fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Definition isFilter {X : UU} (F : (X β†’ hProp) β†’ hProp) := isPreFilter F Γ— isfilter_notempty F.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isFilter
38,400
Definition Filter (X : UU) := βˆ‘ F : (X β†’ hProp) β†’ hProp, isFilter F.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
Filter
38,401
Definition pr1Filter (X : UU) (F : Filter X) : PreFilter X := pr1 F,, pr1 (pr2 F).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
pr1Filter
38,402
Definition make_Filter {X : UU} (F : (X β†’ hProp) β†’ hProp) (Himp : isfilter_imply F) (Htrue : isfilter_htrue F) (Hand : isfilter_and F) (Hempty : isfilter_notempty F) : Filter X := F ,, (Himp ,, (isfilter_finite_intersection_carac F Htrue Hand)) ,, Hempty.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
make_Filter
38,403
Lemma emptynofilter : ∏ F : (empty β†’ hProp) β†’ hProp, Β¬ isFilter F. Proof. intros F Hf. generalize (isfilter_finite_intersection_htrue _ (pr2 (pr1 Hf))) ; intros Htrue. generalize (pr2 Hf _ Htrue). apply factor_through_squash. - apply isapropempty. - intros x. apply (pr1 x). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
emptynofilter
38,404
Lemma filter_imply : isfilter_imply F. Proof. exact (pr1 (pr2 F)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_imply
38,405
Lemma filter_finite_intersection : isfilter_finite_intersection F. Proof. exact (pr2 (pr2 F)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_finite_intersection
38,406
Lemma filter_htrue : isfilter_htrue F. Proof. apply isfilter_finite_intersection_htrue. exact filter_finite_intersection. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_htrue
38,407
Lemma filter_and : isfilter_and F. Proof. apply isfilter_finite_intersection_and. exact filter_finite_intersection. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_and
38,408
Lemma filter_forall : ∏ A : X β†’ hProp, (∏ x : X, A x) β†’ F A. Proof. intros A Ha. generalize filter_htrue. apply filter_imply. intros x _. now apply Ha. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_forall
38,409
Lemma filter_notempty : isfilter_notempty F. Proof. exact (pr2 (pr2 F)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_notempty
38,410
Lemma filter_const : ∏ A : hProp, F (Ξ» _ : X, A) β†’ Β¬ (Β¬ A). Proof. intros A Fa Ha. generalize (filter_notempty _ Fa). apply factor_through_squash. - apply isapropempty. - intros x ; generalize (pr2 x); clear x. exact Ha. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_const
38,411
Lemma isasetPreFilter (X : UU) : isaset (PreFilter X). Proof. simple refine (isaset_carrier_subset (make_hSet _ _) (Ξ» _, make_hProp _ _)). - apply impred_isaset ; intros _. apply isasethProp. - apply isapropdirprod. + apply isaprop_isfilter_imply. + apply isaprop_isfilter_finite_intersection. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isasetPreFilter
38,412
Lemma isasetFilter (X : UU) : isaset (Filter X). Proof. simple refine (isaset_carrier_subset (make_hSet _ _) (Ξ» _, make_hProp _ _)). - apply impred_isaset ; intros _. apply isasethProp. - apply isapropdirprod. + apply isapropdirprod. * apply isaprop_isfilter_imply. * apply isaprop_isfilter_finite_intersection. + apply isaprop_isfilter_notempty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isasetFilter
38,413
Definition filter_le {X : UU} (F G : PreFilter X) := ∏ A : X β†’ hProp, G A β†’ F A.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filter_le
38,414
Lemma istrans_filter_le {X : UU} : ∏ F G H : PreFilter X, filter_le F G β†’ filter_le G H β†’ filter_le F H. Proof. intros F G H Hfg Hgh A Fa. apply Hfg, Hgh, Fa. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
istrans_filter_le
38,415
Lemma isrefl_filter_le {X : UU} : ∏ F : PreFilter X, filter_le F F. Proof. intros F A Fa. exact Fa. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isrefl_filter_le
38,416
Lemma isantisymm_filter_le {X : UU} : ∏ F G : PreFilter X, filter_le F G β†’ filter_le G F β†’ F = G. Proof. intros F G Hle Hge. simple refine (subtypePath_prop (B := Ξ» _, make_hProp _ _) _). - apply isapropdirprod. + apply isaprop_isfilter_imply. + apply isaprop_isfilter_finite_intersection. - apply funextfun ; intros A. apply hPropUnivalence. + now apply Hge. + now apply Hle. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isantisymm_filter_le
38,417
Definition PartialOrder_filter_le (X : UU) : PartialOrder (make_hSet (PreFilter _) (isasetPreFilter X)). Proof. simple refine (make_PartialOrder _ _). - intros F G. simple refine (make_hProp _ _). + apply (filter_le F G). + apply impred_isaprop ; intros A. apply isapropimpl. apply propproperty. - repeat split. + intros F G H ; simpl. apply istrans_filter_le. + intros A ; simpl. apply isrefl_filter_le. + intros F G ; simpl. apply isantisymm_filter_le. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PartialOrder_filter_le
38,418
Definition filterim := Ξ» A : (Y β†’ hProp), F (Ξ» x : X, A (f x)).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterim
38,419
Lemma filterim_imply : isfilter_imply filterim. Proof. intros A B H. apply Himp. intros x. apply H. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterim_imply
38,420
Lemma filterim_htrue : isfilter_htrue filterim. Proof. apply Htrue. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterim_htrue
38,421
Lemma filterim_and : isfilter_and filterim. Proof. intros A B. apply Hand. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterim_and
38,422
Lemma filterim_notempty : isfilter_notempty filterim. Proof. intros A Fa. generalize (Hempty _ Fa). apply hinhfun. intros x. exists (f (pr1 x)). exact (pr2 x). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterim_notempty
38,423
Definition PreFilterIm {X Y : UU} (f : X β†’ Y) (F : PreFilter X) : PreFilter Y. Proof. simple refine (make_PreFilter _ _ _ _). - exact (filterim f F). - apply filterim_imply, filter_imply. - apply filterim_htrue, filter_htrue. - apply filterim_and, filter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterIm
38,424
Definition FilterIm {X Y : UU} (f : X β†’ Y) (F : Filter X) : Filter Y. Proof. refine (tpair _ _ _). split. - apply (pr2 (PreFilterIm f F)). - apply filterim_notempty, filter_notempty. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterIm
38,425
Lemma PreFilterIm_incr {X Y : UU} : ∏ (f : X β†’ Y) (F G : PreFilter X), filter_le F G β†’ filter_le (PreFilterIm f F) (PreFilterIm f G). Proof. intros f F G Hle A ; simpl. apply Hle. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterIm_incr
38,426
Lemma FilterIm_incr {X Y : UU} : ∏ (f : X β†’ Y) (F G : Filter X), filter_le F G β†’ filter_le (FilterIm f F) (FilterIm f G). Proof. intros f F G Hle A ; simpl. apply Hle. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterIm_incr
38,427
Definition filterlim {X Y : UU} (f : X β†’ Y) (F : PreFilter X) (G : PreFilter Y) := filter_le (PreFilterIm f F) G.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterlim
38,428
Lemma filterlim_comp {X Y Z : UU} : ∏ (f : X β†’ Y) (g : Y β†’ Z) (F : PreFilter X) (G : PreFilter Y) (H : PreFilter Z), filterlim f F G β†’ filterlim g G H β†’ filterlim (funcomp f g) F H. Proof. intros f g F G H Hf Hg A Fa. specialize (Hg _ Fa). specialize (Hf _ Hg). apply Hf. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterlim_comp
38,429
Lemma filterlim_decr_1 {X Y : UU} : ∏ (f : X β†’ Y) (F F' : PreFilter X) (G : PreFilter Y), filter_le F' F β†’ filterlim f F G β†’ filterlim f F' G. Proof. intros f F F' G Hf Hle A Ha. specialize (Hle _ Ha). specialize (Hf _ Hle). apply Hf. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterlim_decr_1
38,430
Lemma filterlim_incr_2 {X Y : UU} : ∏ (f : X β†’ Y) (F : PreFilter X) (G G' : PreFilter Y), filter_le G G' β†’ filterlim f F G β†’ filterlim f F G'. Proof. intros f F G G' Hg Hle A Ha. specialize (Hg _ Ha). specialize (Hle _ Hg). exact Hle. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterlim_incr_2
38,431
Definition filterdom : (X β†’ hProp) β†’ hProp := Ξ» A : X β†’ hProp, F (Ξ» x : X, make_hProp (dom x β†’ A x) (isapropimpl _ _ (propproperty _))).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdom
38,432
Lemma filterdom_imply : isfilter_imply filterdom. Proof. intros A B Himpl. apply Himp. intros x Ax Hx. apply Himpl, Ax, Hx. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdom_imply
38,433
Lemma filterdom_htrue : isfilter_htrue filterdom. Proof. apply Himp with (2 := Htrue). intros x H _. exact H. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdom_htrue
38,434
Lemma filterdom_and : isfilter_and filterdom. Proof. intros A B Ha Hb. generalize (Hand _ _ Ha Hb). apply Himp. intros x ABx Hx. split. - apply (pr1 ABx), Hx. - apply (pr2 ABx), Hx. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdom_and
38,435
Lemma filterdom_notempty : isfilter_notempty filterdom. Proof. intros. intros A Fa. generalize (Hdom _ Fa). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 x)), (pr1 (pr2 x)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdom_notempty
38,436
Definition PreFilterDom {X : UU} (F : PreFilter X) (dom : X β†’ hProp) : PreFilter X. Proof. simple refine (make_PreFilter _ _ _ _). - exact (filterdom F dom). - apply filterdom_imply, filter_imply. - apply filterdom_htrue. + apply filter_imply. + apply filter_htrue. - apply filterdom_and. + apply filter_imply. + apply filter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterDom
38,437
Definition FilterDom {X : UU} (F : Filter X) (dom : X β†’ hProp) (Hdom : ∏ P, F P β†’ βˆƒ x, dom x ∧ P x) : Filter X. Proof. refine (tpair _ _ _). split. - apply (pr2 (PreFilterDom F dom)). - apply filterdom_notempty. exact Hdom. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterDom
38,438
Definition filtersubtype : ((βˆ‘ x : X, dom x) β†’ hProp) β†’ hProp := Ξ» A : (βˆ‘ x : X, dom x) β†’ hProp, F (Ξ» x : X, make_hProp (∏ Hx : dom x, A (x,, Hx)) (impred_isaprop _ (Ξ» _, propproperty _))).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtersubtype
38,439
Lemma filtersubtype_imply : isfilter_imply filtersubtype. Proof. intros A B Himpl. apply Himp. intros x Ax Hx. apply Himpl, Ax. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtersubtype_imply
38,440
Lemma filtersubtype_htrue : isfilter_htrue filtersubtype. Proof. apply Himp with (2 := Htrue). intros x H _. exact H. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtersubtype_htrue
38,441
Lemma filtersubtype_and : isfilter_and filtersubtype. Proof. intros A B Ha Hb. generalize (Hand _ _ Ha Hb). apply Himp. intros x ABx Hx. split. - apply (pr1 ABx). - apply (pr2 ABx). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtersubtype_and
38,442
Lemma filtersubtype_notempty : isfilter_notempty filtersubtype. Proof. intros A Fa. generalize (Hdom _ Fa). apply hinhfun. intros x. exists (pr1 x,,pr1 (pr2 x)). exact (pr2 (pr2 x) (pr1 (pr2 x))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtersubtype_notempty
38,443
Definition PreFilterSubtype {X : UU} (F : PreFilter X) (dom : X β†’ hProp) : PreFilter (βˆ‘ x : X, dom x). Proof. simple refine (make_PreFilter _ _ _ _). - exact (filtersubtype F dom). - apply filtersubtype_imply, filter_imply. - apply filtersubtype_htrue. + apply filter_imply. + apply filter_htrue. - apply filtersubtype_and. + apply filter_imply. + apply filter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterSubtype
38,444
Definition FilterSubtype {X : UU} (F : Filter X) (dom : X β†’ hProp) (Hdom : ∏ P, F P β†’ βˆƒ x, dom x ∧ P x) : Filter (βˆ‘ x : X, dom x). Proof. refine (tpair _ _ _). split. - apply (pr2 (PreFilterSubtype F dom)). - apply filtersubtype_notempty. exact Hdom. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterSubtype
38,445
Definition filterdirprod : (X Γ— Y β†’ hProp) β†’ hProp := Ξ» A : (X Γ— Y) β†’ hProp, βˆƒ (Ax : X β†’ hProp) (Ay : Y β†’ hProp), Fx Ax Γ— Fy Ay Γ— (∏ (x : X) (y : Y), Ax x β†’ Ay y β†’ A (x,,y)).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdirprod
38,446
Lemma filterdirprod_imply : isfilter_imply filterdirprod. Proof. intros A B Himpl. apply hinhfun. intros C. generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ; clear C ; intros Ax Ay Fax Fay Ha. exists Ax, Ay. repeat split. + exact Fax. + exact Fay. + intros x y Hx Hy. now apply Himpl, Ha. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdirprod_imply
38,447
Lemma filterdirprod_htrue : isfilter_htrue filterdirprod. Proof. apply hinhpr. exists (Ξ» _:X, htrue), (Ξ» _:Y, htrue). repeat split. + apply Htrue_x. + apply Htrue_y. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdirprod_htrue
38,448
Lemma filterdirprod_and : isfilter_and filterdirprod. Proof. intros A B. apply hinhfun2. intros C D. generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ; clear C ; intros Ax Ay Fax Fay Ha. generalize (pr1 D) (pr1 (pr2 D)) (pr1 (pr2 (pr2 D))) (pr1 (pr2 (pr2 (pr2 D)))) (pr2 (pr2 (pr2 (pr2 D)))) ; clear D ; intros Bx By Fbx Fby Hb. exists (λ x : X, Ax x ∧ Bx x), (λ y : Y, Ay y ∧ By y). repeat split. + now apply Hand_x. + now apply Hand_y. + apply Ha. * apply (pr1 X0). * apply (pr1 X1). + apply Hb. * apply (pr2 X0). * apply (pr2 X1). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdirprod_and
38,449
Lemma filterdirprod_notempty : isfilter_notempty filterdirprod. Proof. intros A. apply hinhuniv. intros C. generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ; clear C ; intros Ax Ay Fax Fay Ha. generalize (Hempty_x _ Fax) (Hempty_y _ Fay). apply hinhfun2. intros x y. exists (pr1 x,,pr1 y). apply Ha. - exact (pr2 x). - exact (pr2 y). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterdirprod_notempty
38,450
Definition PreFilterDirprod {X Y : UU} (Fx : PreFilter X) (Fy : PreFilter Y) : PreFilter (X Γ— Y). Proof. simple refine (make_PreFilter _ _ _ _). - exact (filterdirprod Fx Fy). - apply filterdirprod_imply. - apply filterdirprod_htrue. + apply filter_htrue. + apply filter_htrue. - apply filterdirprod_and. + apply filter_and. + apply filter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterDirprod
38,451
Definition FilterDirprod {X Y : UU} (Fx : Filter X) (Fy : Filter Y) : Filter (X Γ— Y). Proof. refine (tpair _ _ _). split. - apply (pr2 (PreFilterDirprod Fx Fy)). - apply filterdirprod_notempty. + apply filter_notempty. + apply filter_notempty. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterDirprod
38,452
Definition PreFilterPr1 {X Y : UU} (F : PreFilter (X Γ— Y)) : PreFilter X := (PreFilterIm pr1 F).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterPr1
38,453
Definition FilterPr1 {X Y : UU} (F : Filter (X Γ— Y)) : Filter X := (FilterIm pr1 F).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterPr1
38,454
Definition PreFilterPr2 {X Y : UU} (F : PreFilter (X Γ— Y)) : PreFilter Y := (PreFilterIm (@pr2 X (Ξ» _ : X, Y)) F).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterPr2
38,455
Definition FilterPr2 {X Y : UU} (F : Filter (X Γ— Y)) : Filter Y := (FilterIm (@pr2 X (Ξ» _ : X, Y)) F).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterPr2
38,456
Definition filternat : (nat β†’ hProp) β†’ hProp := Ξ» P : nat β†’ hProp, βˆƒ N : nat, ∏ n : nat, N ≀ n β†’ P n.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filternat
38,457
Lemma filternat_imply : isfilter_imply filternat. Proof. intros P Q H. apply hinhfun. intros N. exists (pr1 N). intros n Hn. now apply H, (pr2 N). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filternat_imply
38,458
Lemma filternat_htrue : isfilter_htrue filternat. Proof. apply hinhpr. now exists O. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filternat_htrue
38,459
Lemma filternat_and : isfilter_and filternat. Proof. intros A B. apply hinhfun2. intros Na Nb. exists (max (pr1 Na) (pr1 Nb)). intros n Hn. split. + apply (pr2 Na). eapply istransnatleh, Hn. now apply max_le_l. + apply (pr2 Nb). eapply istransnatleh, Hn. now apply max_le_r. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filternat_and
38,460
Lemma filternat_notempty : isfilter_notempty filternat. Proof. intros A. apply hinhfun. intros N. exists (pr1 N). apply (pr2 N (pr1 N)). now apply isreflnatleh. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filternat_notempty
38,461
Definition FilterNat : Filter nat. Proof. simple refine (make_Filter _ _ _ _ _). - apply filternat. - apply filternat_imply. - apply filternat_htrue. - apply filternat_and. - apply filternat_notempty. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterNat
38,462
Definition filtertop : (X β†’ hProp) β†’ hProp := Ξ» A : X β†’ hProp, make_hProp (∏ x : X, A x) (impred_isaprop _ (Ξ» _, propproperty _)).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtertop
38,463
Lemma filtertop_imply : isfilter_imply filtertop. Proof. intros A B H Ha x. apply H. simple refine (Ha _). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtertop_imply
38,464
Lemma filtertop_htrue : isfilter_htrue filtertop. Proof. intros x. apply tt. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtertop_htrue
38,465
Lemma filtertop_and : isfilter_and filtertop. Proof. intros A B Ha Hb x. split. + simple refine (Ha _). + simple refine (Hb _). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtertop_and
38,466
Lemma filtertop_notempty : isfilter_notempty filtertop. Proof. intros A Fa. revert x0. apply hinhfun. intros x0. exists x0. simple refine (Fa _). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtertop_notempty
38,467
Definition PreFilterTop {X : UU} : PreFilter X. Proof. simple refine (make_PreFilter _ _ _ _). - exact filtertop. - exact filtertop_imply. - exact filtertop_htrue. - exact filtertop_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterTop
38,468
Definition FilterTop {X : UU} (x0 : βˆ₯ X βˆ₯) : Filter X. Proof. refine (tpair _ _ _). split. - apply (pr2 PreFilterTop). - apply filtertop_notempty, x0. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterTop
38,469
Lemma PreFilterTop_correct {X : UU} : ∏ (F : PreFilter X), filter_le F PreFilterTop. Proof. intros F A Ha. apply filter_forall, Ha. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterTop_correct
38,470
Lemma FilterTop_correct {X : UU} : ∏ (x0 : βˆ₯ X βˆ₯) (F : Filter X), filter_le F (FilterTop x0). Proof. intros x0 F A Ha. apply PreFilterTop_correct, Ha. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterTop_correct
38,471
Definition filterintersection : (X β†’ hProp) β†’ hProp := Ξ» A : X β†’ hProp, make_hProp (∏ F, FF F β†’ (pr1 F) A) (impred_isaprop _ (Ξ» _, isapropimpl _ _ (propproperty _))).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterintersection
38,472
Lemma filterintersection_imply : isfilter_imply filterintersection. Proof. intros A B H Ha F Hf. apply (Himp F Hf A). - apply H. - simple refine (Ha _ _). exact Hf. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterintersection_imply
38,473
Lemma filterintersection_htrue : isfilter_htrue filterintersection. Proof. intros F Hf. now apply (Htrue F). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterintersection_htrue
38,474
Lemma filterintersection_and : isfilter_and filterintersection. Proof. intros A B Ha Hb F Hf. apply (Hand F Hf). * now simple refine (Ha _ _). * now simple refine (Hb _ _). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterintersection_and
38,475
Lemma filterintersection_notempty : isfilter_notempty filterintersection. Proof. intros A Fa. revert His. apply hinhuniv. intros F. apply (Hempty (pr1 F)). * exact (pr2 F). * simple refine (Fa _ _). exact (pr2 F). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterintersection_notempty
38,476
Definition PreFilterIntersection {X : UU} (FF : PreFilter X β†’ hProp) : PreFilter X. Proof. intros. simple refine (make_PreFilter _ _ _ _). - apply (filterintersection _ FF). - apply filterintersection_imply. intros F _. apply filter_imply. - apply filterintersection_htrue. intros F _. apply filter_htrue. - apply filterintersection_and. intros F _. apply filter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterIntersection
38,477
Definition FilterIntersection {X : UU} (FF : Filter X β†’ hProp) (Hff : βˆƒ F : Filter X, FF F) : Filter X. Proof. simple refine (make_Filter _ _ _ _ _). - apply (filterintersection _ FF). - apply filterintersection_imply. intros F _. apply (filter_imply (pr1Filter _ F)). - apply filterintersection_htrue. intros F _. apply (filter_htrue (pr1Filter _ F)). - apply filterintersection_and. intros F _. apply (filter_and (pr1Filter _ F)). - apply filterintersection_notempty. + intros F _. apply (filter_notempty F). + exact Hff. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterIntersection
38,478
Lemma PreFilterIntersection_glb {X : UU} (FF : PreFilter X β†’ hProp) : (∏ F : PreFilter X, FF F β†’ filter_le F (PreFilterIntersection FF)) Γ— (∏ F : PreFilter X, (∏ G : PreFilter X, FF G β†’ filter_le G F) β†’ filter_le (PreFilterIntersection FF) F). Proof. split. - intros F Hf A Ha. now simple refine (Ha _ _). - intros F H A Fa G Hg. apply (H G Hg). apply Fa. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterIntersection_glb
38,479
Lemma FilterIntersection_glb {X : UU} (FF : Filter X β†’ hProp) Hff : (∏ F : Filter X, FF F β†’ filter_le F (FilterIntersection FF Hff)) Γ— (∏ F : Filter X, (∏ G : Filter X, FF G β†’ filter_le G F) β†’ filter_le (FilterIntersection FF Hff) F). Proof. split. - intros F Hf A Ha. now simple refine (Ha _ _). - intros F H A Fa G Hg. apply (H G Hg). apply Fa. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterIntersection_glb
38,480
Definition filtergenerated : (X β†’ hProp) β†’ hProp := Ξ» A : X β†’ hProp, βˆƒ (L' : Sequence (X β†’ hProp)), (∏ m, L (L' m)) Γ— (∏ x : X, finite_intersection L' x β†’ A x).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtergenerated
38,481
Lemma filtergenerated_imply : isfilter_imply filtergenerated. Proof. intros A B H. apply hinhfun ; intro Ha. exists (pr1 Ha), (pr1 (pr2 Ha)). intros x Hx. apply H. apply (pr2 (pr2 Ha)), Hx. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtergenerated_imply
38,482
Lemma filtergenerated_htrue : isfilter_htrue filtergenerated. Proof. apply hinhpr. exists nil. split. + intros m. induction (nopathsfalsetotrue (pr2 m)). + easy. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtergenerated_htrue
38,483
Lemma filtergenerated_and : isfilter_and filtergenerated. Proof. intros A B. apply hinhfun2. intros Ha Hb. exists (concatenate (pr1 Ha) (pr1 Hb)). split. + simpl ; intros m. unfold concatenate'. set (Hm := (weqfromcoprodofstn_invmap (length (pr1 Ha)) (length (pr1 Hb))) m). change ((weqfromcoprodofstn_invmap (length (pr1 Ha)) (length (pr1 Hb))) m) with Hm. induction Hm as [Hm | Hm]. * rewrite coprod_rect_compute_1. apply (pr1 (pr2 Ha)). * rewrite coprod_rect_compute_2. apply (pr1 (pr2 Hb)). + intros x Hx. simpl in Hx. unfold concatenate' in Hx. split. * apply (pr2 (pr2 Ha)). intros m. specialize (Hx (weqfromcoprodofstn_map _ _ (ii1 m))). rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_1 in Hx. exact Hx. * apply (pr2 (pr2 Hb)). intros m. specialize (Hx (weqfromcoprodofstn_map _ _ (ii2 m))). rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_2 in Hx. exact Hx. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtergenerated_and
38,484
Lemma filtergenerated_notempty : isfilter_notempty filtergenerated. Proof. intros A. apply hinhuniv. intros L'. generalize (Hl _ (pr1 (pr2 L'))). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 L')). exact (pr2 x). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filtergenerated_notempty
38,485
Definition PreFilterGenerated {X : UU} (L : (X β†’ hProp) β†’ hProp) : PreFilter X. Proof. simple refine (make_PreFilter _ _ _ _). - apply (filtergenerated L). - apply filtergenerated_imply. - apply filtergenerated_htrue. - apply filtergenerated_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterGenerated
38,486
Definition FilterGenerated {X : UU} (L : (X β†’ hProp) β†’ hProp) (Hl : ∏ L' : Sequence (X β†’ hProp), (∏ m : stn (length L'), L (L' m)) β†’ βˆƒ x : X, finite_intersection L' x) : Filter X. Proof. exists (PreFilterGenerated L). split. - apply (pr2 (PreFilterGenerated L)). - apply filtergenerated_notempty. exact Hl. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterGenerated
38,487
Lemma PreFilterGenerated_correct {X : UU} : ∏ (L : (X β†’ hProp) β†’ hProp), (∏ A : X β†’ hProp, L A β†’ (PreFilterGenerated L) A) Γ— (∏ F : PreFilter X, (∏ A : X β†’ hProp, L A β†’ F A) β†’ filter_le F (PreFilterGenerated L)). Proof. intros L. split. - intros A La. apply hinhpr. exists (singletonSequence A). split. + intros. assumption. + intros x Hx. apply (Hx (O,,paths_refl _)). - intros F Hf A. apply hinhuniv. intros Ha. refine (filter_imply _ _ _ _ _). + apply (pr2 (pr2 Ha)). + apply filter_finite_intersection. intros m. apply Hf. apply (pr1 (pr2 Ha)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterGenerated_correct
38,488
Lemma FilterGenerated_correct {X : UU} : ∏ (L : (X β†’ hProp) β†’ hProp) (Hl : ∏ L' : Sequence (X β†’ hProp), (∏ m, L (L' m)) β†’ (βˆƒ x : X, finite_intersection L' x)), (∏ A : X β†’ hProp, L A β†’ (FilterGenerated L Hl) A) Γ— (∏ F : Filter X, (∏ A : X β†’ hProp, L A β†’ F A) β†’ filter_le F (FilterGenerated L Hl)). Proof. intros L Hl. split. - intros A La. apply hinhpr. exists (singletonSequence A). split. + intros; assumption. + intros x Hx. apply (Hx (O,,paths_refl _)). - intros F Hf A. apply hinhuniv. intros Ha. refine (filter_imply _ _ _ _ _). + apply (pr2 (pr2 Ha)). + apply filter_finite_intersection. intros m. apply Hf. apply (pr1 (pr2 Ha)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterGenerated_correct
38,489
Lemma FilterGenerated_inv {X : UU} : ∏ (L : (X β†’ hProp) β†’ hProp) (F : Filter X), (∏ A : X β†’ hProp, L A β†’ F A) β†’ ∏ (L' : Sequence (X β†’ hProp)), (∏ m, L (L' m)) β†’ (βˆƒ x : X, finite_intersection L' x). Proof. intros L F Hf L' Hl'. apply (filter_notempty F). apply filter_finite_intersection. intros m. apply Hf, Hl'. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterGenerated_inv
38,490
Lemma ex_filter_le {X : UU} : ∏ (F : Filter X) (A : X β†’ hProp), (βˆ‘ G : Filter X, filter_le G F Γ— G A) <-> (∏ B : X β†’ hProp, F B β†’ (βˆƒ x : X, A x ∧ B x)). Proof. intros F A. split. - intros G B Fb. apply (filter_notempty (pr1 G)). apply filter_and. + apply (pr2 (pr2 G)). + now apply (pr1 (pr2 G)). - intros H. simple refine (tpair _ _ _). + simple refine (FilterGenerated _ _). * intros B. apply (F B ∨ B = A). * intros L Hl. assert (B : βˆƒ B : X β†’ hProp, F B Γ— (∏ x, (A x ∧ B x β†’ A x ∧ finite_intersection L x))). { revert L Hl. apply (Sequence_rect (P := Ξ» L : Sequence (X β†’ hProp), (∏ m : stn (length L), (Ξ» B : X β†’ hProp, F B ∨ B = A) (L m)) β†’ βˆƒ B : X β†’ hProp, F B Γ— (∏ x : X, A x ∧ B x β†’ A x ∧ finite_intersection L x))). - intros Hl. apply hinhpr. rewrite finite_intersection_htrue. exists (Ξ» _, htrue). split. + exact (filter_htrue F). + intros; assumption. - intros L B IHl Hl. rewrite finite_intersection_append. simple refine (hinhuniv _ _). 3: apply IHl. + intros C. generalize (Hl lastelement) ; simpl. rewrite append_vec_compute_2. apply hinhfun. apply sumofmaps ; [intros Fl | intros ->]. * refine (tpair _ _ _). split. ** apply (filter_and F). *** apply (pr1 (pr2 C)). *** apply Fl. ** intros x H0 ; repeat split. *** exact (pr1 H0). *** exact (pr2 (pr2 H0)). *** simple refine (pr2 (pr2 (pr2 C) x _)). split. **** exact (pr1 H0). **** exact (pr1 (pr2 H0)). * exists (pr1 C) ; split. ** exact (pr1 (pr2 C)). ** intros x H0 ; repeat split. *** exact (pr1 H0). *** exact (pr1 H0). *** simple refine (pr2 (pr2 (pr2 C) x _)). exact H0. + intros. generalize (Hl (dni_lastelement m)) ; simpl. rewrite <- replace_dni_last. now rewrite append_vec_compute_1. } revert B. apply hinhuniv. intros B. generalize (H (pr1 B) (pr1 (pr2 B))). apply hinhfun. intros x. exists (pr1 x). simple refine (pr2 (pr2 (pr2 B) (pr1 x) _)). exact (pr2 x). + split. * intros B Fb. apply hinhpr. exists (singletonSequence B). split. ** intros m. apply hinhpr. now left. ** intros x Hx. apply (Hx (O ,, paths_refl _)). * apply hinhpr. exists (singletonSequence A). split. ** intros m. apply hinhpr. now right. ** intros x Hx. apply (Hx (O ,, paths_refl _)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
ex_filter_le
38,491
Definition isbase_and := ∏ A B : X β†’ hProp, base A β†’ base B β†’ βˆƒ C : X β†’ hProp, base C Γ— (∏ x, C x β†’ A x ∧ B x).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isbase_and
38,492
Definition isbase_notempty := βˆƒ A : X β†’ hProp, base A.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isbase_notempty
38,493
Definition isbase_notfalse := ∏ A, base A β†’ βˆƒ x, A x.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isbase_notfalse
38,494
Definition isBaseOfPreFilter := isbase_and Γ— isbase_notempty.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isBaseOfPreFilter
38,495
Definition isBaseOfFilter := isbase_and Γ— isbase_notempty Γ— isbase_notfalse.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isBaseOfFilter
38,496
Definition BaseOfPreFilter (X : UU) := βˆ‘ (base : (X β†’ hProp) β†’ hProp), isBaseOfPreFilter base.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfPreFilter
38,497
Definition pr1BaseOfPreFilter {X : UU} : BaseOfPreFilter X β†’ ((X β†’ hProp) β†’ hProp) := pr1.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
pr1BaseOfPreFilter
38,498
Definition BaseOfFilter (X : UU) := βˆ‘ (base : (X β†’ hProp) β†’ hProp), isBaseOfFilter base.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfFilter
38,499