fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Lemma isirreflapSet {X : apSet} : ∏ x : X, ¬ (x # x). Proof. exact (pr1 (pr2 (pr2 X))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isirreflapSet
200
Lemma issymmapSet {X : apSet} : ∏ x y : X, x # y β†’ y # x. Proof. exact (pr1 (pr2 (pr2 (pr2 X)))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
issymmapSet
201
Lemma iscotransapSet {X : apSet} : ∏ x y z : X, x # z β†’ x # y ∨ y # z. Proof. exact (pr2 (pr2 (pr2 (pr2 X)))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
iscotransapSet
202
Definition istight {X : UU} (R : hrel X) := ∏ x y : X, Β¬ (R x y) β†’ x = y.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
istight
203
Definition istightap {X : UU} (ap : hrel X) := isaprel ap Γ— istight ap.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
istightap
204
Definition tightap (X : UU) := βˆ‘ ap : hrel X, istightap ap.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightap
205
Definition tightap_aprel {X : UU} (ap : tightap X) : aprel X := pr1 ap ,, (pr1 (pr2 ap)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightap_aprel
206
Definition tightapSet := βˆ‘ X : hSet, tightap X.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightapSet
207
Definition tightapSet_apSet (X : tightapSet) : apSet := pr1 X ,, (tightap_aprel (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightapSet_apSet
208
Definition tightapSet_rel (X : tightapSet) : hrel X := (pr1 (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightapSet_rel
209
Lemma isirrefltightapSet {X : tightapSet} : ∏ x : X, Β¬ (x β‰  x). Proof. exact isirreflapSet. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isirrefltightapSet
210
Lemma issymmtightapSet {X : tightapSet} : ∏ x y : X, x β‰  y β†’ y β‰  x. Proof. exact issymmapSet. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
issymmtightapSet
211
Lemma iscotranstightapSet {X : tightapSet} : ∏ x y z : X, x β‰  z β†’ x β‰  y ∨ y β‰  z. Proof. exact iscotransapSet. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
iscotranstightapSet
212
Lemma istighttightapSet {X : tightapSet} : ∏ x y : X, Β¬ (x β‰  y) β†’ x = y. Proof. exact (pr2 (pr2 (pr2 X))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
istighttightapSet
213
Lemma istighttightapSet_rev {X : tightapSet} : ∏ x y : X, x = y β†’ Β¬ (x β‰  y). Proof. intros x _ <-. now apply isirrefltightapSet. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
istighttightapSet_rev
214
Lemma tightapSet_dec {X : tightapSet} : LEM β†’ ∏ x y : X, (x != y <-> x β‰  y). Proof. intros Hdec x y. destruct (Hdec (x β‰  y)) as [ Hneq | Heq ]. - split. + intros _ ; apply Hneq. + intros _ Heq. rewrite <- Heq in Hneq. revert Hneq. now apply isirrefltightapSet. - split. + intros Hneq. apply fromempty, Hneq. now apply istighttightapSet. + intros Hneq. exact (fromempty (Heq Hneq)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
tightapSet_dec
215
Definition isapunop {X : tightapSet} (op :unop X) := ∏ x y : X, op x β‰  op y β†’ x β‰  y.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isapunop
216
Lemma isaprop_isapunop {X : tightapSet} (op :unop X) : isaprop (isapunop op). Proof. intros ap. apply impred_isaprop ; intro x. apply impred_isaprop ; intro y. apply isapropimpl. now apply pr2. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isaprop_isapunop
217
Definition islapbinop {X : tightapSet} (op : binop X) := ∏ x, isapunop (λ y, op y x).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
islapbinop
218
Definition israpbinop {X : tightapSet} (op : binop X) := ∏ x, isapunop (λ y, op x y).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
israpbinop
219
Definition isapbinop {X : tightapSet} (op : binop X) := (islapbinop op) Γ— (israpbinop op).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isapbinop
220
Lemma isaprop_islapbinop {X : tightapSet} (op : binop X) : isaprop (islapbinop op). Proof. apply impred_isaprop ; intro x. now apply isaprop_isapunop. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isaprop_islapbinop
221
Lemma isaprop_israpbinop {X : tightapSet} (op : binop X) : isaprop (israpbinop op). Proof. apply impred_isaprop ; intro x. now apply isaprop_isapunop. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isaprop_israpbinop
222
Lemma isaprop_isapbinop {X : tightapSet} (op :binop X) : isaprop (isapbinop op). Proof. intros ap. apply isapropdirprod. now apply isaprop_islapbinop. now apply isaprop_israpbinop. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isaprop_isapbinop
223
Definition apbinop (X : tightapSet) := βˆ‘ op : binop X, isapbinop op.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apbinop
224
Definition apbinop_pr1 {X : tightapSet} (op : apbinop X) : binop X := pr1 op.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apbinop_pr1
225
Definition apsetwithbinop := βˆ‘ X : tightapSet, apbinop X.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwithbinop
226
Definition apsetwithbinop_pr1 (X : apsetwithbinop) : tightapSet := pr1 X.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwithbinop_pr1
227
Definition apsetwithbinop_setwithbinop : apsetwithbinop β†’ setwithbinop := Ξ» X : apsetwithbinop, (apSet_pr1 (apsetwithbinop_pr1 X)),, (pr1 (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwithbinop_setwithbinop
228
Definition op {X : apsetwithbinop} : binop X := op (X := apsetwithbinop_setwithbinop X).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
op
229
Definition apsetwith2binop := βˆ‘ X : tightapSet, apbinop X Γ— apbinop X.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwith2binop
230
Definition apsetwith2binop_pr1 (X : apsetwith2binop) : tightapSet := pr1 X.
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwith2binop_pr1
231
Definition apsetwith2binop_setwith2binop : apsetwith2binop β†’ setwith2binop := Ξ» X : apsetwith2binop, apSet_pr1 (apsetwith2binop_pr1 X),, pr1 (pr1 (pr2 X)),, pr1 (pr2 (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwith2binop_setwith2binop
232
Definition op1 {X : apsetwith2binop} : binop X := op1 (X := apsetwith2binop_setwith2binop X).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
op1
233
Definition op2 {X : apsetwith2binop} : binop X := op2 (X := apsetwith2binop_setwith2binop X).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
op2
234
Lemma islapbinop_op : ∏ x x' y : X, op x y β‰  op x' y β†’ x β‰  x'. Proof. intros x y y'. now apply (pr1 (pr2 (pr2 X))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
islapbinop_op
235
Lemma israpbinop_op : ∏ x y y' : X, op x y β‰  op x y' β†’ y β‰  y'. Proof. intros x y y'. now apply (pr2 (pr2 (pr2 X))). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
israpbinop_op
236
Lemma isapbinop_op : ∏ x x' y y' : X, op x y β‰  op x' y' β†’ x β‰  x' ∨ y β‰  y'. Proof. intros x x' y y' Hop. apply (iscotranstightapSet _ (op x' y)) in Hop. revert Hop ; apply hinhfun ; intros [Hop | Hop]. - left ; revert Hop. now apply islapbinop_op. - right ; revert Hop. now apply israpbinop_op. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isapbinop_op
237
Definition apsetwith2binop_apsetwithbinop1 : apsetwithbinop := (pr1 X) ,, (pr1 (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwith2binop_apsetwithbinop1
238
Definition apsetwith2binop_apsetwithbinop2 : apsetwithbinop := (pr1 X) ,, (pr2 (pr2 X)).
Definition
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
apsetwith2binop_apsetwithbinop2
239
Lemma islapbinop_op1 : ∏ x x' y : X, op1 x y β‰  op1 x' y β†’ x β‰  x'. Proof. exact (islapbinop_op (X := apsetwith2binop_apsetwithbinop1)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
islapbinop_op1
240
Lemma israpbinop_op1 : ∏ x y y' : X, op1 x y β‰  op1 x y' β†’ y β‰  y'. Proof. exact (israpbinop_op (X := apsetwith2binop_apsetwithbinop1)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
israpbinop_op1
241
Lemma isapbinop_op1 : ∏ x x' y y' : X, op1 x y β‰  op1 x' y' β†’ x β‰  x' ∨ y β‰  y'. Proof. exact (isapbinop_op (X := apsetwith2binop_apsetwithbinop1)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isapbinop_op1
242
Lemma islapbinop_op2 : ∏ x x' y : X, op2 x y β‰  op2 x' y β†’ x β‰  x'. Proof. exact (islapbinop_op (X := apsetwith2binop_apsetwithbinop2)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
islapbinop_op2
243
Lemma israpbinop_op2 : ∏ x y y' : X, op2 x y β‰  op2 x y' β†’ y β‰  y'. Proof. exact (israpbinop_op (X := apsetwith2binop_apsetwithbinop2)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
israpbinop_op2
244
Lemma isapbinop_op2 : ∏ x x' y y' : X, op2 x y β‰  op2 x' y' β†’ x β‰  x' ∨ y β‰  y'. Proof. exact (isapbinop_op (X := apsetwith2binop_apsetwithbinop2)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.Propositions. Require Import UniMath.MoreFoundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.DecidablePropositions.
Algebra\Apartness.v
isapbinop_op2
245
Fixpoint natmult {X : monoid} (n : nat) (x : X) : X := match n with | O => 0%addmonoid | S O => x | S m => (x + natmult m x)%addmonoid end.
Fixpoint
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult
246
Definition nattorig {X : rig} (n : nat) : X := natmult (X := rigaddabmonoid X) n 1%rig.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattorig
247
Definition nattoring {X : ring} (n : nat) : X := nattorig (X := ringtorig X) n.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattoring
248
Lemma natmultS : ∏ {X : monoid} (n : nat) (x : X), natmult (S n) x = (x + natmult n x)%addmonoid. Proof. intros X n x. induction n as [|n]. - now rewrite runax. - reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmultS
249
Lemma nattorigS {X : rig} : ∏ (n : nat), nattorig (X := X) (S n) = (1 + nattorig n)%rig. Proof. intros. now apply (natmultS (X := rigaddabmonoid X)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattorigS
250
Lemma nattorig_natmult : ∏ {X : rig} (n : nat) (x : X), (nattorig n * x)%rig = natmult (X := rigaddabmonoid X) n x. Proof. intros. induction n as [|n IHn]. - now apply rigmult0x. - rewrite nattorigS, natmultS. now rewrite rigrdistr, IHn, riglunax2. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattorig_natmult
251
Lemma natmult_plus : ∏ {X : monoid} (n m : nat) (x : X), natmult (n + m) x = (natmult n x + natmult m x)%addmonoid. Proof. induction n as [|n IHn] ; intros m x. - rewrite lunax. reflexivity. - change (S n + m)%nat with (S (n + m))%nat. rewrite !natmultS, IHn, assocax. reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult_plus
252
Lemma nattorig_plus : ∏ {X : rig} (n m : nat), (nattorig (n + m) : X) = (nattorig n + nattorig m)%rig. Proof. intros X n m. apply (natmult_plus (X := rigaddabmonoid X)). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattorig_plus
253
Lemma natmult_mult : ∏ {X : monoid} (n m : nat) (x : X), natmult (n * m) x = (natmult n (natmult m x))%addmonoid. Proof. induction n as [|n IHn] ; intros m x. - reflexivity. - simpl (_ * _)%nat. assert (H : S n = (n + 1)%nat). { rewrite <- plus_n_Sm, natplusr0. reflexivity. } rewrite H ; clear H. rewrite !natmult_plus, IHn. reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult_mult
254
Lemma nattorig_mult : ∏ {X : rig} (n m : nat), (nattorig (n * m) : X) = (nattorig n * nattorig m)%rig. Proof. intros X n m. unfold nattorig. rewrite (natmult_mult (X := rigaddabmonoid X)), <- nattorig_natmult. reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
nattorig_mult
255
Lemma natmult_op {X : monoid} : ∏ (n : nat) (x y : X), (x + y = y + x)%addmonoid β†’ natmult n (x + y)%addmonoid = (natmult n x + natmult n y)%addmonoid. Proof. intros. induction n as [|n IHn]. - rewrite lunax. reflexivity. - rewrite natmultS, assocax, IHn, <- (assocax _ y). assert (X1 : (y + natmult n x = natmult n x + y)%addmonoid). { clear IHn. induction n as [|n IHn]. - rewrite lunax, runax. reflexivity. - rewrite !natmultS, <- assocax, <- X0, !assocax, IHn. reflexivity. } rewrite X1, assocax, <- natmultS, <- assocax, <- natmultS. reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult_op
256
Lemma natmult_binophrel {X : monoid} (R : hrel X) : istrans R β†’ isbinophrel R β†’ ∏ (n : nat) (x y : X), R x y β†’ R (natmult (S n) x) (natmult (S n) y). Proof. intros Hr Hop n x y H. induction n as [|n IHn]. exact H. rewrite !(natmultS (S _)). eapply Hr. apply (pr1 Hop). exact IHn. apply (pr2 Hop). exact H. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult_binophrel
257
Definition setquot_aux {X : monoid} (R : hrel X) : hrel X := Ξ» x y : X, βˆƒ c : X, R (x + c)%addmonoid (y + c)%addmonoid.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
setquot_aux
258
Lemma istrans_setquot_aux {X : abmonoid} (R : hrel X) : istrans R β†’ isbinophrel R β†’ istrans (setquot_aux R). Proof. intros Hr Hop. intros x y z. apply hinhfun2. intros (c1,Hc1) (c2,Hc2). exists (c1 + c2)%addmonoid. eapply Hr. rewrite <- assocax. apply (pr2 Hop). exact Hc1. rewrite assocax, (commax _ c1), <- !assocax. apply (pr2 Hop). exact Hc2. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
istrans_setquot_aux
259
Lemma isbinophrel_setquot_aux {X : abmonoid} (R : hrel X) : isbinophrel R β†’ isbinophrel (setquot_aux R). Proof. intros Hop. split. - intros x y z. apply hinhfun. intros (c,Hc). exists c. rewrite !assocax. apply (pr1 Hop). exact Hc. - intros x y z. apply hinhfun. intros (c,Hc). exists c. rewrite !assocax, (commax _ z), <- !assocax. apply (pr2 Hop). exact Hc. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isbinophrel_setquot_aux
260
Lemma isequiv_setquot_aux {X : abmonoid} (R : hrel X) : isinvbinophrel R β†’ ∏ x y : X, (setquot_aux R) x y <-> R x y. Proof. intros H x y. split. apply hinhuniv. intros (c,H'). generalize H'; clear H'. apply (pr2 H). intros H1. apply hinhpr. exists 0%addmonoid. rewrite !runax. exact H1. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isequiv_setquot_aux
261
Definition isarchmonoid {X : abmonoid} (R : hrel X) := ∏ x y1 y2 : X, R y1 y2 β†’ (βˆƒ n : nat, R (natmult n y1 + x)%addmonoid (natmult n y2)) Γ— (βˆƒ n : nat, R (natmult n y1) (natmult n y2 + x)%addmonoid).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchmonoid
262
Definition isarchmonoid_1 {X : abmonoid} (R : hrel X) : isarchmonoid R β†’ ∏ x y1 y2 : X, R y1 y2 β†’ βˆƒ n : nat, R (natmult n y1 + x)%addmonoid (natmult n y2) := Ξ» H x y1 y2 Hy, (pr1 (H x y1 y2 Hy)).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchmonoid_1
263
Definition isarchmonoid_2 {X : abmonoid} (R : hrel X) : isarchmonoid R β†’ ∏ x y1 y2 : X, R y1 y2 β†’ βˆƒ n : nat, R (natmult n y1) (natmult n y2 + x)%addmonoid := Ξ» H x y1 y2 Hy, (pr2 (H x y1 y2 Hy)).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchmonoid_2
264
Definition isarchgr {X : abgr} (R : hrel X) := ∏ x y1 y2 : X, R y1 y2 β†’ βˆƒ n : nat, R (natmult n y1 + x)%addmonoid (natmult n y2).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchgr
265
Lemma isarchgr_isarchmonoid {X : abgr} (R : hrel X) : isbinophrel R β†’ isarchgr R β†’ isarchmonoid (X := abgrtoabmonoid X) R. Proof. intros Hop H x y1 y2 Hy. split. - now apply H. - generalize (H (grinv X x) _ _ Hy). apply hinhfun. intros (n,Hn). exists n. apply isarchgr_isarchmonoid_aux. exact Hop. exact Hn. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchgr_isarchmonoid
266
Lemma isarchmonoid_isarchgr {X : abgr} (R : hrel X) : isarchmonoid (X := abgrtoabmonoid X) R β†’ isarchgr R. Proof. intros H x y1 y2 Hy. apply (isarchmonoid_1 _ H x y1 y2 Hy). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchmonoid_isarchgr
267
Lemma isarchabgrdiff {X : abmonoid} (R : hrel X) (Hr : isbinophrel R) : istrans R β†’ isarchmonoid (setquot_aux R) β†’ isarchgr (X := abgrdiff X) (abgrdiffrel X (L := R) Hr). Proof. intros Hr' H. simple refine (setquotuniv3prop _ (Ξ» x y1 y2, (abgrdiffrel X Hr y1 y2 β†’ βˆƒ n : nat, abgrdiffrel X Hr (natmult (X := abgrdiff X) n y1 * x)%multmonoid (natmult (X := abgrdiff X) n y2)) ,, _) _). abstract apply isapropimpl, propproperty. intros x y1 y2 Hy. eapply hinhfun2. 2: apply (isarchmonoid_1 _ H (pr1 x) (pr1 y1 * pr2 y2)%multmonoid (pr1 y2 * pr2 y1)%multmonoid), Hy. 2: apply (isarchmonoid_2 _ H (pr2 x) (pr1 y1 * pr2 y2)%multmonoid (pr1 y2 * pr2 y1)%multmonoid), Hy. intros n1 n2. exists (pr1 n1 + pr1 n2)%nat. apply isarchabgrdiff_aux. exact Hr'. exact (pr2 n1). exact (pr2 n2). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchabgrdiff
268
Definition isarchrig {X : rig} (R : hrel X) := (∏ y1 y2 : X, R y1 y2 β†’ βˆƒ n : nat, R (nattorig n * y1)%rig (1 + nattorig n * y2)%rig) Γ— (∏ x : X, βˆƒ n : nat, R (nattorig n) x) Γ— (∏ x : X, βˆƒ n : nat, R (nattorig n + x)%rig 0%rig).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig
269
Definition isarchrig_diff {X : rig} (R : hrel X) : isarchrig R β†’ ∏ y1 y2 : X, R y1 y2 β†’ βˆƒ n : nat, R (nattorig n * y1)%rig (1 + nattorig n * y2)%rig := pr1.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_diff
270
Definition isarchrig_gt {X : rig} (R : hrel X) : isarchrig R β†’ ∏ x : X, βˆƒ n : nat, R (nattorig n) x := Ξ» H, (pr1 (pr2 H)).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_gt
271
Definition isarchrig_pos {X : rig} (R : hrel X) : isarchrig R β†’ ∏ x : X, βˆƒ n : nat, R (nattorig n + x)%rig 0%rig := Ξ» H, (pr2 (pr2 H)).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_pos
272
Lemma isarchrig_setquot_aux {X : rig} (R : hrel X) : isinvbinophrel (X := rigaddabmonoid X) R β†’ isarchrig R β†’ isarchrig (setquot_aux (X := rigaddabmonoid X) R). Proof. intros Hr H. split ; [ | split]. - intros y1 y2. apply hinhuniv. intros Hy. generalize (isarchrig_diff R H y1 y2 (pr2 Hr _ _ _ (pr2 Hy))). apply hinhfun. intros n. exists (pr1 n). apply hinhpr. exists 0%rig. rewrite runax, runax. exact (pr2 n). - intros x. generalize (isarchrig_gt R H x). apply hinhfun. intros n. exists (pr1 n). apply hinhpr. exists 0%rig. rewrite runax, runax. exact (pr2 n). - intros x. generalize (isarchrig_pos R H x). apply hinhfun. intros n. exists (pr1 n). apply hinhpr. exists 0%rig. rewrite runax, runax. exact (pr2 n). Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_setquot_aux
273
Lemma isarchrig_isarchmonoid {X : rig} (R : hrel X) : R 1%rig 0%rig β†’ istrans R β†’ isbinophrel (X := rigaddabmonoid X) R β†’ isarchrig R β†’ isarchmonoid (X := rigaddabmonoid X) R. Proof. intros Hr1 Hr Hop1 H x y1 y2 Hy. split. - generalize (isarchrig_diff _ H _ _ Hy) (isarchrig_pos _ H x). apply hinhfun2. intros m n. exists (max 1 (pr1 n) * (pr1 m))%nat. apply isarchrig_isarchmonoid_1_aux. exact Hr1. exact Hr. exact Hop1. exact (pr2 m). exact (pr2 n). - generalize (isarchrig_diff _ H _ _ Hy) (isarchrig_gt _ H x). apply hinhfun2. intros m n. exists (max 1 (pr1 n) * (pr1 m))%nat. apply isarchrig_isarchmonoid_2_aux. exact Hr1. exact Hr. exact Hop1. exact (pr2 m). exact (pr2 n). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_isarchmonoid
274
Lemma isarchmonoid_isarchrig {X : rig} (R : hrel X) : (R 1%rig 0%rig) β†’ isarchmonoid (X := rigaddabmonoid X) R β†’ isarchrig R. Proof. intros H01 H. repeat split. - intros y1 y2 Hy. generalize (isarchmonoid_2 _ H 1%rig y1 y2 Hy). apply hinhfun. intros n. exists (pr1 n). abstract (rewrite !nattorig_natmult, rigcomm1 ; exact (pr2 n)). - intros x. generalize (isarchmonoid_2 _ H x _ _ H01). apply hinhfun. intros n. exists (pr1 n). abstract ( pattern x at 1; rewrite <- (riglunax1 X x) ; pattern (0%rig : X) at 1; rewrite <- (rigmultx0 X (nattorig (pr1 n))) ; rewrite nattorig_natmult ; exact (pr2 n)). - intros x. generalize (isarchmonoid_1 _ H x _ _ H01). apply hinhfun. intros n. exists (pr1 n). abstract ( pattern (0%rig : X) at 1; rewrite <- (rigmultx0 X (nattorig (pr1 n))), nattorig_natmult ; exact (pr2 n)). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchmonoid_isarchrig
275
Definition isarchring {X : ring} (R : hrel X) := (∏ x : X, R x 0%ring β†’ βˆƒ n : nat, R (nattoring n * x)%ring 1%ring) Γ— (∏ x : X, βˆƒ n : nat, R (nattoring n) x).
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring
276
Definition isarchring_1 {X : ring} (R : hrel X) : isarchring R β†’ ∏ x : X, R x 0%ring β†’ βˆƒ n : nat, R (nattoring n * x)%ring 1%ring := pr1.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_1
277
Definition isarchring_2 {X : ring} (R : hrel X) : isarchring R β†’ ∏ x : X, βˆƒ n : nat, R (nattoring n) x := pr2.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_2
278
Lemma isarchring_isarchrig {X : ring} (R : hrel X) : isbinophrel (X := rigaddabmonoid X) R β†’ isarchring R β†’ isarchrig (X := ringtorig X) R. Proof. intros Hop1 H. repeat split. - intros y1 y2 Hy. assert (X0 : R (y1 - y2)%ring 0%ring). abstract (apply (pr2 (isinvbinophrelgr X Hop1)) with y2 ; change BinaryOperations.op with (@BinaryOperations.op1 X) ; rewrite ringassoc1, ringlinvax1, ringlunax1, ringrunax1 ; exact Hy). generalize (isarchring_1 _ H _ X0). apply hinhfun. intros n. exists (pr1 n). abstract (rewrite <- (ringrunax1 _ (nattorig (pr1 n) * y1)%ring), <- (ringlinvax1 _ (nattorig (pr1 n) * y2)%ring), <- ringassoc1 ; apply (pr2 Hop1) ; rewrite <- ringrmultminus, <- ringldistr ; exact (pr2 n)). - apply isarchring_2. exact H. - intros x. generalize (isarchring_2 _ H (- x)%ring). apply hinhfun. intros n. exists (pr1 n). abstract (change 0%rig with (0%ring : X) ; rewrite <- (ringlinvax1 _ x) ; apply (pr2 Hop1) ; exact (pr2 n)). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_isarchrig
279
Lemma isarchrig_isarchring {X : ring} (R : hrel X) : isbinophrel (X := rigaddabmonoid X) R β†’ isarchrig (X := ringtorig X) R β†’ isarchring R. Proof. intros Hr H. split. - intros x Hx. generalize (isarchrig_diff _ H _ _ Hx). apply hinhfun. intros (n,Hn). exists n. rewrite <- (ringrunax1 _ 1%ring), <- (ringmultx0 _ (nattoring n)). exact Hn. - apply (isarchrig_gt (X := ringtorig X)). exact H. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrig_isarchring
280
Lemma isarchring_isarchgr {X : ring} (R : hrel X) : R 1%ring 0%ring β†’ istrans R β†’ isbinophrel (X := X) R β†’ isarchring R β†’ isarchgr (X := X) R. Proof. intros Hr0 Hr Hop1 H. apply isarchmonoid_isarchgr. apply (isarchrig_isarchmonoid (X := X)). exact Hr0. exact Hr. exact Hop1. now apply isarchring_isarchrig. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_isarchgr
281
Lemma isarchgr_isarchring {X : ring} (R : hrel X) : R 1%ring 0%ring β†’ istrans R β†’ isbinophrel (X := X) R β†’ isarchgr (X := X) R β†’ isarchring R. Proof. intros Hr0 Hr Hop1 H. apply isarchrig_isarchring. exact Hop1. apply isarchmonoid_isarchrig. exact Hr0. now apply (isarchgr_isarchmonoid (X := X)). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchgr_isarchring
282
Theorem isarchrigtoring : ∏ (X : rig) (R : hrel X) (Hr : R 1%rig 0%rig) (Hadd : isbinophrel (X := rigaddabmonoid X) R) (Htra : istrans R) (Harch : isarchrig (setquot_aux (X := rigaddabmonoid X) R)), isarchring (X := rigtoring X) (rigtoringrel X Hadd). Proof. intros. apply isarchgr_isarchring. abstract (apply hinhpr ; simpl ; exists 0%rig ; rewrite !rigrunax1 ; exact Hr). now apply (istransabgrdiffrel (rigaddabmonoid X)). now generalize Hadd ; apply isbinopabgrdiffrel. apply (isarchabgrdiff (X := rigaddabmonoid X)). exact Htra. apply isarchrig_isarchmonoid. abstract (apply hinhpr ; simpl ; exists 0%rig ; rewrite !rigrunax1 ; exact Hr). (now apply (istrans_setquot_aux (X := rigaddabmonoid X))). (now apply (isbinophrel_setquot_aux (X := rigaddabmonoid X))). exact Harch. Defined.
Theorem
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchrigtoring
283
Lemma natmult_commringfrac {X : commring} {S : subabmonoid _} : ∏ n (x : X Γ— S), natmult (X := commringfrac X S) n (setquotpr (eqrelcommringfrac X S) x) = setquotpr (eqrelcommringfrac X S) (natmult (X := X) n (pr1 x) ,, (pr2 x)). Proof. simpl ; intros n x. induction n as [|n IHn]. - apply (iscompsetquotpr (eqrelcommringfrac X S)). apply hinhpr ; simpl. exists (pr2 x). rewrite !(ringmult0x X). reflexivity. - rewrite !natmultS, IHn. apply (iscompsetquotpr (eqrelcommringfrac X S)). apply hinhpr ; simpl. exists (pr2 x) ; simpl. rewrite <- (ringldistr X). rewrite (ringcomm2 X (pr1 (pr2 x))). rewrite !(ringassoc2 X). reflexivity. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
natmult_commringfrac
284
Lemma isarchcommringfrac {X : commring} {S : subabmonoid _} (R : hrel X) Hop1 Hop2 Hs: R 1%ring 0%ring β†’ istrans R β†’ isarchring R β†’ isarchring (X := commringfrac X S) (commringfracgt X S (R := R) Hop1 Hop2 Hs). Proof. intros H0 Htra Hr. split. - simple refine (setquotunivprop _ (Ξ» _, (_,,_)) _). apply isapropimpl, propproperty. intros x Hx. revert Hx ; apply hinhuniv ; intros (c,Hx) ; simpl in Hx. rewrite !(ringmult0x X), (ringrunax2 X) in Hx. apply (hinhfun (X := βˆ‘ n, commringfracgt X S Hop1 Hop2 Hs (setquotpr (eqrelcommringfrac X S) ((nattoring n * pr1 x)%ring,, pr2 x)) 1%ring)). intros H. eexists (pr1 H). unfold nattoring. rewrite (nattorig_natmult (X := commringfrac X S)). rewrite (natmult_commringfrac (X := X) (S := S)). rewrite <- (nattorig_natmult (X := X)). now apply (pr2 H). generalize (isarchring_1 _ Hr _ Hx) (isarchring_2 _ Hr (pr1 (pr2 x) * pr1 c)%ring). apply hinhfun2. intros (m,Hm) (n,Hn). exists (max 1 n * m)%nat. destruct n ; simpl max. + apply hinhpr ; simpl. exists c. rewrite (ringrunax2 X), (ringlunax2 X), (ringassoc2 X). eapply Htra. exact Hm. eapply Htra. exact H0. exact Hn. + unfold nattoring. rewrite (nattorig_natmult (X := X)), natmult_mult. apply hinhpr ; simpl. exists c. change (R (natmult (succ n) (natmult (X := X) m (pr1 x)) * 1 * pr1 c)%ring (1 * pr1 (pr2 x) * pr1 c)%ring). rewrite <- (nattorig_natmult (X := X)), (ringrunax2 X), (ringlunax2 X), (ringassoc2 X), (nattorig_natmult (X := X)). eapply Htra. apply (natmult_binophrel (X := X) R). exact Htra. exact Hop1. rewrite <- (nattorig_natmult (X := X)), (ringassoc2 X). exact Hm. exact Hn. - simple refine (setquotunivprop _ _ _). intros x. apply (hinhfun (X := βˆ‘ n : nat, commringfracgt X S Hop1 Hop2 Hs (setquotpr (eqrelcommringfrac X S) (nattoring n,, unel S)) (setquotpr (eqrelcommringfrac X S) x))). intros (n,Hn). exists n. unfold nattoring, nattorig. change 1%rig with (setquotpr (eqrelcommringfrac X S) (1%ring,, unel S)). rewrite (natmult_commringfrac (X := X) (S := S) n). exact Hn. generalize (isarchring_1 _ Hr _ (Hs (pr1 (pr2 x)) (pr2 (pr2 x)))) (isarchring_2 _ Hr (pr1 x)%ring). apply hinhfun2. intros (m,Hm) (n,Hn). exists (max 1 n * m)%nat. destruct n ; simpl max. + apply hinhpr ; simpl. exists (pr2 x). apply (isringmultgttoisrringmultgt X). exact Hop1. exact Hop2. apply Hs. apply (pr2 (pr2 x)). eapply Htra. exact Hm. eapply Htra. exact H0. rewrite (ringrunax2 X). exact Hn. + apply hinhpr ; simpl. exists (pr2 x). change (n * m + m)%nat with (succ n * m)%nat. unfold nattoring. apply (isringmultgttoisrringmultgt X). exact Hop1. exact Hop2. apply Hs. apply (pr2 (pr2 x)). rewrite (ringrunax2 X), (nattorig_natmult (X := X)), natmult_mult. eapply Htra. apply (natmult_binophrel (X := X) R). exact Htra. exact Hop1. rewrite <- (nattorig_natmult (X := X)). exact Hm. exact Hn. Qed.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchcommringfrac
285
Definition isarchfld {X : fld} (R : hrel X) := ∏ x : X, βˆƒ n : nat, R (nattoring n) x.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchfld
286
Lemma isarchfld_isarchring {X : fld} (R : hrel X) : ∏ (Hadd : isbinophrel (X := rigaddabmonoid X) R) ( Hmult : isringmultgt X R) (Hirr : isirrefl R), isarchfld R β†’ isarchring R. Proof. intros Hadd Hmult Hirr H. split. - intros x Hx. case (fldchoice x) ; intros x'. + generalize (H (pr1 x')). apply hinhfun. intros n. exists (pr1 n). abstract (pattern (1%ring : X) at 1 ; rewrite <- (pr1 (pr2 x')) ; apply (isringmultgttoisrringmultgt _ Hadd Hmult _ _ _ Hx (pr2 n))). + apply hinhpr. exists O. abstract (apply fromempty ; refine (Hirr _ _) ; rewrite x' in Hx ; apply Hx). - exact H. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchfld_isarchring
287
Lemma isarchring_isarchfld {X : fld} (R : hrel X) : isarchring R β†’ isarchfld R. Proof. intros H. intros x. apply (isarchring_2 R H x). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_isarchfld
288
Theorem isarchfldfrac ( X : intdom ) ( is : isdeceq X ) { R : hrel X } ( is0 : @isbinophrel X R ) ( is1 : isringmultgt X R ) ( is2 : R 1%ring 0%ring ) ( nc : neqchoice R ) ( irr : isirrefl R ) ( tra : istrans R ) : isarchring R β†’ isarchfld (X := fldfrac X is ) (fldfracgt _ is is0 is1 is2 nc). Proof. intros. apply isarchring_isarchfld. unfold fldfracgt. generalize (isarchcommringfrac (X := X) (S := ringpossubmonoid X is1 is2) R is0 is1 (Ξ» (c : X) (r : (ringpossubmonoid X is1 is2) c), r) is2 tra X0). intros. assert (H_f : ∏ n x, (weqfldfracgt_f X is is0 is1 is2 nc (nattoring n * x)%ring) = (nattoring n * weqfldfracgt_f X is is0 is1 is2 nc x)%ring). { clear -irr. intros n x. unfold nattoring. rewrite (nattorig_natmult (X := fldfrac X is)), (nattorig_natmult (X := commringfrac X (@ringpossubmonoid X R is1 is2))). induction n as [|n IHn]. - refine (pr2 (pr1 (isringfunweqfldfracgt_f _ _ _ _ _ _ _))). exact irr. - rewrite !natmultS, <- IHn. refine (pr1 (pr1 (isringfunweqfldfracgt_f _ _ _ _ _ _ _)) _ _). exact irr. } assert (H_0 : (weqfldfracgt_f X is is0 is1 is2 nc 0%ring) = 0%ring). { refine (pr2 (pr1 (isringfunweqfldfracgt_f _ _ _ _ _ _ _))). exact irr. } assert (H_1 : (weqfldfracgt_f X is is0 is1 is2 nc 1%ring) = 1%ring). { refine (pr2 (pr2 (isringfunweqfldfracgt_f _ _ _ _ _ _ _))). exact irr. } split. - intros x Hx. eapply hinhfun. 2: apply (isarchring_1 _ X1 (weqfldfracgt_f X is is0 is1 is2 nc x)). intros (n,Hn). exists n. rewrite H_f, H_1. exact Hn. rewrite H_0 in Hx. exact Hx. - intros x. eapply hinhfun. 2: apply (isarchring_2 _ X1 (weqfldfracgt_f X is is0 is1 is2 nc x)). intros (n,Hn). exists n. rewrite <- (ringrunax2 _ (nattoring n)), H_f, H_1, ringrunax2. exact Hn. Defined.
Theorem
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchfldfrac
289
Definition isarchCF {X : ConstructiveField} (R : hrel X) := ∏ x : X, βˆƒ n : nat, R (nattoring n) x.
Definition
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchCF
290
Lemma isarchCF_isarchring {X : ConstructiveField} (R : hrel X) : ∏ (Hadd : isbinophrel (X := rigaddabmonoid X) R) ( Hmult : isringmultgt X R) (Hirr : isirrefl R), (∏ x : X, R x 0%CF β†’ (x β‰  0)%CF) β†’ isarchCF R β†’ isarchring R. Proof. intros Hadd Hmult Hirr H0 H. split. - intros x Hx. generalize (H (CFinv x (H0 _ Hx))). apply hinhfun. intros (n,Hn). exists n. change 1%ring with (1%CF : X). rewrite <- (islinv_CFinv x (H0 x Hx)). apply isringmultgttoisrringmultgt. exact Hadd. exact Hmult. exact Hx. exact Hn. - exact H. Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchCF_isarchring
291
Lemma isarchring_isarchCF {X : ConstructiveField} (R : hrel X) : isarchring R β†’ isarchCF R. Proof. intros H. intros x. apply (isarchring_2 R H x). Defined.
Lemma
Algebra
Require Import UniMath.Foundations.NaturalNumbers. Require Import UniMath.Algebra.RigsAndRings. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.Domains_and_Fields. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.MoreFoundations.Tactics.
Algebra\Archimedean.v
isarchring_isarchCF
292
Definition unop (X : UU) : UU := X β†’ X.
Definition
Algebra
null
Algebra\BinaryOperations.v
unop
293
Definition islcancelable {X : UU} (opp : binop X) (x : X) : UU := isincl (Ξ» x0 : X, opp x x0).
Definition
Algebra
null
Algebra\BinaryOperations.v
islcancelable
294
Definition lcancel {X : UU} {opp : binop X} {x : X} (H_x : islcancelable opp x) (y z : X) : opp x y = opp x z β†’ y = z. Proof. apply invmaponpathsincl, H_x. Defined.
Definition
Algebra
null
Algebra\BinaryOperations.v
lcancel
295
Definition isrcancelable {X : UU} (opp : binop X) (x : X) : UU := isincl (Ξ» x0 : X, opp x0 x).
Definition
Algebra
null
Algebra\BinaryOperations.v
isrcancelable
296
Definition rcancel {X : UU} {opp : binop X} {x : X} (H_x : isrcancelable opp x) (y z : X) : opp y x = opp z x β†’ y = z. Proof. apply (invmaponpathsincl (Ξ» y, opp y x)), H_x. Defined.
Definition
Algebra
null
Algebra\BinaryOperations.v
rcancel
297
Definition iscancelable {X : UU} (opp : binop X) (x : X) : UU := (islcancelable opp x) Γ— (isrcancelable opp x).
Definition
Algebra
null
Algebra\BinaryOperations.v
iscancelable
298
Definition islinvertible {X : UU} (opp : binop X) (x : X) : UU := isweq (Ξ» x0 : X, opp x x0).
Definition
Algebra
null
Algebra\BinaryOperations.v
islinvertible
299