id
stringlengths
14
16
text
stringlengths
45
2.73k
source
stringlengths
49
114
ff75455b44e6-2
× Hunter was adapted into a 62-episode anime television series produced by Nippon Animation and directed by Kazuhiro Furuhashi, which ran on Fuji Television from October 1999 to March 2001. Three separate original video animations (OVAs) totaling 30 episodes were subsequently produced by Nippon Animation and released in Japan from 2002 to 2004. A second anime television series by Madhouse aired on Nippon Television from October 2011 to September 2014, totaling 148 episodes, with two animated theatrical films released in 2013. There are also numerous audio albums, video games, musicals, and other media based on Hunter × Hunter.\nThe manga has been translated into English and released in North America by Viz Media since April 2005. Both television series have been also licensed by Viz Media, with the first series having aired on the Funimation Channel in 2009 and the second series broadcast on Adult Swim\'s Toonami programming block from April 2016 to June 2019.\nHunter × Hunter has been a huge critical and financial success
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
ff75455b44e6-3
× Hunter has been a huge critical and financial success and has become one of the best-selling manga series of all time, having over 84 million copies in circulation by July 2022.\n\nPage: Hunter × Hunter (2011 TV series)\nSummary: Hunter × Hunter is an anime television series that aired from 2011 to 2014 based on Yoshihiro Togashi\'s manga series Hunter × Hunter. The story begins with a young boy named Gon Freecss, who one day discovers that the father who he thought was dead, is in fact alive and well. He learns that his father, Ging, is a legendary "Hunter", an individual who has proven themselves an elite member of humanity. Despite the fact that Ging left his son with his relatives in order to pursue his own dreams, Gon becomes determined to follow in his father\'s footsteps, pass the rigorous "Hunter Examination", and eventually find his father to become a Hunter in his own right.\nThis new Hunter × Hunter anime was announced on July
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
ff75455b44e6-4
new Hunter × Hunter anime was announced on July 24, 2011. It is a complete reboot of the anime adaptation starting from the beginning of the manga, with no connections to the first anime from 1999. Produced by Nippon TV, VAP, Shueisha and Madhouse, the series is directed by Hiroshi Kōjina, with Atsushi Maekawa and Tsutomu Kamishiro handling series composition, Takahiro Yoshimatsu designing the characters and Yoshihisa Hirano composing the music. Instead of having the old cast reprise their roles for the new adaptation, the series features an entirely new cast to voice the characters. The new series premiered airing weekly on Nippon TV and the nationwide Nippon News Network from October 2, 2011. The series started to be collected in both DVD and Blu-ray format on January 25, 2012. Viz Media has licensed the anime for a DVD/Blu-ray release in North America with an English dub. On television, the series began airing on Adult
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
ff75455b44e6-5
On television, the series began airing on Adult Swim\'s Toonami programming block on April 17, 2016, and ended on June 23, 2019.The anime series\' opening theme is alternated between the song "Departure!" and an alternate version titled "Departure! -Second Version-" both sung by Galneryus\' vocalist Masatoshi Ono. Five pieces of music were used as the ending theme; "Just Awake" by the Japanese band Fear, and Loathing in Las Vegas in episodes 1 to 26, "Hunting for Your Dream" by Galneryus in episodes 27 to 58, "Reason" sung by Japanese duo Yuzu in episodes 59 to 75, "Nagareboshi Kirari" also sung by Yuzu from episode 76 to 98, which was originally from the anime film adaptation, Hunter × Hunter: Phantom Rouge, and "Hyōri Ittai" by Yuzu featuring Hyadain from episode 99 to 146, which was also used in the film Hunter × Hunter: The Last Mission. The background music and soundtrack for the series was composed
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
ff75455b44e6-6
The background music and soundtrack for the series was composed by Yoshihisa Hirano.\n\n\n\nPage: List of Hunter × Hunter characters\nSummary: The Hunter × Hunter manga series, created by Yoshihiro Togashi, features an extensive cast of characters. It takes place in a fictional universe where licensed specialists known as Hunters travel the world taking on special jobs ranging from treasure hunting to assassination. The story initially focuses on Gon Freecss and his quest to become a Hunter in order to find his father, Ging, who is himself a famous Hunter. On the way, Gon meets and becomes close friends with Killua Zoldyck, Kurapika and Leorio Paradinight.\nAlthough most characters are human, most possess superhuman strength and/or supernatural abilities due to Nen, the ability to control one\'s own life energy or aura. The world of the series also includes fantastical beasts such as the Chimera Ants or the Five great calamities.'
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
ff75455b44e6-7
previous SerpAPI next Wolfram Alpha By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html
b4b85a7b8aae-0
.ipynb .pdf Bash Bash# It can often be useful to have an LLM generate bash commands, and then run them. A common use case for this is letting the LLM interact with your local file system. We provide an easy util to execute bash commands. from langchain.utilities import BashProcess bash = BashProcess() print(bash.run("ls")) bash.ipynb google_search.ipynb python.ipynb requests.ipynb serpapi.ipynb previous Arxiv API next Bing Search By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/tools/examples/bash.html
316bcd428527-0
.ipynb .pdf OpenWeatherMap API OpenWeatherMap API# This notebook goes over how to use the OpenWeatherMap component to fetch weather information. First, you need to sign up for an OpenWeatherMap API key: Go to OpenWeatherMap and sign up for an API key here pip install pyowm Then we will need to set some environment variables: Save your API KEY into OPENWEATHERMAP_API_KEY env variable pip install pyowm import os os.environ["OPENWEATHERMAP_API_KEY"] = "" from langchain.utilities import OpenWeatherMapAPIWrapper weather = OpenWeatherMapAPIWrapper() weather_data = weather.run("London,GB") print(weather_data) In London,GB, the current weather is as follows: Detailed status: overcast clouds Wind speed: 4.63 m/s, direction: 150° Humidity: 67% Temperature: - Current: 5.35°C - High: 6.26°C - Low: 3.49°C - Feels like: 1.95°C Rain: {} Heat index: None Cloud cover: 100% previous IFTTT WebHooks next Python REPL By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/tools/examples/openweathermap.html
44c055ae501e-0
.ipynb .pdf Zapier Natural Language Actions API Contents Zapier Natural Language Actions API Example with Agent Example with SimpleSequentialChain Zapier Natural Language Actions API# Full docs here: https://nla.zapier.com/api/v1/docs Zapier Natural Language Actions gives you access to the 5k+ apps, 20k+ actions on Zapier’s platform through a natural language API interface. NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps Zapier NLA handles ALL the underlying API auth and translation from natural language –> underlying API call –> return simplified output for LLMs. The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API. NLA offers both API Key and OAuth for signing NLA API requests. Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer’s Zapier account (and will use the developer’s connected accounts on Zapier.com) User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user’s exposed actions and connected accounts on Zapier.com This quick start will focus on the server-side use case for brevity. Review full docs or reach out to nla@zapier.com for user-facing oauth developer support. This example goes over how to use the Zapier integration with a SimpleSequentialChain, then an Agent. In code, below: %load_ext autoreload %autoreload 2 import os # get from https://platform.openai.com/
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-1
%autoreload 2 import os # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "") # get from https://nla.zapier.com/demo/provider/debug (under User Information, after logging in): os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "") Example with Agent# Zapier tools can be used with an agent. See the example below. from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents.agent_toolkits import ZapierToolkit from langchain.agents import AgentType from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send channel message' actions # first go here, log in, expose (enable) the two actions: https://nla.zapier.com/demo/start -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') which you route your users through first llm = OpenAI(temperature=0) zapier = ZapierNLAWrapper() toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) agent = initialize_agent(toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) agent.run("Summarize the last email I received regarding Silicon Valley Bank. Send the summary to the #test-zapier channel in slack.") > Entering new AgentExecutor chain... I need to find the email and summarize it. Action: Gmail: Find Email Action Input: Find the latest email from Silicon Valley Bank
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-2
Action: Gmail: Find Email Action Input: Find the latest email from Silicon Valley Bank Observation: {"from__name": "Silicon Valley Bridge Bank, N.A.", "from__email": "sreply@svb.com", "body_plain": "Dear Clients, After chaotic, tumultuous & stressful days, we have clarity on path for SVB, FDIC is fully insuring all deposits & have an ask for clients & partners as we rebuild. Tim Mayopoulos <https://eml.svb.com/NjEwLUtBSy0yNjYAAAGKgoxUeBCLAyF_NxON97X4rKEaNBLG", "reply_to__email": "sreply@svb.com", "subject": "Meet the new CEO Tim Mayopoulos", "date": "Tue, 14 Mar 2023 23:42:29 -0500 (CDT)", "message_url": "https://mail.google.com/mail/u/0/#inbox/186e393b13cfdf0a", "attachment_count": "0", "to__emails": "ankush@langchain.dev", "message_id": "186e393b13cfdf0a", "labels": "IMPORTANT, CATEGORY_UPDATES, INBOX"} Thought: I need to summarize the email and send it to the #test-zapier channel in Slack. Action: Slack: Send Channel Message Action Input: Send a slack message to the #test-zapier channel with the text "Silicon Valley Bank has announced that Tim Mayopoulos is the new CEO. FDIC is fully insuring all deposits and they have an ask for clients and partners as they rebuild."
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-3
Observation: {"message__text": "Silicon Valley Bank has announced that Tim Mayopoulos is the new CEO. FDIC is fully insuring all deposits and they have an ask for clients and partners as they rebuild.", "message__permalink": "https://langchain.slack.com/archives/C04TSGU0RA7/p1678859932375259", "channel": "C04TSGU0RA7", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:58:52Z", "message__bot_profile__icons__image_36": "https://avatars.slack-edge.com/2022-08-02/3888649620612_f864dc1bb794cf7d82b0_36.png", "message__blocks[]block_id": "kdZZ", "message__blocks[]elements[]type": "['rich_text_section']"} Thought: I now know the final answer. Final Answer: I have sent a summary of the last email from Silicon Valley Bank to the #test-zapier channel in Slack. > Finished chain. 'I have sent a summary of the last email from Silicon Valley Bank to the #test-zapier channel in Slack.' Example with SimpleSequentialChain# If you need more explicit control, use a chain, like below. from langchain.llms import OpenAI from langchain.chains import LLMChain, TransformChain, SimpleSequentialChain from langchain.prompts import PromptTemplate from langchain.tools.zapier.tool import ZapierNLARunAction
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-4
from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send direct message' actions # first go here, log in, expose (enable) the two actions: https://nla.zapier.com/demo/start -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') which you route your users through first actions = ZapierNLAWrapper().list() ## step 1. gmail find email GMAIL_SEARCH_INSTRUCTIONS = "Grab the latest email from Silicon Valley Bank" def nla_gmail(inputs): action = next((a for a in actions if a["description"].startswith("Gmail: Find Email")), None) return {"email_data": ZapierNLARunAction(action_id=action["id"], zapier_description=action["description"], params_schema=action["params"]).run(inputs["instructions"])} gmail_chain = TransformChain(input_variables=["instructions"], output_variables=["email_data"], transform=nla_gmail) ## step 2. generate draft reply template = """You are an assisstant who drafts replies to an incoming email. Output draft reply in plain text (not JSON). Incoming email: {email_data} Draft email reply:""" prompt_template = PromptTemplate(input_variables=["email_data"], template=template) reply_chain = LLMChain(llm=OpenAI(temperature=.7), prompt=prompt_template) ## step 3. send draft reply via a slack direct message SLACK_HANDLE = "@Ankush Gola" def nla_slack(inputs):
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-5
SLACK_HANDLE = "@Ankush Gola" def nla_slack(inputs): action = next((a for a in actions if a["description"].startswith("Slack: Send Direct Message")), None) instructions = f'Send this to {SLACK_HANDLE} in Slack: {inputs["draft_reply"]}' return {"slack_data": ZapierNLARunAction(action_id=action["id"], zapier_description=action["description"], params_schema=action["params"]).run(instructions)} slack_chain = TransformChain(input_variables=["draft_reply"], output_variables=["slack_data"], transform=nla_slack) ## finally, execute overall_chain = SimpleSequentialChain(chains=[gmail_chain, reply_chain, slack_chain], verbose=True) overall_chain.run(GMAIL_SEARCH_INSTRUCTIONS) > Entering new SimpleSequentialChain chain...
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-6
overall_chain.run(GMAIL_SEARCH_INSTRUCTIONS) > Entering new SimpleSequentialChain chain... {"from__name": "Silicon Valley Bridge Bank, N.A.", "from__email": "sreply@svb.com", "body_plain": "Dear Clients, After chaotic, tumultuous & stressful days, we have clarity on path for SVB, FDIC is fully insuring all deposits & have an ask for clients & partners as we rebuild. Tim Mayopoulos <https://eml.svb.com/NjEwLUtBSy0yNjYAAAGKgoxUeBCLAyF_NxON97X4rKEaNBLG", "reply_to__email": "sreply@svb.com", "subject": "Meet the new CEO Tim Mayopoulos", "date": "Tue, 14 Mar 2023 23:42:29 -0500 (CDT)", "message_url": "https://mail.google.com/mail/u/0/#inbox/186e393b13cfdf0a", "attachment_count": "0", "to__emails": "ankush@langchain.dev", "message_id": "186e393b13cfdf0a", "labels": "IMPORTANT, CATEGORY_UPDATES, INBOX"} Dear Silicon Valley Bridge Bank, Thank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you. Best regards, [Your Name]
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-7
Best regards, [Your Name] {"message__text": "Dear Silicon Valley Bridge Bank, \n\nThank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you. \n\nBest regards, \n[Your Name]", "message__permalink": "https://langchain.slack.com/archives/D04TKF5BBHU/p1678859968241629", "channel": "D04TKF5BBHU", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:59:28Z", "message__blocks[]block_id": "p7i", "message__blocks[]elements[]elements[]type": "[['text']]", "message__blocks[]elements[]type": "['rich_text_section']"} > Finished chain.
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
44c055ae501e-8
> Finished chain. '{"message__text": "Dear Silicon Valley Bridge Bank, \\n\\nThank you for your email and the update regarding your new CEO Tim Mayopoulos. We appreciate your dedication to keeping your clients and partners informed and we look forward to continuing our relationship with you. \\n\\nBest regards, \\n[Your Name]", "message__permalink": "https://langchain.slack.com/archives/D04TKF5BBHU/p1678859968241629", "channel": "D04TKF5BBHU", "message__bot_profile__name": "Zapier", "message__team": "T04F8K3FZB5", "message__bot_id": "B04TRV4R74K", "message__bot_profile__deleted": "false", "message__bot_profile__app_id": "A024R9PQM", "ts_time": "2023-03-15T05:59:28Z", "message__blocks[]block_id": "p7i", "message__blocks[]elements[]elements[]type": "[[\'text\']]", "message__blocks[]elements[]type": "[\'rich_text_section\']"}' previous Wolfram Alpha next Agents Contents Zapier Natural Language Actions API Example with Agent Example with SimpleSequentialChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/tools/examples/zapier.html
db0a91174bd0-0
.ipynb .pdf Google Places Google Places# This notebook goes through how to use Google Places API #!pip install googlemaps import os os.environ["GPLACES_API_KEY"] = "" from langchain.tools import GooglePlacesTool places = GooglePlacesTool() places.run("al fornos") "1. Delfina Restaurant\nAddress: 3621 18th St, San Francisco, CA 94110, USA\nPhone: (415) 552-4055\nWebsite: https://www.delfinasf.com/\n\n\n2. Piccolo Forno\nAddress: 725 Columbus Ave, San Francisco, CA 94133, USA\nPhone: (415) 757-0087\nWebsite: https://piccolo-forno-sf.com/\n\n\n3. L'Osteria del Forno\nAddress: 519 Columbus Ave, San Francisco, CA 94133, USA\nPhone: (415) 982-1124\nWebsite: Unknown\n\n\n4. Il Fornaio\nAddress: 1265 Battery St, San Francisco, CA 94111, USA\nPhone: (415) 986-0100\nWebsite: https://www.ilfornaio.com/\n\n" previous DuckDuckGo Search next Google Search By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/tools/examples/google_places.html
7524994dcd69-0
.ipynb .pdf CSV Agent CSV Agent# This notebook shows how to use agents to interact with a csv. It is mostly optimized for question answering. NOTE: this agent calls the Pandas DataFrame agent under the hood, which in turn calls the Python agent, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously. from langchain.agents import create_csv_agent from langchain.llms import OpenAI agent = create_csv_agent(OpenAI(temperature=0), 'titanic.csv', verbose=True) agent.run("how many rows are there?") > Entering new AgentExecutor chain... Thought: I need to count the number of rows Action: python_repl_ast Action Input: len(df) Observation: 891 Thought: I now know the final answer Final Answer: There are 891 rows in the dataframe. > Finished chain. 'There are 891 rows in the dataframe.' agent.run("how many people have more than 3 sibligngs") > Entering new AgentExecutor chain... Thought: I need to count the number of people with more than 3 siblings Action: python_repl_ast Action Input: df[df['SibSp'] > 3].shape[0] Observation: 30 Thought: I now know the final answer Final Answer: 30 people have more than 3 siblings. > Finished chain. '30 people have more than 3 siblings.' agent.run("whats the square root of the average age?") > Entering new AgentExecutor chain... Thought: I need to calculate the average age first Action: python_repl_ast Action Input: df['Age'].mean() Observation: 29.69911764705882
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/csv.html
7524994dcd69-1
Observation: 29.69911764705882 Thought: I can now calculate the square root Action: python_repl_ast Action Input: math.sqrt(df['Age'].mean()) Observation: name 'math' is not defined Thought: I need to import the math library Action: python_repl_ast Action Input: import math Observation: Thought: I can now calculate the square root Action: python_repl_ast Action Input: math.sqrt(df['Age'].mean()) Observation: 5.449689683556195 Thought: I now know the final answer Final Answer: 5.449689683556195 > Finished chain. '5.449689683556195' previous Toolkits next Jira By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/csv.html
41e455b935fa-0
.ipynb .pdf Vectorstore Agent Contents Create the Vectorstores Initialize Toolkit and Agent Examples Multiple Vectorstores Examples Vectorstore Agent# This notebook showcases an agent designed to retrieve information from one or more vectorstores, either with or without sources. Create the Vectorstores# from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain import OpenAI, VectorDBQA llm = OpenAI(temperature=0) from langchain.document_loaders import TextLoader loader = TextLoader('../../../state_of_the_union.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() state_of_union_store = Chroma.from_documents(texts, embeddings, collection_name="state-of-union") Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. from langchain.document_loaders import WebBaseLoader loader = WebBaseLoader("https://beta.ruff.rs/docs/faq/") docs = loader.load() ruff_texts = text_splitter.split_documents(docs) ruff_store = Chroma.from_documents(ruff_texts, embeddings, collection_name="ruff") Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Initialize Toolkit and Agent# First, we’ll create an agent with a single vectorstore. from langchain.agents.agent_toolkits import ( create_vectorstore_agent, VectorStoreToolkit, VectorStoreInfo, ) vectorstore_info = VectorStoreInfo( name="state_of_union_address",
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
41e455b935fa-1
) vectorstore_info = VectorStoreInfo( name="state_of_union_address", description="the most recent state of the Union adress", vectorstore=state_of_union_store ) toolkit = VectorStoreToolkit(vectorstore_info=vectorstore_info) agent_executor = create_vectorstore_agent( llm=llm, toolkit=toolkit, verbose=True ) Examples# agent_executor.run("What did biden say about ketanji brown jackson is the state of the union address?") > Entering new AgentExecutor chain... I need to find the answer in the state of the union address Action: state_of_union_address Action Input: What did biden say about ketanji brown jackson Observation: Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence. Thought: I now know the final answer Final Answer: Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence. > Finished chain. "Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence." agent_executor.run("What did biden say about ketanji brown jackson is the state of the union address? List the source.") > Entering new AgentExecutor chain... I need to use the state_of_union_address_with_sources tool to answer this question. Action: state_of_union_address_with_sources Action Input: What did biden say about ketanji brown jackson
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
41e455b935fa-2
Action Input: What did biden say about ketanji brown jackson Observation: {"answer": " Biden said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to the United States Supreme Court, and that she is one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n", "sources": "../../state_of_the_union.txt"} Thought: I now know the final answer Final Answer: Biden said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to the United States Supreme Court, and that she is one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence. Sources: ../../state_of_the_union.txt > Finished chain. "Biden said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to the United States Supreme Court, and that she is one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence. Sources: ../../state_of_the_union.txt" Multiple Vectorstores# We can also easily use this initialize an agent with multiple vectorstores and use the agent to route between them. To do this. This agent is optimized for routing, so it is a different toolkit and initializer. from langchain.agents.agent_toolkits import ( create_vectorstore_router_agent, VectorStoreRouterToolkit, VectorStoreInfo, ) ruff_vectorstore_info = VectorStoreInfo( name="ruff", description="Information about the Ruff python linting library", vectorstore=ruff_store ) router_toolkit = VectorStoreRouterToolkit( vectorstores=[vectorstore_info, ruff_vectorstore_info], llm=llm ) agent_executor = create_vectorstore_router_agent( llm=llm, toolkit=router_toolkit, verbose=True )
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
41e455b935fa-3
toolkit=router_toolkit, verbose=True ) Examples# agent_executor.run("What did biden say about ketanji brown jackson is the state of the union address?") > Entering new AgentExecutor chain... I need to use the state_of_union_address tool to answer this question. Action: state_of_union_address Action Input: What did biden say about ketanji brown jackson Observation: Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence. Thought: I now know the final answer Final Answer: Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence. > Finished chain. "Biden said that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence." agent_executor.run("What tool does ruff use to run over Jupyter Notebooks?") > Entering new AgentExecutor chain... I need to find out what tool ruff uses to run over Jupyter Notebooks Action: ruff Action Input: What tool does ruff use to run over Jupyter Notebooks? Observation: Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb Thought: I now know the final answer
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
41e455b935fa-4
Thought: I now know the final answer Final Answer: Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb > Finished chain. 'Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb' agent_executor.run("What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?") > Entering new AgentExecutor chain... I need to find out what tool ruff uses and if the president mentioned it in the state of the union. Action: ruff Action Input: What tool does ruff use to run over Jupyter Notebooks? Observation: Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb Thought: I need to find out if the president mentioned nbQA in the state of the union. Action: state_of_union_address Action Input: Did the president mention nbQA in the state of the union? Observation: No, the president did not mention nbQA in the state of the union. Thought: I now know the final answer. Final Answer: No, the president did not mention nbQA in the state of the union. > Finished chain. 'No, the president did not mention nbQA in the state of the union.' previous SQL Database Agent next
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
41e455b935fa-5
previous SQL Database Agent next Agent Executors Contents Create the Vectorstores Initialize Toolkit and Agent Examples Multiple Vectorstores Examples By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/vectorstore.html
49d05cea55ad-0
.ipynb .pdf JSON Agent Contents Initialization Example: getting the required POST parameters for a request JSON Agent# This notebook showcases an agent designed to interact with large JSON/dict objects. This is useful when you want to answer questions about a JSON blob that’s too large to fit in the context window of an LLM. The agent is able to iteratively explore the blob to find what it needs to answer the user’s question. In the below example, we are using the OpenAPI spec for the OpenAI API, which you can find here. We will use the JSON agent to answer some questions about the API spec. Initialization# import os import yaml from langchain.agents import ( create_json_agent, AgentExecutor ) from langchain.agents.agent_toolkits import JsonToolkit from langchain.chains import LLMChain from langchain.llms.openai import OpenAI from langchain.requests import TextRequestsWrapper from langchain.tools.json.tool import JsonSpec with open("openai_openapi.yml") as f: data = yaml.load(f, Loader=yaml.FullLoader) json_spec = JsonSpec(dict_=data, max_value_length=4000) json_toolkit = JsonToolkit(spec=json_spec) json_agent_executor = create_json_agent( llm=OpenAI(temperature=0), toolkit=json_toolkit, verbose=True ) Example: getting the required POST parameters for a request# json_agent_executor.run("What are the required parameters in the request body to the /completions endpoint?") > Entering new AgentExecutor chain... Action: json_spec_list_keys Action Input: data Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/json.html
49d05cea55ad-1
Thought: I should look at the paths key to see what endpoints exist Action: json_spec_list_keys Action Input: data["paths"] Observation: ['/engines', '/engines/{engine_id}', '/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations'] Thought: I should look at the /completions endpoint to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"] Observation: ['post'] Thought: I should look at the post key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"] Observation: ['operationId', 'tags', 'summary', 'requestBody', 'responses', 'x-oaiMeta'] Thought: I should look at the requestBody key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"] Observation: ['required', 'content'] Thought: I should look at the required key to see what parameters are required Action: json_spec_get_value Action Input: data["paths"]["/completions"]["post"]["requestBody"]["required"] Observation: True Thought: I should look at the content key to see what parameters are required Action: json_spec_list_keys
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/json.html
49d05cea55ad-2
Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"] Observation: ['application/json'] Thought: I should look at the application/json key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"] Observation: ['schema'] Thought: I should look at the schema key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"] Observation: ['$ref'] Thought: I should look at the $ref key to see what parameters are required Action: json_spec_get_value Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"] Observation: #/components/schemas/CreateCompletionRequest Thought: I should look at the CreateCompletionRequest schema to see what parameters are required Action: json_spec_list_keys Action Input: data["components"]["schemas"]["CreateCompletionRequest"] Observation: ['type', 'properties', 'required'] Thought: I should look at the required key to see what parameters are required Action: json_spec_get_value Action Input: data["components"]["schemas"]["CreateCompletionRequest"]["required"] Observation: ['model'] Thought: I now know the final answer Final Answer: The required parameters in the request body to the /completions endpoint are 'model'. > Finished chain. "The required parameters in the request body to the /completions endpoint are 'model'." previous Jira next OpenAPI agents Contents Initialization Example: getting the required POST parameters for a request By Harrison Chase
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/json.html
49d05cea55ad-3
Initialization Example: getting the required POST parameters for a request By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/json.html
394e1eb7d14c-0
.ipynb .pdf Python Agent Contents Fibonacci Example Training neural net Python Agent# This notebook showcases an agent designed to write and execute python code to answer a question. from langchain.agents.agent_toolkits import create_python_agent from langchain.tools.python.tool import PythonREPLTool from langchain.python import PythonREPL from langchain.llms.openai import OpenAI agent_executor = create_python_agent( llm=OpenAI(temperature=0, max_tokens=1000), tool=PythonREPLTool(), verbose=True ) Fibonacci Example# This example was created by John Wiseman. agent_executor.run("What is the 10th fibonacci number?") > Entering new AgentExecutor chain... I need to calculate the 10th fibonacci number Action: Python REPL Action Input: def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) Observation: Thought: I need to call the function with 10 as the argument Action: Python REPL Action Input: fibonacci(10) Observation: Thought: I now know the final answer Final Answer: 55 > Finished chain. '55' Training neural net# This example was created by Samee Ur Rehman. agent_executor.run("""Understand, write a single neuron neural network in PyTorch. Take synthetic data for y=2x. Train for 1000 epochs and print every 100 epochs. Return prediction for x = 5""") > Entering new AgentExecutor chain... I need to write a neural network in PyTorch and train it on the given data.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/python.html
394e1eb7d14c-1
I need to write a neural network in PyTorch and train it on the given data. Action: Python REPL Action Input: import torch # Define the model model = torch.nn.Sequential( torch.nn.Linear(1, 1) ) # Define the loss loss_fn = torch.nn.MSELoss() # Define the optimizer optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # Define the data x_data = torch.tensor([[1.0], [2.0], [3.0], [4.0]]) y_data = torch.tensor([[2.0], [4.0], [6.0], [8.0]]) # Train the model for epoch in range(1000): # Forward pass y_pred = model(x_data) # Compute and print loss loss = loss_fn(y_pred, y_data) if (epoch+1) % 100 == 0: print(f'Epoch {epoch+1}: loss = {loss.item():.4f}') # Zero the gradients optimizer.zero_grad() # Backward pass loss.backward() # Update the weights optimizer.step() Observation: Epoch 100: loss = 0.0013 Epoch 200: loss = 0.0007 Epoch 300: loss = 0.0004 Epoch 400: loss = 0.0002 Epoch 500: loss = 0.0001 Epoch 600: loss = 0.0001 Epoch 700: loss = 0.0000 Epoch 800: loss = 0.0000 Epoch 900: loss = 0.0000 Epoch 1000: loss = 0.0000 Thought: I now know the final answer
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/python.html
394e1eb7d14c-2
Thought: I now know the final answer Final Answer: The prediction for x = 5 is 10.0. > Finished chain. 'The prediction for x = 5 is 10.0.' previous Pandas Dataframe Agent next SQL Database Agent Contents Fibonacci Example Training neural net By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/python.html
05680b97f4ad-0
.ipynb .pdf SQL Database Agent Contents Initialization Example: describing a table Example: describing a table, recovering from an error Example: running queries Recovering from an error SQL Database Agent# This notebook showcases an agent designed to interact with a sql databases. The agent builds off of SQLDatabaseChain and is designed to answer more general questions about a database, as well as recover from errors. Note that, as this agent is in active development, all answers might not be correct. Additionally, it is not guaranteed that the agent won’t perform DML statements on your database given certain questions. Be careful running it on sensitive data! This uses the example Chinook database. To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository. Initialization# from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db") toolkit = SQLDatabaseToolkit(db=db) agent_executor = create_sql_agent( llm=OpenAI(temperature=0), toolkit=toolkit, verbose=True ) Example: describing a table# agent_executor.run("Describe the playlisttrack table") > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: Artist, Invoice, Playlist, Genre, Album, PlaylistTrack, Track, InvoiceLine, MediaType, Employee, Customer Thought: I should look at the schema of the playlisttrack table Action: schema_sql_db Action Input: "PlaylistTrack" Observation:
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-1
Action: schema_sql_db Action Input: "PlaylistTrack" Observation: CREATE TABLE "PlaylistTrack" ( "PlaylistId" INTEGER NOT NULL, "TrackId" INTEGER NOT NULL, PRIMARY KEY ("PlaylistId", "TrackId"), FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), FOREIGN KEY("PlaylistId") REFERENCES "Playlist" ("PlaylistId") ) SELECT * FROM 'PlaylistTrack' LIMIT 3; PlaylistId TrackId 1 3402 1 3389 1 3390 Thought: I now know the final answer Final Answer: The PlaylistTrack table has two columns, PlaylistId and TrackId, and is linked to the Playlist and Track tables. > Finished chain. 'The PlaylistTrack table has two columns, PlaylistId and TrackId, and is linked to the Playlist and Track tables.' Example: describing a table, recovering from an error# In this example, the agent tries to search for a table that doesn’t exist, but finds the next best result agent_executor.run("Describe the playlistsong table") > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: Genre, PlaylistTrack, MediaType, Invoice, InvoiceLine, Track, Playlist, Customer, Album, Employee, Artist Thought: I should look at the schema of the PlaylistSong table Action: schema_sql_db Action Input: "PlaylistSong" Observation: Error: table_names {'PlaylistSong'} not found in database Thought: I should check the spelling of the table Action: list_tables_sql_db Action Input: "" Observation: Genre, PlaylistTrack, MediaType, Invoice, InvoiceLine, Track, Playlist, Customer, Album, Employee, Artist Thought: The table is called PlaylistTrack
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-2
Thought: The table is called PlaylistTrack Action: schema_sql_db Action Input: "PlaylistTrack" Observation: CREATE TABLE "PlaylistTrack" ( "PlaylistId" INTEGER NOT NULL, "TrackId" INTEGER NOT NULL, PRIMARY KEY ("PlaylistId", "TrackId"), FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), FOREIGN KEY("PlaylistId") REFERENCES "Playlist" ("PlaylistId") ) SELECT * FROM 'PlaylistTrack' LIMIT 3; PlaylistId TrackId 1 3402 1 3389 1 3390 Thought: I now know the final answer Final Answer: The PlaylistTrack table contains two columns, PlaylistId and TrackId, which are both integers and are used to link Playlist and Track tables. > Finished chain. 'The PlaylistTrack table contains two columns, PlaylistId and TrackId, which are both integers and are used to link Playlist and Track tables.' Example: running queries# agent_executor.run("List the total sales per country. Which country's customers spent the most?") > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: Invoice, MediaType, Artist, InvoiceLine, Genre, Playlist, Employee, Album, PlaylistTrack, Track, Customer Thought: I should look at the schema of the relevant tables to see what columns I can use. Action: schema_sql_db Action Input: "Invoice, Customer" Observation: CREATE TABLE "Customer" ( "CustomerId" INTEGER NOT NULL, "FirstName" NVARCHAR(40) NOT NULL, "LastName" NVARCHAR(20) NOT NULL, "Company" NVARCHAR(80), "Address" NVARCHAR(70),
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-3
"Address" NVARCHAR(70), "City" NVARCHAR(40), "State" NVARCHAR(40), "Country" NVARCHAR(40), "PostalCode" NVARCHAR(10), "Phone" NVARCHAR(24), "Fax" NVARCHAR(24), "Email" NVARCHAR(60) NOT NULL, "SupportRepId" INTEGER, PRIMARY KEY ("CustomerId"), FOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId") ) SELECT * FROM 'Customer' LIMIT 3; CustomerId FirstName LastName Company Address City State Country PostalCode Phone Fax Email SupportRepId 1 Luís Gonçalves Embraer - Empresa Brasileira de Aeronáutica S.A. Av. Brigadeiro Faria Lima, 2170 São José dos Campos SP Brazil 12227-000 +55 (12) 3923-5555 +55 (12) 3923-5566 luisg@embraer.com.br 3 2 Leonie Köhler None Theodor-Heuss-Straße 34 Stuttgart None Germany 70174 +49 0711 2842222 None leonekohler@surfeu.de 5 3 François Tremblay None 1498 rue Bélanger Montréal QC Canada H2G 1A7 +1 (514) 721-4711 None ftremblay@gmail.com 3 CREATE TABLE "Invoice" ( "InvoiceId" INTEGER NOT NULL, "CustomerId" INTEGER NOT NULL, "InvoiceDate" DATETIME NOT NULL, "BillingAddress" NVARCHAR(70), "BillingCity" NVARCHAR(40),
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-4
"BillingCity" NVARCHAR(40), "BillingState" NVARCHAR(40), "BillingCountry" NVARCHAR(40), "BillingPostalCode" NVARCHAR(10), "Total" NUMERIC(10, 2) NOT NULL, PRIMARY KEY ("InvoiceId"), FOREIGN KEY("CustomerId") REFERENCES "Customer" ("CustomerId") ) SELECT * FROM 'Invoice' LIMIT 3; InvoiceId CustomerId InvoiceDate BillingAddress BillingCity BillingState BillingCountry BillingPostalCode Total 1 2 2009-01-01 00:00:00 Theodor-Heuss-Straße 34 Stuttgart None Germany 70174 1.98 2 4 2009-01-02 00:00:00 Ullevålsveien 14 Oslo None Norway 0171 3.96 3 8 2009-01-03 00:00:00 Grétrystraat 63 Brussels None Belgium 1000 5.94 Thought: I should query the Invoice and Customer tables to get the total sales per country. Action: query_sql_db Action Input: SELECT c.Country, SUM(i.Total) AS TotalSales FROM Invoice i INNER JOIN Customer c ON i.CustomerId = c.CustomerId GROUP BY c.Country ORDER BY TotalSales DESC LIMIT 10
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-5
Observation: [('USA', 523.0600000000003), ('Canada', 303.9599999999999), ('France', 195.09999999999994), ('Brazil', 190.09999999999997), ('Germany', 156.48), ('United Kingdom', 112.85999999999999), ('Czech Republic', 90.24000000000001), ('Portugal', 77.23999999999998), ('India', 75.25999999999999), ('Chile', 46.62)] Thought: I now know the final answer Final Answer: The customers from the USA spent the most, with a total of $523.06. > Finished chain. 'The customers from the USA spent the most, with a total of $523.06.' agent_executor.run("Show the total number of tracks in each playlist. The Playlist name should be included in the result.") > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: Invoice, MediaType, Artist, InvoiceLine, Genre, Playlist, Employee, Album, PlaylistTrack, Track, Customer Thought: I should look at the schema of the Playlist and PlaylistTrack tables to see what columns I can use. Action: schema_sql_db Action Input: "Playlist, PlaylistTrack" Observation: CREATE TABLE "Playlist" ( "PlaylistId" INTEGER NOT NULL, "Name" NVARCHAR(120), PRIMARY KEY ("PlaylistId") ) SELECT * FROM 'Playlist' LIMIT 3; PlaylistId Name 1 Music 2 Movies 3 TV Shows CREATE TABLE "PlaylistTrack" ( "PlaylistId" INTEGER NOT NULL, "TrackId" INTEGER NOT NULL,
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-6
"TrackId" INTEGER NOT NULL, PRIMARY KEY ("PlaylistId", "TrackId"), FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), FOREIGN KEY("PlaylistId") REFERENCES "Playlist" ("PlaylistId") ) SELECT * FROM 'PlaylistTrack' LIMIT 3; PlaylistId TrackId 1 3402 1 3389 1 3390 Thought: I can use a SELECT statement to get the total number of tracks in each playlist. Action: query_checker_sql_db Action Input: SELECT Playlist.Name, COUNT(PlaylistTrack.TrackId) AS TotalTracks FROM Playlist INNER JOIN PlaylistTrack ON Playlist.PlaylistId = PlaylistTrack.PlaylistId GROUP BY Playlist.Name Observation: SELECT Playlist.Name, COUNT(PlaylistTrack.TrackId) AS TotalTracks FROM Playlist INNER JOIN PlaylistTrack ON Playlist.PlaylistId = PlaylistTrack.PlaylistId GROUP BY Playlist.Name Thought: The query looks correct, I can now execute it. Action: query_sql_db Action Input: SELECT Playlist.Name, COUNT(PlaylistTrack.TrackId) AS TotalTracks FROM Playlist INNER JOIN PlaylistTrack ON Playlist.PlaylistId = PlaylistTrack.PlaylistId GROUP BY Playlist.Name LIMIT 10 Observation: [('90’s Music', 1477), ('Brazilian Music', 39), ('Classical', 75), ('Classical 101 - Deep Cuts', 25), ('Classical 101 - Next Steps', 25), ('Classical 101 - The Basics', 25), ('Grunge', 15), ('Heavy Metal Classic', 26), ('Music', 6580), ('Music Videos', 1)] Thought: I now know the final answer.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-7
Thought: I now know the final answer. Final Answer: The total number of tracks in each playlist are: '90’s Music' (1477), 'Brazilian Music' (39), 'Classical' (75), 'Classical 101 - Deep Cuts' (25), 'Classical 101 - Next Steps' (25), 'Classical 101 - The Basics' (25), 'Grunge' (15), 'Heavy Metal Classic' (26), 'Music' (6580), 'Music Videos' (1). > Finished chain. "The total number of tracks in each playlist are: '90’s Music' (1477), 'Brazilian Music' (39), 'Classical' (75), 'Classical 101 - Deep Cuts' (25), 'Classical 101 - Next Steps' (25), 'Classical 101 - The Basics' (25), 'Grunge' (15), 'Heavy Metal Classic' (26), 'Music' (6580), 'Music Videos' (1)." Recovering from an error# In this example, the agent is able to recover from an error after initially trying to access an attribute (Track.ArtistId) which doesn’t exist. agent_executor.run("Who are the top 3 best selling artists?") > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: MediaType, Track, Invoice, Album, Playlist, Customer, Employee, InvoiceLine, PlaylistTrack, Genre, Artist Thought: I should look at the schema of the Artist, InvoiceLine, and Track tables to see what columns I can use. Action: schema_sql_db Action Input: "Artist, InvoiceLine, Track" Observation: CREATE TABLE "Artist" ( "ArtistId" INTEGER NOT NULL,
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-8
CREATE TABLE "Artist" ( "ArtistId" INTEGER NOT NULL, "Name" NVARCHAR(120), PRIMARY KEY ("ArtistId") ) SELECT * FROM 'Artist' LIMIT 3; ArtistId Name 1 AC/DC 2 Accept 3 Aerosmith CREATE TABLE "Track" ( "TrackId" INTEGER NOT NULL, "Name" NVARCHAR(200) NOT NULL, "AlbumId" INTEGER, "MediaTypeId" INTEGER NOT NULL, "GenreId" INTEGER, "Composer" NVARCHAR(220), "Milliseconds" INTEGER NOT NULL, "Bytes" INTEGER, "UnitPrice" NUMERIC(10, 2) NOT NULL, PRIMARY KEY ("TrackId"), FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"), FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"), FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId") ) SELECT * FROM 'Track' LIMIT 3; TrackId Name AlbumId MediaTypeId GenreId Composer Milliseconds Bytes UnitPrice 1 For Those About To Rock (We Salute You) 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99 2 Balls to the Wall 2 2 1 None 342562 5510424 0.99 3 Fast As a Shark 3 2 1 F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman 230619 3990994 0.99 CREATE TABLE "InvoiceLine" ( "InvoiceLineId" INTEGER NOT NULL, "InvoiceId" INTEGER NOT NULL,
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-9
"InvoiceId" INTEGER NOT NULL, "TrackId" INTEGER NOT NULL, "UnitPrice" NUMERIC(10, 2) NOT NULL, "Quantity" INTEGER NOT NULL, PRIMARY KEY ("InvoiceLineId"), FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), FOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId") ) SELECT * FROM 'InvoiceLine' LIMIT 3; InvoiceLineId InvoiceId TrackId UnitPrice Quantity 1 1 2 0.99 1 2 1 4 0.99 1 3 2 6 0.99 1 Thought: I should query the database to get the top 3 best selling artists. Action: query_sql_db Action Input: SELECT Artist.Name, SUM(InvoiceLine.Quantity) AS TotalQuantity FROM Artist INNER JOIN Track ON Artist.ArtistId = Track.ArtistId INNER JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY TotalQuantity DESC LIMIT 3 Observation: Error: (sqlite3.OperationalError) no such column: Track.ArtistId [SQL: SELECT Artist.Name, SUM(InvoiceLine.Quantity) AS TotalQuantity FROM Artist INNER JOIN Track ON Artist.ArtistId = Track.ArtistId INNER JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY TotalQuantity DESC LIMIT 3] (Background on this error at: https://sqlalche.me/e/14/e3q8) Thought: I should double check my query before executing it. Action: query_checker_sql_db
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
05680b97f4ad-10
Thought: I should double check my query before executing it. Action: query_checker_sql_db Action Input: SELECT Artist.Name, SUM(InvoiceLine.Quantity) AS TotalQuantity FROM Artist INNER JOIN Track ON Artist.ArtistId = Track.ArtistId INNER JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY TotalQuantity DESC LIMIT 3 Observation: SELECT Artist.Name, SUM(InvoiceLine.Quantity) AS TotalQuantity FROM Artist INNER JOIN Track ON Artist.ArtistId = Track.ArtistId INNER JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY TotalQuantity DESC LIMIT 3; Thought: I now know the final answer. Action: query_sql_db Action Input: SELECT Artist.Name, SUM(InvoiceLine.Quantity) AS TotalQuantity FROM Artist INNER JOIN Album ON Artist.ArtistId = Album.ArtistId INNER JOIN Track ON Album.AlbumId = Track.AlbumId INNER JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY TotalQuantity DESC LIMIT 3 Observation: [('Iron Maiden', 140), ('U2', 107), ('Metallica', 91)] Thought: I now know the final answer. Final Answer: The top 3 best selling artists are Iron Maiden, U2, and Metallica. > Finished chain. 'The top 3 best selling artists are Iron Maiden, U2, and Metallica.' previous Python Agent next Vectorstore Agent Contents Initialization Example: describing a table Example: describing a table, recovering from an error Example: running queries Recovering from an error By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html
1de7b864f93f-0
.ipynb .pdf Natural Language APIs Contents First, import dependencies and load the LLM Next, load the Natural Language API Toolkits Create the Agent Using Auth + Adding more Endpoints Thank you! Natural Language APIs# Natural Language API Toolkits (NLAToolkits) permit LangChain Agents to efficiently plan and combine calls across endpoints. This notebook demonstrates a sample composition of the Speak, Klarna, and Spoonacluar APIs. For a detailed walkthrough of the OpenAPI chains wrapped within the NLAToolkit, see the OpenAPI Operation Chain notebook. First, import dependencies and load the LLM# from typing import List, Optional from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.requests import Requests from langchain.tools import APIOperation, OpenAPISpec from langchain.agents import AgentType, Tool, initialize_agent from langchain.agents.agent_toolkits import NLAToolkit # Select the LLM to use. Here, we use text-davinci-003 llm = OpenAI(temperature=0, max_tokens=700) # You can swap between different core LLM's here. Next, load the Natural Language API Toolkits# speak_toolkit = NLAToolkit.from_llm_and_url(llm, "https://api.speak.com/openapi.yaml") klarna_toolkit = NLAToolkit.from_llm_and_url(llm, "https://www.klarna.com/us/shopping/public/openai/v0/api-docs/") Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-1
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support. Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support. Create the Agent# # Slightly tweak the instructions from the default agent openapi_format_instructions = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: what to instruct the AI Action representative. Observation: The Agent's response ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer. User can't see any of my observations, API responses, links, or tools. Final Answer: the final answer to the original input question with the right amount of detail When responding with your Final Answer, remember that the person you are responding to CANNOT see any of your Thought/Action/Action Input/Observations, so if there is any relevant information there you need to include it explicitly in your response.""" natural_language_tools = speak_toolkit.get_tools() + klarna_toolkit.get_tools() mrkl = initialize_agent(natural_language_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, agent_kwargs={"format_instructions":openapi_format_instructions}) mrkl.run("I have an end of year party for my Italian class and have to buy some Italian clothes for it") > Entering new AgentExecutor chain... I need to find out what kind of Italian clothes are available Action: Open_AI_Klarna_product_Api.productsUsingGET
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-2
Action: Open_AI_Klarna_product_Api.productsUsingGET Action Input: Italian clothes Observation: The API response contains two products from the Alé brand in Italian Blue. The first is the Alé Colour Block Short Sleeve Jersey Men - Italian Blue, which costs $86.49, and the second is the Alé Dolid Flash Jersey Men - Italian Blue, which costs $40.00. Thought: I now know what kind of Italian clothes are available and how much they cost. Final Answer: You can buy two products from the Alé brand in Italian Blue for your end of year party. The Alé Colour Block Short Sleeve Jersey Men - Italian Blue costs $86.49, and the Alé Dolid Flash Jersey Men - Italian Blue costs $40.00. > Finished chain. 'You can buy two products from the Alé brand in Italian Blue for your end of year party. The Alé Colour Block Short Sleeve Jersey Men - Italian Blue costs $86.49, and the Alé Dolid Flash Jersey Men - Italian Blue costs $40.00.' Using Auth + Adding more Endpoints# Some endpoints may require user authentication via things like access tokens. Here we show how to pass in the authentication information via the Requests wrapper object. Since each NLATool exposes a concisee natural language interface to its wrapped API, the top level conversational agent has an easier job incorporating each endpoint to satisfy a user’s request. Adding the Spoonacular endpoints. Go to the Spoonacular API Console and make a free account. Click on Profile and copy your API key below. spoonacular_api_key = "" # Copy from the API Console requests = Requests(headers={"x-api-key": spoonacular_api_key}) spoonacular_toolkit = NLAToolkit.from_llm_and_url( llm,
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-3
llm, "https://spoonacular.com/application/frontend/downloads/spoonacular-openapi-3.json", requests=requests, max_text_length=1800, # If you want to truncate the response text ) Attempting to load an OpenAPI 3.0.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support. Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-4
Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter Unsupported APIPropertyLocation "header" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter natural_language_api_tools = (speak_toolkit.get_tools() + klarna_toolkit.get_tools() + spoonacular_toolkit.get_tools()[:30] ) print(f"{len(natural_language_api_tools)} tools loaded.") 34 tools loaded. # Create an agent with the new tools mrkl = initialize_agent(natural_language_api_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, agent_kwargs={"format_instructions":openapi_format_instructions}) # Make the query more complex! user_input = ( "I'm learning Italian, and my language class is having an end of year party... " " Could you help me find an Italian outfit to wear and" " an appropriate recipe to prepare so I can present for the class in Italian?" ) mrkl.run(user_input) > Entering new AgentExecutor chain... I need to find a recipe and an outfit that is Italian-themed. Action: spoonacular_API.searchRecipes Action Input: Italian
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-5
Action: spoonacular_API.searchRecipes Action Input: Italian Observation: The API response contains 10 Italian recipes, including Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, and Pappa Al Pomodoro. Thought: I need to find an Italian-themed outfit. Action: Open_AI_Klarna_product_Api.productsUsingGET Action Input: Italian Observation: I found 10 products related to 'Italian' in the API response. These products include Italian Gold Sparkle Perfectina Necklace - Gold, Italian Design Miami Cuban Link Chain Necklace - Gold, Italian Gold Miami Cuban Link Chain Necklace - Gold, Italian Gold Herringbone Necklace - Gold, Italian Gold Claddagh Ring - Gold, Italian Gold Herringbone Chain Necklace - Gold, Garmin QuickFit 22mm Italian Vacchetta Leather Band, Macy's Italian Horn Charm - Gold, Dolce & Gabbana Light Blue Italian Love Pour Homme EdT 1.7 fl oz. Thought: I now know the final answer. Final Answer: To present for your Italian language class, you could wear an Italian Gold Sparkle Perfectina Necklace - Gold, an Italian Design Miami Cuban Link Chain Necklace - Gold, or an Italian Gold Miami Cuban Link Chain Necklace - Gold. For a recipe, you could make Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, or Pappa Al Pomodoro. > Finished chain.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
1de7b864f93f-6
> Finished chain. 'To present for your Italian language class, you could wear an Italian Gold Sparkle Perfectina Necklace - Gold, an Italian Design Miami Cuban Link Chain Necklace - Gold, or an Italian Gold Miami Cuban Link Chain Necklace - Gold. For a recipe, you could make Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, or Pappa Al Pomodoro.' Thank you!# natural_language_api_tools[1].run("Tell the LangChain audience to 'enjoy the meal' in Italian, please!") "In Italian, you can say 'Buon appetito' to someone to wish them to enjoy their meal. This phrase is commonly used in Italy when someone is about to eat, often at the beginning of a meal. It's similar to saying 'Bon appétit' in French or 'Guten Appetit' in German." previous OpenAPI agents next Pandas Dataframe Agent Contents First, import dependencies and load the LLM Next, load the Natural Language API Toolkits Create the Agent Using Auth + Adding more Endpoints Thank you! By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi_nla.html
096f92112a3a-0
.ipynb .pdf OpenAPI agents Contents 1st example: hierarchical planning agent To start, let’s collect some OpenAPI specs. How big is this spec? Let’s see some examples! Try another API. 2nd example: “json explorer” agent OpenAPI agents# We can construct agents to consume arbitrary APIs, here APIs conformant to the OpenAPI/Swagger specification. 1st example: hierarchical planning agent# In this example, we’ll consider an approach called hierarchical planning, common in robotics and appearing in recent works for LLMs X robotics. We’ll see it’s a viable approach to start working with a massive API spec AND to assist with user queries that require multiple steps against the API. The idea is simple: to get coherent agent behavior over long sequences behavior & to save on tokens, we’ll separate concerns: a “planner” will be responsible for what endpoints to call and a “controller” will be responsible for how to call them. In the initial implementation, the planner is an LLM chain that has the name and a short description for each endpoint in context. The controller is an LLM agent that is instantiated with documentation for only the endpoints for a particular plan. There’s a lot left to get this working very robustly :) To start, let’s collect some OpenAPI specs.# import os, yaml !wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml !mv openapi.yaml openai_openapi.yaml !wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs !mv api-docs klarna_openapi.yaml !wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml !mv openapi.yaml spotify_openapi.yaml
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-1
!mv openapi.yaml spotify_openapi.yaml --2023-03-31 15:45:56-- https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 122995 (120K) [text/plain] Saving to: ‘openapi.yaml’ openapi.yaml 100%[===================>] 120.11K --.-KB/s in 0.01s 2023-03-31 15:45:56 (10.4 MB/s) - ‘openapi.yaml’ saved [122995/122995] --2023-03-31 15:45:57-- https://www.klarna.com/us/shopping/public/openai/v0/api-docs Resolving www.klarna.com (www.klarna.com)... 52.84.150.34, 52.84.150.46, 52.84.150.61, ... Connecting to www.klarna.com (www.klarna.com)|52.84.150.34|:443... connected. HTTP request sent, awaiting response... 200 OK Length: unspecified [application/json] Saving to: ‘api-docs’ api-docs [ <=> ] 1.87K --.-KB/s in 0s 2023-03-31 15:45:57 (261 MB/s) - ‘api-docs’ saved [1916]
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-2
--2023-03-31 15:45:57-- https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 286747 (280K) [text/plain] Saving to: ‘openapi.yaml’ openapi.yaml 100%[===================>] 280.03K --.-KB/s in 0.02s 2023-03-31 15:45:58 (13.3 MB/s) - ‘openapi.yaml’ saved [286747/286747] from langchain.agents.agent_toolkits.openapi.spec import reduce_openapi_spec with open("openai_openapi.yaml") as f: raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader) openai_api_spec = reduce_openapi_spec(raw_openai_api_spec) with open("klarna_openapi.yaml") as f: raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader) klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec) with open("spotify_openapi.yaml") as f: raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader) spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec) We’ll work with the Spotify API as one of the examples of a somewhat complex API. There’s a bit of auth-related setup to do if you want to replicate this.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-3
You’ll have to set up an application in the Spotify developer console, documented here, to get credentials: CLIENT_ID, CLIENT_SECRET, and REDIRECT_URI. To get an access tokens (and keep them fresh), you can implement the oauth flows, or you can use spotipy. If you’ve set your Spotify creedentials as environment variables SPOTIPY_CLIENT_ID, SPOTIPY_CLIENT_SECRET, and SPOTIPY_REDIRECT_URI, you can use the helper functions below: import spotipy.util as util from langchain.requests import RequestsWrapper def construct_spotify_auth_headers(raw_spec: dict): scopes = list(raw_spec['components']['securitySchemes']['oauth_2_0']['flows']['authorizationCode']['scopes'].keys()) access_token = util.prompt_for_user_token(scope=','.join(scopes)) return { 'Authorization': f'Bearer {access_token}' } # Get API credentials. headers = construct_spotify_auth_headers(raw_spotify_api_spec) requests_wrapper = RequestsWrapper(headers=headers) How big is this spec?# endpoints = [ (route, operation) for route, operations in raw_spotify_api_spec["paths"].items() for operation in operations if operation in ["get", "post"] ] len(endpoints) 63 import tiktoken enc = tiktoken.encoding_for_model('text-davinci-003') def count_tokens(s): return len(enc.encode(s)) count_tokens(yaml.dump(raw_spotify_api_spec)) 80326 Let’s see some examples!# Starting with GPT-4. (Some robustness iterations under way for GPT-3 family.) from langchain.llms.openai import OpenAI from langchain.agents.agent_toolkits.openapi import planner
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-4
from langchain.agents.agent_toolkits.openapi import planner llm = OpenAI(model_name="gpt-4", temperature=0.0) /Users/jeremywelborn/src/langchain/langchain/llms/openai.py:169: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI` warnings.warn( /Users/jeremywelborn/src/langchain/langchain/llms/openai.py:608: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI` warnings.warn( spotify_agent = planner.create_openapi_agent(spotify_api_spec, requests_wrapper, llm) user_query = "make me a playlist with the first song from kind of blue. call it machine blues." spotify_agent.run(user_query) > Entering new AgentExecutor chain... Action: api_planner Action Input: I need to find the right API calls to create a playlist with the first song from Kind of Blue and name it Machine Blues Observation: 1. GET /search to search for the album "Kind of Blue" 2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album 3. GET /me to get the current user's information 4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user 5. POST /playlists/{playlist_id}/tracks to add the first song from "Kind of Blue" to the "Machine Blues" playlist Thought:I have the plan, now I need to execute the API calls. Action: api_controller
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-5
Thought:I have the plan, now I need to execute the API calls. Action: api_controller Action Input: 1. GET /search to search for the album "Kind of Blue" 2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album 3. GET /me to get the current user's information 4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user 5. POST /playlists/{playlist_id}/tracks to add the first song from "Kind of Blue" to the "Machine Blues" playlist > Entering new AgentExecutor chain... Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/search?q=Kind%20of%20Blue&type=album", "output_instructions": "Extract the id of the first album in the search results"} Observation: 1weenld61qoidwYuZ1GESA Thought:Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/albums/1weenld61qoidwYuZ1GESA/tracks", "output_instructions": "Extract the id of the first track in the album"} Observation: 7q3kkfAVpmcZ8g6JUThi3o Thought:Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/me", "output_instructions": "Extract the id of the current user"} Observation: 22rhrz4m4kvpxlsb5hezokzwi Thought:Action: requests_post
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-6
Thought:Action: requests_post Action Input: {"url": "https://api.spotify.com/v1/users/22rhrz4m4kvpxlsb5hezokzwi/playlists", "data": {"name": "Machine Blues"}, "output_instructions": "Extract the id of the created playlist"} Observation: 7lzoEi44WOISnFYlrAIqyX Thought:Action: requests_post Action Input: {"url": "https://api.spotify.com/v1/playlists/7lzoEi44WOISnFYlrAIqyX/tracks", "data": {"uris": ["spotify:track:7q3kkfAVpmcZ8g6JUThi3o"]}, "output_instructions": "Confirm that the track was added to the playlist"} Observation: The track was added to the playlist, confirmed by the snapshot_id: MiwxODMxNTMxZTFlNzg3ZWFlZmMxYTlmYWQyMDFiYzUwNDEwMTAwZmE1. Thought:I am finished executing the plan. Final Answer: The first song from the "Kind of Blue" album has been added to the "Machine Blues" playlist. > Finished chain. Observation: The first song from the "Kind of Blue" album has been added to the "Machine Blues" playlist. Thought:I am finished executing the plan and have created the playlist with the first song from Kind of Blue. Final Answer: I have created a playlist called "Machine Blues" with the first song from the "Kind of Blue" album. > Finished chain. 'I have created a playlist called "Machine Blues" with the first song from the "Kind of Blue" album.' user_query = "give me a song I'd like, make it blues-ey"
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-7
user_query = "give me a song I'd like, make it blues-ey" spotify_agent.run(user_query) > Entering new AgentExecutor chain... Action: api_planner Action Input: I need to find the right API calls to get a blues song recommendation for the user Observation: 1. GET /me to get the current user's information 2. GET /recommendations/available-genre-seeds to retrieve a list of available genres 3. GET /recommendations with the seed_genre parameter set to "blues" to get a blues song recommendation for the user Thought:I have the plan, now I need to execute the API calls. Action: api_controller Action Input: 1. GET /me to get the current user's information 2. GET /recommendations/available-genre-seeds to retrieve a list of available genres 3. GET /recommendations with the seed_genre parameter set to "blues" to get a blues song recommendation for the user > Entering new AgentExecutor chain... Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/me", "output_instructions": "Extract the user's id and username"} Observation: ID: 22rhrz4m4kvpxlsb5hezokzwi, Username: Jeremy Welborn Thought:Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/recommendations/available-genre-seeds", "output_instructions": "Extract the list of available genres"}
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-8
Observation: acoustic, afrobeat, alt-rock, alternative, ambient, anime, black-metal, bluegrass, blues, bossanova, brazil, breakbeat, british, cantopop, chicago-house, children, chill, classical, club, comedy, country, dance, dancehall, death-metal, deep-house, detroit-techno, disco, disney, drum-and-bass, dub, dubstep, edm, electro, electronic, emo, folk, forro, french, funk, garage, german, gospel, goth, grindcore, groove, grunge, guitar, happy, hard-rock, hardcore, hardstyle, heavy-metal, hip-hop, holidays, honky-tonk, house, idm, indian, indie, indie-pop, industrial, iranian, j-dance, j-idol, j-pop, j-rock, jazz, k-pop, kids, latin, latino, malay, mandopop, metal, metal-misc, metalcore, minimal-techno, movies, mpb, new-age, new-release, opera, pagode, party, philippines- Thought: Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised RateLimitError: That model is currently overloaded with other requests. You can retry your request, or contact us through our help center at help.openai.com if the error persists. (Please include the request ID 2167437a0072228238f3c0c5b3882764 in your message.). Action: requests_get Action Input: {"url": "https://api.spotify.com/v1/recommendations?seed_genres=blues", "output_instructions": "Extract the list of recommended tracks with their ids and names"} Observation: [ {
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-9
Observation: [ { id: '03lXHmokj9qsXspNsPoirR', name: 'Get Away Jordan' } ] Thought:I am finished executing the plan. Final Answer: The recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR. > Finished chain. Observation: The recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR. Thought:I am finished executing the plan and have the information the user asked for. Final Answer: The recommended blues song for you is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR. > Finished chain. 'The recommended blues song for you is "Get Away Jordan" with the track ID: 03lXHmokj9qsXspNsPoirR.' Try another API.# headers = { "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}" } openai_requests_wrapper=RequestsWrapper(headers=headers) # Meta! llm = OpenAI(model_name="gpt-4", temperature=0.25) openai_agent = planner.create_openapi_agent(openai_api_spec, openai_requests_wrapper, llm) user_query = "generate a short piece of advice" openai_agent.run(user_query) > Entering new AgentExecutor chain... Action: api_planner
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-10
> Entering new AgentExecutor chain... Action: api_planner Action Input: I need to find the right API calls to generate a short piece of advice Observation: 1. GET /engines to retrieve the list of available engines 2. POST /completions with the selected engine and a prompt for generating a short piece of advice Thought:I have the plan, now I need to execute the API calls. Action: api_controller Action Input: 1. GET /engines to retrieve the list of available engines 2. POST /completions with the selected engine and a prompt for generating a short piece of advice > Entering new AgentExecutor chain... Action: requests_get Action Input: {"url": "https://api.openai.com/v1/engines", "output_instructions": "Extract the ids of the engines"} Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-001, ada, babbage-code-search-text, babbage-similarity, whisper-1, code-search-babbage-text-001, text-curie-001, code-search-babbage-code-001, text-ada-001, text-embedding-ada-002, text-similarity-ada-001, curie-instruct-beta, ada-code-search-code, ada-similarity, text-davinci-003, code-search-ada-text-001, text-search-ada-query-001, davinci-search-document, ada-code-search-text, text-search-ada-doc-001, davinci-instruct-beta, text-similarity-curie-001, code-search-ada-code-001 Thought:I will use the "davinci" engine to generate a short piece of advice. Action: requests_post
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-11
Action: requests_post Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"engine": "davinci", "prompt": "Give me a short piece of advice on how to be more productive."}, "output_instructions": "Extract the text from the first choice"} Observation: "you must provide a model parameter" Thought:!! Could not _extract_tool_and_input from "I cannot finish executing the plan without knowing how to provide the model parameter correctly." in _get_next_action I cannot finish executing the plan without knowing how to provide the model parameter correctly. > Finished chain. Observation: I need more information on how to provide the model parameter correctly in the POST request to generate a short piece of advice. Thought:I need to adjust my plan to include the model parameter in the POST request. Action: api_planner Action Input: I need to find the right API calls to generate a short piece of advice, including the model parameter in the POST request Observation: 1. GET /models to retrieve the list of available models 2. Choose a suitable model from the list 3. POST /completions with the chosen model as a parameter to generate a short piece of advice Thought:I have an updated plan, now I need to execute the API calls. Action: api_controller Action Input: 1. GET /models to retrieve the list of available models 2. Choose a suitable model from the list 3. POST /completions with the chosen model as a parameter to generate a short piece of advice > Entering new AgentExecutor chain... Action: requests_get Action Input: {"url": "https://api.openai.com/v1/models", "output_instructions": "Extract the ids of the available models"}
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-12
Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada Thought:Action: requests_post Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"model": "davinci", "prompt": "Give me a short piece of advice on how to improve communication skills."}, "output_instructions": "Extract the text from the first choice"} Observation: "I'd like to broaden my horizon.\n\nI was trying to" Thought:I cannot finish executing the plan without knowing some other information. Final Answer: The generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response. > Finished chain. Observation: The generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response. Thought:I need to adjust my plan to include a more specific prompt for generating a short piece of advice on improving communication skills. Action: api_planner Action Input: I need to find the right API calls to generate a short piece of advice on improving communication skills, including the model parameter in the POST request Observation: 1. GET /models to retrieve the list of available models 2. Choose a suitable model for generating text (e.g., text-davinci-002) 3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice Thought:I have an updated plan, now I need to execute the API calls. Action: api_controller
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-13
Action: api_controller Action Input: 1. GET /models to retrieve the list of available models 2. Choose a suitable model for generating text (e.g., text-davinci-002) 3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice > Entering new AgentExecutor chain... Action: requests_get Action Input: {"url": "https://api.openai.com/v1/models", "output_instructions": "Extract the names of the models"} Observation: babbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada Thought:Action: requests_post Action Input: {"url": "https://api.openai.com/v1/completions", "data": {"model": "text-davinci-002", "prompt": "Give a short piece of advice on how to improve communication skills"}, "output_instructions": "Extract the text from the first choice"} Observation: "Some basic advice for improving communication skills would be to make sure to listen" Thought:I am finished executing the plan. Final Answer: Some basic advice for improving communication skills would be to make sure to listen. > Finished chain. Observation: Some basic advice for improving communication skills would be to make sure to listen. Thought:I am finished executing the plan and have the information the user asked for. Final Answer: A short piece of advice for improving communication skills is to make sure to listen. > Finished chain. 'A short piece of advice for improving communication skills is to make sure to listen.' Takes awhile to get there! 2nd example: “json explorer” agent#
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-14
Takes awhile to get there! 2nd example: “json explorer” agent# Here’s an agent that’s not particularly practical, but neat! The agent has access to 2 toolkits. One comprises tools to interact with json: one tool to list the keys of a json object and another tool to get the value for a given key. The other toolkit comprises requests wrappers to send GET and POST requests. This agent consumes a lot calls to the language model, but does a surprisingly decent job. from langchain.agents import create_openapi_agent from langchain.agents.agent_toolkits import OpenAPIToolkit from langchain.llms.openai import OpenAI from langchain.requests import TextRequestsWrapper from langchain.tools.json.tool import JsonSpec with open("openai_openapi.yaml") as f: data = yaml.load(f, Loader=yaml.FullLoader) json_spec=JsonSpec(dict_=data, max_value_length=4000) openapi_toolkit = OpenAPIToolkit.from_llm(OpenAI(temperature=0), json_spec, openai_requests_wrapper, verbose=True) openapi_agent_executor = create_openapi_agent( llm=OpenAI(temperature=0), toolkit=openapi_toolkit, verbose=True ) openapi_agent_executor.run("Make a post request to openai /completions. The prompt should be 'tell me a joke.'") > Entering new AgentExecutor chain... Action: json_explorer Action Input: What is the base url for the API? > Entering new AgentExecutor chain... Action: json_spec_list_keys Action Input: data Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta'] Thought: I should look at the servers key to see what the base url is
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-15
Thought: I should look at the servers key to see what the base url is Action: json_spec_list_keys Action Input: data["servers"][0] Observation: ValueError('Value at path `data["servers"][0]` is not a dict, get the value directly.') Thought: I should get the value of the servers key Action: json_spec_get_value Action Input: data["servers"][0] Observation: {'url': 'https://api.openai.com/v1'} Thought: I now know the base url for the API Final Answer: The base url for the API is https://api.openai.com/v1 > Finished chain. Observation: The base url for the API is https://api.openai.com/v1 Thought: I should find the path for the /completions endpoint. Action: json_explorer Action Input: What is the path for the /completions endpoint? > Entering new AgentExecutor chain... Action: json_spec_list_keys Action Input: data Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta'] Thought: I should look at the paths key to see what endpoints exist Action: json_spec_list_keys Action Input: data["paths"]
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-16
Action: json_spec_list_keys Action Input: data["paths"] Observation: ['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations'] Thought: I now know the path for the /completions endpoint Final Answer: The path for the /completions endpoint is data["paths"][2] > Finished chain. Observation: The path for the /completions endpoint is data["paths"][2] Thought: I should find the required parameters for the POST request. Action: json_explorer Action Input: What are the required parameters for a POST request to the /completions endpoint? > Entering new AgentExecutor chain... Action: json_spec_list_keys Action Input: data Observation: ['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta'] Thought: I should look at the paths key to see what endpoints exist Action: json_spec_list_keys Action Input: data["paths"]
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-17
Action: json_spec_list_keys Action Input: data["paths"] Observation: ['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations'] Thought: I should look at the /completions endpoint to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"] Observation: ['post'] Thought: I should look at the post key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"] Observation: ['operationId', 'tags', 'summary', 'requestBody', 'responses', 'x-oaiMeta'] Thought: I should look at the requestBody key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"] Observation: ['required', 'content'] Thought: I should look at the content key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"] Observation: ['application/json'] Thought: I should look at the application/json key to see what parameters are required Action: json_spec_list_keys
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-18
Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"] Observation: ['schema'] Thought: I should look at the schema key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"] Observation: ['$ref'] Thought: I should look at the $ref key to see what parameters are required Action: json_spec_list_keys Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"] Observation: ValueError('Value at path `data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"]` is not a dict, get the value directly.') Thought: I should look at the $ref key to get the value directly Action: json_spec_get_value Action Input: data["paths"]["/completions"]["post"]["requestBody"]["content"]["application/json"]["schema"]["$ref"] Observation: #/components/schemas/CreateCompletionRequest Thought: I should look at the CreateCompletionRequest schema to see what parameters are required Action: json_spec_list_keys Action Input: data["components"]["schemas"]["CreateCompletionRequest"] Observation: ['type', 'properties', 'required'] Thought: I should look at the required key to see what parameters are required Action: json_spec_get_value Action Input: data["components"]["schemas"]["CreateCompletionRequest"]["required"] Observation: ['model'] Thought: I now know the final answer Final Answer: The required parameters for a POST request to the /completions endpoint are 'model'. > Finished chain.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-19
> Finished chain. Observation: The required parameters for a POST request to the /completions endpoint are 'model'. Thought: I now know the parameters needed to make the request. Action: requests_post Action Input: { "url": "https://api.openai.com/v1/completions", "data": { "model": "davinci", "prompt": "tell me a joke" } } Observation: {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\n\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}} Thought: I now know the final answer. Final Answer: The response of the POST request is {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\n\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}} > Finished chain.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
096f92112a3a-20
> Finished chain. 'The response of the POST request is {"id":"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv","object":"text_completion","created":1680307139,"model":"davinci","choices":[{"text":" with mummy not there”\\n\\nYou dig deep and come up with,","index":0,"logprobs":null,"finish_reason":"length"}],"usage":{"prompt_tokens":4,"completion_tokens":16,"total_tokens":20}}' previous JSON Agent next Natural Language APIs Contents 1st example: hierarchical planning agent To start, let’s collect some OpenAPI specs. How big is this spec? Let’s see some examples! Try another API. 2nd example: “json explorer” agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/openapi.html
7819f2f8239f-0
.ipynb .pdf Jira Jira# This notebook goes over how to use the Jira tool. The Jira tool allows agents to interact with a given Jira instance, performing actions such as searching for issues and creating issues, the tool wraps the atlassian-python-api library, for more see: https://atlassian-python-api.readthedocs.io/jira.html To use this tool, you must first set as environment variables: JIRA_API_TOKEN JIRA_USERNAME JIRA_INSTANCE_URL %pip install atlassian-python-api import os from langchain.agents import AgentType from langchain.agents import initialize_agent from langchain.agents.agent_toolkits.jira.toolkit import JiraToolkit from langchain.llms import OpenAI from langchain.utilities.jira import JiraAPIWrapper os.environ["JIRA_API_TOKEN"] = "abc" os.environ["JIRA_USERNAME"] = "123" os.environ["JIRA_INSTANCE_URL"] = "https://jira.atlassian.com" os.environ["OPENAI_API_KEY"] = "xyz" llm = OpenAI(temperature=0) jira = JiraAPIWrapper() toolkit = JiraToolkit.from_jira_api_wrapper(jira) agent = initialize_agent( toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("make a new issue in project PW to remind me to make more fried rice") > Entering new AgentExecutor chain... I need to create an issue in project PW Action: Create Issue Action Input: {"summary": "Make more fried rice", "description": "Reminder to make more fried rice", "issuetype": {"name": "Task"}, "priority": {"name": "Low"}, "project": {"key": "PW"}}
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/jira.html
7819f2f8239f-1
Observation: None Thought: I now know the final answer Final Answer: A new issue has been created in project PW with the summary "Make more fried rice" and description "Reminder to make more fried rice". > Finished chain. 'A new issue has been created in project PW with the summary "Make more fried rice" and description "Reminder to make more fried rice".' previous CSV Agent next JSON Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/jira.html
5c10fe7bc5da-0
.ipynb .pdf Pandas Dataframe Agent Pandas Dataframe Agent# This notebook shows how to use agents to interact with a pandas dataframe. It is mostly optimized for question answering. NOTE: this agent calls the Python agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously. from langchain.agents import create_pandas_dataframe_agent from langchain.llms import OpenAI import pandas as pd df = pd.read_csv('titanic.csv') agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True) agent.run("how many rows are there?") > Entering new AgentExecutor chain... Thought: I need to count the number of rows Action: python_repl_ast Action Input: len(df) Observation: 891 Thought: I now know the final answer Final Answer: There are 891 rows in the dataframe. > Finished chain. 'There are 891 rows in the dataframe.' agent.run("how many people have more than 3 sibligngs") > Entering new AgentExecutor chain... Thought: I need to count the number of people with more than 3 siblings Action: python_repl_ast Action Input: df[df['SibSp'] > 3].shape[0] Observation: 30 Thought: I now know the final answer Final Answer: 30 people have more than 3 siblings. > Finished chain. '30 people have more than 3 siblings.' agent.run("whats the square root of the average age?") > Entering new AgentExecutor chain... Thought: I need to calculate the average age first Action: python_repl_ast Action Input: df['Age'].mean()
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/pandas.html
5c10fe7bc5da-1
Action: python_repl_ast Action Input: df['Age'].mean() Observation: 29.69911764705882 Thought: I can now calculate the square root Action: python_repl_ast Action Input: math.sqrt(df['Age'].mean()) Observation: name 'math' is not defined Thought: I need to import the math library Action: python_repl_ast Action Input: import math Observation: None Thought: I can now calculate the square root Action: python_repl_ast Action Input: math.sqrt(df['Age'].mean()) Observation: 5.449689683556195 Thought: I now know the final answer Final Answer: 5.449689683556195 > Finished chain. '5.449689683556195' previous Natural Language APIs next Python Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/toolkits/examples/pandas.html
1db01f7cc7be-0
.ipynb .pdf Custom LLM Agent Contents Set up environment Set up tool Prompt Template Output Parser Set up LLM Define the stop sequence Set up the Agent Use the Agent Adding Memory Custom LLM Agent# This notebook goes through how to create your own custom LLM agent. An LLM agent consists of three parts: PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do LLM: This is the language model that powers the agent stop sequence: Instructs the LLM to stop generating as soon as this string is found OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object The LLMAgent is used in an AgentExecutor. This AgentExecutor can largely be thought of as a loop that: Passes user input and any previous steps to the Agent (in this case, the LLMAgent) If the Agent returns an AgentFinish, then return that directly to the user If the Agent returns an AgentAction, then use that to call a tool and get an Observation Repeat, passing the AgentAction and Observation back to the Agent until an AgentFinish is emitted. AgentAction is a response that consists of action and action_input. action refers to which tool to use, and action_input refers to the input to that tool. log can also be provided as more context (that can be used for logging, tracing, etc). AgentFinish is a response that contains the final message to be sent back to the user. This should be used to end an agent run. In this notebook we walk through how to create a custom LLM agent. Set up environment# Do necessary imports, etc. from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser from langchain.prompts import StringPromptTemplate
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-1
from langchain.prompts import StringPromptTemplate from langchain import OpenAI, SerpAPIWrapper, LLMChain from typing import List, Union from langchain.schema import AgentAction, AgentFinish import re Set up tool# Set up any tools the agent may want to use. This may be necessary to put in the prompt (so that the agent knows to use these tools). # Define which tools the agent can use to answer user queries search = SerpAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ) ] Prompt Template# This instructs the agent on what to do. Generally, the template should incorporate: tools: which tools the agent has access and how and when to call them. intermediate_steps: These are tuples of previous (AgentAction, Observation) pairs. These are generally not passed directly to the model, but the prompt template formats them in a specific way. input: generic user input # Set up the base template template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools: {tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s Question: {input}
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-2
Question: {input} {agent_scratchpad}""" # Set up a prompt template class CustomPromptTemplate(StringPromptTemplate): # The template to use template: str # The list of tools available tools: List[Tool] def format(self, **kwargs) -> str: # Get the intermediate steps (AgentAction, Observation tuples) # Format them in a particular way intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\nObservation: {observation}\nThought: " # Set the agent_scratchpad variable to that value kwargs["agent_scratchpad"] = thoughts # Create a tools variable from the list of tools provided kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) # Create a list of tool names for the tools provided kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) return self.template.format(**kwargs) prompt = CustomPromptTemplate( template=template, tools=tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps"] ) Output Parser# The output parser is responsible for parsing the LLM output into AgentAction and AgentFinish. This usually depends heavily on the prompt used. This is where you can change the parsing to do retries, handle whitespace, etc class CustomOutputParser(AgentOutputParser):
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-3
class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: # Check if agent should finish if "Final Answer:" in llm_output: return AgentFinish( # Return values is generally always a dictionary with a single `output` key # It is not recommended to try anything else at the moment :) return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) # Parse out the action and action input regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) # Return the action and action input return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) output_parser = CustomOutputParser() Set up LLM# Choose the LLM you want to use! llm = OpenAI(temperature=0) Define the stop sequence# This is important because it tells the LLM when to stop generation. This depends heavily on the prompt and model you are using. Generally, you want this to be whatever token you use in the prompt to denote the start of an Observation (otherwise, the LLM may hallucinate an observation for you). Set up the Agent# We can now combine everything to set up our agent # LLM chain consisting of the LLM and a prompt
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-4
# LLM chain consisting of the LLM and a prompt llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) Use the Agent# Now we can use it! agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_executor.run("How many people live in canada as of 2023?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada in 2023 Action: Search Action Input: Population of Canada in 2023 Observation:The current population of Canada is 38,658,314 as of Wednesday, April 12, 2023, based on Worldometer elaboration of the latest United Nations data. I now know the final answer Final Answer: Arrr, there be 38,658,314 people livin' in Canada as of 2023! > Finished chain. "Arrr, there be 38,658,314 people livin' in Canada as of 2023!" Adding Memory# If you want to add memory to the agent, you’ll need to: Add a place in the custom prompt for the chat_history Add a memory object to the agent executor. # Set up the base template template_with_history = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools: {tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-5
Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s Previous conversation history: {history} New question: {input} {agent_scratchpad}""" prompt_with_history = CustomPromptTemplate( template=template_with_history, tools=tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps", "history"] ) llm_chain = LLMChain(llm=llm, prompt=prompt_with_history) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) from langchain.memory import ConversationBufferWindowMemory memory=ConversationBufferWindowMemory(k=2) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) agent_executor.run("How many people live in canada as of 2023?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada in 2023 Action: Search
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
1db01f7cc7be-6
Thought: I need to find out the population of Canada in 2023 Action: Search Action Input: Population of Canada in 2023 Observation:The current population of Canada is 38,658,314 as of Wednesday, April 12, 2023, based on Worldometer elaboration of the latest United Nations data. I now know the final answer Final Answer: Arrr, there be 38,658,314 people livin' in Canada as of 2023! > Finished chain. "Arrr, there be 38,658,314 people livin' in Canada as of 2023!" agent_executor.run("how about in mexico?") > Entering new AgentExecutor chain... Thought: I need to find out how many people live in Mexico. Action: Search Action Input: How many people live in Mexico as of 2023? Observation:The current population of Mexico is 132,679,922 as of Tuesday, April 11, 2023, based on Worldometer elaboration of the latest United Nations data. Mexico 2020 ... I now know the final answer. Final Answer: Arrr, there be 132,679,922 people livin' in Mexico as of 2023! > Finished chain. "Arrr, there be 132,679,922 people livin' in Mexico as of 2023!" previous Custom Agent next Custom LLM Agent (with a ChatModel) Contents Set up environment Set up tool Prompt Template Output Parser Set up LLM Define the stop sequence Set up the Agent Use the Agent Adding Memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html
fcaf29d2aba5-0
.ipynb .pdf Custom Agent with Tool Retrieval Contents Set up environment Set up tools Tool Retriever Prompt Template Output Parser Set up LLM, stop sequence, and the agent Use the Agent Custom Agent with Tool Retrieval# This notebook builds off of this notebook and assumes familiarity with how agents work. The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time. In this notebook we will create a somewhat contrieved example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query. Set up environment# Do necessary imports, etc. from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser from langchain.prompts import StringPromptTemplate from langchain import OpenAI, SerpAPIWrapper, LLMChain from typing import List, Union from langchain.schema import AgentAction, AgentFinish import re Set up tools# We will create one legitimate tool (search) and then 99 fake tools # Define which tools the agent can use to answer user queries search = SerpAPIWrapper() search_tool = Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ) def fake_func(inp: str) -> str: return "foo" fake_tools = [ Tool(
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-1
return "foo" fake_tools = [ Tool( name=f"foo-{i}", func=fake_func, description=f"a silly function that you can use to get more information about the number {i}" ) for i in range(99) ] ALL_TOOLS = [search_tool] + fake_tools Tool Retriever# We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools. from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.schema import Document docs = [Document(page_content=t.description, metadata={"index": i}) for i, t in enumerate(ALL_TOOLS)] vector_store = FAISS.from_documents(docs, OpenAIEmbeddings()) retriever = vector_store.as_retriever() def get_tools(query): docs = retriever.get_relevant_documents(query) return [ALL_TOOLS[d.metadata["index"]] for d in docs] We can now test this retriever to see if it seems to work. get_tools("whats the weather?")
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-2
get_tools("whats the weather?") [Tool(name='Search', description='useful for when you need to answer questions about current events', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<bound method SerpAPIWrapper.run of SerpAPIWrapper(search_engine=<class 'serpapi.google_search.GoogleSearch'>, params={'engine': 'google', 'google_domain': 'google.com', 'gl': 'us', 'hl': 'en'}, serpapi_api_key='c657176b327b17e79b55306ab968d164ee2369a7c7fa5b3f8a5f7889903de882', aiosession=None)>, coroutine=None), Tool(name='foo-95', description='a silly function that you can use to get more information about the number 95', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), Tool(name='foo-15', description='a silly function that you can use to get more information about the number 15', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-3
get_tools("whats the number 13?") [Tool(name='foo-13', description='a silly function that you can use to get more information about the number 13', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), Tool(name='foo-14', description='a silly function that you can use to get more information about the number 14', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), Tool(name='foo-11', description='a silly function that you can use to get more information about the number 11', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)] Prompt Template# The prompt template is pretty standard, because we’re not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done. # Set up the base template template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools: {tools} Use the following format:
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-4
{tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s Question: {input} {agent_scratchpad}""" The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use from typing import Callable # Set up a prompt template class CustomPromptTemplate(StringPromptTemplate): # The template to use template: str ############## NEW ###################### # The list of tools available tools_getter: Callable def format(self, **kwargs) -> str: # Get the intermediate steps (AgentAction, Observation tuples) # Format them in a particular way intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\nObservation: {observation}\nThought: " # Set the agent_scratchpad variable to that value kwargs["agent_scratchpad"] = thoughts ############## NEW ###################### tools = self.tools_getter(kwargs["input"]) # Create a tools variable from the list of tools provided kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-5
# Create a list of tool names for the tools provided kwargs["tool_names"] = ", ".join([tool.name for tool in tools]) return self.template.format(**kwargs) prompt = CustomPromptTemplate( template=template, tools_getter=get_tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps"] ) Output Parser# The output parser is unchanged from the previous notebook, since we are not changing anything about the output format. class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: # Check if agent should finish if "Final Answer:" in llm_output: return AgentFinish( # Return values is generally always a dictionary with a single `output` key # It is not recommended to try anything else at the moment :) return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) # Parse out the action and action input regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) # Return the action and action input
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-6
action_input = match.group(2) # Return the action and action input return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) output_parser = CustomOutputParser() Set up LLM, stop sequence, and the agent# Also the same as the previous notebook llm = OpenAI(temperature=0) # LLM chain consisting of the LLM and a prompt llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) Use the Agent# Now we can use it! agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_executor.run("What's the weather in SF?") > Entering new AgentExecutor chain... Thought: I need to find out what the weather is in SF Action: Search Action Input: Weather in SF Observation:Mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shifting to W at 10 to 15 mph. Humidity71%. UV Index6 of 10. I now know the final answer Final Answer: 'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10. > Finished chain.
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
fcaf29d2aba5-7
> Finished chain. "'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10." previous Custom MultiAction Agent next Conversation Agent (for Chat Models) Contents Set up environment Set up tools Tool Retriever Prompt Template Output Parser Set up LLM, stop sequence, and the agent Use the Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html
3e5ec4722332-0
.ipynb .pdf Custom Agent Custom Agent# This notebook goes through how to create your own custom agent. An agent consists of three parts: - Tools: The tools the agent has available to use. - The agent class itself: this decides which action to take. In this notebook we walk through how to create a custom agent. from langchain.agents import Tool, AgentExecutor, BaseSingleActionAgent from langchain import OpenAI, SerpAPIWrapper search = SerpAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events", return_direct=True ) ] from typing import List, Tuple, Any, Union from langchain.schema import AgentAction, AgentFinish class FakeAgent(BaseSingleActionAgent): """Fake Custom Agent.""" @property def input_keys(self): return ["input"] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ return AgentAction(tool="Search", tool_input=kwargs["input"], log="") async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date,
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent.html
3e5ec4722332-1
Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ return AgentAction(tool="Search", tool_input=kwargs["input"], log="") agent = FakeAgent() agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_executor.run("How many people live in canada as of 2023?") > Entering new AgentExecutor chain... Foo Fighters is an American rock band formed in Seattle in 1994. Foo Fighters was initially formed as a one-man project by former Nirvana drummer Dave Grohl. Following the success of the 1995 eponymous debut album, Grohl recruited a band consisting of Nate Mendel, William Goldsmith, and Pat Smear. > Finished chain. 'Foo Fighters is an American rock band formed in Seattle in 1994. Foo Fighters was initially formed as a one-man project by former Nirvana drummer Dave Grohl. Following the success of the 1995 eponymous debut album, Grohl recruited a band consisting of Nate Mendel, William Goldsmith, and Pat Smear.' previous Agent Types next Custom LLM Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/agents/custom_agent.html
1da50f2db355-0
.ipynb .pdf Custom LLM Agent (with a ChatModel) Contents Set up environment Set up tool Prompt Template Output Parser Set up LLM Define the stop sequence Set up the Agent Use the Agent Custom LLM Agent (with a ChatModel)# This notebook goes through how to create your own custom agent based on a chat model. An LLM chat agent consists of three parts: PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do ChatModel: This is the language model that powers the agent stop sequence: Instructs the LLM to stop generating as soon as this string is found OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object The LLMAgent is used in an AgentExecutor. This AgentExecutor can largely be thought of as a loop that: Passes user input and any previous steps to the Agent (in this case, the LLMAgent) If the Agent returns an AgentFinish, then return that directly to the user If the Agent returns an AgentAction, then use that to call a tool and get an Observation Repeat, passing the AgentAction and Observation back to the Agent until an AgentFinish is emitted. AgentAction is a response that consists of action and action_input. action refers to which tool to use, and action_input refers to the input to that tool. log can also be provided as more context (that can be used for logging, tracing, etc). AgentFinish is a response that contains the final message to be sent back to the user. This should be used to end an agent run. In this notebook we walk through how to create a custom LLM agent. Set up environment# Do necessary imports, etc.
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
1da50f2db355-1
Set up environment# Do necessary imports, etc. from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser from langchain.prompts import BaseChatPromptTemplate from langchain import SerpAPIWrapper, LLMChain from langchain.chat_models import ChatOpenAI from typing import List, Union from langchain.schema import AgentAction, AgentFinish, HumanMessage import re Set up tool# Set up any tools the agent may want to use. This may be necessary to put in the prompt (so that the agent knows to use these tools). # Define which tools the agent can use to answer user queries search = SerpAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ) ] Prompt Template# This instructs the agent on what to do. Generally, the template should incorporate: tools: which tools the agent has access and how and when to call them. intermediate_steps: These are tuples of previous (AgentAction, Observation) pairs. These are generally not passed directly to the model, but the prompt template formats them in a specific way. input: generic user input # Set up the base template template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools: {tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times)
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
1da50f2db355-2
... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s Question: {input} {agent_scratchpad}""" # Set up a prompt template class CustomPromptTemplate(BaseChatPromptTemplate): # The template to use template: str # The list of tools available tools: List[Tool] def format_messages(self, **kwargs) -> str: # Get the intermediate steps (AgentAction, Observation tuples) # Format them in a particular way intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\nObservation: {observation}\nThought: " # Set the agent_scratchpad variable to that value kwargs["agent_scratchpad"] = thoughts # Create a tools variable from the list of tools provided kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) # Create a list of tool names for the tools provided kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) formatted = self.template.format(**kwargs) return [HumanMessage(content=formatted)] prompt = CustomPromptTemplate( template=template, tools=tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps"] )
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
1da50f2db355-3
input_variables=["input", "intermediate_steps"] ) Output Parser# The output parser is responsible for parsing the LLM output into AgentAction and AgentFinish. This usually depends heavily on the prompt used. This is where you can change the parsing to do retries, handle whitespace, etc class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: # Check if agent should finish if "Final Answer:" in llm_output: return AgentFinish( # Return values is generally always a dictionary with a single `output` key # It is not recommended to try anything else at the moment :) return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) # Parse out the action and action input regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) # Return the action and action input return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) output_parser = CustomOutputParser() Set up LLM# Choose the LLM you want to use! llm = ChatOpenAI(temperature=0) Define the stop sequence# This is important because it tells the LLM when to stop generation.
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
1da50f2db355-4
Define the stop sequence# This is important because it tells the LLM when to stop generation. This depends heavily on the prompt and model you are using. Generally, you want this to be whatever token you use in the prompt to denote the start of an Observation (otherwise, the LLM may hallucinate an observation for you). Set up the Agent# We can now combine everything to set up our agent # LLM chain consisting of the LLM and a prompt llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) Use the Agent# Now we can use it! agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_executor.run("How many people live in canada as of 2023?") > Entering new AgentExecutor chain... Thought: Wot year be it now? That be important to know the answer. Action: Search Action Input: "current population canada 2023" Observation:38,649,283Ahoy! That be the correct year, but the answer be in regular numbers. 'Tis time to translate to pirate speak. Action: Search Action Input: "38,649,283 in pirate speak" Observation:Brush up on your “Pirate Talk” with these helpful pirate phrases. Aaaarrrrgggghhhh! Pirate catch phrase of grumbling or disgust. Ahoy! Hello! Ahoy, Matey, Hello ...That be not helpful, I'll just do the translation meself.
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
1da50f2db355-5
Final Answer: Arrrr, thar be 38,649,283 scallywags in Canada as of 2023. > Finished chain. 'Arrrr, thar be 38,649,283 scallywags in Canada as of 2023.' previous Custom LLM Agent next Custom MRKL Agent Contents Set up environment Set up tool Prompt Template Output Parser Set up LLM Define the stop sequence Set up the Agent Use the Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html
a833166f3af6-0
.md .pdf Agent Types Contents zero-shot-react-description react-docstore self-ask-with-search conversational-react-description Agent Types# Agents use an LLM to determine which actions to take and in what order. An action can either be using a tool and observing its output, or returning a response to the user. Here are the agents available in LangChain. zero-shot-react-description# This agent uses the ReAct framework to determine which tool to use based solely on the tool’s description. Any number of tools can be provided. This agent requires that a description is provided for each tool. react-docstore# This agent uses the ReAct framework to interact with a docstore. Two tools must be provided: a Search tool and a Lookup tool (they must be named exactly as so). The Search tool should search for a document, while the Lookup tool should lookup a term in the most recently found document. This agent is equivalent to the original ReAct paper, specifically the Wikipedia example. self-ask-with-search# This agent utilizes a single tool that should be named Intermediate Answer. This tool should be able to lookup factual answers to questions. This agent is equivalent to the original self ask with search paper, where a Google search API was provided as the tool. conversational-react-description# This agent is designed to be used in conversational settings. The prompt is designed to make the agent helpful and conversational. It uses the ReAct framework to decide which tool to use, and uses memory to remember the previous conversation interactions. previous Agents next Custom Agent Contents zero-shot-react-description react-docstore self-ask-with-search conversational-react-description By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/modules/agents/agents/agent_types.html