.U., not rotation matrix o=[0 0 0]; [NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,1,age,g,m,VI,o,sz); for axis=1:3; //for x,y,z O(1:NO-1,axis)=O(1:NO-1,axis)+VI(axis,1)*u(p)*I_H(p,kk,i); //the new G.U. is in the bottom, shift all previous organs to top position of G.U. end; end ; Numi=0; //number of microstate in G.U. kk for b=p:6; //for each kind of possible microstate //////////////////// for b=p:9; original for ii=1:Nu_I(p,b); //for each microstates on kind b Posi=Posi+1; //the total number of metamer in axis increase Numi=Numi+1; //the number of metamer in G.U. increase if Flag_Bending_by_node(p)==1 then //save by internode sz=[I_H(p,kk,i) I_D(p,kk,j,i)]; //length and diameter of internode //ap=theta(L0-Posi+2)-theta(L0-(k-age1)*u(p));%angle to z-axis of internode ap=theta(L0-Posi+2); //ap=theta((j-kk)*u(p)+1); //angle to z-axis of G.U. *number of G.U. below current one is j-kk if k<i then ap=ap-theta(( min(i,Nu_Ma(p))-(k-age1) )*u(p));//set first angle to z-axis of G.U. to 0. end ; ap=ap+InitAngle; VI=[sin(ap) 0 cos(ap) ;0 1 0;cos(ap) 0 -sin(ap)]; //3 direction of internode o=[0 0 0]; [NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,1,age,g,m,VI,o,sz); for axis=1:3; //for x,y,z O(1:NO-1,axis)=O(1:NO-1,axis)+VI(axis,1)*I_H(p,kk,i); //the new G.U. is in the bottom, shift all previous organs to top position of G.U. end ; end; for OrgId=1:4; //for each kind of axillary organs; select OrgId //1 leaf, 2 female flower, 3 male flower, 4 substructure case 1 then // 1 leaf id_O=10;Age_O=[p kk j i];m_O=m;g_O=g;//id, age sz_O=[B_S(p,kk,i) B_S(p,kk,i)]; //size if Leaf_direction(p)==0 then //in smb file, leaf primary direction is x-axis, with secondary direction in xy-plane(y-axis) V0=[0 0 1;0 1 0;1 0 0]; //rotate to z-axis, let primary direction z-axis, with secondary direction y-axis else V0=[0 1 0;0 0 1;1 0 0]; //compound of y-axis rotation[0 0 1;0 1 0;1 0 0] and z-axis rotation[0 -1 0;1 0 0;0 0 1].primary direction z-axis, with secondary direction x-axis, %V0=[1 0 0;0 0 1;0 1 0]; end ; flag=( Flag_leaf(p) & (kk<Tu_O(1,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) );//if leaf deisplayed and not prunned. no consideration on appearence and disapperance time because I suppose leaf always exist flag=(flag & StateO(1,j-kk+1,p)); //organ occupied state case 2 then //2 female flower id_O=20;Age_O=[p kk-1 j i];m_O=m;g_O=g;flag=0;//id, age if kk-1>0 then sz_O=[Ff_V(p,kk-1,i-1) Ff_V(p,kk-1,i-1)];//size V0=[0 0 1;0 1 0;1 0 0]; //V0=[0 1 0;0 0 1;1 0 0]; flag=( Flag_fruit(p)==1 ); flag=( flag & (kk-1>0) & (kk-1<Tu_O(4,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) ); flag=flag & StateO(2,j-kk+1+m-1,p); //organ occupied state end; case 3 then //3 male flower, nothing id_O=30;Age_O=[p kk-1 j i];m_O=m;g_O=g;//id, age if kk-1>0 then sz_O=[Fm_V(p,kk-1,i-1) Fm_V(p,kk-1,i-1)];//size end ; V0=[0 0 1;0 1 0;1 0 0]; //V0=[0 1 0;0 0 1;1 0 0]; flag=( Flag_fruit(p)==1 ); flag=( flag & (kk-1>0) & (kk-1<Tu_O(4,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) ); flag=flag & StateO(3,j-kk+1,p); //organ occupied state case 4 then //4 branch if b<=maxp then //if branch exist id_O=4; if (br_a(p)==0 & b>p) | (re_a(p)==0 & b==p) then //if branch structure //Age_O=[b kk-1 kk-1 i]; // age of branch rs_n=round(rs_A(b,1)+rs_B(b,1)*(kk-max(j-Nu_Ma(p,1)+1,1))); kkb=floor((kk-1-rs_n)*rt_a(b,1));//the ch_age of substructure Age_O=[b kkb kkb i]; // age of branch else //br_a(p)==1, infloresence rs_n=round((rs_B(b,1)-1)*(kk-age1)); //for inflo, MZ, 2005.8 pos=Nu_Ma(p)-(kk-age1); if pos< (Nu_Ma(p)-Nu_Ma(b)) then rs_n=rs_n+(Nu_Ma(p)-Nu_Ma(b))-pos; end if rs_n<0 then rs_n=rs_A(b,1)+0; else rs_n=rs_A(b,1)+rs_n; end kkb=floor((kk-1-rs_n)*rt_a(b,1));//the ch_age of substructure np=kk-1+NM(p)-j; //cut the branch. NM from gl_read if NM(b)>np then nb=j+NM(b)-NM(p)-rs_n; Age_O=[b kkb nb i]; else Age_O=[b kkb kkb i]; end end; if p<b then //normal branch m_O=m; //reiteration order is same as the axis else // p==b,reiteration branch m_O=m+1; //stick the branch with higher reiteration. Order nr has no reiteration end sz_O=[0 0]; V0=eye(3,3); //V0=[0 0 1;0 1 0;1 0 0]; flag= ( (br_a(p)==0) | ( (br_a(p)==1) & (Age_O(3)>0) ) ) ; //chr_age of substructure>0 flag=(flag & (Age_O(2)>0) & ( (b<=maxp & b>p) | (p==b & m<=b_o(p)) ) ); if flag then //flag=( flag & (Flag_pruning(b)~=1) | (kk-1<=T_Pr(b)+Pruning_delay(b)) );//not prunned flag=( flag & (Flag_pruning(b)~=1) | (kk-1<=Nu_Ma(b)+Pruning_delay(b)) );//not prunned, according to AnneLaure 2004.07.01 end ; flag=flag & StateO(4,j-kk+1,p); //organ occupied state else flag=0; end; end; if flag then for jj=1:Nu_O(OrgId,p,b); //for each organ on the same internode w3=3.14+(Sumi-Posi)*Ang_Ph(p)+(jj-1)*2*%pi/Nu_O(OrgId,p,b); //phylotaxy angle if OrgId==3 | OrgId==2 then //w3=(Sumi-Posi-1)*Ang_Ph(p)+(jj-1)*2*%pi/Nu_O(OrgId,p,b); //phylotaxy angle end; if Flag_plagiotropic(p)==1 then w3=w3+1.57; end; Vz=[cos(w3) -sin(w3) 0;sin(w3) cos(w3) 0; 0 0 1]; //z-rotation matrix.Vz=[cos(w3) sin(w3) 0;-sin(w3) cos(w3) 0; 0 0 1]; if (kk-age1+1)<=wbn(p) & (OrgId==1 | OrgId==4) then //opening angle, still openning aa=Ang_O(OrgId,p,b)+(kk-age1+1)/wbn(p)*(wb(p)-Ang_O(OrgId,p,b)); else if wbn(p)>0 then aa=wb(p); //if kk>wbn(p),keep stable else aa=Ang_O(OrgId,p,b); //if wbn(p)==0, nothing to change end; end ; VBy=[cos(aa) 0 sin(aa);0 1 0;-sin(aa) 0 cos(aa)]; //y-axis rotation matrix for axilary angle Vy=[cos(ap) 0 sin(ap);0 1 0;-sin(ap) 0 cos(ap)]; //y-axis rotation matrix for axis angle VO=Vy*Vz*VBy*V0; //compound rotation matrix, the sequence can't change if OrgId==4 & Flag_plagiotropic(p)==1 then //if plagiotropic, the substructure bend in plane parallel to z-axis vn=VO(:,2);//norm of plane of v1 and v2 vz=[0 0 1]'; sina=sum(vn.*vz); cosa=norm(gl_cross(vn,vz));//to be changed //cosa=norm(vn); Vaxis=[cosa sina 0; -sina cosa 0; 0 0 1]; VO=VO*Vaxis; end if Flag_organ_bending(p)==1 then //if bending organ to a certain angle to z axis vn=VO(:,1); //primary direction of organ alpha=acos(vn(3,1)); //angle to z axis if vn(1,1)>0 then //x>0 shift=Theta_O(OrgId,p)-alpha; else shift=alpha-Theta_O(OrgId,p); // x<0, rotation to another side end ; Vyg=[cos(shift) 0 sin(shift);0 1 0;-sin(shift) 0 cos(shift)]; VO=Vyg*VO; vn=VO(:,1); //primary direction of organ alpha=acos(vn(3,1)); //angle to z axis end; if OrgId==4 then //choose heo id for substructure, but for other organ, it is same with axis [VO,g_O]=Draw_AngleShift(VO,InitMax(b),InitMin(b),InitNum(b)); else g_O=g; end; VD=VO(:,1); //direction of branch v1n=VI(:,1); //direction of axis //VD=VD+dot(VD,v1n)*v1n; //direction from center of GU. to sticking point VD=gl_cross(v1n,gl_cross(v1n,VD)); //VD=v1n; if norm(VD)>0 then // VD is direction of blade VD=VD/norm(VD); end; if Flag_Bending_by_node(p)==1 then O_O=v1n*I_H(p,kk,i)-Ir/2*VD; //stick organs on the surface of G.U. else //O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i)+Ir/2*VD ; //O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i)-Ir/2*VD ; //2004_04_03 Phillippe doesn't want floating branches. O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i) ; end; [NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,id_O,Age_O,g_O,m_O,VO,O_O',sz_O); end; end; end; end;//jj 1:Nu_I end;//b end ;//kk for no=1:NO; M=matrix(V(no,:,:),3,3); if gs(no)==0 then break; end; Draw_AddOrgan(fidBl,ID(no),Age(no,:),1,gs(no),mr(no),M,O(no,:),Sz(no,:)); end; data=[4 p k j i 1 g m NO 0 ]; //10*4=40bytes for tempi=1:10; //if one matrix is written to a file directly, more bytes are occupied mput(data(tempi),'l',fidInf); end; NumStr=NumStr+1; end ;//k end;//m end;//j end;//g end;//i end;//p mclose(fidInf); mclose(fidBl); printf('done. '); printf(string(timer())+' seconds.\n'); //open str file and combine two files //write str file header information 30*4=120 bytes [fid, %v] = mopen(StrFileName, 'wb'); //get organ smb if according to their smb filename [IDSmb]=Draw_SMB2ID(Smb_I,Smb_L,Smb_Ff,Smb_Fm); data=[maxp N NumStr IDSmb(1) IDSmb(2) IDSmb(3) IDSmb(4) Tu_O(1,1,1) Tu_O(3,1,1) Tu_O(4,1,1)]; //I suppose here that life time of organ is uniform for each phy_age mput(data,'l',fid); data=[matrix(Tr,1,maxp) zeros(1,10-maxp)]; mput(data,'l',fid); data=[matrix(InitNum,1,maxp) zeros(1,10-maxp)]; mput(data,'l',fid); data=[matrix(b_o+1,1,maxp) zeros(1,10-maxp)]; mput(data,'l',fid); //write str file data structure information %write information of each substructure [fidInf, %v] = mopen(StrInf, 'rb'); f=[]; while ~meof(fidInf) f=[f mget(1000,'c', fidInf)]; end; //disp(mtell(fidInf1)); mput(f,'c',fid); mclose(fidInf); // write each block information inside a structure [fidBl, %v] = mopen(StrBlock, 'rb'); f=[]; while ~meof(fidBl) f= mget(100,'c', fidBl); mput(f,'c',fid); //disp(mtell(fidBl)); end; mclose(fidBl); mclose(fid); //mdelete(StrInf);mdelete(StrBlock);
f2b41efc3aa733bec5305e0796f4895c96aa8385
657d173b53bec4e9905eb0d89bb682f18af4b851
/scilab/temperature_plots.sce
2cc008011c09e10c3492e9bcd5f516ad9da56acf
[]
no_license
RobotControlAndMachineVisionLaboratory/gocator_3100
6990d9948bd5ebdd751e3ec02611c8b481cf3c65
84fa8ebe7d4ca84436e935ec1d2d8915d1227f42
refs/heads/master
2020-06-13T19:13:03.883928
2019-10-14T10:14:58
2019-10-14T10:14:58
194,762,673
0
0
null
null
null
null
UTF-8
Scilab
false
false
679
sce
temperature_plots.sce
// clear all xdel(winsid()); clear; //open data file in matrix format data = csvRead('/home/andreu/datasets/zyx/gocator_temperature/exp0_mat.txt'); [rows cols] = size(data); //generate a time axis time = [1:1:rows]; //plot internal & projector tempereture fig_h=figure(); fig_h.background = color("white"); plot(time, data(:,1)./1000., time, data(:,2)./1000.); ah = gca(); //ah.isoview = "on"; ah.x_label.text = "$time [minutes]$"; ah.x_label.font_size = 4; ah.y_label.text = "$Temp [ºC]$"; ah.y_label.font_size = 4; ah.grid = [1,1,1]; ah.grid_position = "background"; ah.auto_clear = "off"; ah.auto_scale = "off"; ah.data_bounds = [0 45; 600 55]; plot_colors = ["r";"g"];