blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fe9ea1343ffb2efd781be79b6d1c72a994733d25 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3862/CH9/EX9.6/Ex9_6.sce | 6d9c4a4b1bde3fba3954b7dc5efa9bc67d3bd90f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 653 | sce | Ex9_6.sce | clear
//variable declaration
//As supports A and B are simple supports and loading is only in vertical direction, the reactions RA and RB are in vertical directions only.
//summation of all horizontal forces is zero & vertical forces is zero.
P1=(30) //vertical down Load at 1m from A,KN
P2=(40) //vertical down Load at 6.5m from A,KN
Pu=(20) //uniform distributed load from 2m to 5m from A,KN/m(in 3m of span).
Rb=(Pu*3*3.5+P1*1+P2*6.5)/5
printf("\n RB= %0.2f KN",Rb)
Ra=Pu*3+P1+P2-Rb
printf("\n RA= %0.2f KN",Ra)
|
6aa6b7f02d71f785a276a52b2123b35c5a8f2534 | 8217f7986187902617ad1bf89cb789618a90dd0a | /browsable_source/2.5/Unix-Windows/scilab-2.5/examples/man-examples/help.sce | 2f03a447499dcef5a1b5dc616728b5365a28fa95 | [
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] | permissive | clg55/Scilab-Workbench | 4ebc01d2daea5026ad07fbfc53e16d4b29179502 | 9f8fd29c7f2a98100fa9aed8b58f6768d24a1875 | refs/heads/master | 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 120 | sce | help.sce | %helps = [%helps;
"../../examples/man-examples/helpdir1", "Title1";"../../examples/man-examples/helpdir2", "Title2";];
|
15c8343117b3c4569371ca6779f25adfc5bc61d3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2825/CH5/EX5.3/Ex5_3.sce | 862b07c7ad1262b33d79d83a3af6f331251c610c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 682 | sce | Ex5_3.sce | //Ex5_3 Pg-279
clc
Ic=12.427*10^(-3) //collector current in A
Ib=200*10^(-6) //base current in A
ICBO=7*10^(-6) //collector to base leakage current in A
Beta=(Ic-ICBO)/(Ib+ICBO) //Dc emitter current gain factor (value in texbook is wrong)
printf("\n Dc emitter current gain factor beta = %.0f",Beta)
Ie=Ic+Ib //emitter current
printf("\n Emitter current = %.1f mA",Ie*10^3)
alpha_dc=(Ic-ICBO)/(Ib+Ic) //common current gain factor
printf("\n Common current gain factor alpha_dc = %.2f",alpha_dc)
Ib=150*10^(-6) //new base current
Ic=Beta*Ib+(Beta+1)*ICBO //collector current (value in textbook is wrong)
printf("\n Collector current = %.3f mA \n",Ic*10^3)
|
2765c32171a78c2b876886aa86127b4541a757e5 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3886/CH6/EX6.14/6_14.sce | 68df5a803ea57fab480506059bf1c0c54f4e2b3f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 248 | sce | 6_14.sce | //Force required at the end of lever
d=40 //mm
p=20/3 //mm
W=40000 //N
R=400 //mm
mu=0.12
theta=atand(p/(%pi*d)) //degree
P=(d*W*(mu+tand(theta)))/(2*R*(1-mu*tand(theta))) //N
printf("Force required at the end of lever P=%0.2f N",P)
|
16ab24589eaeaf737d9ce6a060b62a531b7a9220 | 891e9f4e3fce67f553f07f24cef2e802423770b9 | /fgoalattain/fgoalattainTests/demo4.sce | 00888369f1054e705649bc3c90c39bf80efef2d0 | [] | no_license | animeshbaranawal/FOSSEE | ae6b6c1a39803ad0fb26780b7f960a62431c71d2 | 75b1b18dcfd935f7ebbe89b44573c8076dae4267 | refs/heads/master | 2022-06-24T14:20:49.508846 | 2022-05-30T17:13:09 | 2022-05-30T17:13:09 | 50,281,099 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 384 | sce | demo4.sce | function f4=objfun4(x)
f4(1)=x(2)-x(4)*x(4)*x(3);
f4(2)=x(1)*x(3)-x(2)*x(2);
f4(3)=x(5)*x(1)+x(4)*x(3);
f4(4)=x(3)^2+x(1)-x(2)*x(3);
endfunction
x0=[3,1,-8,-3,0];
goal=[9,0,7,9];
weight=[5,8,0,8];
A=[7,0,-3,5,2];
b=[6];
Aeq=[8,6,-4,0,2];
beq=[9];
lb=[4,6,1,7,6];
ub=[10,11,12,13,14];
[z,gval,attainfactor,exitflag,output,lambda]=fgoalattain(objfun4,x0,goal,weight,A,b,Aeq,beq,lb,ub) |
713824089582590825d610a2a9f49d72d099d56d | 449d555969bfd7befe906877abab098c6e63a0e8 | /1151/CH7/EX7.6/example_6.sce | 2bec3798ed1230805ef232dfe0a0ba2f38a8ce7d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 271 | sce | example_6.sce | s=poly(0,'s')
a=(1+4*s);
b=s^2*(1+s)*(1+2*s);
d=a/b;
h=syslin('c',d);
clf();
nyquist(h)
// add a datatip
ax=gca();
h_h=ax.children($).children(2);//handle on Nyquist curve of h
tip=datatipCreate(h_h,[1.331,0.684]);
datatipSetOrientation(tip,"upper left");
|
81d03bc847a08094680a14ff69cd9621b0c75a9d | 1bb72df9a084fe4f8c0ec39f778282eb52750801 | /test/PDE2.prev.tst | ce76aa8dc282d5dffa2bb6a963718439865feac4 | [
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] | permissive | gfis/ramath | 498adfc7a6d353d4775b33020fdf992628e3fbff | b09b48639ddd4709ffb1c729e33f6a4b9ef676b5 | refs/heads/master | 2023-08-17T00:10:37.092379 | 2023-08-04T07:48:00 | 2023-08-04T07:48:00 | 30,116,803 | 2 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 52 | tst | PDE2.prev.tst | (x^3 + x^2*y + y^2).derivative("x", 2) = 6*x + 2*y
|
545ba09e32dca85a379e9a1304a2259e4c3b99d6 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1271/CH17/EX17.6/example17_6.sce | de93a891f64aac0920bb91e41123483ee1789feb | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 307 | sce | example17_6.sce | clc
// Given that
a = 4.28e-10 // cell side of Na in m
e = 1.6e-19 // charge on an electron in C
// Sample Problem 6 on page no. 17.20
printf("\n # PROBLEM 6 # \n")
printf("Standard formula used \n")
printf("R_h = 1/(n*e) \n")
n = (2 / a^3)
R = -(1 / (n * e))
printf("\n Hall coefficient is %e m^3/C.",R)
|
7c095c27d0ab9896a2570aac015f89a5caac4d16 | 717ddeb7e700373742c617a95e25a2376565112c | /3424/CH9/EX9.1/Ex9_1.sce | f1bc6d380f6a79989f919445ffa156a7ae9d9652 | [] | no_license | appucrossroads/Scilab-TBC-Uploads | b7ce9a8665d6253926fa8cc0989cda3c0db8e63d | 1d1c6f68fe7afb15ea12fd38492ec171491f8ce7 | refs/heads/master | 2021-01-22T04:15:15.512674 | 2017-09-19T11:51:56 | 2017-09-19T11:51:56 | 92,444,732 | 0 | 0 | null | 2017-05-25T21:09:20 | 2017-05-25T21:09:19 | null | UTF-8 | Scilab | false | false | 457 | sce | Ex9_1.sce | clc
//Initialization of variables
T = 90 // degrees
U = 25 //ft/s
//Calculations
funcprot(0)
function y1=f1(x1),y1=(20*1.24*(10^-3))/(x1^0.5),endfunction
I1=intg(0,4,f1)
function x=f(y),x=((0.744*(1-((y^2)/(4)))-(-0.893)))*10,endfunction
I=intg(-2,2,f)
// Results
printf("No lift generated ")
printf ("\ndrag generated when parallel to upstream flow is %.4f lb",I1)
printf ("\ndrag generated when perpendicular to upstream flow is %.1f lb",I)
|
fa4f6ac644ee24716637df2380078884573a5894 | 8217f7986187902617ad1bf89cb789618a90dd0a | /browsable_source/2.0/Unix/scilab-2.0/macros/sci2for/freewrk.sci | 262fb87278edfe8dc72dae70bcb1ce04bddc02b1 | [
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer",
"MIT"
] | permissive | clg55/Scilab-Workbench | 4ebc01d2daea5026ad07fbfc53e16d4b29179502 | 9f8fd29c7f2a98100fa9aed8b58f6768d24a1875 | refs/heads/master | 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 598 | sci | freewrk.sci | //[nwrk]=freewrk(nwrk,name)
//cette macro libere la place occuppe par la variable dont le nom est
//donne dans names
//!
// write(6,'-----------------'+name);pause
if part(name,1:7)=='work(iw' then
ext=part(name,8:length(name)-1)
if isnum(ext) then
nb=evstr(ext)
nw2=nwrk(2);
nw2(2,nb)='0'
// write(6,'libere :'+nw2(1,nb))
nwrk(2)=nw2
end
elseif part(name,1:9)=='iwork(iiw' then
ext=part(name,10:length(name)-1)
if isnum(ext) then
nb=evstr(ext)
nw5=nwrk(5)
nw5(2,nb)='0'
nwrk(5)=nw5
end
end
//end
|
8531d0122b54be7249aefddc52aa4b2f245f64fc | 449d555969bfd7befe906877abab098c6e63a0e8 | /548/CH5/EX5.13/5_13.sce | 1786eae9358436514f5de98ad44dff1025ee5291 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 268 | sce | 5_13.sce | pathname=get_absolute_file_path('5_13.sce')
filename=pathname+filesep()+'5_13data.sci'
exec(filename)
L=q*S*4*a/sqrt(M^2-1);
disp(L,"L=","L=q*S*4*a/sqrt(M^2-1)","Lift exerted on airplane L:")
printf("\Answer:\n")
printf("\n\Lift exerted on airplane: %f N\n\n",L) |
8c6cfb7c25175e6e8b130ab528a341d0a9443419 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2339/CH1/EX1.1.7/Ex1_7.sce | 61849dd7966c2e56c6cab03ef517948b1a572d1e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 176 | sce | Ex1_7.sce | clc
clear
m=2; //mass in kg
T1=30+273; //Temperature in K
T2=60+273;
Cp=4.187;
T=T2/T1;
X=double(log(T));
S=m*Cp*X;
printf('Entropy Change of Water: %1.4f kJ/K',S);
|
466ff264aa435e156d897c3337bea82f5ee3d9ba | 638792a4fe4462b8d15e3374e76b149c6f5ee3e0 | /PictureBADE/PictureBADE_practice.sce | 52775e0650424cec510813c1cc7a28d9028f56ca | [] | no_license | katielavigne/fMRI_tasks | 8cdb3bc63486a2b44118bc8b4c67b5799cd5080b | abd1f0b089f454531723186d50afdfa17912321c | refs/heads/main | 2023-09-01T12:59:35.488292 | 2021-11-03T12:26:15 | 2021-11-03T12:26:15 | 424,210,826 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 5,308 | sce | PictureBADE_practice.sce | scenario="PictureBADE_practice";
pcl_file = "PictureBADE_practice.pcl";
scenario_type = fMRI_emulation; # set for debugging
#scenario_type=fMRI; # set for testing
no_logfile = false; # set for testing
active_buttons = 3;
button_codes = 3, 1, 9;
scan_period = 2000; # TR
pulses_per_scan = 1;
pulse_code = 1;
pulse_width=indefinite_port_code;
response_logging = log_active; # prevents responses in trials with "all_responses = false" from being included in logfile
default_background_color=0,0,0;
default_font="arial";
default_font_size = 28;
default_text_color = 255,255,255;
begin;
###########################
###VARIABLE DECLARATIONS###
###########################
$text_x='0';
$text_y='-25';
$img_x='0';
$img_y='125';
$box_outline_height='30';
$box_outline_width='30';
$yes_x='-50';
$no_x='50';
$rating_y='-75';
###########################
###GRAPHICS DECLARATIONS###
###########################
box{height = $box_outline_height; width = $box_outline_width; color = 255, 255, 255;} rating_outline; #outline for rating boxes
box{height = '$box_outline_height-5'; width = '$box_outline_width-5'; color = 0, 0, 0;} rating_yes; # colours of rating boxes are modified
box{height = '$box_outline_height-5'; width = '$box_outline_width-5'; color = 0, 0, 0;} rating_no; # when rating is made (black to white)
text {caption = "+"; font_size = 36;}fixation;
text {caption = "Thank you!";}thanks;
text {caption = "2nd Practice:
You have 4 seconds to respond";}pracB;
text {caption = "Final Practice:
You have 2.5 seconds to respond";}pracC;
text {caption = "More Practice?";}prac_more;
########################
##PICTURE DECLARATIONS##
########################
picture {} default;
picture {text fixation; x = 0; y = $img_y;}fixation_pic;
bitmap {filename="BADEscreenshot.bmp";} screenshot;
picture{
bitmap screenshot; x=0; y=0;
text {caption="Index finger
for yes";
font_size=18;
font="arial";
}instructions_txtL; x=-250; y=0;
text {caption="Middle finger
for no";
font_size=18;
font="arial";
}instructions_txtR; x=250; y=0;
text {caption="INSTRUCTIONS";
font_size=18;
font="arial";
}instrct; x = 0; y = 255;
}instructions_pic1;
picture{
bitmap screenshot; x=0; y=0;
text instructions_txtL; x=-250; y=0;
text instructions_txtR; x=250; y=0;
text {caption="STARTING...";
font_size=16;
font="arial";
}starting; x = 0; y = 325;
}instructions_pic2;
######################
##TRIAL DECLARATIONS##
######################
trial{
trial_type = specific_response;
trial_duration = forever;
terminator_button = 3;
stimulus_event{
picture instructions_pic1;
}instructions_event;
}instructions_trial;
trial {
all_responses = false; # responses made in this trial will be ignored
picture fixation_pic;
code = "fixation";
duration = 1000;
}fixation_trial;
trial {
trial_type = specific_response;
trial_duration = forever;
terminator_button = 3;
picture {text pracB; x = 0; y = 0;}pic_pracB;
code = "practiceBinstr";
}pracBinstr;
trial {
trial_type = specific_response;
trial_duration = forever;
terminator_button = 3;
picture {text pracC; x = 0; y = 0;}pic_pracC;
code = "practiceCinstr";
}pracCinstr;
trial{
trial_type = first_response;
trial_duration = forever;
stimulus_event{
picture {text prac_more; x=0; y=0;
box rating_outline; x = $yes_x; y = $rating_y;
box rating_outline; x = $no_x; y = $rating_y;
box rating_yes; x = $yes_x; y = $rating_y;
box rating_no; x = $no_x; y = $rating_y;
text {caption = "YES"; font_size = 18;} yes; x = $yes_x; y = '$rating_y-50';
text {caption = "NO"; font_size = 18;} no; x = $no_x; y = '$rating_y-50';
}moreprac_pic;
code = "debug"; # modified in PCL
}more_prac_picture_event;
}moreprac_pic_trial;
trial{
trial_duration = 1000;
picture moreprac_pic;
}response_prac_event;
trial {
all_responses = false; # responses made in this trial will be ignored
stimulus_event{
picture fixation_pic;
code = "ITI";
} ITI_event;
}ITI_trial;
trial{
trial_type = first_response;
trial_duration = forever;
stimulus_event{
picture {text { caption = "debug your pcl file"; } img_txt ; x=$text_x ; y=$text_y;
bitmap { filename = "bat_img3.png"; preload = true; height = 225; scale_factor = scale_to_height;} img ; x=$img_x;y=$img_y;
box rating_outline; x = $yes_x; y = $rating_y;
box rating_outline; x = $no_x; y = $rating_y;
box rating_yes; x = $yes_x; y = $rating_y;
box rating_no; x = $no_x; y = $rating_y;
text yes; x = $yes_x; y = '$rating_y-50';
text no; x = $no_x; y = '$rating_y-50';
}pic;
code = "debug"; # modified in PCL
}pic_picture_event;
}generic_pic_trial;
trial{
trial_duration = 1000; # modified in PCL based on RTs
picture pic;
}response_trial_event;
trial{
trial_duration = 1000;
all_responses = false; # responses made in this trial will be ignored
stimulus_event{
picture {text img_txt ; x=$text_x ; y=$text_y;
bitmap img ; x=$img_x;y=$img_y;
}finalpic;
code = "debug"; # modified in PCL
}finalpic_picture_event;
}generic_finalpic_trial;
trial {
all_responses = false; # responses made in this trial will be ignored
picture {text thanks; x = 0; y = 0;}pic_thanks;
code = "thanks";
duration = 2000;
}end_trial;
#trial {
# trial_duration = 1000;
# picture display_pic; duration=1000;} display_pictr; |
9169cdba95bbf8981e749ab2278e26cf35f041b5 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2471/CH4/EX4.8/Ex4_8.sce | 418ccce061191e1361c14ef8d254096ef0bee177 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 545 | sce | Ex4_8.sce | clear ;
clc;
// Example 4.8
printf('Example 4.8\n\n');
printf('Page No. 103\n\n');
// given
d = 0.100;// Diameter of pipe in m
T1 = 383;// Surface temperature in Kelvin
T2 = 288;// Surrounding air temperature in Kelvin
e = 0.9;// Emissivity of pipe
A = %pi * d;// Surface Area per unit length in m^2/m
// By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*A*((T1/100)^4-(T2/100)^4)
Q = 5.669*e*A*((T1/100)^4-(T2/100)^4);// in W/m
printf('The radiative heat loss per unit length is %.0f W/sq.m',ceil(Q))
|
a2aa4c99f2bef0a4d3d167c22f55215bf7e3a5b3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1286/CH9/EX9.18/9_18.sce | 4225244ba4d7a05be95412ed03066cab058a5895 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 234 | sce | 9_18.sce | clc
//initialisation of variables
T1=40//k
T2=120//k
c1=0.076
c2=0.00026
c3=0.15
//CALCULATIONS
r1=c1*(T2-T1)
r2=(c2/2)*(T2^2-T1^2)
r3=c3*log(T2/T1)
ds=5*(r1-r2-r3)
//results
printf(' change in entropy = % 1f cal/k',ds)
|
f883b9bf4fd851755af9a16a6f920322d81bd393 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2234/CH3/EX3.5/ex3_5.sce | fce06ff60a325ce31abdc0363ba209df71dcdb47 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 261 | sce | ex3_5.sce | clc;
u=14; //object distance in cm
f=-21; //focal distance in cm
v=(-5/42); //simplifying(1/f)=(1/v)-(1/u)
I=(3*-8.4)/(-14); //using m=(1/0)=(v/u);
disp(v,"Image distance in cm = "); //displaying result
disp(I,"I in cm = "); //displaying result |
79ded7e9801a341269738922605cfc69c2651a40 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1739/CH8/EX8.3/Exa8_3.sce | 43baf74d980e92221cd71feb546bf1724645ae30 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 296 | sce | Exa8_3.sce | //Exa 8.3
clc;
clear;
close;
//Given data :
lambda=1300;//in nm
lambda=lambda*10^-9;//in meter
ETA=90;//quantum efficiency in %
h=6.63*10^-34;//Planks constant
q=1.6*10^-19;//in coulamb
c=3*10^8;//in m/s
R=(ETA/100)*q*lambda/(h*c);//in A/W
disp(R,"Responsivity of InGaAs in A/W : "); |
60412526c32feef687eb01ced7257faf0e7f6588 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1061/CH4/EX4.3/Ex4_3.sce | f386adfa2d4d1afca948161b278f03b2b5417243 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 874 | sce | Ex4_3.sce | //Ex:4.3
clc;
clear;
close;
n=1.46;// core refractive index
p=0.286;// photoelastic coeff
b=7*10^-11;// isothermal compressibility
k=1.381*10^-23;// boltzmann's constant
tf=1400;// fictive temperature in k
y1=0.85*10^-6;// wavelength in m
yr=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y1^4);
e=2.718281828;
akm=e^(-yr*10^3);
at=10*log(1/akm)/log(10);// attenuation at y=0.85 um
y2=1.55*10^-6;// wavelength in m
yr1=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y2^4);
akm1=e^(-yr1*10^3);
at1=10*log(1/akm1)/log(10);// attenuation at y=1.55 um
y3=1.30*10^-6;// wavelength in m
yr2=((8*%pi^3)*(n^8)*(p^2)*(b*k*tf))/(3*y3^4);
akm2=e^(-yr2*10^3);
at2=10*log(1/akm2)/log(10);// attenuation at y=1.30 um
printf("The Loss of an optical fiber =%f dB/km", at);
printf("\n The Loss of an optical fiber =%f dB/km", at1);
printf("\n The Loss of an optical fiber =%f dB/km", at2); |
69bcd63ff2cd773bf47dec0b915001b7821f9810 | a62e0da056102916ac0fe63d8475e3c4114f86b1 | /set11/s_Fundamentals_Of_Nuclear_Science_And_Engineering_J._K._Shultis_And_R._E._Faw_3535.zip/Fundamentals_Of_Nuclear_Science_And_Engineering_J._K._Shultis_And_R._E._Faw_3535/CH7/EX7.6/Ex7_6.sce | d3338c11efe88f7eb6a356e6e7f79e65bc616355 | [] | no_license | hohiroki/Scilab_TBC | cb11e171e47a6cf15dad6594726c14443b23d512 | 98e421ab71b2e8be0c70d67cca3ecb53eeef1df6 | refs/heads/master | 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 178 | sce | Ex7_6.sce | errcatch(-1,"stop");mode(2);//Chapter 7, Example 7.6, Page 206
// Energy required
Z = 79
E = 700/Z
printf("E = %f MeV\n",E)
//Answers may vary due to round off error
exit();
|
5ab97abe9293303dd4601167a0a5af51f0c6a7c3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2825/CH6/EX6.3/Ex6_3.sce | 603e1a3bd71dd251d96da9696dfe5235afdc2fcb | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 626 | sce | Ex6_3.sce | //Ex6_3 Pg-336
clc
Rb=200*10^(3) //base resistance in ohm
Vcc=10 //supply voltage in V
Vbe=0.7 //voltage drop in V
Rl=2*10^(3) //load resistor in ohm
Beta=50 //transistor gain
disp("If Beta=50")
Ib=(Vcc-Vbe)/Rb //base current in A
Ic=Beta*Ib //collector current
Vce=Vcc-Ic*Rl //collector emitter voltage
printf("\n The operating point coordinates are [%.2f V, %.2f mA]\n ",Vce,Ic*10^3)
disp("If Beta=60")
Beta2=60 //second transistor gain
Ic2=Beta2*Ib //collector current
Vce2=Vcc-Ic2*Rl //collector emitter voltage
printf("\n The operating point coordinates are [%.2f V, %.2f mA]\n ",Vce2,Ic2*10^3)
|
6048c4c5f9d0e7593b1a98a77afcd43d1fbdd871 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1748/CH2/EX2.47/Exa2_47.sce | 67e4b3481001852d6ca02d0aa34b4a9329f50087 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 400 | sce | Exa2_47.sce | //Exa 2.47
clc;
clear;
close;
//Given data :
format('v',6);
Output=10;//in H.P.
Output=Output*735.5;//in watts
cosfi=0.8;//unitless
ETA=0.83;//unitless
ISCbyIFL=3.5;//ratio of SC current to full load current
VL=500;//in volt
Input=Output/ETA;//in watts
IFL=Input/(sqrt(3)*VL*cosfi);//in Ampere
ISC=IFL*ISCbyIFL;//in Ampere
Is=ISC/3;//in Ampere
disp(Is,"Strting current(in Ampere) :"); |
a720b60f7154ce19a9ffe82ef0acad76b531b883 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2165/CH2/EX2.5/2_5.sce | bd2c77fb534cd3348189177ad703da9ceefd1886 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 201 | sce | 2_5.sce | clc
//initialisation of variables
v=15//in
S=(5*14/100)//ln
lam=1.4//in
v1=1.7//in
//CALCULATIONS
N=(1-0.38)*100//percent
//RESULTS
printf('the ideal effiecncy for an engine =% f percent',N)
|
33eefe09d95692402bfb140f12852d66d13a73e4 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3257/CH2/EX2.4/Ex2_4.sce | a067740d17932cefa853edb60ad90b5cf80dcf12 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 434 | sce | Ex2_4.sce | // Elimination of stress by tension
clc
sigma_t = 140 // in MPa
sigma_c = -140 // in MPa
l = 0.25 // length of specimen in m
Y = 150 // yield stress of material in MPa
E = 70 // Youngs modulus in GPa
printf("\ Example 2.4")
epsilon_tot = (sigma_c*1e6)/(E*1e9) + Y*1e6/(E*1e9) // total strain
l_f = l*exp(epsilon_tot)
printf("\n Stretched length should be %0.4f m",l_f)
// Numerical value of answer in book is 0.2510
|
06eb2fe589af3fc77db14ccf4577fb8258d99962 | c49a028f382c3baddcd641c1972dd72bb60eaadc | /exp_3_1.sce | eb6dbeba2609b6341580cc65b32b126167eef15b | [] | no_license | BhautikDonga/SCILAB | 484fcc9ac58885a4ccc549ccc85e2a4a507d5d0a | b330ca555276eb57c1e88ffc745ecfa3b8ebfa0c | refs/heads/master | 2020-04-07T15:48:23.036273 | 2018-12-05T01:27:34 | 2018-12-05T01:27:34 | 158,501,669 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 260 | sce | exp_3_1.sce | //Solution of Simultaneous Linear Equations
//from kvl
//5I1-3I2=5 , 3I1 - 9I2 +I3 = 2 , I2-7I3 = 4
A = [5 -3 0;-3 9 -1;0 -1 7];
B = [5;-2;-4];
X = A\B; // X= inv(A)*B
disp(X)
C = [31 -6; -1 41];
D = [75;90];
Y = C\D; // Y = inv(C)*D
disp(Y)
|
6e6ac953ce20d16d7c695f048b6cc0e7ae232b99 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3808/CH1/EX1.2/Ex1_2.sce | 8b6daded15dc84b7e69182921be303d8e7725453 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 346 | sce | Ex1_2.sce | //Chapter 01: The Foundations: Logic and Proofs
clc;
clear;
mprintf("1. What time is it? \n")
mprintf("2. Read this carefully. \n")
mprintf("3. x+1=2.\n")
mprintf("4. x+y=Z.\n")
mprintf("Sentences 1 and 2 are not propositions since they are not declarative.\nSentences 3 and 4 are neither true nor false and so they are not propositions.")
|
6324bf47233a82a819b47cdaa1e492438b2c63e9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3683/CH5/EX5.5/Ex5_5.sce | eb94682de01b1c60257bc39df6f10c4cd95ee5ab | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 689 | sce | Ex5_5.sce | dia=300//in mm
Asc=8*0.785*20^2//8-20 mm dia bars, in sq mm
helical_dia=8//in mm
pitch=25//in mm
cover=40//in mm
sigma_cc=5//in MPa
sigma_sc=130//in MPa
fck=25//in MPa
fy=250//in MPa
Ag=0.785*dia^2//in sq mm
Ac=Ag-Asc//in sq mm
P=sigma_cc*Ac + sigma_sc*Asc//in N
//to find volume of helical reinforcement
core_dia=dia-2*cover+2*helical_dia//in mm
l=%pi*core_dia//length of helical steel for one revolution, in mm
Ab=l*0.785*helical_dia^2/pitch//volume of helical reinforcement per mm height of column, in mm^3
Ak=0.785*core_dia^2-Asc//in sq mm
Ac=0.785*core_dia^2//in sq mm
m=Ab/Ak
n=0.36*(Ag/Ac-1)*fck/fy
//as m > n
P=1.05*P//in N
mprintf("Safe load=%f kN",P/10^3)
|
114d2bcf85d56bb31b895cd0e3cb7d1c739dd02b | 449d555969bfd7befe906877abab098c6e63a0e8 | /2912/CH6/EX6.7/Ex6_7.sce | 714ad448cae84207a8d1e57f8268867619dc36cf | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 783 | sce | Ex6_7.sce | //chapter 6
//example 6.7
//Calculate velocity of electron and proton
//page 148-149
clear;
clc;
//given
E=10; // in eV (kinetic energy for each electron and proton)
m_e=9.1E-31; // in Kg (mass of electron)
m_p=1.67E-27; // in Kg (mass of proton)
e=1.6E-19; // in C (charge of electron)
//calculate
E=E*e; // changing unit from eV to J
// since E=m*v^2/2
// therefore v=sqrt(2E/m)
v_e=sqrt(2*E/m_e); // calculation of kinetic energy of electron
printf('\nThe kinetic energy of electron is \tv_e=%1.3E m/s',v_e);
v_p=sqrt(2*E/m_p); // calculation of kinetic energy of proton
printf('\nThe kinetic energy of proton is \tv_p=%1.3E m/s',v_p);
// Note: The answer in the book for both kinetic energy of electron and that of proton is wrong due to calculation mistake
|
3597a9ca938e1e57122d6e98599d325b7af33380 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3014/CH2/EX2.9/Ex2_9.sce | 7bed2b03a2cf9adb1621eab697db9f7e47beaf61 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 471 | sce | Ex2_9.sce | clc
//given that
v = 5e3 // Velocity of moving electron in m/s
v_error = 0.003 //Percentage error in measurement of velocity
m = 9.1e-31 // mass of electron in kg
h = 6.63e-34 // Plank constant
printf("Example 2.9")
h_bar = h / (2*%pi) // constant
p = m*v
del_p = v_error*p/100 // calculation of uncertainty in momentum
del_x = h_bar/(2*del_p) // Calculation of uncertainty in position
printf("\n Uncertainty in position of particle is %e m.\n\n\n",del_x)
|
6a93c87a0166d755a7eba45aaeda83d511eef2ee | c565d26060d56f516d954d4b378b8699c31a71ef | /Vikas_self/report_tex/PID_results/pidselftuned40to45.sce | c5c982bda936258bca3b348118f4ca3eb9e24098 | [] | no_license | rupakrokade/sbhs-manual | 26d6e458c5d6aaba858c3cb2d07ff646d90645ce | 5aad4829d5ba1cdf9cc62d72f794fab2b56dd786 | refs/heads/master | 2021-01-23T06:25:53.904684 | 2015-10-24T11:57:04 | 2015-10-24T11:57:04 | 5,258,478 | 0 | 0 | null | 2012-11-16T11:45:07 | 2012-08-01T11:36:17 | Scilab | UTF-8 | Scilab | false | false | 77,895 | sce | pidselftuned40to45.sce | 0.100E+00 0.338E+02 0.490E+02 0.620E+01
0.500E+00 0.338E+02 0.000E+00 0.620E+01
0.900E+00 0.338E+02 0.128E+02 0.620E+01
0.130E+01 0.337E+02 0.256E+02 0.620E+01
0.170E+01 0.337E+02 0.486E+02 0.630E+01
0.210E+01 0.337E+02 0.490E+02 0.630E+01
0.250E+01 0.336E+02 0.490E+02 0.630E+01
0.290E+01 0.336E+02 0.490E+02 0.640E+01
0.330E+01 0.334E+02 0.490E+02 0.640E+01
0.370E+01 0.336E+02 0.490E+02 0.660E+01
0.410E+01 0.336E+02 0.273E+02 0.640E+01
0.450E+01 0.336E+02 0.490E+02 0.640E+01
0.490E+01 0.336E+02 0.490E+02 0.640E+01
0.530E+01 0.334E+02 0.490E+02 0.640E+01
0.570E+01 0.334E+02 0.490E+02 0.660E+01
0.610E+01 0.336E+02 0.477E+02 0.660E+01
0.650E+01 0.336E+02 0.411E+02 0.640E+01
0.690E+01 0.336E+02 0.490E+02 0.640E+01
0.730E+01 0.336E+02 0.490E+02 0.640E+01
0.770E+01 0.337E+02 0.490E+02 0.640E+01
0.810E+01 0.337E+02 0.490E+02 0.630E+01
0.850E+01 0.337E+02 0.490E+02 0.630E+01
0.890E+01 0.338E+02 0.490E+02 0.630E+01
0.930E+01 0.339E+02 0.490E+02 0.620E+01
0.970E+01 0.338E+02 0.490E+02 0.610E+01
0.101E+02 0.338E+02 0.490E+02 0.620E+01
0.105E+02 0.339E+02 0.490E+02 0.620E+01
0.109E+02 0.340E+02 0.490E+02 0.610E+01
0.113E+02 0.341E+02 0.490E+02 0.600E+01
0.117E+02 0.344E+02 0.490E+02 0.590E+01
0.121E+02 0.343E+02 0.385E+02 0.560E+01
0.125E+02 0.344E+02 0.490E+02 0.570E+01
0.129E+02 0.345E+02 0.434E+02 0.560E+01
0.133E+02 0.346E+02 0.490E+02 0.550E+01
0.137E+02 0.346E+02 0.490E+02 0.540E+01
0.141E+02 0.347E+02 0.490E+02 0.540E+01
0.145E+02 0.347E+02 0.490E+02 0.530E+01
0.149E+02 0.348E+02 0.490E+02 0.530E+01
0.153E+02 0.350E+02 0.490E+02 0.520E+01
0.157E+02 0.351E+02 0.470E+02 0.500E+01
0.161E+02 0.352E+02 0.490E+02 0.490E+01
0.165E+02 0.352E+02 0.490E+02 0.480E+01
0.169E+02 0.354E+02 0.490E+02 0.480E+01
0.173E+02 0.355E+02 0.394E+02 0.460E+01
0.177E+02 0.355E+02 0.490E+02 0.450E+01
0.181E+02 0.357E+02 0.490E+02 0.450E+01
0.185E+02 0.359E+02 0.389E+02 0.430E+01
0.189E+02 0.359E+02 0.421E+02 0.410E+01
0.193E+02 0.360E+02 0.490E+02 0.410E+01
0.197E+02 0.361E+02 0.475E+02 0.400E+01
0.201E+02 0.362E+02 0.490E+02 0.390E+01
0.205E+02 0.364E+02 0.490E+02 0.380E+01
0.209E+02 0.365E+02 0.446E+02 0.360E+01
0.213E+02 0.365E+02 0.490E+02 0.350E+01
0.217E+02 0.366E+02 0.490E+02 0.350E+01
0.221E+02 0.368E+02 0.464E+02 0.340E+01
0.225E+02 0.369E+02 0.414E+02 0.320E+01
0.229E+02 0.372E+02 0.490E+02 0.310E+01
0.233E+02 0.373E+02 0.347E+02 0.280E+01
0.237E+02 0.374E+02 0.490E+02 0.270E+01
0.241E+02 0.375E+02 0.490E+02 0.260E+01
0.245E+02 0.375E+02 0.490E+02 0.250E+01
0.249E+02 0.376E+02 0.490E+02 0.250E+01
0.253E+02 0.377E+02 0.448E+02 0.240E+01
0.257E+02 0.380E+02 0.467E+02 0.230E+01
0.261E+02 0.380E+02 0.315E+02 0.200E+01
0.265E+02 0.381E+02 0.490E+02 0.200E+01
0.269E+02 0.383E+02 0.440E+02 0.190E+01
0.273E+02 0.383E+02 0.367E+02 0.170E+01
0.277E+02 0.384E+02 0.490E+02 0.170E+01
0.281E+02 0.386E+02 0.436E+02 0.160E+01
0.285E+02 0.388E+02 0.358E+02 0.140E+01
0.289E+02 0.388E+02 0.338E+02 0.120E+01
0.293E+02 0.389E+02 0.479E+02 0.120E+01
0.297E+02 0.389E+02 0.417E+02 0.110E+01
0.301E+02 0.391E+02 0.490E+02 0.110E+01
0.305E+02 0.390E+02 0.346E+02 0.900E+00
0.309E+02 0.393E+02 0.490E+02 0.100E+01
0.313E+02 0.394E+02 0.207E+02 0.700E+00
0.317E+02 0.394E+02 0.314E+02 0.600E+00
0.321E+02 0.394E+02 0.383E+02 0.600E+00
0.325E+02 0.395E+02 0.393E+02 0.600E+00
0.329E+02 0.396E+02 0.323E+02 0.500E+00
0.333E+02 0.395E+02 0.310E+02 0.400E+00
0.337E+02 0.397E+02 0.454E+02 0.500E+00
0.341E+02 0.397E+02 0.246E+02 0.300E+00
0.345E+02 0.398E+02 0.367E+02 0.300E+00
0.349E+02 0.400E+02 0.293E+02 0.200E+00
0.353E+02 0.400E+02 0.198E+02 0.000E+00
0.357E+02 0.400E+02 0.313E+02 0.000E+00
0.361E+02 0.401E+02 0.313E+02 0.000E+00
0.365E+02 0.401E+02 0.235E+02 -0.100E+00
0.369E+02 0.402E+02 0.290E+02 -0.100E+00
0.373E+02 0.402E+02 0.211E+02 -0.200E+00
0.377E+02 0.402E+02 0.265E+02 -0.200E+00
0.381E+02 0.403E+02 0.262E+02 -0.200E+00
0.385E+02 0.403E+02 0.182E+02 -0.300E+00
0.389E+02 0.404E+02 0.234E+02 -0.300E+00
0.393E+02 0.404E+02 0.152E+02 -0.400E+00
0.397E+02 0.404E+02 0.202E+02 -0.400E+00
0.401E+02 0.405E+02 0.196E+02 -0.400E+00
0.405E+02 0.405E+02 0.113E+02 -0.500E+00
0.409E+02 0.404E+02 0.161E+02 -0.500E+00
0.413E+02 0.405E+02 0.231E+02 -0.400E+00
0.417E+02 0.405E+02 0.914E+01 -0.500E+00
0.421E+02 0.405E+02 0.140E+02 -0.500E+00
0.425E+02 0.405E+02 0.132E+02 -0.500E+00
0.429E+02 0.404E+02 0.124E+02 -0.500E+00
0.433E+02 0.405E+02 0.193E+02 -0.400E+00
0.437E+02 0.404E+02 0.541E+01 -0.500E+00
0.441E+02 0.404E+02 0.180E+02 -0.400E+00
0.445E+02 0.403E+02 0.117E+02 -0.400E+00
0.449E+02 0.403E+02 0.188E+02 -0.300E+00
0.453E+02 0.402E+02 0.126E+02 -0.300E+00
0.457E+02 0.401E+02 0.199E+02 -0.200E+00
0.461E+02 0.400E+02 0.217E+02 -0.100E+00
0.465E+02 0.398E+02 0.236E+02 0.000E+00
0.469E+02 0.398E+02 0.335E+02 0.200E+00
0.473E+02 0.397E+02 0.223E+02 0.200E+00
0.477E+02 0.397E+02 0.305E+02 0.300E+00
0.481E+02 0.396E+02 0.252E+02 0.300E+00
0.485E+02 0.397E+02 0.336E+02 0.400E+00
0.489E+02 0.395E+02 0.205E+02 0.300E+00
0.493E+02 0.396E+02 0.428E+02 0.500E+00
0.497E+02 0.395E+02 0.240E+02 0.400E+00
0.501E+02 0.395E+02 0.385E+02 0.500E+00
0.505E+02 0.394E+02 0.335E+02 0.500E+00
0.509E+02 0.393E+02 0.423E+02 0.600E+00
0.513E+02 0.393E+02 0.454E+02 0.700E+00
0.517E+02 0.393E+02 0.406E+02 0.700E+00
0.521E+02 0.391E+02 0.418E+02 0.700E+00
0.525E+02 0.393E+02 0.490E+02 0.900E+00
0.529E+02 0.391E+02 0.226E+02 0.700E+00
0.533E+02 0.391E+02 0.490E+02 0.900E+00
0.537E+02 0.391E+02 0.386E+02 0.900E+00
0.541E+02 0.391E+02 0.401E+02 0.900E+00
0.545E+02 0.391E+02 0.416E+02 0.900E+00
0.549E+02 0.390E+02 0.431E+02 0.900E+00
0.553E+02 0.391E+02 0.490E+02 0.100E+01
0.557E+02 0.391E+02 0.366E+02 0.900E+00
0.561E+02 0.393E+02 0.440E+02 0.900E+00
0.565E+02 0.393E+02 0.295E+02 0.700E+00
0.569E+02 0.393E+02 0.424E+02 0.700E+00
0.573E+02 0.393E+02 0.436E+02 0.700E+00
0.577E+02 0.394E+02 0.447E+02 0.700E+00
0.581E+02 0.395E+02 0.379E+02 0.600E+00
0.585E+02 0.395E+02 0.367E+02 0.500E+00
0.589E+02 0.394E+02 0.434E+02 0.500E+00
0.593E+02 0.395E+02 0.490E+02 0.600E+00
0.597E+02 0.395E+02 0.362E+02 0.500E+00
0.601E+02 0.396E+02 0.428E+02 0.500E+00
0.605E+02 0.396E+02 0.357E+02 0.400E+00
0.609E+02 0.396E+02 0.422E+02 0.400E+00
0.613E+02 0.396E+02 0.428E+02 0.400E+00
0.617E+02 0.397E+02 0.435E+02 0.400E+00
0.621E+02 0.398E+02 0.362E+02 0.300E+00
0.625E+02 0.398E+02 0.346E+02 0.200E+00
0.629E+02 0.398E+02 0.407E+02 0.200E+00
0.633E+02 0.400E+02 0.410E+02 0.200E+00
0.637E+02 0.400E+02 0.257E+02 0.000E+00
0.641E+02 0.401E+02 0.372E+02 0.000E+00
0.645E+02 0.401E+02 0.294E+02 -0.100E+00
0.649E+02 0.401E+02 0.350E+02 -0.100E+00
0.653E+02 0.402E+02 0.348E+02 -0.100E+00
0.657E+02 0.403E+02 0.269E+02 -0.200E+00
0.661E+02 0.403E+02 0.246E+02 -0.300E+00
0.665E+02 0.403E+02 0.298E+02 -0.300E+00
0.669E+02 0.403E+02 0.293E+02 -0.300E+00
0.673E+02 0.403E+02 0.288E+02 -0.300E+00
0.677E+02 0.404E+02 0.283E+02 -0.300E+00
0.681E+02 0.405E+02 0.202E+02 -0.400E+00
0.685E+02 0.405E+02 0.175E+02 -0.500E+00
0.689E+02 0.407E+02 0.224E+02 -0.500E+00
0.693E+02 0.405E+02 0.639E+01 -0.700E+00
0.697E+02 0.405E+02 0.319E+02 -0.500E+00
0.701E+02 0.407E+02 0.198E+02 -0.500E+00
0.705E+02 0.407E+02 0.385E+01 -0.700E+00
0.709E+02 0.407E+02 0.139E+02 -0.700E+00
0.713E+02 0.405E+02 0.128E+02 -0.700E+00
0.717E+02 0.405E+02 0.271E+02 -0.500E+00
0.721E+02 0.405E+02 0.150E+02 -0.500E+00
0.725E+02 0.405E+02 0.143E+02 -0.500E+00
0.729E+02 0.405E+02 0.135E+02 -0.500E+00
0.733E+02 0.405E+02 0.127E+02 -0.500E+00
0.737E+02 0.404E+02 0.119E+02 -0.500E+00
0.741E+02 0.404E+02 0.188E+02 -0.400E+00
0.745E+02 0.403E+02 0.125E+02 -0.400E+00
0.749E+02 0.403E+02 0.196E+02 -0.300E+00
0.753E+02 0.402E+02 0.135E+02 -0.300E+00
0.757E+02 0.402E+02 0.208E+02 -0.200E+00
0.761E+02 0.401E+02 0.147E+02 -0.200E+00
0.765E+02 0.401E+02 0.222E+02 -0.100E+00
0.769E+02 0.400E+02 0.163E+02 -0.100E+00
0.773E+02 0.400E+02 0.240E+02 0.000E+00
0.777E+02 0.400E+02 0.182E+02 0.000E+00
0.781E+02 0.398E+02 0.182E+02 0.000E+00
0.785E+02 0.398E+02 0.340E+02 0.200E+00
0.789E+02 0.397E+02 0.227E+02 0.200E+00
0.793E+02 0.397E+02 0.310E+02 0.300E+00
0.797E+02 0.396E+02 0.256E+02 0.300E+00
0.801E+02 0.396E+02 0.341E+02 0.400E+00
0.805E+02 0.394E+02 0.289E+02 0.400E+00
0.809E+02 0.394E+02 0.455E+02 0.600E+00
0.813E+02 0.394E+02 0.348E+02 0.600E+00
0.817E+02 0.393E+02 0.357E+02 0.600E+00
0.821E+02 0.393E+02 0.447E+02 0.700E+00
0.825E+02 0.393E+02 0.400E+02 0.700E+00
0.829E+02 0.393E+02 0.411E+02 0.700E+00
0.833E+02 0.393E+02 0.423E+02 0.700E+00
0.837E+02 0.391E+02 0.434E+02 0.700E+00
0.841E+02 0.391E+02 0.490E+02 0.900E+00
0.845E+02 0.393E+02 0.386E+02 0.900E+00
0.849E+02 0.390E+02 0.240E+02 0.700E+00
0.853E+02 0.391E+02 0.490E+02 0.100E+01
0.857E+02 0.391E+02 0.247E+02 0.900E+00
0.861E+02 0.393E+02 0.322E+02 0.900E+00
0.865E+02 0.393E+02 0.176E+02 0.700E+00
0.869E+02 0.391E+02 0.305E+02 0.700E+00
0.873E+02 0.391E+02 0.479E+02 0.900E+00
0.877E+02 0.391E+02 0.375E+02 0.900E+00
0.881E+02 0.393E+02 0.389E+02 0.900E+00
0.885E+02 0.393E+02 0.244E+02 0.700E+00
0.889E+02 0.391E+02 0.373E+02 0.700E+00
0.893E+02 0.393E+02 0.490E+02 0.900E+00
0.897E+02 0.393E+02 0.226E+02 0.700E+00
0.901E+02 0.393E+02 0.356E+02 0.700E+00
0.905E+02 0.393E+02 0.367E+02 0.700E+00
0.909E+02 0.394E+02 0.379E+02 0.700E+00
0.913E+02 0.393E+02 0.310E+02 0.600E+00
0.917E+02 0.393E+02 0.459E+02 0.700E+00
0.921E+02 0.394E+02 0.412E+02 0.700E+00
0.925E+02 0.394E+02 0.343E+02 0.600E+00
0.929E+02 0.394E+02 0.412E+02 0.600E+00
0.933E+02 0.395E+02 0.421E+02 0.600E+00
0.937E+02 0.395E+02 0.352E+02 0.500E+00
0.941E+02 0.396E+02 0.418E+02 0.500E+00
0.945E+02 0.396E+02 0.347E+02 0.400E+00
0.949E+02 0.396E+02 0.412E+02 0.400E+00
0.953E+02 0.397E+02 0.418E+02 0.400E+00
0.957E+02 0.397E+02 0.346E+02 0.300E+00
0.961E+02 0.397E+02 0.409E+02 0.300E+00
0.965E+02 0.398E+02 0.413E+02 0.300E+00
0.969E+02 0.398E+02 0.339E+02 0.200E+00
0.973E+02 0.398E+02 0.401E+02 0.200E+00
0.977E+02 0.398E+02 0.404E+02 0.200E+00
0.981E+02 0.400E+02 0.407E+02 0.200E+00
0.985E+02 0.401E+02 0.254E+02 0.000E+00
0.989E+02 0.401E+02 0.290E+02 -0.100E+00
0.993E+02 0.401E+02 0.346E+02 -0.100E+00
0.997E+02 0.401E+02 0.344E+02 -0.100E+00
0.100E+03 0.403E+02 0.343E+02 -0.100E+00
0.101E+03 0.402E+02 0.187E+02 -0.300E+00
0.101E+03 0.403E+02 0.373E+02 -0.200E+00
0.101E+03 0.403E+02 0.236E+02 -0.300E+00
0.102E+03 0.404E+02 0.288E+02 -0.300E+00
0.102E+03 0.404E+02 0.207E+02 -0.400E+00
0.103E+03 0.405E+02 0.257E+02 -0.400E+00
0.103E+03 0.405E+02 0.174E+02 -0.500E+00
0.103E+03 0.405E+02 0.223E+02 -0.500E+00
0.104E+03 0.407E+02 0.215E+02 -0.500E+00
0.104E+03 0.407E+02 0.550E+01 -0.700E+00
0.105E+03 0.405E+02 0.156E+02 -0.700E+00
0.105E+03 0.407E+02 0.298E+02 -0.500E+00
0.105E+03 0.407E+02 0.266E+01 -0.700E+00
0.106E+03 0.407E+02 0.127E+02 -0.700E+00
0.106E+03 0.407E+02 0.117E+02 -0.700E+00
0.107E+03 0.405E+02 0.106E+02 -0.700E+00
0.107E+03 0.405E+02 0.248E+02 -0.500E+00
0.107E+03 0.405E+02 0.128E+02 -0.500E+00
0.108E+03 0.405E+02 0.120E+02 -0.500E+00
0.108E+03 0.404E+02 0.112E+02 -0.500E+00
0.109E+03 0.404E+02 0.181E+02 -0.400E+00
0.109E+03 0.404E+02 0.118E+02 -0.400E+00
0.109E+03 0.403E+02 0.112E+02 -0.400E+00
0.110E+03 0.402E+02 0.183E+02 -0.300E+00
0.110E+03 0.402E+02 0.199E+02 -0.200E+00
0.111E+03 0.401E+02 0.139E+02 -0.200E+00
0.111E+03 0.401E+02 0.213E+02 -0.100E+00
0.111E+03 0.400E+02 0.154E+02 -0.100E+00
0.112E+03 0.400E+02 0.231E+02 0.000E+00
0.112E+03 0.398E+02 0.174E+02 0.000E+00
0.113E+03 0.398E+02 0.331E+02 0.200E+00
0.113E+03 0.397E+02 0.219E+02 0.200E+00
0.113E+03 0.397E+02 0.301E+02 0.300E+00
0.114E+03 0.396E+02 0.248E+02 0.300E+00
0.114E+03 0.396E+02 0.332E+02 0.400E+00
0.115E+03 0.396E+02 0.280E+02 0.400E+00
0.115E+03 0.395E+02 0.286E+02 0.400E+00
0.115E+03 0.395E+02 0.373E+02 0.500E+00
0.116E+03 0.394E+02 0.322E+02 0.500E+00
0.116E+03 0.393E+02 0.410E+02 0.600E+00
0.117E+03 0.394E+02 0.441E+02 0.700E+00
0.117E+03 0.393E+02 0.314E+02 0.600E+00
0.117E+03 0.393E+02 0.463E+02 0.700E+00
0.118E+03 0.393E+02 0.416E+02 0.700E+00
0.118E+03 0.393E+02 0.427E+02 0.700E+00
0.119E+03 0.393E+02 0.439E+02 0.700E+00
0.119E+03 0.393E+02 0.450E+02 0.700E+00
0.119E+03 0.391E+02 0.462E+02 0.700E+00
0.120E+03 0.391E+02 0.490E+02 0.900E+00
0.120E+03 0.393E+02 0.386E+02 0.900E+00
0.121E+03 0.393E+02 0.240E+02 0.700E+00
0.121E+03 0.393E+02 0.370E+02 0.700E+00
0.121E+03 0.391E+02 0.381E+02 0.700E+00
0.122E+03 0.393E+02 0.490E+02 0.900E+00
0.122E+03 0.391E+02 0.226E+02 0.700E+00
0.123E+03 0.393E+02 0.490E+02 0.900E+00
0.123E+03 0.393E+02 0.226E+02 0.700E+00
0.123E+03 0.394E+02 0.356E+02 0.700E+00
0.124E+03 0.394E+02 0.287E+02 0.600E+00
0.124E+03 0.394E+02 0.356E+02 0.600E+00
0.125E+03 0.395E+02 0.365E+02 0.600E+00
0.125E+03 0.395E+02 0.296E+02 0.500E+00
0.125E+03 0.395E+02 0.362E+02 0.500E+00
0.126E+03 0.395E+02 0.370E+02 0.500E+00
0.126E+03 0.396E+02 0.378E+02 0.500E+00
0.127E+03 0.396E+02 0.307E+02 0.400E+00
0.127E+03 0.396E+02 0.372E+02 0.400E+00
0.127E+03 0.396E+02 0.378E+02 0.400E+00
0.128E+03 0.396E+02 0.385E+02 0.400E+00
0.128E+03 0.396E+02 0.391E+02 0.400E+00
0.129E+03 0.397E+02 0.398E+02 0.400E+00
0.129E+03 0.398E+02 0.325E+02 0.300E+00
0.129E+03 0.398E+02 0.309E+02 0.200E+00
0.130E+03 0.397E+02 0.370E+02 0.200E+00
0.130E+03 0.398E+02 0.453E+02 0.300E+00
0.131E+03 0.398E+02 0.321E+02 0.200E+00
0.131E+03 0.398E+02 0.382E+02 0.200E+00
0.131E+03 0.398E+02 0.385E+02 0.200E+00
0.132E+03 0.400E+02 0.388E+02 0.200E+00
0.132E+03 0.400E+02 0.235E+02 0.000E+00
0.133E+03 0.401E+02 0.350E+02 0.000E+00
0.133E+03 0.401E+02 0.272E+02 -0.100E+00
0.133E+03 0.402E+02 0.328E+02 -0.100E+00
0.134E+03 0.401E+02 0.249E+02 -0.200E+00
0.134E+03 0.402E+02 0.381E+02 -0.100E+00
0.135E+03 0.402E+02 0.245E+02 -0.200E+00
0.135E+03 0.403E+02 0.298E+02 -0.200E+00
0.135E+03 0.403E+02 0.218E+02 -0.300E+00
0.136E+03 0.402E+02 0.270E+02 -0.300E+00
0.136E+03 0.403E+02 0.343E+02 -0.200E+00
0.137E+03 0.403E+02 0.206E+02 -0.300E+00
0.137E+03 0.403E+02 0.258E+02 -0.300E+00
0.137E+03 0.403E+02 0.253E+02 -0.300E+00
0.138E+03 0.403E+02 0.248E+02 -0.300E+00
0.138E+03 0.403E+02 0.243E+02 -0.300E+00
0.139E+03 0.403E+02 0.239E+02 -0.300E+00
0.139E+03 0.404E+02 0.234E+02 -0.300E+00
0.139E+03 0.403E+02 0.152E+02 -0.400E+00
0.140E+03 0.403E+02 0.280E+02 -0.300E+00
0.140E+03 0.404E+02 0.219E+02 -0.300E+00
0.141E+03 0.402E+02 0.137E+02 -0.400E+00
0.141E+03 0.404E+02 0.343E+02 -0.200E+00
0.141E+03 0.404E+02 0.726E+01 -0.400E+00
0.142E+03 0.403E+02 0.179E+02 -0.400E+00
0.142E+03 0.403E+02 0.250E+02 -0.300E+00
0.143E+03 0.404E+02 0.189E+02 -0.300E+00
0.143E+03 0.404E+02 0.107E+02 -0.400E+00
0.143E+03 0.402E+02 0.157E+02 -0.400E+00
0.144E+03 0.402E+02 0.306E+02 -0.200E+00
0.144E+03 0.402E+02 0.189E+02 -0.200E+00
0.145E+03 0.402E+02 0.186E+02 -0.200E+00
0.145E+03 0.401E+02 0.183E+02 -0.200E+00
0.145E+03 0.401E+02 0.257E+02 -0.100E+00
0.146E+03 0.401E+02 0.199E+02 -0.100E+00
0.146E+03 0.400E+02 0.197E+02 -0.100E+00
0.147E+03 0.400E+02 0.273E+02 0.000E+00
0.147E+03 0.400E+02 0.216E+02 0.000E+00
0.147E+03 0.398E+02 0.216E+02 0.000E+00
0.148E+03 0.400E+02 0.373E+02 0.200E+00
0.148E+03 0.398E+02 0.106E+02 0.000E+00
0.149E+03 0.397E+02 0.379E+02 0.200E+00
0.149E+03 0.396E+02 0.345E+02 0.300E+00
0.149E+03 0.397E+02 0.371E+02 0.400E+00
0.150E+03 0.396E+02 0.240E+02 0.300E+00
0.150E+03 0.396E+02 0.383E+02 0.400E+00
0.151E+03 0.396E+02 0.331E+02 0.400E+00
0.151E+03 0.396E+02 0.337E+02 0.400E+00
0.151E+03 0.395E+02 0.344E+02 0.400E+00
0.152E+03 0.395E+02 0.430E+02 0.500E+00
0.152E+03 0.395E+02 0.380E+02 0.500E+00
0.153E+03 0.395E+02 0.388E+02 0.500E+00
0.153E+03 0.395E+02 0.396E+02 0.500E+00
0.153E+03 0.395E+02 0.404E+02 0.500E+00
0.154E+03 0.394E+02 0.412E+02 0.500E+00
0.154E+03 0.395E+02 0.490E+02 0.600E+00
0.155E+03 0.395E+02 0.362E+02 0.500E+00
0.155E+03 0.396E+02 0.428E+02 0.500E+00
0.155E+03 0.395E+02 0.357E+02 0.400E+00
0.156E+03 0.396E+02 0.490E+02 0.500E+00
0.156E+03 0.396E+02 0.361E+02 0.400E+00
0.157E+03 0.397E+02 0.425E+02 0.400E+00
0.157E+03 0.397E+02 0.353E+02 0.300E+00
0.157E+03 0.398E+02 0.416E+02 0.300E+00
0.158E+03 0.397E+02 0.342E+02 0.200E+00
0.158E+03 0.398E+02 0.482E+02 0.300E+00
0.159E+03 0.398E+02 0.350E+02 0.200E+00
0.159E+03 0.400E+02 0.411E+02 0.200E+00
0.159E+03 0.400E+02 0.258E+02 0.000E+00
0.160E+03 0.398E+02 0.373E+02 0.000E+00
0.160E+03 0.400E+02 0.490E+02 0.200E+00
0.161E+03 0.400E+02 0.222E+02 0.000E+00
0.161E+03 0.401E+02 0.337E+02 0.000E+00
0.161E+03 0.401E+02 0.259E+02 -0.100E+00
0.162E+03 0.402E+02 0.315E+02 -0.100E+00
0.162E+03 0.402E+02 0.236E+02 -0.200E+00
0.163E+03 0.403E+02 0.289E+02 -0.200E+00
0.163E+03 0.402E+02 0.209E+02 -0.300E+00
0.163E+03 0.403E+02 0.339E+02 -0.200E+00
0.164E+03 0.402E+02 0.202E+02 -0.300E+00
0.164E+03 0.404E+02 0.331E+02 -0.200E+00
0.165E+03 0.403E+02 0.118E+02 -0.400E+00
0.165E+03 0.403E+02 0.302E+02 -0.300E+00
0.165E+03 0.404E+02 0.241E+02 -0.300E+00
0.166E+03 0.404E+02 0.159E+02 -0.400E+00
0.166E+03 0.404E+02 0.209E+02 -0.400E+00
0.167E+03 0.404E+02 0.203E+02 -0.400E+00
0.167E+03 0.404E+02 0.197E+02 -0.400E+00
0.167E+03 0.404E+02 0.191E+02 -0.400E+00
0.168E+03 0.403E+02 0.184E+02 -0.400E+00
0.168E+03 0.404E+02 0.255E+02 -0.300E+00
0.169E+03 0.403E+02 0.117E+02 -0.400E+00
0.169E+03 0.403E+02 0.245E+02 -0.300E+00
0.169E+03 0.403E+02 0.183E+02 -0.300E+00
0.170E+03 0.402E+02 0.179E+02 -0.300E+00
0.170E+03 0.402E+02 0.251E+02 -0.200E+00
0.171E+03 0.402E+02 0.191E+02 -0.200E+00
0.171E+03 0.402E+02 0.188E+02 -0.200E+00
0.171E+03 0.402E+02 0.185E+02 -0.200E+00
0.172E+03 0.402E+02 0.182E+02 -0.200E+00
0.172E+03 0.401E+02 0.179E+02 -0.200E+00
0.173E+03 0.401E+02 0.253E+02 -0.100E+00
0.173E+03 0.401E+02 0.194E+02 -0.100E+00
0.173E+03 0.401E+02 0.193E+02 -0.100E+00
0.174E+03 0.400E+02 0.191E+02 -0.100E+00
0.174E+03 0.398E+02 0.268E+02 0.000E+00
0.175E+03 0.398E+02 0.367E+02 0.200E+00
0.175E+03 0.398E+02 0.255E+02 0.200E+00
0.175E+03 0.398E+02 0.258E+02 0.200E+00
0.176E+03 0.397E+02 0.261E+02 0.200E+00
0.176E+03 0.397E+02 0.344E+02 0.300E+00
0.177E+03 0.397E+02 0.290E+02 0.300E+00
0.177E+03 0.396E+02 0.295E+02 0.300E+00
0.177E+03 0.397E+02 0.379E+02 0.400E+00
0.178E+03 0.396E+02 0.249E+02 0.300E+00
0.178E+03 0.396E+02 0.391E+02 0.400E+00
0.179E+03 0.396E+02 0.339E+02 0.400E+00
0.179E+03 0.396E+02 0.346E+02 0.400E+00
0.179E+03 0.396E+02 0.352E+02 0.400E+00
0.180E+03 0.395E+02 0.359E+02 0.400E+00
0.180E+03 0.395E+02 0.445E+02 0.500E+00
0.181E+03 0.396E+02 0.395E+02 0.500E+00
0.181E+03 0.396E+02 0.323E+02 0.400E+00
0.181E+03 0.395E+02 0.388E+02 0.400E+00
0.182E+03 0.396E+02 0.474E+02 0.500E+00
0.182E+03 0.395E+02 0.345E+02 0.400E+00
0.183E+03 0.396E+02 0.489E+02 0.500E+00
0.183E+03 0.396E+02 0.360E+02 0.400E+00
0.183E+03 0.397E+02 0.425E+02 0.400E+00
0.184E+03 0.397E+02 0.352E+02 0.300E+00
0.184E+03 0.397E+02 0.415E+02 0.300E+00
0.185E+03 0.397E+02 0.420E+02 0.300E+00
0.185E+03 0.398E+02 0.425E+02 0.300E+00
0.185E+03 0.397E+02 0.351E+02 0.200E+00
0.186E+03 0.398E+02 0.490E+02 0.300E+00
0.186E+03 0.398E+02 0.358E+02 0.200E+00
0.187E+03 0.398E+02 0.419E+02 0.200E+00
0.187E+03 0.398E+02 0.423E+02 0.200E+00
0.187E+03 0.400E+02 0.426E+02 0.200E+00
0.188E+03 0.400E+02 0.273E+02 0.000E+00
0.188E+03 0.401E+02 0.388E+02 0.000E+00
0.189E+03 0.401E+02 0.310E+02 -0.100E+00
0.189E+03 0.401E+02 0.365E+02 -0.100E+00
0.189E+03 0.402E+02 0.364E+02 -0.100E+00
0.190E+03 0.401E+02 0.285E+02 -0.200E+00
0.190E+03 0.403E+02 0.416E+02 -0.100E+00
0.191E+03 0.403E+02 0.204E+02 -0.300E+00
0.191E+03 0.404E+02 0.312E+02 -0.300E+00
0.191E+03 0.404E+02 0.231E+02 -0.400E+00
0.192E+03 0.405E+02 0.281E+02 -0.400E+00
0.192E+03 0.405E+02 0.198E+02 -0.500E+00
0.193E+03 0.405E+02 0.247E+02 -0.500E+00
0.193E+03 0.407E+02 0.239E+02 -0.500E+00
0.193E+03 0.405E+02 0.790E+01 -0.700E+00
0.194E+03 0.405E+02 0.334E+02 -0.500E+00
0.194E+03 0.407E+02 0.213E+02 -0.500E+00
0.195E+03 0.407E+02 0.536E+01 -0.700E+00
0.195E+03 0.407E+02 0.154E+02 -0.700E+00
0.195E+03 0.407E+02 0.144E+02 -0.700E+00
0.196E+03 0.408E+02 0.133E+02 -0.700E+00
0.196E+03 0.408E+02 0.462E+01 -0.800E+00
0.197E+03 0.407E+02 0.895E+01 -0.800E+00
0.197E+03 0.407E+02 0.153E+02 -0.700E+00
0.197E+03 0.405E+02 0.864E+01 -0.700E+00
0.198E+03 0.405E+02 0.229E+02 -0.500E+00
0.198E+03 0.405E+02 0.108E+02 -0.500E+00
0.199E+03 0.405E+02 0.100E+02 -0.500E+00
0.199E+03 0.404E+02 0.926E+01 -0.500E+00
0.199E+03 0.404E+02 0.162E+02 -0.400E+00
0.200E+03 0.404E+02 0.989E+01 -0.400E+00
0.200E+03 0.403E+02 0.000E+00 0.470E+01
0.201E+03 0.403E+02 0.173E+01 0.470E+01
0.201E+03 0.403E+02 0.914E+01 0.470E+01
0.201E+03 0.403E+02 0.165E+02 0.470E+01
0.202E+03 0.402E+02 0.239E+02 0.470E+01
0.202E+03 0.401E+02 0.391E+02 0.480E+01
0.203E+03 0.400E+02 0.488E+02 0.490E+01
0.203E+03 0.398E+02 0.490E+02 0.500E+01
0.203E+03 0.398E+02 0.490E+02 0.520E+01
0.204E+03 0.398E+02 0.458E+02 0.520E+01
0.204E+03 0.397E+02 0.490E+02 0.520E+01
0.205E+03 0.396E+02 0.490E+02 0.530E+01
0.205E+03 0.397E+02 0.490E+02 0.540E+01
0.205E+03 0.396E+02 0.440E+02 0.530E+01
0.206E+03 0.396E+02 0.490E+02 0.540E+01
0.206E+03 0.395E+02 0.490E+02 0.540E+01
0.207E+03 0.396E+02 0.490E+02 0.550E+01
0.207E+03 0.395E+02 0.441E+02 0.540E+01
0.207E+03 0.395E+02 0.490E+02 0.550E+01
0.208E+03 0.395E+02 0.490E+02 0.550E+01
0.208E+03 0.395E+02 0.490E+02 0.550E+01
0.209E+03 0.396E+02 0.490E+02 0.550E+01
0.209E+03 0.396E+02 0.490E+02 0.540E+01
0.209E+03 0.395E+02 0.490E+02 0.540E+01
0.210E+03 0.396E+02 0.490E+02 0.550E+01
0.210E+03 0.396E+02 0.441E+02 0.540E+01
0.211E+03 0.396E+02 0.490E+02 0.540E+01
0.211E+03 0.396E+02 0.490E+02 0.540E+01
0.211E+03 0.396E+02 0.490E+02 0.540E+01
0.212E+03 0.397E+02 0.490E+02 0.540E+01
0.212E+03 0.398E+02 0.490E+02 0.530E+01
0.213E+03 0.397E+02 0.490E+02 0.520E+01
0.213E+03 0.397E+02 0.490E+02 0.530E+01
0.213E+03 0.398E+02 0.490E+02 0.530E+01
0.214E+03 0.400E+02 0.490E+02 0.520E+01
0.214E+03 0.400E+02 0.474E+02 0.500E+01
0.215E+03 0.401E+02 0.490E+02 0.500E+01
0.215E+03 0.401E+02 0.490E+02 0.490E+01
0.215E+03 0.400E+02 0.490E+02 0.490E+01
0.216E+03 0.401E+02 0.490E+02 0.500E+01
0.216E+03 0.402E+02 0.434E+02 0.490E+01
0.217E+03 0.402E+02 0.490E+02 0.480E+01
0.217E+03 0.402E+02 0.490E+02 0.480E+01
0.217E+03 0.403E+02 0.490E+02 0.480E+01
0.218E+03 0.403E+02 0.488E+02 0.470E+01
0.218E+03 0.405E+02 0.490E+02 0.470E+01
0.219E+03 0.404E+02 0.410E+02 0.450E+01
0.219E+03 0.407E+02 0.490E+02 0.460E+01
0.219E+03 0.407E+02 0.277E+02 0.430E+01
0.220E+03 0.408E+02 0.490E+02 0.430E+01
0.220E+03 0.408E+02 0.481E+02 0.420E+01
0.221E+03 0.409E+02 0.490E+02 0.420E+01
0.221E+03 0.409E+02 0.479E+02 0.410E+01
0.221E+03 0.410E+02 0.490E+02 0.410E+01
0.222E+03 0.410E+02 0.478E+02 0.400E+01
0.222E+03 0.411E+02 0.490E+02 0.400E+01
0.223E+03 0.411E+02 0.476E+02 0.390E+01
0.223E+03 0.414E+02 0.490E+02 0.390E+01
0.223E+03 0.412E+02 0.327E+02 0.360E+01
0.224E+03 0.414E+02 0.490E+02 0.380E+01
0.224E+03 0.415E+02 0.291E+02 0.360E+01
0.225E+03 0.415E+02 0.379E+02 0.350E+01
0.225E+03 0.416E+02 0.486E+02 0.350E+01
0.225E+03 0.416E+02 0.465E+02 0.340E+01
0.226E+03 0.418E+02 0.490E+02 0.340E+01
0.226E+03 0.418E+02 0.395E+02 0.320E+01
0.227E+03 0.419E+02 0.490E+02 0.320E+01
0.227E+03 0.419E+02 0.465E+02 0.310E+01
0.227E+03 0.421E+02 0.490E+02 0.310E+01
0.228E+03 0.421E+02 0.391E+02 0.290E+01
0.228E+03 0.423E+02 0.490E+02 0.290E+01
0.229E+03 0.422E+02 0.389E+02 0.270E+01
0.229E+03 0.424E+02 0.490E+02 0.280E+01
0.229E+03 0.424E+02 0.336E+02 0.260E+01
0.230E+03 0.424E+02 0.478E+02 0.260E+01
0.230E+03 0.424E+02 0.490E+02 0.260E+01
0.231E+03 0.425E+02 0.490E+02 0.260E+01
0.231E+03 0.426E+02 0.457E+02 0.250E+01
0.231E+03 0.426E+02 0.474E+02 0.240E+01
0.232E+03 0.426E+02 0.490E+02 0.240E+01
0.232E+03 0.427E+02 0.490E+02 0.240E+01
0.233E+03 0.427E+02 0.454E+02 0.230E+01
0.233E+03 0.429E+02 0.490E+02 0.230E+01
0.233E+03 0.429E+02 0.383E+02 0.210E+01
0.234E+03 0.429E+02 0.490E+02 0.210E+01
0.234E+03 0.430E+02 0.490E+02 0.210E+01
0.235E+03 0.430E+02 0.450E+02 0.200E+01
0.235E+03 0.430E+02 0.490E+02 0.200E+01
0.235E+03 0.431E+02 0.490E+02 0.200E+01
0.236E+03 0.431E+02 0.449E+02 0.190E+01
0.236E+03 0.431E+02 0.490E+02 0.190E+01
0.237E+03 0.432E+02 0.490E+02 0.190E+01
0.237E+03 0.433E+02 0.448E+02 0.180E+01
0.237E+03 0.433E+02 0.455E+02 0.170E+01
0.238E+03 0.434E+02 0.490E+02 0.170E+01
0.238E+03 0.434E+02 0.445E+02 0.160E+01
0.239E+03 0.434E+02 0.490E+02 0.160E+01
0.239E+03 0.436E+02 0.490E+02 0.160E+01
0.239E+03 0.436E+02 0.376E+02 0.140E+01
0.240E+03 0.436E+02 0.490E+02 0.140E+01
0.240E+03 0.436E+02 0.490E+02 0.140E+01
0.241E+03 0.437E+02 0.490E+02 0.140E+01
0.241E+03 0.437E+02 0.441E+02 0.130E+01
0.241E+03 0.438E+02 0.490E+02 0.130E+01
0.242E+03 0.438E+02 0.440E+02 0.120E+01
0.242E+03 0.438E+02 0.490E+02 0.120E+01
0.243E+03 0.438E+02 0.490E+02 0.120E+01
0.243E+03 0.438E+02 0.490E+02 0.120E+01
0.243E+03 0.438E+02 0.490E+02 0.120E+01
0.244E+03 0.439E+02 0.490E+02 0.120E+01
0.244E+03 0.439E+02 0.439E+02 0.110E+01
0.245E+03 0.439E+02 0.490E+02 0.110E+01
0.245E+03 0.440E+02 0.490E+02 0.110E+01
0.245E+03 0.438E+02 0.438E+02 0.100E+01
0.246E+03 0.439E+02 0.490E+02 0.120E+01
0.246E+03 0.439E+02 0.340E+02 0.110E+01
0.247E+03 0.439E+02 0.405E+02 0.110E+01
0.247E+03 0.438E+02 0.420E+02 0.110E+01
0.247E+03 0.439E+02 0.490E+02 0.120E+01
0.248E+03 0.438E+02 0.389E+02 0.110E+01
0.248E+03 0.439E+02 0.490E+02 0.120E+01
0.249E+03 0.438E+02 0.389E+02 0.110E+01
0.249E+03 0.439E+02 0.490E+02 0.120E+01
0.249E+03 0.439E+02 0.389E+02 0.110E+01
0.250E+03 0.439E+02 0.454E+02 0.110E+01
0.250E+03 0.439E+02 0.469E+02 0.110E+01
0.251E+03 0.439E+02 0.484E+02 0.110E+01
0.251E+03 0.439E+02 0.490E+02 0.110E+01
0.251E+03 0.439E+02 0.490E+02 0.110E+01
0.252E+03 0.439E+02 0.490E+02 0.110E+01
0.252E+03 0.439E+02 0.490E+02 0.110E+01
0.253E+03 0.439E+02 0.490E+02 0.110E+01
0.253E+03 0.439E+02 0.490E+02 0.110E+01
0.253E+03 0.439E+02 0.490E+02 0.110E+01
0.254E+03 0.438E+02 0.490E+02 0.110E+01
0.254E+03 0.439E+02 0.490E+02 0.120E+01
0.255E+03 0.439E+02 0.389E+02 0.110E+01
0.255E+03 0.439E+02 0.454E+02 0.110E+01
0.255E+03 0.439E+02 0.469E+02 0.110E+01
0.256E+03 0.438E+02 0.484E+02 0.110E+01
0.256E+03 0.439E+02 0.490E+02 0.120E+01
0.257E+03 0.439E+02 0.389E+02 0.110E+01
0.257E+03 0.439E+02 0.454E+02 0.110E+01
0.257E+03 0.439E+02 0.469E+02 0.110E+01
0.258E+03 0.439E+02 0.484E+02 0.110E+01
0.258E+03 0.439E+02 0.490E+02 0.110E+01
0.259E+03 0.439E+02 0.490E+02 0.110E+01
0.259E+03 0.439E+02 0.490E+02 0.110E+01
0.259E+03 0.439E+02 0.490E+02 0.110E+01
0.260E+03 0.440E+02 0.490E+02 0.110E+01
0.260E+03 0.440E+02 0.438E+02 0.100E+01
0.261E+03 0.439E+02 0.490E+02 0.100E+01
0.261E+03 0.439E+02 0.490E+02 0.110E+01
0.261E+03 0.440E+02 0.456E+02 0.110E+01
0.262E+03 0.440E+02 0.403E+02 0.100E+01
0.262E+03 0.440E+02 0.467E+02 0.100E+01
0.263E+03 0.440E+02 0.480E+02 0.100E+01
0.263E+03 0.440E+02 0.490E+02 0.100E+01
0.263E+03 0.440E+02 0.490E+02 0.100E+01
0.264E+03 0.441E+02 0.490E+02 0.100E+01
0.264E+03 0.441E+02 0.437E+02 0.900E+00
0.265E+03 0.441E+02 0.490E+02 0.900E+00
0.265E+03 0.441E+02 0.490E+02 0.900E+00
0.265E+03 0.441E+02 0.490E+02 0.900E+00
0.266E+03 0.441E+02 0.490E+02 0.900E+00
0.266E+03 0.441E+02 0.490E+02 0.900E+00
0.267E+03 0.441E+02 0.490E+02 0.900E+00
0.267E+03 0.441E+02 0.490E+02 0.900E+00
0.267E+03 0.443E+02 0.490E+02 0.900E+00
0.268E+03 0.443E+02 0.369E+02 0.700E+00
0.268E+03 0.441E+02 0.476E+02 0.700E+00
0.269E+03 0.441E+02 0.490E+02 0.900E+00
0.269E+03 0.443E+02 0.404E+02 0.900E+00
0.269E+03 0.441E+02 0.283E+02 0.700E+00
0.270E+03 0.443E+02 0.490E+02 0.900E+00
0.270E+03 0.443E+02 0.271E+02 0.700E+00
0.271E+03 0.443E+02 0.379E+02 0.700E+00
0.271E+03 0.443E+02 0.388E+02 0.700E+00
0.271E+03 0.443E+02 0.398E+02 0.700E+00
0.272E+03 0.443E+02 0.407E+02 0.700E+00
0.272E+03 0.443E+02 0.417E+02 0.700E+00
0.273E+03 0.441E+02 0.426E+02 0.700E+00
0.273E+03 0.443E+02 0.490E+02 0.900E+00
0.273E+03 0.443E+02 0.271E+02 0.700E+00
0.274E+03 0.443E+02 0.379E+02 0.700E+00
0.274E+03 0.441E+02 0.388E+02 0.700E+00
0.275E+03 0.443E+02 0.490E+02 0.900E+00
0.275E+03 0.441E+02 0.271E+02 0.700E+00
0.275E+03 0.441E+02 0.490E+02 0.900E+00
0.276E+03 0.441E+02 0.404E+02 0.900E+00
0.276E+03 0.441E+02 0.416E+02 0.900E+00
0.277E+03 0.441E+02 0.428E+02 0.900E+00
0.277E+03 0.440E+02 0.441E+02 0.900E+00
0.277E+03 0.441E+02 0.490E+02 0.100E+01
0.278E+03 0.441E+02 0.387E+02 0.900E+00
0.278E+03 0.441E+02 0.449E+02 0.900E+00
0.279E+03 0.441E+02 0.461E+02 0.900E+00
0.279E+03 0.441E+02 0.474E+02 0.900E+00
0.279E+03 0.440E+02 0.486E+02 0.900E+00
0.280E+03 0.441E+02 0.490E+02 0.100E+01
0.280E+03 0.441E+02 0.387E+02 0.900E+00
0.281E+03 0.441E+02 0.449E+02 0.900E+00
0.281E+03 0.440E+02 0.461E+02 0.900E+00
0.281E+03 0.441E+02 0.490E+02 0.100E+01
0.282E+03 0.441E+02 0.387E+02 0.900E+00
0.282E+03 0.443E+02 0.449E+02 0.900E+00
0.283E+03 0.441E+02 0.328E+02 0.700E+00
0.283E+03 0.443E+02 0.490E+02 0.900E+00
0.283E+03 0.443E+02 0.271E+02 0.700E+00
0.284E+03 0.444E+02 0.379E+02 0.700E+00
0.284E+03 0.444E+02 0.322E+02 0.600E+00
0.285E+03 0.444E+02 0.379E+02 0.600E+00
0.285E+03 0.444E+02 0.387E+02 0.600E+00
0.285E+03 0.444E+02 0.395E+02 0.600E+00
0.286E+03 0.444E+02 0.403E+02 0.600E+00
0.286E+03 0.444E+02 0.411E+02 0.600E+00
0.287E+03 0.444E+02 0.419E+02 0.600E+00
0.287E+03 0.444E+02 0.427E+02 0.600E+00
0.287E+03 0.444E+02 0.435E+02 0.600E+00
0.288E+03 0.443E+02 0.444E+02 0.600E+00
0.288E+03 0.444E+02 0.490E+02 0.700E+00
0.289E+03 0.443E+02 0.384E+02 0.600E+00
0.289E+03 0.443E+02 0.490E+02 0.700E+00
0.289E+03 0.443E+02 0.451E+02 0.700E+00
0.290E+03 0.443E+02 0.460E+02 0.700E+00
0.290E+03 0.443E+02 0.470E+02 0.700E+00
0.291E+03 0.443E+02 0.479E+02 0.700E+00
0.291E+03 0.441E+02 0.489E+02 0.700E+00
0.291E+03 0.441E+02 0.490E+02 0.900E+00
0.292E+03 0.441E+02 0.404E+02 0.900E+00
0.292E+03 0.441E+02 0.416E+02 0.900E+00
0.293E+03 0.441E+02 0.428E+02 0.900E+00
0.293E+03 0.441E+02 0.441E+02 0.900E+00
0.293E+03 0.441E+02 0.453E+02 0.900E+00
0.294E+03 0.443E+02 0.465E+02 0.900E+00
0.294E+03 0.441E+02 0.344E+02 0.700E+00
0.295E+03 0.441E+02 0.490E+02 0.900E+00
0.295E+03 0.441E+02 0.404E+02 0.900E+00
0.295E+03 0.441E+02 0.416E+02 0.900E+00
0.296E+03 0.440E+02 0.428E+02 0.900E+00
0.296E+03 0.441E+02 0.490E+02 0.100E+01
0.297E+03 0.440E+02 0.387E+02 0.900E+00
0.297E+03 0.440E+02 0.490E+02 0.100E+01
0.297E+03 0.441E+02 0.454E+02 0.100E+01
0.298E+03 0.441E+02 0.401E+02 0.900E+00
0.298E+03 0.441E+02 0.462E+02 0.900E+00
0.299E+03 0.440E+02 0.475E+02 0.900E+00
0.299E+03 0.441E+02 0.490E+02 0.100E+01
0.299E+03 0.441E+02 0.387E+02 0.900E+00
0.300E+03 0.441E+02 0.449E+02 0.900E+00
0.300E+03 0.440E+02 0.461E+02 0.900E+00
0.300E+03 0.441E+02 0.490E+02 0.100E+01
0.301E+03 0.441E+02 0.387E+02 0.900E+00
0.301E+03 0.440E+02 0.449E+02 0.900E+00
0.302E+03 0.440E+02 0.490E+02 0.100E+01
0.302E+03 0.441E+02 0.454E+02 0.100E+01
0.302E+03 0.440E+02 0.401E+02 0.900E+00
0.303E+03 0.440E+02 0.490E+02 0.100E+01
0.303E+03 0.440E+02 0.454E+02 0.100E+01
0.304E+03 0.441E+02 0.468E+02 0.100E+01
0.304E+03 0.441E+02 0.415E+02 0.900E+00
0.304E+03 0.441E+02 0.476E+02 0.900E+00
0.305E+03 0.440E+02 0.489E+02 0.900E+00
0.305E+03 0.440E+02 0.490E+02 0.100E+01
0.306E+03 0.441E+02 0.454E+02 0.100E+01
0.306E+03 0.441E+02 0.401E+02 0.900E+00
0.306E+03 0.441E+02 0.462E+02 0.900E+00
0.307E+03 0.441E+02 0.475E+02 0.900E+00
0.307E+03 0.441E+02 0.487E+02 0.900E+00
0.308E+03 0.441E+02 0.490E+02 0.900E+00
0.308E+03 0.443E+02 0.490E+02 0.900E+00
0.308E+03 0.443E+02 0.369E+02 0.700E+00
0.309E+03 0.443E+02 0.476E+02 0.700E+00
0.309E+03 0.443E+02 0.486E+02 0.700E+00
0.310E+03 0.443E+02 0.490E+02 0.700E+00
0.310E+03 0.443E+02 0.490E+02 0.700E+00
0.310E+03 0.444E+02 0.490E+02 0.700E+00
0.311E+03 0.443E+02 0.433E+02 0.600E+00
0.311E+03 0.444E+02 0.490E+02 0.700E+00
0.312E+03 0.444E+02 0.384E+02 0.600E+00
0.312E+03 0.444E+02 0.441E+02 0.600E+00
0.312E+03 0.445E+02 0.449E+02 0.600E+00
0.313E+03 0.445E+02 0.391E+02 0.500E+00
0.313E+03 0.444E+02 0.447E+02 0.500E+00
0.314E+03 0.444E+02 0.490E+02 0.600E+00
0.314E+03 0.444E+02 0.449E+02 0.600E+00
0.314E+03 0.444E+02 0.457E+02 0.600E+00
0.315E+03 0.445E+02 0.466E+02 0.600E+00
0.315E+03 0.445E+02 0.408E+02 0.500E+00
0.316E+03 0.445E+02 0.463E+02 0.500E+00
0.316E+03 0.445E+02 0.470E+02 0.500E+00
0.316E+03 0.445E+02 0.476E+02 0.500E+00
0.317E+03 0.446E+02 0.483E+02 0.500E+00
0.317E+03 0.446E+02 0.424E+02 0.400E+00
0.318E+03 0.445E+02 0.478E+02 0.400E+00
0.318E+03 0.446E+02 0.490E+02 0.500E+00
0.318E+03 0.446E+02 0.382E+02 0.400E+00
0.319E+03 0.446E+02 0.436E+02 0.400E+00
0.319E+03 0.447E+02 0.442E+02 0.400E+00
0.320E+03 0.446E+02 0.381E+02 0.300E+00
0.320E+03 0.446E+02 0.490E+02 0.400E+00
0.320E+03 0.446E+02 0.447E+02 0.400E+00
0.321E+03 0.447E+02 0.452E+02 0.400E+00
0.321E+03 0.446E+02 0.392E+02 0.300E+00
0.322E+03 0.446E+02 0.490E+02 0.400E+00
0.322E+03 0.447E+02 0.447E+02 0.400E+00
0.322E+03 0.447E+02 0.387E+02 0.300E+00
0.323E+03 0.448E+02 0.439E+02 0.300E+00
0.323E+03 0.447E+02 0.377E+02 0.200E+00
0.324E+03 0.448E+02 0.490E+02 0.300E+00
0.324E+03 0.448E+02 0.380E+02 0.200E+00
0.324E+03 0.448E+02 0.431E+02 0.200E+00
0.325E+03 0.448E+02 0.434E+02 0.200E+00
0.325E+03 0.450E+02 0.437E+02 0.200E+00
0.326E+03 0.450E+02 0.309E+02 0.000E+00
0.326E+03 0.450E+02 0.405E+02 0.000E+00
0.326E+03 0.450E+02 0.405E+02 0.000E+00
0.327E+03 0.450E+02 0.405E+02 0.000E+00
0.327E+03 0.451E+02 0.405E+02 0.000E+00
0.328E+03 0.451E+02 0.340E+02 -0.100E+00
0.328E+03 0.451E+02 0.386E+02 -0.100E+00
0.328E+03 0.450E+02 0.385E+02 -0.100E+00
0.329E+03 0.451E+02 0.449E+02 0.000E+00
0.329E+03 0.451E+02 0.336E+02 -0.100E+00
0.330E+03 0.451E+02 0.382E+02 -0.100E+00
0.330E+03 0.451E+02 0.381E+02 -0.100E+00
0.330E+03 0.451E+02 0.380E+02 -0.100E+00
0.331E+03 0.451E+02 0.379E+02 -0.100E+00
0.331E+03 0.451E+02 0.377E+02 -0.100E+00
0.332E+03 0.451E+02 0.376E+02 -0.100E+00
0.332E+03 0.452E+02 0.375E+02 -0.100E+00
0.332E+03 0.451E+02 0.309E+02 -0.200E+00
0.333E+03 0.452E+02 0.418E+02 -0.100E+00
0.333E+03 0.451E+02 0.305E+02 -0.200E+00
0.334E+03 0.452E+02 0.415E+02 -0.100E+00
0.334E+03 0.452E+02 0.302E+02 -0.200E+00
0.334E+03 0.452E+02 0.346E+02 -0.200E+00
0.335E+03 0.451E+02 0.344E+02 -0.200E+00
0.335E+03 0.452E+02 0.406E+02 -0.100E+00
0.336E+03 0.452E+02 0.293E+02 -0.200E+00
0.336E+03 0.452E+02 0.337E+02 -0.200E+00
0.336E+03 0.451E+02 0.335E+02 -0.200E+00
0.337E+03 0.451E+02 0.397E+02 -0.100E+00
0.337E+03 0.451E+02 0.348E+02 -0.100E+00
0.338E+03 0.451E+02 0.347E+02 -0.100E+00
0.338E+03 0.450E+02 0.345E+02 -0.100E+00
0.338E+03 0.450E+02 0.409E+02 0.000E+00
0.339E+03 0.451E+02 0.361E+02 0.000E+00
0.339E+03 0.450E+02 0.296E+02 -0.100E+00
0.340E+03 0.450E+02 0.408E+02 0.000E+00
0.340E+03 0.450E+02 0.360E+02 0.000E+00
0.340E+03 0.448E+02 0.360E+02 0.000E+00
0.341E+03 0.448E+02 0.490E+02 0.200E+00
0.341E+03 0.448E+02 0.397E+02 0.200E+00
0.342E+03 0.447E+02 0.399E+02 0.200E+00
0.342E+03 0.448E+02 0.468E+02 0.300E+00
0.342E+03 0.447E+02 0.358E+02 0.200E+00
0.343E+03 0.447E+02 0.475E+02 0.300E+00
0.343E+03 0.447E+02 0.430E+02 0.300E+00
0.344E+03 0.448E+02 0.434E+02 0.300E+00
0.344E+03 0.448E+02 0.373E+02 0.200E+00
0.344E+03 0.447E+02 0.424E+02 0.200E+00
0.345E+03 0.447E+02 0.490E+02 0.300E+00
0.345E+03 0.447E+02 0.446E+02 0.300E+00
0.346E+03 0.447E+02 0.450E+02 0.300E+00
0.346E+03 0.446E+02 0.454E+02 0.300E+00
0.346E+03 0.447E+02 0.490E+02 0.400E+00
0.347E+03 0.447E+02 0.381E+02 0.300E+00
0.347E+03 0.446E+02 0.434E+02 0.300E+00
0.348E+03 0.446E+02 0.490E+02 0.400E+00
0.348E+03 0.446E+02 0.447E+02 0.400E+00
0.348E+03 0.447E+02 0.452E+02 0.400E+00
0.349E+03 0.446E+02 0.392E+02 0.300E+00
0.349E+03 0.446E+02 0.490E+02 0.400E+00
0.350E+03 0.446E+02 0.447E+02 0.400E+00
0.350E+03 0.446E+02 0.452E+02 0.400E+00
0.350E+03 0.446E+02 0.458E+02 0.400E+00
0.351E+03 0.447E+02 0.463E+02 0.400E+00
0.351E+03 0.447E+02 0.403E+02 0.300E+00
0.352E+03 0.446E+02 0.455E+02 0.300E+00
0.352E+03 0.447E+02 0.490E+02 0.400E+00
0.352E+03 0.447E+02 0.381E+02 0.300E+00
0.353E+03 0.447E+02 0.434E+02 0.300E+00
0.353E+03 0.448E+02 0.438E+02 0.300E+00
0.354E+03 0.448E+02 0.376E+02 0.200E+00
0.354E+03 0.448E+02 0.427E+02 0.200E+00
0.354E+03 0.448E+02 0.430E+02 0.200E+00
0.355E+03 0.448E+02 0.432E+02 0.200E+00
0.355E+03 0.448E+02 0.435E+02 0.200E+00
0.356E+03 0.448E+02 0.438E+02 0.200E+00
0.356E+03 0.450E+02 0.440E+02 0.200E+00
0.356E+03 0.450E+02 0.313E+02 0.000E+00
0.357E+03 0.450E+02 0.409E+02 0.000E+00
0.357E+03 0.450E+02 0.409E+02 0.000E+00
0.358E+03 0.451E+02 0.409E+02 0.000E+00
0.358E+03 0.451E+02 0.344E+02 -0.100E+00
0.358E+03 0.451E+02 0.390E+02 -0.100E+00
0.359E+03 0.451E+02 0.389E+02 -0.100E+00
0.359E+03 0.451E+02 0.387E+02 -0.100E+00
0.360E+03 0.450E+02 0.386E+02 -0.100E+00
0.360E+03 0.451E+02 0.450E+02 0.000E+00
0.360E+03 0.450E+02 0.337E+02 -0.100E+00
0.361E+03 0.451E+02 0.449E+02 0.000E+00
0.361E+03 0.451E+02 0.336E+02 -0.100E+00
0.362E+03 0.451E+02 0.383E+02 -0.100E+00
0.362E+03 0.451E+02 0.381E+02 -0.100E+00
0.362E+03 0.451E+02 0.380E+02 -0.100E+00
0.363E+03 0.450E+02 0.379E+02 -0.100E+00
0.363E+03 0.450E+02 0.442E+02 0.000E+00
0.364E+03 0.451E+02 0.395E+02 0.000E+00
0.364E+03 0.450E+02 0.330E+02 -0.100E+00
0.364E+03 0.450E+02 0.441E+02 0.000E+00
0.365E+03 0.450E+02 0.394E+02 0.000E+00
0.365E+03 0.450E+02 0.394E+02 0.000E+00
0.366E+03 0.450E+02 0.394E+02 0.000E+00
0.366E+03 0.450E+02 0.394E+02 0.000E+00
0.366E+03 0.448E+02 0.394E+02 0.000E+00
0.367E+03 0.450E+02 0.490E+02 0.200E+00
0.367E+03 0.448E+02 0.267E+02 0.000E+00
0.368E+03 0.448E+02 0.490E+02 0.200E+00
0.368E+03 0.448E+02 0.397E+02 0.200E+00
0.368E+03 0.448E+02 0.399E+02 0.200E+00
0.369E+03 0.448E+02 0.402E+02 0.200E+00
0.369E+03 0.448E+02 0.405E+02 0.200E+00
0.370E+03 0.448E+02 0.407E+02 0.200E+00
0.370E+03 0.448E+02 0.410E+02 0.200E+00
0.370E+03 0.447E+02 0.413E+02 0.200E+00
0.371E+03 0.448E+02 0.481E+02 0.300E+00
0.371E+03 0.447E+02 0.371E+02 0.200E+00
0.372E+03 0.448E+02 0.488E+02 0.300E+00
0.372E+03 0.447E+02 0.378E+02 0.200E+00
0.372E+03 0.447E+02 0.490E+02 0.300E+00
0.373E+03 0.447E+02 0.446E+02 0.300E+00
0.373E+03 0.446E+02 0.450E+02 0.300E+00
0.374E+03 0.447E+02 0.490E+02 0.400E+00
0.374E+03 0.446E+02 0.381E+02 0.300E+00
0.374E+03 0.447E+02 0.490E+02 0.400E+00
0.375E+03 0.446E+02 0.381E+02 0.300E+00
0.375E+03 0.447E+02 0.490E+02 0.400E+00
0.376E+03 0.447E+02 0.381E+02 0.300E+00
0.376E+03 0.447E+02 0.434E+02 0.300E+00
0.376E+03 0.447E+02 0.438E+02 0.300E+00
0.377E+03 0.447E+02 0.442E+02 0.300E+00
0.377E+03 0.447E+02 0.446E+02 0.300E+00
0.378E+03 0.448E+02 0.450E+02 0.300E+00
0.378E+03 0.447E+02 0.388E+02 0.200E+00
0.378E+03 0.447E+02 0.490E+02 0.300E+00
0.379E+03 0.448E+02 0.446E+02 0.300E+00
0.379E+03 0.448E+02 0.384E+02 0.200E+00
0.380E+03 0.448E+02 0.435E+02 0.200E+00
0.380E+03 0.448E+02 0.438E+02 0.200E+00
0.380E+03 0.448E+02 0.440E+02 0.200E+00
0.381E+03 0.450E+02 0.443E+02 0.200E+00
0.381E+03 0.450E+02 0.316E+02 0.000E+00
0.382E+03 0.448E+02 0.411E+02 0.000E+00
0.382E+03 0.448E+02 0.490E+02 0.200E+00
0.382E+03 0.450E+02 0.397E+02 0.200E+00
0.383E+03 0.450E+02 0.269E+02 0.000E+00
0.383E+03 0.448E+02 0.365E+02 0.000E+00
0.384E+03 0.450E+02 0.490E+02 0.200E+00
0.384E+03 0.450E+02 0.267E+02 0.000E+00
0.384E+03 0.450E+02 0.363E+02 0.000E+00
0.385E+03 0.450E+02 0.363E+02 0.000E+00
0.385E+03 0.450E+02 0.363E+02 0.000E+00
0.386E+03 0.448E+02 0.363E+02 0.000E+00
0.386E+03 0.448E+02 0.490E+02 0.200E+00
0.386E+03 0.448E+02 0.397E+02 0.200E+00
0.387E+03 0.450E+02 0.399E+02 0.200E+00
0.387E+03 0.448E+02 0.272E+02 0.000E+00
0.388E+03 0.450E+02 0.490E+02 0.200E+00
0.388E+03 0.448E+02 0.267E+02 0.000E+00
0.388E+03 0.448E+02 0.490E+02 0.200E+00
0.389E+03 0.448E+02 0.397E+02 0.200E+00
0.389E+03 0.448E+02 0.399E+02 0.200E+00
0.390E+03 0.447E+02 0.402E+02 0.200E+00
0.390E+03 0.447E+02 0.470E+02 0.300E+00
0.390E+03 0.447E+02 0.426E+02 0.300E+00
0.391E+03 0.447E+02 0.430E+02 0.300E+00
0.391E+03 0.448E+02 0.434E+02 0.300E+00
0.392E+03 0.450E+02 0.373E+02 0.200E+00
0.392E+03 0.450E+02 0.293E+02 0.000E+00
0.392E+03 0.448E+02 0.388E+02 0.000E+00
0.393E+03 0.448E+02 0.490E+02 0.200E+00
0.393E+03 0.448E+02 0.397E+02 0.200E+00
0.394E+03 0.448E+02 0.399E+02 0.200E+00
0.394E+03 0.450E+02 0.402E+02 0.200E+00
0.394E+03 0.450E+02 0.275E+02 0.000E+00
0.395E+03 0.450E+02 0.370E+02 0.000E+00
0.395E+03 0.450E+02 0.370E+02 0.000E+00
0.396E+03 0.450E+02 0.370E+02 0.000E+00
0.396E+03 0.450E+02 0.370E+02 0.000E+00
0.396E+03 0.448E+02 0.370E+02 0.000E+00
0.397E+03 0.448E+02 0.490E+02 0.200E+00
0.397E+03 0.448E+02 0.397E+02 0.200E+00
0.398E+03 0.448E+02 0.399E+02 0.200E+00
0.398E+03 0.448E+02 0.402E+02 0.200E+00
0.398E+03 0.448E+02 0.405E+02 0.200E+00
0.399E+03 0.448E+02 0.407E+02 0.200E+00
0.399E+03 0.448E+02 0.410E+02 0.200E+00
0.400E+03 0.447E+02 0.413E+02 0.200E+00
0.400E+03 0.447E+02 0.481E+02 0.300E+00
0.400E+03 0.447E+02 0.437E+02 0.300E+00
0.401E+03 0.447E+02 0.441E+02 0.300E+00
0.401E+03 0.448E+02 0.445E+02 0.300E+00
0.402E+03 0.447E+02 0.383E+02 0.200E+00
0.402E+03 0.447E+02 0.490E+02 0.300E+00
0.402E+03 0.447E+02 0.446E+02 0.300E+00
0.403E+03 0.446E+02 0.450E+02 0.300E+00
0.403E+03 0.446E+02 0.490E+02 0.400E+00
0.404E+03 0.446E+02 0.447E+02 0.400E+00
0.404E+03 0.446E+02 0.452E+02 0.400E+00
0.404E+03 0.447E+02 0.458E+02 0.400E+00
0.405E+03 0.446E+02 0.397E+02 0.300E+00
0.405E+03 0.448E+02 0.490E+02 0.400E+00
0.406E+03 0.448E+02 0.316E+02 0.200E+00
0.406E+03 0.448E+02 0.415E+02 0.200E+00
0.406E+03 0.448E+02 0.418E+02 0.200E+00
0.407E+03 0.448E+02 0.421E+02 0.200E+00
0.407E+03 0.448E+02 0.423E+02 0.200E+00
0.408E+03 0.448E+02 0.426E+02 0.200E+00
0.408E+03 0.448E+02 0.429E+02 0.200E+00
0.408E+03 0.448E+02 0.431E+02 0.200E+00
0.409E+03 0.448E+02 0.434E+02 0.200E+00
0.409E+03 0.448E+02 0.437E+02 0.200E+00
0.410E+03 0.448E+02 0.439E+02 0.200E+00
0.410E+03 0.447E+02 0.442E+02 0.200E+00
0.410E+03 0.447E+02 0.490E+02 0.300E+00
0.411E+03 0.448E+02 0.446E+02 0.300E+00
0.411E+03 0.447E+02 0.384E+02 0.200E+00
0.412E+03 0.448E+02 0.490E+02 0.300E+00
0.412E+03 0.448E+02 0.380E+02 0.200E+00
0.412E+03 0.448E+02 0.431E+02 0.200E+00
0.413E+03 0.450E+02 0.434E+02 0.200E+00
0.413E+03 0.450E+02 0.307E+02 0.000E+00
0.414E+03 0.448E+02 0.402E+02 0.000E+00
0.414E+03 0.448E+02 0.490E+02 0.200E+00
0.414E+03 0.450E+02 0.397E+02 0.200E+00
0.415E+03 0.448E+02 0.269E+02 0.000E+00
0.415E+03 0.448E+02 0.490E+02 0.200E+00
0.416E+03 0.448E+02 0.397E+02 0.200E+00
0.416E+03 0.450E+02 0.399E+02 0.200E+00
0.416E+03 0.448E+02 0.272E+02 0.000E+00
0.417E+03 0.448E+02 0.490E+02 0.200E+00
0.417E+03 0.450E+02 0.397E+02 0.200E+00
0.418E+03 0.450E+02 0.269E+02 0.000E+00
0.418E+03 0.448E+02 0.365E+02 0.000E+00
0.418E+03 0.450E+02 0.490E+02 0.200E+00
0.419E+03 0.448E+02 0.267E+02 0.000E+00
0.419E+03 0.448E+02 0.490E+02 0.200E+00
0.420E+03 0.448E+02 0.397E+02 0.200E+00
0.420E+03 0.450E+02 0.399E+02 0.200E+00
0.420E+03 0.450E+02 0.272E+02 0.000E+00
0.421E+03 0.450E+02 0.367E+02 0.000E+00
0.421E+03 0.450E+02 0.367E+02 0.000E+00
0.422E+03 0.450E+02 0.367E+02 0.000E+00
0.422E+03 0.451E+02 0.367E+02 0.000E+00
0.422E+03 0.448E+02 0.303E+02 -0.100E+00
0.423E+03 0.448E+02 0.490E+02 0.200E+00
0.423E+03 0.450E+02 0.348E+02 0.200E+00
0.424E+03 0.448E+02 0.221E+02 0.000E+00
0.424E+03 0.450E+02 0.448E+02 0.200E+00
0.424E+03 0.448E+02 0.225E+02 0.000E+00
0.425E+03 0.448E+02 0.452E+02 0.200E+00
0.425E+03 0.448E+02 0.359E+02 0.200E+00
0.426E+03 0.448E+02 0.362E+02 0.200E+00
0.426E+03 0.450E+02 0.364E+02 0.200E+00
0.426E+03 0.448E+02 0.237E+02 0.000E+00
0.427E+03 0.450E+02 0.464E+02 0.200E+00
0.427E+03 0.448E+02 0.241E+02 0.000E+00
0.428E+03 0.448E+02 0.468E+02 0.200E+00
0.428E+03 0.448E+02 0.375E+02 0.200E+00
0.428E+03 0.448E+02 0.377E+02 0.200E+00
0.429E+03 0.448E+02 0.380E+02 0.200E+00
0.429E+03 0.448E+02 0.383E+02 0.200E+00
0.430E+03 0.448E+02 0.385E+02 0.200E+00
0.430E+03 0.448E+02 0.388E+02 0.200E+00
0.430E+03 0.447E+02 0.391E+02 0.200E+00
0.431E+03 0.447E+02 0.459E+02 0.300E+00
0.431E+03 0.447E+02 0.415E+02 0.300E+00
0.432E+03 0.447E+02 0.419E+02 0.300E+00
0.432E+03 0.446E+02 0.423E+02 0.300E+00
0.432E+03 0.447E+02 0.490E+02 0.400E+00
0.433E+03 0.447E+02 0.381E+02 0.300E+00
0.433E+03 0.446E+02 0.434E+02 0.300E+00
0.434E+03 0.447E+02 0.490E+02 0.400E+00
0.434E+03 0.446E+02 0.381E+02 0.300E+00
0.434E+03 0.446E+02 0.490E+02 0.400E+00
0.435E+03 0.446E+02 0.447E+02 0.400E+00
0.435E+03 0.446E+02 0.452E+02 0.400E+00
0.436E+03 0.445E+02 0.458E+02 0.400E+00
0.436E+03 0.446E+02 0.490E+02 0.500E+00
0.436E+03 0.446E+02 0.382E+02 0.400E+00
0.437E+03 0.445E+02 0.436E+02 0.400E+00
0.437E+03 0.445E+02 0.490E+02 0.500E+00
0.438E+03 0.446E+02 0.448E+02 0.500E+00
0.438E+03 0.445E+02 0.389E+02 0.400E+00
0.438E+03 0.447E+02 0.490E+02 0.500E+00
0.439E+03 0.446E+02 0.317E+02 0.300E+00
0.439E+03 0.447E+02 0.484E+02 0.400E+00
0.440E+03 0.446E+02 0.375E+02 0.300E+00
0.440E+03 0.446E+02 0.490E+02 0.400E+00
0.440E+03 0.447E+02 0.447E+02 0.400E+00
0.441E+03 0.446E+02 0.387E+02 0.300E+00
0.441E+03 0.446E+02 0.490E+02 0.400E+00
0.442E+03 0.446E+02 0.447E+02 0.400E+00
0.442E+03 0.446E+02 0.452E+02 0.400E+00
0.442E+03 0.446E+02 0.458E+02 0.400E+00
0.443E+03 0.446E+02 0.463E+02 0.400E+00
0.443E+03 0.446E+02 0.468E+02 0.400E+00
0.444E+03 0.446E+02 0.474E+02 0.400E+00
0.444E+03 0.446E+02 0.479E+02 0.400E+00
0.444E+03 0.446E+02 0.485E+02 0.400E+00
0.445E+03 0.446E+02 0.490E+02 0.400E+00
0.445E+03 0.446E+02 0.490E+02 0.400E+00
0.446E+03 0.446E+02 0.490E+02 0.400E+00
0.446E+03 0.446E+02 0.490E+02 0.400E+00
0.446E+03 0.446E+02 0.490E+02 0.400E+00
0.447E+03 0.446E+02 0.490E+02 0.400E+00
0.447E+03 0.447E+02 0.490E+02 0.400E+00
0.448E+03 0.447E+02 0.430E+02 0.300E+00
0.448E+03 0.446E+02 0.482E+02 0.300E+00
0.448E+03 0.446E+02 0.490E+02 0.400E+00
0.449E+03 0.447E+02 0.447E+02 0.400E+00
0.449E+03 0.446E+02 0.387E+02 0.300E+00
0.450E+03 0.446E+02 0.490E+02 0.400E+00
0.450E+03 0.447E+02 0.447E+02 0.400E+00
0.450E+03 0.446E+02 0.387E+02 0.300E+00
0.451E+03 0.447E+02 0.490E+02 0.400E+00
0.451E+03 0.447E+02 0.381E+02 0.300E+00
0.452E+03 0.447E+02 0.434E+02 0.300E+00
0.452E+03 0.447E+02 0.438E+02 0.300E+00
0.452E+03 0.447E+02 0.442E+02 0.300E+00
0.453E+03 0.447E+02 0.446E+02 0.300E+00
0.453E+03 0.447E+02 0.450E+02 0.300E+00
0.454E+03 0.446E+02 0.454E+02 0.300E+00
0.454E+03 0.447E+02 0.490E+02 0.400E+00
0.454E+03 0.447E+02 0.381E+02 0.300E+00
0.455E+03 0.447E+02 0.434E+02 0.300E+00
0.455E+03 0.448E+02 0.438E+02 0.300E+00
0.456E+03 0.447E+02 0.376E+02 0.200E+00
0.456E+03 0.448E+02 0.490E+02 0.300E+00
0.456E+03 0.447E+02 0.380E+02 0.200E+00
0.457E+03 0.448E+02 0.490E+02 0.300E+00
0.457E+03 0.448E+02 0.380E+02 0.200E+00
0.458E+03 0.448E+02 0.431E+02 0.200E+00
0.458E+03 0.450E+02 0.434E+02 0.200E+00
0.458E+03 0.450E+02 0.307E+02 0.000E+00
0.459E+03 0.448E+02 0.402E+02 0.000E+00
0.459E+03 0.450E+02 0.490E+02 0.200E+00
0.460E+03 0.448E+02 0.267E+02 0.000E+00
0.460E+03 0.450E+02 0.490E+02 0.200E+00
0.460E+03 0.448E+02 0.267E+02 0.000E+00
0.461E+03 0.450E+02 0.490E+02 0.200E+00
0.461E+03 0.450E+02 0.267E+02 0.000E+00
0.462E+03 0.450E+02 0.363E+02 0.000E+00
0.462E+03 0.450E+02 0.363E+02 0.000E+00
0.462E+03 0.450E+02 0.363E+02 0.000E+00
0.463E+03 0.450E+02 0.363E+02 0.000E+00
0.463E+03 0.448E+02 0.363E+02 0.000E+00
0.464E+03 0.450E+02 0.490E+02 0.200E+00
0.464E+03 0.448E+02 0.267E+02 0.000E+00
0.464E+03 0.448E+02 0.490E+02 0.200E+00
0.465E+03 0.450E+02 0.397E+02 0.200E+00
0.465E+03 0.450E+02 0.269E+02 0.000E+00
0.466E+03 0.450E+02 0.365E+02 0.000E+00
0.466E+03 0.450E+02 0.365E+02 0.000E+00
0.466E+03 0.450E+02 0.365E+02 0.000E+00
0.467E+03 0.450E+02 0.365E+02 0.000E+00
0.467E+03 0.448E+02 0.365E+02 0.000E+00
0.468E+03 0.448E+02 0.490E+02 0.200E+00
0.468E+03 0.448E+02 0.397E+02 0.200E+00
0.468E+03 0.450E+02 0.399E+02 0.200E+00
0.469E+03 0.450E+02 0.272E+02 0.000E+00
0.469E+03 0.448E+02 0.367E+02 0.000E+00
0.470E+03 0.447E+02 0.490E+02 0.200E+00
0.470E+03 0.448E+02 0.462E+02 0.300E+00
0.470E+03 0.447E+02 0.352E+02 0.200E+00
0.471E+03 0.448E+02 0.469E+02 0.300E+00
0.471E+03 0.448E+02 0.359E+02 0.200E+00
0.472E+03 0.448E+02 0.410E+02 0.200E+00
0.472E+03 0.448E+02 0.413E+02 0.200E+00
0.472E+03 0.448E+02 0.416E+02 0.200E+00
0.473E+03 0.448E+02 0.418E+02 0.200E+00
0.473E+03 0.448E+02 0.421E+02 0.200E+00
0.474E+03 0.448E+02 0.424E+02 0.200E+00
0.474E+03 0.448E+02 0.426E+02 0.200E+00
0.474E+03 0.448E+02 0.429E+02 0.200E+00
0.475E+03 0.448E+02 0.432E+02 0.200E+00
0.475E+03 0.448E+02 0.434E+02 0.200E+00
0.476E+03 0.450E+02 0.437E+02 0.200E+00
0.476E+03 0.448E+02 0.310E+02 0.000E+00
0.476E+03 0.448E+02 0.490E+02 0.200E+00
0.477E+03 0.450E+02 0.397E+02 0.200E+00
0.477E+03 0.450E+02 0.269E+02 0.000E+00
0.478E+03 0.450E+02 0.365E+02 0.000E+00
0.478E+03 0.450E+02 0.365E+02 0.000E+00
0.478E+03 0.450E+02 0.365E+02 0.000E+00
0.479E+03 0.450E+02 0.365E+02 0.000E+00
0.479E+03 0.451E+02 0.365E+02 0.000E+00
0.480E+03 0.450E+02 0.300E+02 -0.100E+00
0.480E+03 0.450E+02 0.411E+02 0.000E+00
0.480E+03 0.450E+02 0.364E+02 0.000E+00
0.481E+03 0.450E+02 0.364E+02 0.000E+00
0.481E+03 0.451E+02 0.364E+02 0.000E+00
0.482E+03 0.450E+02 0.299E+02 -0.100E+00
0.482E+03 0.450E+02 0.410E+02 0.000E+00
0.482E+03 0.451E+02 0.362E+02 0.000E+00
0.483E+03 0.450E+02 0.298E+02 -0.100E+00
0.483E+03 0.451E+02 0.409E+02 0.000E+00
0.484E+03 0.450E+02 0.297E+02 -0.100E+00
0.484E+03 0.450E+02 0.408E+02 0.000E+00
0.484E+03 0.450E+02 0.360E+02 0.000E+00
0.485E+03 0.450E+02 0.360E+02 0.000E+00
0.485E+03 0.451E+02 0.360E+02 0.000E+00
0.486E+03 0.451E+02 0.296E+02 -0.100E+00
0.486E+03 0.450E+02 0.342E+02 -0.100E+00
0.486E+03 0.450E+02 0.406E+02 0.000E+00
0.487E+03 0.451E+02 0.358E+02 0.000E+00
0.487E+03 0.450E+02 0.293E+02 -0.100E+00
0.488E+03 0.450E+02 0.405E+02 0.000E+00
0.488E+03 0.450E+02 0.357E+02 0.000E+00
0.488E+03 0.450E+02 0.357E+02 0.000E+00
0.489E+03 0.448E+02 0.357E+02 0.000E+00
0.489E+03 0.448E+02 0.488E+02 0.200E+00
0.490E+03 0.448E+02 0.394E+02 0.200E+00
0.490E+03 0.448E+02 0.397E+02 0.200E+00
0.490E+03 0.447E+02 0.399E+02 0.200E+00
0.491E+03 0.447E+02 0.468E+02 0.300E+00
0.491E+03 0.447E+02 0.424E+02 0.300E+00
0.492E+03 0.447E+02 0.428E+02 0.300E+00
0.492E+03 0.447E+02 0.432E+02 0.300E+00
0.492E+03 0.447E+02 0.436E+02 0.300E+00
0.493E+03 0.446E+02 0.440E+02 0.300E+00
0.493E+03 0.447E+02 0.490E+02 0.400E+00
0.494E+03 0.446E+02 0.381E+02 0.300E+00
0.494E+03 0.446E+02 0.490E+02 0.400E+00
0.494E+03 0.446E+02 0.447E+02 0.400E+00
0.495E+03 0.447E+02 0.452E+02 0.400E+00
0.495E+03 0.446E+02 0.392E+02 0.300E+00
0.496E+03 0.446E+02 0.490E+02 0.400E+00
0.496E+03 0.446E+02 0.447E+02 0.400E+00
0.496E+03 0.446E+02 0.452E+02 0.400E+00
0.497E+03 0.446E+02 0.458E+02 0.400E+00
0.497E+03 0.445E+02 0.463E+02 0.400E+00
0.498E+03 0.446E+02 0.490E+02 0.500E+00
0.498E+03 0.446E+02 0.382E+02 0.400E+00
0.498E+03 0.446E+02 0.436E+02 0.400E+00
0.499E+03 0.447E+02 0.442E+02 0.400E+00
0.499E+03 0.446E+02 0.381E+02 0.300E+00
0.500E+03 0.446E+02 0.490E+02 0.400E+00
0.500E+03 0.446E+02 0.447E+02 0.400E+00
0.500E+03 0.446E+02 0.452E+02 0.400E+00
0.501E+03 0.446E+02 0.458E+02 0.400E+00
0.501E+03 0.445E+02 0.463E+02 0.400E+00
0.502E+03 0.445E+02 0.490E+02 0.500E+00
0.502E+03 0.445E+02 0.448E+02 0.500E+00
0.502E+03 0.445E+02 0.455E+02 0.500E+00
0.503E+03 0.445E+02 0.462E+02 0.500E+00
0.503E+03 0.445E+02 0.468E+02 0.500E+00
0.504E+03 0.445E+02 0.475E+02 0.500E+00
0.504E+03 0.446E+02 0.482E+02 0.500E+00
0.504E+03 0.445E+02 0.423E+02 0.400E+00
0.505E+03 0.446E+02 0.490E+02 0.500E+00
0.505E+03 0.445E+02 0.382E+02 0.400E+00
0.506E+03 0.446E+02 0.490E+02 0.500E+00
0.506E+03 0.446E+02 0.382E+02 0.400E+00
0.506E+03 0.446E+02 0.436E+02 0.400E+00
0.507E+03 0.446E+02 0.442E+02 0.400E+00
0.507E+03 0.446E+02 0.447E+02 0.400E+00
0.508E+03 0.446E+02 0.452E+02 0.400E+00
0.508E+03 0.446E+02 0.458E+02 0.400E+00
0.508E+03 0.447E+02 0.463E+02 0.400E+00
0.509E+03 0.447E+02 0.403E+02 0.300E+00
0.509E+03 0.447E+02 0.455E+02 0.300E+00
0.510E+03 0.448E+02 0.459E+02 0.300E+00
0.510E+03 0.448E+02 0.398E+02 0.200E+00
0.510E+03 0.448E+02 0.448E+02 0.200E+00
0.511E+03 0.448E+02 0.451E+02 0.200E+00
0.511E+03 0.448E+02 0.454E+02 0.200E+00
0.512E+03 0.448E+02 0.456E+02 0.200E+00
0.512E+03 0.448E+02 0.459E+02 0.200E+00
0.512E+03 0.448E+02 0.462E+02 0.200E+00
0.513E+03 0.448E+02 0.464E+02 0.200E+00
0.513E+03 0.448E+02 0.467E+02 0.200E+00
0.514E+03 0.447E+02 0.470E+02 0.200E+00
0.514E+03 0.448E+02 0.490E+02 0.300E+00
0.514E+03 0.448E+02 0.380E+02 0.200E+00
0.515E+03 0.448E+02 0.431E+02 0.200E+00
0.515E+03 0.448E+02 0.434E+02 0.200E+00
0.516E+03 0.448E+02 0.437E+02 0.200E+00
0.516E+03 0.447E+02 0.439E+02 0.200E+00
0.516E+03 0.448E+02 0.490E+02 0.300E+00
0.517E+03 0.448E+02 0.380E+02 0.200E+00
0.517E+03 0.448E+02 0.431E+02 0.200E+00
0.518E+03 0.448E+02 0.434E+02 0.200E+00
0.518E+03 0.450E+02 0.437E+02 0.200E+00
0.518E+03 0.447E+02 0.309E+02 0.000E+00
0.519E+03 0.448E+02 0.490E+02 0.300E+00
0.519E+03 0.448E+02 0.284E+02 0.200E+00
0.520E+03 0.448E+02 0.335E+02 0.200E+00
0.520E+03 0.450E+02 0.338E+02 0.200E+00
0.520E+03 0.448E+02 0.210E+02 0.000E+00
0.521E+03 0.450E+02 0.437E+02 0.200E+00
0.521E+03 0.450E+02 0.215E+02 0.000E+00
0.522E+03 0.450E+02 0.310E+02 0.000E+00
0.522E+03 0.448E+02 0.310E+02 0.000E+00
0.522E+03 0.448E+02 0.441E+02 0.200E+00
0.523E+03 0.448E+02 0.348E+02 0.200E+00
0.523E+03 0.448E+02 0.350E+02 0.200E+00
0.524E+03 0.447E+02 0.353E+02 0.200E+00
0.524E+03 0.448E+02 0.421E+02 0.300E+00
0.524E+03 0.447E+02 0.312E+02 0.200E+00
0.525E+03 0.447E+02 0.428E+02 0.300E+00
0.525E+03 0.446E+02 0.384E+02 0.300E+00
0.526E+03 0.447E+02 0.454E+02 0.400E+00
0.526E+03 0.446E+02 0.345E+02 0.300E+00
0.526E+03 0.447E+02 0.464E+02 0.400E+00
0.527E+03 0.446E+02 0.355E+02 0.300E+00
0.527E+03 0.445E+02 0.474E+02 0.400E+00
0.528E+03 0.445E+02 0.490E+02 0.500E+00
0.528E+03 0.445E+02 0.448E+02 0.500E+00
0.528E+03 0.445E+02 0.455E+02 0.500E+00
0.529E+03 0.446E+02 0.462E+02 0.500E+00
0.529E+03 0.444E+02 0.402E+02 0.400E+00
0.530E+03 0.445E+02 0.490E+02 0.600E+00
0.530E+03 0.445E+02 0.335E+02 0.500E+00
0.530E+03 0.444E+02 0.390E+02 0.500E+00
0.531E+03 0.445E+02 0.463E+02 0.600E+00
0.531E+03 0.444E+02 0.357E+02 0.500E+00
0.532E+03 0.445E+02 0.479E+02 0.600E+00
0.532E+03 0.444E+02 0.372E+02 0.500E+00
0.532E+03 0.445E+02 0.490E+02 0.600E+00
0.533E+03 0.446E+02 0.383E+02 0.500E+00
0.533E+03 0.446E+02 0.373E+02 0.400E+00
0.534E+03 0.445E+02 0.426E+02 0.400E+00
0.534E+03 0.446E+02 0.490E+02 0.500E+00
0.534E+03 0.445E+02 0.382E+02 0.400E+00
0.535E+03 0.446E+02 0.490E+02 0.500E+00
0.535E+03 0.445E+02 0.382E+02 0.400E+00
0.536E+03 0.446E+02 0.490E+02 0.500E+00
0.536E+03 0.445E+02 0.382E+02 0.400E+00
0.536E+03 0.446E+02 0.490E+02 0.500E+00
0.537E+03 0.446E+02 0.382E+02 0.400E+00
0.537E+03 0.446E+02 0.436E+02 0.400E+00
0.538E+03 0.446E+02 0.442E+02 0.400E+00
0.538E+03 0.445E+02 0.447E+02 0.400E+00
0.538E+03 0.445E+02 0.490E+02 0.500E+00
0.539E+03 0.445E+02 0.448E+02 0.500E+00
0.539E+03 0.446E+02 0.455E+02 0.500E+00
0.540E+03 0.446E+02 0.396E+02 0.400E+00
0.540E+03 0.446E+02 0.450E+02 0.400E+00
0.540E+03 0.446E+02 0.455E+02 0.400E+00
0.541E+03 0.446E+02 0.460E+02 0.400E+00
0.541E+03 0.447E+02 0.466E+02 0.400E+00
0.542E+03 0.446E+02 0.405E+02 0.300E+00
0.542E+03 0.446E+02 0.490E+02 0.400E+00
0.542E+03 0.446E+02 0.447E+02 0.400E+00
0.543E+03 0.447E+02 0.452E+02 0.400E+00
0.543E+03 0.447E+02 0.392E+02 0.300E+00
0.544E+03 0.447E+02 0.444E+02 0.300E+00
0.544E+03 0.448E+02 0.448E+02 0.300E+00
0.544E+03 0.448E+02 0.387E+02 0.200E+00
0.545E+03 0.448E+02 0.438E+02 0.200E+00
0.545E+03 0.447E+02 0.440E+02 0.200E+00
0.546E+03 0.447E+02 0.490E+02 0.300E+00
0.546E+03 0.447E+02 0.446E+02 0.300E+00
0.546E+03 0.448E+02 0.450E+02 0.300E+00
0.547E+03 0.447E+02 0.388E+02 0.200E+00
0.547E+03 0.448E+02 0.490E+02 0.300E+00
0.548E+03 0.448E+02 0.380E+02 0.200E+00
0.548E+03 0.448E+02 0.431E+02 0.200E+00
0.548E+03 0.448E+02 0.434E+02 0.200E+00
0.549E+03 0.448E+02 0.437E+02 0.200E+00
0.549E+03 0.448E+02 0.439E+02 0.200E+00
0.550E+03 0.448E+02 0.442E+02 0.200E+00
0.550E+03 0.448E+02 0.445E+02 0.200E+00
0.550E+03 0.448E+02 0.447E+02 0.200E+00
0.551E+03 0.448E+02 0.450E+02 0.200E+00
0.551E+03 0.450E+02 0.453E+02 0.200E+00
0.552E+03 0.448E+02 0.325E+02 0.000E+00
0.552E+03 0.450E+02 0.490E+02 0.200E+00
0.552E+03 0.450E+02 0.267E+02 0.000E+00
0.553E+03 0.448E+02 0.363E+02 0.000E+00
0.553E+03 0.450E+02 0.490E+02 0.200E+00
0.554E+03 0.451E+02 0.267E+02 0.000E+00
0.554E+03 0.451E+02 0.298E+02 -0.100E+00
0.554E+03 0.450E+02 0.344E+02 -0.100E+00
0.555E+03 0.450E+02 0.407E+02 0.000E+00
0.555E+03 0.450E+02 0.360E+02 0.000E+00
0.556E+03 0.451E+02 0.360E+02 0.000E+00
0.556E+03 0.450E+02 0.295E+02 -0.100E+00
0.556E+03 0.450E+02 0.406E+02 0.000E+00
0.557E+03 0.448E+02 0.359E+02 0.000E+00
0.557E+03 0.450E+02 0.490E+02 0.200E+00
0.558E+03 0.448E+02 0.267E+02 0.000E+00
0.558E+03 0.450E+02 0.490E+02 0.200E+00
0.558E+03 0.450E+02 0.267E+02 0.000E+00
0.559E+03 0.448E+02 0.363E+02 0.000E+00
0.559E+03 0.450E+02 0.490E+02 0.200E+00
0.560E+03 0.448E+02 0.267E+02 0.000E+00
0.560E+03 0.448E+02 0.490E+02 0.200E+00
0.560E+03 0.448E+02 0.397E+02 0.200E+00
0.561E+03 0.448E+02 0.399E+02 0.200E+00
0.561E+03 0.448E+02 0.402E+02 0.200E+00
0.562E+03 0.448E+02 0.405E+02 0.200E+00
0.562E+03 0.447E+02 0.407E+02 0.200E+00
0.562E+03 0.447E+02 0.476E+02 0.300E+00
0.563E+03 0.447E+02 0.431E+02 0.300E+00
0.563E+03 0.446E+02 0.435E+02 0.300E+00
0.564E+03 0.446E+02 0.490E+02 0.400E+00
0.564E+03 0.446E+02 0.447E+02 0.400E+00
0.564E+03 0.446E+02 0.452E+02 0.400E+00
0.565E+03 0.446E+02 0.458E+02 0.400E+00
0.565E+03 0.445E+02 0.463E+02 0.400E+00
0.566E+03 0.445E+02 0.490E+02 0.500E+00
0.566E+03 0.445E+02 0.448E+02 0.500E+00
0.566E+03 0.445E+02 0.455E+02 0.500E+00
0.567E+03 0.445E+02 0.462E+02 0.500E+00
0.567E+03 0.445E+02 0.468E+02 0.500E+00
0.568E+03 0.445E+02 0.475E+02 0.500E+00
0.568E+03 0.445E+02 0.482E+02 0.500E+00
0.568E+03 0.445E+02 0.489E+02 0.500E+00
0.569E+03 0.445E+02 0.490E+02 0.500E+00
0.569E+03 0.444E+02 0.490E+02 0.500E+00
0.570E+03 0.445E+02 0.490E+02 0.600E+00
0.570E+03 0.445E+02 0.383E+02 0.500E+00
0.570E+03 0.445E+02 0.439E+02 0.500E+00
0.571E+03 0.445E+02 0.445E+02 0.500E+00
0.571E+03 0.445E+02 0.452E+02 0.500E+00
0.572E+03 0.445E+02 0.459E+02 0.500E+00
0.572E+03 0.445E+02 0.466E+02 0.500E+00
0.572E+03 0.446E+02 0.472E+02 0.500E+00
0.573E+03 0.445E+02 0.413E+02 0.400E+00
0.573E+03 0.446E+02 0.490E+02 0.500E+00
0.574E+03 0.446E+02 0.382E+02 0.400E+00
0.574E+03 0.446E+02 0.436E+02 0.400E+00
0.574E+03 0.446E+02 0.442E+02 0.400E+00
0.575E+03 0.446E+02 0.447E+02 0.400E+00
0.575E+03 0.446E+02 0.452E+02 0.400E+00
0.576E+03 0.446E+02 0.458E+02 0.400E+00
0.576E+03 0.446E+02 0.463E+02 0.400E+00
0.576E+03 0.446E+02 0.468E+02 0.400E+00
0.577E+03 0.446E+02 0.474E+02 0.400E+00
0.577E+03 0.447E+02 0.479E+02 0.400E+00
0.578E+03 0.446E+02 0.419E+02 0.300E+00
0.578E+03 0.447E+02 0.490E+02 0.400E+00
0.578E+03 0.447E+02 0.381E+02 0.300E+00
0.579E+03 0.447E+02 0.434E+02 0.300E+00
0.579E+03 0.448E+02 0.438E+02 0.300E+00
0.580E+03 0.448E+02 0.376E+02 0.200E+00
0.580E+03 0.448E+02 0.427E+02 0.200E+00
0.580E+03 0.450E+02 0.430E+02 0.200E+00
0.581E+03 0.448E+02 0.302E+02 0.000E+00
0.581E+03 0.450E+02 0.490E+02 0.200E+00
0.582E+03 0.450E+02 0.267E+02 0.000E+00
0.582E+03 0.450E+02 0.363E+02 0.000E+00
0.582E+03 0.450E+02 0.363E+02 0.000E+00
0.583E+03 0.450E+02 0.363E+02 0.000E+00
0.583E+03 0.450E+02 0.363E+02 0.000E+00
0.584E+03 0.450E+02 0.363E+02 0.000E+00
0.584E+03 0.448E+02 0.363E+02 0.000E+00
0.584E+03 0.448E+02 0.490E+02 0.200E+00
0.585E+03 0.450E+02 0.397E+02 0.200E+00
0.585E+03 0.448E+02 0.269E+02 0.000E+00
0.586E+03 0.448E+02 0.490E+02 0.200E+00
0.586E+03 0.448E+02 0.397E+02 0.200E+00
0.586E+03 0.448E+02 0.399E+02 0.200E+00
0.587E+03 0.447E+02 0.402E+02 0.200E+00
0.587E+03 0.448E+02 0.470E+02 0.300E+00
0.588E+03 0.448E+02 0.361E+02 0.200E+00
0.588E+03 0.448E+02 0.411E+02 0.200E+00
0.588E+03 0.448E+02 0.414E+02 0.200E+00
0.589E+03 0.448E+02 0.417E+02 0.200E+00
0.589E+03 0.448E+02 0.419E+02 0.200E+00
0.590E+03 0.448E+02 0.422E+02 0.200E+00
0.590E+03 0.447E+02 0.425E+02 0.200E+00
0.590E+03 0.447E+02 0.490E+02 0.300E+00
0.591E+03 0.447E+02 0.446E+02 0.300E+00
0.591E+03 0.448E+02 0.450E+02 0.300E+00
0.592E+03 0.447E+02 0.388E+02 0.200E+00
0.592E+03 0.448E+02 0.490E+02 0.300E+00
0.592E+03 0.448E+02 0.380E+02 0.200E+00
0.593E+03 0.448E+02 0.431E+02 0.200E+00
0.593E+03 0.447E+02 0.434E+02 0.200E+00
0.594E+03 0.447E+02 0.490E+02 0.300E+00
0.594E+03 0.447E+02 0.446E+02 0.300E+00
0.594E+03 0.448E+02 0.450E+02 0.300E+00
0.595E+03 0.448E+02 0.388E+02 0.200E+00
0.595E+03 0.446E+02 0.439E+02 0.200E+00
0.596E+03 0.448E+02 0.490E+02 0.400E+00
0.596E+03 0.447E+02 0.268E+02 0.200E+00
0.596E+03 0.447E+02 0.433E+02 0.300E+00
0.597E+03 0.447E+02 0.389E+02 0.300E+00
0.597E+03 0.447E+02 0.393E+02 0.300E+00
0.598E+03 0.446E+02 0.397E+02 0.300E+00
0.598E+03 0.447E+02 0.467E+02 0.400E+00
0.598E+03 0.447E+02 0.358E+02 0.300E+00
0.599E+03 0.447E+02 0.411E+02 0.300E+00
0.599E+03 0.446E+02 0.415E+02 0.300E+00
0.600E+03 0.447E+02 0.485E+02 0.400E+00
0.600E+03 0.446E+02 0.376E+02 0.300E+00
0.600E+03 0.446E+02 0.490E+02 0.400E+00
0.601E+03 0.445E+02 0.447E+02 0.400E+00
0.601E+03 0.446E+02 0.490E+02 0.500E+00
0.602E+03 0.446E+02 0.382E+02 0.400E+00
0.602E+03 0.445E+02 0.436E+02 0.400E+00
0.602E+03 0.445E+02 0.490E+02 0.500E+00
0.603E+03 0.445E+02 0.448E+02 0.500E+00
0.603E+03 0.444E+02 0.455E+02 0.500E+00
0.604E+03 0.445E+02 0.490E+02 0.600E+00
0.604E+03 0.444E+02 0.383E+02 0.500E+00
0.604E+03 0.444E+02 0.490E+02 0.600E+00
0.605E+03 0.445E+02 0.449E+02 0.600E+00
0.605E+03 0.445E+02 0.391E+02 0.500E+00
0.606E+03 0.445E+02 0.447E+02 0.500E+00
0.606E+03 0.444E+02 0.453E+02 0.500E+00
0.606E+03 0.444E+02 0.490E+02 0.600E+00
0.607E+03 0.445E+02 0.449E+02 0.600E+00
0.607E+03 0.445E+02 0.391E+02 0.500E+00
0.608E+03 0.444E+02 0.447E+02 0.500E+00
0.608E+03 0.445E+02 0.490E+02 0.600E+00
0.608E+03 0.445E+02 0.383E+02 0.500E+00
0.609E+03 0.445E+02 0.439E+02 0.500E+00
0.609E+03 0.445E+02 0.445E+02 0.500E+00
0.610E+03 0.445E+02 0.452E+02 0.500E+00
0.610E+03 0.445E+02 0.459E+02 0.500E+00
0.610E+03 0.446E+02 0.466E+02 0.500E+00
0.611E+03 0.445E+02 0.407E+02 0.400E+00
0.611E+03 0.445E+02 0.490E+02 0.500E+00
0.612E+03 0.446E+02 0.448E+02 0.500E+00
0.612E+03 0.446E+02 0.389E+02 0.400E+00
0.612E+03 0.446E+02 0.443E+02 0.400E+00
0.613E+03 0.445E+02 0.448E+02 0.400E+00
0.613E+03 0.446E+02 0.490E+02 0.500E+00
0.614E+03 0.446E+02 0.382E+02 0.400E+00
0.614E+03 0.446E+02 0.436E+02 0.400E+00
0.614E+03 0.446E+02 0.442E+02 0.400E+00
0.615E+03 0.446E+02 0.447E+02 0.400E+00
0.615E+03 0.445E+02 0.452E+02 0.400E+00
0.616E+03 0.446E+02 0.490E+02 0.500E+00
0.616E+03 0.446E+02 0.382E+02 0.400E+00
0.616E+03 0.446E+02 0.436E+02 0.400E+00
0.617E+03 0.446E+02 0.442E+02 0.400E+00
0.617E+03 0.446E+02 0.447E+02 0.400E+00
0.618E+03 0.446E+02 0.452E+02 0.400E+00
0.618E+03 0.446E+02 0.458E+02 0.400E+00
0.618E+03 0.446E+02 0.463E+02 0.400E+00
0.619E+03 0.446E+02 0.468E+02 0.400E+00
0.619E+03 0.446E+02 0.474E+02 0.400E+00
0.620E+03 0.446E+02 0.479E+02 0.400E+00
0.620E+03 0.446E+02 0.485E+02 0.400E+00
0.620E+03 0.446E+02 0.490E+02 0.400E+00
0.621E+03 0.446E+02 0.490E+02 0.400E+00
0.621E+03 0.446E+02 0.490E+02 0.400E+00
0.622E+03 0.446E+02 0.490E+02 0.400E+00
0.622E+03 0.447E+02 0.490E+02 0.400E+00
0.622E+03 0.447E+02 0.430E+02 0.300E+00
0.623E+03 0.448E+02 0.482E+02 0.300E+00
0.623E+03 0.448E+02 0.421E+02 0.200E+00
0.624E+03 0.447E+02 0.471E+02 0.200E+00
0.624E+03 0.448E+02 0.490E+02 0.300E+00
0.624E+03 0.448E+02 0.380E+02 0.200E+00
0.625E+03 0.448E+02 0.431E+02 0.200E+00
0.625E+03 0.448E+02 0.434E+02 0.200E+00
0.626E+03 0.448E+02 0.437E+02 0.200E+00
0.626E+03 0.448E+02 0.439E+02 0.200E+00
0.626E+03 0.448E+02 0.442E+02 0.200E+00
0.627E+03 0.448E+02 0.445E+02 0.200E+00
0.627E+03 0.450E+02 0.447E+02 0.200E+00
0.628E+03 0.448E+02 0.320E+02 0.000E+00
0.628E+03 0.450E+02 0.490E+02 0.200E+00
0.628E+03 0.450E+02 0.267E+02 0.000E+00
0.629E+03 0.450E+02 0.363E+02 0.000E+00
0.629E+03 0.450E+02 0.363E+02 0.000E+00
0.630E+03 0.450E+02 0.363E+02 0.000E+00
0.630E+03 0.450E+02 0.363E+02 0.000E+00
0.630E+03 0.450E+02 0.363E+02 0.000E+00
0.631E+03 0.450E+02 0.363E+02 0.000E+00
0.631E+03 0.450E+02 0.363E+02 0.000E+00
0.632E+03 0.448E+02 0.363E+02 0.000E+00
0.632E+03 0.450E+02 0.490E+02 0.200E+00
0.632E+03 0.447E+02 0.267E+02 0.000E+00
0.633E+03 0.448E+02 0.490E+02 0.300E+00
0.633E+03 0.448E+02 0.284E+02 0.200E+00
0.634E+03 0.448E+02 0.335E+02 0.200E+00
0.634E+03 0.450E+02 0.338E+02 0.200E+00
0.634E+03 0.448E+02 0.210E+02 0.000E+00
0.635E+03 0.448E+02 0.437E+02 0.200E+00
0.635E+03 0.448E+02 0.344E+02 0.200E+00
0.636E+03 0.448E+02 0.347E+02 0.200E+00
0.636E+03 0.447E+02 0.349E+02 0.200E+00
0.636E+03 0.447E+02 0.418E+02 0.300E+00
0.637E+03 0.447E+02 0.373E+02 0.300E+00
0.637E+03 0.447E+02 0.377E+02 0.300E+00
0.638E+03 0.446E+02 0.381E+02 0.300E+00
0.638E+03 0.446E+02 0.451E+02 0.400E+00
0.638E+03 0.446E+02 0.408E+02 0.400E+00
0.639E+03 0.446E+02 0.414E+02 0.400E+00
0.639E+03 0.445E+02 0.419E+02 0.400E+00
0.640E+03 0.446E+02 0.490E+02 0.500E+00
0.640E+03 0.445E+02 0.382E+02 0.400E+00
0.640E+03 0.446E+02 0.490E+02 0.500E+00
0.641E+03 0.445E+02 0.382E+02 0.400E+00
0.641E+03 0.445E+02 0.490E+02 0.500E+00
0.642E+03 0.446E+02 0.448E+02 0.500E+00
0.642E+03 0.446E+02 0.389E+02 0.400E+00
0.642E+03 0.445E+02 0.443E+02 0.400E+00
0.643E+03 0.444E+02 0.490E+02 0.500E+00
0.643E+03 0.444E+02 0.490E+02 0.600E+00
0.644E+03 0.445E+02 0.449E+02 0.600E+00
0.644E+03 0.444E+02 0.391E+02 0.500E+00
0.644E+03 0.445E+02 0.490E+02 0.600E+00
0.645E+03 0.446E+02 0.383E+02 0.500E+00
0.645E+03 0.445E+02 0.373E+02 0.400E+00
0.646E+03 0.445E+02 0.490E+02 0.500E+00
0.646E+03 0.446E+02 0.448E+02 0.500E+00
0.646E+03 0.446E+02 0.389E+02 0.400E+00
0.647E+03 0.445E+02 0.443E+02 0.400E+00
0.647E+03 0.446E+02 0.490E+02 0.500E+00
0.648E+03 0.445E+02 0.382E+02 0.400E+00
0.648E+03 0.447E+02 0.490E+02 0.500E+00
0.648E+03 0.446E+02 0.317E+02 0.300E+00
0.649E+03 0.447E+02 0.484E+02 0.400E+00
0.649E+03 0.446E+02 0.375E+02 0.300E+00
0.650E+03 0.446E+02 0.490E+02 0.400E+00
0.650E+03 0.447E+02 0.447E+02 0.400E+00
0.650E+03 0.446E+02 0.387E+02 0.300E+00
0.651E+03 0.446E+02 0.490E+02 0.400E+00
0.651E+03 0.446E+02 0.447E+02 0.400E+00
0.652E+03 0.447E+02 0.452E+02 0.400E+00
0.652E+03 0.447E+02 0.392E+02 0.300E+00
0.652E+03 0.448E+02 0.444E+02 0.300E+00
0.653E+03 0.448E+02 0.383E+02 0.200E+00
0.653E+03 0.447E+02 0.434E+02 0.200E+00
0.654E+03 0.447E+02 0.490E+02 0.300E+00
0.654E+03 0.447E+02 0.446E+02 0.300E+00
0.654E+03 0.448E+02 0.450E+02 0.300E+00
0.655E+03 0.447E+02 0.388E+02 0.200E+00
0.655E+03 0.448E+02 0.490E+02 0.300E+00
0.656E+03 0.448E+02 0.380E+02 0.200E+00
0.656E+03 0.448E+02 0.431E+02 0.200E+00
0.656E+03 0.448E+02 0.434E+02 0.200E+00
0.657E+03 0.450E+02 0.437E+02 0.200E+00
0.657E+03 0.448E+02 0.309E+02 0.000E+00
0.658E+03 0.448E+02 0.490E+02 0.200E+00
0.658E+03 0.448E+02 0.397E+02 0.200E+00
0.658E+03 0.448E+02 0.399E+02 0.200E+00
0.659E+03 0.448E+02 0.402E+02 0.200E+00
0.659E+03 0.448E+02 0.405E+02 0.200E+00
0.660E+03 0.448E+02 0.407E+02 0.200E+00
0.660E+03 0.448E+02 0.410E+02 0.200E+00
0.660E+03 0.448E+02 0.413E+02 0.200E+00
0.661E+03 0.448E+02 0.415E+02 0.200E+00
0.661E+03 0.448E+02 0.418E+02 0.200E+00
0.662E+03 0.448E+02 0.421E+02 0.200E+00
0.662E+03 0.450E+02 0.423E+02 0.200E+00
0.662E+03 0.448E+02 0.296E+02 0.000E+00
0.663E+03 0.450E+02 0.490E+02 0.200E+00
0.663E+03 0.448E+02 0.267E+02 0.000E+00
0.664E+03 0.450E+02 0.490E+02 0.200E+00
0.664E+03 0.448E+02 0.267E+02 0.000E+00
0.664E+03 0.450E+02 0.490E+02 0.200E+00
0.665E+03 0.450E+02 0.267E+02 0.000E+00
0.665E+03 0.448E+02 0.363E+02 0.000E+00
0.666E+03 0.450E+02 0.490E+02 0.200E+00
0.666E+03 0.448E+02 0.267E+02 0.000E+00
0.666E+03 0.450E+02 0.490E+02 0.200E+00
0.667E+03 0.450E+02 0.267E+02 0.000E+00
0.667E+03 0.451E+02 0.363E+02 0.000E+00
0.668E+03 0.451E+02 0.298E+02 -0.100E+00
0.668E+03 0.451E+02 0.344E+02 -0.100E+00
0.668E+03 0.451E+02 0.343E+02 -0.100E+00
0.669E+03 0.451E+02 0.342E+02 -0.100E+00
0.669E+03 0.451E+02 0.340E+02 -0.100E+00
0.670E+03 0.452E+02 0.339E+02 -0.100E+00
0.670E+03 0.451E+02 0.273E+02 -0.200E+00
0.670E+03 0.452E+02 0.383E+02 -0.100E+00
0.671E+03 0.452E+02 0.269E+02 -0.200E+00
0.671E+03 0.452E+02 0.314E+02 -0.200E+00
0.672E+03 0.452E+02 0.312E+02 -0.200E+00
0.672E+03 0.452E+02 0.309E+02 -0.200E+00
0.672E+03 0.451E+02 0.306E+02 -0.200E+00
0.673E+03 0.452E+02 0.368E+02 -0.100E+00
0.673E+03 0.452E+02 0.255E+02 -0.200E+00
0.674E+03 0.451E+02 0.300E+02 -0.200E+00
0.674E+03 0.451E+02 0.362E+02 -0.100E+00
0.674E+03 0.450E+02 0.313E+02 -0.100E+00
0.675E+03 0.450E+02 0.377E+02 0.000E+00
0.675E+03 0.448E+02 0.329E+02 0.000E+00
0.676E+03 0.448E+02 0.460E+02 0.200E+00
0.676E+03 0.448E+02 0.367E+02 0.200E+00
0.676E+03 0.447E+02 0.369E+02 0.200E+00
0.677E+03 0.445E+02 0.438E+02 0.300E+00
0.677E+03 0.447E+02 0.490E+02 0.500E+00
0.678E+03 0.446E+02 0.269E+02 0.300E+00
0.678E+03 0.445E+02 0.436E+02 0.400E+00
0.678E+03 0.445E+02 0.459E+02 0.500E+00
0.679E+03 0.445E+02 0.417E+02 0.500E+00
0.679E+03 0.444E+02 0.423E+02 0.500E+00
0.680E+03 0.445E+02 0.490E+02 0.600E+00
0.680E+03 0.444E+02 0.383E+02 0.500E+00
0.680E+03 0.444E+02 0.490E+02 0.600E+00
0.681E+03 0.444E+02 0.449E+02 0.600E+00
0.681E+03 0.444E+02 0.457E+02 0.600E+00
0.682E+03 0.444E+02 0.466E+02 0.600E+00
0.682E+03 0.444E+02 0.474E+02 0.600E+00
0.682E+03 0.444E+02 0.482E+02 0.600E+00
0.683E+03 0.443E+02 0.490E+02 0.600E+00
0.683E+03 0.443E+02 0.490E+02 0.700E+00
0.684E+03 0.443E+02 0.451E+02 0.700E+00
0.684E+03 0.443E+02 0.460E+02 0.700E+00
0.684E+03 0.444E+02 0.470E+02 0.700E+00
0.685E+03 0.443E+02 0.413E+02 0.600E+00
0.685E+03 0.443E+02 0.490E+02 0.700E+00
0.686E+03 0.444E+02 0.451E+02 0.700E+00
0.686E+03 0.443E+02 0.394E+02 0.600E+00
0.686E+03 0.444E+02 0.490E+02 0.700E+00
0.687E+03 0.444E+02 0.384E+02 0.600E+00
0.687E+03 0.444E+02 0.441E+02 0.600E+00
0.688E+03 0.444E+02 0.449E+02 0.600E+00
0.688E+03 0.445E+02 0.457E+02 0.600E+00
0.688E+03 0.444E+02 0.399E+02 0.500E+00
0.689E+03 0.445E+02 0.490E+02 0.600E+00
0.689E+03 0.444E+02 0.383E+02 0.500E+00
0.690E+03 0.445E+02 0.490E+02 0.600E+00
0.690E+03 0.445E+02 0.383E+02 0.500E+00
0.690E+03 0.444E+02 0.439E+02 0.500E+00
0.691E+03 0.445E+02 0.490E+02 0.600E+00
0.691E+03 0.444E+02 0.383E+02 0.500E+00
0.692E+03 0.444E+02 0.490E+02 0.600E+00
0.692E+03 0.445E+02 0.449E+02 0.600E+00
|
a69c0aa3703521c9a1a70977a172c6c62c507e39 | 449d555969bfd7befe906877abab098c6e63a0e8 | /409/CH11/EX11.3/Example11_3.sce | 4d704dcc5e8466e293b702e0400cb4fef02fe4a6 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,863 | sce | Example11_3.sce | clear ;
clc;
// Example 11.3
printf('Example 11.3\n\n');
//Page no. 318
// Solution
P = 6205 ;//[lb mol/hr]
//Given
amt_F = 560 ;//[bbl]
// Fuel oil(F) analysis
C_F = 0.50 ;// [mol fraction]
H2_F = 0.47 ;//[mol fraction]
S_F = 0.03 ;//[mol fraction]
// Natural Gas(G) analysis
CH4_G = 0.96 ;//[mol fraction]
C2H2_G = 0.02 ;//[mol fraction]
CO2_G = 0.02 ;//[mol fraction]
// Analysis of air into Gas furnace(A)
O2_A = 0.21 ;//[mol fraction]
N2_A = 0.79 ;//[mol fraction]
// Analysis of air into Oil furnace(A1)
O2_A1 = 0.20 ;//[mol fraction]
N2_A1 = 0.76 ;//[mol fraction]
CO2_A1 = 0.04 ;//[mol fraction]
//Stack gas(P) analysis
N2_P = .8493 ;//[mol fraction]
O2_P = .0413 ;//[mol fraction]
SO2_P = .0010 ;// [mol fraction]
CO2_P = .1084 ;//[mol fraction]
// Degree of freedom analysis
n_un = 5;// Number of unknowns in the given problem(excluding extent of reactions)
n_ie = 5 ;// Number of independent equations
d_o_f = n_un-n_ie; // Number of degree of freedom
printf('Number of degree of freedom for the given system is %i .\n',d_o_f);
// Elemental mole balance for 2N,2H,2O,S and C
// Use S balance to get F
F = P* SO2_P/S_F ;// [lb mol/hr]
//Solve other four balances to get G
//2H: G*(2*CH4_G+C2H2_G)+F*H2_F-W*1
//2N: A*N2_A+A1*N2_A1 = P*N2_P
//2O: A*(O2_A)+A1*(O2_A1+CO2_A1)+G*CO2_G-W*(1/2) = P*(O2_P+CO2_P+SO2_P)
//C: G*(CH4_G+2*C2H2_G+CO2_G)+F*C_F+A1*CO2_A1 = P*CO2_P
//Solving above eqns. by matrix method[G W A A1]
a = [2*CH4_G+C2H2_G -1 0 0;0 0 N2_A N2_A1;CO2_G -.5 O2_A O2_A1+CO2_A1;CH4_G+2*C2H2_G+CO2_G 0 0 CO2_A1];// matrix of coefficients
b = [-F*H2_F;P*N2_P;P*(O2_P+CO2_P+SO2_P);(P*CO2_P-F*C_F)];// matrix of constants
x = a\b ;// matrix of solutions x(1) = G,x(2) = W,x(3) = A & x(3) = A1
G = x(1);//[lb mol/hr]
m_F = 7.91 ;// Molecular wt. of fuel oil-[lb]
Fc = (F*m_F)/(7.578*42);// Fuel gas consumed -[bbl/hr]
time = amt_F/Fc ;// Time for which available fuel gas lasts-[hr]
printf('(1) Fuel gas consumed(F) is %.2f bbl/hr .\n',Fc);
printf('(2) Time for which available fuel gas lasts is %.0f hr .\n',time);
// For increase in arsenic and mercury level
F_oil = Fc*42; //[gal/hr]
Em_ars2 = (3.96 *10^(-4))/1000 ;// [lb/gal]
Em_Hg2 = (5.92 *10^(-4))/1000 ;// [lb/gal]
ars_F = F_oil*Em_ars2 ;// Arsenic produced on burning oil-[lb]
Hg_F = F_oil*Em_Hg2 ;//Mercury produced on burning oil-[lb]
G_gas = G*359 ;//[ft^3/hr]
Em_ars1 = (2.30 *10^(-4))/10^6 ;// [lb/ft^3]
Em_Hg1 = (1.34 *10^(-4))/10^6 ;// [lb/ft^3]
ars_G = G_gas*Em_ars1; // Arsenic produced on burning Natural gas-[lb]
Hg_G = G_gas*Em_Hg1 ;//Mercury produced on burning Natural Gas-[lb]
in_ars = ((ars_F-ars_G)/ars_G)*100 ;//[% increase in Arsenic emission]
in_Hg = ((Hg_F-Hg_G)/Hg_G)*100 ; //[% increase in Mercury emission]
printf('(3) Increase in Arsenic emission is %.1f %% .\n',in_ars);
printf('(4) Increase in Mercury emission is %.1f %% .\n',in_Hg); |
1202c8d3bcbb8365bcbd7cdb7b0bbb4dc316229f | 449d555969bfd7befe906877abab098c6e63a0e8 | /995/CH1/EX1.25/Ex1_25.sce | 351ebcff62600a654bba0be9b9cc58376e6a4ba1 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 247 | sce | Ex1_25.sce | //Ex:1.25
clc;
clear;
close;
B1=0.6;//in Tesla
u1=B1/800;
u_r1=u1/(4*%pi*10^-7);
printf("reltive permitivity at 0.6T = %f",u_r1);
B2=1.6;//in Tesla
u2=0.2/4000;
u_r2=u2 /(4*%pi*10^-7);
printf("\n reltive permitivity at 1.6T = %f",u_r2); |
d9223fb7d229207b5b3f8413c5dbc51975a7a7a7 | 0fea4b1807b35c0ef50433aa99f483c2de5777df | /assignment 2/assignment2_2(4 fundamental sub spaces).sce | a831ce51ead7bbff55829d6b47735475e2dca85b | [] | no_license | shivansh8/Scilab | 319fdfcbec1cc24b4c3c9d4385112ade99419c73 | 7922ffe14c554718cc7682b6419db9bce8261213 | refs/heads/master | 2020-12-29T06:10:48.542794 | 2020-04-05T14:19:06 | 2020-04-05T14:19:06 | 238,486,140 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 808 | sce | assignment2_2(4 fundamental sub spaces).sce | //clear ;close;clc;
str = input("Enter a space-separated 3x3 matrix in this order a11 a12 a13 .a32 33 ", "string")
v = evstr(strsplit(str, " "))
a11=v(1)
a12=v(2)
a13=v(3)
a21=v(4)
a22=v(5)
a23=v(6)
a31=v(7)
a32=v(8)
a33=v(9)
A=[a11 a12 a13;a21 a22 a23;a31 a32 a33];
function ffss(A)
disp(A,"A=");
[m,n]=size(A);
disp(m,"m=");
disp(n,"n=");
[vv,pivot]=rref(A);
//disp(vv,pivot,"vv-pivot:");
//
disp(rref(A),"rref(a)");
disp(vv,"vv");
r=length(pivot);
disp(r,"rank=");
coluspa=A(:,pivot);
disp(coluspa,"column space=");
nullspa=kernel(A);
disp(nullspa,"null space=");
rowspa=vv(1:r,:)';
disp(rowspa,"rowspace=");
leftnspa=kernel(A');
disp(leftnspa,"left null spaec=");
endfunction
ffss(A);
|
ff83dc198e7fceb1c37b5f53d27680ef9c9708da | 449d555969bfd7befe906877abab098c6e63a0e8 | /964/CH21/EX21.9/21_9.sce | c9a62a048edde9d08e5e9e1bc75d9e442394325a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 495 | sce | 21_9.sce | clc;
clear;
function t=f(x,y)
t=2*x*y+2*x-x^2-2*y^2+72
endfunction
len=8;//m,length
wid=6;//m,width
a=0;
b=len;
n=2;
h=(b-a)/n;
a1=0;
b1=wid;
h1=(b1-a1)/n;
fa=f(a,0);
fb=f(b,0);
fh=f(h,0);
lx1=(b-a)*(fa+2*fh+fb)/(2*n);
fa=f(a,h1);
fb=f(b,h1);
fh=f(h,h1);
lx2=(b-a)*(fa+2*fh+fb)/(2*n);
fa=f(a,b1);
fb=f(b,b1);
fh=f(h,b1);
lx3=(b-a)*(fa+2*fh+fb)/(2*n);
l=(b1-a1)*(lx1+2*lx2+lx3)/(2*n);
avg_temp=l/(len*wid);
disp(avg_temp,"The average termperature is=")
|
d54591392e0815ae657be417b815edf4a50bc05b | 449d555969bfd7befe906877abab098c6e63a0e8 | /3769/CH24/EX24.20/Ex24_20.sce | 91f714c1898487b8e2fb335f56e687d00b227722 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 159 | sce | Ex24_20.sce | clear
//Given
E2=18.70
E1=16.70
h=6.62*10**-34
c=3*10**8
//Calculation
E=E2-E1
l=(h*c)/(E*1.6*10**-19)
//Result
printf("\n Wavelength is %0.0f nm",l*10**9)
|
15cc71e5e7915550dc51cd7cf2c6ee1689ede080 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2705/CH1/EX1.5/Ex1_5.sce | 2e651d7e182c5a27f1a6503afefcd3caecc7d84f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 337 | sce | Ex1_5.sce | clear;
clc;
disp('Example 1.5');
// Given values
m = 5; // mass, [kg]
t1 = 15; // inital temperature, [C]
t2 = 100; // final temperature, [C]
c = 450; // specific heat capacity, [J/kg K]
// solution
// using heat transfer equation,[1]
Q = m*c*(t2-t1); // [J]
mprintf('\n The heat required is = %f kJ\n',Q*10^-3);
//End
|
844893b45b1251e72fbbb1e4e30a73aa2a80f611 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2081/CH9/EX9.15/Ex9_15.sce | 6f47dd6ecfcd08b4028f2425f8969f82f07e7f4b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,107 | sce | Ex9_15.sce | Bc1=30*10^3;cimin1=18
Bc2=25*10^3;cimin2=14
Bc3=12.5*10^3;cimin3=12
Bc4=6.25*10^3;cimin4=9
Y=4//path propogation constant
BcI=6.25*10^3
cieq1=cimin1+20*log10(Bc1/BcI)
cieq2=cimin2+20*log10(Bc2/BcI)
cieq3=cimin3+20*log10(Bc3/BcI)
cieq4=cimin4+20*log10(Bc4/BcI)
disp(cieq1,'(C/I)eq in dB for system I')
disp(cieq2,'(C/I)eq in dB for system II')
disp(cieq3,'(C/I)eq in dB for system III')
disp(cieq4,'(C/I)eq in dB for system IV')
if cieq1<cieq2 then
if cieq1<cieq3 then
if cieq1<cieq4 then
disp(,'System I offers the best capacity')
end
end
elseif cieq2<cieq3 then
if cieq2<cieq4 then
if cieq2<cieq1 then
disp(,'System II offers the best capacity')
end
end elseif cieq3<cieq4 then
if cieq3<cieq1 then
if cieq3<cieq2 then
disp(,'System II offers the best capacity')
end
end
elseif cieq4<cieq3 then
if cieq4<cieq1 then
if cieq4<cieq2 then
disp(,'System IV offers the best capacity')
end
end
end
|
e4ff684a589610c6fa2f443740bf76c4e83e8b5f | eec3a6e2cd91307fd7a55b7fc83bb86b35f86a6c | /warp.sci | d027d95863a75192baeda3db13448dfa71eafcbd | [] | no_license | Matthieu-71/PowerSubsystemSimulation | d1a5171ff763ca42db9d701f893d3ab257a1b882 | cdcff61d4a11509f5d9023fb295af6b8092a3c66 | refs/heads/master | 2020-03-16T23:33:28.836945 | 2018-05-24T00:10:57 | 2018-05-24T00:10:57 | 133,082,402 | 2 | 2 | null | null | null | null | UTF-8 | Scilab | false | false | 8,480 | sci | warp.sci | function handle = warp(varargin)
//WARP Display image as texture-mapped surface.
// WARP(X,MAP) displays the indexed image X with colormap MAP as
// a texture map on a simple rectangular surface.
//
// WARP(I,N) displays the intensity image I with gray scale
// colormap of length N as a texture map on a simple rectangular
// surface.
//
// WARP(BW) displays the binary image BW as a texture map on a
// simple rectangular surface.
//
// WARP(RGB) displays the RGB image in the array RGB as a
// texture map on a simple rectangular surface.
//
// WARP(z,...) displays the image on the surface z.
//
// WARP(x,y,z,...) displays the image on the surface (x,y,z).
//
// H = WARP(...) returns a handle to the texture mapped
// surface.
//
// Class Support
// -------------
// The input image can be of class logical, uint8, uint16, or double.
//
// Remarks
// -------
// Texture-mapped surfaces generally render more slowly than
// images.
//
//
// See also IMSHOW, IMAGE, IMAGESC, SURF.
// Copyright 1993-2016 The MathWorks, Inc.
[x,y,z,cdata,cdatamapping,clim,map,likeimage] = parse_inputs(varargin{:});
axHandle = newplot;
set(axHandle, 'YDir', 'reverse');
h = surface(x,y,z,cdata,'EdgeColor','none','FaceColor','texturemap', ...
'CDataMapping',cdatamapping);
if (~isempty(clim))
set(axHandle, 'CLim', clim);
end
if (~isempty(map))
axHandle.ColorSpace.Colormap = map;
end
if likeimage & ~ishold
view(2)
axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))])
else
view(3)
end
if nargout, handle = h; end
//-----------------------------------------------------------
// Subfunction PARSE_INPUTS
//-----------------------------------------------------------
function [x,y,z,cdata,cdatamapping,clim,map,likeimage] = ...
parse_inputs(varargin)
x = [];
y = [];
z = [];
map = [];
cdatamapping = 'direct';
clim = [];
likeimage = 0;
if (get(0,'ScreenDepth') > 16)
defGrayMapLength = 256;
else
defGrayMapLength = 64;
end
switch nargin
case 0
error(message('images:warp:notEnoughInputs'))
case 1
// warp(I)
// warp(RGB)
likeimage = 1;
if ((ndims(varargin{1}) == 3) & (size(varargin{1},3) == 3))
// warp(RGB)
cdata = varargin{1};
if (~isa(cdata,'double'))
cdata = im2double(cdata);
end
else
// warp(I)
cdata = varargin{1};
cdatamapping = 'scaled';
clim = [0 1];
if (~isa(cdata,'double'))
cdata = im2double(cdata);
end
map = gray(defGrayMapLength);
end
case 2
// warp(X,map)
// warp(I,N)
// warp(z,I)
// warp(z,RGB)
// warp(I,[a b])
if ((ndims(varargin{2}) == 3) & (size(varargin{2},3) == 3))
// warp(z,RGB)
z = varargin{1};
cdata = varargin{2};
if (~isa(cdata,'double'))
cdata = im2double(cdata);
end
elseif (numel(varargin{2}) == 1)
// warp(I,N)
cdata = varargin{1};
map = gray(varargin{2});
cdatamapping = 'scaled';
clim = [0 1];
if (~isa(cdata,'double'))
cdata = im2double(cdata);
end
likeimage = 1;
elseif (isequal(size(varargin{2}), [1 2]))
// warp(I,[a b])
cdata = varargin{1};
cdatamapping = 'scaled';
clim = varargin{2};
map = gray(defGrayMapLength);
if isa(cdata,'uint8')
cdata = im2double(cdata);
clim = clim/255.0;
elseif isa(cdata,'uint16')
cdata = im2double(cdata);
clim = clim/65535.0;
elseif islogical(cdata)
cdata = im2double(cdata);
end
likeimage = 1;
elseif (size(varargin{2},2) == 3)
// warp(X,map)
cdata = varargin{1};
map = varargin{2};
cdatamapping = 'direct';
if ~isa(cdata,'double')
cdata = im2double(cdata, 'indexed');
end
likeimage = 1;
else
// warp(z,I)
z = varargin{1};
cdata = varargin{2};
cdatamapping = 'scaled';
clim = [0 1];
if ~isa(cdata,'double')
cdata = im2double(cdata, 'indexed');
end
map = gray(defGrayMapLength);
end
case 3
// warp(z,X,map)
// warp(z,I,N)
// warp(z,I,[a b])
if (numel(varargin{3}) == 1)
// warp(z,I,N)
z = varargin{1};
cdata = varargin{2};
map = gray(varargin{3});
cdatamapping = 'scaled';
clim = [0 1];
if ~isa(cdata,'double')
cdata = im2double(cdata);
end
elseif (isequal(size(varargin{3}), [1 2]))
// warp(z,I,[a b])
z = varargin{1};
cdata = varargin{2};
cdatamapping = 'scaled';
clim = varargin{3};
map = gray(defGrayMapLength);
if isa(cdata,'uint8')
cdata = im2double(cdata);
clim = clim/255.0;
elseif isa(cdata,'uint16')
cdata = im2double(cdata);
clim = clim/65535.0;
elseif islogical(cdata)
cdata = im2double(cdata);
end
elseif (size(varargin{3},2) == 3)
// warp(z,X,map)
z = varargin{1};
cdata = varargin{2};
map = varargin{3};
cdatamapping = 'direct';
if ~isa(cdata,'double')
cdata = im2double(cdata, 'indexed');
end
else
error(message('images:warp:invalidInputs'))
end
case 4
// warp(x,y,z,I)
// warp(x,y,z,RGB)
if ((ndims(varargin{4}) == 3) & (size(varargin{4},3) == 3))
// warp(x,y,z,RGB)
x = varargin{1};
y = varargin{2};
z = varargin{3};
cdata = varargin{4};
if ~isa(cdata,'double')
cdata = im2double(cdata);
end
else
// warp(x,y,z,I)
x = varargin{1};
y = varargin{2};
z = varargin{3};
cdata = varargin{4};
cdatamapping = 'scaled';
clim = [0 1];
map = gray(defGrayMapLength);
if ~isa(cdata,'double')
cdata = im2double(cdata);
end
end
case 5
// warp(x,y,z,X,map)
// warp(x,y,z,I,N)
// warp(x,y,z,I,[a b])
if (numel(varargin{5}) == 1)
// warp(x,y,z,I,N)
x = varargin{1};
y = varargin{2};
z = varargin{3};
cdata = varargin{4};
map = gray(varargin{5});
cdatamapping = 'scaled';
clim = [0 1];
if ~isa(cdata,'double')
cdata = im2double(cdata);
end
elseif (isequal(size(varargin{5}), [1 2]))
// warp(x,y,z,I,[a b])
x = varargin{1};
y = varargin{2};
z = varargin{3};
cdata = varargin{4};
cdatamapping = 'scaled';
clim = varargin{5};
map = gray(defGrayMapLength);
if isa(cdata,'uint8')
cdata = im2double(cdata);
clim = clim/255.0;
elseif isa(cdata,'uint16')
cdata = im2double(cdata);
clim = clim/65535.0;
elseif islogical(cdata)
cdata = im2double(cdata);
end
elseif (size(varargin{5},2) == 3)
// warp(x,y,z,X,map)
x = varargin{1};
y = varargin{2};
z = varargin{3};
cdata = varargin{4};
map = varargin{5};
cdatamapping = 'direct';
if ~isa(cdata,'double')
cdata = im2double(cdata, 'indexed');
end
else
error(message('images:warp:invalidInputs'))
end
otherwise
error(message('images:warp:tooManyInputs'))
end
siz = size(cdata);
M = siz(1);
N = siz(2);
if (isempty(z))
// The surface displays most quickly when we use
// a simple 2-by-2 z matrix, but that uses up a
// large amount of printer memory when printed.
// In IPT v1, the z matrix was the same size as
// the image; this solution took a long time to
// display. The factor of 4 below is a compromise.
// -sle, September 1996
p = max(floor(min(size(cdata))/4),2);
z = zeros(p);
x = linspace(1,N,p);
y = linspace(1,M,p);
end
if (isempty(x))
[x,y] = meshgrid(1:size(z,2), 1:size(z,1));
end
if ((length(x) == 2) & (length(y) == 2))
[x,y] = meshgrid(linspace(x(1),x(2),size(z,2)), ...
linspace(y(1),y(2),size(z,1)));
end
|
5789a4c759421f33b57d9d3c8271217061dad7a8 | a62e0da056102916ac0fe63d8475e3c4114f86b1 | /set11/s_Fundamentals_Of_Engineering_Electromagnetics_S._Bhooshan_980.zip/Fundamentals_Of_Engineering_Electromagnetics_S._Bhooshan_980/CH6/EX6.5/6_5.sce | 55b7b96d95f60b36bb4230dab53a3d41560e485c | [] | no_license | hohiroki/Scilab_TBC | cb11e171e47a6cf15dad6594726c14443b23d512 | 98e421ab71b2e8be0c70d67cca3ecb53eeef1df6 | refs/heads/master | 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 188 | sce | 6_5.sce | errcatch(-1,"stop");mode(2);;
;
format('e',11)
rho_m=-9.39*10^9;
J=1.2732*10^6;
v=abs(J/rho_m);
disp(v,"magnitude of the velosity of the mobile charge carriers(in m/s)=");
exit();
|
f92a881fe3967729888ad58df86e581e4c3e77e3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /704/CH3/EX3.9/ex3_9.sce | 356d09c4fbec199777340e633b26318145bcae71 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 691 | sce | ex3_9.sce | //Caption:Calculate (a)Primary and secondary currents on full load (b)the maximum value of flux (c)the number of primary turns.
//Exam:3.9
clc;
clear;
close;
O_p=200;//Rated output (in KVA)
V_1=3300;//Primary voltage (in Volts)
V_2=240;//Secondary voltage (in Volts)
N_2=100;//Secondary turns
f=50;//supply frequency(in Hz)
I_1=O_p*1000/V_1;//Primary current(in Amp)
disp(I_1,'Primary current on full load (in Amp)=');
I_2=O_p*1000/V_2;//secondary current(in Amp)
disp(I_2,'secondary current on full load (in Amp)=');
F_x=V_2/(4.44*f*N_2);//Maximum value of flux(in Wb)
disp(F_x,'Maximum value of flux(in Wb)=');
N_1=N_2*(V_1/V_2);//Primary turns
disp(N_1,'Primary turns='); |
06ec7eb19788c12756592ee126168c071268699f | b387571bdd041f3b3d606bee94a06f97e87cab34 | /Calculo Numerico/Scilab/Prova_M2/Questao 5 - a.sce | 8fc462155d9fb3dadad3eb2d0719f5a53814a6a5 | [] | no_license | GuilhermeGueds/Faculdade | 6704a9ce91f7cc7874e3fbaefa28555076fab7d7 | 6f84829ea031f80eb04ea2acf78af834d25cd4f9 | refs/heads/master | 2020-03-13T17:52:39.274865 | 2018-08-31T17:00:27 | 2018-08-31T17:00:27 | 131,225,712 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 2,152 | sce | Questao 5 - a.sce | clear
clc
function s = Ordem(x,y) // Função para achar a ordem
nPontos = length(x)
T = zeros(nPontos,nPontos)
T(:,1) = y;
for j = 2:nPontos
for i = 1:(nPontos - j + 1)
T(i,j) = (T(i+1,j-1) - T(i,j-1)) / (x(j + i-1) - x(i))
end
end
for i = 1:nPontos
printf('\n\n\n')
for j = 1:(nPontos)
if(T(i,j)<>0)then
printf('%f ' ,T(i,j));
end
end
end
disp("----------------------------------------------------------","")
//disp(T)
s = T(1,:);
endfunction
function y = P(A,x,Ordem) // Obter o f(x) Apartier de um ponto
y = Ordem(1)
for i=2:length(Ordem)
produto = Ordem(i);
for j=1:i-1
produto = produto*(A-x(j))
end
y = y+produto
end
endfunction
function e = EstimarErro(x,A,ordem) // Obter estimativa para erro
n = length(x)
erro =1
for i=1:n
erro = abs( erro * (A-x(i)) )
end
e = abs(erro*ordem)
endfunction
//--------------------------------------------------------------------------
x = [20,32,59,62] //x
y = [136.2,226.2,403.9,440.4] //f(x)
A = 70 //ponto para achar
p = poly(0,'x')
//------------------------------------------------------------------------------
printf(" Ordem Completa:")
ordem = Ordem(x,y) // acha as ordens
//------------------------------------------------------------------------------
n = -1 + length(x)
printf(" Ordem: %d",n)
ordem = Ordem(x,y) // acha as ordens
//------------------------------------------------------------------------------
polinomio = P(p,x,ordem) // calcula f(x) em forma de polinomio
disp(polinomio,'Polinomio:')
disp('')
resultado = P(A,x,ordem) // calcula f(x) no ponto escolhido
//-----------------------------------------------------------------------------
disp('Resultado:')
printf(' f(%.2f) = %f',A,resultado)
disp('')
//-----------------------------------------------------------------------------
|
7ff2f66cd138dd95087a85078615588295264c5c | 3c47dba28e5d43bda9b77dca3b741855c25d4802 | /microdaq/etc/mlink/MLink.sce | ea9489ab02568004eeb8651facf94067772ed2bb | [
"BSD-3-Clause"
] | permissive | microdaq/Scilab | 78dd3b4a891e39ec20ebc4e9b77572fd12c90947 | ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf | refs/heads/master | 2021-09-29T11:55:21.963637 | 2019-10-18T09:47:29 | 2019-10-18T09:47:29 | 35,049,912 | 6 | 3 | BSD-3-Clause | 2019-10-18T09:47:30 | 2015-05-04T17:48:48 | Scilab | UTF-8 | Scilab | false | false | 4,623 | sce | MLink.sce | // Copyright (c) 2015, Embedded Solutions
// All rights reserved.
// This file is released under the 3-clause BSD license. See COPYING-BSD.
function MLink()
global %microdaq;
etc_tlbx = mdaqToolboxPath();
etc_tlbx = etc_tlbx + filesep()+'etc'+filesep()+'mlink'+..
filesep()+'MLink'+filesep();
MLink_path = etc_tlbx + 'MLink';
[version, opts] = getversion();
if opts(2) == "x64" then
MLink_path = strcat([MLink_path, "64"]);
else
MLink_path = strcat([MLink_path, "32"])
end
[OS,version] = getos()
if (getos() == "Windows") then
MLink_path = strcat([MLink_path, ".dll"])
end
if (getos() == "Linux") then
MLink_path = strcat([MLink_path, ".so"])
end
// NOT SUPPORTED
if (getos() == "SunOS") then
disp("Solaris is not supported!");
end
if (getos() == "Darwin") then
MLink_path = strcat([MLink_path, ".dylib"])
end
// Link library
%microdaq.private.mlink_link_id = link(MLink_path, ["sci_mlink_error"..
"sci_mlink_connect"..
"sci_mlink_disconnect"..
"sci_mlink_disconnect_all"..
"sci_mlink_dsp_load"..
"sci_mlink_dsp_start"..
"sci_mlink_dsp_upload"..
"sci_mlink_dsp_stop"..
"sci_mlink_dsp_profile_get"..
"sci_mlink_dsp_param"..
"sci_mlink_dsp_is_done"..
"sci_mlink_dsp_wait_until_done"..
"sci_mlink_set_obj"..
"sci_client_connect"..
"sci_client_disconnect"..
"sci_mlink_mem_set2"..
"sci_mlink_mem_get2"..
"sci_mlink_ai_read"..
"sci_mlink_ao_write"..
"sci_mlink_ai_scan_init"..
"sci_mlink_ai_scan_get_ch_count"..
"sci_mlink_ai_scan"..
"sci_mlink_ai_scan_stop"..
"sci_mlink_ai_wait_until_done"..
"sci_mlink_ai_is_done"..
"sci_mlink_dio_set"..
"sci_mlink_dio_get"..
"sci_mlink_dio_set_dir"..
"sci_mlink_dio_set_func"..
"sci_mlink_led_set"..
"sci_mlink_func_key_get"..
"sci_mlink_enc_reset"..
"sci_mlink_enc_get"..
"sci_mlink_pwm_config"..
"sci_mlink_pwm_set"..
"sci_mlink_pru_reg_get"..
"sci_mlink_pru_reg_set"..
"sci_mlink_hwid"..
"sci_mlink_fw_version"..
"sci_mlink_lib_version"..
"sci_mlink_fw_upload"..
"sci_mlink_udp_open"..
"sci_mlink_udp_recv"..
"sci_mlink_udp_close"..
"sci_mlink_ao_scan_init"..
"sci_mlink_ao_scan"..
"sci_mlink_ao_scan_stop"..
"sci_mlink_ao_scan_data"..
"sci_mlink_ao_is_done"..
"sci_mlink_ao_wait_until_done"..
"sci_mlink_ao_check_params"..
"sci_mlink_ai_check_params"..
"sci_mlink_dsp_run"..
"sci_mlink_dsp_init"..
"sci_mlink_dsp_signal_read"..
"sci_mlink_dsp_mem_write"..
"sci_mlink_scan_trigger_clear"..
"sci_mlink_scan_trigger_dio"..
"sci_mlink_scan_trigger_dio_pattern"..
"sci_mlink_scan_trigger_encoder"..
"sci_mlink_scan_trigger_external_start"..
"sci_mlink_ai_scan_sync"..
], 'c');
endfunction
MLink();
clear MLink
|
04da8133c028c7182e48da6a5ea7f9b662c274e9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2024/CH2/EX2.1/2_1.sce | ac0896cc5b9696e5d07b3723d041ed1ec57d31da | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 238 | sce | 2_1.sce | clc
//Initialization of variables
m=32.1739 //lbm
z=100 //ft
g=32.1739
//calculations
PE=m*z
PE2=m*z/g
//results
printf("Potential energy = %.2f g/g0 ft lbf",PE)
printf("\n in other units, Potential energy = %d g ft slug",PE2)
|
0032606b34c2e86bd27ae04ceaf006c554f9941a | 8409f47affbce56ae5b00d9f697b52364fdcec7e | /boolean-logic/HalfAdder.tst | f3cc8d1ba2a1b63aad10237ed212fc990e28157a | [] | no_license | oleiade/Bam | 1609eca5f6247c10cef17375704547282537d1e0 | 84fcab3751b5b344afacdd3647e8071616f9f0b6 | refs/heads/master | 2021-01-19T22:33:50.345657 | 2013-10-26T16:05:22 | 2013-10-26T16:05:22 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 206 | tst | HalfAdder.tst | load HalfAdder.hdl,
output-file HalfAdder.out,
output-list a b sum carry;
set a 0,
set b 0,
eval,
output;
set a 0,
set b 1,
eval,
output;
set a 1,
set b 0,
eval,
output;
set a 1,
set b 1,
eval,
output;
|
2d288af7cc19dd808252d74e4c3408dbec7c15df | 449d555969bfd7befe906877abab098c6e63a0e8 | /716/CH7/EX7.22/Solved_Ex_7_22.sce | 9dd72f9711246e6f6b045396b9d2a684038a25da | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 202 | sce | Solved_Ex_7_22.sce | //Sketch Pole-zero plot of z-domain signal,(1+0.8*z^(-1)+0.8*z^(-2))/(1+0.49*z^(-2))
clc;
clear;
z=poly(0,"z");
X=(1+0.8*z^(-1)+0.8*z^(-2))/(1+0.49*z^(-2));
disp(X,'Given z Transform=>');
plzr(X); |
11b17692ec64cb93c8bd6a1a4759f12fa5d2e165 | ac1f8441b0319b4a391cd5a959bd3bb7988edfa7 | /data/news2015/news2015/EnHe/enhe12.tst | d7323eef21cbcf7c24abd15a5fcf5cbe7da4931e | [
"MIT"
] | permissive | SaeedNajafi/transliterator | 4d58b8604fa31f52ee2dce7845e002a18214fd5e | 523a087b777a5d6eec041165dabb43848f6222e6 | refs/heads/master | 2021-09-18T17:02:59.083727 | 2018-07-17T06:01:21 | 2018-07-17T06:01:21 | 129,796,130 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 9,243 | tst | enhe12.tst | strong
mole
dunkelman
tricolour
ogaryovo
bergqvist
susskind
japan
magan
crossman
lina
hadag
deinard
neogene
chauncey
silvia
vilan
pollack
piat
wildcat
krips
ballista
transcendentalism
joselewicz
bian
gaidar
yumjaagiin
imst
fertile
cannibalism
dangermouse
precambrian
cosmos
chawla
snape
katrina
dakar
miquelon
whipple
hematuria
tobago
becket
mascagni
yochanan
galilee
okon
oscar
saransk
cosplay
smashing
applegate
organization
homotherium
plantago
tropaion
loftus
gericke
plaza
spenta
krupnik
tintin
ilse
gluconeogenesis
mansiysk
lichtenstein
jersey
rozental
magritte
torat
richmond
majerle
whedon
emin
coffee
mavericks
humanistic
bleiberg
jarre
condition
perestroika
biathlon
sayeret
seraph
chipmunks
picquart
harnoncourt
pancake
bouskilla
beamon
beechcraft
mass
vladivostok
tureck
universitario
serialism
patras
emissivity
eton
previn
shirat
fiji
homeopathy
ideal
collagen
zeuxis
orava
oran
ephor
trivia
hockney
maelstrom
reacher
kreitman
chikatilo
supersaurus
saingilo
pilsen
lictor
judas
shagor
principal
matterhorn
oren
bergelson
tull
kristeva
hydrazine
barite
havnar
kitsman
abijam
frankfort
ares
haram
stupa
carothers
mace
buchu
morocco
morgana
betis
jude
beham
darkthrone
habanera
mccullough
theodolite
ellipsoid
champollion
buchenwald
raistlin
gnaeus
louganis
flavell
melchizedek
wieland
utica
jawf
horizons
albrecht
celibidache
thermophile
duilius
askeran
artichoke
jolie
simply
paide
pastel
chatelier
ilmenite
yarmouk
selenite
histidine
epoch
siro
torii
gelmetti
bhabha
regev
maurois
shamgar
juniors
gamgee
fechter
totem
determinant
sabonis
hezbollah
burger
cadmus
hassium
wyborowa
television
tanzanite
bremerton
nahari
berners
cytokinin
clippers
leeuwenhoek
shakers
ashton
censor
brassens
gotlober
ella
mostar
ketura
wahl
bruges
salvia
grandjany
resheph
korah
chacham
hamilcar
lysosome
etgar
jharkhand
homolysis
prednisone
downhill
archaeology
tetanus
stack
kuala
frigate
hypnos
fall
water
cantata
chodesh
messerschmitt
daliah
polytechnic
yiddish
goleman
tsakalidis
daman
kimberlite
stargate
captaincy
ethnomusicology
kakapo
akinnuoye
huberman
broca
redstone
transposition
taiko
trappists
muscle
hawn
koltur
zoroaster
toblerone
omnipotence
rowecki
cutler
kaniuk
caliph
berlitz
traudl
coenraad
pauli
boker
ringelnatz
genizah
pavlova
arno
aelia
blind
lipopolysaccharide
velites
philolaus
leghorn
jive
live
blog
ununquadium
ornithology
tuchman
bayit
sture
imide
weininger
wales
tonic
twist
zappa
lindgren
brandy
zulu
tragedy
rozhdestvensky
meghalaya
katyusha
hanikra
trittico
premier
alessandria
mitrevski
westlife
luntschitz
rosie
swiss
agoracritus
elite
fiordland
osasuna
wine
helminthology
kimono
festival
supertonic
nargis
enthroned
maus
reinickendorf
druid
malt
karenina
fantastique
verhoeven
sagoth
obote
pompeius
hallein
ribosome
vanir
archosaur
eniac
perseus
limnology
inquisition
dartmouth
mazuwa
yigael
middlesbrough
adrien
confuciusornis
alterman
bacteriophage
berekhat
tallit
zisling
bischofswerda
catalan
manifesto
zilpah
mantle
urbino
hitlerum
negev
ramek
bolivian
steric
egyptology
chlamydia
odalisque
choreography
royale
mayonnaise
balili
coalition
godsmack
winters
alcatraz
tweed
bitlis
riyadh
kabir
gilgal
chips
andalus
dybbuk
xinjiang
vincennes
shuriken
escudo
hammerfall
kaosayananda
optimization
geoglyph
boleslav
nietzsche
methamphetamine
volynskyi
dionysios
control
ununbium
siegel
roald
september
sorel
frangelico
gothic
iscar
fireworks
shatner
scud
poodle
groningen
alendronate
snoezelen
astrobiology
siren
placebo
eliyashiv
cournot
smash
malayalam
refraction
urartu
bourguiba
accent
point
kershaw
sportsperson
rimsky
biotin
abuja
essequibo
toledot
curia
taoism
emulator
wolfgang
oldesloe
italo
unterwalden
pimp
mandate
monism
river
fontane
wedekind
dyskinesia
bructeri
isotope
paradinas
moreira
shishman
standard
corpse
dadra
nucleosome
eemil
pneumatic
nasserism
berserk
xerophyte
necropolis
ascension
ostinato
hevel
bardejov
pisseleu
tutong
depardieu
kantele
engelbart
lumen
norwegian
oreiro
rashidun
dinar
savimbi
dysplasia
hahiver
ragtime
sporophyte
degeneres
noyon
cyanide
adjika
nuweiba
kokhba
etiquette
dunedin
maxentius
kirkby
keeshond
alberstein
teledyne
samsung
moldavian
pyatigorsk
großglockner
rust
photon
sargent
nahash
hauptbahnhof
amoeba
glissando
hypertext
baktus
tachometer
gambit
yehiel
champloo
drachma
court
alternative
bazargan
lanka
sachertorte
kerem
lactamase
inheritance
glatzer
sirtaki
scheel
pakarinen
eugen
federalism
paparuda
winnipeg
revava
mariotte
magnetron
aegyptopithecus
mechanics
poltergeist
polymorphism
magnetosphere
hadean
edom
braudel
elvin
pyroxene
caridis
teena
summerslam
symphony
insei
professor
albano
goulash
carbide
trampolining
mahalalel
ostracism
chillul
abendroth
muktzah
hippocampus
hatserim
hufu
clytemnestra
woodstock
brisighella
jethou
antigone
paderewski
gleichschaltung
kittel
alpi
tisza
baddeley
wyndham
calcite
beckinsale
photochromism
cymric
mekhilta
effector
raytheon
cenozoic
northrop
xenolith
milwaukee
frisia
muhammad
empathogen
lebesgue
gatcombe
platonic
steaua
israeli
pogrom
jamaal
flames
samoa
rhythm
eshkol
geocentric
marada
elbrus
brutus
molotov
reflexology
dieting
chastain
mihrab
archaeopteryx
symphonie
categorical
fiefdom
kermeur
starbuck
magnetic
guerrouj
spritz
phenethylamine
kumis
klaf
hilberg
arkhangai
eponym
krems
mackensen
whalsay
jacksonville
frankenstein
ignoratio
vaygach
berel
browning
yonah
panamax
bibliotherapy
ravina
pedy
photosphere
genesis
gamer
kell
caucasus
mirs
meitnerium
tenacious
vayechi
hayarok
jannings
pilcomayo
edgard
jonze
burmese
jethro
phytochrome
janco
ahijah
staatsrat
anapsid
preferans
corso
attack
energy
herts
yolanda
regalim
klagenfurt
mead
glubb
ilanit
sper
rhin
fondi
vlade
scotia
tomasson
quenya
lesbos
gratian
sundhage
polystyrene
lumpur
rubidium
bias
frankfurter
militia
chakraborty
govi
shochat
ascalon
fleet
dmowski
modica
hierarchy
arvydas
thelonious
jaana
physical
schattenburg
flash
sloughi
beate
arjen
mchale
zerach
skynyrd
napoca
scharf
gilchrist
director
cassiopeia
sappho
gemma
orient
dangerfield
capitolina
lieutenant
houdini
labello
humorului
antithesis
tahini
pratitya
culkin
operator
gyllene
hyginus
kartlos
china
valois
sirhan
majdanek
svetitskhoveli
shakhtar
roach
melvins
moroi
phlogiston
nitzani
racha
babruysk
corday
mariss
ununseptium
drapetomania
jenny
muezza
ricimer
kanna
manstein
khrizantema
mesika
rumkowski
berthe
benkler
ansfelden
zhovkva
chord
spitz
tironut
sholokhov
hewitt
robustus
duani
ansel
bhubaneswar
kanun
hawk
halmstad
shamosh
holtzberg
phobia
kharkiv
buffon
mapping
lughnasadh
galway
gallico
girl
ornithopod
statistics
agreste
norther
darnah
kartl
benzema
barkan
masur
yzerman
chitin
sandman
hudaydah
cubism
guillotine
hava
cobalt
thermodynamics
racine
stardust
novus
eino
gebirtig
dogville
agenda
mongolia
gurbanguly
individualist
chrysoberyl
condon
ecotope
tulchyn
akon
nezval
skandha
melanin
gether
hispania
rize
tarvisio
berkovic
vian
schur
therapsida
buffalo
borzage
freak
immortal
gaudio
zilber
mcdyess
cosmogony
membrane
kiss
miss
dunga
pytheas
achilles
cormorant
marocchinate
grechko
wien
elser
gere
evergrey
bordeaux
nirenberg
arbeitman
origami
microtome
orff
tauber
optics
effects
filiki
shiratori
gentle
chancellors
krishnamurti
bingo
shafaq
almon
samoyed
cratylus
paliashvili
majdal
conforte
magna
ampoule
manhigut
mortara
tucholsky
netiquette
mesudarim
hell
fuad
teratogenesis
ratosh
juhuri
tribune
zoroastrianism
amasya
borsec
khaldei
albright
broza
dumars
castaway
panait
baron
bagshot
cytogenetics
desperation
andropov
eileithyia
ochamchire
epigoni
myrtilus
lysol
elbegdorj
averbukh
marais
smirnoff
postnik
masmuda
electrode
asulin
jinn
bazaar
babur
velociraptor
troposphere
pekahiah
guth
ramones
killers
sashimi
brynner
potocki
mishmar
elementary
valine
sarabande
ginny
salinometer
periscope
kenobi
građanski
chase
bone
hemoglobin
akhaltsikhe
berenice
etoumbi
benkow
czerniak
krupp
arsenide
moor
westerweel
nuremberg
amotz
frazier
brezhneva
bodel
somua
yukawa
southern
husayni
cuvier
orot
parapsychology
sparrow
thrombosis
galante
elis
pardes
union
sailor
haayal
shaprut
tehomi
lanier
yetzirah
delta
yerushalayim
euryapsida
mithras
offenbach
captain
fermion
conglomerate
cement
traun
goblin
messenia
anderlecht
chlorus
tnuva
megumi
deductive
buccaneers
agatharchides
rayman
pilaf
gelfand
mosquito
keret
lesseps
browder
onassis
yoram
philby
saruq
hipparchia
emil
silmarillion
ulvaeus
elohim
lykhny
ellipse
amarth
emmerich
hanami
lavrentiy
vigintisexviri
chromatography
saparmurat
pseudomorph
shirer
gayatri
binaisa
merlin
barber
minimal
megalopolis
hummer
nepos
yuval
arrigo
pune
goldmark
midreshet
tadeusz
fawzi
thesis
merce
rhenium
tabbai
sakari
moriendi
vauvenargues
pennsylvania
barrett
henson
nathans
paparizou
steroid
purine
rawaki
karavan
gauss
phasor
wand
jabberwocky
gellius
sycomorus
cajal
rysanek
jakarta
meister
praxiteles
chujiro
compostela
olimpico
edensor
phonetic
ureno
kooser
habitus
knopfler
fruitarianism
renaissance
pankiewicz
blobel
bohr
anthropology
paulownia
svevo
urology
bagot
nouveau
biophysics
kapp
jamaica
khurtsidze
patch
kras
flor
landor
tractor
byte
theudas
sauckel
gladiator
galadriel
gader
pleistocene
yated
agbaje
prisoner
moldovenesc
lilongwe
kaduri
asthma
buck
aretha
stratosphere
marathi
peppard
vayeshev
courante
weasley
decidendi
hegemony
schist
nouvelle
creveld
fforde
samadhi
scholem
friedan
kippur
|
963fe170d7d03c0eef8170f6b499acfa3e66b1e5 | b29e9715ab76b6f89609c32edd36f81a0dcf6a39 | /ketpicscifiles6/Ratiocmyk.sci | 839452f68eda4b5448572f2c658e2a33310689c5 | [] | no_license | ketpic/ketcindy-scilab-support | e1646488aa840f86c198818ea518c24a66b71f81 | 3df21192d25809ce980cd036a5ef9f97b53aa918 | refs/heads/master | 2021-05-11T11:40:49.725978 | 2018-01-16T14:02:21 | 2018-01-16T14:02:21 | 117,643,554 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 3,239 | sci | Ratiocmyk.sci | // 11.05.28
// 15.05.03
function R=Ratiocmyk(Color)
if type(Color)==1 then
R=Color;
return;
end;
Tmp=grep(Color,',');
if length(Tmp)>0
R=evstr(Tmp);
return;
end;
select Color
case 'greenyellow' then R=[0.15,0,0.69,0],
case 'yellow' then R=[0,0,1,0],
case 'goldenrod' then R=[0,0.1,0.84,0],
case 'dandelion' then R=[0,0.29,0.84,0],
case 'apricot' then R=[0,0.32,0.52,0],
case 'peach' then R=[0,0.5,0.7,0],
case 'melon' then R=[0,0.46,0.5,0],
case 'yelloworange' then R=[0,0.42,1,0],
case 'orange' then R=[0,0.61,0.87,0],
case 'burntorange' then R=[0,0.51,1,0],
case 'bittersweet' then R=[0,0.75,1,0.24],
case 'redorange' then R=[0,0.77,0.87,0],
case 'mahogany' then R=[0,0.85,0.87,0.35],
case 'maroon' then R=[0,0.87,0.68,0.32],
case 'brickred' then R=[0,0.89,0.94,0.28],
case 'red' then R=[0,1,1,0],
case 'orangered' then R=[0,1,0.5,0],
case 'rubinered' then R=[0,1,0.13,0],
case 'wildstrawberry' then R=[0,0.96,0.39,0],
case 'salmon' then R=[0,0.53,0.38,0],
case 'carnationpink' then R=[0,0.63,0,0],
case 'magenta' then R=[0,1,0,0],
case 'violetred' then R=[0,0.81,0,0],
case 'rhodamine' then R=[0,0.82,0,0],
case 'mulberry' then R=[0.34,0.9,0,0.02],
case 'redviolet' then R=[0.07,0.9,0,0.34],
case 'fuchsia' then R=[0.47,0.91,0,0.08],
case 'lavender' then R=[0,0.48,0,0],
case 'thistle' then R=[0.12,0.59,0,0],
case 'orchid' then R=[0.32,0.64,0,0],
case 'darkorchid' then R=[0.4,0.8,0.2,0],
case 'purple' then R=[0.45,0.86,0,0],
case 'plum' then R=[0.5,1,0,0],
case 'violet' then R=[0.79,0.88,0,0],
case 'royalpurple' then R=[0.75,0.9,0,0],
case 'blueviolet' then R=[0.86,0.91,0,0.04],
case 'periwinkle' then R=[0.57,0.55,0,0],
case 'cadetblue' then R=[0.62,0.57,0.23,0],
case 'cornflowerblue' then R=[0.65,0.13,0,0],
case 'midnightblue' then R=[0.98,0.13,0,0.43],
case 'navyblue' then R=[0.94,0.54,0,0],
case 'royalblue' then R=[1,0.5,0,0],
case 'blue' then R=[1,1,0,0],
case 'cerulean' then R=[0.94,0.11,0,0],
case 'cyan' then R=[1,0,0,0],
case 'processblue' then R=[0.96,0,0,0],
case 'skyblue' then R=[0.62,0,0.12,0],
case 'turquoise' then R=[0.85,0,0.2,0],
case 'tealblue' then R=[0.86,0,0.34,0.02],
case 'aquamarine' then R=[0.82,0,0.3,0],
case 'bluegreen' then R=[0.85,0,0.33,0],
case 'emerald' then R=[1,0,0.5,0],
case 'junglegreen' then R=[0.99,0,0.52,0],
case 'seagreen' then R=[0.69,0,0.5,0],
case 'green' then R=[1,0,1,0],
case 'forestgreen' then R=[0.91,0,0.88,0.12],
case 'pinegreen' then R=[0.92,0,0.59,0.25],
case 'limegreen' then R=[0.5,0,1,0],
case 'yellowgreen' then R=[0.44,0,0.74,0],
case 'springgreen' then R=[0.26,0,0.76,0],
case 'olivegreen' then R=[0.64,0,0.95,0.4],
case 'rawsienna' then R=[0,0.72,1,0.45],
case 'sepia' then R=[0,0.83,1,0.7],
case 'brown' then R=[0,0.81,1,0.6],
case 'tan' then R=[0.14,0.42,0.56,0],
case 'gray' then R=[0,0,0,0.5],
case 'black' then R=[0,0,0,1],
case 'white' then R=[0,0,0,0],
else
disp(Color+' may be user-defined');
R=Color; // 15.05.03
end;
endfunction;
|
b3868e411ca4196d4604b9bbfa3c42d1a608608a | 449d555969bfd7befe906877abab098c6e63a0e8 | /1895/CH4/EX4.6/EXAMPLE4_6.SCE | 8bb88cc9fc7653f3603f39e456d599918c9b6811 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,327 | sce | EXAMPLE4_6.SCE | //ANALOG AND DIGITAL COMMUNICATION
//BY Dr.SANJAY SHARMA
//CHAPTER 4
//Radio Receiver
clear all;
clc;
printf("EXAMPLE 4.6(PAGENO 153)");
//given
Q = 125//quality factor
//calculations
//first case
IF1 = 465*10^3//intermediate frequency
f_s1 = 1*10^6//incoming frequency for first case in hertz
f_s2 = 30*10^6//second incoming frequency for first case in hertz
f_si1 = f_s1 + 2*IF1//image frequency for incoming frequency 1MHz for first case
f_si2 = f_s2 + 2*IF1//image frequency for incoming frequency 30MHz for first case
p1 = (f_si1/f_s1)-(f_s1/f_si1);
p2 = (f_si2/f_s2)-(f_s2/f_si2);
alpha1 = sqrt(1+(Q*p1)^2);//rejection ratio at 1MHz incoming frequency
alpha2 = sqrt(1+(Q*p2)^2);//rejection ratio at 30MHz incoming frequency
//second case
f_s3 = 1*10^6//incoming frequency for second case in hertz
f_si3 = (f_si1*f_s2)/f_s3//image frequency
IF2 = (f_si3-f_s2)/2//intermediate frequency
//results
printf("\n\n(i)a.Image frequency for 1MHz incoming frequency = %.2f Hz",f_si1);
printf("\n\n b.Rejection ratio for 1MHz incoming frequency = %.2f",alpha1);
printf("\n\n c.Image frequency for 30MHz incoming frequency = %.2f Hz",f_si2);
printf("\n\n d.Rejection ratio for 30MHz incoming frequency = %.2f",alpha2);
printf("\n\n(ii)intermediate frequency for second case = %.2f Hz",IF2);
|
b8f6639513ae0403ec3b1f2264eccabdfa814607 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2135/CH2/EX2.2/Exa_2_2.sce | 513e8aa12faa0fc252254ec73d4d9977809e0f9a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 269 | sce | Exa_2_2.sce | //Exa 2.2
clc;
clear;
close;
format('v',7);
//Given Data
Q1=2500;//KJ/Kg
Q2=1800;//KJ/Kg
Pdev=210;//MW
//Power developed = Heat transfered: Pdev=m*(Q1-Q2)
m=Pdev*1000/(Q1-Q2);//mass flow rate of steam in Kg/s
disp(m,"Mass flow rate of steam in Kg/s : ");
|
276d2a7f92979ae3152b8ada1c968f9311d21d8c | 449d555969bfd7befe906877abab098c6e63a0e8 | /154/DEPENDENCIES/ch11_4.sce | 76ad5949816cb1e340b361ffab476bd51b2439c9 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 234 | sce | ch11_4.sce | clc
disp("Problem 11.4")
printf("\n")
printf("Given")
disp("Veff=110V Z=10+i8 ohm")
Veff=110;
Z=10+%i*8
Zmag=sqrt(10^2+8^2)
Zph=(atan(8/10)*180)/%pi
P=(Veff^2*R)/(Zmag^2)
pf=cos((Zph*%pi)/180)
disp(pf,"Power factor is") |
0573bbff8cb137105006bc3c09e3bf91332ac141 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2294/CH1/EX1.22/EX1_22.sce | 977f731ebd5471e11987a0b65a5b749e11a812f2 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,800 | sce | EX1_22.sce | //Example 1.22<i>
//Find whether the given signal is causal or not.
clear all;
clc;
t=-10:10;
a=.5;
for i=1:length(t)
if t(i)<0 then
x1(i)=0;
else
x1(i)=exp(a.*t(i));
end
end
causal=%t;
for i=1:length(t)
if t(i)<0 & x1(i)~=0 then
causal=%f;
end
end
disp(causal,"The statement that the system is causal is:");
//Example 1.22<ii>
//Find whether the given signal is causal or not.
clear all;
clc;
t=-10:10;
for i=1:length(t)
if t(i)>0 then
x2(i)=0;
else
x2(i)=exp(-2.*t(i));
end
end
causal=%t;
for i=1:length(t)
if t(i)<0 & x2(i)~=0 then
causal=%f;
end
end
disp(causal,"The statement that the system is causal is:");
//Example 1.22<iii>
//Find whether the given signal is causal or not.
clear all;
clc;
t=-10:10;
c=2;
for i=1:length(t)
x3(i)=sin(c.*t(i));
end
causal=%t;
for i=1:length(t)
if t(i)<0 & x3(i)~=0 then
causal=%f;
end
end
disp(causal,"The statement that the system is causal is:");
//Example 1.22<iv>
//Find whether the given signal is causal or not.
clear all;
clc;
n=-10:10;
for i=1:length(n)
if n(i)<-3 | n(i)>2 then
x1(i)=0;
else
x1(i)=1;
end
end
causal=%t;
for i=1:length(n)
if n(i)<0 & x1(i)~=0 then
causal=%f;
end
end
disp(causal,"The statement that the system is causal is:");
//Example 1.22<v>
//Find whether the given signal is causal or not.
clear all;
clc;
n=-10:10;
for i=1:length(n)
if n(i)>-2 then
x2(i)=(1/2)^n(i);
else
x2(i)=0;
end
end
causal=%t;
for i=1:length(n)
if n(i)<0 & x2(i)~=0 then
causal=%f;
end
end
disp(causal,"The statement that the system is causal is:");
|
e42fa0d6573739884ae8a240de4322173176f4f1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /545/CH4/EX4.17/ch_4_eg_17.sce | 13d75bbbbadb810b772f4fd62c513b705342f77e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,492 | sce | ch_4_eg_17.sce | clc
//given rxn A+B--k1-->C
// B+C--k2-->D
rc_k1=1,rc_k2=1 //rate constants
disp("the solution of eg 4.17 -->Plug Flow Reactor")
function dA_by_dx=f1a(x,A,B,C,D),
dA_by_dx=-A*B,
endfunction
function dB_by_dx=f2a(x,A,B,C,D),
dB_by_dx=-A*B-B*C,
endfunction
function dC_by_dx=f3a(x,A,B,C,D),
dC_by_dx=A*B-B*C,
endfunction
function dD_by_dx=f4a(x,A,B,C,D),
dD_by_dx=B*C,
endfunction
A=1,B=1,C=0,D=0
for x=.1:.1:10,
h=.1 //step increment of 0.1
k1=h*f1a(x,A,B,C,D)
l1=h*f2a(x,A,B,C,D)
m1=h*f3a(x,A,B,C,D)
n1=h*f4a(x,A,B,C,D)
k2=h*f1a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
l2=h*f2a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
m2=h*f3a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
n2=h*f4a(x+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
k3=h*f1a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
l3=h*f2a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
m3=h*f3a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
n3=h*f4a(x+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
k4=h*f1a(x+h,A+k3,B+l3,C+m3,D+n3)
l4=h*f2a(x+h,A+k3,B+l3,C+m3,D+n3)
m4=h*f3a(x+h,A+k3,B+l3,C+m3,D+n3)
n4=h*f4a(x+h,A+k3,B+l3,C+m3,D+n3)
A=A+(k1+2*k2+2*k3+k4)/6
B=B+(l1+2*l2+2*l3+l4)/6
C=C+(m1+2*m2+2*m3+m4)/6
D=D+(n1+2*n2+2*n3+n4)/6
if x==.5 |x==1|x==2|x==5 then disp(D,C,B,A,"secs is",x,"the conc. of A,B,C,D after");
end
end
disp(D,C,B,A,"the conc. of A,B,C,D after 10 secs respectively is"); |
1fb185d0338dae525dff88dbe972d16494abe562 | 174c3876bf92d70c7f470a079b453abf5375e084 | /ficha1.sce | 4df529ed659f0242fb06a46bfb4ad9ad2f1a191b | [] | no_license | diogoalexsmachado/EI_MatDiscreta_Praticas | dfa1bb8b81a9163b85cb5e007385e9ff91edcb5f | 74ced6eec3b8b4cee2ad53d1bfc54809116b9e0f | refs/heads/master | 2021-01-25T12:42:19.518073 | 2018-03-01T22:21:11 | 2018-03-01T22:21:11 | 123,493,595 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 826 | sce | ficha1.sce | // Contribuição de Thomas Ribeiro
// Aula 1 - 22/02/2018
//Ficha 1
//EX 1
//a)
/*
x=10
y=12
z=40
r=x+z
w=x+y
a='mat'
b='emática'
c=a+b
disp(x,y)
//vetores
A=[1 2 3; 5 6 7; 7 8 9]
B=[3:0.3:8]
C=linspace(3,10,5)
C=B'
*/
//a)
(35.6*64-(7^3))/(45+(5^2))
//b)
(5/7)*4*(6^2)-((3^7)/((9^3)-236))
//c)
(((3^2)*log10(76))/((7^3)+54))+(910^(1/3))
//d)
((cos(5*%pi/6))^2)*sin((7*%pi/8)^2)+tan((%pi/6)*log(8))/(7^(1/2))
// EX 2
// a)
x=13.5
(x^3)-(2*x)+(23.5*(x^2))
//b
((14*(x^3))^(1/2))/exp((3*x))
//c
log10(abs((x^2)-(x^3)))
//EX 3
// a)
a=15.62
b=-7.08
c=62.5
d=0.5*((a*b)-c)
a+((a*b)/c)*(((a+d)^2)/(abs(a*b))^(1/2))
//b
d*(exp((d/2)))+(((a*d)+(c*d))/((20/a)+(30/b)))/(a+b+c+d)
//4
//a)
t='O resultado obtido na alinea a) foi '
g=a+((a*b)/c)*(((a+d)^2)/(abs(a*b))^(1/2))
h=t+string(g)
disp(h)
|
1f2742c8c26818af35e8bfe6e7b1202f43970480 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2609/CH5/EX5.6/ex_5_6.sce | ebc8f426a8d6aea71e0442ae9f0992defa423eec | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 492 | sce | ex_5_6.sce | //Ex 5.6
clc;
clear;
close;
format('v',8);
R3=1;//kohm
Rt=5;//kohm
Ri=1.8;R1=1.8;//kohm
Rf=18;R2=18;//kohm
Vs=15;//V
AoL=2*10^5;//Gain(for 741C)
Rio=2//Mohm
Ro=75//Mohm
fo=5;//Hz
fBW=1;//MHz
Ad=Rf/Ri*(1+2*R3/Rt);//differential gain
disp(Ad,"Differential gain");
Beta=(R3+Rt)/(2*R3+Rt);//unitless
Rix=Rio*10^6*(1+AoL*Beta);//ohm
disp(Rix,"Input impedence, Rix(ohm)");
Rof=Ro/(1+AoL/Ad);//ohm
disp(Rof,"Output impedence, Rof(ohm)");
//Answer in the book is wron for Rix.
|
6fe0a677d8300b8eb6e1c8ebf445adaf2ea4b52e | 0a4a624c2aa1241962ca0adf212284d4fbf653ec | /2nd/1.sce | ec0f691dd15a98d34f2c3332139e5340eeba3edc | [] | no_license | zy414563492/Advanced-Course-in-Computational-Algorithms | 719a469c4b4f0aede9d89378408672d9ac712df5 | d6f5a089883b415ecd93b18bee81aac9bec69577 | refs/heads/master | 2020-08-29T07:13:39.251114 | 2019-12-17T16:11:40 | 2019-12-17T16:11:40 | 217,963,283 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 3,428 | sce | 1.sce | clear
funcprot(0)
// get results from CRS & CCS format
function[y] = CRS2Vec(val, col_ind, row_ptr, x)
for i = 1:length(row_ptr)-1
y(i) = 0.0
for j = row_ptr(i):row_ptr(i+1)-1
y(i) = y(i) + val(j) * x(col_ind(j));
end
end
endfunction
function[y] = CCS2Vec(val, row_ind, col_ptr, x)
n = length(col_ptr)-1
y = zeros(n, 1)
for j = 1:n
for i = col_ptr(j):col_ptr(j+1)-1
y(row_ind(i)) = y(row_ind(i)) + val(i) * x(j);
end
end
endfunction
// CG method
function[x,index] = CG(AD, AL, col_ind, row_ptr, b, x, e, k)
r = b - (CRS2Vec(AL, col_ind, row_ptr, x) + CCS2Vec(AL, col_ind, row_ptr, x) + AD.*x)
p = r
for i = 1:k
q = CRS2Vec(AL, col_ind, row_ptr, p) + CCS2Vec(AL, col_ind, row_ptr, p) + AD.*p
Alpha = (r'*r)/(p'*q)
x = x + Alpha * p
r_new = r - Alpha * q
index(i) = sqrt(r_new'*r_new)/sqrt(b'*b)
if index(i) <= e
break
end
Beta = (r_new'*r_new)/(r'*r)
p = r_new + Beta * p
r = r_new
end
endfunction
// CG method with IC(0) preconditioner
function[L, D] = IC0(AD, AL, col_ind, row_ptr)
n = length(AD)
nz = length(AL)
D = AD
L = zeros(nz, 1)
for i = 1:n
w = zeros(i-1, 1)
for j = row_ptr(i):row_ptr(i+1)-1
w(col_ind(j)) = AL(j)
for k=row_ptr(col_ind(j)):row_ptr(col_ind(j)+1)-1
w(col_ind(j)) = w(col_ind(j)) - L(k) * w(col_ind(k))
end
L(j) = w(col_ind(j))/D(col_ind(j))
end
for j=row_ptr(i):row_ptr(i+1)-1
D(i) = D(i) - L(j) * w(col_ind(j))
end
end
endfunction
function z = LDLTsolve(L, D, r, col_ind, row_ptr)
n = length(D)
z = r
for i=1:n
for j=row_ptr(i):row_ptr(i+1)-1
z(i) = z(i) - L(j) * z(col_ind(j))
end
end
for i=i:n
z(i) = z(i)/D(i)
end
for i=n:-1:1
for j=row_ptr(i+1)-1:-1:row_ptr(i)
z(col_ind(j)) = z(col_ind(j)) - L(i) * z(i)
end
end
endfunction
function[x,index] = CGIC0(L, D, AD, AL, col_ind, row_ptr, b, x, e, k)
r = b - (CRS2Vec(AL, col_ind, row_ptr, x) + CCS2Vec(AL, col_ind, row_ptr,x) + AD.*x)
z = LDLTsolve(L, D, r, col_ind, row_ptr)
p = z
for i = 1:k
q = CRS2Vec(AL, col_ind, row_ptr, p) + CCS2Vec(AL, col_ind, row_ptr, p) + AD.*p
a = (r'*z)/(p'*q)
x = x + a*p
r_new = r - a*q
index(i) = sqrt(r_new'*r_new)/sqrt(b'*b)
if index(i) <= e
break
end
z_new = LDLTsolve(L, D, r_new, col_ind, row_ptr)
Beta = (r_new'*z_new)/(r'*z)
p = z_new + Beta*p
z = z_new
r = r_new
end
endfunction
exec('GenLS.sci');
density = 0.005
eTOL = 10^-12;
k = 400 // roop times
for N = 101 //11:10:101
x = sprand((N-1)**2, 1, density)
[AD, AL, col_ind, row_ptr, b] = GenLS(N)
[x_CG, index_CG] = CG(AD, AL, col_ind, row_ptr, b, x, eTOL, k)
[L, D] = IC0(AD, AL, col_ind, row_ptr)
[x_CGIC0, index_CGIC0] = CGIC0(L, D, AD, AL, col_ind, row_ptr, b, x, eTOL, k)
// plot
figure(1)
clf
xlabel("k")
ylabel("index: log(y)")
title("N: " + string(N))
plot(log10(index_CG), 'r')
plot(log10(index_CGIC0), 'b')
legend("index_CG", "index_CGIC0");
disp("x_CG:", x_CG)
disp("x_CGIC0:", x_CGIC0)
end
|
c2997dd1773b6ed7627c7ac40728d756641a285b | 449d555969bfd7befe906877abab098c6e63a0e8 | /3872/CH6/EX6.17/Ex6_17.sce | 28cfbff4262c0d3b393fcb88dcfb2ec9f447d03b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,930 | sce | Ex6_17.sce | //Book - Power System: Analysis & Design 5th Edition
//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
//Chapter - 6 ; Example 6.17
//Scilab Version - 6.0.0 ; OS - Windows
clear;
clc;
linedata=[2 4 0.0090 0.10 1.72 //Entering line data from table 6.2 & 6.3
2 5 0.0045 0.05 0.88
4 5 0.00225 0.025 0.44
1 5 0.00150 0.02 0.00
3 4 0.00075 0.01 0.00];
linedata(:,3)=0 //Neglecting Line resistance
linedata(:,5)=0 //Neglecting shunt suceptance
//enter busdata in the order type (1.slack,2.pv,3.pq),PG,QG,PL,QL,vmag,del,Qmin and Qmax.
//Data is taken from table 6.1
Busdata=[1 0 0 0 0 1 0 0 0
3 0 0 8 2.8 1 0 0 0
2 5.2 0 0.8 0.4 1.05 0 4 -2.8
3 0 0 0 0 1 0 0 0
3 0 0 0 0 1 0 0 0]
sb= linedata(:,1);
sb=linedata(:,1) //Starting bus number of all the lines stored in variable sb
eb=linedata(:,2) //Ending bus number of all the lines stored in variable eb
lz=linedata(:,3)+linedata(:,4)*%i; //lineimpedance=R+jX
sa=linedata(:,5)*%i; //shunt admittance=jB since conductsnce G=0 for all lines
nb=max(max(sb,eb));
ybus=zeros(nb,nb);
for i=1:length(sb)
m=sb(i);
n=eb(i);
ybus(m,m)=ybus(m,m)+1/lz(i)+sa(i)/2;
ybus(n,n)=ybus(n,n)+1/lz(i)+sa(i)/2;
ybus(m,n)=-1/lz(i);
ybus(n,m)=ybus(m,n);
end
B=imag(ybus(2:nb,2:nb)) //B matrix is the imaginary part of bus admittance matrix neglecting slack bus
P=Busdata(2:nb,2)-Busdata(2:nb,4) //Net power at each PV and PQ bus
delta=-inv(B)*P
deltad=delta*180/(%pi) //Converting delta from radian to degree
disp(B, 'The B Matrix is given by:')
disp(P,'The P Matrix is given by:')
disp(deltad,'The values of delta in degrees is given by:')
|
fe5bcc416223208240c21daea444eed95fa8e3a5 | a62e0da056102916ac0fe63d8475e3c4114f86b1 | /set12/s_Integrated_Circuits_P._Raja_2582.zip/Integrated_Circuits_P._Raja_2582/CH3/EX3.1/Ex3_1.sce | 68a77776d65d921389e5894df1a7208e0f7785d4 | [] | no_license | hohiroki/Scilab_TBC | cb11e171e47a6cf15dad6594726c14443b23d512 | 98e421ab71b2e8be0c70d67cca3ecb53eeef1df6 | refs/heads/master | 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 140 | sce | Ex3_1.sce | errcatch(-1,"stop");mode(2);//Ex 3.1
;;
R1=2.2;//kohm
G=-100;//Voltage gain
Rf=-G*R1;//kohm
disp(Rf,"Value of Rf(kohm) : ");
exit();
|
d1d2eba00196c74b2dd4f4f18e0452422da3c1cf | 449d555969bfd7befe906877abab098c6e63a0e8 | /680/CH7/EX7.07/7_07.sce | a50bd6ffb83a31f58f154665ea38bda626992eb5 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 407 | sce | 7_07.sce | //Problem 7.07:
//initializing the variables:
n = 1000; // in lb/h
MWCO2 = 44;
T1 = 200; // in deg F
T2 = 3200; // in deg F
a = 6.214;
b = 10.396E-3;
c = -3.545E-6;
//calculation:
T1 = (T1 + 460)/1.8
T2 = (T2 + 460)/1.8
dT = T2 - T1
ndt = n/MWCO2
Q = ndt*1.8*(a*dT +(b/2)*(T2^2 - T1^2) + (c/3)*(T2^3 - T1^3))
printf("\n\nResult\n\n")
printf("\n the heat transfer rate is %.2E Btu/h",Q) |
be6746dc8bdcb9e4d44f185b29bcd43315b246b3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /443/DEPENDENCIES/2_2_data.sci | cd81047ac16cf299ff0ef254a120d5986cc33081 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 429 | sci | 2_2_data.sci | //mass of air(in kg/min)
m=10;
//fluid velocity at inlet(in m/s)
C1=5;
//fluid velocity at outlet(in m/s)
C2=10;
//fluid pressure at inlet(in bar)
p1=1*10^5;
//fluid pressure at outlet(in bar)
p2=8*10^5;
//specific volume at inlet(in m^3/kg)
V1=0.5;
//specific volume at outlet(in m^3/kg)
V2=0.2;
//energy lost to cooling water(in kJ/s)
H=140;
//internal energy of air leaving the compressor(in kJ/kg)
dU=-250;
|
5231f0068c9bdb4eb857032b74aa44410efa5061 | 87749481136b7b72a47930f587f27667e0c0f97d | /Non-linear transformations/Task_1.sce | e914519a4c1700949a70a94e505091e96b201c4b | [
"MIT"
] | permissive | brooky56/Digital_Signal_Processing | cf15e5ac443a16edcb3efc8d7703cf4746dedcba | f28651e40b0a99b79e9ba27deabc4db8bfc7f08e | refs/heads/master | 2022-06-30T17:59:28.072522 | 2020-05-11T18:58:39 | 2020-05-11T18:58:39 | 242,598,653 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 2,527 | sce | Task_1.sce | clear all;
close;
clf();
//-----------------------------------------------------------------------------
s = chdir('C:\Users\work\OneDrive\Documents\SciLab\lab_v6')
exec('CLIP_F.sce')
exec('DIST_F.sci')
// Our recorded IRC
[signal, Fs, s_b] = wavread("C:\Users\work\OneDrive\Documents\SciLab\lab_v6\guitar.wav");
signal = signal(1, :)
// Before applying filter res
frequinces = (0:length(signal)-1)/length(signal) * Fs;
figure(0)
subplot(3,1,1)
plot(signal)
xlabel("Time", 'fontsize', 2)
ylabel("Amplitude", 'fontsize', 2)
title("Time domain original signal", 'fontsize', 3)
subplot(3,1,2)
plot2d("nl", frequinces, abs(fft(signal)),2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal", 'fontsize', 3)
subplot(3,1,3)
s = abs(fft(signal))
s(s>0.1) = 0
plot2d("nl", frequinces, s,2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal with treshold 0.1", 'fontsize', 3)
//Applying CLIP filter
signal_clip = CLIP_F(signal, 0.1)
frequinces = (0:length(signal_clip)-1)/length(signal_clip) * Fs;
figure(1)
subplot(3,1,1)
plot(signal_clip)
xlabel("Time", 'fontsize', 2)
ylabel("Amplitude", 'fontsize', 2)
title("Time domain clipped signal", 'fontsize', 3)
subplot(3,1,2)
plot2d("nl", frequinces, abs(fft(signal_clip)), 2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal", 'fontsize', 3)
subplot(3,1,3)
s = abs(fft(signal_clip))
s(s>0.1)=0
plot2d("nl", frequinces, s, 2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal", 'fontsize', 3)
//Play clipped sound
savewave('clipped.wav', signal_clip, Fs)
//Applying DISTORTION filter
signal_dist = DIST_F(signal, 3, 5)
frequinces = (0:length(signal_dist)-1)/length(signal_dist) * Fs;
figure(2)
subplot(3,1,1)
plot(signal_dist)
xlabel("Time", 'fontsize', 2)
ylabel("Amplitude", 'fontsize', 2)
title("Time domain distortion effect", 'fontsize', 3)
subplot(3,1,2)
plot2d("nl", frequinces, abs(fft(signal_dist)), 2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal", 'fontsize', 3)
subplot(3,1,3)
s = abs(fft(signal_dist))
s(s>3) = 0
plot2d("nl", frequinces, s, 2)
xlabel("Frequency, Hz", 'fontsize', 2)
ylabel("Freq amplitude", 'fontsize', 2)
title("Frequency response of signal", 'fontsize', 3)
//Play disted sound
savewave('distortion.wav', signal_dist, Fs)
|
c16d8cb2eee9da47a1c0e5afb8813163cf3132db | fa96b6f7b84fc275c3bc6a2ec1413711285aa54a | /Segmentation techniques using various Edge Detection Operators/Robert.sce | ebe0e1ca287167286f5c407fda93383092b3ac19 | [] | no_license | Sid-149/Image-Processing-and-Machine-Vision | 9d4d4308b39d7bd3fb0ab8171531fbbfe4381de9 | 94bb83e4005b39c2f08d15e23c5be73cde01b364 | refs/heads/main | 2022-12-30T01:51:08.942675 | 2020-10-19T05:15:12 | 2020-10-19T05:15:12 | 302,541,282 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 368 | sce | Robert.sce | clc
clear
close
im=imread('toyobjects.png')
a=double(im)
[r c]=size(a)
w1=[-1 0;0 1]
w2=[0 -1;1 0]
for i=2:r-1
for j=2:c-1
a1(i-1,j-1)=sum(a(i-1:i,j-1:j).*w1)
a2(i-1,j-1)=sum(a(i-1:i,j-1:j).*w2)
end
end
robert=a1+a2
subplot(1,2,1)
title('Orginal Image');
imshow(im);
subplot(1,2,2)
title('Robert');
imshow(uint8(robert));
|
835d280e8cdf3cfbea3ca04c85424cb06063af03 | 449d555969bfd7befe906877abab098c6e63a0e8 | /548/DEPENDENCIES/5_02data.sci | eaa7c07a3f2ad009215b31cb42724b09bb7ff119 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 513 | sci | 5_02data.sci | //consider the same wing configuration as that of example 5.1.
L=700; //Lift per unit span
V=50; // velocity of flow in test section(m/s)
D=1.225;//standard sea level density,Kg/m^3
q=D*V^2/2 //dynamic pressure,N/m^2
S=1.3;//wing area,m^2
Cl=L/(q*S) //coefficient of lift
//from the value of Cl and wing configuration we can get angle of attack by using standard table:
a=1 //angle of attack in degree
//To cause zero lift Cl=0,so from standard table of Cl and Lift:
a1=-2.2 //angle of attack in degree |
d01b98c694de6bf0540af20a653d1edc523c7e18 | 048b7c76423fe27dee2e31a52bae93c95883614e | /macros/fftshift1.sci | 2928850f719f784aef04943b21996300f15eee55 | [] | no_license | vu2swz/FOSSEE-Signal-Processing-Toolbox | aa5f283d050be62418dddbf41552f197b9949c4c | d97a4b7e2f0f25fb5cd94bd90a3b822592179d1e | refs/heads/master | 2021-08-19T20:06:19.346872 | 2017-11-27T09:57:21 | 2017-11-27T09:57:21 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 233 | sci | fftshift1.sci | function y= fftshift1(X,DIM)
rhs= argn(2);
if(rhs <1 | rhs >2)
error('Wrong number of Input arguments');
end
select(rhs)
case 1 then
y=callOctave("fftshift",X);
case 2 then
y=callOctave("fftshift",X,DIM);
end
endfunction |
21b8831e8014a5d70f16db280d65a13f57808729 | 449d555969bfd7befe906877abab098c6e63a0e8 | /24/CH21/EX21.2/Example21_2.sce | 27904f19cdc7a451bf92cdca6990e76cef2cab56 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 370 | sce | Example21_2.sce | //Given that
m = 1.5 //in kg
TiL = 60 + 273 //in K
TiR = 20 + 273 //in K
Tf = 40 + 273 //in K
Sc = 386 //in J/kg.K
//Sample Problem 21-2
printf("**Sample Problem 21-2**\n")
SL = m*Sc*integrate('1/T', 'T', TiL, Tf)
SR = m*Sc*integrate('1/T', 'T', TiR, Tf)
Srev = SR + SL
printf("The net entropy change in the reversible process is equal to %fJ/K", Srev) |
e0ecc1da16d7ba7bbb8473c1a18789d84da9f77e | 449d555969bfd7befe906877abab098c6e63a0e8 | /1286/CH4/EX4.8/4_8.sce | dae8433d677d39800df759dbea6c142dc46ada64 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 191 | sce | 4_8.sce | clc
//initialisation
p=0.76
v=1650//cc
m=1//gm
r=13600//kg/m3
//CALCULATIONS
w=(p*9.81*r*(v-1)*10^-6)/4.18
ih=540-w
//results
printf(' internal latent heat of steam= % 1f cal',ih)
|
a26631316d59b0d9350436db7cd03b49b6bf24ff | 449d555969bfd7befe906877abab098c6e63a0e8 | /2159/CH8/EX8.3/83.sce | ba156f14b9944dcc90edbfb13b819e5672d213a0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 155 | sce | 83.sce | // problem 8.3
d=0.03
Fx=900
x=30
g=9.81
w=g*1000
a=3.142*d*d/4
V=((Fx*g)/(w*a*sind(x)*sind(x)))^0.5
Q=a*V
disp(Q*1000,"rate of flow in m3/sec")
|
d05e61eddfa9bcc105eac30163deca239fc48648 | 8ad9380384d2751d79937ba5d6d581565596b891 | /macros/uniform_sampling.sci | b8bc6ed88f8b8f74aa2a4043fef9c1c04a6057e3 | [
"BSD-3-Clause"
] | permissive | iamAkshayrao/scilab_point_cloud_toolbox | 1d8845f0830ddb623383c8dbfeadc8a3a35e8801 | 5d592a695b7976f4e63f0ae24d0a14937e474642 | refs/heads/master | 2022-12-17T23:14:11.513116 | 2020-09-25T18:57:02 | 2020-09-25T18:57:02 | 290,829,006 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 1,034 | sci | uniform_sampling.sci | function uniform_sampling()
// Performs uniform subsampling. The supported extension for the point cloud are pcd ply and vtk
//
// Syntax
// PointCloud(InputFilename(PCD or VTK or PLY),OutputFilename(PCD or VTK or PLY),options,"uniform_sampling")
//
// Parameters
// input PCD/PLY/VTK filename
// output filename with same extension as the input filename
// where options are:
// -radius = use a leaf size of X,X,X to uniformly select 1 point per leaf (default: 0.01)
//
// Description
// the input files are subsampled based on uniform fraction and output stored in the filename
//
// Examples
// PointCloud("bun0.pcd","output_us1.pcd","-radius","0.03","uniform_sampling")
//
// Examples
// PointCloud("bun0.pcd","output_us2.pcd","uniform_sampling")
//
// Examples
// PointCloud("cube.ply","output_us3.ply","uniform_sampling")
//
// Examples
// PointCloud("tum_rabbit.ply","output_us4.ply","uniform_sampling")
//
//Authors
//Ankit Kumar
//Akshay S Rao
//Mohammed Rehab Sait
//Aliasgar AV
endfunction
|
4e629ff8767ae6f66f835d04d2399a213d3b1ae0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2657/CH2/EX2.7/Ex2_7.sce | 8cb791ee7a7eb1fabdbbf7dc5b201cf2c2c1577b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 944 | sce | Ex2_7.sce | //Calculations on Otto cycle
clc,clear
//Given:
P1=1.05,P2=13,P3=35 //Pressure at 1, 2, 3 in bar
T1=15+273 //Temperature at 1 in K
cv=0.718 //Specific heat at constant volume in kJ/kgK
R=0.287 //Specific gas constant in kJ/kgK
//Solution:
r="V1/V2" //Compression ratio
g=R/cv+1 //Specific heat ratio(gamma)
r=(P2/P1)^(1/g) //By adiabatic process relation
eta=1-1/r^(g-1) //Air standard efficiency
T2=P2*T1/(P1*r) //Temperature at 2 in K
T3=(P3/P2)*T2 //Temperature at 3 in K
Q1=cv*(T3-T2) //Heat added in kJ/kg
W=Q1*eta //Work done in kJ/kg
V1=1*R*10^3*T1/(P1*10^5) //Ideal gas equation, Volume at 1 in m^3/kg
V2=V1/r //Volume at 2 in m^3/kg
V_s=V1-V2 //Swept volume in m^3/kg
mep=W*1000/(V_s*10^5) //Mean effective pressire in bar
//Results:
printf("\n The air standard efficiency, eta = %.1f percent",eta*100)
printf("\n The compression ratio, r = %d",r)
printf("\n The mean effective pressure, mep = %.2f bar\n",mep)
|
f91a505d2ec43cafe89bc290c0167310064b3ea7 | a5f0fbcba032f945a9ee629716f6487647cafd5f | /Experimentation/9 Automated_advanced_test/tests/test.sce | 3ff1717c7ef22f86c37f8c429061650a9bc894f2 | [] | no_license | SoumitraAgarwal/Scilab-gsoc | 692c00e3fb7a5faf65082e6c23765620f4ecdf35 | 678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f | refs/heads/master | 2021-04-15T17:55:48.334164 | 2018-08-07T13:43:26 | 2018-08-07T13:43:26 | 126,500,126 | 1 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 417 | sce | test.sce | // Demo script for linear regression
getd('../')
M = csvRead('Salary_Data.csv')
M(or(isnan(M),'c'),:) = []
X = M(:, 1)
y = M(:, 2)
models = mgetl('models')
params = mgetl('parameters')
nummodels = size(models)
nummodels = nummodels(1)
for i = 1:nummodels
disp('Running test for ' + models(i) + ' with params ' + params(i))
machineLearn(models(i), M, params(i));
//machinePredict('attributes.p', X)
break
end |
7d80a44da34b8db7919bbeb9096379562d32c6c5 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1445/CH1/EX1.37/ch1_ex_37.sce | 398178bc5e4a1cc7520d624eab012ed87f58189a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,239 | sce | ch1_ex_37.sce | //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK THEOREMS
//Example 37
disp("CHAPTER 1");
disp("EXAMPLE 37");
//VARIABLE INITIALIZATION
v1=90; //voltage source in Volts
r1=8; //in Ohms
r2=6; //in Ohms
r3=5; //in Ohms
r4=4; //in Ohms
r5=8; //diagonal resistance in Ohms
r6=8; //in Ohms
//SOLUTION
//using Thevenin's Theorem
//(3)v1+(-2)v2=90...........eq (1)
//(-2)v1+(4)v2=-90..........eq (2)
A=[3 -2;-2 4];
b=[90;-90];
x=inv(A)*b;
v1=x(1,:);
v2=x(2,:);
vth=v1;
req1=(r1*r5)/(r1+r5);
req2=req1+r4;
req3=(req2*r6)/(req2+r6);
rth=req3+r2;
vab1=(vth*r3)/(rth+r3);
disp(sprintf("By Thevenin Theorem, the value of V_ab is %f V",vab1));
//using Norton's Theorem
//(13)v1+(-7)v2=270.........eq (1)
//(7)v1+(-13)v2=0...........eq (2)
A=[13 -7;7 -13];
b=[270;0];
x=inv(A)*b;
v1=x(1,:);
v2=x(2,:);
req1=(r1*r5)/(r1+r5);
req2=req1+r4;
req3=(req2*r6)/(req2+r6);
rn=req3+r2;
if(v1>v2) then
In=(v1-v2)/r2;
else
In=(v2-v1)/r2;
end;
vab2=(r3*In)*(rn/(rth+r3));
disp(sprintf("By Norton Theorem, the value of V_ab is %f V",vab2));
//END
|
cc8db5c50a9ad6261dd2283e8d510b39689d9f8c | 04101e89f0980b65ec0350667a3cbf16ccd56630 | /Steepest_Descent.sce | c7ed0a6f199a48558b090c81f1bc960f48a5e1bb | [] | no_license | francissinco/Numerical-Analysis-in-Scilab | a810d30dc1ba032a6a9bc37a6f5345185781380e | 51f9d2da4d31e865be158bea2b7cf563ccbe21eb | refs/heads/master | 2021-01-10T11:45:15.197910 | 2016-05-06T10:34:45 | 2016-05-06T10:34:45 | 52,008,949 | 0 | 0 | null | 2016-05-06T10:34:45 | 2016-02-18T13:27:34 | Scilab | UTF-8 | Scilab | false | false | 964 | sce | Steepest_Descent.sce | //Francis Brylle G. Sinco
//MS Applied Mathematics
//Math 288
//University of the Philippines - Diliman
//15 January 2011
// Steepest Descent Algorithm with Backtracking (Armijo) Linesearch
//INITIALIZATION OF QUANTITIES
t=1;//initial guess for the steplength
rho=0.5;
alpha=0.5;
k=1;
tau=10e-8;//relative error tolerance
x0=[0;0];//initial guess for the minimizer
//FUNCTION DEFINITIONS
function z = f(x)
z = 2*x(1)^2 + 2*x(1)*x(2) + x(2)^2 + x(1) - x(2);
endfunction;
function g = gradient(x)
g = [4*x(1)+2*x(2)+1; 2*x(1)+2*x(2)-1];
endfunction;
//MAIN
x=x0;
d=-gradient(x);
while norm(gradient(x)) > tau*norm(gradient(x0))//relative error criterion loop
d = -gradient(x);
while (f(x + t*d) > f(x)+ alpha*t*gradient(x)'*d) //Armijo condition loop
t = rho*t;
end;
x = x + t*d;
k=k+1;
end;
x//final answer (computed minimizer)
k//number of iterations performed
///////////////////////////////END////////////////////////////////////
|
3e14380582214067fa608fa95e99b68d84c28ba7 | 4483ff664b4d01c53114a7fc535625c197c8f989 | /green routing/comp.sce | d4a883db094e485c5b03baf4c332b61de74347c1 | [] | no_license | winash1618/myproject | be9b77d4a405edce7e625a999803016b50ab99d0 | 2132e76e6a996bee19f356a2b68af827fa6c621b | refs/heads/master | 2022-12-06T06:09:06.487979 | 2020-08-20T02:00:54 | 2020-08-20T02:00:54 | 288,880,158 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 64 | sce | comp.sce | clc
clear
a=1
b=12
[k,g,b]=myfunction()
m=g+b
disp(k,g,b,m)
|
69ee8d8cdb051c3f1cbbe090942d0c62db68739e | 449d555969bfd7befe906877abab098c6e63a0e8 | /3764/CH1/EX1.3/Ex1_3.sce | 07e1d44da3ae3916dbb1865653a3deeefe425237 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,645 | sce | Ex1_3.sce | clc
//
//Variable declaration
Su = 600 //ultimate normal stress(MPa)
FS = 3.3 //Factor of safety with respect to failure
tU=350 //Ultimate shearing stress(MPa)
Cx=40 //X Component of reaction at C(kN)
Cy=65 //Y Component of reaction at C(kN)
Smax=300 //Allowable bearing stress of the steel
//Calculation
C=sqrt(((40**2))+((65**2)))
//Case(a)
P=(15*0.6 + 50*0.3)/(0.6) //Allowable bearing stress of the steel(MPa)
Sall=(Su/FS) //Allowable Stress(MPa)
Sall=(Sall) //Rounding Allowable stress to 1 decimal place(MPa)
Areqa=(P/(Sall*(1000))) //Cross Sectional area(m^2)
Areqa=(Areqa) //Rounding cross sectional area to 5 decimal places(m^2)
dAB=sqrt(((Areqa)*(4))/(22/7)) //Diameter of AB(m)
dAB=dAB*1000 //Diameter of AB(mm)
dAB=(dAB) //Rounding Diameter of AB(mm)
//Case(b)
tALL=tU/FS //Stress(MPa)
tALL=(tALL) //Rounding of Stress
AreqC=((C/2)/tALL) //Cross sectional area(m^2)
AreqC=AreqC*1000
AreqC=(AreqC) //Rounding the cross sectional area
dC=sqrt((4*AreqC)/(22/7)) //Diameter at point C
dC=((dC+1)) //Rounding of the diameter at C
//Case(c)
Areq=((C/2)/Smax)
Areq=Areq*1000 //Cross sectional area(mm^2)
t=(Areq/22) //Thickness of the bracket
t=(t)
//Result
printf("\n Case(a): Diameter of the bolt = % f mm' ,dAB)
printf("\n Case(a): Dimension b at Each End of the Bar = % f mm' ,dC)
printf("\n Case(a): Dimension h of the Bar = % f mm' ,t)
|
db354c90a2e0769e5ee4bf24c50771e8dcef771a | 449d555969bfd7befe906877abab098c6e63a0e8 | /1994/CH3/EX3.9/Example3_9.sce | be997a7d7988b8d16b29c95e6a5d64933e54be72 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 162 | sce | Example3_9.sce | //Chapter-3,Example3_9,pg 3_38
n=4
fsmin=10*10^-3//full scale value on min. range
R=1/(10^n)
S=fsmin*R
printf("senstivity of meter\n ")
printf("s=%.7f",S)
|
91c3d26c4295b6237968404ac1238e6359f0df6d | 449d555969bfd7befe906877abab098c6e63a0e8 | /858/CH5/EX5.9/example_9.sce | 235df240423c4c9f067864613b631668fe1a1282 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 271 | sce | example_9.sce | clc
clear
printf("example 5.9 page number 191\n\n")
//to find the surface temperature of earth
T_sun = 5973 //in degree C
d = 1.5*10^13 //in cm
R = 7.1*10^10; //in cm
T_earth = ((R/(2*d))^0.5)*T_sun;
printf("Temperature of earth = %f C",T_earth-273)
|
64c723334948fd8411bb89560b7ac263534c6723 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3733/CH18/EX18.2/Ex18_2.sce | 05b986b66b9b81a20ff78f663ff8854effdcbb2c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,275 | sce | Ex18_2.sce | // Example 18_2
clc;funcprot(0);
//Given data
m_w1=400;// Quantity of cooling water in kg/min
T_1=43.5;// The temperature of water at inlet in °C
T_a1=18.5;// °C
RH=60;// Relative humidity in %
T_a2=27;// °C
V=600;// Volume of air per minute in m^3/min
P=4;// Power absorbed in kW
C_pw=4.2;// kJ/kg°C
//Calculation
//The conditions of air at inlet and outlet are represented on psychrometric chart as shown in Fig.Prob.18.2
// Total heat of air at inlet + Total heat of water at inlet + heat dissipatedby motor = Total heat of air at outlet + Total heat of water at outlet
// From psychrometric chart,
H_a1=38.87;// kJ/kg
H_a2=84.85;// kJ/kg
w_1=7.8;// grams/kg
w_2=22.6;// grams/kg
v_s1=0.836;// m^3/kg
m_a=V/v_s1;// kg/min
Q=P*60;// kJ/min
//T_2=y(1)
function[X]=Temperature(y);
X(1)=((m_w1*C_pw*(T_1-y(1)))+Q)-(m_a*((H_a2-H_a1)-(((w_2-w_1)/1000)*C_pw*y(1))));
endfunction
y=[10]
z=fsolve(y,Temperature);
T_2=z(1);// The temperature of water coming out of the tower in °C
m_m=m_a*((w_2-w_1)/1000);// The make up water required per hour in kg/min
printf('\nThe temperature of water coming out of the tower=%0.2f°C \nThe make up water required per hour=%0.1f kg/min',T_2,m_m);
// The answers provided in the textbook is wrong
|
0da8024b778d23ad877cb6bef6d29e302985bd17 | 449d555969bfd7befe906877abab098c6e63a0e8 | /662/CH6/EX6.6/ex6_6.sce | 56db81df328d08341d4443f4c2264008ac057f76 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 999 | sce | ex6_6.sce | //Example 6.6
//Use of if-else statement
//status, pay, pastdue,accountno, balance are not declared or predefined in the program
//so these values are assumed
status= input("Enter Status: ","string");
printf("Enter Pay:");
pay= scanf("%f");
if(status=='S') then
tax=0.20*pay;
else
tax=0.14*pay;
end
pastdue=1200.00;
accountno=9743456789;
if ( pastdue > 0) then
printf("account number %d is overdue", accountno);
credit=0;
else
credit=1000.0;
end
x=4;
balance=5678;
if ( x<=3) then
y=3*x^2;
else
y=2*(x-3)^2;
end
printf("%f\n", balance);
circle = 1; //or circle =0 for false case
if (circle) then
printf("Enter radius of circle");
radius=scanf("%f");
area= 3.14159*radius*radius;
printf("Area of circle = %f", area);
else
printf("Enter length and width seperated by space:");
[Length, width] = scanf("%f %f");
area =Length * width;
printf("Area of rectangle = %f", area);
end
|
eb883bb83c5adf2fff30d57564dfcc7d3a33104f | 449d555969bfd7befe906877abab098c6e63a0e8 | /2126/CH6/EX6.5/5.sce | aa716ca111caf4377accb45972d1fbe168c1622c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 990 | sce | 5.sce | clc
clear
//Input data
n=2 //Number of jets
D=0.25 //Diameter of turbojet in m
P=3000 //Net power at turbojet in W
mf_kWh=0.42 //Fuel consumption in kg/kWh
CV=49000 //Calorific value in kJ/kg
u=300 //Flight velocity in m/s
d=0.168 //Density in kg/m^3
AFR=53 //Air fuel ratio
//Calculatioon
mf=mf_kWh*P/3600 //Mass flow rate of fuel in kg/s
ma=AFR*mf //Mass flow rate of air in kg/s
m=ma+mf //Mass flow rate of gas in kg/s
Q=m/d //Volume flow rate in m^3/s
Cj=(Q*4)/(2*%pi*D^2) //Jet velocity in m/s
Ca=Cj-u //Absolute Jet velocity in m/s
F=((m*Cj)-(ma*u))*10^-3 //Thrust in kN
eff=((F*u)/(mf*CV))*100 //Overall efficiency in %
eff_prop=((2*u)/(Cj+u))*100 //Propulsive efficiency of the cycle in %
eff_ther=(eff/eff_prop)*100 //Efficiency of turbine in %
//Output
printf('(A)Absolute velocity of jet is %3.3f m/s\n (B)Resistance of the plane is %3.4f kN\n (C)Overall efficiency is %3.2f percent\n (D)Efficiency of turbine is %3.3f percent',Ca,F,eff,eff_ther)
|
6ba610566cfacc5f90fe100c7beb4b7545c25bc0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1752/CH6/EX6.6/exa6_6.sce | 806fd210bcf1b0be3af30a6f4fe8a073b8e276d5 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 797 | sce | exa6_6.sce | //Exa 6.6
clc;
clear;
close;
//given data
rho=1.205;// in kg/m^3;
C_p=1006;// in J/kg K
Pr=0.71;
K=0.0256;// in W/mK
delta=1.506*10^-5;// in m^2/s
T_s=35;// in degree C
T_infinite=5;// in degree C
T_f=(T_s+T_infinite)/2;// in degree C
T_f=T_f+273;// in K
Bita=1/T_f;
del_T=T_s-T_infinite;
g=9.81;
// Formula 1/x= 1/Lh + 1/Lv
Lh=50;// in cm
Lv=50;// in cm
x=Lh*Lv/(Lh+Lv);// in cm
x=x*10^-2;// in m
// Formula Gr=(g*Bita*del_T*x^3)/delta^2;
Gr=(g*Bita*del_T*x^3)/delta^2;
Ra=Gr*Pr;
// Formula Nu= h*x/K =0.53*Ra^(1/4)
h=0.53*Ra^(1/4)*K/x;// in W/m^2K
A=2*(0.5+0.5);
q=h*A*del_T;// w
disp("Heat loss per meter length of pipe is : "+string(q)+" watt")
// Note: In the book, value of h is wrong due to place miss value of x, so the answer in the book is wrong
|
a5c7b6525fdaddab0878e4e1489a615fc2cf109c | ff564ea78a2c79675c15643431b097b269dbc056 | /lab3.sce | 06ff4ee3098c3623fdfb2ed427e6773601f5b599 | [] | no_license | Ahmetov/scilab-labs | e57b4ba3e56a33861cd8ae2aae78d4c9fe3282b7 | 3f95354b41dae975eaccc5de830107feae5df79a | refs/heads/master | 2020-09-08T17:32:05.535199 | 2019-11-26T12:01:32 | 2019-11-26T12:01:32 | 221,196,856 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 9,215 | sce | lab3.sce | //var 7
//распределение Пуассона; lambda = 30, maximum = 49. нормальное
//7 for mas+-?? (table) select-case funct– в файл
//7 u=7.5 o=2.1 lamda=null
//var 6
//lab 3 var 13 for + if-then-elseif + в файл, 4 задача
//------------------------
//------------------------
//------------------------
//------------------------
//2 lab-------------------
fd = mopen('D:\mis_labs\a.txt', 'wt');
intervalArray = zeros(1, 400);
x = 0 //????
matr = zeros(2, 49)
before = 0;
sArray = zeros(1, 400);
for x=0:1:49
matr(1, x + 1) = x
before = before + ( %e^(-30) * 30^x ) / factorial(x)
matr(2, x + 1) = before
end
summ = 0;
isum = 0;
mfprintf(fd, "\nТабличный метод\n");
for i=1:1:401
r = rand()
rSum = 0;
for i=1:1:12
r2 = rand();
rSum = rSum + r2;
end
interval = 2.1*(rSum - 12/2/sqrt(1)) + 7.5;
intervalArray(i) = interval;
isum = isum + interval;
mfprintf(fd, 'Временной интервал = %f\n', interval);
for j=2:1:49
select (1)
case 1 then
if(matr(2,j-1)<=r & r<matr(2, j)) then
z = matr(1, j-1) + (r - matr(2,j-1))*(matr(1,j) - matr(1,j-1)) / (matr(2,j) - matr(2,j-1));
sArray(i) = z;
summ = summ + z;
mfprintf(fd, "Табличный метод = %d\n", z);
end
else
error("error кокой-то")
end
end;
end;
mSize = summ/400;
D = 0;
for i=1:1:400
D = D + ((sArray(i) - mSize)^2);
end
D = 1/ 399 * D;
mfprintf(fd, "\nМатрица\n");
//for i=1:1:2 //матрица вывод
//for j=1:1:49
//mfprintf(fd, "%f [ %d, %d]", matr(i,j), i, j)
//j = j + 1
//end
//mfprintf(fd, "\n")
//end
//2 lab-------------------
//------------------------
//------------------------
//------------------------
//------------------------
i = 0;
k = 4;
result = [0. 0. 0. 0];
result2 = [0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0];
count = 1;
mfprintf(fd, "\nТипы - адреса\n");
while i < 400
message = " тип";
tmp = rand();
tmp2 = rand();
if tmp < 0.28 then
message = "1" + message;
//.........................................start adress 1 correct
if tmp2 < 0.01 then
result2(1,1) = result2(1,1) + 1;
message = message + " = адресс 1";
elseif tmp2 < 0.39 then
result2(1,2) = result2(1,2) + 1;
message = message + " = адресс 2";
elseif tmp2 < 0.71 then
result2(1,3) = result2(1,3) + 1;
message = message + " = адресс 3";
elseif tmp2 < 0.76 then
result2(1,4) = result2(1,4) + 1;
message = message + " = адресс 4";
elseif tmp2 < 0.94 then
result2(1,5) = result2(1,5) + 1;
message = message + " = адресс 5";
elseif tmp2 < 1 then
result2(1,6) = result2(1,6) + 1;
message = message + " = адресс 6";
end;
//.........................................end adresses 1
result(1) = result(1) + 1;
mfprintf(fd, message + '\n');
elseif tmp < 0.46 then
message = "2" + message;
//.........................................start adress 2 correct
if tmp2 < 0.01 then
result2(2,1) = result2(2,1) + 1;
message = message + " = адресс 1";
elseif tmp2 < 0.38 then
result2(2,2) = result2(2,2) + 1;
message = message + " = адресс 2";
elseif tmp2 < 0.62 then
result2(2,3) = result2(2,3) + 1;
message = message + " = адресс 3";
elseif tmp2 < 0.86 then
result2(2,4) = result2(2,4) + 1;
message = message + " = адресс 4";
elseif tmp2 < 0.94 then
result2(2,5) = result2(2,5) + 1;
message = message + " = адресс 5";
elseif tmp2 < 1 then
result2(2,6) = result2(2,6) + 1;
message = message + " = адресс 6";
end;
//.........................................end adresses 2
result(2) = result(2) + 1;
mfprintf(fd, message + '\n');
elseif tmp < 0.67 then
message = "3" + message;
//.........................................start adress 3 correct
if tmp2 < 0.01 then
result2(3,1) = result2(3,1) + 1;
message = message + " = адресс 1";
elseif tmp2 < 0.03 then
result2(3,2) = result2(3,2) + 1;
message = message + " = адресс 2";
elseif tmp2 < 0.06 then
result2(3,3) = result2(3,3) + 1;
message = message + " = адресс 3";
elseif tmp2 < 0.65 then
result2(3,4) = result2(3,4) + 1;
message = message + " = адресс 4";
elseif tmp2 < 0.74 then
result2(3,5) = result2(3,5) + 1;
message = message + " = адресс 5";
elseif tmp2 < 1 then
result2(3,6) = result2(3,6) + 1;
message = message + " = адресс 6";
end;
//.........................................end adresses 3
result(3) = result(3) + 1;
mfprintf(fd, message + '\n');
elseif tmp < 1 then
message = "4" + message;
//.........................................start adress 4
if tmp2 < 0.17 then
result2(4,1) = result2(4,1) + 1;
message = message + " = адресс 1";
elseif tmp2 < 0.36 then
result2(4,2) = result2(4,2) + 1;
message = message + " = адресс 2";
elseif tmp2 < 0.4 then
result2(4,3) = result2(4,3) + 1;
message = message + " = адресс 3";
elseif tmp2 < 0.88 then
result2(4,4) = result2(4,4) + 1;
message = message + " = адресс 4";
elseif tmp2 < 0.96 then
result2(4,5) = result2(4,5) + 1;
message = message + " = адресс 5";
elseif tmp2 < 1 then
result2(4,6) = result2(4,6) + 1;
message = message + " = адресс 6";
end;
//.........................................end adresses 4
result(4) = result(4) + 1;
mfprintf(fd, message + '\n');
end;
//tmp3 = rand()
//for j=2:1:50
//if matr(2,j-1) <= tmp3 & tmp3 <= matr(2,j)
//z = j-1 + ((tmp3 - matr(2,j-1)) * (j - j-1) ) / ( (matr(2,j)) - matr(2, j-1) )
//mfprintf(fd, "%d", z);
//disp(int(z))
//end;
//end;
i = i + 1;
end
mfprintf(fd, '\nКоличества типов\n');
mfprintf(fd, "%d %d %d %d\n\n", result(1), result(2), result(3), result(4));
mfprintf(fd, 'Вероятности\n');
mfprintf(fd, "%f %f %f %f\n", result(1) / 400, result(2) / 400, result(3) / 400, result(4) / 400);
mfprintf(fd, '(----------- 2 часть ---------)\n');
mfprintf(fd, 'Коичества\n');
i = 1
j = 1
while i <= 4
while j <= 6
mfprintf(fd, "%d ", result2(i,j))
j = j + 1
end
mfprintf(fd, "\n")
j = 1
i = i + 1
end
mfprintf(fd, 'Вероятности\n');
i = 1
j = 1
while i <= 4
while j <= 6
mfprintf(fd, "%f ", result2(i,j) / result(i))
j = j + 1
end
mfprintf(fd, "\n")
j = 1
i = i + 1
end
mDl = 2.1
f1 = result(1) / isum;
f2 = result(2) / isum;
f3 = result(3) / isum;
f4 = result(4) / isum;
f1t = (400*0.28) / (7.5 * 400);
f2t = (400*0.18) / (7.5 * 400);
f3t = (400*0.17) / (7.5 * 400);
f4t = (400*0.37) / (7.5 * 400);
mfprintf(fd, "\n");
mfprintf(fd, "Мат. ожид. теор длин = %f\n", 30);
mfprintf(fd, "Мат. ожид. практич длин = %f\n", mSize);
mfprintf(fd, "Мат. ожид. теор врем интервала = 7.5\n");
mfprintf(fd, "Мат. ожид. практич врем интерв = %f\n", isum/400);
mfprintf(fd, "Дисперсия теор = %f\n", mSize);
mfprintf(fd, "Дисперсия пр длин = %f\n", D);
mfprintf(fd, "Ско т %f\n",sqrt(mSize));
mfprintf(fd, "Ско п %f\n",sqrt(D));
mfprintf(fd, "частота 1 тип практическая %f\n",f1);
mfprintf(fd, "частота 1 тип теор %f\n",f1t);
mfprintf(fd, "частота 2 тип практическая %f\n",f2);
mfprintf(fd, "частота 1 тип теор %f\n",f2t);
mfprintf(fd, "частота 3 тип практическая %f\n",f3);
mfprintf(fd, "частота 1 тип теор %f\n",f3t);
mfprintf(fd, "частота 4 тип практическая %f\n",f4);
mfprintf(fd, "частота 1 тип теор %f\n",f4t);
//............................lab 3
sortArray = zeros(1:400);
sortArray = gsort(intervalArray, 'g', 'i');
sortArray7 = zeros(1:7);
rs = sortArray(400) - sortArray(1);
mm = 7;
h = (rs / mm - 1);
u0 = sortArray(1) - h/2;
for i=1:1:mm
sortArray7(i) = u0 + i*h;
end
pArray = zeros(1:mm-1);
for i=1:1:400
end
for i=1:1:mm-1
sortArray7
end
//............................lab 3
mclose(fd);
|
4866a57202a0927a87fd54b24f7b0abee62c8a94 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1049/CH12/EX12.7/ch12_7.sce | cfa6a8de9b64bc480b114f876de5a8e295072f0a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 528 | sce | ch12_7.sce | clear;
clc;
V_t=220;
n_m=1000;
w_m=2*%pi*n_m/60;
I_a=60;
r_a=.1;
K_m=(V_t-I_a*r_a)/(w_m);
V_s=230;
V_m=sqrt(2)*V_s;
disp("for 600rpm speed");
n_m=600;
w_m=2*%pi*n_m/60;
a=acosd((K_m*w_m+I_a*r_a)*%pi/(2*V_m)); printf("firing angle=%.3f deg",a);
disp("for -500rpm speed");
n_m=-500;
w_m=2*%pi*n_m/60;
a=acosd((K_m*w_m+I_a*r_a)*%pi/(2*V_m)); printf("firing angle=%.3f deg",a);
I_a=I_a/2;
a=150;
V_t=2*V_m*cosd(a)/%pi;
w_m=(V_t-I_a*r_a)/K_m;
N=w_m*60/(2*%pi); printf("\nmotor speed=%.3f rpm",N);
|
e55c63787f1e13d9c7d2d6da44c030b5b9b590ad | 449d555969bfd7befe906877abab098c6e63a0e8 | /2126/CH1/EX1.25/25.sce | f002729c6da9e2c29f1984b9455cb5e5e29eae89 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 465 | sce | 25.sce | clc
clear
//Input data
C=215 //Velocity in m/s
T=30+273 //Static temperature in K
P=5 //Static pressure in bar
R=287 //Specific gas constant in J/kg-k
k=1.4 //Adiabatic Constant
//Calculations
a=sqrt(k*R*T) //Sound Velocity in m/s
M=C/a //Mach number
To=T*(1+(((k-1)/2)*M^2)) //Stagnation temperature in K
Po=P*(To/T)^(k/(k-1)) //Stagnation pressure in kPa
//Output
printf('(A)Stagnation Pressure is %3.4f bar\n (B)Mach number is %3.3f',Po,M)
|
22b94fcf2e1037c512c4c1e755551697d7743754 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3648/CH25/EX25.6/Ex25_6.sce | b8fe5f25c5388f1b14251262552eba13ebaf514d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 365 | sce | Ex25_6.sce | //Example 25_6
clc();
clear;
//To find the apparent mass of a high speed electron
rati=1/3 //units in constant
mo=9.6*10^-31 //units in Kg
m=mo/(sqrt(1-rati^2)) //Units in Kg
printf("The apparent mass of High speed electron is mo=")
disp(m)
printf("Kg")
//In textbook answer printed wrong as m=9.*10^-31 Kg the correct answer is m=1.018*10^-30
|
157dc275332eec0b07661880a991bce460533069 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1970/CH9/EX9.5/CH09Exa5.sce | 5945932649de706b17574daf775a8691a6b5c9e7 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 764 | sce | CH09Exa5.sce | // Scilab code Exa9.5 : : Page-391 (2011)
clc; clear;
m_40 = 39.962589; // Mass of calcium 40, atomic mass unit
m_41 = 40.962275; // Mass of calcium 41, atomic mass unit
m_39 = 38.970691; // Mass of calcium 39, atomic mass unit
m_n = 1.008665; // Mass of the neutron, atomic mass unit
BE_1d = (m_39+m_n-m_40)*931.5; // Binding energy of 1d 3/2 neutron, mega electron volts
BE_1f = (m_40+m_n-m_41)*931.5; // Binding energy of 1f 7/2 neutron, mega electron volts
delta = BE_1d-BE_1f; // Energy difference between neutron shells, mega electron volts
printf("\nThe energy difference between neutron shells = %4.2f MeV", delta);
// Result
// The energy difference between neutron shells = 7.25 MeV |
fa424da39121cbdf27c8640a712140abffa0c074 | ad50d54a607f73a866b6c4caf7bf98c1ab53e26c | /code.sce | 244457774ef85108e1526c8d0896e2c38e99505a | [] | no_license | kennethassogba/modeling-in-population-dynamics | 42e2c1153e2d2553f797b7458a6a64e044b6ff1d | 660127445779b0b473bebd96be3287eb7a4320cc | refs/heads/master | 2022-12-11T16:52:19.552346 | 2022-12-10T14:34:15 | 2022-12-10T14:34:15 | 131,633,487 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 16,609 | sce | code.sce | //Kenneth et Anne-Marie
//Allez dans la console scilab pour commencer
clear;
////MODELES\\\\
//1. Équation logistique
function y=F1(t,u)
a=0.5;
b=0.1;
y=zeros(u);
y=a*u*(1-b*u);
endfunction
//meme fonction mais on change les paramettres a et b
function y=F2(t,u)
a=7;
b=0.14;
y=zeros(u);
y=a*u*(1-b*u);
endfunction
//2 Système de Lotka-Volterra
function [y]=F3(t,u)
a=1;
b=0.2;
c=0.5;
d=0.1;
y(1)=a*u(1)-b*u(1)*u(2);
y(2)=-c*u(2)+d*u(1)*u(2);
endfunction
//3 Modèle logistique de Verhulst
function [y]=F4(t,u)
a=1;
b=0.2;
c=0.5;
d=0.1;
e=0.01;
y(1)=a*u(1)-e*u(1)^2-b*u(1)*u(2);
y(2)=-c*u(2)+d*u(1)*u(2);
endfunction
//meme fonction mais on change le paramettre e
function [y]=F5(t,u)
a=1;
b=0.2;
c=0.5;
d=0.1;
e=1;
y(1)=a*u(1)-e*u(1)^2-b*u(1)*u(2);
y(2)=-c*u(2)+d*u(1)*u(2);
endfunction
//4 Populations en compétition
function [y]=F6(t,u)
a=1;
th1=3/2;
th2=1/2;
y(1)=u(1)*(1-u(1)-th1*u(2));
y(2)=a*u(2)*(1-u(2)-th2*u(1));
endfunction
//meme fonction mais on change les paramettres a, th1 et th2
function [y]=F7(t,u)
a=1/2;
th1=2;
th2=3;
y(1)=u(1)*(1-u(1)-th1*u(2));
y(2)=a*u(2)*(1-u(2)-th2*u(1));
endfunction
//5 Generalisation a 3 especes
//du modele des populations en compétition
function [y]=F8(t,u)
a=1;
b=2;
//th(ij) représente l'effet de la populataion j sur la population i
th12=3/2;
th21=1/2;
th13=3/2;
th23=1/2;
th31=3/2;
th32=1/2;
y(1)=u(1)*(1-u(1)-th12*u(2)-th13*u(3));
y(2)=a*u(2)*(1-u(2)-th21*u(1)-th23*u(3));
y(3)=b*u(3)*(1-u(3)-th31*u(1)-th32*u(2));
endfunction
////SCHEMAS\\\\
//Schéma d’Euler explicite
function [sol]=EulerExplicite(u0,Temps,f)
h=Temps(2)-Temps(1);
u=u0;
sol=u0;
for iter=1:length(Temps)-1
u=u+h*f(u);
sol=[sol,u];
end
endfunction
//Schéma d’Euler modifie
function [sol]=EulerModifie(u0,Temps,f)
h=Temps(2)-Temps(1);
u=u0;
sol=u0;
for iter=1:length(Temps)-1
u=u+h*f(iter,u+(h/2)*f(iter,u));
sol=[sol,u];
end
endfunction
//RK4
function [sol]=RK4(u0,Temps,f)
h=Temps(2)-Temps(1);
sol=u0;
r=u0;
for iter=1:length(Temps)-1
yn1=r;
yn2=yn1+h/2*f(t,yn1);
yn3=yn1+h/2*f(t,yn2);
yn4=yn1+h*f(t,yn3);
so=yn1+h/6*(f(t,yn1)+2*f(t,yn2)+2*f(t,yn3)+f(t,yn4));
r=so;
sol=[sol,r]
end
endfunction
//RK Implicite (Crank Nicholson)
function y=zer(u)
y=u-u0-h/2*(F3(t,u0)+F3(t+h,u));
endfunction
function [sol]=CrankNicholson(u0,Temps,f)
h=Temps(2)-Temps(1);
sol=u0;
r=u0;
for iter=1:length(Temps)-1
yy=fsolve(r,zer);
r=yy;
sol=[sol,r];
end
endfunction
//Programme principal
//Parametres de discretisation
//Apres avoir fait les tests en temps cours,
//nous faisons passons en temps moyen (T=10)
//puis en temps long pour (T=100) pour obtenir la periodicite
T=10;
N=1000; t=linspace(0,T,N);
res=1
while(res==1)
clc;
clf;
printf('=================MENU======================\n');
printf('=1=-Équation logistique 1.(a)Euler explicite\n');
printf('=2=-Équation logistique 1.(b)Euler modifié\n');
printf('=3=-Système de Lotka-Volterra 2.(b)Euler explicite\n');
printf('=4=-Système de Lotka-Volterra 2.(c)Schéma RK4\n');
printf('=5=-Système de Lotka-Volterra 2.(d)Schéma RK implicite\n');
printf('=6=-Modèle logistique de Verhulst 3.Euler explicite\n');
printf('=7=-Modèle logistique de Verhulst 3.Schéma RK4\n');
printf('=8=-Populations en compétition 4.Euler explicite\n');
printf('=9=-Populations en compétition 4.Schéma RK4\n');
printf('=10=-Généralisation Populations en compétition 5.Euler explicite\n');
printf('=11=-Généralisation Populations en compétition 5.Schéma RK4\n');
printf('-OTHER-\n');
printf('=12=-Representation du nombre de predateur en fonction du nombre de proies(Lotka-Volterra-RK4)\n');
printf('=13=-Representation 3D de la generalisation choisie(Competition-RK4)\n');
choix=input('\n===========Quel est votre choix?===========\n');
if(choix==1)
//on se place avant le point d'equilibre 1/b
//la population croit (vers le point d'equilibre)
u0=9; //b=0.1
subplot(2,2,1)
solN1=EulerExplicite(u0,t,F1);
plot(t,solN1,'r+')
y1 = ode(u0, 0, t, F1); //solution "exacte"
plot(t,y1)
legend(['EulerExplicite';'solution exacte ode']);
xtitle("Params (a=0.5 b=0.1) Val initiale (u0=9)")
u0=1; //b=0.14
subplot(2,2,2)
solN2=EulerExplicite(u0,t,F2);
plot(t,solN2,'r+')
y2 = ode(u0, 0, t, F2); //solution "exacte"
plot(t,y2)
legend(['EulerExplicite';'solution exacte ode']);
xtitle("Params (a=7 b=0.14) Val initiale (u0=1)")
//on se place apres le point d'equilibre 1/b
//la population decroit (vers le point d'equilibre)
u0=11; //b=0.1
subplot(2,2,3)
solN1=EulerExplicite(u0,t,F1);
plot(t,solN1,'r+')
y1 = ode(u0, 0, t, F1); //solution "exacte"
plot(t,y1)
legend(['EulerExplicite';'solution exacte ode']);
xtitle("Params (a=0.5 b=0.1) Val initiale (u0=11)")
u0=50; //b=0.14
subplot(2,2,4)
solN2=EulerExplicite(u0,t,F2);
plot(t,solN2,'r+')
y2 = ode(u0, 0, t, F2); //solution "exacte"
plot(t,y2)
legend(['EulerExplicite';'solution exacte ode']);
xtitle("Params (a=7 b=0.14) Val initiale (u0=50)")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==2)
//on se place avant le point d'equilibre 1/b
//la population croit (vers le point d'equilibre)
u0=1;
subplot(2,2,1)
solN1=EulerModifie(u0,t,F1);
plot(t,solN1,'r+')
y1 = ode(u0, 0, t, F1); //solution "exacte"
plot(t,y1)
legend(['Euler Modifie';'Solution exacte ode']);
xtitle("Params (a=0.5 b=0.1) Val initiale (u0=1)")
u0=1;
subplot(2,2,2)
solN2=EulerModifie(u0,t,F2);
plot(t,solN2,'r+')
y2 = ode(u0, 0, t, F2); //solution "exacte"
plot(t,y2)
legend(['Euler Modifie';'Solution exacte ode']);
xtitle("Params (a=7 b=0.14) Val initiale (u0=1)")
//on se place apres le point d'equilibre 1/b
//la population decroit (vers le point d'equilibre)
u0=11;
subplot(2,2,3)
solN1=EulerModifie(u0,t,F1);
plot(t,solN1,'r+')
y1 = ode(u0, 0, t, F1); //solution "exacte"
plot(t,y1)
legend(['Euler Modifie';'Solution exacte ode']);
xtitle("Params (a=0.5 b=0.1) Val initiale (u0=11)")
u0=50;
subplot(2,2,4)
solN2=EulerModifie(u0,t,F2);
plot(t,solN2,'r+')
y2 = ode(u0, 0, t, F2); //solution "exacte"
plot(t,y2)
legend(['Euler Modifie';'Solution exacte ode']);
xtitle("Params (a=7 b=0.14) Val initiale (u0=50)")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==3)
//cas1
u0=[5;2];
subplot(2,2,1)
solN1=EulerExplicite(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite u0=[50;20]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;20]")
//cas2
u0=[3;3];
subplot(2,2,3)
solN1=EulerExplicite(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite u0=[30;30]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[30;30]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==4)
//cas1
u0=[5;2];
subplot(2,2,1)
solN1=RK4(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 u0=[50;20]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;20]")
//cas2
u0=[3;3];
subplot(2,2,3)
solN1=RK4(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 u0=[30;30]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[30;30]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==5)
//cas1
u0=[5;2];
subplot(2,2,1)
solN1=CrankNicholson(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Crank Nicholson u0=[50;20]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;20]")
//cas2
u0=[3;3];
subplot(2,2,3)
solN1=CrankNicholson(u0,t,F3);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Crank Nicholson u0=[30;30]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F3); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[30;30]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==6)
//cas1
//e=0.01;
//a=1;
u0=[10;5];
subplot(2,2,1)
solN1=EulerExplicite(u0,t,F4);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite e=0.01 u0=[100;50]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F4); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte e=0.01 u0=[100;50]")
//cas2
//e=1;
//a=1;
u0=[0.1;0.5];
subplot(2,2,3)
solN1=EulerExplicite(u0,t,F5);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite e=1 u0=[1;5]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F5); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte e=1 u0=[1;5]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==7)
//cas1
//e=0.01;
//a=1;
u0=[10;5];
subplot(2,2,1)
solN1=RK4(u0,t,F4);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 e=0.01 u0=[100;50]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F4); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte e=0.01 u0=[100;50]")
//cas2
//e=1;
//a=1;
u0=[0.1;0.5];
subplot(2,2,3)
solN1=RK4(u0,t,F5);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 e=1 u0=[1;5]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F5); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte e=1 u0=[1;5]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==8)
//cas1
u0=[5;3];
subplot(2,2,1)
solN1=EulerExplicite(u0,t,F6);
plot(t,solN1)
legend(['Population 1';'Population 2']);
xtitle("Euler Explicite u0=[50;30]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F6); //solution "exacte"
plot(t,y1)
legend(['Population 1';'Population 2']);
xtitle("Solution exacte u0=[50;30]")
//cas2
u0=[6;5];
subplot(2,2,3)
solN1=EulerExplicite(u0,t,F6);
plot(t,solN1)
legend(['Population 1';'Population 2']);
xtitle("Euler Explicite u0=[60;50]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F6); //solution "exacte"
plot(t,y1)
legend(['Population 1';'Population 2']);
xtitle("Solution exacte u0=[60;50]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==9)
//cas1
u0=[5;3];
subplot(2,2,1)
solN1=RK4(u0,t,F6);
plot(t,solN1)
legend(['Population 1';'Population 2']);
xtitle("RK4 u0=[50;30]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F6); //solution "exacte"
plot(t,y1)
legend(['Population 1';'Population 2']);
xtitle("Solution exacte u0=[50;30]")
//cas2
u0=[6;5];
subplot(2,2,3)
solN1=RK4(u0,t,F6);
plot(t,solN1)
legend(['Population 1';'Population 2']);
xtitle("RK4 u0=[60;50]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F6); //solution "exacte"
plot(t,y1)
legend(['Population 1';'Population 2']);
xtitle("Solution exacte u0=[60;50]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==10)
//cas1
u0=[5;3;2];
subplot(2,2,1)
solN1=EulerExplicite(u0,t,F8);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite u0=[50;30;20]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F8); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;30;20]")
//cas2
u0=[5;5;5];
subplot(2,2,3)
solN1=EulerExplicite(u0,t,F8);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("Euler Explicite u0=[50;50;50]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F8); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;50;50]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==11)
//cas1
u0=[5;3;2];
subplot(2,2,1)
solN1=RK4(u0,t,F8);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 u0=[50;30;20]")
subplot(2,2,2)
y1 = ode(u0, 0, t, F8); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;30;20]")
//cas2
u0=[5;5;5];
subplot(2,2,3)
solN1=RK4(u0,t,F8);
plot(t,solN1)
legend(['Proies';'Predateurs']);
xtitle("RK4 u0=[50;50;50]")
subplot(2,2,4)
y1 = ode(u0, 0, t, F8); //solution "exacte"
plot(t,y1)
legend(['Proies';'Predateurs']);
xtitle("Solution exacte u0=[50;50;50]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==12)
u0=[5;2];
solN1=RK4(u0,t,F3);
plot(solN1(1,:),solN1(2,:))
xtitle("Representation du nombre de predateur en fonction du nombre de proies")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
if(choix==13)
u0=[5;3;2];
solN1=RK4(u0,t,F8);
y1 = ode(u0, 0, t, F8); //solution "exacte"
param3d1([solN1(1,:),y1(1,:)],[solN1(2,:),y1(2,:)],[solN1(3,:),y1(3,:)])
xtitle("Representation 3D de la generalisation choisie(Competition-RK4) u0=[50;30;20]")
printf('Continuer?\n');
res=input('Entrez 1 pour continuer\nN''importe quoi d''autre pour arreter\n');
end
end
printf('=*=*=*==*=*=*=THE=END=*=*=*==*=*=*=\n');
|
2f710f2f649a2ac8a6f8f36ff76cfa2a3e5da34a | 449d555969bfd7befe906877abab098c6e63a0e8 | /629/CH8/EX8.5/example8_5.sce | 8b3ce150b66a58686eedd81993527c9d827bf5d4 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 333 | sce | example8_5.sce | clear
clc
//Example 8.5 REYNOLDS-NUMBER SIMILITUDE OF A VALVE
//p-prototype, m-model
Lmp=1/6; //Lmp=(Lm/Lp)
//Vm*Lm/vm=Vp*Lp/vp, vm=vp
Vmp=1/Lmp //Vmp=(Vm/Vp)
Qp=700; //[cfs]
Amp=(Lmp)^2 //Ratio of areas, Amp=(Am/Ap)
//Discharge
Qm=Qp*Vmp*Amp //[cfs]
printf("\n The flow rate required for the model, Q = %.f cfs.\n",Qm)
|
8670e4a30523a6a75879c0329dfeef7a727fd5bb | 449d555969bfd7befe906877abab098c6e63a0e8 | /257/CH6/EX6.26/example6_26.sce | 0c176fe4b366e8a9aace760bf5ebd4ed04424754 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 208 | sce | example6_26.sce | syms R1 R2 R3 C1 C2 s;
T1=1/(R1*R2*R3*C1*C2*s^2)
L1=-1/(s*R1*C1);
L2=-1/(s*R2*C1);
L3=-1/(s*R2*C2);
delta=1-(L1+L2+L3+L4)+(L1*L3 + L1*L4)
del1=1;
TF=(T1*del1)/delta ;
disp(TF,"Vo/VI = ")
|
3c27db85cebe4d229d7b743bec2431731cc024e4 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3204/CH2/EX2.23/Ex2_23.sce | ec4c6aa1b4653125cda0e061d2b043c9dafd563d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 437 | sce | Ex2_23.sce | //Initilization of variables
W=1000 //N
r=0.30 //m //radius of the wheel
h=0.15 //m //height of the obstacle
//Calculations
theta=asind(1) //degree //P is mini when sin(theta)=1 from eq'n of P
Pmini=(W*sqrt((2*r*h)-(h^2)))/(r*sind(theta)) //N
//Results
clc
printf('The least force required to just turn the wheel over the block is %f N \n',Pmini)
printf('The angle wich should be made by Pmini with AC is %f degree \n',theta)
|
8454ae6adff77e824cf5c5e84028c7e2e9293460 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2195/CH7/EX7.5.8/ex_7_5_8.sce | bde956785d9fcb9559b07e368e0f0150a526c79d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 449 | sce | ex_7_5_8.sce | //Example 7.5.8: LIMITING VALUE OF RESISTANCE
clc;
clear;
close;
format('v',8)
P=100;//OHMS
Q=P;//
S=230;//IN OHMS
DP=0.02;//ERROR IN PERCENTAGE
DS=0.01;//IN PERCENTAGE
R=(P/Q)*S;//unkow resistance in ohms
dr=(DP+DP+DS);//relative limiting error in unknow resistance in percentage ±
drm=(dr/100)*R;//magnitude of error
R1=R+drm;//in ohms
R2=R-drm;//in ohms
disp("limiting value of unknown resistance is "+string(R1)+" ohms to "+string(R2)+" ohms")
|
fe3d53f803033eb1ee152edffab22798a8c0d62a | 449d555969bfd7befe906877abab098c6e63a0e8 | /2318/CH2/EX2.8/ex_2_8.sce | b6df3cf8ae96684907462a3abb6d380c2ea666d3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 755 | sce | ex_2_8.sce | //Example 2.8://resistance,impedance,power,power factor ,voltage and power factor
clc;
clear;
close;
v=300;//volts
i2=2.5;//amperes
r=v/i2;//ohms
disp(r,"resistance in ohm is")
i3=4;//amperes
zl=v/i3;//ohms
disp(zl,"load impedance in ohm is")
v=300;//volts
i2=2.5;//amperes
r=v/i2;//ohms
i1=5.6;//amperes
z=v/i1;//ohms
disp(z,"impedance of combination in ohm is")
i3=4;//amperes
pl=((i1^2-i2^2-i3^2)*r)/2;//in watts
disp(pl,"power absorbed by the load in W is")
pl=((i1^2-i2^2-i3^2)*r)/2;//in watts
pfl=((i1^2-i2^2-i3^2)/(2*i2*i3));//power factor
disp(pfl,"power factor of the load is")
pr=i2^2*r;//in watts
tps=pl+pr;//in watts
disp(tps,"total power supply is,(W)=")
tps=pl+pr;//in watts
tpf=tps/(v*i1);//power factor
disp(tpf,"total power factor is")
|
bf7a9114e917f6538205cb07e7cce4e72377d155 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3850/CH45/EX45.3/Ex45_3.sce | b13d4bd04982c3e6ec7b0bbd615a6fcd637dbf0a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,222 | sce | Ex45_3.sce |
//To calculate the Approximate value of Dynamic Resistance of P N Junction under Forward Bias
//Example 45.3
clear;
clc;
//(a)Case-I: Forward Bias of 1 V is applied
/////////////////////////////////////////////////////////////////////////////
i1=10*10^-3;//Current in Amperes at 1 Volt
i2=15*10^-3;//Current in Amperes at 1.2 Volts
delI=i2-i1;//Net Change in Current in Amperes
v1=1;//Voltage at the Initial Point
v2=1.2;//Voltage at the Final point
delV=v2-v1;//Net Change in Voltage
R=delV/delI;//Dynamic Resitance in ohms
printf("(a) Dynamic Resistance when a forward bias of 1 V is applied at the p-n junction = %.0f ohms",R);
//(b)Case-II: Forward Bias of 2 V is applied
////////////////////////////////////////////////////////////////////////////
v3=2;//Voltage at the Initial Point
v4=2.1;//Voltage at the Final point
delV1=v4-v3;//Net Change in Voltage
i3=400*10^-3;//Current in Amperes at 2 Volt
i4=800*10^-3;//Current in Amperes at 2.1 Volt
delI1=i4-i3;//Net Change in Current in Amperes
R1=delV1/delI1;//Dynamic Resitance in ohms
printf("\n (b) Dynamic Resistance when a forward bias of 2 V is applied at the p-n junction = %.2f ohms",R1);
|
bfc5041cb5db3978622791c5d1f9334ab4e90ef1 | 76bedce072d7e5551343d8247181b569097a2364 | /scripts/Создать загрузочную флешку.tst | bf396adc9c61a6769c48d0da6b7ace3bd6dd1fd3 | [] | no_license | discipleartem/my_python_recipe_book | 722d685b8af4a2293aa33a6749d876cf53519592 | 9f66b783ac20e4a0eb0ecca0ec860a4fb7ff3936 | refs/heads/master | 2021-05-25T12:15:18.583992 | 2020-07-18T07:48:32 | 2020-07-18T07:48:32 | 127,413,473 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 489 | tst | Создать загрузочную флешку.tst | Создать загрузочную флешку
1) sudo fdisk -l
у меня:
Device Boot Start End Sectors Size Id Type
/dev/sdc4 * 256 15814655 15814400 7,6G b W95 FAT32
2) dd if=~/Downloads/ubuntu.iso of=/dev/sdb1
Здесь я подразумеваю? что ~/Downloads/ubuntu.iso - это установочный образ, а /dev/sdb1 - ваша флешка.
у меня:
sudo dd if=~/Downloads/Win10_1903_V2_Russian_x64.iso of=/dev/sdc4
все |
75cc5a551a43f8e49401110ccdd1f2c08261fc03 | 449d555969bfd7befe906877abab098c6e63a0e8 | /858/CH3/EX3.26/example_26.sce | f5fdcf056392ac7c302251d83d15eb2d70306ece | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 536 | sce | example_26.sce | clc
clear
printf("example 3.26 page number 114\n\n")
//to find the outlet temperature of water
q_NTP = 10*(200/101.3)*(273/313);
m_CO2 = 44*(q_NTP/22.4);
s_CO2 = 0.85 //in kJ/kg K
Q = m_CO2*s_CO2*(40-20) //Q = ms*delta_T
d0 = 0.023 //in mm
A0 = (3.14/4)*d0^2;
di = 0.035 //in mm
Ai = (3.14/4)*di^2;
A_annular = Ai-A0;
u = 0.15 //in m/s
m_water = A_annular*(u*3600)*1000 //in kg/hr
s_water = 4.19 //in kJ/kg K
t = 15+(Q/(m_water*s_water));
printf("exit water temperature = %f degree C",t)
|
bc63eee41e3c69a305b86288bc98a52321cb8986 | 262ac6443426f24d5d9b13945d080affb0bd6d9b | /opgaves/cyclus/edit-me.sce | 0076ea271924b69829f6209454d820c86962bad7 | [] | no_license | slegers/Scilab | 9ebd1d486f28cf66e04b1552ad6e94ea4bc98a0b | 1b5dc3434def66355dafeb97c01916736a936301 | refs/heads/master | 2021-01-12T01:42:01.493578 | 2017-01-09T10:54:09 | 2017-01-09T10:54:09 | 78,420,343 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 959 | sce | edit-me.sce | function [teller,noemer] = solve(n_elementen,min_cycles)
// Reken uit hoeveel kans er bestaat dat een permutatie
// van {{{n}}} elementen een cyclus bevat van meer (>=) dan {{{k}}} elementen.
//
// De kans moet uitgedrukt worden als een vereenvoudigde breuk.
// Bijvoorbeeld, 6/8 wordt teller=3, noemer=4.
// Dummy toekenningen aan outputvariabelen
if (min_cycles > n_elementen) then
teller = 0;
noemer = 1;
elseif (min_cycles == 0 | min_cycles == 1) then
teller = 1;
noemer = 1;
elseif (min_cycles == 2) then
noemer = factorial(n_elementen);
teller = noemer - 1;
else
teller = 0;
noemer = factorial(n_elementen)
for i = min_cycles:n_elementen
teller = teller + noemer/i;
end
div = gcd([teller, noemer]);
noemer = double(noemer/div);
teller = double(teller/div);
end
endfunction
|
f65b4c0c58ec54a9e1a8632815173ae4f21b3acf | 1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08 | /Scilab/PCIeGen3/HSpiceUtilities/ACAnalysisToFTConv.sci | 6ba324f0a7b5dd36f9c62e34c00f0081a0c45027 | [] | no_license | lrayzman/SI-Scripts | 5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d | 9ab161c6deff2a27c9da906e37aa68964fabb036 | refs/heads/master | 2020-09-25T16:23:23.389526 | 2020-02-09T02:13:46 | 2020-02-09T02:13:46 | 66,975,754 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 11,737 | sci | ACAnalysisToFTConv.sci | // HSpice AC Analysis Frequency Response to S-parameter converter
//
// (c)2009 L. Rayzman
// Created : 05/14/2009
// Last Modified: 05/14/2009
//
// TODO:
//
clear;
//////////////////////////////////////Extraction Function////////////////////////////////////
function [f, D, Desc] = extract_from_CSDF_Freq(filename)
// Extracts waveform data from CSDF ASCII files
//
// Inputs:
// filename - Filename of the CSDF file
//
// Outputs:
// f - time points
// D - Frequency data matrix
// Desc - Title and names of the waveforms (string)
stopflag = %F; // Stop loop flag
readline=emptystr();
tempstr=emptystr(); // Temporary string
ttlstr=emptystr(); // Title
nodecount=0; // Nodecount
idxcnt=1; // Timestamp index count;
f=[]; // Initialize function output vectors
D=[];
//Open File
[fhandle,err]=mopen(filename, "r");
if err<0 then
error("Header Parser: Unable to open data file");
end
//
//Parse the header
//
//Find start of header
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find start of header in file");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:2]),"u") == "#H") then //If reached start of header
stopflag = %T;
end
end
end
stopflag=%F; // Reset stop flag
//Read in the Title Line
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find title line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:5]),"u") == "TITLE") then //If reached nodecount line
tempstr=tokens(readline, "''");
ttlstr=tempstr(2);
stopflag = %T;
end
end
end
stopflag=%F; // Reset stop flag
//Read in nodecount
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find nodecount line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:5]),"u") == "NODES") then //If reached nodecount
tempstr=tokens(readline, "''");
nodecount=sscanf(tempstr(2),"%d");
stopflag = %T;
end
end
end
nodenames=emptystr(1, nodecount); // Nodenames
stopflag=%F; // Reset stop flag
// Look For Node name line
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find nodenames line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:2]),"u") == "#N") then //If reached nodename line
tempstr=strsplit(readline,2); //Process first nodename line
tempstr=tempstr(2);
readline=mgetl(fhandle,1); //Process subsequent lines until start of data portion
while (part(readline, 1) ~= "#") & (~meof(fhandle)),
tempstr = tempstr + readline;
readline=mgetl(fhandle,1);
end
stopflag = %T;
tempstr=strcat(tokens(tempstr)); // Process all names
nodenames=tokens(tempstr, "''");
end
end
end
if size(nodenames,1) ~= nodecount then
error("Header Parser: Node count does not match number of node names");
end
Desc = [ttlstr,nodenames'];
stopflag=%F; // Reset stop flag
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Data Parser: Premature end of file");
else
if (convstr(part(readline,[1:2]),"u") == "#C") then //If reached data line for current frequency point
tempstr=strsplit(readline,2); //Process data linet
tempstr=tempstr(2);
readline=mgetl(fhandle,1); //Process subsequent lines until start of next timestep
while (part(readline, [1:2]) ~= "#C") & (part(readline, [1:2]) ~= "#;") & (~meof(fhandle)) ,
tempstr = tempstr + readline;
readline=mgetl(fhandle,1);
end
tempstr=tokens(tempstr); // Process all data entries
f(idxcnt)=sscanf(tempstr(1), "%f"); // Get frequency point
if sscanf(tempstr(2), "%d") ~= nodecount then
error("Data Parser: Reported node count does not match the count in data");
end
for k=1:((size(tempstr,1)-2)/2),
D(idxcnt,k)=sscanf(tempstr(2*k+1), "%f");
end
idxcnt = idxcnt + 1;
end
if (convstr(part(readline,[1:2]),"u") == "#;") then // End of file
stopflag = %T;
end
end
end
mclose(fhandle);
// Cleanup variables
clear stopflag;
clear readline;
clear tempstr;
clear ttlstr;
clear nodecount;
clear idxcnt;
endfunction
/////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////Main Routine////////////////////////////////////
facdata = emptystr(); // Filename(s) of the pulse response *.ac* file(s)
fmatvardata = emptystr(); // Filename of frequency matrix file
dialogstr=emptystr(); // Temporary string for storing dialog information
waveformstr=emptystr(); // Node to be converted
frdata=[]; // Extracted frequency data
Desc=[]; // Node name
D=[]; // Extracted frequency data
waveidx=0; // Index of the node in the extracted data
FTable=[]; // All frequency data
///////////////////
// Get Scilab Version
///////////////////
version_str=getversion();
version_str=tokens(version_str,'-');
version_str=tokens(version_str(2),'.');
version(1)=msscanf(version_str(1), '%d');
version(2)=msscanf(version_str(2), '%d');
///////////////////
// Setup files/directories
///////////////////
if (version(1)==5) & (version(2) >= 1) then // tr* file(s)
facdata=uigetfile("*.ac*", "", "Please choose pulse response *.ac* file(s)", %t);
else
facdata=tk_getfile("*.ac*", Title="Please choose pulse response *.ac* file(s)", multip="1");
end
if facdata==emptystr() then
if (version(1)==5) & (version(2) >= 1) then
messagebox("Invalid file selection. Script aborted", "","error","Abort");
else
buttondialog("Invalid file selection. Script aborted", "Abort");
end
abort;
end
ffreqdata=tk_savefile("*.ft", strsubst(fileparts(facdata(1), "path"),"\","/"), Title="Please choose converted frequency file"); // Touchstone file
if ffreqdata==emptystr() then
if (version(1)==5) & (version(2) >= 1) then
messagebox("Invalid file selection. Script aborted", "","error","Abort");
else
buttondialog("Invalid file selection. Script aborted", "Abort");
end
abort;
end
if length(fileparts(ffreqdata, "extension"))==0 then
ffreqdata=strcat([ffreqdata ".ft"]);
end
olddir=getcwd();
chdir(fileparts(facdata(1), "path"));
////////////////////
// Waveform Info
///////////////////
dialogstr=x_mdialog(['Enter waveform parameters:'], ['Waveform Name'],['VDB(outp, outn)']);
if length(dialogstr)==0 then
if (version(1)==5) & (version(2) >= 1) then
messagebox("Invalid parameters selection. Script aborted", "","error","Abort");
else
buttondialog("Invalid parameters selection. Script aborted", "Abort");
end
chdir(olddir);
abort;
end
waveformstr=strcat(tokens(dialogstr(1), " ")); // Strip spaces in the waveform string
waveformstr=strcat(tokens(waveformstr, "(")); // Strip '(' in the waveform string
waveformstr=strcat(tokens(waveformstr, ")")); // Strip '(' in the waveform string
if (convstr(part(waveformstr,[1:3]),"u") == "VDB") then // Clean up the node name
waveformstr=part(waveformstr,[4:length(waveformstr)]);
end
if (convstr(part(waveformstr,[1:2]),"u") == "VP") then // Clean up the node name
waveformstr=part(waveformstr,[3:length(waveformstr)]);
end
///////////////////
// Main Conversion
///////////////////
// Create multi-dim FT matrix
numoffiles=size(facdata,1);
for f=1:numoffiles, //For each ac* pulse response file
currenttime=getdate();
printf("\n****Starting conversion of frequency file %d of %d at %0.2d:%0.2d:%0.2d\n", f, numoffiles, currenttime(7), currenttime(8), currenttime(9));
[frdata, D, Desc] = extract_from_CSDF_Freq(facdata(f)); // Extract frequency data
waveidx=grep(Desc, strcat(["vdb(" waveformstr ")"]))-1;
if waveidx==-1 then
if (version(1)==5) & (version(2) >= 1) then
messagebox("Unable to find waveform. Script aborted", "","error","Abort");
else
buttondialog("nable to find waveform. Script aborted", "Abort");
end
chdir(olddir);
abort;
end
// Append to matrix
FTable=lstcat(FTable,[frdata D(:,1)+%i*D(:,2)]);
//Plot
clf();
bode(frdata(find(frdata>=1e7)), D(find(frdata>=1e7), waveidx), D(find(frdata>=1e7), waveidx+1)); //Plot from min of 10MHz
grph=gcf(); //Set pretty colors
grph.children(1).children.children.foreground=2;
grph.children(2).children.children.foreground=2;
end
// Clear out the initial empty matrix
FTable(1)=null();
// Save matrix file
save(ffreqdata, FTable);
//Restore original directory
chdir(olddir);
//clean up
clear FTable;
clear facdata;
clear fmatvardata;
clear dialogstr;
clear waveformstr;
clear frdata;
clear Desc;
clear D;
clear waveidx;
|
0cf785ddfa0fc2ca92399e37a1d5b2e49cf54ea4 | b4980b761e4b88d097e526fe06ebef2383d3d613 | /lab02/OneBitErrorDetection/OneBitErrorDetection.tst | 62cee82edaadce1e64995d7ff33c6bc4b73f9fc2 | [] | no_license | Vineeth-Kada/Computer-Systems-Design | aa42b053c709fdbf06713dc3e1e2649faa02c65d | 4c05e393e057ffb1540c74a53a0cb17f7129d8f8 | refs/heads/main | 2023-06-17T06:27:02.442583 | 2021-07-15T10:43:37 | 2021-07-15T10:43:37 | 289,896,111 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 2,584 | tst | OneBitErrorDetection.tst | load OneBitErrorDetection.hdl,
output-file OneBitErrorDetection.out,
compare-to OneBitErrorDetection.cmp,
output-list x0%B3.1.3 x1%B3.1.3 x2%B3.1.3 x3%B3.1.3 x4%B3.1.3 x5%B3.1.3 x6%B3.1.3 x7%B3.1.3 y0%B3.1.3 y1%B3.1.3 y2%B3.1.3 y3%B3.1.3 y4%B3.1.3 y5%B3.1.3 y6%B3.1.3 y7%B3.1.3 pg%B3.1.3 pc%B3.1.3 z%B3.1.3;
/*Data Set 1*/
/*No error*/
set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 0, set y1 0, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
/*One Bit Error*/
set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 1, set y1 0, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
set x0 0, set x1 0, set x2 0, set x3 0, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 0, set y1 1, set y2 0, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
/*Data Set 2*/
/*No error*/
set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1,
set y0 0, set y1 1, set y2 0, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output;
/*One Bit Error*/
set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1,
set y0 1, set y1 1, set y2 0, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output;
set x0 0, set x1 1, set x2 0, set x3 1, set x4 0, set x5 1, set x6 0, set x7 1,
set y0 0, set y1 1, set y2 1, set y3 1, set y4 0, set y5 1, set y6 0, set y7 1, eval, output;
/*Data Set 3*/
/*No error*/
set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0,
set y0 0, set y1 1, set y2 1, set y3 0, set y4 0, set y5 1, set y6 1, set y7 0, eval, output;
/*One Bit Error*/
set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0,
set y0 1, set y1 1, set y2 1, set y3 0, set y4 0, set y5 1, set y6 1, set y7 0, eval, output;
set x0 0, set x1 1, set x2 1, set x3 0, set x4 0, set x5 1, set x6 1, set x7 0,
set y0 0, set y1 1, set y2 1, set y3 0, set y4 0, set y5 0, set y6 1, set y7 0, eval, output;
/*Data Set 4*/
/*No error*/
set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 1, set y1 1, set y2 1, set y3 1, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
/*One Bit Error*/
set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 1, set y1 1, set y2 1, set y3 1, set y4 1, set y5 0, set y6 0, set y7 0, eval, output;
set x0 1, set x1 1, set x2 1, set x3 1, set x4 0, set x5 0, set x6 0, set x7 0,
set y0 1, set y1 1, set y2 1, set y3 0, set y4 0, set y5 0, set y6 0, set y7 0, eval, output;
|
387fed94ff69bef0c7b09dd25e6e1d8d50ac92a2 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3564/CH1/EX1.4/Ex1_4.sce | 9399f2639d38413ffe0a75f10639ef04f5d0175b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 894 | sce | Ex1_4.sce |
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc;
disp("Introduction to Fluid Mechanics, 3rd Ed. William S. Janna Chapter - 1 Example # 1.4 ")
//Solving part a
disp("Part a)")
disp("Part a is theoretical and does not require computation")
disp("Final result is pi - p0 = 2*sigma/R")
//Solving part b
disp("Part b)")
//Diameter of droplet in cm
d = 0.01;//Authors have used 0.01 diameter for calculation while the diameter quoted in question is 0.1
//Using Appendix table A.5 for properties of water
//Surface tension sigma in N/m
sigma = 71.97/1000;
//Atmospheric pressure for droplet in N/m2 is
p0 = 101300;
//Radius of droplet in m
R = 0.01*(d/2);
//Calculating pressure inside the droplet in N/m2
disp("Pressure inside the droplet in N/m2 is")
pi = p0+(2*sigma)/R
//Answer varies slightly because of round-off error
|
319abfd28482b0857c2fe521dcb2b8e3d5b58a2b | 449d555969bfd7befe906877abab098c6e63a0e8 | /599/CH2/EX2.13/example2_13.sce | 3f5ab1c4d9c28ef932e105fc5ece14a145216bcc | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,601 | sce | example2_13.sce |
clear;
clc;
printf("\t Example 2.13\n");
//position 1 moles molefraction weight
// acetic acid 0.15 0.0288 9
// water 5 0.9712 91
//position 2 moles molefraction weight
// aceitic acid 0.05 0.0092 4
// water 5.389 0.9908 96
T=290; //temperature in kelvin
z=2*10^-3; //film thickness sorrounding the water
xa2=0.0092; //mole fraction of ethanol at pos.2
xa1=0.0288; //mole fraction of ethanol at pos.1
w1=60; //molecular weight of acetic acid
w2=18; //molecular weight of water
Dab=0.95*10^-9; //diffusivity of acetic water sol.in m^2/s
//av=d/m
Mavg1=xa1*w1+(1-xa1)*w2; //average molecular wght of solution at pos 1
d1=1012; // density of 10 % acid
av1=d1/Mavg1; //value of (d/m) of copper solution
//for position 2
d2=1003; //density of 4% acid
Mavg2=xa2*w1+(1-xa2)*w2; //average molecular wght of solution at pos.2
av2=d2/Mavg2; //value of (d/m) of water
allavg=(av1+av2)/2; //average value of d/m
//assuming water to be non diffusing
Na=Dab*(allavg)*log((1-xa2)/(1-xa1))/z; //diffusion rate of acetic acid aacross film of non diffusing water sol.
printf("\n diffusion rate of acetic acid aacross film of non diffusing water sol. :%f *10^-7 kmol/m^2*s",Na/10^-7);
//end |
4fb04ea79b7fb91873625370883fc92a756246f3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1244/CH1/EX1.13/Example113.sce | 87d4f8f44708f879ce3f1ccf389c3c72484b8e10 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 705 | sce | Example113.sce |
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc;
disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.13 ")
//Temperature of air in degree K
Tair = 300;
//Heat transfer coefficient in W/m2K
h = 10;
disp("Part a")
//Radiation solar flux in W/m2
q = 500;
//Ambient temperature in K
Tsurr = 50;
disp("Solving energy balance equaiton by trial and error for the roof temperature, we get temp. in degree K")
//Room temperature in degree K
Troof = 303
disp("Part b")
//No heat flux, energy balance equaiton is modified
disp("Room temperature in degree K")
//Room temperature in degree K
Troof = 270
|
8faa81a7a22265f201fc9f4f992d8da50597a77e | a159f59d19e2b03b234e9c2977ba4a932180e648 | /Software/GreenScilabV0.9/bin/gl_draw_phy_direct.sci | 6bc2368ae28194748c1919093b661ac5ad047c96 | [] | no_license | OpenAgricultureFoundation/openag_sim | e052bbcc31b1d7f9b84add066327b479785f8723 | 425e678b55e24b5848d17181d25770175b8c2c3f | refs/heads/master | 2021-07-01T06:25:08.753260 | 2017-09-20T21:44:18 | 2017-09-20T21:44:18 | 80,540,145 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 28,232 | sci | gl_draw_phy_direct.sci |
currenttime=timer();
StrFileName=GL_SYS_DIR+'str'+SEPARATOR+FileID+'.str';
StrInf=GL_SYS_DIR+'str'+SEPARATOR+'inftemporary.str';
StrBlock=GL_SYS_DIR+'str'+SEPARATOR+'blocktemporary.str';
[fidInf, err] = mopen(StrInf, 'wb');
[fidBl, %v] = mopen(StrBlock, 'wb');
nr=max(b_o(:))+1;
I_D=sqrt(I_S/%pi)*2; //get diamater of stem according to section area
V=[];ID=[];Age=[];gs=[];mr=[];O=[];Sz=[];
printf('Processing geometrical structure with physiological age: ');
NumStr=0;//number of structures
if Flag_geo_full==0 then //compute only plant geometry at age N
i0=N;
else
i0=1;
end
StateO=Gl_StateOccupy(Tu_O);
for p = maxp:-1:1; //for substructure of each phy_age
printf(' %4d ',p);
for i =i0:N; //for substructure p of each chr_age
for g=1:InitNum(p); //for each initial angle
if InitNum(p)>1 then //get the absolute initial angle
InitAngle=InitMin(p)+(g-1)*(InitMax(p)-InitMin(p))/(InitNum(p)-1);
else // if only one initial gangle, take the min one
InitAngle=InitMin(p);
end
L0=min(i,Nu_Ma(p)); //number of actural G.U. in axis, no more than Nu_Ma(p)
L0=L0*u(p);h0=L0; //bending according to number of microstate, and each microstate has a value
theta=Draw_bending(p,L0,h0,Ey,InitAngle,fp,End_Ang(p),End_N(p)*u(p),InitNum(p)); //angle of each metamer to z axis from bottom to top
if p==1 & Nu_O(4,1,1)==0 then //main axis and no reiteration
j1=i;j2=i; //for main plant we need only one at that given age i. This can save time.
else
j1=1;j2=i; //for branch, at given plant age i, branches with age 1 to i-1 may exist. for reiteration, we need the main structure with age i
end
for j=j1:j2; //for each possible chr_age of axis. When p is substructure inside another structure, at given plant chr_age i, the substructure can have chr_age ranging 1-(i-1))
for m=1:nr; //for each reiteration order
if flagr(p)==0 then //case of branch,no need to cut it, this can save time
k0=j;
else //case of infloresence, we need intermediate part from top of the structure, so I calculate each cut from top 1 to j for substructure with age j
k0=1;
end;
for k=k0:j;
NO=0; //number of organs(internode, leaf, or substructure)
mr=[];
if j>Nu_Ma(p,1) then //chr_age>Nu_Ma(p,1), terminal structure may exit
b=st_j(p); //defined jump state
if b>=p & b<=maxp then //if it is in reasonable scope
age=[b min(k,j-Nu_Ma(p,1)) min(k,j-Nu_Ma(p,1)) i]; //phy_age,chr_age,chr_age of terminal structure and chr_age of main structure
//w3=Nu_Ma(p)*Ang_Ph(p); phylotaxy is related with number of G.U.(maybe internode better?) previously
w3=0; //let terminal structure stay in same plane with axis
Vz=[cos(w3) -sin(w3) 0;sin(w3) cos(w3) 0; 0 0 1]; //z-axis rotation matrix, counterclockwise. %Vz=[cos(w3) sin(w3) 0;-sin(w3) cos(w3) 0; 0 0 1];
ap=theta(Nu_Ma(p)*u(p)); //terminal angle of axis
Vy=[cos(ap) 0 sin(ap);0 1 0;-sin(ap) 0 cos(ap)]; //y-axis rotation matrix, counterclockwise.
VO=Vy*Vz; //compound matrix. sequence of multiply can't be changed
[VO,g_O]=Draw_AngleShift(VO,InitMax(b),InitMin(b),InitNum(b));//choose a nearest angle ID g_O
if p<b then //normal terminal substructure
m_O=m;
else //reiteration
if m<=b_o(p) then
m_O=m+1; //eiteration id of less reiterated structure, otherwise reiteration can't be stopped
end;
end;
sz_O=[0 0]; //no size information for substructure
o=[0 0 0]; //terminal structure is add before the main axis, so its position is 0.
[NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,4,age,g_O,m_O,VO,o,sz_O); //write information into matrices and vectors
end; //end for terminal substructure
end;
Posi=1; //increasing number of metamer in axis
Sumi=sum(max(1,k-Nu_Ma(p,1)):k)*sum(Nu_I(p,:)); //total number of metamer in axis
if j>Nu_Ma(p,1) then //age1 is chr_age of top G.U. in axis, 1 if axis is young, otherwise j-Nu_Ma(p,1)+1;
age1=j-Nu_Ma(p,1)+1;
else
age1=1;
end ;
for kk=age1:k; //for each G.U. in axis from top
Ir=I_D(p,kk,j,i); //diameter of G.U
age=[p kk j i]; // phy_age and chr_age of G.U., chr_age of substructure and plant
if Flag_Bending_by_node(p)==0 then //save by G.U.
sz=[u(p)*I_H(p,kk,i) I_D(p,kk,j,i)];//length and diameter of G.U.
ap=theta((j-kk)*u(p)+1); //angle to z-axis of G.U. *number of G.U. below current one is j-kk
if k<j then //if k<Nu_Ma(p) if the branch's length is smaller than its full length
//ap=ap-theta( (i-k) *u(p));%changed 2004.5.26
ap=ap-theta( (j-k) *u(p));
end;
VI=[sin(ap) 0 cos(ap) ;0 1 0;cos(ap) 0 -sin(ap)]; //3 direction of G.U., not rotation matrix
o=[0 0 0];
[NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,1,age,g,m,VI,o,sz);
for axis=1:3; //for x,y,z
O(1:NO-1,axis)=O(1:NO-1,axis)+VI(axis,1)*u(p)*I_H(p,kk,i); //the new G.U. is in the bottom, shift all previous organs to top position of G.U.
end;
end ;
Numi=0; //number of microstate in G.U. kk
for b=p:6; //for each kind of possible microstate
//////////////////// for b=p:9; original
for ii=1:Nu_I(p,b); //for each microstates on kind b
Posi=Posi+1; //the total number of metamer in axis increase
Numi=Numi+1; //the number of metamer in G.U. increase
if Flag_Bending_by_node(p)==1 then //save by internode
sz=[I_H(p,kk,i) I_D(p,kk,j,i)]; //length and diameter of internode
//ap=theta(L0-Posi+2)-theta(L0-(k-age1)*u(p));%angle to z-axis of internode
ap=theta(L0-Posi+2);
//ap=theta((j-kk)*u(p)+1); //angle to z-axis of G.U. *number of G.U. below current one is j-kk
if k<i then
ap=ap-theta(( min(i,Nu_Ma(p))-(k-age1) )*u(p));//set first angle to z-axis of G.U. to 0.
end ;
ap=ap+InitAngle;
VI=[sin(ap) 0 cos(ap) ;0 1 0;cos(ap) 0 -sin(ap)]; //3 direction of internode
o=[0 0 0];
[NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,1,age,g,m,VI,o,sz);
for axis=1:3; //for x,y,z
O(1:NO-1,axis)=O(1:NO-1,axis)+VI(axis,1)*I_H(p,kk,i); //the new G.U. is in the bottom, shift all previous organs to top position of G.U.
end ;
end;
for OrgId=1:4; //for each kind of axillary organs;
select OrgId //1 leaf, 2 female flower, 3 male flower, 4 substructure
case 1 then // 1 leaf
id_O=10;Age_O=[p kk j i];m_O=m;g_O=g;//id, age
sz_O=[B_S(p,kk,i) B_S(p,kk,i)]; //size
if Leaf_direction(p)==0 then //in smb file, leaf primary direction is x-axis, with secondary direction in xy-plane(y-axis)
V0=[0 0 1;0 1 0;1 0 0]; //rotate to z-axis, let primary direction z-axis, with secondary direction y-axis
else
V0=[0 1 0;0 0 1;1 0 0]; //compound of y-axis rotation[0 0 1;0 1 0;1 0 0] and z-axis rotation[0 -1 0;1 0 0;0 0 1].primary direction z-axis, with secondary direction x-axis, %V0=[1 0 0;0 0 1;0 1 0];
end ;
flag=( Flag_leaf(p) & (kk<Tu_O(1,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) );//if leaf deisplayed and not prunned. no consideration on appearence and disapperance time because I suppose leaf always exist
flag=(flag & StateO(1,j-kk+1,p)); //organ occupied state
case 2 then //2 female flower
id_O=20;Age_O=[p kk-1 j i];m_O=m;g_O=g;flag=0;//id, age
if kk-1>0 then
sz_O=[Ff_V(p,kk-1,i-1) Ff_V(p,kk-1,i-1)];//size
V0=[0 0 1;0 1 0;1 0 0];
//V0=[0 1 0;0 0 1;1 0 0];
flag=( Flag_fruit(p)==1 );
flag=( flag & (kk-1>0) & (kk-1<Tu_O(4,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) );
flag=flag & StateO(2,j-kk+1+m-1,p); //organ occupied state
end;
case 3 then //3 male flower, nothing
id_O=30;Age_O=[p kk-1 j i];m_O=m;g_O=g;//id, age
if kk-1>0 then
sz_O=[Fm_V(p,kk-1,i-1) Fm_V(p,kk-1,i-1)];//size
end ;
V0=[0 0 1;0 1 0;1 0 0];
//V0=[0 1 0;0 0 1;1 0 0];
flag=( Flag_fruit(p)==1 );
flag=( flag & (kk-1>0) & (kk-1<Tu_O(4,1,p)+Pruning_delay(p)+1 | Flag_pruning(p)~=1) );
flag=flag & StateO(3,j-kk+1,p); //organ occupied state
case 4 then //4 branch
if b<=maxp then //if branch exist
id_O=4;
if (br_a(p)==0 & b>p) | (re_a(p)==0 & b==p) then //if branch structure
//Age_O=[b kk-1 kk-1 i]; // age of branch
rs_n=round(rs_A(b,1)+rs_B(b,1)*(kk-max(j-Nu_Ma(p,1)+1,1)));
kkb=floor((kk-1-rs_n)*rt_a(b,1));//the ch_age of substructure
Age_O=[b kkb kkb i]; // age of branch
else
//br_a(p)==1, infloresence
rs_n=round((rs_B(b,1)-1)*(kk-age1)); //for inflo, MZ, 2005.8
pos=Nu_Ma(p)-(kk-age1);
if pos< (Nu_Ma(p)-Nu_Ma(b)) then
rs_n=rs_n+(Nu_Ma(p)-Nu_Ma(b))-pos;
end
if rs_n<0 then
rs_n=rs_A(b,1)+0;
else
rs_n=rs_A(b,1)+rs_n;
end
kkb=floor((kk-1-rs_n)*rt_a(b,1));//the ch_age of substructure
np=kk-1+NM(p)-j; //cut the branch. NM from gl_read
if NM(b)>np then
nb=j+NM(b)-NM(p)-rs_n;
Age_O=[b kkb nb i];
else
Age_O=[b kkb kkb i];
end
end;
if p<b then //normal branch
m_O=m; //reiteration order is same as the axis
else // p==b,reiteration branch
m_O=m+1; //stick the branch with higher reiteration. Order nr has no reiteration
end
sz_O=[0 0];
V0=eye(3,3);
//V0=[0 0 1;0 1 0;1 0 0];
flag= ( (br_a(p)==0) | ( (br_a(p)==1) & (Age_O(3)>0) ) ) ; //chr_age of substructure>0
flag=(flag & (Age_O(2)>0) & ( (b<=maxp & b>p) | (p==b & m<=b_o(p)) ) );
if flag then
//flag=( flag & (Flag_pruning(b)~=1) | (kk-1<=T_Pr(b)+Pruning_delay(b)) );//not prunned
flag=( flag & (Flag_pruning(b)~=1) | (kk-1<=Nu_Ma(b)+Pruning_delay(b)) );//not prunned, according to AnneLaure 2004.07.01
end ;
flag=flag & StateO(4,j-kk+1,p); //organ occupied state
else
flag=0;
end;
end;
if flag then
for jj=1:Nu_O(OrgId,p,b); //for each organ on the same internode
w3=3.14+(Sumi-Posi)*Ang_Ph(p)+(jj-1)*2*%pi/Nu_O(OrgId,p,b); //phylotaxy angle
if OrgId==3 | OrgId==2 then
//w3=(Sumi-Posi-1)*Ang_Ph(p)+(jj-1)*2*%pi/Nu_O(OrgId,p,b); //phylotaxy angle
end;
if Flag_plagiotropic(p)==1 then
w3=w3+1.57;
end;
Vz=[cos(w3) -sin(w3) 0;sin(w3) cos(w3) 0; 0 0 1]; //z-rotation matrix.Vz=[cos(w3) sin(w3) 0;-sin(w3) cos(w3) 0; 0 0 1];
if (kk-age1+1)<=wbn(p) & (OrgId==1 | OrgId==4) then //opening angle, still openning
aa=Ang_O(OrgId,p,b)+(kk-age1+1)/wbn(p)*(wb(p)-Ang_O(OrgId,p,b));
else
if wbn(p)>0 then
aa=wb(p); //if kk>wbn(p),keep stable
else
aa=Ang_O(OrgId,p,b); //if wbn(p)==0, nothing to change
end;
end ;
VBy=[cos(aa) 0 sin(aa);0 1 0;-sin(aa) 0 cos(aa)]; //y-axis rotation matrix for axilary angle
Vy=[cos(ap) 0 sin(ap);0 1 0;-sin(ap) 0 cos(ap)]; //y-axis rotation matrix for axis angle
VO=Vy*Vz*VBy*V0; //compound rotation matrix, the sequence can't change
if OrgId==4 & Flag_plagiotropic(p)==1 then //if plagiotropic, the substructure bend in plane parallel to z-axis
vn=VO(:,2);//norm of plane of v1 and v2
vz=[0 0 1]';
sina=sum(vn.*vz);
cosa=norm(gl_cross(vn,vz));//to be changed
//cosa=norm(vn);
Vaxis=[cosa sina 0; -sina cosa 0; 0 0 1];
VO=VO*Vaxis;
end
if Flag_organ_bending(p)==1 then //if bending organ to a certain angle to z axis
vn=VO(:,1); //primary direction of organ
alpha=acos(vn(3,1)); //angle to z axis
if vn(1,1)>0 then //x>0
shift=Theta_O(OrgId,p)-alpha;
else
shift=alpha-Theta_O(OrgId,p); // x<0, rotation to another side
end ;
Vyg=[cos(shift) 0 sin(shift);0 1 0;-sin(shift) 0 cos(shift)];
VO=Vyg*VO;
vn=VO(:,1); //primary direction of organ
alpha=acos(vn(3,1)); //angle to z axis
end;
if OrgId==4 then //choose heo id for substructure, but for other organ, it is same with axis
[VO,g_O]=Draw_AngleShift(VO,InitMax(b),InitMin(b),InitNum(b));
else
g_O=g;
end;
VD=VO(:,1); //direction of branch
v1n=VI(:,1); //direction of axis
//VD=VD+dot(VD,v1n)*v1n; //direction from center of GU. to sticking point
VD=gl_cross(v1n,gl_cross(v1n,VD));
//VD=v1n;
if norm(VD)>0 then // VD is direction of blade
VD=VD/norm(VD);
end;
if Flag_Bending_by_node(p)==1 then
O_O=v1n*I_H(p,kk,i)-Ir/2*VD; //stick organs on the surface of G.U.
else
//O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i)+Ir/2*VD ;
//O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i)-Ir/2*VD ; //2004_04_03 Phillippe doesn't want floating branches.
O_O=v1n*(u(p)-Numi+1)*I_H(p,kk,i) ;
end;
[NO,ID,Age,gs,mr,V,O,Sz]=Draw_GetOrgan(NO,ID,Age,gs,mr,V,O,Sz,id_O,Age_O,g_O,m_O,VO,O_O',sz_O);
end;
end;
end;
end;//jj 1:Nu_I
end;//b
end ;//kk
for no=1:NO;
M=matrix(V(no,:,:),3,3);
if gs(no)==0 then
break;
end;
Draw_AddOrgan(fidBl,ID(no),Age(no,:),1,gs(no),mr(no),M,O(no,:),Sz(no,:));
end;
data=[4 p k j i 1 g m NO 0 ]; //10*4=40bytes
for tempi=1:10; //if one matrix is written to a file directly, more bytes are occupied
mput(data(tempi),'l',fidInf);
end;
NumStr=NumStr+1;
end ;//k
end;//m
end;//j
end;//g
end;//i
end;//p
mclose(fidInf);
mclose(fidBl);
printf('done. ');
printf(string(timer())+' seconds.\n');
//open str file and combine two files
//write str file header information 30*4=120 bytes
[fid, %v] = mopen(StrFileName, 'wb');
//get organ smb if according to their smb filename
[IDSmb]=Draw_SMB2ID(Smb_I,Smb_L,Smb_Ff,Smb_Fm);
data=[maxp N NumStr IDSmb(1) IDSmb(2) IDSmb(3) IDSmb(4) Tu_O(1,1,1) Tu_O(3,1,1) Tu_O(4,1,1)]; //I suppose here that life time of organ is uniform for each phy_age
mput(data,'l',fid);
data=[matrix(Tr,1,maxp) zeros(1,10-maxp)];
mput(data,'l',fid);
data=[matrix(InitNum,1,maxp) zeros(1,10-maxp)];
mput(data,'l',fid);
data=[matrix(b_o+1,1,maxp) zeros(1,10-maxp)];
mput(data,'l',fid);
//write str file data structure information %write information of each substructure
[fidInf, %v] = mopen(StrInf, 'rb');
f=[];
while ~meof(fidInf)
f=[f mget(1000,'c', fidInf)];
end;
//disp(mtell(fidInf1));
mput(f,'c',fid);
mclose(fidInf);
// write each block information inside a structure
[fidBl, %v] = mopen(StrBlock, 'rb');
f=[];
while ~meof(fidBl)
f= mget(100,'c', fidBl);
mput(f,'c',fid);
//disp(mtell(fidBl));
end;
mclose(fidBl);
mclose(fid);
//mdelete(StrInf);mdelete(StrBlock);
|
f2b41efc3aa733bec5305e0796f4895c96aa8385 | 657d173b53bec4e9905eb0d89bb682f18af4b851 | /scilab/temperature_plots.sce | 2cc008011c09e10c3492e9bcd5f516ad9da56acf | [] | no_license | RobotControlAndMachineVisionLaboratory/gocator_3100 | 6990d9948bd5ebdd751e3ec02611c8b481cf3c65 | 84fa8ebe7d4ca84436e935ec1d2d8915d1227f42 | refs/heads/master | 2020-06-13T19:13:03.883928 | 2019-10-14T10:14:58 | 2019-10-14T10:14:58 | 194,762,673 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 679 | sce | temperature_plots.sce | // clear all
xdel(winsid());
clear;
//open data file in matrix format
data = csvRead('/home/andreu/datasets/zyx/gocator_temperature/exp0_mat.txt');
[rows cols] = size(data);
//generate a time axis
time = [1:1:rows];
//plot internal & projector tempereture
fig_h=figure();
fig_h.background = color("white");
plot(time, data(:,1)./1000., time, data(:,2)./1000.);
ah = gca();
//ah.isoview = "on";
ah.x_label.text = "$time [minutes]$";
ah.x_label.font_size = 4;
ah.y_label.text = "$Temp [ºC]$";
ah.y_label.font_size = 4;
ah.grid = [1,1,1];
ah.grid_position = "background";
ah.auto_clear = "off";
ah.auto_scale = "off";
ah.data_bounds = [0 45; 600 55];
plot_colors = ["r";"g"];
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.