id
stringlengths
14
15
text
stringlengths
49
2.47k
source
stringlengths
61
166
69b91d29fce1-3
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). parse(completion: str) → T[source]¶ Parse a single string model output into some structure. Parameters text – String output of a language model. Returns Structured output. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ parse_result(result: List[Generation]) → T¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Returns Structured output. parse_with_prompt(completion: str, prompt_value: PromptValue) → T[source]¶ Parse the output of an LLM call with the input prompt for context. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – String output of a language model. prompt – Input PromptValue. Returns Structured output classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html
69b91d29fce1-4
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None) → Iterator[Output]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. Examples using RetryWithErrorOutputParser¶ Retry parser
https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html
e011ff9c4ed9-0
langchain.text_splitter.NLTKTextSplitter¶ class langchain.text_splitter.NLTKTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]¶ Splitting text using NLTK package. Initialize the NLTK splitter. Methods __init__([separator]) Initialize the NLTK splitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split incoming text and return chunks. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separator: str = '\n\n', **kwargs: Any) → None[source]¶ Initialize the NLTK splitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
e011ff9c4ed9-1
Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split incoming text and return chunks. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using NLTKTextSplitter¶ Split by tokens
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
4c216fd08d8b-0
langchain.text_splitter.MarkdownHeaderTextSplitter¶ class langchain.text_splitter.MarkdownHeaderTextSplitter(headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False)[source]¶ Splitting markdown files based on specified headers. Create a new MarkdownHeaderTextSplitter. Parameters headers_to_split_on – Headers we want to track return_each_line – Return each line w/ associated headers Methods __init__(headers_to_split_on[, return_each_line]) Create a new MarkdownHeaderTextSplitter. aggregate_lines_to_chunks(lines) Combine lines with common metadata into chunks :param lines: Line of text / associated header metadata split_text(text) Split markdown file :param text: Markdown file __init__(headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False)[source]¶ Create a new MarkdownHeaderTextSplitter. Parameters headers_to_split_on – Headers we want to track return_each_line – Return each line w/ associated headers aggregate_lines_to_chunks(lines: List[LineType]) → List[Document][source]¶ Combine lines with common metadata into chunks :param lines: Line of text / associated header metadata split_text(text: str) → List[Document][source]¶ Split markdown file :param text: Markdown file Examples using MarkdownHeaderTextSplitter¶ Context aware text splitting and QA / Chat Perform context-aware text splitting MarkdownHeaderTextSplitter
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownHeaderTextSplitter.html
7533d81db74c-0
langchain.text_splitter.CharacterTextSplitter¶ class langchain.text_splitter.CharacterTextSplitter(separator: str = '\n\n', is_separator_regex: bool = False, **kwargs: Any)[source]¶ Splitting text that looks at characters. Create a new TextSplitter. Methods __init__([separator, is_separator_regex]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split incoming text and return chunks. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separator: str = '\n\n', is_separator_regex: bool = False, **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.CharacterTextSplitter.html
7533d81db74c-1
Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split incoming text and return chunks. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using CharacterTextSplitter¶ Hugging Face OpenAI Vectara Text Generation Document Comparison Vectorstore Agent LanceDB Weaviate Activeloop’s Deep Lake Vectara Redis PGVector Rockset Zilliz SingleStoreDB Annoy Typesense Tair Chroma Alibaba Cloud OpenSearch StarRocks Clarifai scikit-learn DocArrayHnswSearch MyScale ClickHouse Vector Search Qdrant Tigris AwaDB Supabase (Postgres) OpenSearch Pinecone Azure Cognitive Search Cassandra Milvus ElasticSearch Marqo DocArrayInMemorySearch pg_embedding FAISS AnalyticDB Hologres MongoDB Atlas Meilisearch Figma Psychic Manifest Caching integrations Data Augmented Question Answering Question answering over a group chat messages using Activeloop’s DeepLake Retrieve from vector stores directly Improve document indexing with HyDE
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.CharacterTextSplitter.html
7533d81db74c-2
Retrieve from vector stores directly Improve document indexing with HyDE Structure answers with OpenAI functions QA using Activeloop’s DeepLake Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop’s Deep Lake Use LangChain, GPT and Activeloop’s Deep Lake to work with code base SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base Split by tokens How to add memory to a Multi-Input Chain Combine agents and vector stores Loading from LangChainHub Retrieval QA using OpenAI functions Vector store-augmented text generation Hypothetical Document Embeddings
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.CharacterTextSplitter.html
05f7167c8b3e-0
langchain.text_splitter.MarkdownTextSplitter¶ class langchain.text_splitter.MarkdownTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Markdown-formatted headings. Initialize a MarkdownTextSplitter. Methods __init__(**kwargs) Initialize a MarkdownTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a MarkdownTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
05f7167c8b3e-1
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
9ce8b45af6c7-0
langchain.text_splitter.Language¶ class langchain.text_splitter.Language(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Enum of the programming languages. CPP = 'cpp'¶ GO = 'go'¶ JAVA = 'java'¶ JS = 'js'¶ PHP = 'php'¶ PROTO = 'proto'¶ PYTHON = 'python'¶ RST = 'rst'¶ RUBY = 'ruby'¶ RUST = 'rust'¶ SCALA = 'scala'¶ SWIFT = 'swift'¶ MARKDOWN = 'markdown'¶ LATEX = 'latex'¶ HTML = 'html'¶ SOL = 'sol'¶ Examples using Language¶ Source Code
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
9948b928ffe8-0
langchain.text_splitter.LineType¶ class langchain.text_splitter.LineType[source]¶ Line type as typed dict. metadata: Dict[str, str]¶ content: str¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LineType.html
e3998c055ce8-0
langchain.text_splitter.SpacyTextSplitter¶ class langchain.text_splitter.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any)[source]¶ Splitting text using Spacy package. Per default, Spacy’s en_core_web_sm model is used. For a faster, but potentially less accurate splitting, you can use pipeline=’sentencizer’. Initialize the spacy text splitter. Methods __init__([separator, pipeline]) Initialize the spacy text splitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split incoming text and return chunks. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any) → None[source]¶ Initialize the spacy text splitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
e3998c055ce8-1
Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split incoming text and return chunks. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using SpacyTextSplitter¶ spaCy Atlas Split by tokens
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
a0acc9c7bdfa-0
langchain.text_splitter.HeaderType¶ class langchain.text_splitter.HeaderType[source]¶ Header type as typed dict. level: int¶ name: str¶ data: str¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.HeaderType.html
d9311dcfb137-0
langchain.text_splitter.RecursiveCharacterTextSplitter¶ class langchain.text_splitter.RecursiveCharacterTextSplitter(separators: Optional[List[str]] = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any)[source]¶ Splitting text by recursively look at characters. Recursively tries to split by different characters to find one that works. Create a new TextSplitter. Methods __init__([separators, keep_separator, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separators: Optional[List[str]] = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
d9311dcfb137-1
Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter[source]¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str][source]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using RecursiveCharacterTextSplitter¶ Cohere Reranker Loading documents from a YouTube url Source Code !pip install bs4 Context aware text splitting and QA / Chat QA over Documents Running LLMs locally Question answering over a group chat messages using Activeloop’s DeepLake Perform context-aware text splitting Use local LLMs QA using Activeloop’s DeepLake MultiQueryRetriever MarkdownHeaderTextSplitter
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
0025f1fe280c-0
langchain.text_splitter.Tokenizer¶ class langchain.text_splitter.Tokenizer(chunk_overlap: 'int', tokens_per_chunk: 'int', decode: 'Callable[[list[int]], str]', encode: 'Callable[[str], List[int]]')[source]¶ Attributes chunk_overlap tokens_per_chunk decode encode Methods __init__(chunk_overlap, tokens_per_chunk, ...) __init__(chunk_overlap: int, tokens_per_chunk: int, decode: Callable[[list[int]], str], encode: Callable[[str], List[int]]) → None¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Tokenizer.html
89e5afa03433-0
langchain.text_splitter.PythonCodeTextSplitter¶ class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Python syntax. Initialize a PythonCodeTextSplitter. Methods __init__(**kwargs) Initialize a PythonCodeTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a PythonCodeTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
89e5afa03433-1
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
a464b17d398f-0
langchain.text_splitter.LatexTextSplitter¶ class langchain.text_splitter.LatexTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Latex-formatted layout elements. Initialize a LatexTextSplitter. Methods __init__(**kwargs) Initialize a LatexTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a LatexTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LatexTextSplitter.html
a464b17d398f-1
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LatexTextSplitter.html
cd267c22a32e-0
langchain.text_splitter.SentenceTransformersTokenTextSplitter¶ class langchain.text_splitter.SentenceTransformersTokenTextSplitter(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any)[source]¶ Splitting text to tokens using sentence model tokenizer. Create a new TextSplitter. Methods __init__([chunk_overlap, model_name, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. count_tokens(*, text) create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. count_tokens(*, text: str) → int[source]¶ create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
cd267c22a32e-1
Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using SentenceTransformersTokenTextSplitter¶ Split by tokens
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
9040c3d439e9-0
langchain.text_splitter.split_text_on_tokens¶ langchain.text_splitter.split_text_on_tokens(*, text: str, tokenizer: Tokenizer) → List[str][source]¶ Split incoming text and return chunks using tokenizer.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.split_text_on_tokens.html
bff9398abef4-0
langchain.text_splitter.TokenTextSplitter¶ class langchain.text_splitter.TokenTextSplitter(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any)[source]¶ Splitting text to tokens using model tokenizer. Create a new TextSplitter. Methods __init__([encoding_name, model_name, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TokenTextSplitter.html
bff9398abef4-1
Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using TokenTextSplitter¶ StarRocks Split by tokens
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TokenTextSplitter.html
2a0f5db1f097-0
langchain.text_splitter.TextSplitter¶ class langchain.text_splitter.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False)[source]¶ Interface for splitting text into chunks. Create a new TextSplitter. Parameters chunk_size – Maximum size of chunks to return chunk_overlap – Overlap in characters between chunks length_function – Function that measures the length of given chunks keep_separator – Whether to keep the separator in the chunks add_start_index – If True, includes chunk’s start index in metadata Methods __init__([chunk_size, chunk_overlap, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False) → None[source]¶ Create a new TextSplitter. Parameters chunk_size – Maximum size of chunks to return
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
2a0f5db1f097-1
Create a new TextSplitter. Parameters chunk_size – Maximum size of chunks to return chunk_overlap – Overlap in characters between chunks length_function – Function that measures the length of given chunks keep_separator – Whether to keep the separator in the chunks add_start_index – If True, includes chunk’s start index in metadata async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document][source]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter[source]¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS[source]¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document][source]¶ Split documents. abstract split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶ Transform sequence of documents by splitting them.
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
f88ab14b036a-0
langchain.smith.evaluation.config.RunEvalConfig¶ class langchain.smith.evaluation.config.RunEvalConfig[source]¶ Bases: BaseModel Configuration for a run evaluation. Parameters evaluators (List[Union[EvaluatorType, EvalConfig]]) – Configurations for which evaluators to apply to the dataset run. Each can be the string of an EvaluatorType, such as EvaluatorType.QA, the evaluator type string (“qa”), or a configuration for a given evaluator (e.g., RunEvalConfig.QA). custom_evaluators (Optional[List[Union[RunEvaluator, StringEvaluator]]]) – Custom evaluators to apply to the dataset run. reference_key (Optional[str]) – The key in the dataset run to use as the reference string. If not provided, it will be inferred automatically. prediction_key (Optional[str]) – The key from the traced run’s outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. input_key (Optional[str]) – The key from the traced run’s inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. eval_llm (Optional[BaseLanguageModel]) – The language model to pass to any evaluators that use a language model. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param custom_evaluators: Optional[List[Union[langsmith.evaluation.evaluator.RunEvaluator, langchain.evaluation.schema.StringEvaluator]]] = None¶ Custom evaluators to apply to the dataset run. param eval_llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ The language model to pass to any evaluators that require one.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-1
The language model to pass to any evaluators that require one. param evaluators: List[Union[langchain.evaluation.schema.EvaluatorType, langchain.smith.evaluation.config.EvalConfig]] [Optional]¶ Configurations for which evaluators to apply to the dataset run. Each can be the string of an EvaluatorType, such as EvaluatorType.QA, the evaluator type string (“qa”), or a configuration for a given evaluator (e.g., RunEvalConfig.QA). param input_key: Optional[str] = None¶ The key from the traced run’s inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. param prediction_key: Optional[str] = None¶ The key from the traced run’s outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. param reference_key: Optional[str] = None¶ The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically. class CoTQA[source]¶ Bases: EvalConfig Configuration for a context-based QA evaluator. Parameters prompt (Optional[BasePromptTemplate]) – The prompt template to use for generating the question. llm (Optional[BaseLanguageModel]) – The language model to use for the evaluation chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.CONTEXT_QA¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ param prompt: Optional[langchain.schema.prompt_template.BasePromptTemplate] = None¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-2
param prompt: Optional[langchain.schema.prompt_template.BasePromptTemplate] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-3
Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class ContextQA[source]¶ Bases: EvalConfig
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-4
class ContextQA[source]¶ Bases: EvalConfig Configuration for a context-based QA evaluator. Parameters prompt (Optional[BasePromptTemplate]) – The prompt template to use for generating the question. llm (Optional[BaseLanguageModel]) – The language model to use for the evaluation chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.CONTEXT_QA¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ param prompt: Optional[langchain.schema.prompt_template.BasePromptTemplate] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-5
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-6
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class Criteria[source]¶ Bases: EvalConfig Configuration for a reference-free criteria evaluator. Parameters criteria (Optional[CRITERIA_TYPE]) – The criteria to evaluate. llm (Optional[BaseLanguageModel]) – The language model to use for the evaluation chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param criteria: Optional[Union[Mapping[str, str], langchain.evaluation.criteria.eval_chain.Criteria, langchain.chains.constitutional_ai.models.ConstitutionalPrinciple]] = None¶ param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.CRITERIA¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-7
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any]
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-8
The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class EmbeddingDistance[source]¶ Bases: EvalConfig Configuration for an embedding distance evaluator. Parameters
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-9
Bases: EvalConfig Configuration for an embedding distance evaluator. Parameters embeddings (Optional[Embeddings]) – The embeddings to use for computing the distance. distance_metric (Optional[EmbeddingDistanceEnum]) – The distance metric to use for computing the distance. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param distance_metric: Optional[langchain.evaluation.embedding_distance.base.EmbeddingDistance] = None¶ param embeddings: Optional[langchain.embeddings.base.Embeddings] = None¶ param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.EMBEDDING_DISTANCE¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-10
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-11
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class LabeledCriteria[source]¶ Bases: EvalConfig Configuration for a labeled (with references) criteria evaluator. Parameters criteria (Optional[CRITERIA_TYPE]) – The criteria to evaluate. llm (Optional[BaseLanguageModel]) – The language model to use for the evaluation chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param criteria: Optional[Union[Mapping[str, str], langchain.evaluation.criteria.eval_chain.Criteria, langchain.chains.constitutional_ai.models.ConstitutionalPrinciple]] = None¶ param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.LABELED_CRITERIA¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-12
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any]
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-13
The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class QA[source]¶ Bases: EvalConfig Configuration for a QA evaluator. Parameters
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-14
Bases: EvalConfig Configuration for a QA evaluator. Parameters prompt (Optional[BasePromptTemplate]) – The prompt template to use for generating the question. llm (Optional[BaseLanguageModel]) – The language model to use for the evaluation chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.QA¶ param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ param prompt: Optional[langchain.schema.prompt_template.BasePromptTemplate] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-15
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-16
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ class StringDistance[source]¶ Bases: EvalConfig Configuration for a string distance evaluator. Parameters distance (Optional[StringDistanceEnum]) – The string distance metric to use. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param distance: Optional[langchain.evaluation.string_distance.base.StringDistance] = None¶ The string distance metric to use. damerau_levenshtein: The Damerau-Levenshtein distance. levenshtein: The Levenshtein distance. jaro: The Jaro distance. jaro_winkler: The Jaro-Winkler distance. param evaluator_type: langchain.evaluation.schema.EvaluatorType = EvaluatorType.STRING_DISTANCE¶ param normalize_score: bool = True¶ Whether to normalize the distance to between 0 and 1. Applies only to the Levenshtein and Damerau-Levenshtein distances. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-17
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any]
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-18
The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-19
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
f88ab14b036a-20
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using RunEvalConfig¶ LangSmith Walkthrough
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.RunEvalConfig.html
0351e9c5e5f9-0
langchain.smith.evaluation.runner_utils.arun_on_dataset¶ async langchain.smith.evaluation.runner_utils.arun_on_dataset(client: Client, dataset_name: str, llm_or_chain_factory: Union[Callable[[], Union[Chain, Runnable]], BaseLanguageModel, Callable[[dict], Any], Runnable, Chain], *, evaluation: Optional[RunEvalConfig] = None, concurrency_level: int = 5, num_repetitions: int = 1, project_name: Optional[str] = None, verbose: bool = False, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None) → Dict[str, Any][source]¶ Asynchronously run the Chain or language model on a dataset and store traces to the specified project name. Parameters client – LangSmith client to use to read the dataset, and to log feedback and run traces. dataset_name – Name of the dataset to run the chain on. llm_or_chain_factory – Language model or Chain constructor to run over the dataset. The Chain constructor is used to permit independent calls on each example without carrying over state. evaluation – Optional evaluation configuration to use when evaluating concurrency_level – The number of async tasks to run concurrently. num_repetitions – Number of times to run the model on each example. This is useful when testing success rates or generating confidence intervals. project_name – Name of the project to store the traces in. Defaults to {dataset_name}-{chain class name}-{datetime}. verbose – Whether to print progress. tags – Tags to add to each run in the project. input_mapper – A function to map to the inputs dictionary from an Example to the format expected by the model to be evaluated. This is useful if your model needs to deserialize more complex schema or if your dataset
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.arun_on_dataset.html
0351e9c5e5f9-1
your model needs to deserialize more complex schema or if your dataset has inputs with keys that differ from what is expected by your chain or agent. Returns A dictionary containing the run’s project name and the resulting model outputs. For the synchronous version, see run_on_dataset(). Examples from langsmith import Client from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import RunEvalConfig, arun_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() await arun_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes. from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.arun_on_dataset.html
0351e9c5e5f9-2
def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) await arun_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) Examples using arun_on_dataset¶ LangSmith Walkthrough
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.arun_on_dataset.html
08544d18d7bd-0
langchain.smith.evaluation.string_run_evaluator.ChainStringRunMapper¶ class langchain.smith.evaluation.string_run_evaluator.ChainStringRunMapper[source]¶ Bases: StringRunMapper Extract items to evaluate from the run object from a chain. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param input_key: Optional[str] = None¶ The key from the model Run’s inputs to use as the eval input. If not provided, will use the only input key or raise an error if there are multiple. param prediction_key: Optional[str] = None¶ The key from the model Run’s outputs to use as the eval prediction. If not provided, will use the only output key or raise an error if there are multiple. __call__(run: Run) → Dict[str, str]¶ Maps the Run to a dictionary. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ChainStringRunMapper.html
08544d18d7bd-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). map(run: Run) → Dict[str, str][source]¶ Maps the Run to a dictionary. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ChainStringRunMapper.html
08544d18d7bd-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶ The keys to extract from the run.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ChainStringRunMapper.html
e8fa4850b245-0
langchain.smith.evaluation.runner_utils.run_on_dataset¶ langchain.smith.evaluation.runner_utils.run_on_dataset(client: Client, dataset_name: str, llm_or_chain_factory: Union[Callable[[], Union[Chain, Runnable]], BaseLanguageModel, Callable[[dict], Any], Runnable, Chain], *, evaluation: Optional[RunEvalConfig] = None, num_repetitions: int = 1, concurrency_level: int = 5, project_name: Optional[str] = None, verbose: bool = False, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None) → Dict[str, Any][source]¶ Run the Chain or language model on a dataset and store traces to the specified project name. Parameters client – LangSmith client to use to access the dataset and to log feedback and run traces. dataset_name – Name of the dataset to run the chain on. llm_or_chain_factory – Language model or Chain constructor to run over the dataset. The Chain constructor is used to permit independent calls on each example without carrying over state. evaluation – Configuration for evaluators to run on the results of the chain concurrency_level – The number of async tasks to run concurrently. num_repetitions – Number of times to run the model on each example. This is useful when testing success rates or generating confidence intervals. project_name – Name of the project to store the traces in. Defaults to {dataset_name}-{chain class name}-{datetime}. verbose – Whether to print progress. tags – Tags to add to each run in the project. input_mapper – A function to map to the inputs dictionary from an Example to the format expected by the model to be evaluated. This is useful if your model needs to deserialize more complex schema or if your dataset
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.run_on_dataset.html
e8fa4850b245-1
your model needs to deserialize more complex schema or if your dataset has inputs with keys that differ from what is expected by your chain or agent. Returns A dictionary containing the run’s project name and the resulting model outputs. For the (usually faster) async version of this function, see arun_on_dataset(). Examples from langsmith import Client from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import RunEvalConfig, run_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes. from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.run_on_dataset.html
e8fa4850b245-2
def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) Examples using run_on_dataset¶ LangSmith Walkthrough
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.run_on_dataset.html
ed5ced5cd622-0
langchain.smith.evaluation.string_run_evaluator.LLMStringRunMapper¶ class langchain.smith.evaluation.string_run_evaluator.LLMStringRunMapper[source]¶ Bases: StringRunMapper Extract items to evaluate from the run object. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. __call__(run: Run) → Dict[str, str]¶ Maps the Run to a dictionary. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.LLMStringRunMapper.html
ed5ced5cd622-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). map(run: Run) → Dict[str, str][source]¶ Maps the Run to a dictionary. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.LLMStringRunMapper.html
ed5ced5cd622-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ serialize_chat_messages(messages: List[Dict]) → str[source]¶ Extract the input messages from the run. serialize_inputs(inputs: Dict) → str[source]¶ serialize_outputs(outputs: Dict) → str[source]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶ The keys to extract from the run.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.LLMStringRunMapper.html
b45f4107cba6-0
langchain.smith.evaluation.config.EvalConfig¶ class langchain.smith.evaluation.config.EvalConfig[source]¶ Bases: BaseModel Configuration for a given run evaluator. Parameters evaluator_type (EvaluatorType) – The type of evaluator to use. get_kwargs()[source]¶ Get the keyword arguments for the evaluator configuration. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param evaluator_type: langchain.evaluation.schema.EvaluatorType [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.EvalConfig.html
b45f4107cba6-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_kwargs() → Dict[str, Any][source]¶ Get the keyword arguments for the load_evaluator call. Returns The keyword arguments for the load_evaluator call. Return type Dict[str, Any] json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.EvalConfig.html
b45f4107cba6-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.config.EvalConfig.html
74feb01fbeb9-0
langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain¶ class langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain[source]¶ Bases: Chain, RunEvaluator Evaluate Run and optional examples. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param example_mapper: Optional[StringExampleMapper] = None¶ Maps the Example (dataset row) to a dictionary with a ‘reference’ string. param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param name: str [Required]¶ The name of the evaluation metric. param run_mapper: StringRunMapper [Required]¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-1
The name of the evaluation metric. param run_mapper: StringRunMapper [Required]¶ Maps the Run to a dictionary with ‘input’ and ‘prediction’ strings. param string_evaluator: StringEvaluator [Required]¶ The evaluation chain. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-2
these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, max_concurrency: Optional[int] = None) → List[Output]¶ async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-3
tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async aevaluate_run(run: Run, example: Optional[Example] = None) → EvaluationResult[source]¶ Evaluate an example. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Call the chain on all inputs in the list. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-4
tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." async astream(input: Input, config: Optional[RunnableConfig] = None) → AsyncIterator[Output]¶ batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, max_concurrency: Optional[int] = None) → List[Output]¶ bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-5
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example ..code-block:: python chain.dict(exclude_unset=True) # -> {“_type”: “foo”, “verbose”: False, …} evaluate_run(run: Run, example: Optional[Example] = None) → EvaluationResult[source]¶ Evaluate an example. classmethod from_orm(obj: Any) → Model¶ classmethod from_run_and_data_type(evaluator: StringEvaluator, run_type: str, data_type: DataType, input_key: Optional[str] = None, prediction_key: Optional[str] = None, reference_key: Optional[str] = None, tags: Optional[List[str]] = None) → StringRunEvaluatorChain[source]¶ Create a StringRunEvaluatorChain from an evaluator and the run and dataset types.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-6
Create a StringRunEvaluatorChain from an evaluator and the run and dataset types. This method provides an easy way to instantiate a StringRunEvaluatorChain, by taking an evaluator and information about the type of run and the data. The method supports LLM and chain runs. Parameters evaluator (StringEvaluator) – The string evaluator to use. run_type (str) – The type of run being evaluated. Supported types are LLM and Chain. data_type (DataType) – The type of dataset used in the run. input_key (str, optional) – The key used to map the input from the run. prediction_key (str, optional) – The key used to map the prediction from the run. reference_key (str, optional) – The key used to map the reference from the dataset. tags (List[str], optional) – List of tags to attach to the evaluation chain. Returns The instantiated evaluation chain. Return type StringRunEvaluatorChain Raises ValueError – If the run type is not supported, or if the evaluator requires a reference from the dataset but the reference key is not provided. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-7
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-8
Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml")
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-9
Example chain.save(file_path="path/chain.yaml") classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None) → Iterator[Output]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ property input_keys: List[str]¶ Keys expected to be in the chain input. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
74feb01fbeb9-10
Return whether or not the class is serializable. property output_keys: List[str]¶ Keys expected to be in the chain output.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunEvaluatorChain.html
3c3b8c441015-0
langchain.smith.evaluation.string_run_evaluator.ToolStringRunMapper¶ class langchain.smith.evaluation.string_run_evaluator.ToolStringRunMapper[source]¶ Bases: StringRunMapper Map an input to the tool. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. __call__(run: Run) → Dict[str, str]¶ Maps the Run to a dictionary. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ToolStringRunMapper.html
3c3b8c441015-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). map(run: Run) → Dict[str, str][source]¶ Maps the Run to a dictionary. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ToolStringRunMapper.html
3c3b8c441015-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶ The keys to extract from the run.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.ToolStringRunMapper.html
2dd01cfdd181-0
langchain.smith.evaluation.string_run_evaluator.StringRunMapper¶ class langchain.smith.evaluation.string_run_evaluator.StringRunMapper[source]¶ Bases: Serializable Extract items to evaluate from the run object. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. __call__(run: Run) → Dict[str, str][source]¶ Maps the Run to a dictionary. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunMapper.html
2dd01cfdd181-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). abstract map(run: Run) → Dict[str, str][source]¶ Maps the Run to a dictionary. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunMapper.html
2dd01cfdd181-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶ The keys to extract from the run.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringRunMapper.html
1f4aeb319f96-0
langchain.smith.evaluation.runner_utils.InputFormatError¶ class langchain.smith.evaluation.runner_utils.InputFormatError[source]¶ Raised when the input format is invalid.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.runner_utils.InputFormatError.html
3a597fd4817f-0
langchain.smith.evaluation.string_run_evaluator.StringExampleMapper¶ class langchain.smith.evaluation.string_run_evaluator.StringExampleMapper[source]¶ Bases: Serializable Map an example, or row in the dataset, to the inputs of an evaluation. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param reference_key: Optional[str] = None¶ __call__(example: Example) → Dict[str, str][source]¶ Maps the Run and Example to a dictionary. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringExampleMapper.html
3a597fd4817f-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). map(example: Example) → Dict[str, str][source]¶ Maps the Example, or dataset row to a dictionary. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringExampleMapper.html
3a597fd4817f-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ serialize_chat_messages(messages: List[Dict]) → str[source]¶ Extract the input messages from the run. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property output_keys: List[str]¶ The keys to extract from the run.
https://api.python.langchain.com/en/latest/smith/langchain.smith.evaluation.string_run_evaluator.StringExampleMapper.html