file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
2.5
98.5
max_line_length
int64
5
993
alphanum_fraction
float64
0.27
0.91
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/robots/a1_description/config/robot_control.yaml
a1_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,286
YAML
31.211267
66
0.552931
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/robots/aliengo_description/config/robot_control.yaml
aliengo_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,291
YAML
31.28169
66
0.553907
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/robots/go1_description/config/robot_control.yaml
go1_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,287
YAML
31.225352
66
0.553126
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/b1_description/config/robot_control.yaml
b1_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,286
YAML
31.211267
66
0.552931
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/aliengo_description/config/robot_control.yaml
aliengo_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,291
YAML
31.28169
66
0.553907
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/go1_description/config/robot_control.yaml
go1_gazebo: # Publish all joint states ----------------------------------- joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 1000 # FL Controllers --------------------------------------- FL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # FR Controllers --------------------------------------- FR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: FR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} FR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: FR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} FR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: FR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RL Controllers --------------------------------------- RL_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RL_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RL_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RL_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RL_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RL_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0} # RR Controllers --------------------------------------- RR_hip_controller: type: unitree_legged_control/UnitreeJointController joint: RR_hip_joint pid: {p: 100.0, i: 0.0, d: 5.0} RR_thigh_controller: type: unitree_legged_control/UnitreeJointController joint: RR_thigh_joint pid: {p: 300.0, i: 0.0, d: 8.0} RR_calf_controller: type: unitree_legged_control/UnitreeJointController joint: RR_calf_joint pid: {p: 300.0, i: 0.0, d: 8.0}
2,287
YAML
31.225352
66
0.553126
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/opendog_description-CHAMP/README.md
URDF and Gazebo model of [Jame's Bruton's](https://www.youtube.com/user/jamesbruton) [OpenDog V2](https://github.com/XRobots/openDogV2) project.
146
Markdown
72.499964
145
0.760274
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/README.md
# openDogV2: CAD and Code that relates to this YouTube series: https://www.youtube.com/playlist?list=PLpwJoq86vov9CcmrLGyM2XyyYDAYG0-Iu Release 1: created at the end of part 6 of the YouTube series. Please note the issues stated at the end of this video. Release 2: created at the end of part 7 of the YouTube series. Please note the issues stated during this video. Note that the remote is unchanged since release 1. Relase 3: created for part 8 of the YouTube series. Includes the modified knee motor pulley, Python and Arduino code for the deep learning model. # Related Community Projects: OpenDog URDF/config for CHAMP: https://github.com/chvmp/opendog_description 'openDog 2.1' with higher belt reductions and cooling fans: https://github.com/J-DIndustries/openDog-V2.1
789
Markdown
42.888887
162
0.784537
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release02/Code/openDogV2_R2/MPU6050_6Axis_MotionApps20.h
// I2Cdev library collection - MPU6050 I2C device class, 6-axis MotionApps 2.0 implementation // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00) // 5/20/2013 by Jeff Rowberg <jeff@rowberg.net> // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib // // Changelog: // ... - ongoing debug release /* ============================================ I2Cdev device library code is placed under the MIT license Copyright (c) 2012 Jeff Rowberg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================== */ #ifndef _MPU6050_6AXIS_MOTIONAPPS20_H_ #define _MPU6050_6AXIS_MOTIONAPPS20_H_ #include "I2Cdev.h" #include "helper_3dmath.h" // MotionApps 2.0 DMP implementation, built using the MPU-6050EVB evaluation board #define MPU6050_INCLUDE_DMP_MOTIONAPPS20 #include "MPU6050.h" // Tom Carpenter's conditional PROGMEM code // http://forum.arduino.cc/index.php?topic=129407.0 #ifndef __arm__ #include <avr/pgmspace.h> #else // Teensy 3.0 library conditional PROGMEM code from Paul Stoffregen #ifndef __PGMSPACE_H_ #define __PGMSPACE_H_ 1 #include <inttypes.h> #define PROGMEM #define PGM_P const char * #define PSTR(str) (str) #define F(x) x typedef void prog_void; typedef char prog_char; typedef unsigned char prog_uchar; typedef int8_t prog_int8_t; typedef uint8_t prog_uint8_t; typedef int16_t prog_int16_t; typedef uint16_t prog_uint16_t; typedef int32_t prog_int32_t; typedef uint32_t prog_uint32_t; #define strcpy_P(dest, src) strcpy((dest), (src)) #define strcat_P(dest, src) strcat((dest), (src)) #define strcmp_P(a, b) strcmp((a), (b)) #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define pgm_read_word(addr) (*(const unsigned short *)(addr)) #define pgm_read_dword(addr) (*(const unsigned long *)(addr)) #define pgm_read_float(addr) (*(const float *)(addr)) #define pgm_read_byte_near(addr) pgm_read_byte(addr) #define pgm_read_word_near(addr) pgm_read_word(addr) #define pgm_read_dword_near(addr) pgm_read_dword(addr) #define pgm_read_float_near(addr) pgm_read_float(addr) #define pgm_read_byte_far(addr) pgm_read_byte(addr) #define pgm_read_word_far(addr) pgm_read_word(addr) #define pgm_read_dword_far(addr) pgm_read_dword(addr) #define pgm_read_float_far(addr) pgm_read_float(addr) #endif #endif /* Source is from the InvenSense MotionApps v2 demo code. Original source is * unavailable, unless you happen to be amazing as decompiling binary by * hand (in which case, please contact me, and I'm totally serious). * * Also, I'd like to offer many, many thanks to Noah Zerkin for all of the * DMP reverse-engineering he did to help make this bit of wizardry * possible. */ // NOTE! Enabling DEBUG adds about 3.3kB to the flash program size. // Debug output is now working even on ATMega328P MCUs (e.g. Arduino Uno) // after moving string constants to flash memory storage using the F() // compiler macro (Arduino IDE 1.0+ required). //#define DEBUG #ifdef DEBUG #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTF(x, y) Serial.print(x, y) #define DEBUG_PRINTLN(x) Serial.println(x) #define DEBUG_PRINTLNF(x, y) Serial.println(x, y) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTF(x, y) #define DEBUG_PRINTLN(x) #define DEBUG_PRINTLNF(x, y) #endif #define MPU6050_DMP_CODE_SIZE 1929 // dmpMemory[] #define MPU6050_DMP_CONFIG_SIZE 192 // dmpConfig[] #define MPU6050_DMP_UPDATES_SIZE 47 // dmpUpdates[] /* ================================================================================================ * | Default MotionApps v2.0 42-byte FIFO packet structure: | | | | [QUAT W][ ][QUAT X][ ][QUAT Y][ ][QUAT Z][ ][GYRO X][ ][GYRO Y][ ] | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | | | [GYRO Z][ ][ACC X ][ ][ACC Y ][ ][ACC Z ][ ][ ] | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | * ================================================================================================ */ // this block of memory gets written to the MPU on start-up, and it seems // to be volatile memory, so it has to be done each time (it only takes ~1 // second though) const unsigned char dmpMemory[MPU6050_DMP_CODE_SIZE] PROGMEM = { // bank 0, 256 bytes 0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82, 0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC, 0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4, 0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10, // bank 1, 256 bytes 0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8, 0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C, 0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C, 0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0, // bank 2, 256 bytes 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // bank 3, 256 bytes 0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F, 0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2, 0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF, 0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C, 0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1, 0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01, 0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80, 0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80, 0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E, 0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9, 0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0, 0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86, 0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1, 0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86, // bank 4, 256 bytes 0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA, 0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C, 0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8, 0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3, 0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84, 0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5, 0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3, 0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1, 0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5, 0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A, 0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8, 0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87, // bank 5, 256 bytes 0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8, 0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68, 0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D, 0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94, 0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56, 0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA, 0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A, 0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60, 0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97, 0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04, 0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78, 0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79, 0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68, 0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68, // bank 6, 256 bytes 0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04, 0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66, 0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31, 0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60, 0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76, 0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56, 0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD, 0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91, 0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE, 0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9, 0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD, 0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E, 0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8, 0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89, 0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79, // bank 7, 138 bytes (remainder) 0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA, 0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB, 0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3, 0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3, 0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC, 0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF }; // thanks to Noah Zerkin for piecing this stuff together! const unsigned char dmpConfig[MPU6050_DMP_CONFIG_SIZE] PROGMEM = { // BANK OFFSET LENGTH [DATA] 0x03, 0x7B, 0x03, 0x4C, 0xCD, 0x6C, // FCFG_1 inv_set_gyro_calibration 0x03, 0xAB, 0x03, 0x36, 0x56, 0x76, // FCFG_3 inv_set_gyro_calibration 0x00, 0x68, 0x04, 0x02, 0xCB, 0x47, 0xA2, // D_0_104 inv_set_gyro_calibration 0x02, 0x18, 0x04, 0x00, 0x05, 0x8B, 0xC1, // D_0_24 inv_set_gyro_calibration 0x01, 0x0C, 0x04, 0x00, 0x00, 0x00, 0x00, // D_1_152 inv_set_accel_calibration 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_accel_calibration 0x03, 0x89, 0x03, 0x26, 0x46, 0x66, // FCFG_7 inv_set_accel_calibration 0x00, 0x6C, 0x02, 0x20, 0x00, // D_0_108 inv_set_accel_calibration 0x02, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_00 inv_set_compass_calibration 0x02, 0x44, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_01 0x02, 0x48, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_02 0x02, 0x4C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_10 0x02, 0x50, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_11 0x02, 0x54, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_12 0x02, 0x58, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_20 0x02, 0x5C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_21 0x02, 0xBC, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_22 0x01, 0xEC, 0x04, 0x00, 0x00, 0x40, 0x00, // D_1_236 inv_apply_endian_accel 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_mpu_sensors 0x04, 0x02, 0x03, 0x0D, 0x35, 0x5D, // CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion 0x04, 0x09, 0x04, 0x87, 0x2D, 0x35, 0x3D, // FCFG_5 inv_set_bias_update 0x00, 0xA3, 0x01, 0x00, // D_0_163 inv_set_dead_zone // SPECIAL 0x01 = enable interrupts 0x00, 0x00, 0x00, 0x01, // SET INT_ENABLE at i=22, SPECIAL INSTRUCTION 0x07, 0x86, 0x01, 0xFE, // CFG_6 inv_set_fifo_interupt 0x07, 0x41, 0x05, 0xF1, 0x20, 0x28, 0x30, 0x38, // CFG_8 inv_send_quaternion 0x07, 0x7E, 0x01, 0x30, // CFG_16 inv_set_footer 0x07, 0x46, 0x01, 0x9A, // CFG_GYRO_SOURCE inv_send_gyro 0x07, 0x47, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_9 inv_send_gyro -> inv_construct3_fifo 0x07, 0x6C, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_12 inv_send_accel -> inv_construct3_fifo 0x02, 0x16, 0x02, 0x00, 0x09 // D_0_22 inv_set_fifo_rate // This very last 0x01 WAS a 0x09, which drops the FIFO rate down to 20 Hz. 0x07 is 25 Hz, // 0x01 is 100Hz. Going faster than 100Hz (0x00=200Hz) tends to result in very noisy data. // DMP output frequency is calculated easily using this equation: (200Hz / (1 + value)) // It is important to make sure the host processor can keep up with reading and processing // the FIFO output at the desired rate. Handling FIFO overflow cleanly is also a good idea. }; const unsigned char dmpUpdates[MPU6050_DMP_UPDATES_SIZE] PROGMEM = { 0x01, 0xB2, 0x02, 0xFF, 0xFF, 0x01, 0x90, 0x04, 0x09, 0x23, 0xA1, 0x35, 0x01, 0x6A, 0x02, 0x06, 0x00, 0x01, 0x60, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x04, 0x40, 0x00, 0x00, 0x00, 0x01, 0x62, 0x02, 0x00, 0x00, 0x00, 0x60, 0x04, 0x00, 0x40, 0x00, 0x00 }; uint8_t MPU6050::dmpInitialize() { // reset device DEBUG_PRINTLN(F("\n\nResetting MPU6050...")); reset(); delay(30); // wait after reset // enable sleep mode and wake cycle /*Serial.println(F("Enabling sleep mode...")); setSleepEnabled(true); Serial.println(F("Enabling wake cycle...")); setWakeCycleEnabled(true);*/ // disable sleep mode DEBUG_PRINTLN(F("Disabling sleep mode...")); setSleepEnabled(false); // get MPU hardware revision DEBUG_PRINTLN(F("Selecting user bank 16...")); setMemoryBank(0x10, true, true); DEBUG_PRINTLN(F("Selecting memory byte 6...")); setMemoryStartAddress(0x06); DEBUG_PRINTLN(F("Checking hardware revision...")); uint8_t hwRevision = readMemoryByte(); DEBUG_PRINT(F("Revision @ user[16][6] = ")); DEBUG_PRINTLNF(hwRevision, HEX); DEBUG_PRINTLN(F("Resetting memory bank selection to 0...")); setMemoryBank(0, false, false); // check OTP bank valid DEBUG_PRINTLN(F("Reading OTP bank valid flag...")); uint8_t otpValid = getOTPBankValid(); DEBUG_PRINT(F("OTP bank is ")); DEBUG_PRINTLN(otpValid ? F("valid!") : F("invalid!")); // get X/Y/Z gyro offsets DEBUG_PRINTLN(F("Reading gyro offset TC values...")); int8_t xgOffsetTC = getXGyroOffsetTC(); int8_t ygOffsetTC = getYGyroOffsetTC(); int8_t zgOffsetTC = getZGyroOffsetTC(); DEBUG_PRINT(F("X gyro offset = ")); DEBUG_PRINTLN(xgOffset); DEBUG_PRINT(F("Y gyro offset = ")); DEBUG_PRINTLN(ygOffset); DEBUG_PRINT(F("Z gyro offset = ")); DEBUG_PRINTLN(zgOffset); // setup weird slave stuff (?) DEBUG_PRINTLN(F("Setting slave 0 address to 0x7F...")); setSlaveAddress(0, 0x7F); DEBUG_PRINTLN(F("Disabling I2C Master mode...")); setI2CMasterModeEnabled(false); DEBUG_PRINTLN(F("Setting slave 0 address to 0x68 (self)...")); setSlaveAddress(0, 0x68); DEBUG_PRINTLN(F("Resetting I2C Master control...")); resetI2CMaster(); delay(20); // load DMP code into memory banks DEBUG_PRINT(F("Writing DMP code to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CODE_SIZE); DEBUG_PRINTLN(F(" bytes)")); if (writeProgMemoryBlock(dmpMemory, MPU6050_DMP_CODE_SIZE)) { DEBUG_PRINTLN(F("Success! DMP code written and verified.")); // write DMP configuration DEBUG_PRINT(F("Writing DMP configuration to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CONFIG_SIZE); DEBUG_PRINTLN(F(" bytes in config def)")); if (writeProgDMPConfigurationSet(dmpConfig, MPU6050_DMP_CONFIG_SIZE)) { DEBUG_PRINTLN(F("Success! DMP configuration written and verified.")); DEBUG_PRINTLN(F("Setting clock source to Z Gyro...")); setClockSource(MPU6050_CLOCK_PLL_ZGYRO); DEBUG_PRINTLN(F("Setting DMP and FIFO_OFLOW interrupts enabled...")); setIntEnabled(0x12); DEBUG_PRINTLN(F("Setting sample rate to 200Hz...")); setRate(4); // 1khz / (1 + 4) = 200 Hz DEBUG_PRINTLN(F("Setting external frame sync to TEMP_OUT_L[0]...")); setExternalFrameSync(MPU6050_EXT_SYNC_TEMP_OUT_L); DEBUG_PRINTLN(F("Setting DLPF bandwidth to 42Hz...")); setDLPFMode(MPU6050_DLPF_BW_42); DEBUG_PRINTLN(F("Setting gyro sensitivity to +/- 2000 deg/sec...")); setFullScaleGyroRange(MPU6050_GYRO_FS_2000); DEBUG_PRINTLN(F("Setting DMP configuration bytes (function unknown)...")); setDMPConfig1(0x03); setDMPConfig2(0x00); DEBUG_PRINTLN(F("Clearing OTP Bank flag...")); setOTPBankValid(false); DEBUG_PRINTLN(F("Setting X/Y/Z gyro offset TCs to previous values...")); setXGyroOffsetTC(xgOffsetTC); setYGyroOffsetTC(ygOffsetTC); setZGyroOffsetTC(zgOffsetTC); //DEBUG_PRINTLN(F("Setting X/Y/Z gyro user offsets to zero...")); //setXGyroOffset(0); //setYGyroOffset(0); //setZGyroOffset(0); DEBUG_PRINTLN(F("Writing final memory update 1/7 (function unknown)...")); uint8_t dmpUpdate[16], j; uint16_t pos = 0; for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 2/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Reading FIFO count...")); uint16_t fifoCount = getFIFOCount(); uint8_t fifoBuffer[128]; DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Setting motion detection threshold to 2...")); setMotionDetectionThreshold(2); DEBUG_PRINTLN(F("Setting zero-motion detection threshold to 156...")); setZeroMotionDetectionThreshold(156); DEBUG_PRINTLN(F("Setting motion detection duration to 80...")); setMotionDetectionDuration(80); DEBUG_PRINTLN(F("Setting zero-motion detection duration to 0...")); setZeroMotionDetectionDuration(0); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Enabling FIFO...")); setFIFOEnabled(true); DEBUG_PRINTLN(F("Enabling DMP...")); setDMPEnabled(true); DEBUG_PRINTLN(F("Resetting DMP...")); resetDMP(); DEBUG_PRINTLN(F("Writing final memory update 3/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 4/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 5/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); uint8_t mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Reading final memory update 6/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); readMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Writing final memory update 7/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("DMP is good to go! Finally.")); DEBUG_PRINTLN(F("Disabling DMP (you turn it on later)...")); setDMPEnabled(false); DEBUG_PRINTLN(F("Setting up internal 42-byte (default) DMP packet buffer...")); dmpPacketSize = 42; /*if ((dmpPacketBuffer = (uint8_t *)malloc(42)) == 0) { return 3; // TODO: proper error code for no memory }*/ DEBUG_PRINTLN(F("Resetting FIFO and clearing INT status one last time...")); resetFIFO(); getIntStatus(); } else { DEBUG_PRINTLN(F("ERROR! DMP configuration verification failed.")); return 2; // configuration block loading failed } } else { DEBUG_PRINTLN(F("ERROR! DMP code verification failed.")); return 1; // main binary block loading failed } return 0; // success } bool MPU6050::dmpPacketAvailable() { return getFIFOCount() >= dmpGetFIFOPacketSize(); } // uint8_t MPU6050::dmpSetFIFORate(uint8_t fifoRate); // uint8_t MPU6050::dmpGetFIFORate(); // uint8_t MPU6050::dmpGetSampleStepSizeMS(); // uint8_t MPU6050::dmpGetSampleFrequency(); // int32_t MPU6050::dmpDecodeTemperature(int8_t tempReg); //uint8_t MPU6050::dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority); //uint8_t MPU6050::dmpUnregisterFIFORateProcess(inv_obj_func func); //uint8_t MPU6050::dmpRunFIFORateProcesses(); // uint8_t MPU6050::dmpSendQuaternion(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendPacketNumber(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy); uint8_t MPU6050::dmpGetAccel(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[28] << 24) + (packet[29] << 16) + (packet[30] << 8) + packet[31]); data[1] = ((packet[32] << 24) + (packet[33] << 16) + (packet[34] << 8) + packet[35]); data[2] = ((packet[36] << 24) + (packet[37] << 16) + (packet[38] << 8) + packet[39]); return 0; } uint8_t MPU6050::dmpGetAccel(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[28] << 8) + packet[29]; data[1] = (packet[32] << 8) + packet[33]; data[2] = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetAccel(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[28] << 8) + packet[29]; v -> y = (packet[32] << 8) + packet[33]; v -> z = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetQuaternion(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 24) + (packet[1] << 16) + (packet[2] << 8) + packet[3]); data[1] = ((packet[4] << 24) + (packet[5] << 16) + (packet[6] << 8) + packet[7]); data[2] = ((packet[8] << 24) + (packet[9] << 16) + (packet[10] << 8) + packet[11]); data[3] = ((packet[12] << 24) + (packet[13] << 16) + (packet[14] << 8) + packet[15]); return 0; } uint8_t MPU6050::dmpGetQuaternion(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 8) + packet[1]); data[1] = ((packet[4] << 8) + packet[5]); data[2] = ((packet[8] << 8) + packet[9]); data[3] = ((packet[12] << 8) + packet[13]); return 0; } uint8_t MPU6050::dmpGetQuaternion(Quaternion *q, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) int16_t qI[4]; uint8_t status = dmpGetQuaternion(qI, packet); if (status == 0) { q -> w = (float)qI[0] / 16384.0f; q -> x = (float)qI[1] / 16384.0f; q -> y = (float)qI[2] / 16384.0f; q -> z = (float)qI[3] / 16384.0f; return 0; } return status; // int16 return value, indicates error if this line is reached } // uint8_t MPU6050::dmpGet6AxisQuaternion(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetRelativeQuaternion(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGyro(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[16] << 24) + (packet[17] << 16) + (packet[18] << 8) + packet[19]); data[1] = ((packet[20] << 24) + (packet[21] << 16) + (packet[22] << 8) + packet[23]); data[2] = ((packet[24] << 24) + (packet[25] << 16) + (packet[26] << 8) + packet[27]); return 0; } uint8_t MPU6050::dmpGetGyro(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[16] << 8) + packet[17]; data[1] = (packet[20] << 8) + packet[21]; data[2] = (packet[24] << 8) + packet[25]; return 0; } uint8_t MPU6050::dmpGetGyro(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[16] << 8) + packet[17]; v -> y = (packet[20] << 8) + packet[21]; v -> z = (packet[24] << 8) + packet[25]; return 0; } // uint8_t MPU6050::dmpSetLinearAccelFilterCoefficient(float coef); // uint8_t MPU6050::dmpGetLinearAccel(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity) { // get rid of the gravity component (+1g = +8192 in standard DMP FIFO packet, sensitivity is 2g) v -> x = vRaw -> x - gravity -> x*8192; v -> y = vRaw -> y - gravity -> y*8192; v -> z = vRaw -> z - gravity -> z*8192; return 0; } // uint8_t MPU6050::dmpGetLinearAccelInWorld(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q) { // rotate measured 3D acceleration vector into original state // frame of reference based on orientation quaternion memcpy(v, vReal, sizeof(VectorInt16)); v -> rotate(q); return 0; } // uint8_t MPU6050::dmpGetGyroAndAccelSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGyroSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetControlData(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetTemperature(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGravity(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGravity(VectorFloat *v, Quaternion *q) { v -> x = 2 * (q -> x*q -> z - q -> w*q -> y); v -> y = 2 * (q -> w*q -> x + q -> y*q -> z); v -> z = q -> w*q -> w - q -> x*q -> x - q -> y*q -> y + q -> z*q -> z; return 0; } // uint8_t MPU6050::dmpGetUnquantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetExternalSensorData(long *data, int size, const uint8_t* packet); // uint8_t MPU6050::dmpGetEIS(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetEuler(float *data, Quaternion *q) { data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // psi data[1] = -asin(2*q -> x*q -> z + 2*q -> w*q -> y); // theta data[2] = atan2(2*q -> y*q -> z - 2*q -> w*q -> x, 2*q -> w*q -> w + 2*q -> z*q -> z - 1); // phi return 0; } uint8_t MPU6050::dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity) { // yaw: (about Z axis) data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // pitch: (nose up/down, about Y axis) data[1] = atan(gravity -> x / sqrt(gravity -> y*gravity -> y + gravity -> z*gravity -> z)); // roll: (tilt left/right, about X axis) data[2] = atan(gravity -> y / sqrt(gravity -> x*gravity -> x + gravity -> z*gravity -> z)); return 0; } // uint8_t MPU6050::dmpGetAccelFloat(float *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuaternionFloat(float *data, const uint8_t* packet); uint8_t MPU6050::dmpProcessFIFOPacket(const unsigned char *dmpData) { /*for (uint8_t k = 0; k < dmpPacketSize; k++) { if (dmpData[k] < 0x10) Serial.print("0"); Serial.print(dmpData[k], HEX); Serial.print(" "); } Serial.print("\n");*/ //Serial.println((uint16_t)dmpPacketBuffer); return 0; } uint8_t MPU6050::dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed) { uint8_t status; uint8_t buf[dmpPacketSize]; for (uint8_t i = 0; i < numPackets; i++) { // read packet from FIFO getFIFOBytes(buf, dmpPacketSize); // process packet if ((status = dmpProcessFIFOPacket(buf)) > 0) return status; // increment external process count variable, if supplied if (processed != 0) *processed++; } return 0; } // uint8_t MPU6050::dmpSetFIFOProcessedCallback(void (*func) (void)); // uint8_t MPU6050::dmpInitFIFOParam(); // uint8_t MPU6050::dmpCloseFIFO(); // uint8_t MPU6050::dmpSetGyroDataSource(uint_fast8_t source); // uint8_t MPU6050::dmpDecodeQuantizedAccel(); // uint32_t MPU6050::dmpGetGyroSumOfSquare(); // uint32_t MPU6050::dmpGetAccelSumOfSquare(); // void MPU6050::dmpOverrideQuaternion(long *q); uint16_t MPU6050::dmpGetFIFOPacketSize() { return dmpPacketSize; } #endif /* _MPU6050_6AXIS_MOTIONAPPS20_H_ */
41,027
C
53.704
114
0.617106
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release03/code/Python/camera100.py
import RPi.GPIO as GPIO import jetson.inference import jetson.utils import time import argparse import sys # parse the command line parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.", formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage() + jetson.utils.videoSource.Usage() + jetson.utils.videoOutput.Usage() + jetson.utils.logUsage()) parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream") parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream") parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)") parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'") parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use") is_headless = ["--headless"] if sys.argv[0].find('console.py') != -1 else [""] try: opt = parser.parse_known_args()[0] except: print("") parser.print_help() sys.exit(0) # load the object detection network net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold) # create video sources & outputs input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv) output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv+is_headless) #setup GPIO pins GPIO.setmode(GPIO.BCM) #RaspPi pin numbering GPIO.setup(18, GPIO.OUT, initial=GPIO.HIGH) GPIO.output(18, GPIO.HIGH) GPIO.setup(17, GPIO.OUT, initial=GPIO.HIGH) GPIO.output(17, GPIO.HIGH) GPIO.setup(16, GPIO.OUT, initial=GPIO.HIGH) GPIO.output(16, GPIO.HIGH) GPIO.setup(20, GPIO.OUT, initial=GPIO.HIGH) GPIO.output(20, GPIO.HIGH) GPIO.setup(21, GPIO.OUT, initial=GPIO.HIGH) GPIO.output(21, GPIO.HIGH) def back(): GPIO.output(18, GPIO.LOW) GPIO.output(17, GPIO.HIGH) GPIO.output(16, GPIO.HIGH) GPIO.output(20, GPIO.HIGH) GPIO.output(21, GPIO.HIGH) print("back") def forward(): GPIO.output(18, GPIO.HIGH) GPIO.output(17, GPIO.LOW) GPIO.output(16, GPIO.HIGH) GPIO.output(20, GPIO.HIGH) GPIO.output(21, GPIO.HIGH) print("forward") def left(): GPIO.output(18, GPIO.HIGH) GPIO.output(17, GPIO.HIGH) GPIO.output(16, GPIO.LOW) GPIO.output(20, GPIO.HIGH) GPIO.output(21, GPIO.HIGH) print("left") def right(): GPIO.output(18, GPIO.HIGH) GPIO.output(17, GPIO.HIGH) GPIO.output(16, GPIO.HIGH) GPIO.output(20, GPIO.LOW) GPIO.output(21, GPIO.HIGH) print("right") def up(): GPIO.output(18, GPIO.HIGH) GPIO.output(17, GPIO.HIGH) GPIO.output(16, GPIO.HIGH) GPIO.output(20, GPIO.HIGH) GPIO.output(21, GPIO.LOW) print("up") def nothing(): GPIO.output(18, GPIO.HIGH) GPIO.output(17, GPIO.HIGH) GPIO.output(16, GPIO.HIGH) GPIO.output(20, GPIO.HIGH) GPIO.output(21, GPIO.HIGH) print("nothing") # declare variables as global and that global index global width global location global confidence index = 0 width = 0 location = 0 condifence = 0; # process frames until the user exits while True: # capture the next image img = input.Capture() # detect objects in the image (with overlay) detections = net.Detect(img, overlay=opt.overlay) # print the detections #print("detected {:d} objects in image".format(len(detections))) # check for detections, otherwise nothing if(len(detections) > 0): print("object detected") for detection in detections: index = detections[0].ClassID confidence = (detections[0].Confidence) width = (detections[0].Width) location = (detections[0].Center[0]) # print index of item, width and horizonal location print(index) print(width) print(location) print(confidence) # look for detections if (index == 1 and confidence > 0.9): back() elif (index == 2 and confidence > 0.7): forward() elif (index == 3 and confidence > 0.7): left() elif (index == 4 and confidence > 0.7): right() elif (index == 5 and confidence > 0.7): up() else: nothing() # nothing is detected # render the image output.Render(img) # update the title bar output.SetStatus("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS())) # print out performance info #net.PrintProfilerTimes() # exit on input/output EOS if not input.IsStreaming() or not output.IsStreaming(): break
4,525
Python
24.570621
192
0.698122
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release03/code/openDogV2_R3/MPU6050_6Axis_MotionApps20.h
// I2Cdev library collection - MPU6050 I2C device class, 6-axis MotionApps 2.0 implementation // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00) // 5/20/2013 by Jeff Rowberg <jeff@rowberg.net> // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib // // Changelog: // ... - ongoing debug release /* ============================================ I2Cdev device library code is placed under the MIT license Copyright (c) 2012 Jeff Rowberg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================== */ #ifndef _MPU6050_6AXIS_MOTIONAPPS20_H_ #define _MPU6050_6AXIS_MOTIONAPPS20_H_ #include "I2Cdev.h" #include "helper_3dmath.h" // MotionApps 2.0 DMP implementation, built using the MPU-6050EVB evaluation board #define MPU6050_INCLUDE_DMP_MOTIONAPPS20 #include "MPU6050.h" // Tom Carpenter's conditional PROGMEM code // http://forum.arduino.cc/index.php?topic=129407.0 #ifndef __arm__ #include <avr/pgmspace.h> #else // Teensy 3.0 library conditional PROGMEM code from Paul Stoffregen #ifndef __PGMSPACE_H_ #define __PGMSPACE_H_ 1 #include <inttypes.h> #define PROGMEM #define PGM_P const char * #define PSTR(str) (str) #define F(x) x typedef void prog_void; typedef char prog_char; typedef unsigned char prog_uchar; typedef int8_t prog_int8_t; typedef uint8_t prog_uint8_t; typedef int16_t prog_int16_t; typedef uint16_t prog_uint16_t; typedef int32_t prog_int32_t; typedef uint32_t prog_uint32_t; #define strcpy_P(dest, src) strcpy((dest), (src)) #define strcat_P(dest, src) strcat((dest), (src)) #define strcmp_P(a, b) strcmp((a), (b)) #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define pgm_read_word(addr) (*(const unsigned short *)(addr)) #define pgm_read_dword(addr) (*(const unsigned long *)(addr)) #define pgm_read_float(addr) (*(const float *)(addr)) #define pgm_read_byte_near(addr) pgm_read_byte(addr) #define pgm_read_word_near(addr) pgm_read_word(addr) #define pgm_read_dword_near(addr) pgm_read_dword(addr) #define pgm_read_float_near(addr) pgm_read_float(addr) #define pgm_read_byte_far(addr) pgm_read_byte(addr) #define pgm_read_word_far(addr) pgm_read_word(addr) #define pgm_read_dword_far(addr) pgm_read_dword(addr) #define pgm_read_float_far(addr) pgm_read_float(addr) #endif #endif /* Source is from the InvenSense MotionApps v2 demo code. Original source is * unavailable, unless you happen to be amazing as decompiling binary by * hand (in which case, please contact me, and I'm totally serious). * * Also, I'd like to offer many, many thanks to Noah Zerkin for all of the * DMP reverse-engineering he did to help make this bit of wizardry * possible. */ // NOTE! Enabling DEBUG adds about 3.3kB to the flash program size. // Debug output is now working even on ATMega328P MCUs (e.g. Arduino Uno) // after moving string constants to flash memory storage using the F() // compiler macro (Arduino IDE 1.0+ required). //#define DEBUG #ifdef DEBUG #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTF(x, y) Serial.print(x, y) #define DEBUG_PRINTLN(x) Serial.println(x) #define DEBUG_PRINTLNF(x, y) Serial.println(x, y) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTF(x, y) #define DEBUG_PRINTLN(x) #define DEBUG_PRINTLNF(x, y) #endif #define MPU6050_DMP_CODE_SIZE 1929 // dmpMemory[] #define MPU6050_DMP_CONFIG_SIZE 192 // dmpConfig[] #define MPU6050_DMP_UPDATES_SIZE 47 // dmpUpdates[] /* ================================================================================================ * | Default MotionApps v2.0 42-byte FIFO packet structure: | | | | [QUAT W][ ][QUAT X][ ][QUAT Y][ ][QUAT Z][ ][GYRO X][ ][GYRO Y][ ] | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | | | [GYRO Z][ ][ACC X ][ ][ACC Y ][ ][ACC Z ][ ][ ] | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | * ================================================================================================ */ // this block of memory gets written to the MPU on start-up, and it seems // to be volatile memory, so it has to be done each time (it only takes ~1 // second though) const unsigned char dmpMemory[MPU6050_DMP_CODE_SIZE] PROGMEM = { // bank 0, 256 bytes 0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82, 0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC, 0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4, 0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10, // bank 1, 256 bytes 0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8, 0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C, 0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C, 0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0, // bank 2, 256 bytes 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // bank 3, 256 bytes 0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F, 0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2, 0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF, 0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C, 0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1, 0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01, 0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80, 0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80, 0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E, 0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9, 0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0, 0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86, 0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1, 0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86, // bank 4, 256 bytes 0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA, 0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C, 0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8, 0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3, 0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84, 0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5, 0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3, 0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1, 0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5, 0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A, 0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8, 0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87, // bank 5, 256 bytes 0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8, 0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68, 0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D, 0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94, 0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56, 0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA, 0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A, 0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60, 0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97, 0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04, 0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78, 0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79, 0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68, 0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68, // bank 6, 256 bytes 0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04, 0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66, 0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31, 0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60, 0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76, 0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56, 0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD, 0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91, 0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE, 0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9, 0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD, 0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E, 0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8, 0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89, 0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79, // bank 7, 138 bytes (remainder) 0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA, 0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB, 0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3, 0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3, 0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC, 0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF }; // thanks to Noah Zerkin for piecing this stuff together! const unsigned char dmpConfig[MPU6050_DMP_CONFIG_SIZE] PROGMEM = { // BANK OFFSET LENGTH [DATA] 0x03, 0x7B, 0x03, 0x4C, 0xCD, 0x6C, // FCFG_1 inv_set_gyro_calibration 0x03, 0xAB, 0x03, 0x36, 0x56, 0x76, // FCFG_3 inv_set_gyro_calibration 0x00, 0x68, 0x04, 0x02, 0xCB, 0x47, 0xA2, // D_0_104 inv_set_gyro_calibration 0x02, 0x18, 0x04, 0x00, 0x05, 0x8B, 0xC1, // D_0_24 inv_set_gyro_calibration 0x01, 0x0C, 0x04, 0x00, 0x00, 0x00, 0x00, // D_1_152 inv_set_accel_calibration 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_accel_calibration 0x03, 0x89, 0x03, 0x26, 0x46, 0x66, // FCFG_7 inv_set_accel_calibration 0x00, 0x6C, 0x02, 0x20, 0x00, // D_0_108 inv_set_accel_calibration 0x02, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_00 inv_set_compass_calibration 0x02, 0x44, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_01 0x02, 0x48, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_02 0x02, 0x4C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_10 0x02, 0x50, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_11 0x02, 0x54, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_12 0x02, 0x58, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_20 0x02, 0x5C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_21 0x02, 0xBC, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_22 0x01, 0xEC, 0x04, 0x00, 0x00, 0x40, 0x00, // D_1_236 inv_apply_endian_accel 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_mpu_sensors 0x04, 0x02, 0x03, 0x0D, 0x35, 0x5D, // CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion 0x04, 0x09, 0x04, 0x87, 0x2D, 0x35, 0x3D, // FCFG_5 inv_set_bias_update 0x00, 0xA3, 0x01, 0x00, // D_0_163 inv_set_dead_zone // SPECIAL 0x01 = enable interrupts 0x00, 0x00, 0x00, 0x01, // SET INT_ENABLE at i=22, SPECIAL INSTRUCTION 0x07, 0x86, 0x01, 0xFE, // CFG_6 inv_set_fifo_interupt 0x07, 0x41, 0x05, 0xF1, 0x20, 0x28, 0x30, 0x38, // CFG_8 inv_send_quaternion 0x07, 0x7E, 0x01, 0x30, // CFG_16 inv_set_footer 0x07, 0x46, 0x01, 0x9A, // CFG_GYRO_SOURCE inv_send_gyro 0x07, 0x47, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_9 inv_send_gyro -> inv_construct3_fifo 0x07, 0x6C, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_12 inv_send_accel -> inv_construct3_fifo 0x02, 0x16, 0x02, 0x00, 0x09 // D_0_22 inv_set_fifo_rate // This very last 0x01 WAS a 0x09, which drops the FIFO rate down to 20 Hz. 0x07 is 25 Hz, // 0x01 is 100Hz. Going faster than 100Hz (0x00=200Hz) tends to result in very noisy data. // DMP output frequency is calculated easily using this equation: (200Hz / (1 + value)) // It is important to make sure the host processor can keep up with reading and processing // the FIFO output at the desired rate. Handling FIFO overflow cleanly is also a good idea. }; const unsigned char dmpUpdates[MPU6050_DMP_UPDATES_SIZE] PROGMEM = { 0x01, 0xB2, 0x02, 0xFF, 0xFF, 0x01, 0x90, 0x04, 0x09, 0x23, 0xA1, 0x35, 0x01, 0x6A, 0x02, 0x06, 0x00, 0x01, 0x60, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x04, 0x40, 0x00, 0x00, 0x00, 0x01, 0x62, 0x02, 0x00, 0x00, 0x00, 0x60, 0x04, 0x00, 0x40, 0x00, 0x00 }; uint8_t MPU6050::dmpInitialize() { // reset device DEBUG_PRINTLN(F("\n\nResetting MPU6050...")); reset(); delay(30); // wait after reset // enable sleep mode and wake cycle /*Serial.println(F("Enabling sleep mode...")); setSleepEnabled(true); Serial.println(F("Enabling wake cycle...")); setWakeCycleEnabled(true);*/ // disable sleep mode DEBUG_PRINTLN(F("Disabling sleep mode...")); setSleepEnabled(false); // get MPU hardware revision DEBUG_PRINTLN(F("Selecting user bank 16...")); setMemoryBank(0x10, true, true); DEBUG_PRINTLN(F("Selecting memory byte 6...")); setMemoryStartAddress(0x06); DEBUG_PRINTLN(F("Checking hardware revision...")); uint8_t hwRevision = readMemoryByte(); DEBUG_PRINT(F("Revision @ user[16][6] = ")); DEBUG_PRINTLNF(hwRevision, HEX); DEBUG_PRINTLN(F("Resetting memory bank selection to 0...")); setMemoryBank(0, false, false); // check OTP bank valid DEBUG_PRINTLN(F("Reading OTP bank valid flag...")); uint8_t otpValid = getOTPBankValid(); DEBUG_PRINT(F("OTP bank is ")); DEBUG_PRINTLN(otpValid ? F("valid!") : F("invalid!")); // get X/Y/Z gyro offsets DEBUG_PRINTLN(F("Reading gyro offset TC values...")); int8_t xgOffsetTC = getXGyroOffsetTC(); int8_t ygOffsetTC = getYGyroOffsetTC(); int8_t zgOffsetTC = getZGyroOffsetTC(); DEBUG_PRINT(F("X gyro offset = ")); DEBUG_PRINTLN(xgOffset); DEBUG_PRINT(F("Y gyro offset = ")); DEBUG_PRINTLN(ygOffset); DEBUG_PRINT(F("Z gyro offset = ")); DEBUG_PRINTLN(zgOffset); // setup weird slave stuff (?) DEBUG_PRINTLN(F("Setting slave 0 address to 0x7F...")); setSlaveAddress(0, 0x7F); DEBUG_PRINTLN(F("Disabling I2C Master mode...")); setI2CMasterModeEnabled(false); DEBUG_PRINTLN(F("Setting slave 0 address to 0x68 (self)...")); setSlaveAddress(0, 0x68); DEBUG_PRINTLN(F("Resetting I2C Master control...")); resetI2CMaster(); delay(20); // load DMP code into memory banks DEBUG_PRINT(F("Writing DMP code to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CODE_SIZE); DEBUG_PRINTLN(F(" bytes)")); if (writeProgMemoryBlock(dmpMemory, MPU6050_DMP_CODE_SIZE)) { DEBUG_PRINTLN(F("Success! DMP code written and verified.")); // write DMP configuration DEBUG_PRINT(F("Writing DMP configuration to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CONFIG_SIZE); DEBUG_PRINTLN(F(" bytes in config def)")); if (writeProgDMPConfigurationSet(dmpConfig, MPU6050_DMP_CONFIG_SIZE)) { DEBUG_PRINTLN(F("Success! DMP configuration written and verified.")); DEBUG_PRINTLN(F("Setting clock source to Z Gyro...")); setClockSource(MPU6050_CLOCK_PLL_ZGYRO); DEBUG_PRINTLN(F("Setting DMP and FIFO_OFLOW interrupts enabled...")); setIntEnabled(0x12); DEBUG_PRINTLN(F("Setting sample rate to 200Hz...")); setRate(4); // 1khz / (1 + 4) = 200 Hz DEBUG_PRINTLN(F("Setting external frame sync to TEMP_OUT_L[0]...")); setExternalFrameSync(MPU6050_EXT_SYNC_TEMP_OUT_L); DEBUG_PRINTLN(F("Setting DLPF bandwidth to 42Hz...")); setDLPFMode(MPU6050_DLPF_BW_42); DEBUG_PRINTLN(F("Setting gyro sensitivity to +/- 2000 deg/sec...")); setFullScaleGyroRange(MPU6050_GYRO_FS_2000); DEBUG_PRINTLN(F("Setting DMP configuration bytes (function unknown)...")); setDMPConfig1(0x03); setDMPConfig2(0x00); DEBUG_PRINTLN(F("Clearing OTP Bank flag...")); setOTPBankValid(false); DEBUG_PRINTLN(F("Setting X/Y/Z gyro offset TCs to previous values...")); setXGyroOffsetTC(xgOffsetTC); setYGyroOffsetTC(ygOffsetTC); setZGyroOffsetTC(zgOffsetTC); //DEBUG_PRINTLN(F("Setting X/Y/Z gyro user offsets to zero...")); //setXGyroOffset(0); //setYGyroOffset(0); //setZGyroOffset(0); DEBUG_PRINTLN(F("Writing final memory update 1/7 (function unknown)...")); uint8_t dmpUpdate[16], j; uint16_t pos = 0; for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 2/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Reading FIFO count...")); uint16_t fifoCount = getFIFOCount(); uint8_t fifoBuffer[128]; DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Setting motion detection threshold to 2...")); setMotionDetectionThreshold(2); DEBUG_PRINTLN(F("Setting zero-motion detection threshold to 156...")); setZeroMotionDetectionThreshold(156); DEBUG_PRINTLN(F("Setting motion detection duration to 80...")); setMotionDetectionDuration(80); DEBUG_PRINTLN(F("Setting zero-motion detection duration to 0...")); setZeroMotionDetectionDuration(0); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Enabling FIFO...")); setFIFOEnabled(true); DEBUG_PRINTLN(F("Enabling DMP...")); setDMPEnabled(true); DEBUG_PRINTLN(F("Resetting DMP...")); resetDMP(); DEBUG_PRINTLN(F("Writing final memory update 3/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 4/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 5/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); uint8_t mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Reading final memory update 6/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); readMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Writing final memory update 7/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("DMP is good to go! Finally.")); DEBUG_PRINTLN(F("Disabling DMP (you turn it on later)...")); setDMPEnabled(false); DEBUG_PRINTLN(F("Setting up internal 42-byte (default) DMP packet buffer...")); dmpPacketSize = 42; /*if ((dmpPacketBuffer = (uint8_t *)malloc(42)) == 0) { return 3; // TODO: proper error code for no memory }*/ DEBUG_PRINTLN(F("Resetting FIFO and clearing INT status one last time...")); resetFIFO(); getIntStatus(); } else { DEBUG_PRINTLN(F("ERROR! DMP configuration verification failed.")); return 2; // configuration block loading failed } } else { DEBUG_PRINTLN(F("ERROR! DMP code verification failed.")); return 1; // main binary block loading failed } return 0; // success } bool MPU6050::dmpPacketAvailable() { return getFIFOCount() >= dmpGetFIFOPacketSize(); } // uint8_t MPU6050::dmpSetFIFORate(uint8_t fifoRate); // uint8_t MPU6050::dmpGetFIFORate(); // uint8_t MPU6050::dmpGetSampleStepSizeMS(); // uint8_t MPU6050::dmpGetSampleFrequency(); // int32_t MPU6050::dmpDecodeTemperature(int8_t tempReg); //uint8_t MPU6050::dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority); //uint8_t MPU6050::dmpUnregisterFIFORateProcess(inv_obj_func func); //uint8_t MPU6050::dmpRunFIFORateProcesses(); // uint8_t MPU6050::dmpSendQuaternion(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendPacketNumber(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy); uint8_t MPU6050::dmpGetAccel(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[28] << 24) + (packet[29] << 16) + (packet[30] << 8) + packet[31]); data[1] = ((packet[32] << 24) + (packet[33] << 16) + (packet[34] << 8) + packet[35]); data[2] = ((packet[36] << 24) + (packet[37] << 16) + (packet[38] << 8) + packet[39]); return 0; } uint8_t MPU6050::dmpGetAccel(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[28] << 8) + packet[29]; data[1] = (packet[32] << 8) + packet[33]; data[2] = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetAccel(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[28] << 8) + packet[29]; v -> y = (packet[32] << 8) + packet[33]; v -> z = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetQuaternion(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 24) + (packet[1] << 16) + (packet[2] << 8) + packet[3]); data[1] = ((packet[4] << 24) + (packet[5] << 16) + (packet[6] << 8) + packet[7]); data[2] = ((packet[8] << 24) + (packet[9] << 16) + (packet[10] << 8) + packet[11]); data[3] = ((packet[12] << 24) + (packet[13] << 16) + (packet[14] << 8) + packet[15]); return 0; } uint8_t MPU6050::dmpGetQuaternion(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 8) + packet[1]); data[1] = ((packet[4] << 8) + packet[5]); data[2] = ((packet[8] << 8) + packet[9]); data[3] = ((packet[12] << 8) + packet[13]); return 0; } uint8_t MPU6050::dmpGetQuaternion(Quaternion *q, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) int16_t qI[4]; uint8_t status = dmpGetQuaternion(qI, packet); if (status == 0) { q -> w = (float)qI[0] / 16384.0f; q -> x = (float)qI[1] / 16384.0f; q -> y = (float)qI[2] / 16384.0f; q -> z = (float)qI[3] / 16384.0f; return 0; } return status; // int16 return value, indicates error if this line is reached } // uint8_t MPU6050::dmpGet6AxisQuaternion(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetRelativeQuaternion(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGyro(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[16] << 24) + (packet[17] << 16) + (packet[18] << 8) + packet[19]); data[1] = ((packet[20] << 24) + (packet[21] << 16) + (packet[22] << 8) + packet[23]); data[2] = ((packet[24] << 24) + (packet[25] << 16) + (packet[26] << 8) + packet[27]); return 0; } uint8_t MPU6050::dmpGetGyro(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[16] << 8) + packet[17]; data[1] = (packet[20] << 8) + packet[21]; data[2] = (packet[24] << 8) + packet[25]; return 0; } uint8_t MPU6050::dmpGetGyro(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[16] << 8) + packet[17]; v -> y = (packet[20] << 8) + packet[21]; v -> z = (packet[24] << 8) + packet[25]; return 0; } // uint8_t MPU6050::dmpSetLinearAccelFilterCoefficient(float coef); // uint8_t MPU6050::dmpGetLinearAccel(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity) { // get rid of the gravity component (+1g = +8192 in standard DMP FIFO packet, sensitivity is 2g) v -> x = vRaw -> x - gravity -> x*8192; v -> y = vRaw -> y - gravity -> y*8192; v -> z = vRaw -> z - gravity -> z*8192; return 0; } // uint8_t MPU6050::dmpGetLinearAccelInWorld(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q) { // rotate measured 3D acceleration vector into original state // frame of reference based on orientation quaternion memcpy(v, vReal, sizeof(VectorInt16)); v -> rotate(q); return 0; } // uint8_t MPU6050::dmpGetGyroAndAccelSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGyroSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetControlData(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetTemperature(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGravity(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGravity(VectorFloat *v, Quaternion *q) { v -> x = 2 * (q -> x*q -> z - q -> w*q -> y); v -> y = 2 * (q -> w*q -> x + q -> y*q -> z); v -> z = q -> w*q -> w - q -> x*q -> x - q -> y*q -> y + q -> z*q -> z; return 0; } // uint8_t MPU6050::dmpGetUnquantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetExternalSensorData(long *data, int size, const uint8_t* packet); // uint8_t MPU6050::dmpGetEIS(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetEuler(float *data, Quaternion *q) { data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // psi data[1] = -asin(2*q -> x*q -> z + 2*q -> w*q -> y); // theta data[2] = atan2(2*q -> y*q -> z - 2*q -> w*q -> x, 2*q -> w*q -> w + 2*q -> z*q -> z - 1); // phi return 0; } uint8_t MPU6050::dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity) { // yaw: (about Z axis) data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // pitch: (nose up/down, about Y axis) data[1] = atan(gravity -> x / sqrt(gravity -> y*gravity -> y + gravity -> z*gravity -> z)); // roll: (tilt left/right, about X axis) data[2] = atan(gravity -> y / sqrt(gravity -> x*gravity -> x + gravity -> z*gravity -> z)); return 0; } // uint8_t MPU6050::dmpGetAccelFloat(float *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuaternionFloat(float *data, const uint8_t* packet); uint8_t MPU6050::dmpProcessFIFOPacket(const unsigned char *dmpData) { /*for (uint8_t k = 0; k < dmpPacketSize; k++) { if (dmpData[k] < 0x10) Serial.print("0"); Serial.print(dmpData[k], HEX); Serial.print(" "); } Serial.print("\n");*/ //Serial.println((uint16_t)dmpPacketBuffer); return 0; } uint8_t MPU6050::dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed) { uint8_t status; uint8_t buf[dmpPacketSize]; for (uint8_t i = 0; i < numPackets; i++) { // read packet from FIFO getFIFOBytes(buf, dmpPacketSize); // process packet if ((status = dmpProcessFIFOPacket(buf)) > 0) return status; // increment external process count variable, if supplied if (processed != 0) *processed++; } return 0; } // uint8_t MPU6050::dmpSetFIFOProcessedCallback(void (*func) (void)); // uint8_t MPU6050::dmpInitFIFOParam(); // uint8_t MPU6050::dmpCloseFIFO(); // uint8_t MPU6050::dmpSetGyroDataSource(uint_fast8_t source); // uint8_t MPU6050::dmpDecodeQuantizedAccel(); // uint32_t MPU6050::dmpGetGyroSumOfSquare(); // uint32_t MPU6050::dmpGetAccelSumOfSquare(); // void MPU6050::dmpOverrideQuaternion(long *q); uint16_t MPU6050::dmpGetFIFOPacketSize() { return dmpPacketSize; } #endif /* _MPU6050_6AXIS_MOTIONAPPS20_H_ */
41,027
C
53.704
114
0.617106
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release01/Code/openDogV2_R1/MPU6050_6Axis_MotionApps20.h
// I2Cdev library collection - MPU6050 I2C device class, 6-axis MotionApps 2.0 implementation // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00) // 5/20/2013 by Jeff Rowberg <jeff@rowberg.net> // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib // // Changelog: // ... - ongoing debug release /* ============================================ I2Cdev device library code is placed under the MIT license Copyright (c) 2012 Jeff Rowberg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================== */ #ifndef _MPU6050_6AXIS_MOTIONAPPS20_H_ #define _MPU6050_6AXIS_MOTIONAPPS20_H_ #include "I2Cdev.h" #include "helper_3dmath.h" // MotionApps 2.0 DMP implementation, built using the MPU-6050EVB evaluation board #define MPU6050_INCLUDE_DMP_MOTIONAPPS20 #include "MPU6050.h" // Tom Carpenter's conditional PROGMEM code // http://forum.arduino.cc/index.php?topic=129407.0 #ifndef __arm__ #include <avr/pgmspace.h> #else // Teensy 3.0 library conditional PROGMEM code from Paul Stoffregen #ifndef __PGMSPACE_H_ #define __PGMSPACE_H_ 1 #include <inttypes.h> #define PROGMEM #define PGM_P const char * #define PSTR(str) (str) #define F(x) x typedef void prog_void; typedef char prog_char; typedef unsigned char prog_uchar; typedef int8_t prog_int8_t; typedef uint8_t prog_uint8_t; typedef int16_t prog_int16_t; typedef uint16_t prog_uint16_t; typedef int32_t prog_int32_t; typedef uint32_t prog_uint32_t; #define strcpy_P(dest, src) strcpy((dest), (src)) #define strcat_P(dest, src) strcat((dest), (src)) #define strcmp_P(a, b) strcmp((a), (b)) #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define pgm_read_word(addr) (*(const unsigned short *)(addr)) #define pgm_read_dword(addr) (*(const unsigned long *)(addr)) #define pgm_read_float(addr) (*(const float *)(addr)) #define pgm_read_byte_near(addr) pgm_read_byte(addr) #define pgm_read_word_near(addr) pgm_read_word(addr) #define pgm_read_dword_near(addr) pgm_read_dword(addr) #define pgm_read_float_near(addr) pgm_read_float(addr) #define pgm_read_byte_far(addr) pgm_read_byte(addr) #define pgm_read_word_far(addr) pgm_read_word(addr) #define pgm_read_dword_far(addr) pgm_read_dword(addr) #define pgm_read_float_far(addr) pgm_read_float(addr) #endif #endif /* Source is from the InvenSense MotionApps v2 demo code. Original source is * unavailable, unless you happen to be amazing as decompiling binary by * hand (in which case, please contact me, and I'm totally serious). * * Also, I'd like to offer many, many thanks to Noah Zerkin for all of the * DMP reverse-engineering he did to help make this bit of wizardry * possible. */ // NOTE! Enabling DEBUG adds about 3.3kB to the flash program size. // Debug output is now working even on ATMega328P MCUs (e.g. Arduino Uno) // after moving string constants to flash memory storage using the F() // compiler macro (Arduino IDE 1.0+ required). //#define DEBUG #ifdef DEBUG #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTF(x, y) Serial.print(x, y) #define DEBUG_PRINTLN(x) Serial.println(x) #define DEBUG_PRINTLNF(x, y) Serial.println(x, y) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTF(x, y) #define DEBUG_PRINTLN(x) #define DEBUG_PRINTLNF(x, y) #endif #define MPU6050_DMP_CODE_SIZE 1929 // dmpMemory[] #define MPU6050_DMP_CONFIG_SIZE 192 // dmpConfig[] #define MPU6050_DMP_UPDATES_SIZE 47 // dmpUpdates[] /* ================================================================================================ * | Default MotionApps v2.0 42-byte FIFO packet structure: | | | | [QUAT W][ ][QUAT X][ ][QUAT Y][ ][QUAT Z][ ][GYRO X][ ][GYRO Y][ ] | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | | | [GYRO Z][ ][ACC X ][ ][ACC Y ][ ][ACC Z ][ ][ ] | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | * ================================================================================================ */ // this block of memory gets written to the MPU on start-up, and it seems // to be volatile memory, so it has to be done each time (it only takes ~1 // second though) const unsigned char dmpMemory[MPU6050_DMP_CODE_SIZE] PROGMEM = { // bank 0, 256 bytes 0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82, 0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC, 0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4, 0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10, // bank 1, 256 bytes 0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8, 0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C, 0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C, 0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0, // bank 2, 256 bytes 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // bank 3, 256 bytes 0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F, 0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2, 0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF, 0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C, 0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1, 0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01, 0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80, 0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80, 0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E, 0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9, 0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0, 0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86, 0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1, 0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86, // bank 4, 256 bytes 0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA, 0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C, 0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8, 0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3, 0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84, 0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5, 0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3, 0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1, 0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5, 0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D, 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9, 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A, 0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8, 0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87, // bank 5, 256 bytes 0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8, 0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68, 0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D, 0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94, 0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56, 0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA, 0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A, 0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60, 0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97, 0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04, 0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78, 0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79, 0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68, 0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68, // bank 6, 256 bytes 0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04, 0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66, 0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31, 0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60, 0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76, 0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56, 0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD, 0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91, 0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE, 0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9, 0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD, 0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E, 0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8, 0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89, 0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79, // bank 7, 138 bytes (remainder) 0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA, 0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB, 0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3, 0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3, 0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC, 0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF }; // thanks to Noah Zerkin for piecing this stuff together! const unsigned char dmpConfig[MPU6050_DMP_CONFIG_SIZE] PROGMEM = { // BANK OFFSET LENGTH [DATA] 0x03, 0x7B, 0x03, 0x4C, 0xCD, 0x6C, // FCFG_1 inv_set_gyro_calibration 0x03, 0xAB, 0x03, 0x36, 0x56, 0x76, // FCFG_3 inv_set_gyro_calibration 0x00, 0x68, 0x04, 0x02, 0xCB, 0x47, 0xA2, // D_0_104 inv_set_gyro_calibration 0x02, 0x18, 0x04, 0x00, 0x05, 0x8B, 0xC1, // D_0_24 inv_set_gyro_calibration 0x01, 0x0C, 0x04, 0x00, 0x00, 0x00, 0x00, // D_1_152 inv_set_accel_calibration 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_accel_calibration 0x03, 0x89, 0x03, 0x26, 0x46, 0x66, // FCFG_7 inv_set_accel_calibration 0x00, 0x6C, 0x02, 0x20, 0x00, // D_0_108 inv_set_accel_calibration 0x02, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_00 inv_set_compass_calibration 0x02, 0x44, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_01 0x02, 0x48, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_02 0x02, 0x4C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_10 0x02, 0x50, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_11 0x02, 0x54, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_12 0x02, 0x58, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_20 0x02, 0x5C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_21 0x02, 0xBC, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_22 0x01, 0xEC, 0x04, 0x00, 0x00, 0x40, 0x00, // D_1_236 inv_apply_endian_accel 0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_mpu_sensors 0x04, 0x02, 0x03, 0x0D, 0x35, 0x5D, // CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion 0x04, 0x09, 0x04, 0x87, 0x2D, 0x35, 0x3D, // FCFG_5 inv_set_bias_update 0x00, 0xA3, 0x01, 0x00, // D_0_163 inv_set_dead_zone // SPECIAL 0x01 = enable interrupts 0x00, 0x00, 0x00, 0x01, // SET INT_ENABLE at i=22, SPECIAL INSTRUCTION 0x07, 0x86, 0x01, 0xFE, // CFG_6 inv_set_fifo_interupt 0x07, 0x41, 0x05, 0xF1, 0x20, 0x28, 0x30, 0x38, // CFG_8 inv_send_quaternion 0x07, 0x7E, 0x01, 0x30, // CFG_16 inv_set_footer 0x07, 0x46, 0x01, 0x9A, // CFG_GYRO_SOURCE inv_send_gyro 0x07, 0x47, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_9 inv_send_gyro -> inv_construct3_fifo 0x07, 0x6C, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_12 inv_send_accel -> inv_construct3_fifo 0x02, 0x16, 0x02, 0x00, 0x09 // D_0_22 inv_set_fifo_rate // This very last 0x01 WAS a 0x09, which drops the FIFO rate down to 20 Hz. 0x07 is 25 Hz, // 0x01 is 100Hz. Going faster than 100Hz (0x00=200Hz) tends to result in very noisy data. // DMP output frequency is calculated easily using this equation: (200Hz / (1 + value)) // It is important to make sure the host processor can keep up with reading and processing // the FIFO output at the desired rate. Handling FIFO overflow cleanly is also a good idea. }; const unsigned char dmpUpdates[MPU6050_DMP_UPDATES_SIZE] PROGMEM = { 0x01, 0xB2, 0x02, 0xFF, 0xFF, 0x01, 0x90, 0x04, 0x09, 0x23, 0xA1, 0x35, 0x01, 0x6A, 0x02, 0x06, 0x00, 0x01, 0x60, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x04, 0x40, 0x00, 0x00, 0x00, 0x01, 0x62, 0x02, 0x00, 0x00, 0x00, 0x60, 0x04, 0x00, 0x40, 0x00, 0x00 }; uint8_t MPU6050::dmpInitialize() { // reset device DEBUG_PRINTLN(F("\n\nResetting MPU6050...")); reset(); delay(30); // wait after reset // enable sleep mode and wake cycle /*Serial.println(F("Enabling sleep mode...")); setSleepEnabled(true); Serial.println(F("Enabling wake cycle...")); setWakeCycleEnabled(true);*/ // disable sleep mode DEBUG_PRINTLN(F("Disabling sleep mode...")); setSleepEnabled(false); // get MPU hardware revision DEBUG_PRINTLN(F("Selecting user bank 16...")); setMemoryBank(0x10, true, true); DEBUG_PRINTLN(F("Selecting memory byte 6...")); setMemoryStartAddress(0x06); DEBUG_PRINTLN(F("Checking hardware revision...")); uint8_t hwRevision = readMemoryByte(); DEBUG_PRINT(F("Revision @ user[16][6] = ")); DEBUG_PRINTLNF(hwRevision, HEX); DEBUG_PRINTLN(F("Resetting memory bank selection to 0...")); setMemoryBank(0, false, false); // check OTP bank valid DEBUG_PRINTLN(F("Reading OTP bank valid flag...")); uint8_t otpValid = getOTPBankValid(); DEBUG_PRINT(F("OTP bank is ")); DEBUG_PRINTLN(otpValid ? F("valid!") : F("invalid!")); // get X/Y/Z gyro offsets DEBUG_PRINTLN(F("Reading gyro offset TC values...")); int8_t xgOffsetTC = getXGyroOffsetTC(); int8_t ygOffsetTC = getYGyroOffsetTC(); int8_t zgOffsetTC = getZGyroOffsetTC(); DEBUG_PRINT(F("X gyro offset = ")); DEBUG_PRINTLN(xgOffset); DEBUG_PRINT(F("Y gyro offset = ")); DEBUG_PRINTLN(ygOffset); DEBUG_PRINT(F("Z gyro offset = ")); DEBUG_PRINTLN(zgOffset); // setup weird slave stuff (?) DEBUG_PRINTLN(F("Setting slave 0 address to 0x7F...")); setSlaveAddress(0, 0x7F); DEBUG_PRINTLN(F("Disabling I2C Master mode...")); setI2CMasterModeEnabled(false); DEBUG_PRINTLN(F("Setting slave 0 address to 0x68 (self)...")); setSlaveAddress(0, 0x68); DEBUG_PRINTLN(F("Resetting I2C Master control...")); resetI2CMaster(); delay(20); // load DMP code into memory banks DEBUG_PRINT(F("Writing DMP code to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CODE_SIZE); DEBUG_PRINTLN(F(" bytes)")); if (writeProgMemoryBlock(dmpMemory, MPU6050_DMP_CODE_SIZE)) { DEBUG_PRINTLN(F("Success! DMP code written and verified.")); // write DMP configuration DEBUG_PRINT(F("Writing DMP configuration to MPU memory banks (")); DEBUG_PRINT(MPU6050_DMP_CONFIG_SIZE); DEBUG_PRINTLN(F(" bytes in config def)")); if (writeProgDMPConfigurationSet(dmpConfig, MPU6050_DMP_CONFIG_SIZE)) { DEBUG_PRINTLN(F("Success! DMP configuration written and verified.")); DEBUG_PRINTLN(F("Setting clock source to Z Gyro...")); setClockSource(MPU6050_CLOCK_PLL_ZGYRO); DEBUG_PRINTLN(F("Setting DMP and FIFO_OFLOW interrupts enabled...")); setIntEnabled(0x12); DEBUG_PRINTLN(F("Setting sample rate to 200Hz...")); setRate(4); // 1khz / (1 + 4) = 200 Hz DEBUG_PRINTLN(F("Setting external frame sync to TEMP_OUT_L[0]...")); setExternalFrameSync(MPU6050_EXT_SYNC_TEMP_OUT_L); DEBUG_PRINTLN(F("Setting DLPF bandwidth to 42Hz...")); setDLPFMode(MPU6050_DLPF_BW_42); DEBUG_PRINTLN(F("Setting gyro sensitivity to +/- 2000 deg/sec...")); setFullScaleGyroRange(MPU6050_GYRO_FS_2000); DEBUG_PRINTLN(F("Setting DMP configuration bytes (function unknown)...")); setDMPConfig1(0x03); setDMPConfig2(0x00); DEBUG_PRINTLN(F("Clearing OTP Bank flag...")); setOTPBankValid(false); DEBUG_PRINTLN(F("Setting X/Y/Z gyro offset TCs to previous values...")); setXGyroOffsetTC(xgOffsetTC); setYGyroOffsetTC(ygOffsetTC); setZGyroOffsetTC(zgOffsetTC); //DEBUG_PRINTLN(F("Setting X/Y/Z gyro user offsets to zero...")); //setXGyroOffset(0); //setYGyroOffset(0); //setZGyroOffset(0); DEBUG_PRINTLN(F("Writing final memory update 1/7 (function unknown)...")); uint8_t dmpUpdate[16], j; uint16_t pos = 0; for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 2/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Reading FIFO count...")); uint16_t fifoCount = getFIFOCount(); uint8_t fifoBuffer[128]; DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Setting motion detection threshold to 2...")); setMotionDetectionThreshold(2); DEBUG_PRINTLN(F("Setting zero-motion detection threshold to 156...")); setZeroMotionDetectionThreshold(156); DEBUG_PRINTLN(F("Setting motion detection duration to 80...")); setMotionDetectionDuration(80); DEBUG_PRINTLN(F("Setting zero-motion detection duration to 0...")); setZeroMotionDetectionDuration(0); DEBUG_PRINTLN(F("Resetting FIFO...")); resetFIFO(); DEBUG_PRINTLN(F("Enabling FIFO...")); setFIFOEnabled(true); DEBUG_PRINTLN(F("Enabling DMP...")); setDMPEnabled(true); DEBUG_PRINTLN(F("Resetting DMP...")); resetDMP(); DEBUG_PRINTLN(F("Writing final memory update 3/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 4/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Writing final memory update 5/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); uint8_t mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Reading final memory update 6/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); readMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("Waiting for FIFO count > 2...")); while ((fifoCount = getFIFOCount()) < 3); DEBUG_PRINT(F("Current FIFO count=")); DEBUG_PRINTLN(fifoCount); DEBUG_PRINTLN(F("Reading FIFO data...")); getFIFOBytes(fifoBuffer, fifoCount); DEBUG_PRINTLN(F("Reading interrupt status...")); mpuIntStatus = getIntStatus(); DEBUG_PRINT(F("Current interrupt status=")); DEBUG_PRINTLNF(mpuIntStatus, HEX); DEBUG_PRINTLN(F("Writing final memory update 7/7 (function unknown)...")); for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]); writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]); DEBUG_PRINTLN(F("DMP is good to go! Finally.")); DEBUG_PRINTLN(F("Disabling DMP (you turn it on later)...")); setDMPEnabled(false); DEBUG_PRINTLN(F("Setting up internal 42-byte (default) DMP packet buffer...")); dmpPacketSize = 42; /*if ((dmpPacketBuffer = (uint8_t *)malloc(42)) == 0) { return 3; // TODO: proper error code for no memory }*/ DEBUG_PRINTLN(F("Resetting FIFO and clearing INT status one last time...")); resetFIFO(); getIntStatus(); } else { DEBUG_PRINTLN(F("ERROR! DMP configuration verification failed.")); return 2; // configuration block loading failed } } else { DEBUG_PRINTLN(F("ERROR! DMP code verification failed.")); return 1; // main binary block loading failed } return 0; // success } bool MPU6050::dmpPacketAvailable() { return getFIFOCount() >= dmpGetFIFOPacketSize(); } // uint8_t MPU6050::dmpSetFIFORate(uint8_t fifoRate); // uint8_t MPU6050::dmpGetFIFORate(); // uint8_t MPU6050::dmpGetSampleStepSizeMS(); // uint8_t MPU6050::dmpGetSampleFrequency(); // int32_t MPU6050::dmpDecodeTemperature(int8_t tempReg); //uint8_t MPU6050::dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority); //uint8_t MPU6050::dmpUnregisterFIFORateProcess(inv_obj_func func); //uint8_t MPU6050::dmpRunFIFORateProcesses(); // uint8_t MPU6050::dmpSendQuaternion(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendPacketNumber(uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy); // uint8_t MPU6050::dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy); uint8_t MPU6050::dmpGetAccel(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[28] << 24) + (packet[29] << 16) + (packet[30] << 8) + packet[31]); data[1] = ((packet[32] << 24) + (packet[33] << 16) + (packet[34] << 8) + packet[35]); data[2] = ((packet[36] << 24) + (packet[37] << 16) + (packet[38] << 8) + packet[39]); return 0; } uint8_t MPU6050::dmpGetAccel(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[28] << 8) + packet[29]; data[1] = (packet[32] << 8) + packet[33]; data[2] = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetAccel(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[28] << 8) + packet[29]; v -> y = (packet[32] << 8) + packet[33]; v -> z = (packet[36] << 8) + packet[37]; return 0; } uint8_t MPU6050::dmpGetQuaternion(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 24) + (packet[1] << 16) + (packet[2] << 8) + packet[3]); data[1] = ((packet[4] << 24) + (packet[5] << 16) + (packet[6] << 8) + packet[7]); data[2] = ((packet[8] << 24) + (packet[9] << 16) + (packet[10] << 8) + packet[11]); data[3] = ((packet[12] << 24) + (packet[13] << 16) + (packet[14] << 8) + packet[15]); return 0; } uint8_t MPU6050::dmpGetQuaternion(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[0] << 8) + packet[1]); data[1] = ((packet[4] << 8) + packet[5]); data[2] = ((packet[8] << 8) + packet[9]); data[3] = ((packet[12] << 8) + packet[13]); return 0; } uint8_t MPU6050::dmpGetQuaternion(Quaternion *q, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) int16_t qI[4]; uint8_t status = dmpGetQuaternion(qI, packet); if (status == 0) { q -> w = (float)qI[0] / 16384.0f; q -> x = (float)qI[1] / 16384.0f; q -> y = (float)qI[2] / 16384.0f; q -> z = (float)qI[3] / 16384.0f; return 0; } return status; // int16 return value, indicates error if this line is reached } // uint8_t MPU6050::dmpGet6AxisQuaternion(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetRelativeQuaternion(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGyro(int32_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = ((packet[16] << 24) + (packet[17] << 16) + (packet[18] << 8) + packet[19]); data[1] = ((packet[20] << 24) + (packet[21] << 16) + (packet[22] << 8) + packet[23]); data[2] = ((packet[24] << 24) + (packet[25] << 16) + (packet[26] << 8) + packet[27]); return 0; } uint8_t MPU6050::dmpGetGyro(int16_t *data, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; data[0] = (packet[16] << 8) + packet[17]; data[1] = (packet[20] << 8) + packet[21]; data[2] = (packet[24] << 8) + packet[25]; return 0; } uint8_t MPU6050::dmpGetGyro(VectorInt16 *v, const uint8_t* packet) { // TODO: accommodate different arrangements of sent data (ONLY default supported now) if (packet == 0) packet = dmpPacketBuffer; v -> x = (packet[16] << 8) + packet[17]; v -> y = (packet[20] << 8) + packet[21]; v -> z = (packet[24] << 8) + packet[25]; return 0; } // uint8_t MPU6050::dmpSetLinearAccelFilterCoefficient(float coef); // uint8_t MPU6050::dmpGetLinearAccel(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity) { // get rid of the gravity component (+1g = +8192 in standard DMP FIFO packet, sensitivity is 2g) v -> x = vRaw -> x - gravity -> x*8192; v -> y = vRaw -> y - gravity -> y*8192; v -> z = vRaw -> z - gravity -> z*8192; return 0; } // uint8_t MPU6050::dmpGetLinearAccelInWorld(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q) { // rotate measured 3D acceleration vector into original state // frame of reference based on orientation quaternion memcpy(v, vReal, sizeof(VectorInt16)); v -> rotate(q); return 0; } // uint8_t MPU6050::dmpGetGyroAndAccelSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGyroSensor(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetControlData(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetTemperature(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetGravity(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetGravity(VectorFloat *v, Quaternion *q) { v -> x = 2 * (q -> x*q -> z - q -> w*q -> y); v -> y = 2 * (q -> w*q -> x + q -> y*q -> z); v -> z = q -> w*q -> w - q -> x*q -> x - q -> y*q -> y + q -> z*q -> z; return 0; } // uint8_t MPU6050::dmpGetUnquantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuantizedAccel(long *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetExternalSensorData(long *data, int size, const uint8_t* packet); // uint8_t MPU6050::dmpGetEIS(long *data, const uint8_t* packet); uint8_t MPU6050::dmpGetEuler(float *data, Quaternion *q) { data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // psi data[1] = -asin(2*q -> x*q -> z + 2*q -> w*q -> y); // theta data[2] = atan2(2*q -> y*q -> z - 2*q -> w*q -> x, 2*q -> w*q -> w + 2*q -> z*q -> z - 1); // phi return 0; } uint8_t MPU6050::dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity) { // yaw: (about Z axis) data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // pitch: (nose up/down, about Y axis) data[1] = atan(gravity -> x / sqrt(gravity -> y*gravity -> y + gravity -> z*gravity -> z)); // roll: (tilt left/right, about X axis) data[2] = atan(gravity -> y / sqrt(gravity -> x*gravity -> x + gravity -> z*gravity -> z)); return 0; } // uint8_t MPU6050::dmpGetAccelFloat(float *data, const uint8_t* packet); // uint8_t MPU6050::dmpGetQuaternionFloat(float *data, const uint8_t* packet); uint8_t MPU6050::dmpProcessFIFOPacket(const unsigned char *dmpData) { /*for (uint8_t k = 0; k < dmpPacketSize; k++) { if (dmpData[k] < 0x10) Serial.print("0"); Serial.print(dmpData[k], HEX); Serial.print(" "); } Serial.print("\n");*/ //Serial.println((uint16_t)dmpPacketBuffer); return 0; } uint8_t MPU6050::dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed) { uint8_t status; uint8_t buf[dmpPacketSize]; for (uint8_t i = 0; i < numPackets; i++) { // read packet from FIFO getFIFOBytes(buf, dmpPacketSize); // process packet if ((status = dmpProcessFIFOPacket(buf)) > 0) return status; // increment external process count variable, if supplied if (processed != 0) *processed++; } return 0; } // uint8_t MPU6050::dmpSetFIFOProcessedCallback(void (*func) (void)); // uint8_t MPU6050::dmpInitFIFOParam(); // uint8_t MPU6050::dmpCloseFIFO(); // uint8_t MPU6050::dmpSetGyroDataSource(uint_fast8_t source); // uint8_t MPU6050::dmpDecodeQuantizedAccel(); // uint32_t MPU6050::dmpGetGyroSumOfSquare(); // uint32_t MPU6050::dmpGetAccelSumOfSquare(); // void MPU6050::dmpOverrideQuaternion(long *q); uint16_t MPU6050::dmpGetFIFOPacketSize() { return dmpPacketSize; } #endif /* _MPU6050_6AXIS_MOTIONAPPS20_H_ */
41,027
C
53.704
114
0.617106
renanmb/Omniverse_legged_robotics/URDF-Descriptions/cassie_description-UMich-BipedLab/README.md
# cassie_description This repository contains the .urdf model of the CASSIE robot from Agility Robotics. It also includes a a way to visualize the robot using ROS and rviz. Installation to view .urdf using rviz ===================================== - Download and install ROS by following the instructions at http://wiki.ros.org/indigo/Installation/Ubuntu. - Create a folder for the catkin workspace ``` mkdir ~/catkin_ws cd ~/catkin_ws mkdir src cd src catkin_init_workspace ``` - Clone the repository to get the cassie_description package ``` git clone https://github.com/UMich-BipedLab/cassie_description.git ``` - Build the package ``` cd ../ catkin_make source devel/setup.bash ``` - Launch rviz to visualize the .urdf file ``` roslaunch cassie_description display.launch ```
790
Markdown
22.264705
107
0.720253
renanmb/Omniverse_legged_robotics/URDF-Descriptions/cassie_description-UMich-BipedLab/config/dependent_joints.yaml
dependent_joints: knee_to_shin_left: {parent: knee_joint_left, factor: -1 } ankle_joint_left: {parent: knee_joint_left, factor: 0 } knee_to_shin_right: {parent: knee_joint_right, factor: 0 } ankle_joint_right: {parent: knee_joint_right, factor: -1 } zeros: knee_to_shin_left: 0 ankle_joint_left: 0.226893 knee_to_shin_right: 0 ankle_joint_right: 0.226893
374
YAML
30.249997
60
0.68984
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/calibrate_servos.py
from pupper.HardwareInterface import HardwareInterface from pupper.Config import PWMParams, ServoParams import numpy as np import re def get_motor_name(i, j): motor_type = {0: "abduction", 1: "inner", 2: "outer"} # Top # Bottom leg_pos = {0: "front-right", 1: "front-left", 2: "back-right", 3: "back-left"} final_name = motor_type[i] + " " + leg_pos[j] return final_name def get_motor_setpoint(i, j): data = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [45, 45, 45, 45]]) return data[i, j] def degrees_to_radians(input_array): """Converts degrees to radians. Parameters ---------- input_array : Numpy array or float Degrees Returns ------- Numpy array or float Radians """ return input_array * np.pi / 180.0 def radians_to_degrees(input_array): """Converts degrees to radians. Parameters ---------- input_array : Numpy array or float Radians Returns ------- Numpy array or float Degrees """ return input_array * 180.0 / np.pi def step_until(hardware_interface, axis, leg, set_point): """Returns the angle offset needed to correct a given link by asking the user for input. Returns ------- Float Angle offset needed to correct the link. """ found_position = False set_names = ["horizontal", "horizontal", "vertical"] offset = 0 while not found_position: move_input = str( input("Enter 'a' or 'b' to move the link until it is **" + set_names[axis] + "**. Enter 'd' when done. Input: " ) ) if move_input == "a": offset += 1.0 hardware_interface.set_actuator_position( degrees_to_radians(set_point + offset), axis, leg, ) elif move_input == "b": offset -= 1.0 hardware_interface.set_actuator_position( degrees_to_radians(set_point + offset), axis, leg, ) elif move_input == "d": found_position = True print("Offset: ", offset) return offset def calibrate_angle_offset(hardware_interface): """Calibrate the angle offset for the twelve motors on the robot. Note that servo_params is modified in-place. Parameters ---------- servo_params : ServoParams Servo parameters. This variable is updated in-place. pi_board : Pi RaspberryPi object. pwm_params : PWMParams PWMParams object. """ # Found K value of (11.4) print("The scaling constant for your servo represents how much you have to increase\nthe pwm pulse width (in microseconds) to rotate the servo output 1 degree.") print("This value is currently set to: {:.3f}".format(degrees_to_radians(hardware_interface.servo_params.micros_per_rad))) print("For newer CLS6336 and CLS6327 servos the value should be 11.333.") ks = input("Press <Enter> to keep the current value, or enter a new value: ") if ks != '': k = float(ks) hardware_interface.servo_params.micros_per_rad = k * 180 / np.pi hardware_interface.servo_params.neutral_angle_degrees = np.zeros((3, 4)) for leg_index in range(4): for axis in range(3): # Loop until we're satisfied with the calibration completed = False while not completed: motor_name = get_motor_name(axis, leg_index) print("\n\nCalibrating the **" + motor_name + " motor **") set_point = get_motor_setpoint(axis, leg_index) # Zero out the neutral angle hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = 0 # Move servo to set_point angle hardware_interface.set_actuator_position( degrees_to_radians(set_point), axis, leg_index, ) # Adjust the angle using keyboard input until it matches the reference angle offset = step_until( hardware_interface, axis, leg_index, set_point ) print("Final offset: ", offset) # The upper leg link has a different equation because we're calibrating to make it horizontal, not vertical if axis == 1: hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = set_point - offset else: hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = -(set_point + offset) print("Calibrated neutral angle: ", hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index]) # Send the servo command using the new beta value and check that it's ok hardware_interface.set_actuator_position( degrees_to_radians([0, 45, -45][axis]), axis, leg_index, ) okay = "" prompt = "The leg should be at exactly **" + ["horizontal", "45 degrees", "45 degrees"][axis] + "**. Are you satisfied? Enter 'yes' or 'no': " while okay not in ["y", "n", "yes", "no"]: okay = str( input(prompt) ) completed = okay == "y" or okay == "yes" def overwrite_ServoCalibration_file(servo_params): preamble = """# WARNING: This file is machine generated. Edit at your own risk. import numpy as np """ # Format array object string for np.array p1 = re.compile("([0-9]\.) ( *)") # pattern to replace the space that follows each number with a comma partially_formatted_matrix = p1.sub(r"\1,\2", str(servo_params.neutral_angle_degrees)) p2 = re.compile("(\]\n)") # pattern to add a comma at the end of the first two lines formatted_matrix_with_required_commas = p2.sub("],\n", partially_formatted_matrix) # Overwrite pupper/ServoCalibration.py file with modified values with open("pupper/ServoCalibration.py", "w") as f: print(preamble, file = f) print("MICROS_PER_RAD = {:.3f} * 180.0 / np.pi".format(degrees_to_radians(servo_params.micros_per_rad)), file = f) print("NEUTRAL_ANGLE_DEGREES = np.array(", file = f) print(formatted_matrix_with_required_commas, file = f) print(")", file = f) def main(): """Main program """ hardware_interface = HardwareInterface() calibrate_angle_offset(hardware_interface) overwrite_ServoCalibration_file(hardware_interface.servo_params) print("\n\n CALIBRATION COMPLETE!\n") print("Calibrated neutral angles:") print(hardware_interface.servo_params.neutral_angle_degrees) main()
6,862
Python
34.376288
165
0.581609
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/run_robot.py
import numpy as np import time from src.IMU import IMU from src.Controller import Controller from src.JoystickInterface import JoystickInterface from src.State import State from pupper.HardwareInterface import HardwareInterface from pupper.Config import Configuration from pupper.Kinematics import four_legs_inverse_kinematics def main(use_imu=False): """Main program """ # Create config config = Configuration() hardware_interface = HardwareInterface() # Create imu handle if use_imu: imu = IMU(port="/dev/ttyACM0") imu.flush_buffer() # Create controller and user input handles controller = Controller( config, four_legs_inverse_kinematics, ) state = State() print("Creating joystick listener...") joystick_interface = JoystickInterface(config) print("Done.") last_loop = time.time() print("Summary of gait parameters:") print("overlap time: ", config.overlap_time) print("swing time: ", config.swing_time) print("z clearance: ", config.z_clearance) print("x shift: ", config.x_shift) # Wait until the activate button has been pressed while True: print("Waiting for L1 to activate robot.") while True: command = joystick_interface.get_command(state) joystick_interface.set_color(config.ps4_deactivated_color) if command.activate_event == 1: break time.sleep(0.1) print("Robot activated.") joystick_interface.set_color(config.ps4_color) while True: now = time.time() if now - last_loop < config.dt: continue last_loop = time.time() # Parse the udp joystick commands and then update the robot controller's parameters command = joystick_interface.get_command(state) if command.activate_event == 1: print("Deactivating Robot") break # Read imu data. Orientation will be None if no data was available quat_orientation = ( imu.read_orientation() if use_imu else np.array([1, 0, 0, 0]) ) state.quat_orientation = quat_orientation # Step the controller forward by dt controller.run(state, command) # Update the pwm widths going to the servos hardware_interface.set_actuator_postions(state.joint_angles) main()
2,473
Python
29.925
95
0.627982
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Gaits.py
class GaitController: def __init__(self, config): self.config = config def phase_index(self, ticks): """Calculates which part of the gait cycle the robot should be in given the time in ticks. Parameters ---------- ticks : int Number of timesteps since the program started gaitparams : GaitParams GaitParams object Returns ------- Int The index of the gait phase that the robot should be in. """ phase_time = ticks % self.config.phase_length phase_sum = 0 for i in range(self.config.num_phases): phase_sum += self.config.phase_ticks[i] if phase_time < phase_sum: return i assert False def subphase_ticks(self, ticks): """Calculates the number of ticks (timesteps) since the start of the current phase. Parameters ---------- ticks : Int Number of timesteps since the program started gaitparams : GaitParams GaitParams object Returns ------- Int Number of ticks since the start of the current phase. """ phase_time = ticks % self.config.phase_length phase_sum = 0 subphase_ticks = 0 for i in range(self.config.num_phases): phase_sum += self.config.phase_ticks[i] if phase_time < phase_sum: subphase_ticks = phase_time - phase_sum + self.config.phase_ticks[i] return subphase_ticks assert False def contacts(self, ticks): """Calculates which feet should be in contact at the given number of ticks Parameters ---------- ticks : Int Number of timesteps since the program started. gaitparams : GaitParams GaitParams object Returns ------- numpy array (4,) Numpy vector with 0 indicating flight and 1 indicating stance. """ return self.config.contact_phases[:, self.phase_index(ticks)]
2,154
Python
28.930555
98
0.545032
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Command.py
import numpy as np class Command: """Stores movement command """ def __init__(self): self.horizontal_velocity = np.array([0, 0]) self.yaw_rate = 0.0 self.height = -0.16 self.pitch = 0.0 self.roll = 0.0 self.activation = 0 self.hop_event = False self.trot_event = False self.activate_event = False
392
Python
20.833332
51
0.533163
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/SwingLegController.py
import numpy as np from transforms3d.euler import euler2mat class SwingController: def __init__(self, config): self.config = config def raibert_touchdown_location( self, leg_index, command ): delta_p_2d = ( self.config.alpha * self.config.stance_ticks * self.config.dt * command.horizontal_velocity ) delta_p = np.array([delta_p_2d[0], delta_p_2d[1], 0]) theta = ( self.config.beta * self.config.stance_ticks * self.config.dt * command.yaw_rate ) R = euler2mat(0, 0, theta) return R @ self.config.default_stance[:, leg_index] + delta_p def swing_height(self, swing_phase, triangular=True): if triangular: if swing_phase < 0.5: swing_height_ = swing_phase / 0.5 * self.config.z_clearance else: swing_height_ = self.config.z_clearance * (1 - (swing_phase - 0.5) / 0.5) return swing_height_ def next_foot_location( self, swing_prop, leg_index, state, command, ): assert swing_prop >= 0 and swing_prop <= 1 foot_location = state.foot_locations[:, leg_index] swing_height_ = self.swing_height(swing_prop) touchdown_location = self.raibert_touchdown_location(leg_index, command) time_left = self.config.dt * self.config.swing_ticks * (1.0 - swing_prop) v = (touchdown_location - foot_location) / time_left * np.array([1, 1, 0]) delta_foot_location = v * self.config.dt z_vector = np.array([0, 0, swing_height_ + command.height]) return foot_location * np.array([1, 1, 0]) + z_vector + delta_foot_location
1,781
Python
32.622641
89
0.563167
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/State.py
import numpy as np from enum import Enum class State: def __init__(self): self.horizontal_velocity = np.array([0.0, 0.0]) self.yaw_rate = 0.0 self.height = -0.16 self.pitch = 0.0 self.roll = 0.0 self.activation = 0 self.behavior_state = BehaviorState.REST self.ticks = 0 self.foot_locations = np.zeros((3, 4)) self.joint_angles = np.zeros((3, 4)) self.behavior_state = BehaviorState.REST class BehaviorState(Enum): DEACTIVATED = -1 REST = 0 TROT = 1 HOP = 2 FINISHHOP = 3
589
Python
20.851851
55
0.568761
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/StanceController.py
import numpy as np from transforms3d.euler import euler2mat class StanceController: def __init__(self, config): self.config = config def position_delta(self, leg_index, state, command): """Calculate the difference between the next desired body location and the current body location Parameters ---------- z_measured : float Z coordinate of the feet relative to the body. stance_params : StanceParams Stance parameters object. movement_reference : MovementReference Movement reference object. gait_params : GaitParams Gait parameters object. Returns ------- (Numpy array (3), Numpy array (3, 3)) (Position increment, rotation matrix increment) """ z = state.foot_locations[2, leg_index] v_xy = np.array( [ -command.horizontal_velocity[0], -command.horizontal_velocity[1], 1.0 / self.config.z_time_constant * (state.height - z), ] ) delta_p = v_xy * self.config.dt delta_R = euler2mat(0, 0, -command.yaw_rate * self.config.dt) return (delta_p, delta_R) # TODO: put current foot location into state def next_foot_location(self, leg_index, state, command): foot_location = state.foot_locations[:, leg_index] (delta_p, delta_R) = self.position_delta(leg_index, state, command) incremented_location = delta_R @ foot_location + delta_p return incremented_location
1,628
Python
32.244897
104
0.57801
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/IMU.py
import serial import numpy as np import time class IMU: def __init__(self, port, baudrate=500000): self.serial_handle = serial.Serial( port=port, baudrate=baudrate, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0, ) self.last_quat = np.array([1, 0, 0, 0]) self.start_time = time.time() def flush_buffer(self): self.serial_handle.reset_input_buffer() def read_orientation(self): """Reads quaternion measurements from the Teensy until none are left. Returns the last read quaternion. Parameters ---------- serial_handle : Serial object Handle to the pyserial Serial object Returns ------- np array (4,) If there was quaternion data to read on the serial port returns the quaternion as a numpy array, otherwise returns the last read quaternion. """ while True: x = self.serial_handle.readline().decode("utf").strip() if x is "" or x is None: return self.last_quat else: parsed = x.split(",") if len(parsed) == 4: self.last_quat = np.array(parsed, dtype=np.float64) else: print("Did not receive 4-vector from imu")
1,440
Python
30.326086
152
0.543056
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Tests.py
# using LinearAlgebra # using Profile # using StaticArrays # using Plots # using BenchmarkTools # include("Kinematics.jl") # include("PupperConfig.jl") # include("Gait.jl") # include("StanceController.jl") # include("SwingLegController.jl") # include("Types.jl") # include("Controller.jl") import numpy as np import matplotlib.pyplot as plt from Kinematics import leg_explicit_inverse_kinematics from PupperConfig import * from Gaits import * from StanceController import position_delta, stance_foot_location from SwingLegController import * from Types import MovementReference, GaitParams, StanceParams, SwingParams from Controller import * # function round_(a, dec) # return map(x -> round(x, digits=dec), a) # end # function testInverseKinematicsExplicit!() # println("\n-------------- Testing Inverse Kinematics -----------") # config = PupperConfig() # println("\nTesting Inverse Kinematics") # function testHelper(r, alpha_true, i; do_assert=true) # eps = 1e-6 # @time α = leg_explicitinversekinematics_prismatic(r, i, config) # println("Leg ", i, ": r: ", r, " -> α: ", α) # if do_assert # @assert norm(α - alpha_true) < eps # end # end # c = config.LEG_L/sqrt(2) # offset = config.ABDUCTION_OFFSET # testHelper(SVector(0, offset, -0.125), SVector(0, 0, 0), 2) # testHelper(SVector(c, offset, -c), SVector(0, -pi/4, 0), 2) # testHelper(SVector(-c, offset, -c), SVector(0, pi/4, 0), 2) # testHelper(SVector(0, c, -c), missing, 2, do_assert=false) # testHelper(SVector(-c, -offset, -c), [0, pi/4, 0], 1) # testHelper(SVector(config.LEG_L * sqrt(3)/2, offset, -config.LEG_L / 2), SVector(0, -pi/3, 0), 2) # end def test_inverse_kinematics_linkage(): print("\n-------------- Testing Five-bar Linkage Inverse Kinematics -----------") config = PupperConfig() print("\nTesting Inverse Kinematics") def testHelper(r, alpha_true, i, do_assert=True): eps = 1e-6 alpha = leg_explicit_inverse_kinematics(r, i, config) print("Leg ", i, ": r: ", r, " -> α: ", alpha) if do_assert: assert np.linalg.norm(alpha - alpha_true) < eps c = config.LEG_L / (2 ** 0.5) offset = config.ABDUCTION_OFFSET testHelper(np.array([0, offset, -0.125]), None, 1, do_assert=False) testHelper(np.array([c, offset, -c]), None, 1, do_assert=False) testHelper(np.array([-c, offset, -c]), None, 1, do_assert=False) testHelper(np.array([0, c, -c]), None, 1, do_assert=False) testHelper(np.array([-c, -offset, -c]), None, 0, do_assert=False) testHelper( np.array([config.LEG_L * (3 ** 0.5) / 2, offset, -config.LEG_L / 2]), None, 1, do_assert=False, ) # function testForwardKinematics!() # println("\n-------------- Testing Forward Kinematics -----------") # config = PupperConfig() # println("\nTesting Forward Kinematics") # function testHelper(alpha, r_true, i; do_assert=true) # eps = 1e-6 # r = zeros(3) # println("Vectors") # a = [alpha.data...] # @time legForwardKinematics!(r, a, i, config) # println("SVectors") # @time r = legForwardKinematics(alpha, i, config) # println("Leg ", i, ": α: ", alpha, " -> r: ", r) # if do_assert # @assert norm(r_true - r) < eps # end # end # l = config.LEG_L # offset = config.ABDUCTION_OFFSET # testHelper(SVector{3}([0.0, 0.0, 0.0]), SVector{3}([0, offset, -l]), 2) # testHelper(SVector{3}([0.0, pi/4, 0.0]), missing, 2, do_assert=false) # # testHelper([0.0, 0.0, 0.0], [0, offset, -l], 2) # # testHelper([0.0, pi/4, 0.0], missing, 2, do_assert=false) # end # function testForwardInverseAgreeance() # println("\n-------------- Testing Forward/Inverse Consistency -----------") # config = PupperConfig() # println("\nTest forward/inverse consistency") # eps = 1e-6 # for i in 1:10 # alpha = SVector(rand()-0.5, rand()-0.5, (rand()-0.5)*0.05) # leg = rand(1:4) # @time r = legForwardKinematics(alpha, leg, config) # # @code_warntype legForwardKinematics!(r, alpha, leg, config) # @time alpha_prime = leg_explicitinversekinematics_prismatic(r, leg, config) # # @code_warntype inverseKinematicsExplicit!(alpha_prime, r, leg, config) # println("Leg ", leg, ": α: ", round_(alpha, 3), " -> r_body_foot: ", round_(r, 3), " -> α': ", round_(alpha_prime, 3)) # @assert norm(alpha_prime - alpha) < eps # end # end # function testAllInverseKinematics() # println("\n-------------- Testing Four Leg Inverse Kinematics -----------") # function helper(r_body, alpha_true; do_assert=true) # println("Timing for fourlegs_inversekinematics") # config = PupperConfig() # @time alpha = fourlegs_inversekinematics(SMatrix(r_body), config) # @code_warntype fourlegs_inversekinematics(SMatrix(r_body), config) # println("r: ", r_body, " -> α: ", alpha) # if do_assert # @assert norm(alpha - alpha_true) < 1e-10 # end # end # config = PupperConfig() # f = config.LEG_FB # l = config.LEG_LR # s = -0.125 # o = config.ABDUCTION_OFFSET # r_body = MMatrix{3,4}(zeros(3,4)) # r_body[:,1] = [f, -l-o, s] # r_body[:,2] = [f, l+o, s] # r_body[:,3] = [-f, -l-o, s] # r_body[:,4] = [-f, l+o, s] # helper(r_body, zeros(3,4)) # helper(SMatrix{3,4}(zeros(3,4)), missing, do_assert=false) # end # function testKinematics() # testInverseKinematicsExplicit!() # testForwardKinematics!() # testForwardInverseAgreeance() # testAllInverseKinematics() # end # function testGait() # println("\n-------------- Testing Gait -----------") # p = GaitParams() # # println("Gait params=",p) # t = 680 # println("Timing for phaseindex") # @time ph = phaseindex(t, p) # # @code_warntype phaseindex(t, p) # println("t=",t," phase=",ph) # @assert ph == 4 # @assert phaseindex(0, p) == 1 # println("Timing for contacts") # @time c = contacts(t, p) # # @code_warntype contacts(t, p) # @assert typeof(c) == SArray{Tuple{4},Int64,1,4} # println("t=", t, " contacts=", c) # end def test_stance_controller(): print("\n-------------- Testing Stance Controller -----------") stanceparams = StanceParams() gaitparams = GaitParams() zmeas = -0.20 mvref = MovementReference() dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams) assert np.linalg.norm(dR - np.eye(3)) < 1e-10 assert np.linalg.norm(dp - np.array([0, 0, gaitparams.dt * 0.04])) < 1e-10 zmeas = -0.18 mvref = MovementReference() mvref.v_xy_ref = np.array([1.0, 0.0]) mvref.z_ref = -0.18 dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams) zmeas = -0.20 mvref = MovementReference() mvref.wz_ref = 1.0 mvref.z_ref = -0.20 dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams) assert np.linalg.norm(dp - np.array([0, 0, 0])) < 1e-10 assert np.linalg.norm(dR[0, 1] - (gaitparams.dt)) < 1e-6 stancefootloc = np.zeros(3) sloc = stance_foot_location(stancefootloc, stanceparams, gaitparams, mvref) # function typeswinglegcontroller() # println("\n--------------- Code warn type for raibert_tdlocation[s] ----------") # swp = SwingParams() # stp = StanceParams() # gp = GaitParams() # mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18) # raibert_tdlocations(swp, stp, gp, mvref) # mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18) # raibert_tdlocation(1, swp, stp, gp, mvref) # end # function TestSwingLegController() # println("\n-------------- Testing Swing Leg Controller -----------") # swp = SwingParams() # stp = StanceParams() # gp = GaitParams() # p = ControllerParams() # println("Timing for swingheight:") # @time z = swingheight(0.5, swp) # println("z clearance at t=1/2swingtime =>",z) # @assert abs(z - swp.zclearance) < 1e-10 # println("Timing for swingheight:") # @time z = swingheight(0, swp) # println("Z clearance at t=0 =>",z) # @assert abs(z) < 1e-10 # mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18) # println("Timing for raibert tdlocation*s*:") # @time l = raibert_tdlocations(swp, stp, gp, mvref) # target = stp.defaultstance .+ [gp.stanceticks*gp.dt*0.5*1, 0, 0] # println("Touchdown locations =>", l, " <?=> ", target) # @assert norm(l - target) <= 1e-10 # mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18) # println("Timing for raibert tdlocation:") # @time l = raibert_tdlocation(1, swp, stp, gp, mvref) # fcurrent = SMatrix{3, 4, Float64}(stp.defaultstance) # mvref = MovementReference() # tswing = 0.125 # println("Timing for swingfootlocation*s* increment") # @time l = swingfootlocations(tswing, fcurrent, swp, stp, gp, mvref) # println(l) # fcurrent = SVector{3, Float64}(0.0, 0.0, 0.0) # println("Timing for swingfootlocation") # @time swingfootlocation(tswing, fcurrent, 1, swp, stp, gp, mvref) # typeswinglegcontroller() # return nothing # end def test_run(): print("Run timing") foot_loc_history, joint_angle_history = run() plt.subplot(211) x = plt.plot(foot_loc_history[0, :, :].T, label="x") y = plt.plot(foot_loc_history[1, :, :].T, label="y") z = plt.plot(foot_loc_history[2, :, :].T, label="z") plt.subplot(212) alpha = plt.plot(joint_angle_history[0, :, :].T, label="alpha") beta = plt.plot(joint_angle_history[1, :, :].T, label="beta") gamma = plt.plot(joint_angle_history[2, :, :].T, label="gamma") plt.show() # plot(x, β, y, α, z, γ, layout=(3,2), legend=false)) # function teststep() # swingparams = SwingParams() # stanceparams = StanceParams() # gaitparams = GaitParams() # mvref = MovementReference(vxyref=SVector{2}(0.2, 0.0), wzref=0.0) # conparams = ControllerParams() # robotconfig = PupperConfig() # footlocations::SMatrix{3, 4, Float64, 12} = stanceparams.defaultstance .+ SVector{3, Float64}(0, 0, mvref.zref) # ticks = 1 # println("Timing for step!") # @btime step($ticks, $footlocations, $swingparams, $stanceparams, $gaitparams, $mvref, $conparams) # @code_warntype step(ticks, footlocations, swingparams, stanceparams, gaitparams, mvref, conparams) # end # # testGait() # # testKinematics() # # TestStanceController() # # testStaticArrays() # # TestSwingLegController() # test_inversekinematics_linkage() # # teststep() # # testrun() test_inverse_kinematics_linkage() test_stance_controller() test_run()
10,778
Python
33.548077
128
0.59705
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/JoystickInterface.py
import UDPComms import numpy as np import time from src.State import BehaviorState, State from src.Command import Command from src.Utilities import deadband, clipped_first_order_filter class JoystickInterface: def __init__( self, config, udp_port=8830, udp_publisher_port = 8840, ): self.config = config self.previous_gait_toggle = 0 self.previous_state = BehaviorState.REST self.previous_hop_toggle = 0 self.previous_activate_toggle = 0 self.message_rate = 50 self.udp_handle = UDPComms.Subscriber(udp_port, timeout=0.3) self.udp_publisher = UDPComms.Publisher(udp_publisher_port) def get_command(self, state, do_print=False): try: msg = self.udp_handle.get() command = Command() ####### Handle discrete commands ######## # Check if requesting a state transition to trotting, or from trotting to resting gait_toggle = msg["R1"] command.trot_event = (gait_toggle == 1 and self.previous_gait_toggle == 0) # Check if requesting a state transition to hopping, from trotting or resting hop_toggle = msg["x"] command.hop_event = (hop_toggle == 1 and self.previous_hop_toggle == 0) activate_toggle = msg["L1"] command.activate_event = (activate_toggle == 1 and self.previous_activate_toggle == 0) # Update previous values for toggles and state self.previous_gait_toggle = gait_toggle self.previous_hop_toggle = hop_toggle self.previous_activate_toggle = activate_toggle ####### Handle continuous commands ######## x_vel = msg["ly"] * self.config.max_x_velocity y_vel = msg["lx"] * -self.config.max_y_velocity command.horizontal_velocity = np.array([x_vel, y_vel]) command.yaw_rate = msg["rx"] * -self.config.max_yaw_rate message_rate = msg["message_rate"] message_dt = 1.0 / message_rate pitch = msg["ry"] * self.config.max_pitch deadbanded_pitch = deadband( pitch, self.config.pitch_deadband ) pitch_rate = clipped_first_order_filter( state.pitch, deadbanded_pitch, self.config.max_pitch_rate, self.config.pitch_time_constant, ) command.pitch = state.pitch + message_dt * pitch_rate height_movement = msg["dpady"] command.height = state.height - message_dt * self.config.z_speed * height_movement roll_movement = - msg["dpadx"] command.roll = state.roll + message_dt * self.config.roll_speed * roll_movement return command except UDPComms.timeout: if do_print: print("UDP Timed out") return Command() def set_color(self, color): joystick_msg = {"ps4_color": color} self.udp_publisher.send(joystick_msg)
3,099
Python
36.349397
98
0.575992
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Utilities.py
import numpy as np def deadband(value, band_radius): return max(value - band_radius, 0) + min(value + band_radius, 0) def clipped_first_order_filter(input, target, max_rate, tau): rate = (target - input) / tau return np.clip(rate, -max_rate, max_rate)
268
Python
23.454543
68
0.671642
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Controller.py
from src.Gaits import GaitController from src.StanceController import StanceController from src.SwingLegController import SwingController from src.Utilities import clipped_first_order_filter from src.State import BehaviorState, State import numpy as np from transforms3d.euler import euler2mat, quat2euler from transforms3d.quaternions import qconjugate, quat2axangle from transforms3d.axangles import axangle2mat class Controller: """Controller and planner object """ def __init__( self, config, inverse_kinematics, ): self.config = config self.smoothed_yaw = 0.0 # for REST mode only self.inverse_kinematics = inverse_kinematics self.contact_modes = np.zeros(4) self.gait_controller = GaitController(self.config) self.swing_controller = SwingController(self.config) self.stance_controller = StanceController(self.config) self.hop_transition_mapping = {BehaviorState.REST: BehaviorState.HOP, BehaviorState.HOP: BehaviorState.FINISHHOP, BehaviorState.FINISHHOP: BehaviorState.REST, BehaviorState.TROT: BehaviorState.HOP} self.trot_transition_mapping = {BehaviorState.REST: BehaviorState.TROT, BehaviorState.TROT: BehaviorState.REST, BehaviorState.HOP: BehaviorState.TROT, BehaviorState.FINISHHOP: BehaviorState.TROT} self.activate_transition_mapping = {BehaviorState.DEACTIVATED: BehaviorState.REST, BehaviorState.REST: BehaviorState.DEACTIVATED} def step_gait(self, state, command): """Calculate the desired foot locations for the next timestep Returns ------- Numpy array (3, 4) Matrix of new foot locations. """ contact_modes = self.gait_controller.contacts(state.ticks) new_foot_locations = np.zeros((3, 4)) for leg_index in range(4): contact_mode = contact_modes[leg_index] foot_location = state.foot_locations[:, leg_index] if contact_mode == 1: new_location = self.stance_controller.next_foot_location(leg_index, state, command) else: swing_proportion = ( self.gait_controller.subphase_ticks(state.ticks) / self.config.swing_ticks ) new_location = self.swing_controller.next_foot_location( swing_proportion, leg_index, state, command ) new_foot_locations[:, leg_index] = new_location return new_foot_locations, contact_modes def run(self, state, command): """Steps the controller forward one timestep Parameters ---------- controller : Controller Robot controller object. """ ########## Update operating state based on command ###### if command.activate_event: state.behavior_state = self.activate_transition_mapping[state.behavior_state] elif command.trot_event: state.behavior_state = self.trot_transition_mapping[state.behavior_state] elif command.hop_event: state.behavior_state = self.hop_transition_mapping[state.behavior_state] if state.behavior_state == BehaviorState.TROT: state.foot_locations, contact_modes = self.step_gait( state, command, ) # Apply the desired body rotation rotated_foot_locations = ( euler2mat( command.roll, command.pitch, 0.0 ) @ state.foot_locations ) # Construct foot rotation matrix to compensate for body tilt (roll, pitch, yaw) = quat2euler(state.quat_orientation) correction_factor = 0.8 max_tilt = 0.4 roll_compensation = correction_factor * np.clip(roll, -max_tilt, max_tilt) pitch_compensation = correction_factor * np.clip(pitch, -max_tilt, max_tilt) rmat = euler2mat(roll_compensation, pitch_compensation, 0) rotated_foot_locations = rmat.T @ rotated_foot_locations state.joint_angles = self.inverse_kinematics( rotated_foot_locations, self.config ) elif state.behavior_state == BehaviorState.HOP: state.foot_locations = ( self.config.default_stance + np.array([0, 0, -0.09])[:, np.newaxis] ) state.joint_angles = self.inverse_kinematics( state.foot_locations, self.config ) elif state.behavior_state == BehaviorState.FINISHHOP: state.foot_locations = ( self.config.default_stance + np.array([0, 0, -0.22])[:, np.newaxis] ) state.joint_angles = self.inverse_kinematics( state.foot_locations, self.config ) elif state.behavior_state == BehaviorState.REST: yaw_proportion = command.yaw_rate / self.config.max_yaw_rate self.smoothed_yaw += ( self.config.dt * clipped_first_order_filter( self.smoothed_yaw, yaw_proportion * -self.config.max_stance_yaw, self.config.max_stance_yaw_rate, self.config.yaw_time_constant, ) ) # Set the foot locations to the default stance plus the standard height state.foot_locations = ( self.config.default_stance + np.array([0, 0, command.height])[:, np.newaxis] ) # Apply the desired body rotation rotated_foot_locations = ( euler2mat( command.roll, command.pitch, self.smoothed_yaw, ) @ state.foot_locations ) state.joint_angles = self.inverse_kinematics( rotated_foot_locations, self.config ) state.ticks += 1 state.pitch = command.pitch state.roll = command.roll state.height = command.height def set_pose_to_default(self): state.foot_locations = ( self.config.default_stance + np.array([0, 0, self.config.default_z_ref])[:, np.newaxis] ) state.joint_angles = controller.inverse_kinematics( state.foot_locations, self.config )
6,547
Python
37.292397
205
0.583168
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/ServoCalibration.py
# WARNING: This file is machine generated. Edit at your own risk. import numpy as np MICROS_PER_RAD = 11.333 * 180.0 / np.pi NEUTRAL_ANGLE_DEGREES = np.array( [[ 0., 0., 0., 0.], [ 45., 45., 45., 45.], [-45.,-45.,-45.,-45.]] )
236
Python
18.749998
65
0.576271
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/HardwareInterface.py
import pigpio from pupper.Config import ServoParams, PWMParams class HardwareInterface: def __init__(self): self.pi = pigpio.pi() self.pwm_params = PWMParams() self.servo_params = ServoParams() initialize_pwm(self.pi, self.pwm_params) def set_actuator_postions(self, joint_angles): send_servo_commands(self.pi, self.pwm_params, self.servo_params, joint_angles) def set_actuator_position(self, joint_angle, axis, leg): send_servo_command(self.pi, self.pwm_params, self.servo_params, joint_angle, axis, leg) def pwm_to_duty_cycle(pulsewidth_micros, pwm_params): """Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin Parameters ---------- pulsewidth_micros : float Width of the pwm signal in microseconds pwm_params : PWMParams PWMParams object Returns ------- float PWM duty cycle corresponding to the pulse width """ return int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range) def angle_to_pwm(angle, servo_params, axis_index, leg_index): """Converts a desired servo angle into the corresponding PWM command Parameters ---------- angle : float Desired servo angle, relative to the vertical (z) axis servo_params : ServoParams ServoParams object axis_index : int Specifies which joint of leg to control. 0 is abduction servo, 1 is inner hip servo, 2 is outer hip servo. leg_index : int Specifies which leg to control. 0 is front-right, 1 is front-left, 2 is back-right, 3 is back-left. Returns ------- float PWM width in microseconds """ angle_deviation = ( angle - servo_params.neutral_angles[axis_index, leg_index] ) * servo_params.servo_multipliers[axis_index, leg_index] pulse_width_micros = ( servo_params.neutral_position_pwm + servo_params.micros_per_rad * angle_deviation ) return pulse_width_micros def angle_to_duty_cycle(angle, pwm_params, servo_params, axis_index, leg_index): return pwm_to_duty_cycle( angle_to_pwm(angle, servo_params, axis_index, leg_index), pwm_params ) def initialize_pwm(pi, pwm_params): for leg_index in range(4): for axis_index in range(3): pi.set_PWM_frequency( pwm_params.pins[axis_index, leg_index], pwm_params.freq ) pi.set_PWM_range(pwm_params.pins[axis_index, leg_index], pwm_params.range) def send_servo_commands(pi, pwm_params, servo_params, joint_angles): for leg_index in range(4): for axis_index in range(3): duty_cycle = angle_to_duty_cycle( joint_angles[axis_index, leg_index], pwm_params, servo_params, axis_index, leg_index, ) pi.set_PWM_dutycycle(pwm_params.pins[axis_index, leg_index], duty_cycle) def send_servo_command(pi, pwm_params, servo_params, joint_angle, axis, leg): duty_cycle = angle_to_duty_cycle(joint_angle, pwm_params, servo_params, axis, leg) pi.set_PWM_dutycycle(pwm_params.pins[axis, leg], duty_cycle) def deactivate_servos(pi, pwm_params): for leg_index in range(4): for axis_index in range(3): pi.set_PWM_dutycycle(pwm_params.pins[axis_index, leg_index], 0)
3,408
Python
32.097087
114
0.639085
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/Kinematics.py
import numpy as np from transforms3d.euler import euler2mat def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config): """Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration Parameters ---------- r_body_foot : [type] [description] leg_index : [type] [description] config : [type] [description] Returns ------- numpy array (3) Array of corresponding joint angles. """ (x, y, z) = r_body_foot # Distance from the leg origin to the foot, projected into the y-z plane R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5 # Distance from the leg's forward/back point of rotation to the foot R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5 # Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis # For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative. arccos_argument = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz arccos_argument = np.clip(arccos_argument, -0.99, 0.99) phi = np.arccos(arccos_argument) # Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis hip_foot_angle = np.arctan2(z, y) # Ab/adduction angle, relative to the positive y-axis abduction_angle = phi + hip_foot_angle # theta: Angle between the tilted negative z-axis and the hip-to-foot vector theta = np.arctan2(-x, R_hip_foot_yz) # Distance between the hip and foot R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5 # Angle between the line going from hip to foot and the link L1 arccos_argument = (config.LEG_L1 ** 2 + R_hip_foot ** 2 - config.LEG_L2 ** 2) / ( 2 * config.LEG_L1 * R_hip_foot ) arccos_argument = np.clip(arccos_argument, -0.99, 0.99) trident = np.arccos(arccos_argument) # Angle of the first link relative to the tilted negative z axis hip_angle = theta + trident # Angle between the leg links L1 and L2 arccos_argument = (config.LEG_L1 ** 2 + config.LEG_L2 ** 2 - R_hip_foot ** 2) / ( 2 * config.LEG_L1 * config.LEG_L2 ) arccos_argument = np.clip(arccos_argument, -0.99, 0.99) beta = np.arccos(arccos_argument) # Angle of the second link relative to the tilted negative z axis knee_angle = hip_angle - (np.pi - beta) return np.array([abduction_angle, hip_angle, knee_angle]) def four_legs_inverse_kinematics(r_body_foot, config): """Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions. Parameters ---------- r_body_foot : numpy array (3,4) Matrix of the body-frame foot positions. Each column corresponds to a separate foot. config : Config object Object of robot configuration parameters. Returns ------- numpy array (3,4) Matrix of corresponding joint angles. """ alpha = np.zeros((3, 4)) for i in range(4): body_offset = config.LEG_ORIGINS[:, i] alpha[:, i] = leg_explicit_inverse_kinematics( r_body_foot[:, i] - body_offset, i, config ) return alpha
3,324
Python
34.752688
136
0.639892
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/HardwareConfig.py
""" Per-robot configuration file that is particular to each individual robot, not just the type of robot. """ PS4_COLOR = {"red": 0, "blue": 0, "green": 255} PS4_DEACTIVATED_COLOR = {"red": 0, "blue": 0, "green": 50}
217
Python
35.333327
101
0.658986
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/Config.py
import numpy as np from pupper.ServoCalibration import MICROS_PER_RAD, NEUTRAL_ANGLE_DEGREES from pupper.HardwareConfig import PS4_COLOR, PS4_DEACTIVATED_COLOR from enum import Enum # TODO: put these somewhere else class PWMParams: def __init__(self): self.pins = np.array([[2, 14, 18, 23], [3, 15, 27, 24], [4, 17, 22, 25]]) self.range = 4000 self.freq = 250 class ServoParams: def __init__(self): self.neutral_position_pwm = 1500 # Middle position self.micros_per_rad = MICROS_PER_RAD # Must be calibrated # The neutral angle of the joint relative to the modeled zero-angle in degrees, for each joint self.neutral_angle_degrees = NEUTRAL_ANGLE_DEGREES self.servo_multipliers = np.array( [[1, 1, 1, 1], [-1, 1, -1, 1], [1, -1, 1, -1]] ) @property def neutral_angles(self): return self.neutral_angle_degrees * np.pi / 180.0 # Convert to radians class Configuration: def __init__(self): ################# CONTROLLER BASE COLOR ############## self.ps4_color = PS4_COLOR self.ps4_deactivated_color = PS4_DEACTIVATED_COLOR #################### COMMANDS #################### self.max_x_velocity = 0.4 self.max_y_velocity = 0.3 self.max_yaw_rate = 2.0 self.max_pitch = 30.0 * np.pi / 180.0 #################### MOVEMENT PARAMS #################### self.z_time_constant = 0.02 self.z_speed = 0.03 # maximum speed [m/s] self.pitch_deadband = 0.02 self.pitch_time_constant = 0.25 self.max_pitch_rate = 0.15 self.roll_speed = 0.16 # maximum roll rate [rad/s] self.yaw_time_constant = 0.3 self.max_stance_yaw = 1.2 self.max_stance_yaw_rate = 2.0 #################### STANCE #################### self.delta_x = 0.1 self.delta_y = 0.09 self.x_shift = 0.0 self.default_z_ref = -0.16 #################### SWING ###################### self.z_coeffs = None self.z_clearance = 0.07 self.alpha = ( 0.5 # Ratio between touchdown distance and total horizontal stance movement ) self.beta = ( 0.5 # Ratio between touchdown distance and total horizontal stance movement ) #################### GAIT ####################### self.dt = 0.01 self.num_phases = 4 self.contact_phases = np.array( [[1, 1, 1, 0], [1, 0, 1, 1], [1, 0, 1, 1], [1, 1, 1, 0]] ) self.overlap_time = ( 0.10 # duration of the phase where all four feet are on the ground ) self.swing_time = ( 0.15 # duration of the phase when only two feet are on the ground ) ######################## GEOMETRY ###################### self.LEG_FB = 0.10 # front-back distance from center line to leg axis self.LEG_LR = 0.04 # left-right distance from center line to leg plane self.LEG_L2 = 0.115 self.LEG_L1 = 0.1235 self.ABDUCTION_OFFSET = 0.03 # distance from abduction axis to leg self.FOOT_RADIUS = 0.01 self.HIP_L = 0.0394 self.HIP_W = 0.0744 self.HIP_T = 0.0214 self.HIP_OFFSET = 0.0132 self.L = 0.276 self.W = 0.100 self.T = 0.050 self.LEG_ORIGINS = np.array( [ [self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB], [-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR], [0, 0, 0, 0], ] ) self.ABDUCTION_OFFSETS = np.array( [ -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, ] ) ################### INERTIAL #################### self.FRAME_MASS = 0.560 # kg self.MODULE_MASS = 0.080 # kg self.LEG_MASS = 0.030 # kg self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4 # Compensation factor of 3 because the inertia measurement was just # of the carbon fiber and plastic parts of the frame and did not # include the hip servos and electronics self.FRAME_INERTIA = tuple( map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3)) ) self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5) leg_z = 1e-6 leg_mass = 0.010 leg_x = 1 / 12 * self.LEG_L1 ** 2 * leg_mass leg_y = leg_x self.LEG_INERTIA = (leg_x, leg_y, leg_z) @property def default_stance(self): return np.array( [ [ self.delta_x + self.x_shift, self.delta_x + self.x_shift, -self.delta_x + self.x_shift, -self.delta_x + self.x_shift, ], [-self.delta_y, self.delta_y, -self.delta_y, self.delta_y], [0, 0, 0, 0], ] ) ################## SWING ########################### @property def z_clearance(self): return self.__z_clearance @z_clearance.setter def z_clearance(self, z): self.__z_clearance = z # b_z = np.array([0, 0, 0, 0, self.__z_clearance]) # A_z = np.array( # [ # [0, 0, 0, 0, 1], # [1, 1, 1, 1, 1], # [0, 0, 0, 1, 0], # [4, 3, 2, 1, 0], # [0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0], # ] # ) # self.z_coeffs = solve(A_z, b_z) ########################### GAIT #################### @property def overlap_ticks(self): return int(self.overlap_time / self.dt) @property def swing_ticks(self): return int(self.swing_time / self.dt) @property def stance_ticks(self): return 2 * self.overlap_ticks + self.swing_ticks @property def phase_ticks(self): return np.array( [self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks] ) @property def phase_length(self): return 2 * self.overlap_ticks + 2 * self.swing_ticks class SimulationConfig: def __init__(self): self.XML_IN = "pupper.xml" self.XML_OUT = "pupper_out.xml" self.START_HEIGHT = 0.3 self.MU = 1.5 # coeff friction self.DT = 0.001 # seconds between simulation steps self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters # Joint params G = 220 # Servo gear ratio m_rotor = 0.016 # Servo rotor mass r_rotor = 0.005 # Rotor radius self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints # print("Servo armature", self.ARMATURE) NATURAL_DAMPING = 1.0 # Damping resulting from friction ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF self.REV_DAMPING = ( NATURAL_DAMPING + ELECTRICAL_DAMPING ) # Damping torque on the revolute joints # Servo params self.SERVO_REV_KP = 300 # Position gain [Nm/rad] # Force limits self.MAX_JOINT_TORQUE = 3.0 self.REVOLUTE_RANGE = 1.57
7,666
Python
32.480349
102
0.501435
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareInterface.py
import odrive from odrive.enums import * from woofer.Config import RobotConfig from woofer.HardwareConfig import ( ODRIVE_SERIAL_NUMBERS, ACTUATOR_DIRECTIONS, ANGLE_OFFSETS, map_actuators_to_axes, ) import time import threading import numpy as np class HardwareInterface: def __init__(self): self.config = RobotConfig() assert len(ODRIVE_SERIAL_NUMBERS) == self.config.NUM_ODRIVES self.odrives = [None for _ in range(self.config.NUM_ODRIVES)] threads = [] for i in range(self.config.NUM_ODRIVES): t = threading.Thread(target=find_odrive, args=(i, self.odrives)) threads.append(t) t.start() for t in threads: t.join() input("Press enter to calibrate odrives...") calibrate_odrives(self.odrives) set_position_control(self.odrives) self.axes = assign_axes(self.odrives) def set_actuator_postions(self, joint_angles): set_all_odrive_positions(self.axes, joint_angles, self.config) def deactivate_actuators(self): set_odrives_idle(self.odrives) def find_odrive(i, odrives): o = odrive.find_any(serial_number=ODRIVE_SERIAL_NUMBERS[i]) print("Found odrive: ", i) odrives[i] = o def calibrate_odrives(odrives): for odrv in odrives: odrv.axis0.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE odrv.axis1.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE for odrv in odrives: while ( odrv.axis0.current_state != AXIS_STATE_IDLE or odrv.axis1.current_state != AXIS_STATE_IDLE ): time.sleep(0.1) # busy waiting - not ideal def set_position_control(odrives): for odrv in odrives: for axis in [odrv.axis0, odrv.axis1]: axis.controller.config.pos_gain = 60 axis.controller.config.vel_gain = 0.002 axis.controller.config.vel_limit_tolerance = 0 axis.controller.config.vel_integrator_gain = 0 axis.motor.config.current_lim = 15 print("Updated gains") odrv.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL odrv.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL def set_odrives_idle(odrives): for odrv in odrives: odrv.axis0.requested_state = AXIS_STATE_IDLE odrv.axis1.requested_state = AXIS_STATE_IDLE def assign_axes(odrives): return map_actuators_to_axes(odrives) def set_all_odrive_positions(axes, joint_angles, config): for i in range(joint_angles.shape[0]): for j in range(joint_angles.shape[1]): axes[i][j].controller.pos_setpoint = actuator_angle_to_odrive( joint_angles, i, j, config ) def radians_to_encoder_count(angle, config): return (angle / (2 * np.pi)) * config.ENCODER_CPR * config.MOTOR_REDUCTION def actuator_angle_to_odrive(joint_angles, i, j, config): offset_angle = joint_angles[i][j] + ANGLE_OFFSETS[i][j] odrive_radians = offset_angle * ACTUATOR_DIRECTIONS[i][j] return radians_to_encoder_count(odrive_radians, config)
3,118
Python
30.82653
78
0.652341
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Kinematics.py
import numpy as np def leg_forward_kinematics(alpha, leg_index, config): """Find the body-centric coordinates of a given foot given the joint angles. Parameters ---------- alpha : Numpy array (3) Joint angles ordered as (abduction, hip, knee) leg_index : int Leg index. config : Config object Robot parameters object Returns ------- Numpy array (3) Body-centric coordinates of the specified foot """ pass def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config): """Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration Parameters ---------- r_body_foot : [type] [description] leg_index : [type] [description] config : [type] [description] Returns ------- numpy array (3) Array of corresponding joint angles. """ (x, y, z) = r_body_foot # Distance from the leg origin to the foot, projected into the y-z plane R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5 # Distance from the leg's forward/back point of rotation to the foot R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5 # Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis # For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative. cos_param = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz if abs(cos_param) > 0.9: print("Clipping 1st cos param") cos_param = np.clip(cos_param, -0.9, 0.9) phi = np.arccos(cos_param) # Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis hip_foot_angle = np.arctan2(z, y) # Ab/adduction angle, relative to the positive y-axis abduction_angle = phi + hip_foot_angle # theta: Angle between the tilted negative z-axis and the hip-to-foot vector theta = np.arctan2(-x, R_hip_foot_yz) # Distance between the hip and foot R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5 # Using law of cosines to determine the angle between upper leg links cos_param = (config.UPPER_LEG ** 2 + R_hip_foot ** 2 - config.LOWER_LEG ** 2) / (2.0*config.UPPER_LEG*R_hip_foot) # Ensure that the leg isn't over or under extending cos_param = np.clip(cos_param, -0.9, 0.9) if abs(cos_param) > 0.9: print("Clipping 2nd cos param") # gamma: Angle between upper leg links and the center of the leg gamma = np.arccos(cos_param) return np.array([abduction_angle, theta - gamma, theta + gamma]) def four_legs_inverse_kinematics(r_body_foot, config): """Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions. Parameters ---------- r_body_foot : numpy array (3,4) Matrix of the body-frame foot positions. Each column corresponds to a separate foot. config : Config object Object of robot configuration parameters. Returns ------- numpy array (3,4) Matrix of corresponding joint angles. """ alpha = np.zeros((3, 4)) for i in range(4): body_offset = config.LEG_ORIGINS[:, i] alpha[:, i] = leg_explicit_inverse_kinematics( r_body_foot[:, i] - body_offset, i, config ) return alpha
3,449
Python
34.204081
136
0.636416
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareConfig.py
""" Per-robot configuration file that is particular to each individual robot, not just the type of robot. """ import numpy as np ODRIVE_SERIAL_NUMBERS = [ "2065339F304B", "208F3384304B", "365833753037", "207E35753748", "208F3385304B", "208E3387304B", ] ACTUATOR_DIRECTIONS = np.array([[1, 1, -1, -1], [-1, -1, -1, -1], [1, 1, 1, 1]]) ANGLE_OFFSETS = np.array( [ [0, 0, 0, 0], [np.pi / 2, np.pi / 2, np.pi / 2, np.pi / 2], [-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2], ] ) def map_actuators_to_axes(odrives): axes = [[None for _ in range(4)] for _ in range(3)] axes[0][0] = odrives[1].axis1 axes[1][0] = odrives[0].axis0 axes[2][0] = odrives[0].axis1 axes[0][1] = odrives[1].axis0 axes[1][1] = odrives[2].axis1 axes[2][1] = odrives[2].axis0 axes[0][2] = odrives[4].axis1 axes[1][2] = odrives[5].axis0 axes[2][2] = odrives[5].axis1 axes[0][3] = odrives[4].axis0 axes[1][3] = odrives[3].axis1 axes[2][3] = odrives[3].axis0 return axes
1,057
Python
22.511111
101
0.553453
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Config.py
import numpy as np from scipy.linalg import solve class BehaviorState(Enum): REST = 0 TROT = 1 HOP = 2 FINISHHOP = 3 class UserInputParams: def __init__(self): self.max_x_velocity = 0.5 self.max_y_velocity = 0.24 self.max_yaw_rate = 0.2 self.max_pitch = 30.0 * np.pi / 180.0 class MovementReference: """Stores movement reference """ def __init__(self): self.v_xy_ref = np.array([0, 0]) self.wz_ref = 0.0 self.z_ref = -0.265 self.pitch = 0.0 self.roll = 0.0 class SwingParams: """Swing Parameters """ def __init__(self): self.z_coeffs = None self.z_clearance = 0.05 self.alpha = ( 0.5 ) # Ratio between touchdown distance and total horizontal stance movement self.beta = ( 0.5 ) # Ratio between touchdown distance and total horizontal stance movement @property def z_clearance(self): return self.__z_clearance @z_clearance.setter def z_clearance(self, z): self.__z_clearance = z b_z = np.array([0, 0, 0, 0, self.__z_clearance]) A_z = np.array( [ [0, 0, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 0], [4, 3, 2, 1, 0], [0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0], ] ) self.z_coeffs = solve(A_z, b_z) class StanceParams: """Stance parameters """ def __init__(self): self.z_time_constant = 0.02 self.z_speed = 0.03 # maximum speed [m/s] self.pitch_deadband = 0.02 self.pitch_time_constant = 0.25 self.max_pitch_rate = 0.15 self.roll_speed = 0.16 # maximum roll rate [rad/s] self.delta_x = 0.23 self.delta_y = 0.173 self.x_shift = -0.01 @property def default_stance(self): return np.array( [ [ self.delta_x + self.x_shift, self.delta_x + self.x_shift, -self.delta_x + self.x_shift, -self.delta_x + self.x_shift, ], [-self.delta_y, self.delta_y, -self.delta_y, self.delta_y], [0, 0, 0, 0], ] ) class GaitParams: """Gait Parameters """ def __init__(self): self.dt = 0.01 self.num_phases = 4 self.contact_phases = np.array( [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]] ) self.overlap_time = ( 0.5 # duration of the phase where all four feet are on the ground ) self.swing_time = ( 0.5 # duration of the phase when only two feet are on the ground ) @property def overlap_ticks(self): return int(self.overlap_time / self.dt) @property def swing_ticks(self): return int(self.swing_time / self.dt) @property def stance_ticks(self): return 2 * self.overlap_ticks + self.swing_ticks @property def phase_times(self): return np.array( [self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks] ) @property def phase_length(self): return 2 * self.overlap_ticks + 2 * self.swing_ticks class RobotConfig: """Woofer hardware parameters """ def __init__(self): # Robot geometry self.LEG_FB = 0.23 # front-back distance from center line to leg axis self.LEG_LR = 0.109 # left-right distance from center line to leg plane self.ABDUCTION_OFFSET = 0.064 # distance from abduction axis to leg self.FOOT_RADIUS = 0.02 self.UPPER_LEG = 0.18 self.LOWER_LEG = 0.32 # Update hip geometry self.HIP_L = 0.0394 self.HIP_W = 0.0744 self.HIP_T = 0.0214 self.HIP_OFFSET = 0.0132 self.L = 0.66 self.W = 0.176 self.T = 0.092 self.LEG_ORIGINS = np.array( [ [self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB], [-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR], [0, 0, 0, 0], ] ) self.ABDUCTION_OFFSETS = np.array( [ -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, ] ) self.START_HEIGHT = 0.3 # Robot inertia params self.FRAME_MASS = 3.0 # kg self.MODULE_MASS = 1.033 # kg self.LEG_MASS = 0.15 # kg self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4 # Compensation factor of 3 because the inertia measurement was just # of the carbon fiber and plastic parts of the frame and did not # include the hip servos and electronics self.FRAME_INERTIA = tuple( map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3)) ) self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5) leg_z = 1e-6 leg_mass = 0.010 leg_x = 1 / 12 * self.LOWER_LEG ** 2 * leg_mass leg_y = leg_x self.LEG_INERTIA = (leg_x, leg_y, leg_z) # Joint params G = 220 # Servo gear ratio m_rotor = 0.016 # Servo rotor mass r_rotor = 0.005 # Rotor radius self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints # print("Servo armature", self.ARMATURE) NATURAL_DAMPING = 1.0 # Damping resulting from friction ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF self.REV_DAMPING = ( NATURAL_DAMPING + ELECTRICAL_DAMPING ) # Damping torque on the revolute joints # Force limits self.MAX_JOINT_TORQUE = 12.0 self.REVOLUTE_RANGE = 3 self.NUM_ODRIVES = 6 self.ENCODER_CPR = 2000 self.MOTOR_REDUCTION = 4 class EnvironmentConfig: """Environmental parameters """ def __init__(self): self.MU = 1.5 # coeff friction self.DT = 0.001 # seconds between simulation steps class SolverConfig: """MuJoCo solver parameters """ def __init__(self): self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters
6,661
Python
26.643153
88
0.523945
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/mini_pupper_simplified/README.md
# Mini Pupper Robot Description (URDF) ## Overview This package contains a simplified robot description (URDF) of the [Mini Pupper](https://www.kickstarter.com/projects/336477435/mini-pupper-open-sourceros-robot-dog-kit) developed by [MangDang](https://twitter.com/LeggedRobot). STL filesare forked from [mayataka/mini_pupper_trajopt](https://github.com/mayataka/mini_pupper_trajopt). ## License This software is released under a [BSD 3-Clause license](LICENSE). ## Usage See [CHAMP](https://github.com/chvmp/champ)
523
Markdown
31.749998
227
0.768642
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/rover.py
#!/usr/bin/env python3 import sys import argparse import json import time import select import pexpect import UDPComms import msgpack def peek_func(port): sub = UDPComms.Subscriber(port, timeout = 10) while 1: try: data = sub.recv() print( json.dumps(data) ) except UDPComms.timeout: exit() def poke_func(port, rate): pub = UDPComms.Publisher(port) data = None while 1: if select.select([sys.stdin], [], [], 0)[0]: line = sys.stdin.readline() # detailed behaviour # reading from file: -ignores empty lines -repeats last line forever # reading from terminal: -repeats last command if line.rstrip(): data = line.rstrip() elif len(line) == 0: # exit() #uncomment to quit on end of file pass else: continue if data != None: pub.send( json.loads(data) ) time.sleep( rate/1000 ) def call_func(command, ssh = True): child = pexpect.spawn(command) if ssh: i = 1 while i == 1: try: i = child.expect(['password:', 'Are you sure you want to continue connecting', 'Welcome'], timeout=20) except pexpect.EOF: print("Can't connect to device") exit() except pexpect.TIMEOUT: print("Interaction with device failed") exit() if i == 1: child.sendline('yes') if i == 0: child.sendline('raspberry') else: try: child.expect('robot:', timeout=1) child.sendline('hello') except pexpect.TIMEOUT: pass child.interact() if __name__ == '__main__': parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser') peek = subparsers.add_parser("peek") peek.add_argument('port', help="UDP port to subscribe to", type=int) poke = subparsers.add_parser("poke") poke.add_argument('port', help="UDP port to publish the data to", type=int) poke.add_argument('rate', help="how often to republish (ms)", type=float) peek = subparsers.add_parser("discover") commands = ['status', 'log', 'start', 'stop', 'restart', 'enable', 'disable'] for command in commands: status = subparsers.add_parser(command) status.add_argument('host', help="Which device to look for this program on") status.add_argument('unit', help="The unit whose status we want to know", nargs='?', default=None) connect = subparsers.add_parser('connect') connect.add_argument('host', help="Which device to log into") args = parser.parse_args() if args.subparser == 'peek': peek_func(args.port) elif args.subparser == 'poke': poke_func(args.port, args.rate) elif args.subparser == 'connect': call_func("ssh pi@"+args.host+".local") elif args.subparser == 'discover': call_func("nmap -sP 10.0.0.0/24", ssh=False) elif args.subparser in commands: if args.unit is None: args.unit = args.host if args.host == 'local': prefix = "" ssh = False else: prefix = "ssh pi@"+args.host+".local " ssh = True if args.subparser == 'status': call_func(prefix + "sudo systemctl status "+args.unit, ssh) elif args.subparser == 'log': call_func(prefix + "sudo journalctl -f -u "+args.unit, ssh) elif args.subparser == 'start': call_func(prefix + "sudo systemctl start "+args.unit, ssh) elif args.subparser == 'stop': call_func(prefix + "sudo systemctl stop "+args.unit, ssh) elif args.subparser == 'restart': call_func(prefix + "sudo systemctl restart "+args.unit, ssh) elif args.subparser == 'enable': call_func(prefix + "sudo systemctl enable "+args.unit, ssh) elif args.subparser == 'disable': call_func(prefix + "sudo systemctl disable "+args.unit, ssh) else: parser.print_help()
4,329
Python
30.838235
84
0.546778
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/__init__.py
from .UDPComms import Publisher from .UDPComms import Subscriber from .UDPComms import timeout
95
Python
22.999994
32
0.842105
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/setup.py
#!/usr/bin/env python from distutils.core import setup setup(name='UDPComms', version='1.1dev', py_modules=['UDPComms'], description='Simple library for sending messages over UDP', author='Michal Adamkiewicz', author_email='mikadam@stanford.edu', url='https://github.com/stanfordroboticsclub/UDP-Comms', )
349
Python
25.923075
65
0.673352
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/UDPComms.py
import socket import struct from collections import namedtuple from time import monotonic import msgpack import time timeout = socket.timeout MAX_SIZE = 65507 class Publisher: def __init__(self, port_tx,port): """ Create a Publisher Object Arguments: port -- the port to publish the messages on """ self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.des_address = ("127.0.0.1",port_tx) self.sock.bind(("127.0.0.1", port)) self.sock.settimeout(0.2) def send(self, obj): """ Publish a message. The obj can be any nesting of standard python types """ msg = msgpack.dumps(obj, use_bin_type=False) assert len(msg) < MAX_SIZE, "Encoded message too big!" self.sock.sendto(msg,self.des_address) def __del__(self): self.sock.close() class Subscriber: def __init__(self, port_rx, timeout=0.2): """ Create a Subscriber Object Arguments: port -- the port to listen to messages on timeout -- how long to wait before a message is considered out of date """ self.max_size = MAX_SIZE self.timeout = timeout self.last_data = None self.last_time = float('-inf') self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(timeout) self.sock.bind(("127.0.0.1", port_rx)) def recv(self): """ Receive a single message from the socket buffer. It blocks for up to timeout seconds. If no message is received before timeout it raises a UDPComms.timeout exception""" try: self.last_data, address = self.sock.recvfrom(3) except BlockingIOError: raise socket.timeout("no messages in buffer and called with timeout = 0") print(self.last_data) self.last_time = monotonic() return msgpack.loads(self.last_data, raw=False) def get(self): """ Returns the latest message it can without blocking. If the latest massage is older then timeout seconds it raises a UDPComms.timeout exception""" try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() except socket.error: pass finally: self.sock.settimeout(self.timeout) current_time = monotonic() if (current_time - self.last_time) < self.timeout: return msgpack.loads(self.last_data, raw=False) else: raise socket.timeout("timeout=" + str(self.timeout) + \ ", last message time=" + str(self.last_time) + \ ", current time=" + str(current_time)) def get_list(self): """ Returns list of messages, in the order they were received""" msg_bufer = [] try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() msg = msgpack.loads(self.last_data, raw=False) msg_bufer.append(msg) except socket.error: pass finally: self.sock.settimeout(self.timeout) return msg_bufer def __del__(self): self.sock.close() class Subscriber: def __init__(self, port, timeout=0.2): """ Create a Subscriber Object Arguments: port -- the port to listen to messages on timeout -- how long to wait before a message is considered out of date """ self.max_size = MAX_SIZE self.port = port self.timeout = timeout self.last_data = None self.last_time = float('-inf') self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if hasattr(socket, "SO_REUSEPORT"): self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) self.sock.settimeout(timeout) self.sock.bind(("", port)) def recv(self): """ Receive a single message from the socket buffer. It blocks for up to timeout seconds. If no message is received before timeout it raises a UDPComms.timeout exception""" try: self.last_data, address = self.sock.recvfrom(self.max_size) except BlockingIOError: raise socket.timeout("no messages in buffer and called with timeout = 0") self.last_time = monotonic() return msgpack.loads(self.last_data, raw=False) def get(self): """ Returns the latest message it can without blocking. If the latest massage is older then timeout seconds it raises a UDPComms.timeout exception""" try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() except socket.error: pass finally: self.sock.settimeout(self.timeout) current_time = monotonic() if (current_time - self.last_time) < self.timeout: return msgpack.loads(self.last_data, raw=False) else: raise socket.timeout("timeout=" + str(self.timeout) + \ ", last message time=" + str(self.last_time) + \ ", current time=" + str(current_time)) def get_list(self): """ Returns list of messages, in the order they were received""" msg_bufer = [] try: self.sock.settimeout(0) while True: self.last_data, address = self.sock.recvfrom(self.max_size) self.last_time = monotonic() msg = msgpack.loads(self.last_data, raw=False) msg_bufer.append(msg) except socket.error: pass finally: self.sock.settimeout(self.timeout) return msg_bufer def __del__(self): self.sock.close() if __name__ == "__main__": msg = 'very important data' a = Publisher(1000) a.send( {"text": "magic", "number":5.5, "bool":False} )
6,463
Python
33.021052
97
0.573727
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/README.md
# UDPComms This is a simple library to enable communication between different processes (potentially on different machines) over a network using UDP. It's goals a simplicity and easy of understanding and reliability. It works for devices on the `10.0.0.X` subnet although this can easiliy be changed. Currently it works in python 2 and 3 but it should be relatively simple to extend it to other languages such as C (to run on embeded devices) or Julia (to interface with faster solvers). This new verison of the library automatically determines the type of the message and trasmits it along with it, so the subscribers can decode it correctly. While faster to prototype with then systems with explicit type declaration (such as ROS) its easy to shoot yourself in the foot if types are mismatched between publisher and subscriber. ### To Send Messages ``` >>> from UDPComms import Publisher >>> a = Publisher(5500) >>> a.send({"name":"Bob", "age": 20, "height": 180.5, "mass": 70.1}) ``` ### To Receive Messages #### recv Method Note: before using the `Subsciber.recv()` method read about the `Subsciber.get()` and understand the difference between them. The `Subsciber.recv()` method will pull a message from the socket buffer and it won't necessary be the most recent message. If you are calling it too slowly and there is a lot of messages you will be getting old messages. The `Subsciber.recv()` can also block for up to `timeout` seconds messing up timing. ``` >>> from UDPComms import Subscriber >>> a = Subscriber(5500) >>> message = a.recv() >>> message['age'] 20 >>> message['height'] 180.5 >>> message['name'] "Bob" >>> message {"name":"Bob", "age": 20, "height": 180.5, "mass": 70.1} ``` #### get Method The preferred way of accessing messages is the `Subsciber.get()` method (as opposed to the `recv()` method). It is guaranteed to be nonblocking so it can be used in places without messing with timing. It checks for any new messages and returns the newest one. If the newest message is older then `timeout` seconds it raises the `UDPComms.timeout` exception. **This is an important safety feature!** Make sure to catch the timeout using `try: ... except UDPComms.timeout: ...` and put the robot in a safe configuration (e.g. turn off motors, when the joystick stop sending messages) Note that if you call `.get` immediately after creating a subscriber it is possible its hasn't received any messages yet and it will timeout. In general it is better to have a short timeout and gracefully catch timeouts then to have long timeouts ``` >>> from UDPComms import Subscriber, timout >>> a = Subscriber(5500) >>> while 1: >>> try: >>> message = a.get() >>> print("got", message) >>> except timeout: >>> print("safing robot") ``` #### get_list Method Although UDPComms isn't ideal for commands that need to be processed in order (as the underlying UDP protocol has no guarantees of deliverry) it can be used as such in a pinch. The `Subsciber.get_list()` method will return all the messages we haven't seen yet in a list ``` >>> from UDPComms import Subscriber, timout >>> a = Subscriber(5500) >>> messages = a.get_list() >>> for message in messages: >>> print("got", message) ``` ### Publisher Arguments - `port` The port the messages will be sent on. If you are part of Stanford Student Robotics make sure there isn't any port conflicts by checking the `UDP Ports` sheet of the [CS Comms System](https://docs.google.com/spreadsheets/d/1pqduUwYa1_sWiObJDrvCCz4Al3pl588ytE4u-Dwa6Pw/edit?usp=sharing) document. If you are not I recommend keep track of your port numbers somewhere. It's possible that in the future UDPComms will have a system of naming (with a string) as opposed to numbering publishers. - `ip` By default UDPComms sends to the `10.0.0.X` subnet, but can be changed to a different ip using this argument. Set to localhost (`127.0.0.1`) for development on the same computer. ### Subscriber Arguments - `port` The port the subscriber will be listen on. - `timeout` If the `recv()` method don't get a message in `timeout` seconds it throws a `UDPComms.timeout` exception ### Rover The library also comes with the `rover` command that can be used to interact with the messages manually. | Command | Descripion | |---------|------------| | `rover peek port` | print messages sent on port `port` | | `rover poke port rate` | send messages to `port` once every `rate` milliseconds. Type message in json format and press return | There are more commands used for starting and stoping services described in [this repo](https://github.com/stanfordroboticsclub/RPI-Setup/blob/master/README.md) ### To Install ``` $git clone https://github.com/stanfordroboticsclub/UDPComms.git $sudo bash UDPComms/install.sh ``` ### To Update ``` $cd UDPComms $git pull $sudo bash install.sh ``` ### Developing without hardware Because this library expects you to be connected to the robot (`10.0.0.X`) network you won't be able to send messages between two programs on your computer without any other hardware connected. You can get around this by forcing your (unused) ethernet interface to get an ip on the rover network without anything being connected to it. On my computer you can do this using this command: `sudo ifconfig en1 10.0.0.52 netmask 255.255.255.0` Note that the exact command depends which interface on your computer is unused and what ip you want. So only use this if you know what you are doing. If you have internet access a slightly cleaner way to do it is to setup [RemoteVPN](https://github.com/stanfordroboticsclub/RemoteVPN) on your development computer and simply connect to a development network (given if you are the only computer there) ### Known issues: - Macs have issues sending large messages. They are fine receiving them. I think it is related to [this issue](https://github.com/BanTheRewind/Cinder-Asio/issues/9). I wonder does it work on Linux by chance (as the packets happen to be in order) but so far we didn't have issues. - Messages over the size of one MTU (typically 1500 bytes) will be split up into multiple frames which reduces their chance of getting to their destination on wireless networks.
6,216
Markdown
50.380165
489
0.742117
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Doc/guide/software_installation.rst
===================== Software Installation ===================== .. contents:: :depth: 4 Setting up your Raspberry Pi ------------------------------ * Raspberry Pi 4(2GB DDR for normal use, 4GB DDR for install and debug by self) * SD Card (32GB recommended) * Raspberry Pi 4 power supply (USB-C, 5V, >=3A) * Ethernet cable Preparing the Pi's SD card ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ From your desktop / laptop: 1. Put the SD card into your desktop / laptop. ############################################### 2. Download this version of Ubuntu 21.10 ################################################################# Download Ubuntu21.10 server version 64bit image(NOT including desktop). Use `this version <https://drive.google.com/file/d/1JVtjFTKE6FloG3giyMN_VuS0dKt4n2xq/view?usp=sharing>`_ so everyone is using the same version. Unzip and extract the file. You can also check the version from `ubuntu offical website. <https://ubuntu.com/download/raspberry-pi>`_ 3. Use `etcher <https://www.balena.io/etcher/>`_ to flash the card. ########################################################################################## * For quick start, you can also download the `pre-installed image <https://drive.google.com/drive/folders/12FDFbZzO61Euh8pJI9oCxN-eLVm5zjyi?usp=sharing>`_ , (username: ubuntu , password: mangdang ) flash it into the card, then skip all the following steps and start to calibarte the Pupper Mini. * If you are using the recommended etcher, this is the start-up menu. Select ubuntu-21.10-preinstalled-server-arm64+raspi.img (file inside zip )and the SD card. .. image:: ../_static/flash1.png :align: center * Image of SD card being flashed. .. image:: ../_static/flash2.png :align: center * Done! .. image:: ../_static/flash3.png :align: center Enabling Basic Functionality ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1. Turn on your Raspberry Pi. ################################################################################################### Remove SD card from computer and put it into your Raspberry Pi. Connect the IO board to the Pi, Connect battery power from IO board power interface, Connect keyboard, and mouse to the Pi as well. Connect the Pi to a displayer by HDMI line. Switch power on/off button to set up the Pi. Follow the prompts to change the password((The default password is ``mangdang``)), and then install desktop. Before installation, please make sure that raspberry pi is plugged into the network cable to access the Internet. After installing the desktop, you only need to reboot it one time. The system will enter the desktop system by default. Run ``$sudo apt install ubuntu-desktop`` .. image:: ../_static/installDesktop.jpg :align: center 2. Initial Ubuntu server ######################################################## * The install time depends on your network speed, probably dozens of minutes. Input "Y" to continue, and then input "startx" to boot up desktop at first time. .. image:: ../_static/installDesktop2.jpg :align: center Reboot it only at first time, and then check the IP address, you can connect it later by SSH. .. image:: ../_static/bootupDesktop4.jpg :align: center 2. SSH into the pi from your computer and install the robot program. ###################################### Run ``ssh ubuntu@IP address`` (The default password is ``mangdang``) .. image:: ../_static/ssh.png :align: center Make ``Robotics`` folder and download the source code. Run ``git clone -b MiniPupper_V2 https://github.com/mangdangroboticsclub/QuadrupedRobot.git`` .. image:: ../_static/gitclonesourcecode.png :align: center Install requirements (on the Pi). Run ``sudo bash Legacy/pre_install.sh``, the pre-install time depends on your network speed, maybe dezons of minutes, or several hours. .. image:: ../_static/preInstall.png :align: center Insall the pupper robot program. * ``cd QuadrupedRobot`` * ``sudo bash install.sh`` .. image:: ../_static/preInstall.png :align: center 3. Power-cycle the robot ############################# Unplug the battery, wait about 30 seconds, and then plug it back in. 4. Verify everything is working ############################### #. If you just powered on the Pi, wait about 30 seconds until the green light stops blinking. #. SSH into the robot * Run ``ssh pi@10.0.0.xx (where xx is the IP address you chose for the robot)`` #. Check the status for the joystick service * Run ``sudo systemctl status joystick`` * If you haven't yet connected the PS4 controller, it should say something like :: pi@pupper(rw):~/StanfordQuadruped$ sudo systemctl status joystick ● joystick.service - Pupper Joystick service Loaded: loaded (/home/pi/PupperCommand/joystick.service; enabled; vendor preset: enabled) Active: active (running) since Sun 2020-03-01 06:57:20 GMT; 1s ago Main PID: 5692 (python3) Tasks: 3 (limit: 4035) Memory: 7.1M CGroup: /system.slice/joystick.service ├─5692 /usr/bin/python3 /home/pi/PupperCommand/joystick.py └─5708 hcitool scan --flush Mar 01 06:57:20 pupper systemd[1]: Started Pupper Joystick service. Mar 01 06:57:21 pupper python3[5692]: [info][controller 1] Created devices /dev/input/js0 (joystick) /dev/input/event0 (evdev) Mar 01 06:57:21 pupper python3[5692]: [info][bluetooth] Scanning for devices #. Connect the PS4 controller to the Pi by putting it pairing mode. * To put it into pairing mode, hold the share button and circular Playstation button at the same time until it starts making quick double flashes. * If it starts making slow single flashes, hold the Playstation button down until it stops blinking and try again. #. Once the controller is connected, check the status again * Run ``sudo systemctl status joystick`` * It should now look something like:: pi@pupper(rw):~/StanfordQuadruped$ sudo systemctl status joystick ● joystick.service - Pupper Joystick service Loaded: loaded (/home/pi/PupperCommand/joystick.service; enabled; vendor preset: enabled) Active: active (running) since Sun 2020-03-01 06:57:20 GMT; 55s ago Main PID: 5692 (python3) Tasks: 2 (limit: 4035) Memory: 7.3M CGroup: /system.slice/joystick.service └─5692 /usr/bin/python3 /home/pi/PupperCommand/joystick.py Mar 01 06:57:20 pupper systemd[1]: Started Pupper Joystick service. Mar 01 06:57:21 pupper python3[5692]: [info][controller 1] Created devices /dev/input/js0 (joystick) /dev/input/event0 (evdev) Mar 01 06:57:21 pupper python3[5692]: [info][bluetooth] Scanning for devices Mar 01 06:58:12 pupper python3[5692]: [info][bluetooth] Found device A0:AB:51:33:B5:A0 Mar 01 06:58:13 pupper python3[5692]: [info][controller 1] Connected to Bluetooth Controller (A0:AB:51:33:B5:A0) Mar 01 06:58:14 pupper python3[5692]: running Mar 01 06:58:14 pupper python3[5692]: [info][controller 1] Battery: 50% * If the pi can't find the joystick after a minute or two, it's possible that the pi's bluetooth controller was never turned on. Run ``sudo hciconfig hci0 up`` to turn the radio on. Then restart the pi. #. Check the status of the robot service * Run ``sudo systemctl status robot`` * The output varies depending on the order of you running various programs, but just check that it doesn't have any red text saying that it failed. * If it did fail, usually this fixes it: ``sudo systemctl restart robot`` 7. Done! ######### Continue to Calibration.
7,709
reStructuredText
40.675675
297
0.652354
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Example/display/demo.py
import os import sys from PIL import Image sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang.LCD.ST7789 import ST7789 def main(): """ The demo for picture show """ # init st7789 device disp = ST7789() disp.begin() disp.clear() # show exaple picture image=Image.open("./dog.png") image.resize((320,240)) disp.display(image) main()
527
Python
20.119999
129
0.671727
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/PWMController/pwm-pca9685.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for PCA9685 16-channel 12-bit PWM LED controller * * Copyright (C) 2013 Steffen Trumtrar <s.trumtrar@pengutronix.de> * Copyright (C) 2015 Clemens Gruber <clemens.gruber@pqgruber.com> * * based on the pwm-twl-led.c driver */ #include <linux/acpi.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/bitmap.h> /* * Because the PCA9685 has only one prescaler per chip, only the first channel * that is enabled is allowed to change the prescale register. * PWM channels requested afterwards must use a period that results in the same * prescale setting as the one set by the first requested channel. * GPIOs do not count as enabled PWMs as they are not using the prescaler. */ #define PCA9685_MODE1 0x00 #define PCA9685_MODE2 0x01 #define PCA9685_SUBADDR1 0x02 #define PCA9685_SUBADDR2 0x03 #define PCA9685_SUBADDR3 0x04 #define PCA9685_ALLCALLADDR 0x05 #define PCA9685_LEDX_ON_L 0x06 #define PCA9685_LEDX_ON_H 0x07 #define PCA9685_LEDX_OFF_L 0x08 #define PCA9685_LEDX_OFF_H 0x09 #define PCA9685_ALL_LED_ON_L 0xFA #define PCA9685_ALL_LED_ON_H 0xFB #define PCA9685_ALL_LED_OFF_L 0xFC #define PCA9685_ALL_LED_OFF_H 0xFD #define PCA9685_PRESCALE 0xFE #define PCA9685_PRESCALE_MIN 0x03 /* => max. frequency of 1526 Hz */ #define PCA9685_PRESCALE_MAX 0xFF /* => min. frequency of 24 Hz */ #define PCA9685_COUNTER_RANGE 4096 #define PCA9685_OSC_CLOCK_MHZ 25 /* Internal oscillator with 25 MHz */ #define PCA9685_NUMREGS 0xFF #define PCA9685_MAXCHAN 0x10 #define LED_FULL BIT(4) #define MODE1_ALLCALL BIT(0) #define MODE1_SUB3 BIT(1) #define MODE1_SUB2 BIT(2) #define MODE1_SUB1 BIT(3) #define MODE1_SLEEP BIT(4) #define MODE2_INVRT BIT(4) #define MODE2_OUTDRV BIT(2) #define LED_N_ON_H(N) (PCA9685_LEDX_ON_H + (4 * (N))) #define LED_N_ON_L(N) (PCA9685_LEDX_ON_L + (4 * (N))) #define LED_N_OFF_H(N) (PCA9685_LEDX_OFF_H + (4 * (N))) #define LED_N_OFF_L(N) (PCA9685_LEDX_OFF_L + (4 * (N))) #define REG_ON_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_H : LED_N_ON_H((C))) #define REG_ON_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_L : LED_N_ON_L((C))) #define REG_OFF_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_H : LED_N_OFF_H((C))) #define REG_OFF_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_L : LED_N_OFF_L((C))) struct pca9685 { struct pwm_chip chip; struct regmap *regmap; struct mutex lock; DECLARE_BITMAP(pwms_enabled, PCA9685_MAXCHAN + 1); #if IS_ENABLED(CONFIG_GPIOLIB) struct gpio_chip gpio; DECLARE_BITMAP(pwms_inuse, PCA9685_MAXCHAN + 1); #endif }; static inline struct pca9685 *to_pca(struct pwm_chip *chip) { return container_of(chip, struct pca9685, chip); } /* This function is supposed to be called with the lock mutex held */ static bool pca9685_prescaler_can_change(struct pca9685 *pca, int channel) { /* No PWM enabled: Change allowed */ if (bitmap_empty(pca->pwms_enabled, PCA9685_MAXCHAN + 1)) return true; /* More than one PWM enabled: Change not allowed */ if (bitmap_weight(pca->pwms_enabled, PCA9685_MAXCHAN + 1) > 1) return false; /* * Only one PWM enabled: Change allowed if the PWM about to * be changed is the one that is already enabled */ return test_bit(channel, pca->pwms_enabled); } /* Helper function to set the duty cycle ratio to duty/4096 (e.g. duty=2048 -> 50%) */ static void pca9685_pwm_set_duty(struct pca9685 *pca, int channel, unsigned int duty) { if (duty == 0) { /* Set the full OFF bit, which has the highest precedence */ regmap_write(pca->regmap, REG_OFF_H(channel), LED_FULL); } else if (duty >= PCA9685_COUNTER_RANGE) { /* Set the full ON bit and clear the full OFF bit */ regmap_write(pca->regmap, REG_ON_H(channel), LED_FULL); regmap_write(pca->regmap, REG_OFF_H(channel), 0); } else { /* Set OFF time (clears the full OFF bit) */ regmap_write(pca->regmap, REG_OFF_L(channel), duty & 0xff); regmap_write(pca->regmap, REG_OFF_H(channel), (duty >> 8) & 0xf); /* Clear the full ON bit */ regmap_write(pca->regmap, REG_ON_H(channel), 0); } } static unsigned int pca9685_pwm_get_duty(struct pca9685 *pca, int channel) { unsigned int off_h = 0, val = 0; if (WARN_ON(channel >= PCA9685_MAXCHAN)) { /* HW does not support reading state of "all LEDs" channel */ return 0; } regmap_read(pca->regmap, LED_N_OFF_H(channel), &off_h); if (off_h & LED_FULL) { /* Full OFF bit is set */ return 0; } regmap_read(pca->regmap, LED_N_ON_H(channel), &val); if (val & LED_FULL) { /* Full ON bit is set */ return PCA9685_COUNTER_RANGE; } if (regmap_read(pca->regmap, LED_N_OFF_L(channel), &val)) { /* Reset val to 0 in case reading LED_N_OFF_L failed */ val = 0; } return ((off_h & 0xf) << 8) | (val & 0xff); } #if IS_ENABLED(CONFIG_GPIOLIB) static bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx) { bool is_inuse; mutex_lock(&pca->lock); if (pwm_idx >= PCA9685_MAXCHAN) { /* * "All LEDs" channel: * pretend already in use if any of the PWMs are requested */ if (!bitmap_empty(pca->pwms_inuse, PCA9685_MAXCHAN)) { is_inuse = true; goto out; } } else { /* * Regular channel: * pretend already in use if the "all LEDs" channel is requested */ if (test_bit(PCA9685_MAXCHAN, pca->pwms_inuse)) { is_inuse = true; goto out; } } is_inuse = test_and_set_bit(pwm_idx, pca->pwms_inuse); out: mutex_unlock(&pca->lock); return is_inuse; } static void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx) { mutex_lock(&pca->lock); clear_bit(pwm_idx, pca->pwms_inuse); mutex_unlock(&pca->lock); } static int pca9685_pwm_gpio_request(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); if (pca9685_pwm_test_and_set_inuse(pca, offset)) return -EBUSY; pm_runtime_get_sync(pca->chip.dev); return 0; } static int pca9685_pwm_gpio_get(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); return pca9685_pwm_get_duty(pca, offset) != 0; } static void pca9685_pwm_gpio_set(struct gpio_chip *gpio, unsigned int offset, int value) { struct pca9685 *pca = gpiochip_get_data(gpio); pca9685_pwm_set_duty(pca, offset, value ? PCA9685_COUNTER_RANGE : 0); } static void pca9685_pwm_gpio_free(struct gpio_chip *gpio, unsigned int offset) { struct pca9685 *pca = gpiochip_get_data(gpio); pca9685_pwm_set_duty(pca, offset, 0); pm_runtime_put(pca->chip.dev); pca9685_pwm_clear_inuse(pca, offset); } static int pca9685_pwm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { /* Always out */ return GPIO_LINE_DIRECTION_OUT; } static int pca9685_pwm_gpio_direction_input(struct gpio_chip *gpio, unsigned int offset) { return -EINVAL; } static int pca9685_pwm_gpio_direction_output(struct gpio_chip *gpio, unsigned int offset, int value) { pca9685_pwm_gpio_set(gpio, offset, value); return 0; } /* * The PCA9685 has a bit for turning the PWM output full off or on. Some * boards like Intel Galileo actually uses these as normal GPIOs so we * expose a GPIO chip here which can exclusively take over the underlying * PWM channel. */ static int pca9685_pwm_gpio_probe(struct pca9685 *pca) { struct device *dev = pca->chip.dev; pca->gpio.label = dev_name(dev); pca->gpio.parent = dev; pca->gpio.request = pca9685_pwm_gpio_request; pca->gpio.free = pca9685_pwm_gpio_free; pca->gpio.get_direction = pca9685_pwm_gpio_get_direction; pca->gpio.direction_input = pca9685_pwm_gpio_direction_input; pca->gpio.direction_output = pca9685_pwm_gpio_direction_output; pca->gpio.get = pca9685_pwm_gpio_get; pca->gpio.set = pca9685_pwm_gpio_set; pca->gpio.base = -1; pca->gpio.ngpio = PCA9685_MAXCHAN; pca->gpio.can_sleep = true; return devm_gpiochip_add_data(dev, &pca->gpio, pca); } #else static inline bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx) { return false; } static inline void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx) { } static inline int pca9685_pwm_gpio_probe(struct pca9685 *pca) { return 0; } #endif static void pca9685_set_sleep_mode(struct pca9685 *pca, bool enable) { regmap_update_bits(pca->regmap, PCA9685_MODE1, MODE1_SLEEP, enable ? MODE1_SLEEP : 0); if (!enable) { /* Wait 500us for the oscillator to be back up */ udelay(500); } } static int __pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); unsigned long long duty, prescale; unsigned int val = 0; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; prescale = DIV_ROUND_CLOSEST_ULL(PCA9685_OSC_CLOCK_MHZ * state->period, PCA9685_COUNTER_RANGE * 1000) - 1; if (prescale < PCA9685_PRESCALE_MIN || prescale > PCA9685_PRESCALE_MAX) { dev_err(chip->dev, "pwm not changed: period out of bounds!\n"); return -EINVAL; } if (!state->enabled) { pca9685_pwm_set_duty(pca, pwm->hwpwm, 0); return 0; } regmap_read(pca->regmap, PCA9685_PRESCALE, &val); if (prescale != val) { if (!pca9685_prescaler_can_change(pca, pwm->hwpwm)) { dev_err(chip->dev, "pwm not changed: periods of enabled pwms must match!\n"); return -EBUSY; } /* * Putting the chip briefly into SLEEP mode * at this point won't interfere with the * pm_runtime framework, because the pm_runtime * state is guaranteed active here. */ /* Put chip into sleep mode */ pca9685_set_sleep_mode(pca, true); /* Change the chip-wide output frequency */ regmap_write(pca->regmap, PCA9685_PRESCALE, prescale); /* Wake the chip up */ pca9685_set_sleep_mode(pca, false); } duty = PCA9685_COUNTER_RANGE * state->duty_cycle; duty = DIV_ROUND_UP_ULL(duty, state->period); pca9685_pwm_set_duty(pca, pwm->hwpwm, duty); return 0; } static int pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); int ret; mutex_lock(&pca->lock); ret = __pca9685_pwm_apply(chip, pwm, state); if (ret == 0) { if (state->enabled) set_bit(pwm->hwpwm, pca->pwms_enabled); else clear_bit(pwm->hwpwm, pca->pwms_enabled); } mutex_unlock(&pca->lock); return ret; } static void pca9685_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pca9685 *pca = to_pca(chip); unsigned long long duty; unsigned int val = 0; /* Calculate (chip-wide) period from prescale value */ regmap_read(pca->regmap, PCA9685_PRESCALE, &val); /* * PCA9685_OSC_CLOCK_MHZ is 25, i.e. an integer divider of 1000. * The following calculation is therefore only a multiplication * and we are not losing precision. */ state->period = (PCA9685_COUNTER_RANGE * 1000 / PCA9685_OSC_CLOCK_MHZ) * (val + 1); /* The (per-channel) polarity is fixed */ state->polarity = PWM_POLARITY_NORMAL; if (pwm->hwpwm >= PCA9685_MAXCHAN) { /* * The "all LEDs" channel does not support HW readout * Return 0 and disabled for backwards compatibility */ state->duty_cycle = 0; state->enabled = false; return; } state->enabled = true; duty = pca9685_pwm_get_duty(pca, pwm->hwpwm); state->duty_cycle = DIV_ROUND_DOWN_ULL(duty * state->period, PCA9685_COUNTER_RANGE); } static int pca9685_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct pca9685 *pca = to_pca(chip); if (pca9685_pwm_test_and_set_inuse(pca, pwm->hwpwm)) return -EBUSY; if (pwm->hwpwm < PCA9685_MAXCHAN) { /* PWMs - except the "all LEDs" channel - default to enabled */ mutex_lock(&pca->lock); set_bit(pwm->hwpwm, pca->pwms_enabled); mutex_unlock(&pca->lock); } pm_runtime_get_sync(chip->dev); return 0; } static void pca9685_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct pca9685 *pca = to_pca(chip); mutex_lock(&pca->lock); pca9685_pwm_set_duty(pca, pwm->hwpwm, 0); clear_bit(pwm->hwpwm, pca->pwms_enabled); mutex_unlock(&pca->lock); pm_runtime_put(chip->dev); pca9685_pwm_clear_inuse(pca, pwm->hwpwm); } static const struct pwm_ops pca9685_pwm_ops = { .apply = pca9685_pwm_apply, .get_state = pca9685_pwm_get_state, .request = pca9685_pwm_request, .free = pca9685_pwm_free, .owner = THIS_MODULE, }; static const struct regmap_config pca9685_regmap_i2c_config = { .reg_bits = 8, .val_bits = 8, .max_register = PCA9685_NUMREGS, .cache_type = REGCACHE_NONE, }; static int pca9685_pwm_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct pca9685 *pca; unsigned int reg; int ret; pca = devm_kzalloc(&client->dev, sizeof(*pca), GFP_KERNEL); if (!pca) return -ENOMEM; pca->regmap = devm_regmap_init_i2c(client, &pca9685_regmap_i2c_config); if (IS_ERR(pca->regmap)) { ret = PTR_ERR(pca->regmap); dev_err(&client->dev, "Failed to initialize register map: %d\n", ret); return ret; } i2c_set_clientdata(client, pca); mutex_init(&pca->lock); regmap_read(pca->regmap, PCA9685_MODE2, &reg); if (device_property_read_bool(&client->dev, "invert")) reg |= MODE2_INVRT; else reg &= ~MODE2_INVRT; if (device_property_read_bool(&client->dev, "open-drain")) reg &= ~MODE2_OUTDRV; else reg |= MODE2_OUTDRV; regmap_write(pca->regmap, PCA9685_MODE2, reg); /* Disable all LED ALLCALL and SUBx addresses to avoid bus collisions */ regmap_read(pca->regmap, PCA9685_MODE1, &reg); reg &= ~(MODE1_ALLCALL | MODE1_SUB1 | MODE1_SUB2 | MODE1_SUB3); regmap_write(pca->regmap, PCA9685_MODE1, reg); /* Reset OFF registers to POR default */ regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_L, LED_FULL); regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_H, LED_FULL); pca->chip.ops = &pca9685_pwm_ops; /* Add an extra channel for ALL_LED */ pca->chip.npwm = PCA9685_MAXCHAN + 1; pca->chip.dev = &client->dev; ret = pwmchip_add(&pca->chip); if (ret < 0) return ret; ret = pca9685_pwm_gpio_probe(pca); if (ret < 0) { pwmchip_remove(&pca->chip); return ret; } pm_runtime_enable(&client->dev); if (pm_runtime_enabled(&client->dev)) { /* * Although the chip comes out of power-up in the sleep state, * we force it to sleep in case it was woken up before */ pca9685_set_sleep_mode(pca, true); pm_runtime_set_suspended(&client->dev); } else { /* Wake the chip up if runtime PM is disabled */ pca9685_set_sleep_mode(pca, false); } return 0; } static int pca9685_pwm_remove(struct i2c_client *client) { struct pca9685 *pca = i2c_get_clientdata(client); int ret; //ret = pwmchip_remove(&pca->chip); pwmchip_remove(&pca->chip); //if (ret) // return ret; if (!pm_runtime_enabled(&client->dev)) { /* Put chip in sleep state if runtime PM is disabled */ pca9685_set_sleep_mode(pca, true); } pm_runtime_disable(&client->dev); return 0; } static int __maybe_unused pca9685_pwm_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct pca9685 *pca = i2c_get_clientdata(client); pca9685_set_sleep_mode(pca, true); return 0; } static int __maybe_unused pca9685_pwm_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct pca9685 *pca = i2c_get_clientdata(client); pca9685_set_sleep_mode(pca, false); return 0; } static const struct i2c_device_id pca9685_id[] = { { "pca9685", 0 }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(i2c, pca9685_id); #ifdef CONFIG_ACPI static const struct acpi_device_id pca9685_acpi_ids[] = { { "INT3492", 0 }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(acpi, pca9685_acpi_ids); #endif #ifdef CONFIG_OF static const struct of_device_id pca9685_dt_ids[] = { { .compatible = "nxp,pca9685-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, pca9685_dt_ids); #endif static const struct dev_pm_ops pca9685_pwm_pm = { SET_RUNTIME_PM_OPS(pca9685_pwm_runtime_suspend, pca9685_pwm_runtime_resume, NULL) }; static struct i2c_driver pca9685_i2c_driver = { .driver = { .name = "pca9685-pwm", .acpi_match_table = ACPI_PTR(pca9685_acpi_ids), .of_match_table = of_match_ptr(pca9685_dt_ids), .pm = &pca9685_pwm_pm, }, .probe = pca9685_pwm_probe, .remove = pca9685_pwm_remove, .id_table = pca9685_id, }; module_i2c_driver(pca9685_i2c_driver); MODULE_AUTHOR("Steffen Trumtrar <s.trumtrar@pengutronix.de>"); MODULE_DESCRIPTION("PWM driver for PCA9685"); MODULE_LICENSE("GPL");
16,597
C
25.901134
88
0.685124
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/EEPROM/at24.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * at24.c - handle most I2C EEPROMs * * Copyright (C) 2005-2007 David Brownell * Copyright (C) 2008 Wolfram Sang, Pengutronix */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/capability.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nvmem-provider.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> /* Address pointer is 16 bit. */ #define AT24_FLAG_ADDR16 BIT(7) /* sysfs-entry will be read-only. */ #define AT24_FLAG_READONLY BIT(6) /* sysfs-entry will be world-readable. */ #define AT24_FLAG_IRUGO BIT(5) /* Take always 8 addresses (24c00). */ #define AT24_FLAG_TAKE8ADDR BIT(4) /* Factory-programmed serial number. */ #define AT24_FLAG_SERIAL BIT(3) /* Factory-programmed mac address. */ #define AT24_FLAG_MAC BIT(2) /* Does not auto-rollover reads to the next slave address. */ #define AT24_FLAG_NO_RDROL BIT(1) /* * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. * Differences between different vendor product lines (like Atmel AT24C or * MicroChip 24LC, etc) won't much matter for typical read/write access. * There are also I2C RAM chips, likewise interchangeable. One example * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). * * However, misconfiguration can lose data. "Set 16-bit memory address" * to a part with 8-bit addressing will overwrite data. Writing with too * big a page size also loses data. And it's not safe to assume that the * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC * uses 0x51, for just one example. * * Accordingly, explicit board-specific configuration data should be used * in almost all cases. (One partial exception is an SMBus used to access * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) * * So this driver uses "new style" I2C driver binding, expecting to be * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or * similar kernel-resident tables; or, configuration data coming from * a bootloader. * * Other than binding model, current differences from "eeprom" driver are * that this one handles write access and isn't restricted to 24c02 devices. * It also handles larger devices (32 kbit and up) with two-byte addresses, * which won't work on pure SMBus systems. */ struct at24_client { struct i2c_client *client; struct regmap *regmap; }; struct at24_data { /* * Lock protects against activities from other Linux tasks, * but not from changes by other I2C masters. */ struct mutex lock; unsigned int write_max; unsigned int num_addresses; unsigned int offset_adj; u32 byte_len; u16 page_size; u8 flags; struct nvmem_device *nvmem; struct regulator *vcc_reg; void (*read_post)(unsigned int off, char *buf, size_t count); /* * Some chips tie up multiple I2C addresses; dummy devices reserve * them for us, and we'll use them with SMBus calls. */ struct at24_client client[]; }; /* * This parameter is to help this driver avoid blocking other drivers out * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C * clock, one 256 byte read takes about 1/43 second which is excessive; * but the 1/170 second it takes at 400 kHz may be quite reasonable; and * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. * * This value is forced to be a power of two so that writes align on pages. */ static unsigned int at24_io_limit = 128; module_param_named(io_limit, at24_io_limit, uint, 0); MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)"); /* * Specs often allow 5 msec for a page write, sometimes 20 msec; * it's important to recover from write timeouts. */ static unsigned int at24_write_timeout = 25; module_param_named(write_timeout, at24_write_timeout, uint, 0); MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)"); struct at24_chip_data { u32 byte_len; u8 flags; void (*read_post)(unsigned int off, char *buf, size_t count); }; #define AT24_CHIP_DATA(_name, _len, _flags) \ static const struct at24_chip_data _name = { \ .byte_len = _len, .flags = _flags, \ } #define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post) \ static const struct at24_chip_data _name = { \ .byte_len = _len, .flags = _flags, \ .read_post = _read_post, \ } static void at24_read_post_vaio(unsigned int off, char *buf, size_t count) { int i; if (capable(CAP_SYS_ADMIN)) return; /* * Hide VAIO private settings to regular users: * - BIOS passwords: bytes 0x00 to 0x0f * - UUID: bytes 0x10 to 0x1f * - Serial number: 0xc0 to 0xdf */ for (i = 0; i < count; i++) { if ((off + i <= 0x1f) || (off + i >= 0xc0 && off + i <= 0xdf)) buf[i] = 0; } } /* needs 8 addresses as A0-A2 are ignored */ AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR); /* old variants can't be handled with this generic entry! */ AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0); AT24_CHIP_DATA(at24_data_24cs01, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0); AT24_CHIP_DATA(at24_data_24cs02, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24mac402, 48 / 8, AT24_FLAG_MAC | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24mac602, 64 / 8, AT24_FLAG_MAC | AT24_FLAG_READONLY); /* spd is a 24c02 in memory DIMMs */ AT24_CHIP_DATA(at24_data_spd, 2048 / 8, AT24_FLAG_READONLY | AT24_FLAG_IRUGO); /* 24c02_vaio is a 24c02 on some Sony laptops */ AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8, AT24_FLAG_READONLY | AT24_FLAG_IRUGO, at24_read_post_vaio); AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0); AT24_CHIP_DATA(at24_data_24cs04, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); /* 24rf08 quirk is handled at i2c-core */ AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0); AT24_CHIP_DATA(at24_data_24cs08, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0); AT24_CHIP_DATA(at24_data_24cs16, 16, AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24cs32, 16, AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24cs64, 16, AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY); AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16); AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16); /* identical to 24c08 ? */ AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0); static const struct i2c_device_id at24_ids[] = { { "24c00", (kernel_ulong_t)&at24_data_24c00 }, { "24c01", (kernel_ulong_t)&at24_data_24c01 }, { "24cs01", (kernel_ulong_t)&at24_data_24cs01 }, { "24c02", (kernel_ulong_t)&at24_data_24c02 }, { "24cs02", (kernel_ulong_t)&at24_data_24cs02 }, { "24mac402", (kernel_ulong_t)&at24_data_24mac402 }, { "24mac602", (kernel_ulong_t)&at24_data_24mac602 }, { "spd", (kernel_ulong_t)&at24_data_spd }, { "24c02-vaio", (kernel_ulong_t)&at24_data_24c02_vaio }, { "24c04", (kernel_ulong_t)&at24_data_24c04 }, { "24cs04", (kernel_ulong_t)&at24_data_24cs04 }, { "24c08", (kernel_ulong_t)&at24_data_24c08 }, { "24cs08", (kernel_ulong_t)&at24_data_24cs08 }, { "24c16", (kernel_ulong_t)&at24_data_24c16 }, { "24cs16", (kernel_ulong_t)&at24_data_24cs16 }, { "24c32", (kernel_ulong_t)&at24_data_24c32 }, { "24cs32", (kernel_ulong_t)&at24_data_24cs32 }, { "24c64", (kernel_ulong_t)&at24_data_24c64 }, { "24cs64", (kernel_ulong_t)&at24_data_24cs64 }, { "24c128", (kernel_ulong_t)&at24_data_24c128 }, { "24c256", (kernel_ulong_t)&at24_data_24c256 }, { "24c512", (kernel_ulong_t)&at24_data_24c512 }, { "24c1024", (kernel_ulong_t)&at24_data_24c1024 }, { "24c2048", (kernel_ulong_t)&at24_data_24c2048 }, { "at24", 0 }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(i2c, at24_ids); static const struct of_device_id at24_of_match[] = { { .compatible = "atmel,24c00", .data = &at24_data_24c00 }, { .compatible = "atmel,24c01", .data = &at24_data_24c01 }, { .compatible = "atmel,24cs01", .data = &at24_data_24cs01 }, { .compatible = "atmel,24c02", .data = &at24_data_24c02 }, { .compatible = "atmel,24cs02", .data = &at24_data_24cs02 }, { .compatible = "atmel,24mac402", .data = &at24_data_24mac402 }, { .compatible = "atmel,24mac602", .data = &at24_data_24mac602 }, { .compatible = "atmel,spd", .data = &at24_data_spd }, { .compatible = "atmel,24c04", .data = &at24_data_24c04 }, { .compatible = "atmel,24cs04", .data = &at24_data_24cs04 }, { .compatible = "atmel,24c08", .data = &at24_data_24c08 }, { .compatible = "atmel,24cs08", .data = &at24_data_24cs08 }, { .compatible = "atmel,24c16", .data = &at24_data_24c16 }, { .compatible = "atmel,24cs16", .data = &at24_data_24cs16 }, { .compatible = "atmel,24c32", .data = &at24_data_24c32 }, { .compatible = "atmel,24cs32", .data = &at24_data_24cs32 }, { .compatible = "atmel,24c64", .data = &at24_data_24c64 }, { .compatible = "atmel,24cs64", .data = &at24_data_24cs64 }, { .compatible = "atmel,24c128", .data = &at24_data_24c128 }, { .compatible = "atmel,24c256", .data = &at24_data_24c256 }, { .compatible = "atmel,24c512", .data = &at24_data_24c512 }, { .compatible = "atmel,24c1024", .data = &at24_data_24c1024 }, { .compatible = "atmel,24c2048", .data = &at24_data_24c2048 }, { /* END OF LIST */ }, }; MODULE_DEVICE_TABLE(of, at24_of_match); static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = { { "INT3499", (kernel_ulong_t)&at24_data_INT3499 }, { "TPF0001", (kernel_ulong_t)&at24_data_24c1024 }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(acpi, at24_acpi_ids); /* * This routine supports chips which consume multiple I2C addresses. It * computes the addressing information to be used for a given r/w request. * Assumes that sanity checks for offset happened at sysfs-layer. * * Slave address and byte offset derive from the offset. Always * set the byte address; on a multi-master board, another master * may have changed the chip's "current" address pointer. */ static struct at24_client *at24_translate_offset(struct at24_data *at24, unsigned int *offset) { unsigned int i; if (at24->flags & AT24_FLAG_ADDR16) { i = *offset >> 16; *offset &= 0xffff; } else { i = *offset >> 8; *offset &= 0xff; } return &at24->client[i]; } static struct device *at24_base_client_dev(struct at24_data *at24) { return &at24->client[0].client->dev; } static size_t at24_adjust_read_count(struct at24_data *at24, unsigned int offset, size_t count) { unsigned int bits; size_t remainder; /* * In case of multi-address chips that don't rollover reads to * the next slave address: truncate the count to the slave boundary, * so that the read never straddles slaves. */ if (at24->flags & AT24_FLAG_NO_RDROL) { bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8; remainder = BIT(bits) - offset; if (count > remainder) count = remainder; } if (count > at24_io_limit) count = at24_io_limit; return count; } static ssize_t at24_regmap_read(struct at24_data *at24, char *buf, unsigned int offset, size_t count) { unsigned long timeout, read_time; struct at24_client *at24_client; struct i2c_client *client; struct regmap *regmap; int ret; at24_client = at24_translate_offset(at24, &offset); regmap = at24_client->regmap; client = at24_client->client; count = at24_adjust_read_count(at24, offset, count); /* adjust offset for mac and serial read ops */ offset += at24->offset_adj; timeout = jiffies + msecs_to_jiffies(at24_write_timeout); do { /* * The timestamp shall be taken before the actual operation * to avoid a premature timeout in case of high CPU load. */ read_time = jiffies; ret = regmap_bulk_read(regmap, offset, buf, count); dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", count, offset, ret, jiffies); if (!ret) return count; usleep_range(1000, 1500); } while (time_before(read_time, timeout)); return -ETIMEDOUT; } /* * Note that if the hardware write-protect pin is pulled high, the whole * chip is normally write protected. But there are plenty of product * variants here, including OTP fuses and partial chip protect. * * We only use page mode writes; the alternative is sloooow. These routines * write at most one page. */ static size_t at24_adjust_write_count(struct at24_data *at24, unsigned int offset, size_t count) { unsigned int next_page; /* write_max is at most a page */ if (count > at24->write_max) count = at24->write_max; /* Never roll over backwards, to the start of this page */ next_page = roundup(offset + 1, at24->page_size); if (offset + count > next_page) count = next_page - offset; return count; } static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf, unsigned int offset, size_t count) { unsigned long timeout, write_time; struct at24_client *at24_client; struct i2c_client *client; struct regmap *regmap; int ret; at24_client = at24_translate_offset(at24, &offset); regmap = at24_client->regmap; client = at24_client->client; count = at24_adjust_write_count(at24, offset, count); timeout = jiffies + msecs_to_jiffies(at24_write_timeout); do { /* * The timestamp shall be taken before the actual operation * to avoid a premature timeout in case of high CPU load. */ write_time = jiffies; ret = regmap_bulk_write(regmap, offset, buf, count); dev_dbg(&client->dev, "write %zu@%d --> %d (%ld)\n", count, offset, ret, jiffies); if (!ret) return count; usleep_range(1000, 1500); } while (time_before(write_time, timeout)); return -ETIMEDOUT; } static int at24_read(void *priv, unsigned int off, void *val, size_t count) { struct at24_data *at24; struct device *dev; char *buf = val; int i, ret; at24 = priv; dev = at24_base_client_dev(at24); if (unlikely(!count)) return count; if (off + count > at24->byte_len) return -EINVAL; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } /* * Read data from chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); for (i = 0; count; i += ret, count -= ret) { ret = at24_regmap_read(at24, buf + i, off + i, count); if (ret < 0) { mutex_unlock(&at24->lock); pm_runtime_put(dev); return ret; } } mutex_unlock(&at24->lock); pm_runtime_put(dev); if (unlikely(at24->read_post)) at24->read_post(off, buf, i); return 0; } static int at24_write(void *priv, unsigned int off, void *val, size_t count) { struct at24_data *at24; struct device *dev; char *buf = val; int ret; at24 = priv; dev = at24_base_client_dev(at24); if (unlikely(!count)) return -EINVAL; if (off + count > at24->byte_len) return -EINVAL; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } /* * Write data to chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); while (count) { ret = at24_regmap_write(at24, buf, off, count); if (ret < 0) { mutex_unlock(&at24->lock); pm_runtime_put(dev); return ret; } buf += ret; off += ret; count -= ret; } mutex_unlock(&at24->lock); pm_runtime_put(dev); return 0; } static const struct at24_chip_data *at24_get_chip_data(struct device *dev) { struct device_node *of_node = dev->of_node; const struct at24_chip_data *cdata; const struct i2c_device_id *id; id = i2c_match_id(at24_ids, to_i2c_client(dev)); /* * The I2C core allows OF nodes compatibles to match against the * I2C device ID table as a fallback, so check not only if an OF * node is present but also if it matches an OF device ID entry. */ if (of_node && of_match_device(at24_of_match, dev)) cdata = of_device_get_match_data(dev); else if (id) cdata = (void *)id->driver_data; else cdata = acpi_device_get_match_data(dev); if (!cdata) return ERR_PTR(-ENODEV); return cdata; } static int at24_make_dummy_client(struct at24_data *at24, unsigned int index, struct regmap_config *regmap_config) { struct i2c_client *base_client, *dummy_client; struct regmap *regmap; struct device *dev; base_client = at24->client[0].client; dev = &base_client->dev; dummy_client = devm_i2c_new_dummy_device(dev, base_client->adapter, base_client->addr + index); if (IS_ERR(dummy_client)) return PTR_ERR(dummy_client); regmap = devm_regmap_init_i2c(dummy_client, regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); at24->client[index].client = dummy_client; at24->client[index].regmap = regmap; return 0; } static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len) { if (flags & AT24_FLAG_MAC) { /* EUI-48 starts from 0x9a, EUI-64 from 0x98 */ return 0xa0 - byte_len; } else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) { /* * For 16 bit address pointers, the word address must contain * a '10' sequence in bits 11 and 10 regardless of the * intended position of the address pointer. */ return 0x0800; } else if (flags & AT24_FLAG_SERIAL) { /* * Otherwise the word address must begin with a '10' sequence, * regardless of the intended address. */ return 0x0080; } else { return 0; } } static int at24_probe(struct i2c_client *client) { struct regmap_config regmap_config = { }; struct nvmem_config nvmem_config = { }; u32 byte_len, page_size, flags, addrw; const struct at24_chip_data *cdata; struct device *dev = &client->dev; bool i2c_fn_i2c, i2c_fn_block; unsigned int i, num_addresses; struct at24_data *at24; struct regmap *regmap; bool writable; u8 test_byte; int err; i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C); i2c_fn_block = i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_I2C_BLOCK); cdata = at24_get_chip_data(dev); if (IS_ERR(cdata)) return PTR_ERR(cdata); err = device_property_read_u32(dev, "pagesize", &page_size); if (err) /* * This is slow, but we can't know all eeproms, so we better * play safe. Specifying custom eeprom-types via device tree * or properties is recommended anyhow. */ page_size = 1; flags = cdata->flags; if (device_property_present(dev, "read-only")) flags |= AT24_FLAG_READONLY; if (device_property_present(dev, "no-read-rollover")) flags |= AT24_FLAG_NO_RDROL; err = device_property_read_u32(dev, "address-width", &addrw); if (!err) { switch (addrw) { case 8: if (flags & AT24_FLAG_ADDR16) dev_warn(dev, "Override address width to be 8, while default is 16\n"); flags &= ~AT24_FLAG_ADDR16; break; case 16: flags |= AT24_FLAG_ADDR16; break; default: dev_warn(dev, "Bad \"address-width\" property: %u\n", addrw); } } err = device_property_read_u32(dev, "size", &byte_len); if (err) byte_len = cdata->byte_len; if (!i2c_fn_i2c && !i2c_fn_block) page_size = 1; if (!page_size) { dev_err(dev, "page_size must not be 0!\n"); return -EINVAL; } if (!is_power_of_2(page_size)) dev_warn(dev, "page_size looks suspicious (no power of 2)!\n"); err = device_property_read_u32(dev, "num-addresses", &num_addresses); if (err) { if (flags & AT24_FLAG_TAKE8ADDR) num_addresses = 8; else num_addresses = DIV_ROUND_UP(byte_len, (flags & AT24_FLAG_ADDR16) ? 65536 : 256); } if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) { dev_err(dev, "invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC."); return -EINVAL; } regmap_config.val_bits = 8; regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8; regmap_config.disable_locking = true; regmap = devm_regmap_init_i2c(client, &regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); at24 = devm_kzalloc(dev, struct_size(at24, client, num_addresses), GFP_KERNEL); if (!at24) return -ENOMEM; mutex_init(&at24->lock); at24->byte_len = byte_len; at24->page_size = page_size; at24->flags = flags; at24->read_post = cdata->read_post; at24->num_addresses = num_addresses; at24->offset_adj = at24_get_offset_adj(flags, byte_len); at24->client[0].client = client; at24->client[0].regmap = regmap; at24->vcc_reg = devm_regulator_get(dev, "vcc"); if (IS_ERR(at24->vcc_reg)) return PTR_ERR(at24->vcc_reg); writable = !(flags & AT24_FLAG_READONLY); if (writable) { at24->write_max = min_t(unsigned int, page_size, at24_io_limit); if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX) at24->write_max = I2C_SMBUS_BLOCK_MAX; } /* use dummy devices for multiple-address chips */ for (i = 1; i < num_addresses; i++) { err = at24_make_dummy_client(at24, i, &regmap_config); if (err) return err; } /* * We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the * label property is set as some platform can have multiple eeproms * with same label and we can not register each of those with same * label. Failing to register those eeproms trigger cascade failure * on such platform. */ nvmem_config.id = NVMEM_DEVID_AUTO; if (device_property_present(dev, "label")) { err = device_property_read_string(dev, "label", &nvmem_config.name); if (err) return err; } else { nvmem_config.name = dev_name(dev); } nvmem_config.type = NVMEM_TYPE_EEPROM; nvmem_config.dev = dev; nvmem_config.read_only = !writable; nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO); nvmem_config.owner = THIS_MODULE; nvmem_config.compat = true; nvmem_config.base_dev = dev; nvmem_config.reg_read = at24_read; nvmem_config.reg_write = at24_write; nvmem_config.priv = at24; nvmem_config.stride = 1; nvmem_config.word_size = 1; nvmem_config.size = byte_len; i2c_set_clientdata(client, at24); err = regulator_enable(at24->vcc_reg); if (err) { dev_err(dev, "Failed to enable vcc regulator\n"); return err; } /* enable runtime pm */ pm_runtime_set_active(dev); pm_runtime_enable(dev); at24->nvmem = devm_nvmem_register(dev, &nvmem_config); if (IS_ERR(at24->nvmem)) { pm_runtime_disable(dev); if (!pm_runtime_status_suspended(dev)) regulator_disable(at24->vcc_reg); return PTR_ERR(at24->nvmem); } /* * Perform a one-byte test read to verify that the * chip is functional. */ err = at24_read(at24, 0, &test_byte, 1); if (err) { pm_runtime_disable(dev); if (!pm_runtime_status_suspended(dev)) regulator_disable(at24->vcc_reg); return -ENODEV; } pm_runtime_idle(dev); if (writable) dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n", byte_len, client->name, at24->write_max); else dev_info(dev, "%u byte %s EEPROM, read-only\n", byte_len, client->name); return 0; } static int at24_remove(struct i2c_client *client) { struct at24_data *at24 = i2c_get_clientdata(client); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) regulator_disable(at24->vcc_reg); pm_runtime_set_suspended(&client->dev); return 0; } static int __maybe_unused at24_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct at24_data *at24 = i2c_get_clientdata(client); return regulator_disable(at24->vcc_reg); } static int __maybe_unused at24_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct at24_data *at24 = i2c_get_clientdata(client); return regulator_enable(at24->vcc_reg); } static const struct dev_pm_ops at24_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL) }; static struct i2c_driver at24_driver = { .driver = { .name = "at24", .pm = &at24_pm_ops, .of_match_table = at24_of_match, .acpi_match_table = ACPI_PTR(at24_acpi_ids), }, .probe_new = at24_probe, .remove = at24_remove, .id_table = at24_ids, }; static int __init at24_init(void) { if (!at24_io_limit) { pr_err("at24: at24_io_limit must not be 0!\n"); return -EINVAL; } at24_io_limit = rounddown_pow_of_two(at24_io_limit); return i2c_add_driver(&at24_driver); } module_init(at24_init); static void __exit at24_exit(void) { i2c_del_driver(&at24_driver); } module_exit(at24_exit); MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); MODULE_AUTHOR("David Brownell and Wolfram Sang"); MODULE_LICENSE("GPL");
24,923
C
28.015134
80
0.676443
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/__init__.py
from __future__ import absolute_import from Mangdang.Adafruit_GPIO.GPIO import *
82
Python
19.749995
41
0.780488
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/Platform.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import platform import re # Platform identification constants. UNKNOWN = 0 RASPBERRY_PI = 1 BEAGLEBONE_BLACK = 2 MINNOWBOARD = 3 JETSON_NANO = 4 def platform_detect(): """Detect if running on the Raspberry Pi or Beaglebone Black and return the platform type. Will return RASPBERRY_PI, BEAGLEBONE_BLACK, or UNKNOWN.""" # Handle Raspberry Pi pi = pi_version() if pi is not None: return RASPBERRY_PI # Handle Beaglebone Black # TODO: Check the Beaglebone Black /proc/cpuinfo value instead of reading # the platform. plat = platform.platform() if plat.lower().find('armv7l-with-debian') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('armv7l-with-ubuntu') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('armv7l-with-glibc2.4') > -1: return BEAGLEBONE_BLACK elif plat.lower().find('tegra-aarch64-with-ubuntu') > -1: return JETSON_NANO # Handle Minnowboard # Assumption is that mraa is installed try: import mraa if mraa.getPlatformName()=='MinnowBoard MAX': return MINNOWBOARD except ImportError: pass # Couldn't figure out the platform, just return unknown. return UNKNOWN def pi_revision(): """Detect the revision number of a Raspberry Pi, useful for changing functionality like default I2C bus based on revision.""" # Revision list available at: http://elinux.org/RPi_HardwareHistory#Board_Revision_History with open('/proc/cpuinfo', 'r') as infile: for line in infile: # Match a line of the form "Revision : 0002" while ignoring extra # info in front of the revsion (like 1000 when the Pi was over-volted). match = re.match('Revision\s+:\s+.*(\w{4})$', line, flags=re.IGNORECASE) if match and match.group(1) in ['0000', '0002', '0003']: # Return revision 1 if revision ends with 0000, 0002 or 0003. return 1 elif match: # Assume revision 2 if revision ends with any other 4 chars. return 2 # Couldn't find the revision, throw an exception. raise RuntimeError('Could not determine Raspberry Pi revision.') def pi_version(): """Detect the version of the Raspberry Pi. Returns either 1, 2 or None depending on if it's a Raspberry Pi 1 (model A, B, A+, B+), Raspberry Pi 2 (model B+), or not a Raspberry Pi. """ # Check /proc/cpuinfo for the Hardware field value. # 2708 is pi 1 # 2709 is pi 2 # 2835 is pi 3 on 4.9.x kernel # Anything else is not a pi. with open('/proc/cpuinfo', 'r') as infile: cpuinfo = infile.read() # Match a line like 'Hardware : BCM2709' match = re.search('^Hardware\s+:\s+(\w+)$', cpuinfo, flags=re.MULTILINE | re.IGNORECASE) if not match: # Couldn't find the hardware, assume it isn't a pi. return None if match.group(1) == 'BCM2708': # Pi 1 return 1 elif match.group(1) == 'BCM2709': # Pi 2 return 2 elif match.group(1) == 'BCM2835': # Pi 3 / Pi on 4.9.x kernel return 3 else: # Something else, not a pi. return None
4,413
Python
37.719298
94
0.65375
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/GPIO.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import Adafruit_GPIO.Platform as Platform OUT = 0 IN = 1 HIGH = True LOW = False RISING = 1 FALLING = 2 BOTH = 3 PUD_OFF = 0 PUD_DOWN = 1 PUD_UP = 2 class BaseGPIO(object): """Base class for implementing simple digital IO for a platform. Implementors are expected to subclass from this and provide an implementation of the setup, output, and input functions.""" def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUT or IN.""" raise NotImplementedError def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high).""" raise NotImplementedError def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low.""" raise NotImplementedError def set_high(self, pin): """Set the specified pin HIGH.""" self.output(pin, HIGH) def set_low(self, pin): """Set the specified pin LOW.""" self.output(pin, LOW) def is_high(self, pin): """Return true if the specified pin is pulled high.""" return self.input(pin) == HIGH def is_low(self, pin): """Return true if the specified pin is pulled low.""" return self.input(pin) == LOW # Basic implementation of multiple pin methods just loops through pins and # processes each one individually. This is not optimal, but derived classes can # provide a more optimal implementation that deals with groups of pins # simultaneously. # See MCP230xx or PCF8574 classes for examples of optimized implementations. def output_pins(self, pins): """Set multiple pins high or low at once. Pins should be a dict of pin name to pin value (HIGH/True for 1, LOW/False for 0). All provided pins will be set to the given values. """ # General implementation just loops through pins and writes them out # manually. This is not optimized, but subclasses can choose to implement # a more optimal batch output implementation. See the MCP230xx class for # example of optimized implementation. for pin, value in iter(pins.items()): self.output(pin, value) def setup_pins(self, pins): """Setup multiple pins as inputs or outputs at once. Pins should be a dict of pin name to pin type (IN or OUT). """ # General implementation that can be optimized by derived classes. for pin, value in iter(pins.items()): self.setup(pin, value) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # General implementation that can be optimized by derived classes. return [self.input(pin) for pin in pins] def add_event_detect(self, pin, edge): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ raise NotImplementedError def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ raise NotImplementedError def add_event_callback(self, pin, callback): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. """ raise NotImplementedError def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ raise NotImplementedError def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH.""" raise NotImplementedError def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ raise NotImplementedError # helper functions useful to derived classes def _validate_pin(self, pin): # Raise an exception if pin is outside the range of allowed values. if pin < 0 or pin >= self.NUM_GPIO: raise ValueError('Invalid GPIO value, must be between 0 and {0}.'.format(self.NUM_GPIO)) def _bit2(self, src, bit, val): bit = 1 << bit return (src | bit) if val else (src & ~bit) class RPiGPIOAdapter(BaseGPIO): """GPIO implementation for the Raspberry Pi using the RPi.GPIO library.""" def __init__(self, rpi_gpio, mode=None): self.rpi_gpio = rpi_gpio # Suppress warnings about GPIO in use. rpi_gpio.setwarnings(False) # Setup board pin mode. if mode == rpi_gpio.BOARD or mode == rpi_gpio.BCM: rpi_gpio.setmode(mode) elif mode is not None: raise ValueError('Unexpected value for mode. Must be BOARD or BCM.') else: # Default to BCM numbering if not told otherwise. rpi_gpio.setmode(rpi_gpio.BCM) # Define mapping of Adafruit GPIO library constants to RPi.GPIO constants. self._dir_mapping = { OUT: rpi_gpio.OUT, IN: rpi_gpio.IN } self._pud_mapping = { PUD_OFF: rpi_gpio.PUD_OFF, PUD_DOWN: rpi_gpio.PUD_DOWN, PUD_UP: rpi_gpio.PUD_UP } self._edge_mapping = { RISING: rpi_gpio.RISING, FALLING: rpi_gpio.FALLING, BOTH: rpi_gpio.BOTH } def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUTPUT or INPUT. """ self.rpi_gpio.setup(pin, self._dir_mapping[mode], pull_up_down=self._pud_mapping[pull_up_down]) def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high). """ self.rpi_gpio.output(pin, value) def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.rpi_gpio.input(pin) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # maybe rpi has a mass read... it would be more efficient to use it if it exists return [self.rpi_gpio.input(pin) for pin in pins] def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.rpi_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.rpi_gpio.remove_event_detect(pin) def add_event_callback(self, pin, callback): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. """ self.rpi_gpio.add_event_callback(pin, callback) def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ return self.rpi_gpio.event_detected(pin) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.rpi_gpio.wait_for_edge(pin, self._edge_mapping[edge]) def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ if pin is None: self.rpi_gpio.cleanup() else: self.rpi_gpio.cleanup(pin) class AdafruitBBIOAdapter(BaseGPIO): """GPIO implementation for the Beaglebone Black using the Adafruit_BBIO library. """ def __init__(self, bbio_gpio): self.bbio_gpio = bbio_gpio # Define mapping of Adafruit GPIO library constants to RPi.GPIO constants. self._dir_mapping = { OUT: bbio_gpio.OUT, IN: bbio_gpio.IN } self._pud_mapping = { PUD_OFF: bbio_gpio.PUD_OFF, PUD_DOWN: bbio_gpio.PUD_DOWN, PUD_UP: bbio_gpio.PUD_UP } self._edge_mapping = { RISING: bbio_gpio.RISING, FALLING: bbio_gpio.FALLING, BOTH: bbio_gpio.BOTH } def setup(self, pin, mode, pull_up_down=PUD_OFF): """Set the input or output mode for a specified pin. Mode should be either OUTPUT or INPUT. """ self.bbio_gpio.setup(pin, self._dir_mapping[mode], pull_up_down=self._pud_mapping[pull_up_down]) def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high). """ self.bbio_gpio.output(pin, value) def input(self, pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.bbio_gpio.input(pin) def input_pins(self, pins): """Read multiple pins specified in the given list and return list of pin values GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low. """ # maybe bbb has a mass read... it would be more efficient to use it if it exists return [self.bbio_gpio.input(pin) for pin in pins] def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.bbio_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.bbio_gpio.remove_event_detect(pin) def add_event_callback(self, pin, callback, bouncetime=-1): """Add a callback for an event already defined using add_event_detect(). Pin should be type IN. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if bouncetime > 0: kwargs['bouncetime']=bouncetime self.bbio_gpio.add_event_callback(pin, callback, **kwargs) def event_detected(self, pin): """Returns True if an edge has occured on a given GPIO. You need to enable edge detection using add_event_detect() first. Pin should be type IN. """ return self.bbio_gpio.event_detected(pin) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.bbio_gpio.wait_for_edge(pin, self._edge_mapping[edge]) def cleanup(self, pin=None): """Clean up GPIO event detection for specific pin, or all pins if none is specified. """ if pin is None: self.bbio_gpio.cleanup() else: self.bbio_gpio.cleanup(pin) class AdafruitMinnowAdapter(BaseGPIO): """GPIO implementation for the Minnowboard + MAX using the mraa library""" def __init__(self,mraa_gpio): self.mraa_gpio = mraa_gpio # Define mapping of Adafruit GPIO library constants to mraa constants self._dir_mapping = { OUT: self.mraa_gpio.DIR_OUT, IN: self.mraa_gpio.DIR_IN } self._pud_mapping = { PUD_OFF: self.mraa_gpio.MODE_STRONG, PUD_UP: self.mraa_gpio.MODE_HIZ, PUD_DOWN: self.mraa_gpio.MODE_PULLDOWN } self._edge_mapping = { RISING: self.mraa_gpio.EDGE_RISING, FALLING: self.mraa_gpio.EDGE_FALLING, BOTH: self.mraa_gpio.EDGE_BOTH } def setup(self,pin,mode): """Set the input or output mode for a specified pin. Mode should be either DIR_IN or DIR_OUT. """ self.mraa_gpio.Gpio.dir(self.mraa_gpio.Gpio(pin),self._dir_mapping[mode]) def output(self,pin,value): """Set the specified pin the provided high/low value. Value should be either 1 (ON or HIGH), or 0 (OFF or LOW) or a boolean. """ self.mraa_gpio.Gpio.write(self.mraa_gpio.Gpio(pin), value) def input(self,pin): """Read the specified pin and return HIGH/true if the pin is pulled high, or LOW/false if pulled low. """ return self.mraa_gpio.Gpio.read(self.mraa_gpio.Gpio(pin)) def add_event_detect(self, pin, edge, callback=None, bouncetime=-1): """Enable edge detection events for a particular GPIO channel. Pin should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a function for the event. Bouncetime is switch bounce timeout in ms for callback """ kwargs = {} if callback: kwargs['callback']=callback if bouncetime > 0: kwargs['bouncetime']=bouncetime self.mraa_gpio.Gpio.isr(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge], **kwargs) def remove_event_detect(self, pin): """Remove edge detection for a particular GPIO channel. Pin should be type IN. """ self.mraa_gpio.Gpio.isrExit(self.mraa_gpio.Gpio(pin)) def wait_for_edge(self, pin, edge): """Wait for an edge. Pin should be type IN. Edge must be RISING, FALLING or BOTH. """ self.bbio_gpio.wait_for_edge(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge]) def get_platform_gpio(**keywords): """Attempt to return a GPIO instance for the platform which the code is being executed on. Currently supports only the Raspberry Pi using the RPi.GPIO library and Beaglebone Black using the Adafruit_BBIO library. Will throw an exception if a GPIO instance can't be created for the current platform. The returned GPIO object is an instance of BaseGPIO. """ plat = Platform.platform_detect() if plat == Platform.RASPBERRY_PI: import RPi.GPIO return RPiGPIOAdapter(RPi.GPIO, **keywords) elif plat == Platform.BEAGLEBONE_BLACK: import Adafruit_BBIO.GPIO return AdafruitBBIOAdapter(Adafruit_BBIO.GPIO, **keywords) elif plat == Platform.MINNOWBOARD: import mraa return AdafruitMinnowAdapter(mraa, **keywords) elif plat == Platform.JETSON_NANO: import Jetson.GPIO return RPiGPIOAdapter(Jetson.GPIO, **keywords) elif plat == Platform.UNKNOWN: raise RuntimeError('Could not determine platform.')
17,268
Python
39.160465
100
0.618253
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/SPI.py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import operator import time import Mangdang.Adafruit_GPIO as GPIO MSBFIRST = 0 LSBFIRST = 1 class SpiDev(object): """Hardware-based SPI implementation using the spidev interface.""" def __init__(self, port, device, max_speed_hz=500000): """Initialize an SPI device using the SPIdev interface. Port and device identify the device, for example the device /dev/spidev1.0 would be port 1 and device 0. """ import spidev self._device = spidev.SpiDev() self._device.open(port, device) self._device.max_speed_hz=max_speed_hz # Default to mode 0, and make sure CS is active low. self._device.mode = 0 #self._device.cshigh = False def set_clock_hz(self, hz): """Set the speed of the SPI clock in hertz. Note that not all speeds are supported and a lower speed might be chosen by the hardware. """ self._device.max_speed_hz=hz def set_mode(self, mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') self._device.mode = mode def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ if order == MSBFIRST: self._device.lsbfirst = False elif order == LSBFIRST: self._device.lsbfirst = True else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close communication with the SPI device.""" self._device.close() def write(self, data): """Half-duplex SPI write. The specified array of bytes will be clocked out the MOSI line. """ self._device.writebytes(data) def read(self, length): """Half-duplex SPI read. The specified length of bytes will be clocked in the MISO line and returned as a bytearray object. """ return bytearray(self._device.readbytes(length)) def transfer(self, data): """Full-duplex SPI read and write. The specified array of bytes will be clocked out the MOSI line, while simultaneously bytes will be read from the MISO line. Read bytes will be returned as a bytearray object. """ return bytearray(self._device.xfer2(data)) class SpiDevMraa(object): """Hardware SPI implementation with the mraa library on Minnowboard""" def __init__(self, port, device, max_speed_hz=500000): import mraa self._device = mraa.Spi(0) self._device.mode(0) def set_clock_hz(self, hz): """Set the speed of the SPI clock in hertz. Note that not all speeds are supported and a lower speed might be chosen by the hardware. """ self._device.frequency(hz) def set_mode(self,mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') self._device.mode(mode) def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ if order == MSBFIRST: self._device.lsbmode(False) elif order == LSBFIRST: self._device.lsbmode(True) else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close communication with the SPI device.""" self._device.Spi() def write(self, data): """Half-duplex SPI write. The specified array of bytes will be clocked out the MOSI line. """ self._device.write(bytearray(data)) class BitBang(object): """Software-based implementation of the SPI protocol over GPIO pins.""" def __init__(self, gpio, sclk, mosi=None, miso=None, ss=None): """Initialize bit bang (or software) based SPI. Must provide a BaseGPIO class, the SPI clock, and optionally MOSI, MISO, and SS (slave select) pin numbers. If MOSI is set to None then writes will be disabled and fail with an error, likewise for MISO reads will be disabled. If SS is set to None then SS will not be asserted high/low by the library when transfering data. """ self._gpio = gpio self._sclk = sclk self._mosi = mosi self._miso = miso self._ss = ss # Set pins as outputs/inputs. gpio.setup(sclk, GPIO.OUT) if mosi is not None: gpio.setup(mosi, GPIO.OUT) if miso is not None: gpio.setup(miso, GPIO.IN) if ss is not None: gpio.setup(ss, GPIO.OUT) # Assert SS high to start with device communication off. gpio.set_high(ss) # Assume mode 0. self.set_mode(0) # Assume most significant bit first order. self.set_bit_order(MSBFIRST) def set_clock_hz(self, hz): """Set the speed of the SPI clock. This is unsupported with the bit bang SPI class and will be ignored. """ pass def set_mode(self, mode): """Set SPI mode which controls clock polarity and phase. Should be a numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus """ if mode < 0 or mode > 3: raise ValueError('Mode must be a value 0, 1, 2, or 3.') if mode & 0x02: # Clock is normally high in mode 2 and 3. self._clock_base = GPIO.HIGH else: # Clock is normally low in mode 0 and 1. self._clock_base = GPIO.LOW if mode & 0x01: # Read on trailing edge in mode 1 and 3. self._read_leading = False else: # Read on leading edge in mode 0 and 2. self._read_leading = True # Put clock into its base state. self._gpio.output(self._sclk, self._clock_base) def set_bit_order(self, order): """Set order of bits to be read/written over serial lines. Should be either MSBFIRST for most-significant first, or LSBFIRST for least-signifcant first. """ # Set self._mask to the bitmask which points at the appropriate bit to # read or write, and appropriate left/right shift operator function for # reading/writing. if order == MSBFIRST: self._mask = 0x80 self._write_shift = operator.lshift self._read_shift = operator.rshift elif order == LSBFIRST: self._mask = 0x01 self._write_shift = operator.rshift self._read_shift = operator.lshift else: raise ValueError('Order must be MSBFIRST or LSBFIRST.') def close(self): """Close the SPI connection. Unused in the bit bang implementation.""" pass def write(self, data, assert_ss=True, deassert_ss=True): """Half-duplex SPI write. If assert_ss is True, the SS line will be asserted low, the specified bytes will be clocked out the MOSI line, and if deassert_ss is True the SS line be put back high. """ # Fail MOSI is not specified. if self._mosi is None: raise RuntimeError('Write attempted with no MOSI pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) for byte in data: for i in range(8): # Write bit to MOSI. if self._write_shift(byte, i) & self._mask: self._gpio.set_high(self._mosi) else: self._gpio.set_low(self._mosi) # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) def read(self, length, assert_ss=True, deassert_ss=True): """Half-duplex SPI read. If assert_ss is true, the SS line will be asserted low, the specified length of bytes will be clocked in the MISO line, and if deassert_ss is true the SS line will be put back high. Bytes which are read will be returned as a bytearray object. """ if self._miso is None: raise RuntimeError('Read attempted with no MISO pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) result = bytearray(length) for i in range(length): for j in range(8): # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Handle read on leading edge of clock. if self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) # Handle read on trailing edge of clock. if not self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) return result def transfer(self, data, assert_ss=True, deassert_ss=True): """Full-duplex SPI read and write. If assert_ss is true, the SS line will be asserted low, the specified bytes will be clocked out the MOSI line while bytes will also be read from the MISO line, and if deassert_ss is true the SS line will be put back high. Bytes which are read will be returned as a bytearray object. """ if self._mosi is None: raise RuntimeError('Write attempted with no MOSI pin specified.') if self._miso is None: raise RuntimeError('Read attempted with no MISO pin specified.') if assert_ss and self._ss is not None: self._gpio.set_low(self._ss) result = bytearray(len(data)) for i in range(len(data)): for j in range(8): # Write bit to MOSI. if self._write_shift(data[i], j) & self._mask: self._gpio.set_high(self._mosi) else: self._gpio.set_low(self._mosi) # Flip clock off base. self._gpio.output(self._sclk, not self._clock_base) # Handle read on leading edge of clock. if self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) # Return clock to base. self._gpio.output(self._sclk, self._clock_base) # Handle read on trailing edge of clock. if not self._read_leading: if self._gpio.is_high(self._miso): # Set bit to 1 at appropriate location. result[i] |= self._read_shift(self._mask, j) else: # Set bit to 0 at appropriate location. result[i] &= ~self._read_shift(self._mask, j) if deassert_ss and self._ss is not None: self._gpio.set_high(self._ss) return result
13,970
Python
41.465045
81
0.585827
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/FuelGauge/max1720x_battery.c
/* * Maxim MAX17201/MAX17205 fuel gauge driver * * Author: Mahir Ozturk <mahir.ozturk@maximintegrated.com> * Copyright (C) 2019 Maxim Integrated * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This driver is based on max17042/40_battery.c */ #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/regmap.h> #include <linux/slab.h> #define DRV_NAME "max1720x" /* CONFIG register bits */ #define MAX1720X_CONFIG_ALRT_EN (1 << 2) /* STATUS register bits */ #define MAX1720X_STATUS_BST (1 << 3) #define MAX1720X_STATUS_POR (1 << 1) /* STATUS interrupt status bits */ #define MAX1720X_STATUS_ALRT_CLR_MASK (0x88BB) #define MAX1720X_STATUS_SOC_MAX_ALRT (1 << 14) #define MAX1720X_STATUS_TEMP_MAX_ALRT (1 << 13) #define MAX1720X_STATUS_VOLT_MAX_ALRT (1 << 12) #define MAX1720X_STATUS_SOC_MIN_ALRT (1 << 10) #define MAX1720X_STATUS_TEMP_MIN_ALRT (1 << 9) #define MAX1720X_STATUS_VOLT_MIN_ALRT (1 << 8) #define MAX1720X_STATUS_CURR_MAX_ALRT (1 << 6) #define MAX1720X_STATUS_CURR_MIN_ALRT (1 << 2) /* ProtStatus register bits */ #define MAX1730X_PROTSTATUS_CHGWDT (1 << 15) #define MAX1730X_PROTSTATUS_TOOHOTC (1 << 14) #define MAX1730X_PROTSTATUS_FULL (1 << 13) #define MAX1730X_PROTSTATUS_TOOCOLDC (1 << 12) #define MAX1730X_PROTSTATUS_OVP (1 << 11) #define MAX1730X_PROTSTATUS_OCCP (1 << 10) #define MAX1730X_PROTSTATUS_QOVFLW (1 << 9) #define MAX1730X_PROTSTATUS_RESCFAULT (1 << 7) #define MAX1730X_PROTSTATUS_PERMFAIL (1 << 6) #define MAX1730X_PROTSTATUS_DIEHOT (1 << 5) #define MAX1730X_PROTSTATUS_TOOHOTD (1 << 4) #define MAX1730X_PROTSTATUS_UVP (1 << 3) #define MAX1730X_PROTSTATUS_ODCP (1 << 2) #define MAX1730X_PROTSTATUS_RESDFAULT (1 << 1) #define MAX1730X_PROTSTATUS_SHDN (1 << 0) #define MAX1720X_VMAX_TOLERANCE 50 /* 50 mV */ #define MODELGAUGE_DATA_I2C_ADDR 0x36 #define NONVOLATILE_DATA_I2C_ADDR 0x0B struct max1720x_platform_data { /* * rsense in miliOhms. * default 10 (if rsense = 0) as it is the recommended value by * the datasheet although it can be changed by board designers. */ unsigned int rsense; int volt_min; /* in mV */ int volt_max; /* in mV */ int temp_min; /* in DegreC */ int temp_max; /* in DegreeC */ int soc_max; /* in percent */ int soc_min; /* in percent */ int curr_max; /* in mA */ int curr_min; /* in mA */ }; struct max1720x_priv { struct i2c_client *client; struct device *dev; struct regmap *regmap; struct power_supply *battery; struct max1720x_platform_data *pdata; struct work_struct init_worker; struct attribute_group *attr_grp; const u8 *regs; u8 nvmem_high_addr; int cycles_reg_lsb_percent; int (*get_charging_status)(void); int (*get_battery_health)(struct max1720x_priv *priv, int *health); }; enum chip_id { ID_MAX1720X, ID_MAX1730X, }; enum register_ids { STATUS_REG = 0, VALRTTH_REG, TALRTTH_REG, SALRTTH_REG, ATRATE_REG, REPCAP_REG, REPSOC_REG, TEMP_REG, VCELL_REG, CURRENT_REG, AVGCURRENT_REG, TTE_REG , CYCLES_REG, DESIGNCAP_REG, AVGVCELL_REG, MAXMINVOLT_REG, CONFIG_REG, TTF_REG , VERSION_REG, FULLCAPREP_REG, VEMPTY_REG, QH_REG , IALRTTH_REG, PROTSTATUS_REG, ATTTE_REG, VFOCV_REG, }; static int max1720x_get_battery_health(struct max1720x_priv *priv, int *health); static int max1730x_get_battery_health(struct max1720x_priv *priv, int *health); static int (*get_battery_health_handlers[]) (struct max1720x_priv *priv, int *health) = { [ID_MAX1720X] = max1720x_get_battery_health, [ID_MAX1730X] = max1730x_get_battery_health, }; /* Register addresses */ static const u8 max1720x_regs[] = { [STATUS_REG] = 0x00, [VALRTTH_REG] = 0x01, [TALRTTH_REG] = 0x02, [SALRTTH_REG] = 0x03, [ATRATE_REG] = 0x04, [REPCAP_REG] = 0x05, [REPSOC_REG] = 0x06, [TEMP_REG] = 0x08, [VCELL_REG] = 0x09, [CURRENT_REG] = 0x0A, [AVGCURRENT_REG] = 0x0B, [TTE_REG] = 0x11, [CYCLES_REG] = 0x17, [DESIGNCAP_REG] = 0x18, [AVGVCELL_REG] = 0x19, [MAXMINVOLT_REG] = 0x1B, [CONFIG_REG] = 0x1D, [TTF_REG] = 0x20, [VERSION_REG] = 0x21, [FULLCAPREP_REG] = 0x35, [VEMPTY_REG] = 0x3A, [QH_REG] = 0x4D, [IALRTTH_REG] = 0xB4, [ATTTE_REG] = 0xDD, [VFOCV_REG] = 0xFB, }; static const u8 max1730x_regs[] = { [STATUS_REG] = 0x00, [VALRTTH_REG] = 0x01, [TALRTTH_REG] = 0x02, [SALRTTH_REG] = 0x03, [ATRATE_REG] = 0x04, [REPCAP_REG] = 0x05, [REPSOC_REG] = 0x06, [TEMP_REG] = 0x1B, [VCELL_REG] = 0x1A, [CURRENT_REG] = 0x1C, [AVGCURRENT_REG] = 0x1D, [TTE_REG] = 0x11, [CYCLES_REG] = 0x17, [DESIGNCAP_REG] = 0x18, [AVGVCELL_REG] = 0x19, [MAXMINVOLT_REG] = 0x08, [CONFIG_REG] = 0x1D, [TTF_REG] = 0x20, [VERSION_REG] = 0x21, [FULLCAPREP_REG] = 0x10, [VEMPTY_REG] = 0x3A, [QH_REG] = 0x4D, [IALRTTH_REG] = 0xAC, [PROTSTATUS_REG] = 0xD9, [ATTTE_REG] = 0xDD, [VFOCV_REG] = 0xFB, }; static const u8* chip_regs[] = { [ID_MAX1720X] = max1720x_regs, [ID_MAX1730X] = max1730x_regs, }; static const u8 nvmem_high_addrs[] = { [ID_MAX1720X] = 0xDF, [ID_MAX1730X] = 0xEF, }; static const int cycles_reg_lsb_percents[] = { [ID_MAX1720X] = 25, [ID_MAX1730X] = 16, }; static enum power_supply_property max1720x_battery_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, }; static inline int max1720x_raw_voltage_to_uvolts(struct max1720x_priv *priv, int lsb) { return lsb * 10000 / 65536; /* 78.125uV per bit */ } static inline int max1720x_raw_current_to_uamps(struct max1720x_priv *priv, int curr) { return curr * 15625 / ((int)priv->pdata->rsense * 10); } static inline int max1720x_raw_capacity_to_uamph(struct max1720x_priv *priv, int cap) { return cap * 5000 / (int)priv->pdata->rsense; } static ssize_t max1720x_log_show(struct device *dev, struct device_attribute *attr, char *buf) { struct max1720x_priv *priv = dev_get_drvdata(dev); int rc = 0, reg = 0; u32 val = 0; for (reg = 0; reg < 0xE0; reg++) { regmap_read(priv->regmap, reg, &val); rc += (int)snprintf(buf+rc, PAGE_SIZE-rc, "0x%04X,", val); if (reg == 0x4F) reg += 0x60; if (reg == 0xBF) reg += 0x10; } rc += (int)snprintf(buf+rc, PAGE_SIZE-rc, "\n"); return rc; } static ssize_t max1720x_nvmem_show(struct device *dev, struct device_attribute *attr, char *buf) { struct max1720x_priv *priv = dev_get_drvdata(dev); int rc = 0, reg = 0; u32 val = 0; int ret; int i; /* * Device has a separate slave address for accessing non-volatile memory * region, so we are temporarily changing i2c client address. */ priv->client->addr = NONVOLATILE_DATA_I2C_ADDR; for (reg = 0x80; reg < priv->nvmem_high_addr; reg += 16) { rc += snprintf(buf+rc, PAGE_SIZE-rc, "Page %02Xh: ", (reg + 0x100) >> 4); for (i = 0; i < 16; i++) { ret = regmap_read(priv->regmap, reg + i, &val); if (ret) { dev_err(dev, "NV memory reading failed (%d)\n", ret); return 0; } rc += snprintf(buf+rc, PAGE_SIZE-rc, "0x%04X ", val); } rc += snprintf(buf+rc, PAGE_SIZE-rc, "\n"); } priv->client->addr = MODELGAUGE_DATA_I2C_ADDR; return rc; } static ssize_t max1720x_atrate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct max1720x_priv *priv = dev_get_drvdata(dev); u32 val = 0; int ret; ret = regmap_read(priv->regmap, priv->regs[ATRATE_REG], &val); if (ret) { return 0; } return sprintf(buf, "%d", (short)val); } static ssize_t max1720x_atrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct max1720x_priv *priv = dev_get_drvdata(dev); s32 val = 0; int ret; if (kstrtos32(buf, 0, &val)) return -EINVAL; ret = regmap_write(priv->regmap, priv->regs[ATRATE_REG], val); if (ret < 0) return ret; return count; } static ssize_t max1720x_attte_show(struct device *dev, struct device_attribute *attr, char *buf) { struct max1720x_priv *priv = dev_get_drvdata(dev); u32 val = 0; int ret; ret = regmap_read(priv->regmap, priv->regs[ATTTE_REG], &val); if (ret) { return 0; } return sprintf(buf, "%d", (short)val); } static DEVICE_ATTR(log, S_IRUGO, max1720x_log_show, NULL); static DEVICE_ATTR(nvmem, S_IRUGO, max1720x_nvmem_show, NULL); static DEVICE_ATTR(atrate, S_IRUGO | S_IWUSR, max1720x_atrate_show, max1720x_atrate_store); static DEVICE_ATTR(attte, S_IRUGO, max1720x_attte_show, NULL); static struct attribute *max1720x_attr[] = { &dev_attr_log.attr, &dev_attr_nvmem.attr, &dev_attr_atrate.attr, &dev_attr_attte.attr, NULL }; static struct attribute_group max1720x_attr_group = { .attrs = max1720x_attr, }; static int max1720x_get_temperature(struct max1720x_priv *priv, int *temp) { int ret; u32 data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[TEMP_REG], &data); if (ret < 0) return ret; *temp = sign_extend32(data, 15); /* The value is converted into centigrade scale */ /* Units of LSB = 1 / 256 degree Celsius */ *temp = (*temp * 10) >> 8; return 0; } static int max1720x_set_temp_lower_limit(struct max1720x_priv *priv, int temp) { int ret; u32 data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[TALRTTH_REG], &data); if (ret < 0) return ret; /* Input in deci-centigrade, convert to centigrade */ temp /= 10; data &= 0xFF00; data |= (temp & 0xFF); ret = regmap_write(map, priv->regs[TALRTTH_REG], data); if (ret < 0) return ret; return 0; } static int max1720x_get_temperature_alert_min(struct max1720x_priv *priv, int *temp) { int ret; u32 data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[TALRTTH_REG], &data); if (ret < 0) return ret; /* Convert 1DegreeC LSB to 0.1DegreeC LSB */ *temp = sign_extend32(data & 0xff, 7) * 10; return 0; } static int max1720x_set_temp_upper_limit(struct max1720x_priv *priv, int temp) { int ret; u32 data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[TALRTTH_REG], &data); if (ret < 0) return ret; /* Input in deci-centigrade, convert to centigrade */ temp /= 10; data &= 0xFF; data |= ((temp << 8) & 0xFF00); ret = regmap_write(map, priv->regs[TALRTTH_REG], data); if (ret < 0) return ret; return 0; } static int max1720x_get_temperature_alert_max(struct max1720x_priv *priv, int *temp) { int ret; u32 data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[TALRTTH_REG], &data); if (ret < 0) return ret; /* Convert 1DegreeC LSB to 0.1DegreeC LSB */ *temp = sign_extend32(data >> 8, 7) * 10; return 0; } static int max1720x_get_battery_health(struct max1720x_priv *priv, int *health) { int temp, vavg, vbatt, ret; u32 val; ret = regmap_read(priv->regmap, priv->regs[AVGVCELL_REG], &val); if (ret < 0) goto health_error; /* bits [0-3] unused */ vavg = max1720x_raw_voltage_to_uvolts(priv, val); /* Convert to millivolts */ vavg /= 1000; ret = regmap_read(priv->regmap, priv->regs[VCELL_REG], &val); if (ret < 0) goto health_error; /* bits [0-3] unused */ vbatt = max1720x_raw_voltage_to_uvolts(priv, val); /* Convert to millivolts */ vbatt /= 1000; if (vavg < priv->pdata->volt_min) { *health = POWER_SUPPLY_HEALTH_DEAD; goto out; } if (vbatt > priv->pdata->volt_max + MAX1720X_VMAX_TOLERANCE) { *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; goto out; } ret = max1720x_get_temperature(priv, &temp); if (ret < 0) goto health_error; if (temp <= priv->pdata->temp_min) { *health = POWER_SUPPLY_HEALTH_COLD; goto out; } if (temp >= priv->pdata->temp_max) { *health = POWER_SUPPLY_HEALTH_OVERHEAT; goto out; } *health = POWER_SUPPLY_HEALTH_GOOD; out: return 0; health_error: return ret; } static int max1730x_get_battery_health(struct max1720x_priv *priv, int *health) { int ret; u32 val; ret = regmap_read(priv->regmap, priv->regs[PROTSTATUS_REG], &val); if (ret < 0) return ret; if ((val & MAX1730X_PROTSTATUS_RESCFAULT) || (val & MAX1730X_PROTSTATUS_RESDFAULT)) { *health = POWER_SUPPLY_HEALTH_UNKNOWN; } else if ((val & MAX1730X_PROTSTATUS_TOOHOTC) || (val & MAX1730X_PROTSTATUS_TOOHOTD) || (val & MAX1730X_PROTSTATUS_DIEHOT)) { *health = POWER_SUPPLY_HEALTH_OVERHEAT; } else if ((val & MAX1730X_PROTSTATUS_UVP) || (val & MAX1730X_PROTSTATUS_PERMFAIL) || (val & MAX1730X_PROTSTATUS_SHDN)) { *health = POWER_SUPPLY_HEALTH_DEAD; } else if (val & MAX1730X_PROTSTATUS_TOOCOLDC) { *health = POWER_SUPPLY_HEALTH_COLD; } else if (val & MAX1730X_PROTSTATUS_OVP) { *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else if ((val & MAX1730X_PROTSTATUS_QOVFLW) || (val & MAX1730X_PROTSTATUS_OCCP) || (val & MAX1730X_PROTSTATUS_ODCP)) { *health = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; } else if (val & MAX1730X_PROTSTATUS_CHGWDT) { *health = POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE; } else { *health = POWER_SUPPLY_HEALTH_GOOD; } return 0; } static int max1720x_get_min_capacity_alert_th(struct max1720x_priv *priv, unsigned int *th) { int ret; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[SALRTTH_REG], th); if (ret < 0) return ret; *th &= 0xFF; return 0; } static int max1720x_set_min_capacity_alert_th(struct max1720x_priv *priv, unsigned int th) { int ret; unsigned int data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[SALRTTH_REG], &data); if (ret < 0) return ret; data &= 0xFF00; data |= (th & 0xFF); ret = regmap_write(map, priv->regs[SALRTTH_REG], data); if (ret < 0) return ret; return 0; } static int max1720x_get_max_capacity_alert_th(struct max1720x_priv *priv, unsigned int *th) { int ret; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[SALRTTH_REG], th); if (ret < 0) return ret; *th >>= 8; return 0; } static int max1720x_set_max_capacity_alert_th(struct max1720x_priv *priv, unsigned int th) { int ret; unsigned int data; struct regmap *map = priv->regmap; ret = regmap_read(map, priv->regs[SALRTTH_REG], &data); if (ret < 0) return ret; data &= 0xFF; data |= ((th & 0xFF) << 8); ret = regmap_write(map, priv->regs[SALRTTH_REG], data); if (ret < 0) return ret; return 0; } static int max1720x_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max1720x_priv *priv = power_supply_get_drvdata(psy); struct regmap *regmap = priv->regmap; struct max1720x_platform_data *pdata = priv->pdata; unsigned int reg; int ret; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: ret = regmap_read(regmap, priv->regs[STATUS_REG], &reg); if (ret < 0) return ret; if (reg & MAX1720X_STATUS_BST) val->intval = 0; else val->intval = 1; break; case POWER_SUPPLY_PROP_CYCLE_COUNT: ret = regmap_read(regmap, priv->regs[CYCLES_REG], &reg); if (ret < 0) return ret; val->intval = reg * 100 / priv->cycles_reg_lsb_percent; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: ret = regmap_read(regmap, priv->regs[MAXMINVOLT_REG], &reg); if (ret < 0) return ret; val->intval = reg >> 8; val->intval *= 20000; /* Units of LSB = 20mV */ break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: ret = regmap_read(regmap, priv->regs[VEMPTY_REG], &reg); if (ret < 0) return ret; val->intval = reg >> 7; val->intval *= 10000; /* Units of LSB = 10mV */ break; case POWER_SUPPLY_PROP_STATUS: if (pdata && priv->get_charging_status) val->intval = priv->get_charging_status(); else val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = regmap_read(regmap, priv->regs[VCELL_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_voltage_to_uvolts(priv, reg); break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: ret = regmap_read(regmap, priv->regs[AVGVCELL_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_voltage_to_uvolts(priv, reg); break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: ret = regmap_read(regmap, priv->regs[VFOCV_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_voltage_to_uvolts(priv, reg); break; case POWER_SUPPLY_PROP_CAPACITY: ret = regmap_read(regmap, priv->regs[REPSOC_REG], &reg); if (ret < 0) return ret; val->intval = reg >> 8; /* RepSOC LSB: 1/256 % */ break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: ret = max1720x_get_min_capacity_alert_th(priv, &val->intval); if (ret < 0) return ret; break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX: ret = max1720x_get_max_capacity_alert_th(priv, &val->intval); if (ret < 0) return ret; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = regmap_read(regmap, priv->regs[DESIGNCAP_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_capacity_to_uamph(priv, reg); break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = regmap_read(regmap, priv->regs[FULLCAPREP_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_capacity_to_uamph(priv, reg); break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: ret = regmap_read(regmap, priv->regs[QH_REG], &reg); if (ret < 0) return ret; /* This register is signed as oppose to other capacity type * registers. */ val->intval = max1720x_raw_capacity_to_uamph(priv, sign_extend32(reg, 15)); break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = regmap_read(regmap, priv->regs[REPCAP_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_capacity_to_uamph(priv, reg); break; case POWER_SUPPLY_PROP_TEMP: ret = max1720x_get_temperature(priv, &val->intval); if (ret < 0) return ret; break; case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: ret = max1720x_get_temperature_alert_min(priv, &val->intval); if (ret < 0) return ret; break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = max1720x_get_temperature_alert_max(priv, &val->intval); if (ret < 0) return ret; break; case POWER_SUPPLY_PROP_HEALTH: if (priv->get_battery_health != 0) { ret = priv->get_battery_health(priv, &val->intval); if (ret < 0) return ret; } else { val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; } break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = regmap_read(regmap, priv->regs[CURRENT_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_current_to_uamps(priv, sign_extend32(reg, 15)); break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = regmap_read(regmap, priv->regs[AVGCURRENT_REG], &reg); if (ret < 0) return ret; val->intval = max1720x_raw_current_to_uamps(priv, sign_extend32(reg, 15)); break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: ret = regmap_read(regmap, priv->regs[TTE_REG], &reg); if (ret < 0) return ret; val->intval = (reg * 45) >> 3; /* TTE LSB: 5.625 sec */ break; case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: ret = regmap_read(regmap, priv->regs[TTF_REG], &reg); if (ret < 0) return ret; val->intval = (reg * 45) >> 3; /* TTF LSB: 5.625 sec */ break; default: return -EINVAL; } return 0; } static int max1720x_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct max1720x_priv *priv = power_supply_get_drvdata(psy); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: ret = max1720x_set_temp_lower_limit(priv, val->intval); if (ret < 0) dev_err(priv->dev, "temp alert min set fail:%d\n", ret); break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = max1720x_set_temp_upper_limit(priv, val->intval); if (ret < 0) dev_err(priv->dev, "temp alert max set fail:%d\n", ret); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: ret = max1720x_set_min_capacity_alert_th(priv, val->intval); if (ret < 0) dev_err(priv->dev, "capacity alert min set fail:%d\n", ret); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX: ret = max1720x_set_max_capacity_alert_th(priv, val->intval); if (ret < 0) dev_err(priv->dev, "capacity alert max set fail:%d\n", ret); break; default: return -EINVAL; } return ret; } static int max1720x_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX: ret = 1; break; default: ret = 0; } return ret; } static irqreturn_t max1720x_irq_handler(int id, void *dev) { struct max1720x_priv *priv = dev; u32 val; /* Check alert type */ regmap_read(priv->regmap, priv->regs[STATUS_REG], &val); if (val & MAX1720X_STATUS_SOC_MAX_ALRT) dev_info(priv->dev, "Alert: SOC MAX!\n"); if (val & MAX1720X_STATUS_SOC_MIN_ALRT) dev_info(priv->dev, "Alert: SOC MIN!\n"); if (val & MAX1720X_STATUS_TEMP_MAX_ALRT) dev_info(priv->dev, "Alert: TEMP MAX!\n"); if (val & MAX1720X_STATUS_TEMP_MIN_ALRT) dev_info(priv->dev, "Alert: TEMP MIN!\n"); if (val & MAX1720X_STATUS_VOLT_MAX_ALRT) dev_info(priv->dev, "Alert: VOLT MAX!\n"); if (val & MAX1720X_STATUS_VOLT_MIN_ALRT) dev_info(priv->dev, "Alert: VOLT MIN!\n"); if (val & MAX1720X_STATUS_CURR_MAX_ALRT) dev_info(priv->dev, "Alert: CURR MAX!\n"); if (val & MAX1720X_STATUS_CURR_MIN_ALRT) dev_info(priv->dev, "Alert: CURR MIN!\n"); /* Clear alerts */ regmap_write(priv->regmap, priv->regs[STATUS_REG], val & MAX1720X_STATUS_ALRT_CLR_MASK); power_supply_changed(priv->battery); return IRQ_HANDLED; } static void max1720x_set_alert_thresholds(struct max1720x_priv *priv) { struct max1720x_platform_data *pdata = priv->pdata; struct regmap *regmap = priv->regmap; u32 val; /* Set VAlrtTh */ val = (pdata->volt_min / 20); val |= ((pdata->volt_max / 20) << 8); regmap_write(regmap, priv->regs[VALRTTH_REG], val); /* Set TAlrtTh */ val = pdata->temp_min & 0xFF; val |= ((pdata->temp_max & 0xFF) << 8); regmap_write(regmap, priv->regs[TALRTTH_REG], val); /* Set SAlrtTh */ val = pdata->soc_min; val |= (pdata->soc_max << 8); regmap_write(regmap, priv->regs[SALRTTH_REG], val); /* Set IAlrtTh */ val = (pdata->curr_min * pdata->rsense / 400) & 0xFF; val |= (((pdata->curr_max * pdata->rsense / 400) & 0xFF) << 8); regmap_write(regmap, priv->regs[IALRTTH_REG], val); } static int max1720x_init(struct max1720x_priv *priv) { struct regmap *regmap = priv->regmap; int ret; unsigned int reg; u32 fgrev; ret = regmap_read(regmap, priv->regs[VERSION_REG], &fgrev); if (ret < 0) return ret; dev_info(priv->dev, "IC Version: 0x%04x\n", fgrev); /* Optional step - alert threshold initialization */ max1720x_set_alert_thresholds(priv); /* Clear Status.POR */ ret = regmap_read(regmap, priv->regs[STATUS_REG], &reg); if (ret < 0) return ret; ret = regmap_write(regmap, priv->regs[STATUS_REG], reg & ~MAX1720X_STATUS_POR); if (ret < 0) return ret; return 0; } static void max1720x_init_worker(struct work_struct *work) { struct max1720x_priv *priv = container_of(work, struct max1720x_priv, init_worker); max1720x_init(priv); } static struct max1720x_platform_data *max1720x_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; struct max1720x_platform_data *pdata; int ret; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return NULL; ret = of_property_read_u32(np, "talrt-min", &pdata->temp_min); if (ret) pdata->temp_min = -128; /* DegreeC */ /* Disable alert */ ret = of_property_read_u32(np, "talrt-max", &pdata->temp_max); if (ret) pdata->temp_max = 127; /* DegreeC */ /* Disable alert */ ret = of_property_read_u32(np, "valrt-min", &pdata->volt_min); if (ret) pdata->volt_min = 0; /* mV */ /* Disable alert */ ret = of_property_read_u32(np, "valrt-max", &pdata->volt_max); if (ret) pdata->volt_max = 5100; /* mV */ /* Disable alert */ ret = of_property_read_u32(np, "ialrt-min", &pdata->curr_min); if (ret) pdata->curr_min = -5120; /* mA */ /* Disable alert */ ret = of_property_read_u32(np, "ialrt-max", &pdata->curr_max); if (ret) pdata->curr_max = 5080; /* mA */ /* Disable alert */ ret = of_property_read_u32(np, "salrt-min", &pdata->soc_min); if (ret) pdata->soc_min = 0; /* Percent */ /* Disable alert */ ret = of_property_read_u32(np, "salrt-max", &pdata->soc_max); if (ret) pdata->soc_max = 255; /* Percent */ /* Disable alert */ ret = of_property_read_u32(np, "rsense", &pdata->rsense); if (ret) pdata->rsense = 10; return pdata; } static const struct regmap_config max1720x_regmap = { .reg_bits = 8, .val_bits = 16, .val_format_endian = REGMAP_ENDIAN_NATIVE, }; static const struct power_supply_desc max1720x_fg_desc = { .name = "max1720x_battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = max1720x_battery_props, .num_properties = ARRAY_SIZE(max1720x_battery_props), .get_property = max1720x_get_property, .set_property = max1720x_set_property, .property_is_writeable = max1720x_property_is_writeable, }; static int max1720x_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct max1720x_priv *priv; struct power_supply_config psy_cfg = {}; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) return -EIO; priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->regs = chip_regs[id->driver_data]; priv->nvmem_high_addr = nvmem_high_addrs[id->driver_data]; priv->cycles_reg_lsb_percent = cycles_reg_lsb_percents[id->driver_data]; priv->get_battery_health = get_battery_health_handlers[id->driver_data]; if (client->dev.of_node) priv->pdata = max1720x_parse_dt(&client->dev); else priv->pdata = client->dev.platform_data; priv->dev = &client->dev; i2c_set_clientdata(client, priv); priv->client = client; priv->regmap = devm_regmap_init_i2c(client, &max1720x_regmap); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); INIT_WORK(&priv->init_worker, max1720x_init_worker); schedule_work(&priv->init_worker); psy_cfg.drv_data = priv; priv->battery = power_supply_register(&client->dev, &max1720x_fg_desc, &psy_cfg); if (IS_ERR(priv->battery)) { ret = PTR_ERR(priv->battery); dev_err(&client->dev, "failed to register battery: %d\n", ret); goto err_supply; } if (client->irq) { ret = devm_request_threaded_irq(priv->dev, client->irq, NULL, max1720x_irq_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, priv->battery->desc->name, priv); if (ret) { dev_err(priv->dev, "Failed to request irq %d\n", client->irq); goto err_irq; } else { regmap_update_bits(priv->regmap, priv->regs[CONFIG_REG], MAX1720X_CONFIG_ALRT_EN, MAX1720X_CONFIG_ALRT_EN); } } /* Create max1720x sysfs attributes */ priv->attr_grp = &max1720x_attr_group; ret = sysfs_create_group(&priv->dev->kobj, priv->attr_grp); if (ret) { dev_err(priv->dev, "Failed to create attribute group [%d]\n", ret); priv->attr_grp = NULL; goto err_attr; } return 0; err_irq: power_supply_unregister(priv->battery); err_supply: cancel_work_sync(&priv->init_worker); err_attr: sysfs_remove_group(&priv->dev->kobj, priv->attr_grp); return ret; } static int max1720x_remove(struct i2c_client *client) { struct max1720x_priv *priv = i2c_get_clientdata(client); cancel_work_sync(&priv->init_worker); sysfs_remove_group(&priv->dev->kobj, priv->attr_grp); power_supply_unregister(priv->battery); return 0; } #ifdef CONFIG_PM_SLEEP static int max1720x_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); if (client->irq) { disable_irq(client->irq); enable_irq_wake(client->irq); } return 0; } static int max1720x_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); if (client->irq) { disable_irq_wake(client->irq); enable_irq(client->irq); } return 0; } static SIMPLE_DEV_PM_OPS(max1720x_pm_ops, max1720x_suspend, max1720x_resume); #define MAX1720X_PM_OPS (&max1720x_pm_ops) #else #define MAX1720X_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_OF static const struct of_device_id max1720x_match[] = { { .compatible = "maxim,max17201", }, { .compatible = "maxim,max17205", }, { .compatible = "maxim,max17301", }, { .compatible = "maxim,max17302", }, { .compatible = "maxim,max17303", }, { }, }; MODULE_DEVICE_TABLE(of, max1720x_match); #endif static const struct i2c_device_id max1720x_id[] = { { "max17201", ID_MAX1720X }, { "max17205", ID_MAX1720X }, { "max17301", ID_MAX1730X }, { "max17302", ID_MAX1730X }, { "max17303", ID_MAX1730X }, { }, }; MODULE_DEVICE_TABLE(i2c, max1720x_id); static struct i2c_driver max1720x_i2c_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(max1720x_match), .pm = MAX1720X_PM_OPS, }, .probe = max1720x_probe, .remove = max1720x_remove, .id_table = max1720x_id, }; module_i2c_driver(max1720x_i2c_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mahir Ozturk <mahir.ozturk@maximintegrated.com>"); MODULE_DESCRIPTION("Maxim MAX17201/5 and MAX17301/2/3 Fuel Gauge driver");
30,367
C
23.912223
80
0.662331
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/ST7789.py
# ST7789 IPS LCD (320x240) driver import numbers import time import numpy as np import sys import os from PIL import Image from PIL import ImageDraw sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) import Mangdang.Adafruit_GPIO as GPIO import Mangdang.Adafruit_GPIO.SPI as SPI from Mangdang.LCD.gif import AnimatedGif SPI_CLOCK_HZ = 31200000 # 31.2 MHz # Constants for interacting with display registers. ST7789_TFTWIDTH = 320 ST7789_TFTHEIGHT = 240 ST7789_NOP = 0x00 ST7789_SWRESET = 0x01 ST7789_RDDID = 0x04 ST7789_RDDST = 0x09 ST7789_RDDPM = 0x0A ST7789_RDDMADCTL = 0x0B ST7789_RDDCOLMOD = 0x0C ST7789_RDDIM = 0x0D ST7789_RDDSM = 0x0E ST7789_RDDSDR = 0x0F ST7789_SLPIN = 0x10 ST7789_SLPOUT = 0x11 ST7789_PTLON = 0x12 ST7789_NORON = 0x13 ST7789_INVOFF = 0x20 ST7789_INVON = 0x21 ST7789_GAMSET = 0x26 ST7789_DISPOFF = 0x28 ST7789_DISPON = 0x29 ST7789_CASET = 0x2A ST7789_RASET = 0x2B ST7789_RAMWR = 0x2C ST7789_RAMRD = 0x2E ST7789_PTLAR = 0x30 ST7789_VSCRDEF = 0x33 ST7789_TEOFF = 0x34 ST7789_TEON = 0x35 ST7789_MADCTL = 0x36 ST7789_VSCRSADD = 0x37 ST7789_IDMOFF = 0x38 ST7789_IDMON = 0x39 ST7789_COLMOD = 0x3A ST7789_RAMWRC = 0x3C ST7789_RAMRDC = 0x3E ST7789_TESCAN = 0x44 ST7789_RDTESCAN = 0x45 ST7789_WRDISBV = 0x51 ST7789_RDDISBV = 0x52 ST7789_WRCTRLD = 0x53 ST7789_RDCTRLD = 0x54 ST7789_WRCACE = 0x55 ST7789_RDCABC = 0x56 ST7789_WRCABCMB = 0x5E ST7789_RDCABCMB = 0x5F ST7789_RDABCSDR = 0x68 ST7789_RDID1 = 0xDA ST7789_RDID2 = 0xDB ST7789_RDID3 = 0xDC ST7789_RAMCTRL = 0xB0 ST7789_RGBCTRL = 0xB1 ST7789_PORCTRL = 0xB2 ST7789_FRCTRL1 = 0xB3 ST7789_GCTRL = 0xB7 ST7789_DGMEN = 0xBA ST7789_VCOMS = 0xBB ST7789_LCMCTRL = 0xC0 ST7789_IDSET = 0xC1 ST7789_VDVVRHEN = 0xC2 ST7789_VRHS = 0xC3 ST7789_VDVSET = 0xC4 ST7789_VCMOFSET = 0xC5 ST7789_FRCTR2 = 0xC6 ST7789_CABCCTRL = 0xC7 ST7789_REGSEL1 = 0xC8 ST7789_REGSEL2 = 0xCA ST7789_PWMFRSEL = 0xCC ST7789_PWCTRL1 = 0xD0 ST7789_VAPVANEN = 0xD2 ST7789_CMD2EN = 0xDF5A6902 ST7789_PVGAMCTRL = 0xE0 ST7789_NVGAMCTRL = 0xE1 ST7789_DGMLUTR = 0xE2 ST7789_DGMLUTB = 0xE3 ST7789_GATECTRL = 0xE4 ST7789_PWCTRL2 = 0xE8 ST7789_EQCTRL = 0xE9 ST7789_PROMCTRL = 0xEC ST7789_PROMEN = 0xFA ST7789_NVMSET = 0xFC ST7789_PROMACT = 0xFE # Colours for convenience ST7789_BLACK = 0x0000 # 0b 00000 000000 00000 ST7789_BLUE = 0x001F # 0b 00000 000000 11111 ST7789_GREEN = 0x07E0 # 0b 00000 111111 00000 ST7789_RED = 0xF800 # 0b 11111 000000 00000 ST7789_CYAN = 0x07FF # 0b 00000 111111 11111 ST7789_MAGENTA = 0xF81F # 0b 11111 000000 11111 ST7789_YELLOW = 0xFFE0 # 0b 11111 111111 00000 ST7789_WHITE = 0xFFFF # 0b 11111 111111 11111 def color565(r, g, b): """Convert red, green, blue components to a 16-bit 565 RGB value. Components should be values 0 to 255. """ return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3) def image_to_data(image): """Generator function to convert a PIL image to 16-bit 565 RGB bytes.""" # NumPy is much faster at doing this. NumPy code provided by: # Keith (https://www.blogger.com/profile/02555547344016007163) pb = np.array(image.convert('RGB')).astype('uint16') color = ((pb[:,:,0] & 0xF8) << 8) | ((pb[:,:,1] & 0xFC) << 3) | (pb[:,:,2] >> 3) return np.dstack(((color >> 8) & 0xFF, color & 0xFF)).flatten().tolist() class ST7789(object): """Representation of an ST7789 IPS LCD.""" def __init__(self, rst, dc, led): """Create an instance of the display using SPI communication. Must provide the GPIO pin number for the D/C pin and the SPI driver. Can optionally provide the GPIO pin number for the reset pin as the rst parameter. """ SPI_PORT = 0 SPI_DEVICE = 0 SPI_MODE = 0b11 SPI_SPEED_HZ = 40000000 self._spi = SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=SPI_SPEED_HZ) self._rst = rst self._dc = dc self._led = led self._gpio = None self.width = ST7789_TFTWIDTH self.height = ST7789_TFTHEIGHT if self._gpio is None: self._gpio = GPIO.get_platform_gpio() # Set DC as output. self._gpio.setup(self._dc, GPIO.OUT) # Setup reset as output (if provided). if self._rst is not None: self._gpio.setup(self._rst, GPIO.OUT) # Turn on the backlight LED self._gpio.setup(self._led, GPIO.OUT) # Set SPI to mode 0, MSB first. self._spi.set_mode(SPI_MODE) self._spi.set_bit_order(SPI.MSBFIRST) self._spi.set_clock_hz(SPI_CLOCK_HZ) # Create an image buffer. self.buffer = Image.new('RGB', (self.width, self.height)) def send(self, data, is_data=True, chunk_size=4096): """Write a byte or array of bytes to the display. Is_data parameter controls if byte should be interpreted as display data (True) or command data (False). Chunk_size is an optional size of bytes to write in a single SPI transaction, with a default of 4096. """ # Set DC low for command, high for data. self._gpio.output(self._dc, is_data) # Convert scalar argument to list so either can be passed as parameter. if isinstance(data, numbers.Number): data = [data & 0xFF] # Write data a chunk at a time. for start in range(0, len(data), chunk_size): end = min(start+chunk_size, len(data)) self._spi.write(data[start:end]) def command(self, data): """Write a byte or array of bytes to the display as command data.""" self.send(data, False) def data(self, data): """Write a byte or array of bytes to the display as display data.""" self.send(data, True) def reset(self): """Reset the display, if reset pin is connected.""" if self._rst is not None: self._gpio.set_high(self._rst) time.sleep(0.100) self._gpio.set_low(self._rst) time.sleep(0.100) self._gpio.set_high(self._rst) time.sleep(0.100) def _init(self): # Initialize the display. Broken out as a separate function so it can # be overridden by other displays in the future. time.sleep(0.012) self.command(0x11) time.sleep(0.150) self.command(0x36) self.data(0xA0) self.data(0x00) self.command(0x3A) self.data(0x05) self.command(0xB2) self.data(0x0C) self.data(0x0C) self.data(0x00) self.data(0x33) self.data(0x33) self.command(0xB7) self.data(0x35) ## ---------------------------------ST7789S Power setting - ---------------------------- self.command(0xBB) self.data(0x29) # self.command(0xC0) # self.data(0x2C) self.command(0xC2) self.data(0x01) self.command(0xC3) self.data(0x19) self.command(0xC4) self.data(0x20) self.command(0xC5) self.data(0x1A) self.command(0xC6) self.data(0x1F) ## 0x0F:60Hz # self.command(0xCA) # self.data(0x0F) # # self.command(0xC8) # self.data(0x08) # # self.command(0x55) # self.data(0x90) self.command(0xD0) self.data(0xA4) self.data(0xA1) ## --------------------------------ST7789S gamma setting - ----------------------------- self.command(0xE0) self.data(0xD0) self.data(0x08) self.data(0x0E) self.data(0x09) self.data(0x09) self.data(0x05) self.data(0x31) self.data(0x33) self.data(0x48) self.data(0x17) self.data(0x14) self.data(0x15) self.data(0x31) self.data(0x34) self.command(0xE1) self.data(0xD0) self.data(0x08) self.data(0x0E) self.data(0x09) self.data(0x09) self.data(0x15) self.data(0x31) self.data(0x33) self.data(0x48) self.data(0x17) self.data(0x14) self.data(0x15) self.data(0x31) self.data(0x34) self.command(0x21) self.command(0x29) time.sleep(0.100) # 100 ms self._gpio.set_high(self._led) def begin(self): """Initialize the display. Should be called once before other calls that interact with the display are called. """ self.reset() self._init() def set_window(self, x0=0, y0=0, x1=None, y1=None): """Set the pixel address window for proceeding drawing commands. x0 and x1 should define the minimum and maximum x pixel bounds. y0 and y1 should define the minimum and maximum y pixel bound. If no parameters are specified the default will be to update the entire display from 0,0 to width-1,height-1. """ if x1 is None: x1 = self.width-1 if y1 is None: y1 = self.height-1 self.command(ST7789_CASET) # Column addr set self.data(x0 >> 8) self.data(x0) # XSTART self.data(x1 >> 8) self.data(x1) # XEND self.command(ST7789_RASET) # Row addr set self.data(y0 >> 8) self.data(y0) # YSTART self.data(y1 >> 8) self.data(y1) # YEND self.command(ST7789_RAMWR) # write to RAM #def display(self, image=None): def display(self, image=None, x0=0, y0=0, x1=None, y1=None): """Write the display buffer or provided image to the hardware. If no image parameter is provided the display buffer will be written to the hardware. If an image is provided, it should be RGB format and the same dimensions as the display hardware. """ # By default write the internal buffer to the display. if image is None: image = self.buffer # Set address bounds to entire display. #self.set_window() if x1 is None: x1 = self.width-1 if y1 is None: y1 = self.height-1 self.set_window(x0, y0, x1, y1) #image.thumbnail((x1-x0+1, y1-y0+1), Image.ANTIALIAS) # Convert image to array of 16bit 565 RGB data bytes. # Unfortunate that this copy has to occur, but the SPI byte writing # function needs to take an array of bytes and PIL doesn't natively # store images in 16-bit 565 RGB format. pixelbytes = list(image_to_data(image)) # Write data to hardware. self.data(pixelbytes) def clear(self, color=(0,0,0)): """Clear the image buffer to the specified RGB color (default black).""" width, height = self.buffer.size self.buffer.putdata([color]*(width*height)) def draw(self): """Return a PIL ImageDraw instance for 2D drawing on the image buffer.""" return ImageDraw.Draw(self.buffer)
11,573
Python
29.781915
129
0.584723
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/gif.py
import os import time from PIL import Image from PIL import ImageOps class Frame: def __init__(self, duration=0): self.duration = duration self.image = None class AnimatedGif: def __init__(self, display, width=None, height=None, folder=None): self._frame_count = 0 self._loop = 0 self._index = 0 self._duration = 0 self._gif_files = [] self._frames = [] self._gif_folder = folder if width is not None: self._width = width else: self._width = display.width if height is not None: self._height = height else: self._height = display.height self.display = display if folder is not None: self.load_files(folder) self.preload() def advance(self): self._index = (self._index + 1) % len(self._gif_files) def back(self): self._index = (self._index - 1 + len(self._gif_files)) % len(self._gif_files) def load_files(self, folder): gif_files = [f for f in os.listdir(folder) if f.endswith(".gif")] for gif_file in gif_files: image = Image.open(folder + gif_file) # Only add animated Gifs if image.is_animated: self._gif_files.append(gif_file) #print("Found", self._gif_files) if not self._gif_files: print("No Gif files found in current folder") exit() # pylint: disable=consider-using-sys-exit def preload(self): image = Image.open(self._gif_folder + self._gif_files[self._index]) #print("Loading {}...".format(self._gif_files[self._index])) if "duration" in image.info: self._duration = image.info["duration"] else: self._duration = 0 if "loop" in image.info: self._loop = image.info["loop"] else: self._loop = 1 self._frame_count = image.n_frames del self._frames[:] for frame in range(self._frame_count): image.seek(frame) # Create blank image for drawing. # Make sure to create image with mode 'RGB' for full color. frame_object = Frame(duration=self._duration) if "duration" in image.info: frame_object.duration = image.info["duration"] frame_object.image = ImageOps.pad( # pylint: disable=no-member image.convert("RGB"), (self._width, self._height), method=Image.NEAREST, color=(0, 0, 0), centering=(0.5, 0.5), ) self._frames.append(frame_object) def play(self): # Check if we have loaded any files first if not self._gif_files: print("There are no Gif Images loaded to Play") return False #while True: for frame_object in self._frames: start_time = time.time() self.display.display(frame_object.image) while time.time() < (start_time + frame_object.duration / 1000): pass if self._loop == 1: return True if self._loop > 0: self._loop -= 1 def run(self): while True: auto_advance = self.play() if auto_advance: self.advance()
3,404
Python
31.740384
85
0.529083
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PupperCommand/joystick.py
from UDPComms import Publisher, Subscriber, timeout from PS4Joystick import Joystick import time ## you need to git clone the PS4Joystick repo and run `sudo bash install.sh` ## Configurable ## MESSAGE_RATE = 20 PUPPER_COLOR = {"red":0, "blue":0, "green":255} joystick_pub = Publisher(8830,65530) joystick_subcriber = Subscriber(8840, timeout=0.01) joystick = Joystick() joystick.led_color(**PUPPER_COLOR) while True: values = joystick.get_input() left_y = -values["left_analog_y"] right_y = -values["right_analog_y"] right_x = values["right_analog_x"] left_x = values["left_analog_x"] L2 = values["l2_analog"] R2 = values["r2_analog"] R1 = values["button_r1"] L1 = values["button_l1"] square = values["button_square"] x = values["button_cross"] circle = values["button_circle"] triangle = values["button_triangle"] dpadx = values["dpad_right"] - values["dpad_left"] dpady = values["dpad_up"] - values["dpad_down"] msg = { "ly": left_y, "lx": left_x, "rx": right_x, "ry": right_y, "L2": L2, "R2": R2, "R1": R1, "L1": L1, "dpady": dpady, "dpadx": dpadx, "x": x, "square": square, "circle": circle, "triangle": triangle, "message_rate": MESSAGE_RATE, } joystick_pub.send(msg) try: msg = joystick_subcriber.get() joystick.led_color(**msg["ps4_color"]) except timeout: pass time.sleep(1 / MESSAGE_RATE)
1,539
Python
22.692307
76
0.581546
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PupperCommand/README.md
# PupperCommand ## Installation ```shell git clone https://github.com/stanfordroboticsclub/PupperCommand.git cd PupperCommand sudo bash install.sh ``` Then clone https://github.com/stanfordroboticsclub/PS4Joystick/ and follow the installation instructions in the README. ## Starting the joystick publisher 1. The ```install.sh``` script makes the Raspberry Pi automatically look to pair and connect to PS4 joysticks on boot. 2. So once the Raspberry Pi turns on, put the PS4 controller into pairing mode by holding the share and PS button at the same time. The light should start blinking in bursts of two. 3. By around 10 seconds, the joystick should have paired with the Raspberry Pi and the front light on the joystick will change to whatever color you specify in the ```joystick.py``` script. ## Debugging To see if the controller is publishing to the Rover topic use: ```shell rover peek 8830 ``` You can also check the status of the system daemon (systemd) running the ```joystick.py``` script by doing ```shell sudo systemctl status joystick ``` If it shows that the service failed, you can try ```shell sudo systemctl stop joystick sudo systemctl start joystick ``` ## Notes If a packet is lost over the joystick connection, the PS4Joystick code will raise an exception and cause the program to exit. Systemd will then restart the ```joystick.py``` script, which means you will have to re-pair the joystick (hold share + ps4 button until double blinking).
1,473
Markdown
42.35294
281
0.773931
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Legacy/ImageOps.py
# # The Python Imaging Library. # $Id$ # # standard image operations # # History: # 2001-10-20 fl Created # 2001-10-23 fl Added autocontrast operator # 2001-12-18 fl Added Kevin's fit operator # 2004-03-14 fl Fixed potential division by zero in equalize # 2005-05-05 fl Fixed equalize for low number of values # # Copyright (c) 2001-2004 by Secret Labs AB # Copyright (c) 2001-2004 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image import operator import functools import warnings # # helpers def _border(border): if isinstance(border, tuple): if len(border) == 2: left, top = right, bottom = border elif len(border) == 4: left, top, right, bottom = border else: left = top = right = bottom = border return left, top, right, bottom def _color(color, mode): if isStringType(color): from . import ImageColor color = ImageColor.getcolor(color, mode) return color def _lut(image, lut): if image.mode == "P": # FIXME: apply to lookup table, not image data raise NotImplementedError("mode P support coming soon") elif image.mode in ("L", "RGB"): if image.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return image.point(lut) else: raise IOError("not supported for this image mode") # # actions def autocontrast(image, cutoff=0, ignore=None): """ Maximize (normalize) image contrast. This function calculates a histogram of the input image, removes **cutoff** percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: How many percent to cut off from the histogram. :param ignore: The background pixel value (use None for no background). :return: An image. """ histogram = image.histogram() lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer:layer+256] if ignore is not None: # get rid of outliers try: h[ignore] = 0 except TypeError: # assume sequence for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff // 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the hi end cut = n * cutoff // 100 for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut) def colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoint=127): """ Colorize grayscale image. This function calculates a color wedge which maps all black pixels in the source image to the first color and all white pixels to the second color. If **mid** is specified, it uses three-color mapping. The **black** and **white** arguments should be RGB tuples or color names; optionally you can use three-color mapping by also specifying **mid**. Mapping positions for any of the colors can be specified (e.g. **blackpoint**), where these parameters are the integer value corresponding to where the corresponding color should be mapped. These parameters must have logical order, such that **blackpoint** <= **midpoint** <= **whitepoint** (if **mid** is specified). :param image: The image to colorize. :param black: The color to use for black input pixels. :param white: The color to use for white input pixels. :param mid: The color to use for midtone input pixels. :param blackpoint: an int value [0, 255] for the black mapping. :param whitepoint: an int value [0, 255] for the white mapping. :param midpoint: an int value [0, 255] for the midtone mapping. :return: An image. """ # Initial asserts assert image.mode == "L" if mid is None: assert 0 <= blackpoint <= whitepoint <= 255 else: assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 # Define colors from arguments black = _color(black, "RGB") white = _color(white, "RGB") if mid is not None: mid = _color(mid, "RGB") # Empty lists for the mapping red = [] green = [] blue = [] # Create the low-end values for i in range(0, blackpoint): red.append(black[0]) green.append(black[1]) blue.append(black[2]) # Create the mapping (2-color) if mid is None: range_map = range(0, whitepoint - blackpoint) for i in range_map: red.append(black[0] + i * (white[0] - black[0]) // len(range_map)) green.append(black[1] + i * (white[1] - black[1]) // len(range_map)) blue.append(black[2] + i * (white[2] - black[2]) // len(range_map)) # Create the mapping (3-color) else: range_map1 = range(0, midpoint - blackpoint) range_map2 = range(0, whitepoint - midpoint) for i in range_map1: red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1)) green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1)) blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1)) for i in range_map2: red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2)) green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2)) blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2)) # Create the high-end values for i in range(0, 256 - whitepoint): red.append(white[0]) green.append(white[1]) blue.append(white[2]) # Return converted image image = image.convert("RGB") return _lut(image, red + green + blue) def pad(image, size, method=Image.NEAREST, color=None, centering=(0.5, 0.5)): """ Returns a sized and padded version of the image, expanded to fill the requested aspect ratio and size. :param image: The image to size and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.NEAREST`. :param color: The background color of the padded image. :param centering: Control the position of the original image within the padded version. (0.5, 0.5) will keep the image centered (0, 0) will keep the image aligned to the top left (1, 1) will keep the image aligned to the bottom right :return: An image. """ im_ratio = image.width / image.height dest_ratio = float(size[0]) / size[1] if im_ratio == dest_ratio: out = image.resize(size, resample=method) else: out = Image.new(image.mode, size, color) if im_ratio > dest_ratio: new_height = int(image.height / image.width * size[0]) if new_height != size[1]: image = image.resize((size[0], new_height), resample=method) y = int((size[1] - new_height) * max(0, min(centering[1], 1))) out.paste(image, (0, y)) else: new_width = int(image.width / image.height * size[1]) if new_width != size[0]: image = image.resize((new_width, size[1]), resample=method) x = int((size[0] - new_width) * max(0, min(centering[0], 1))) out.paste(image, (x, 0)) return out def crop(image, border=0): """ Remove border from image. The same amount of pixels are removed from all four sides. This function works on all image modes. .. seealso:: :py:meth:`~PIL.Image.Image.crop` :param image: The image to crop. :param border: The number of pixels to remove. :return: An image. """ left, top, right, bottom = _border(border) return image.crop( (left, top, image.size[0]-right, image.size[1]-bottom) ) def scale(image, factor, resample=Image.NEAREST): """ Returns a rescaled image by a specific factor given in parameter. A factor greater than 1 expands the image, between 0 and 1 contracts the image. :param image: The image to rescale. :param factor: The expansion factor, as a float. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.resize function. :returns: An :py:class:`~PIL.Image.Image` object. """ if factor == 1: return image.copy() elif factor <= 0: raise ValueError("the factor must be greater than 0") else: size = (int(round(factor * image.width)), int(round(factor * image.height))) return image.resize(size, resample) def deform(image, deformer, resample=Image.BILINEAR): """ Deform the image. :param image: The image to deform. :param deformer: A deformer object. Any object that implements a **getmesh** method can be used. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.transform function. :return: An image. """ return image.transform( image.size, Image.MESH, deformer.getmesh(image), resample ) def equalize(image, mask=None): """ Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create a uniform distribution of grayscale values in the output image. :param image: The image to equalize. :param mask: An optional mask. If given, only the pixels selected by the mask are included in the analysis. :return: An image. """ if image.mode == "P": image = image.convert("RGB") h = image.histogram(mask) lut = [] for b in range(0, len(h), 256): histo = [_f for _f in h[b:b+256] if _f] if len(histo) <= 1: lut.extend(list(range(256))) else: step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 if not step: lut.extend(list(range(256))) else: n = step // 2 for i in range(256): lut.append(n // step) n = n + h[i+b] return _lut(image, lut) def expand(image, border=0, fill=0): """ Add border to the image :param image: The image to expand. :param border: Border width, in pixels. :param fill: Pixel fill value (a color value). Default is 0 (black). :return: An image. """ left, top, right, bottom = _border(border) width = left + image.size[0] + right height = top + image.size[1] + bottom out = Image.new(image.mode, (width, height), _color(fill, image.mode)) out.paste(image, (left, top)) return out def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)): """ Returns a sized and cropped version of the image, cropped to the requested aspect ratio and size. This function was contributed by Kevin Cazabon. :param image: The image to size and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.NEAREST`. :param bleed: Remove a border around the outside of the image from all four edges. The value is a decimal percentage (use 0.01 for one percent). The default value is 0 (no border). Cannot be greater than or equal to 0.5. :param centering: Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0, 0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left side, and if cropping the height take none from the top, and therefore all off the bottom). :return: An image. """ # by Kevin Cazabon, Feb 17/2000 # kevin@cazabon.com # http://www.cazabon.com # ensure centering is mutable centering = list(centering) if not 0.0 <= centering[0] <= 1.0: centering[0] = 0.5 if not 0.0 <= centering[1] <= 1.0: centering[1] = 0.5 if not 0.0 <= bleed < 0.5: bleed = 0.0 # calculate the area to use for resizing and cropping, subtracting # the 'bleed' around the edges # number of pixels to trim off on Top and Bottom, Left and Right bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) live_size = (image.size[0] - bleed_pixels[0] * 2, image.size[1] - bleed_pixels[1] * 2) # calculate the aspect ratio of the live_size live_size_ratio = float(live_size[0]) / live_size[1] # calculate the aspect ratio of the output image output_ratio = float(size[0]) / size[1] # figure out if the sides or top/bottom will be cropped off if live_size_ratio >= output_ratio: # live_size is wider than what's needed, crop the sides crop_width = output_ratio * live_size[1] crop_height = live_size[1] else: # live_size is taller than what's needed, crop the top and bottom crop_width = live_size[0] crop_height = live_size[0] / output_ratio # make the crop crop_left = bleed_pixels[0] + (live_size[0]-crop_width) * centering[0] crop_top = bleed_pixels[1] + (live_size[1]-crop_height) * centering[1] crop = ( crop_left, crop_top, crop_left + crop_width, crop_top + crop_height ) # resize the image and return it return image.resize(size, method, box=crop) def flip(image): """ Flip the image vertically (top to bottom). :param image: The image to flip. :return: An image. """ return image.transpose(Image.FLIP_TOP_BOTTOM) def grayscale(image): """ Convert the image to grayscale. :param image: The image to convert. :return: An image. """ return image.convert("L") def invert(image): """ Invert (negate) the image. :param image: The image to invert. :return: An image. """ lut = [] for i in range(256): lut.append(255-i) return _lut(image, lut) def mirror(image): """ Flip image horizontally (left to right). :param image: The image to mirror. :return: An image. """ return image.transpose(Image.FLIP_LEFT_RIGHT) def posterize(image, bits): """ Reduce the number of bits for each color channel. :param image: The image to posterize. :param bits: The number of bits to keep for each channel (1-8). :return: An image. """ lut = [] mask = ~(2**(8-bits)-1) for i in range(256): lut.append(i & mask) return _lut(image, lut) def solarize(image, threshold=128): """ Invert all pixel values above a threshold. :param image: The image to solarize. :param threshold: All pixels above this greyscale level are inverted. :return: An image. """ lut = [] for i in range(256): if i < threshold: lut.append(i) else: lut.append(255-i) return _lut(image, lut) # -------------------------------------------------------------------- # PIL USM components, from Kevin Cazabon. def gaussian_blur(im, radius=None): """ PIL_usm.gblur(im, [radius])""" warnings.warn( 'PIL.ImageOps.gaussian_blur is deprecated. ' 'Use PIL.ImageFilter.GaussianBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) if radius is None: radius = 5.0 im.load() return im.im.gaussian_blur(radius) def gblur(im, radius=None): """ PIL_usm.gblur(im, [radius])""" warnings.warn( 'PIL.ImageOps.gblur is deprecated. ' 'Use PIL.ImageFilter.GaussianBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) return gaussian_blur(im, radius) def unsharp_mask(im, radius=None, percent=None, threshold=None): """ PIL_usm.usm(im, [radius, percent, threshold])""" warnings.warn( 'PIL.ImageOps.unsharp_mask is deprecated. ' 'Use PIL.ImageFilter.UnsharpMask instead. ' 'This function will be removed in a future version.', DeprecationWarning ) if radius is None: radius = 5.0 if percent is None: percent = 150 if threshold is None: threshold = 3 im.load() return im.im.unsharp_mask(radius, percent, threshold) def usm(im, radius=None, percent=None, threshold=None): """ PIL_usm.usm(im, [radius, percent, threshold])""" warnings.warn( 'PIL.ImageOps.usm is deprecated. ' 'Use PIL.ImageFilter.UnsharpMask instead. ' 'This function will be removed in a future version.', DeprecationWarning ) return unsharp_mask(im, radius, percent, threshold) def box_blur(image, radius): """ Blur the image by setting each pixel to the average value of the pixels in a square box extending radius pixels in each direction. Supports float radius of arbitrary size. Uses an optimized implementation which runs in linear time relative to the size of the image for any radius value. :param image: The image to blur. :param radius: Size of the box in one direction. Radius 0 does not blur, returns an identical image. Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total. :return: An image. """ warnings.warn( 'PIL.ImageOps.box_blur is deprecated. ' 'Use PIL.ImageFilter.BoxBlur instead. ' 'This function will be removed in a future version.', DeprecationWarning ) image.load() return image._new(image.im.box_blur(radius))
19,772
Python
30.891935
80
0.581732
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/calibrate_tool.py
import re import tkinter as tk import tkinter.messagebox from tkinter import * import _thread import time import os import sys import numpy as np from pupper.HardwareInterface import HardwareInterface ################################################################### OverLoadCurrentMax = 1500000 OverLoadHoldCounterMax = 100 # almost 3s ServoCalibrationFilePath = '/sys/bus/i2c/devices/3-0050/eeprom' servo1_en = 25 servo2_en = 21 hw_version="" ################################################################### class LegPositionScale: def __init__(self,root,location_x,location_y,leg_name): self.LocationX = location_x self.LocationY = location_y delt_x = 40 delt_y = 45 self.Value1 = DoubleVar() self.Value2 = DoubleVar() self.Value3 = DoubleVar() self.title = Label(root,text = leg_name,font = ('bold',16)) self.label1 = Label(root,text = 'Hip') self.slider1 = Scale(root,from_=-100,to=100,variable = self.Value1,length = 120,orient = HORIZONTAL) self.label2 = Label(root,text = 'Thigh') self.slider2 = Scale(root,from_=-55,to=145,variable = self.Value2,length = 120,orient = HORIZONTAL) self.label3 = Label(root,text = 'Calf') self.slider3 = Scale(root,from_=-145,to=55,variable = self.Value3,length = 120,orient = HORIZONTAL) self.label1.place(x=location_x, y=location_y + 20) self.label2.place(x=location_x, y=location_y + delt_y*1+ 20) self.label3.place(x=location_x, y=location_y + delt_y*2+ 20) self.slider1.place(x=location_x + delt_x, y=location_y ) self.slider2.place(x=location_x + delt_x, y=location_y + delt_y*1) self.slider3.place(x=location_x + delt_x, y=location_y + delt_y*2) self.title.place(x=location_x + 70, y=location_y + delt_y*3) def setValue(self,value): self.slider1.set(value[0]) self.slider2.set(value[1]) self.slider3.set(value[2]) return True def getValue(self): value = [] value.append(self.Value1.get()) value.append(self.Value2.get()) value.append(self.Value3.get()) return value class CalibrationTool: def __init__(self,title, width, height): self.Run = True self.FileAllLines = [] #leg slider value self.Leg1SlidersValue = [0,0,0] self.Leg2SlidersValue = [0,0,0] self.Leg3SlidersValue = [0,0,0] self.Leg4SlidersValue = [0,0,0] # calibration data self.Matrix_EEPROM = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]]) self.ServoStandardLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.ServoNeutralLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.NocalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] self.CalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] #build main window self.MainWindow = tk.Tk() screenwidth = self.MainWindow.winfo_screenwidth() screenheight = self.MainWindow.winfo_screenheight() size = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2) self.MainWindow.geometry(size) self.MainWindow.title('MiniPupper') #Mini Pupper Calibration Tool self.MainWindow.update() #init title self.Title = Label(self.MainWindow,text = title,font = ('bold',30)) self.Title.place(x=140,y=15) #init robot image self.photo = tk.PhotoImage(file= '/home/ubuntu/Robotics/QuadrupedRobot/Doc/imgs/MiniPupper.Calibration.png') self.MainImg = Label(self.MainWindow,image = self.photo) self.MainImg.place(x=230,y=60) #init read update button self.ResetButton = Button(self.MainWindow,text = ' Reset ',font = ('bold',20),command=self.ResetButtonEvent) self.UpdateButton = Button(self.MainWindow,text = 'Update',font = ('bold',20),command=self.updateButtonEvent) self.RestoreButton = Button(self.MainWindow,text = 'Restore',font = ('bold',7),command=self.RestoreButtonEvent) self.ResetButton.place(x=600,y=100) self.UpdateButton.place(x=600,y=200) self.RestoreButton.place(x=160,y=80) #build 4 legs sliders self.Leg1Calibration = LegPositionScale(self.MainWindow,20,300, 'Leg 1') self.Leg2Calibration = LegPositionScale(self.MainWindow,220,300,'Leg 2') self.Leg3Calibration = LegPositionScale(self.MainWindow,420,300,'Leg 3') self.Leg4Calibration = LegPositionScale(self.MainWindow,620,300,'Leg 4') self.Leg1Calibration.setValue([self.ServoNeutralLAngle[0][0],self.ServoNeutralLAngle[1][0],self.ServoNeutralLAngle[2][0]]) self.Leg2Calibration.setValue([self.ServoNeutralLAngle[0][1],self.ServoNeutralLAngle[1][1],self.ServoNeutralLAngle[2][1]]) self.Leg3Calibration.setValue([self.ServoNeutralLAngle[0][2],self.ServoNeutralLAngle[1][2],self.ServoNeutralLAngle[2][2]]) self.Leg4Calibration.setValue([self.ServoNeutralLAngle[0][3],self.ServoNeutralLAngle[1][3],self.ServoNeutralLAngle[2][3]]) def setLegSlidersValue(self,value): self.Leg1Calibration.setValue(value[0]) self.Leg2Calibration.setValue(value[1]) self.Leg3Calibration.setValue(value[2]) self.Leg4Calibration.setValue(value[3]) return value def readCalibrationFile(self): #read all lines text from EEPROM try: with open(ServoCalibrationFilePath, "rb") as nv_f: arr1 = np.array(eval(nv_f.readline())) arr2 = np.array(eval(nv_f.readline())) matrix = np.append(arr1, arr2) arr3 = np.array(eval(nv_f.readline())) matrix = np.append(matrix, arr3) matrix.resize(3,4) self.Matrix_EEPROM = matrix print("Get nv calibration params: \n" , self.Matrix_EEPROM) except: matrix = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]]) self.Matrix_EEPROM = matrix #update for i in range(3): for j in range(4): self.NocalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j] self.CalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j] return True def updateCalibrationMatrix(self,angle): for i in range(3): for j in range(4): self.Matrix_EEPROM[i,j] = angle[i][j] return True def writeCalibrationFile(self): #write matrix to EEPROM buf_matrix = np.zeros((3, 4)) for i in range(3): for j in range(4): buf_matrix[i,j]= self.Matrix_EEPROM[i,j] # Format array object string for np.array p1 = re.compile("([0-9]\.) ( *)") # pattern to replace the space that follows each number with a comma partially_formatted_matrix = p1.sub(r"\1,\2", str(buf_matrix)) p2 = re.compile("(\]\n)") # pattern to add a comma at the end of the first two lines formatted_matrix_with_required_commas = p2.sub("],\n", partially_formatted_matrix) with open(ServoCalibrationFilePath, "w") as nv_f: _tmp = str(buf_matrix) _tmp = _tmp.replace('.' , ',') _tmp = _tmp.replace('[' , '') _tmp = _tmp.replace(']' , '') print(_tmp, file = nv_f) nv_f.close() return True def getLegSlidersValue(self): value = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] self.Leg1SlidersValue = self.Leg1Calibration.getValue() self.Leg2SlidersValue = self.Leg2Calibration.getValue() self.Leg3SlidersValue = self.Leg3Calibration.getValue() self.Leg4SlidersValue = self.Leg4Calibration.getValue() value[0] = [self.Leg1SlidersValue[0],self.Leg2SlidersValue[0],self.Leg3SlidersValue[0],self.Leg4SlidersValue[0]] value[1] = [self.Leg1SlidersValue[1],self.Leg2SlidersValue[1],self.Leg3SlidersValue[1],self.Leg4SlidersValue[1]] value[2] = [self.Leg1SlidersValue[2],self.Leg2SlidersValue[2],self.Leg3SlidersValue[2],self.Leg4SlidersValue[2]] self.ServoNeutralLAngle = value return value def ResetButtonEvent(self): value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]] for i in range(3): for j in range(4): value[j][i] = self.ServoStandardLAngle[i][j] self.setLegSlidersValue(value) return True def updateButtonEvent(self): # update angle matrix value = self.getLegSlidersValue() angle = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] for i in range(3): for j in range(4): angle[i][j] = self.ServoStandardLAngle[i][j] - value[i][j] +MainWindow.NocalibrationServoAngle[i][j] # limit angle for i in range(3): for j in range(4): if angle[i][j] > 90: angle[i][j] = 90 elif angle[i][j] < -90: angle[i][j] = -90 # popup message box result = tk.messagebox.askquestion('Info:','****** Angle Matrix ******\n' +str(angle[0])+'\n' +str(angle[1])+'\n' +str(angle[2])+'\n' +'****************************\n' +' Update Matrix?') # update matrix if result == 'yes': self.updateCalibrationMatrix(angle) self.writeCalibrationFile() print('******** Angle Matrix ********') print(angle[0]) print(angle[1]) print(angle[2]) print('******************************') return True def RestoreButtonEvent(self): # update angle matrix value = self.getLegSlidersValue() angle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]] # popup message box result = tk.messagebox.askquestion('Warning','Are you sure you want to Restore Factory Setting!?') # update matrix if result == 'yes': self.updateCalibrationMatrix(angle) self.writeCalibrationFile() print('******** Angle Matrix ********') print(angle[0]) print(angle[1]) print(angle[2]) print('******************************') sys.exit() for i in range(3): for j in range(4): self.NocalibrationServoAngle[i][j] = angle[i][j] #self.CalibrationServoAngle[i][j] = angle[i][j] value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]] for i in range(3): for j in range(4): value[j][i] = self.ServoStandardLAngle[i][j] self.setLegSlidersValue(value) return True def runMainWindow(self): self.MainWindow.mainloop() return True def stopMainWindow(self): self.Run = False return True OverLoadHoldCounter = 0 def OverLoadDetection(): overload = False global OverLoadHoldCounter r = os.popen("cat /sys/class/power_supply/max1720x_battery/current_now") feedback = str(r.readlines()) current_now = int(feedback[3:len(feedback)-4]) if (current_now > OverLoadCurrentMax): OverLoadHoldCounter = OverLoadHoldCounter + 1 if (OverLoadHoldCounter > OverLoadHoldCounterMax): OverLoadHoldCounter = OverLoadHoldCounterMax os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value") os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value") overload = True else: overload = False else: OverLoadHoldCounter = OverLoadHoldCounter - 10 if (OverLoadHoldCounter < 0): OverLoadHoldCounter = 0 os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value") os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value") overload = False return overload def updateServoValue(MainWindow,servo): while MainWindow.Run: #update leg slider value value = MainWindow.getLegSlidersValue() # overload detection overload = OverLoadDetection() if overload == True: tk.messagebox.showwarning('Warning','Servos overload, please check !!!') else: #control servo joint_angles = np.zeros((3, 4)) joint_angles2 = np.zeros((3, 4)) for i in range(3): for j in range(4): joint_angles[i,j] = (value[i][j] - (MainWindow.NocalibrationServoAngle[i][j] - MainWindow.CalibrationServoAngle[i][j]))*0.01745 servo.set_actuator_postions(joint_angles) time.sleep(0.01) ############################################## with open("/home/ubuntu/.hw_version", "r") as hw_f: hw_version = hw_f.readline() if hw_version == 'P1\n': ServoCalibrationFilePath = "/home/ubuntu/.nv_fle" servo1_en = 19 servo2_en = 26 else: servo1_en = 25 servo2_en = 21 os.system("sudo systemctl stop robot") os.system("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value") os.system("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value") MainWindow = CalibrationTool('MiniPupper Calibration Tool',800,500) MainWindow.readCalibrationFile() hardware_interface = HardwareInterface() try: _thread.start_new_thread( updateServoValue, ( MainWindow, hardware_interface,) ) except: print ('Thread Error') MainWindow.runMainWindow() MainWindow.stopMainWindow() os.system("sudo systemctl start robot") os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value") os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value")
14,538
Python
34.987624
147
0.554684
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/run_robot.py
import os import sys import threading import time import numpy as np from PIL import Image from multiprocessing import Process import multiprocessing sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang.LCD.ST7789 import ST7789 from Mangdang.LCD.gif import AnimatedGif from src.Controller import Controller from src.JoystickInterface import JoystickInterface from src.State import State from pupper.MovementGroup import MovementLib from src.MovementScheme import MovementScheme from pupper.HardwareInterface import HardwareInterface from pupper.Config import Configuration from pupper.Kinematics import four_legs_inverse_kinematics quat_orientation = np.array([1, 0, 0, 0]) cartoons_folder = "/home/ubuntu/Robotics/QuadrupedRobot/Mangdang/LCD/cartoons/" current_show = "" with open("/home/ubuntu/.hw_version", "r") as hw_f: hw_version = hw_f.readline() if hw_version == 'P1\n': disp = ST7789(14, 15, 47) else : disp = ST7789(27, 24, 26) def pic_show(disp, pic_name, _lock): """ Show the specify picture Parameter: disp : display instance pic_name : picture name to show Return : None """ if pic_name == "": return global current_show if pic_name == current_show: return image=Image.open(cartoons_folder + pic_name) image.resize((320,240)) _lock.acquire() disp.display(image) _lock.release() current_show = pic_name def animated_thr_fun(_disp, duration, is_connect, current_leg, _lock): """ The thread funcation to show sleep animated gif Parameter: None Returen: None """ try: gif_player = AnimatedGif(_disp, width=320, height=240, folder=cartoons_folder) last_time = time.time() last_joint_angles = np.zeros(3) while True: if is_connect.value == 1 : #if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1]) and (current_leg[2]==last_joint_angles[2])) == False : if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1])) == False : last_time = time.time() last_joint_angles[0] = current_leg[0] last_joint_angles[1] = current_leg[1] #last_joint_angles[2] = current_leg[2] if (time.time() - last_time) > duration : _lock.acquire() gif_player.play() _lock.release() time.sleep(0.5) else : last_time = time.time() time.sleep(1.5) except KeyboardInterrupt: _lock.release() pass def cmd_dump(cmd): """ debug interface to show all info about PS4 command Parameter: None return : None """ print("\nGet PS4 command :") print("horizontal_velocity: ", cmd.horizontal_velocity) print("yaw_rate ", cmd.yaw_rate) print("height", cmd.height) print("pitch ", cmd.pitch) print("roll ", cmd.roll) print("activation ", cmd.activation) print("hop_event ", cmd.hop_event) print("trot_event ", cmd.trot_event) print("activate_event ", cmd.activate_event) def main(): """Main program """ # Create config config = Configuration() hardware_interface = HardwareInterface() # show logo global disp disp.begin() disp.clear() image=Image.open(cartoons_folder + "logo.png") image.resize((320,240)) disp.display(image) shutdown_counter = 0 # counter for shuudown cmd # Start animated process duration = 10 is_connect = multiprocessing.Value('l', 0) current_leg = multiprocessing.Array('d', [0, 0, 0]) lock = multiprocessing.Lock() animated_process = Process(target=animated_thr_fun, args=(disp, duration, is_connect, current_leg, lock)) #animated_process.start() #Create movement group scheme movement_ctl = MovementScheme(MovementLib) # Create controller and user input handles controller = Controller( config, four_legs_inverse_kinematics, ) state = State() print("Creating joystick listener...") joystick_interface = JoystickInterface(config) print("Done.") last_loop = time.time() print("Summary of gait parameters:") print("overlap time: ", config.overlap_time) print("swing time: ", config.swing_time) print("z clearance: ", config.z_clearance) print("x shift: ", config.x_shift) # Wait until the activate button has been pressed while True: print("Waiting for L1 to activate robot.") while True: command = joystick_interface.get_command(state) joystick_interface.set_color(config.ps4_deactivated_color) if command.activate_event == 1: break time.sleep(0.1) print("Robot activated.") is_connect.value = 1 joystick_interface.set_color(config.ps4_color) pic_show(disp, "walk.png", lock) while True: now = time.time() if now - last_loop < config.dt: continue last_loop = time.time() # Parse the udp joystick commands and then update the robot controller's parameters command = joystick_interface.get_command(state) #cmd_dump(command) _pic = "walk.png" if command.yaw_rate ==0 else "turnaround.png" if command.trot_event == True: _pic = "walk_r1.png" pic_show(disp, _pic, lock) if command.activate_event == 1: is_connect.value = 0 pic_show(disp, "notconnect.png", lock) print("Deactivating Robot") break state.quat_orientation = quat_orientation # movement scheme movement_switch = command.dance_switch_event gait_state = command.trot_event dance_state = command.dance_activate_event shutdown_signal = command.shutdown_signal #shutdown counter if shutdown_signal == True: shutdown_counter = shutdown_counter + 1 # press shut dow button more 3s(0.015*200), shut down system if shutdown_counter >= 200: print('shutdown system now') os.system('systemctl stop robot') os.system('shutdown -h now') # gait and movement control if gait_state == True or dance_state == True: # if triger tort event, reset the movement number to 0 movement_ctl.resetMovementNumber() movement_ctl.runMovementScheme(movement_switch) food_location = movement_ctl.getMovemenLegsLocation() attitude_location = movement_ctl.getMovemenAttitude() robot_speed = movement_ctl.getMovemenSpeed() controller.run(state,command,food_location,attitude_location,robot_speed) # Update the pwm widths going to the servos hardware_interface.set_actuator_postions(state.joint_angles) current_leg[0]= state.joint_angles[0][0] current_leg[1]= state.joint_angles[1][0] #current_leg[2]= state.joint_angles[2][0] try: main() except KeyboardInterrupt: pass
7,553
Python
33.81106
158
0.60572
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/Gaits.py
class GaitController: def __init__(self, config): self.config = config def phase_index(self, ticks): """Calculates which part of the gait cycle the robot should be in given the time in ticks. Parameters ---------- ticks : int Number of timesteps since the program started gaitparams : GaitParams GaitParams object Returns ------- Int The index of the gait phase that the robot should be in. """ phase_time = ticks % self.config.phase_length phase_sum = 0 for i in range(self.config.num_phases): phase_sum += self.config.phase_ticks[i] if phase_time < phase_sum: return i assert False def subphase_ticks(self, ticks): """Calculates the number of ticks (timesteps) since the start of the current phase. Parameters ---------- ticks : Int Number of timesteps since the program started gaitparams : GaitParams GaitParams object Returns ------- Int Number of ticks since the start of the current phase. """ phase_time = ticks % self.config.phase_length phase_sum = 0 subphase_ticks = 0 for i in range(self.config.num_phases): phase_sum += self.config.phase_ticks[i] if phase_time < phase_sum: subphase_ticks = phase_time - phase_sum + self.config.phase_ticks[i] return subphase_ticks assert False def contacts(self, ticks): """Calculates which feet should be in contact at the given number of ticks Parameters ---------- ticks : Int Number of timesteps since the program started. gaitparams : GaitParams GaitParams object Returns ------- numpy array (4,) Numpy vector with 0 indicating flight and 1 indicating stance. """ return self.config.contact_phases[:, self.phase_index(ticks)]
2,154
Python
28.930555
98
0.545032
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/Command.py
import numpy as np class Command: """Stores movement command """ def __init__(self): self.horizontal_velocity = np.array([0, 0]) self.yaw_rate = 0.0 self.height = -0.07 self.pitch = 0.0 self.roll = 0.0 self.activation = 0 self.hop_event = False self.trot_event = False self.activate_event = False self.dance_activate_event = False self.dance_switch_event = False self.gait_switch_event = False self.shutdown_signal = False
554
Python
20.346153
51
0.555957
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/SwingLegController.py
import numpy as np from transforms3d.euler import euler2mat class SwingController: def __init__(self, config): self.config = config def raibert_touchdown_location( self, leg_index, command ): delta_p_2d = ( self.config.alpha * self.config.stance_ticks * self.config.dt * command.horizontal_velocity ) delta_p = np.array([delta_p_2d[0], delta_p_2d[1], 0]) theta = ( self.config.beta * self.config.stance_ticks * self.config.dt * command.yaw_rate ) R = euler2mat(0, 0, theta) return R @ self.config.default_stance[:, leg_index] + delta_p def swing_height(self, swing_phase, triangular=True): if triangular: if swing_phase < 0.5: swing_height_ = swing_phase / 0.5 * self.config.z_clearance else: swing_height_ = self.config.z_clearance * (1 - (swing_phase - 0.5) / 0.5) return swing_height_ def next_foot_location( self, swing_prop, leg_index, state, command, ): assert swing_prop >= 0 and swing_prop <= 1 foot_location = state.foot_locations[:, leg_index] swing_height_ = self.swing_height(swing_prop) touchdown_location = self.raibert_touchdown_location(leg_index, command) time_left = self.config.dt * self.config.swing_ticks * (1.0 - swing_prop) v = (touchdown_location - foot_location) / time_left * np.array([1, 1, 0]) delta_foot_location = v * self.config.dt z_vector = np.array([0, 0, swing_height_ + command.height]) return foot_location * np.array([1, 1, 0]) + z_vector + delta_foot_location
1,781
Python
32.622641
89
0.563167
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/MovementScheme.py
from ActuatorControl import ActuatorControl LocationStanding = [[ 0.06,0.06,-0.06,-0.06],[-0.05, 0.05,-0.05,0.05],[ -0.07,-0.07,-0.07,-0.07]] DeltLocationMax = 0.001 AttitudeMinMax = [[-20,20],[-20,20],[-100,100]] class SequenceInterpolation: def __init__(self,name,dimension): self.Name = name self.Dimension = dimension self.InterpolationNumber = 1 self.ExecuteTick = 0 self.SequenceExecuteCounter = 0 self.PhaseNumberMax = 1 self.SequencePoint = [[0,0,0]] # interpolation point data self.PointPhaseStart = 0 self.PointPhaseStop = 1 self.TnterpolationDelt = [0,0,0] self.PointNow = [0,0,0] self.PointPrevious = [0,0,0] def setCycleType(self,cycle_type,cycle_index): if cycle_type == 'Forever': self.SequenceExecuteCounter = 9999 elif cycle_type == 'Multiple': self.SequenceExecuteCounter = cycle_index else: self.SequenceExecuteCounter = 1 return True def setInterpolationNumber(self,interpolation_number): self.InterpolationNumber = interpolation_number return True def setSequencePoint(self,sequence): self.SequencePoint = sequence self.PhaseNumberMax = len(sequence) # init now and pre point phase for xyz in range(self.Dimension): self.PointNow[xyz] = sequence[0][xyz] self.PointPrevious[xyz] = sequence[0][xyz] # init start point phase self.PointPhaseStart = 0 # init stop point phase self.PointPhaseStop = self.PointPhaseStart + 1 if self.PointPhaseStop >= len(sequence): self.PointPhaseStop = self.PointPhaseStart return True def updatePointPhase(self): # update start point phase self.PointPhaseStart = self.PointPhaseStart + 1 if self.PointPhaseStart >= self.PhaseNumberMax: if self.SequenceExecuteCounter >0: self.PointPhaseStart = 0 else: self.SequenceExecuteCounter = 0 self.PointPhaseStart = self.PointPhaseStart - 1 # update stop point phase self.PointPhaseStop = self.PointPhaseStart + 1 if self.PointPhaseStop >= self.PhaseNumberMax: self.SequenceExecuteCounter = self.SequenceExecuteCounter - 1 if self.SequenceExecuteCounter >0: self.PointPhaseStop = 0 else: self.SequenceExecuteCounter = 0 self.PointPhaseStop = self.PointPhaseStop - 1 self.PointPhaseStop = 0 return True def updateInterpolationDelt(self): #get start and stop point point_start = self.SequencePoint[self.PointPhaseStart] point_stop = self.SequencePoint[self.PointPhaseStop] for xyz in range(self.Dimension): diff = point_stop[xyz] - point_start[xyz] self.TnterpolationDelt[xyz] = - diff/self.InterpolationNumber return True def getNewPoint(self): #update movement tick self.ExecuteTick = self.ExecuteTick + 1 if self.ExecuteTick >= self.InterpolationNumber: self.ExecuteTick = 0 self.updatePointPhase() self.updateInterpolationDelt() self.PointNow[0] = self.PointPrevious[0] + self.TnterpolationDelt[0] self.PointNow[1] = self.PointPrevious[1] + self.TnterpolationDelt[1] self.PointNow[2] = self.PointPrevious[2] + self.TnterpolationDelt[2] self.PointPrevious = self.PointNow return self.PointNow class Movements: def __init__(self,name,speed_enable,attitude_enable,legs_enable,actuator_enable): self.MovementName = name self.SpeedEnable = speed_enable self.AttitudeEnable = attitude_enable self.LegsEnable = legs_enable self.ActuatorEnable = actuator_enable self.ExitToStand = True self.SpeedMovements = SequenceInterpolation('speed',2) self.AttitudeMovements = SequenceInterpolation('attitude',3) self.LegsMovements = [] self.LegsMovements.append(SequenceInterpolation('leg1',3)) self.LegsMovements.append(SequenceInterpolation('leg2',3)) self.LegsMovements.append(SequenceInterpolation('leg3',3)) self.LegsMovements.append(SequenceInterpolation('leg4',3)) self.ActuatorsMovements = SequenceInterpolation('actuators',1) # init state value self.SpeedInit = [0,0,0] # x, y speed self.AttitudeInit = [0,0,0] # roll pitch yaw rate self.LegsLocationInit = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs self.ActuatorsAngleInit = [0,0,0] # angle for 3 actuators # output self.SpeedOutput = [0,0,0] # x, y speed self.AttitudeOutput = [0,0,0] # roll pitch yaw rate self.LegsLocationOutput = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs self.ActuatorsAngleOutput = [0,0,0] # angle for 3 actuators def setInterpolationNumber(self,number): self.ActuatorsMovements.setInterpolationNumber(number) for leg in range(4): self.LegsMovements[leg].setInterpolationNumber(number) self.AttitudeMovements.setInterpolationNumber(number) self.SpeedMovements.setInterpolationNumber(number) return True def setExitstate(self,state): if state != 'Stand': self.ExitToStand = False return True def setSpeedSequence(self,sequence,cycle_type,cycle_index): self.SpeedMovements.setSequencePoint(sequence) self.SpeedMovements.setCycleType(cycle_type,cycle_index) self.SpeedInit = sequence[0] def setAttitudeSequence(self,sequence,cycle_type,cycle_index): self.AttitudeMovements.setSequencePoint(sequence) self.AttitudeMovements.setCycleType(cycle_type,cycle_index) self.AttitudeInit = sequence[0] def setLegsSequence(self,sequence,cycle_type,cycle_index): for leg in range(4): self.LegsMovements[leg].setSequencePoint(sequence[leg]) self.LegsMovements[leg].setCycleType(cycle_type,cycle_index) # init location self.LegsLocationInit[0][leg] = sequence[leg][0][0] self.LegsLocationInit[1][leg] = sequence[leg][0][1] self.LegsLocationInit[2][leg] = sequence[leg][0][2] def setActuatorsSequence(self,sequence,cycle_type,cycle_index): self.ActuatorsMovements.setSequencePoint(sequence) self.ActuatorsMovements.setCycleType(cycle_type,cycle_index) self.ActuatorsAngleInit = sequence[0] def runMovementSequence(self): if self.SpeedEnable == 'SpeedEnable': self.SpeedOutput = self.SpeedMovements.getNewPoint() if self.AttitudeEnable == 'AttitudeEnable': self.AttitudeOutput = self.AttitudeMovements.getNewPoint() if self.LegsEnable == 'LegsEnable': for leg in range(4): leg_loaction = self.LegsMovements[leg].getNewPoint() for xyz in range(3): self.LegsLocationOutput[xyz][leg] = leg_loaction[xyz] if self.ActuatorEnable == 'ActuatorEnable': self.ActuatorsAngleOutput = self.ActuatorsMovements.getNewPoint() def getSpeedOutput(self, state = 'Normal'): if state == 'Init': return self.SpeedInit else: return self.SpeedOutput def getAttitudeOutput(self, state = 'Normal'): if state == 'Init': return self.AttitudeInit else: return self.AttitudeOutput def getLegsLocationOutput(self, state = 'Normal'): if state == 'Init': return self.LegsLocationInit else: return self.LegsLocationOutput def getActuatorsAngleOutput(self, state = 'Normal'): if state == 'Init': return self.ActuatorsAngleInit else: return self.ActuatorsAngleOutput def getMovementName(self): return self.MovementName class MovementScheme: def __init__(self,movements_lib): self.movements_lib = movements_lib self.movements_now = movements_lib[0] self.movements_pre = movements_lib[0] self.movement_now_name = movements_lib[0].getMovementName() self.movement_now_number = 0 self.ststus = 'Movement' # 'Entry' 'Movement' 'Exit' self.entry_down = False self.exit_down = False self.tick = 0 self.legs_location_pre = LocationStanding self.legs_location_now = LocationStanding self.attitude_pre = [0,0,0] self.attitude_now = [0,0,0] self.speed_pre = [0,0,0] self.speed_now = [0,0,0] self.actuators_pre = [0,0,0] self.actuators_now = [0,0,0] self.actuator = [] self.actuator.append(ActuatorControl(1)) self.actuator.append(ActuatorControl(2)) self.actuator.append(ActuatorControl(3)) def updateMovementType(self): self.movements_pre = self.movements_lib[self.movement_now_number] self.movement_now_number = self.movement_now_number + 1 if self.movement_now_number>= len(self.movements_lib): self.movement_now_number = 0 self.entry_down = False self.exit_down = False self.movements_now = self.movements_lib[self.movement_now_number] return self.movements_now.getMovementName() def resetMovementNumber(self): self.movements_pre = self.movements_lib[self.movement_now_number] self.movement_now_number = 0 self.entry_down = False self.exit_down = False self.movements_now = self.movements_lib[0] return True def updateMovement(self,movement_type): # movement state transition if movement_type != self.movement_now_name: self.ststus = 'Exit' elif(self.entry_down): self.ststus = 'Movement' elif(self.exit_down): self.ststus = 'Entry' self.movement_now_name = movement_type # update system tick self.tick = self.tick+ 1 # movement execute if self.ststus == 'Entry': location_ready = self.movements_now.getLegsLocationOutput('Init') self.legs_location_now,self.entry_down = self.updateMovementGradient(self.legs_location_pre,location_ready) self.legs_location_pre = self.legs_location_now if self.ststus == 'Exit': if self.movements_pre.ExitToStand == False: self.legs_location_now,self.exit_down = self.updateMovementGradient(self.location_pre,LocationStanding) self.legs_location_pre = self.legs_location_now else: self.legs_location_now = self.legs_location_pre self.exit_down = True elif self.ststus == 'Movement': self.updateMovemenScheme(self.tick) self.legs_location_pre = self.legs_location_now self.attitude_pre = self.attitude_now return self.legs_location_now def updateMovementGradient(self,location_now,location_target): loaction_gradient = location_now gradient_done = False gradient_done_counter = 0 #legs gradient for xyz_index in range(3): for leg_index in range(4): diff = location_now[xyz_index][leg_index] - location_target[xyz_index][leg_index] if diff > DeltLocationMax: loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] - DeltLocationMax elif diff < -DeltLocationMax: loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] + DeltLocationMax else : loaction_gradient[xyz_index][leg_index] = location_target[xyz_index][leg_index] gradient_done_counter = gradient_done_counter + 1 # movement gradient is down if gradient_done_counter == 12: gradient_done = True return loaction_gradient, gradient_done def updateMovemenScheme(self,tick): # run movement self.movements_now.runMovementSequence() # legs movement self.legs_location_now = self.movements_now.getLegsLocationOutput('normal') # speed movement self.speed_now = self.movements_now.getSpeedOutput('normal') # attitude movement self.attitude_now = self.movements_now.getAttitudeOutput('normal') # attitude movement self.actuators_now = self.movements_now.getActuatorsAngleOutput('normal') # attitude process ''' for rpy in range(3): #limite attitude angle if attitude_now[rpy] < AttitudeMinMax[rpy][0]: attitude_now[rpy] = AttitudeMinMax[rpy][0] elif attitude_now[rpy] > AttitudeMinMax[rpy][1]: attitude_now[rpy] = AttitudeMinMax[rpy][1] ''' # speed process return True def runMovementScheme(self,transition): # update movement movement_name = '' if transition == True: movement_name = self.updateMovementType() self.updateMovement(movement_name) return True def getMovemenSpeed(self): speed_now = [0,0,0] for xyz in range(3): speed_now[xyz] = -self.speed_now[xyz] return speed_now def getMovemenLegsLocation(self): return self.legs_location_now def getMovemenAttitude(self): attitude_now_rad = [0,0,0] for rpy in range(3): #angle to radin attitude_now_rad[rpy] = -self.attitude_now[rpy] / 57.3 return attitude_now_rad def getMovemenActuators(self): return self.actuators_now
14,291
Python
31.930876
130
0.607865
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/State.py
import numpy as np from enum import Enum class State: def __init__(self): self.horizontal_velocity = np.array([0.0, 0.0]) self.yaw_rate = 0.0 self.height = -0.07 self.pitch = 0.0 self.roll = 0.0 self.activation = 0 self.behavior_state = BehaviorState.REST self.ticks = 0 self.foot_locations = np.zeros((3, 4)) self.joint_angles = np.zeros((3, 4)) self.behavior_state = BehaviorState.REST class BehaviorState(Enum): DEACTIVATED = -1 REST = 0 TROT = 1 HOP = 2 FINISHHOP = 3
589
Python
20.851851
55
0.568761
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/StanceController.py
import numpy as np from transforms3d.euler import euler2mat class StanceController: def __init__(self, config): self.config = config def position_delta(self, leg_index, state, command): """Calculate the difference between the next desired body location and the current body location Parameters ---------- z_measured : float Z coordinate of the feet relative to the body. stance_params : StanceParams Stance parameters object. movement_reference : MovementReference Movement reference object. gait_params : GaitParams Gait parameters object. Returns ------- (Numpy array (3), Numpy array (3, 3)) (Position increment, rotation matrix increment) """ z = state.foot_locations[2, leg_index] v_xy = np.array( [ -command.horizontal_velocity[0], -command.horizontal_velocity[1], 1.0 / self.config.z_time_constant * (state.height - z), ] ) delta_p = v_xy * self.config.dt delta_R = euler2mat(0, 0, -command.yaw_rate * self.config.dt) return (delta_p, delta_R) # TODO: put current foot location into state def next_foot_location(self, leg_index, state, command): foot_location = state.foot_locations[:, leg_index] (delta_p, delta_R) = self.position_delta(leg_index, state, command) incremented_location = delta_R @ foot_location + delta_p return incremented_location
1,628
Python
32.244897
104
0.57801
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/JoystickInterface.py
import UDPComms import numpy as np import time from src.State import BehaviorState, State from src.Command import Command from src.Utilities import deadband, clipped_first_order_filter class JoystickInterface: def __init__( self, config, udp_port=8830, udp_publisher_port = 8840, ): self.config = config self.previous_gait_toggle = 0 self.previous_state = BehaviorState.REST self.previous_hop_toggle = 0 self.previous_activate_toggle = 0 self.previous_dance_activate_toggle = 0 self.previous_dance_switch_toggle = 0 self.previous_gait_switch_toggle = 0 self.message_rate = 50 self.udp_handle = UDPComms.Subscriber(udp_port, timeout=0.3) self.udp_publisher = UDPComms.Publisher(udp_publisher_port,65532) def get_command(self, state, do_print=False): try: msg = self.udp_handle.get() command = Command() ####### Handle discrete commands ######## # Check if requesting a state transition to trotting, or from trotting to resting gait_toggle = msg["R1"] command.trot_event = (gait_toggle == 1 and self.previous_gait_toggle == 0) # Check if requesting a state transition to hopping, from trotting or resting hop_toggle = msg["x"] command.hop_event = (hop_toggle == 1 and self.previous_hop_toggle == 0) dance_activate_toggle = msg["circle"] command.dance_activate_event = (dance_activate_toggle == 1 and self.previous_dance_activate_toggle == 0) shutdown_toggle = msg["triangle"] command.shutdown_signal = shutdown_toggle activate_toggle = msg["L1"] command.activate_event = (activate_toggle == 1 and self.previous_activate_toggle == 0) dance_toggle = msg["L2"] command.dance_switch_event = (dance_toggle == 1 and self.previous_dance_switch_toggle != 1) gait_switch_toggle = msg["R2"] command.gait_switch_event = (gait_switch_toggle == 1 and self.previous_gait_switch_toggle != 1) # Update previous values for toggles and state self.previous_gait_toggle = gait_toggle self.previous_hop_toggle = hop_toggle self.previous_activate_toggle = activate_toggle self.previous_dance_activate_toggle = dance_activate_toggle self.previous_dance_switch_toggle = dance_toggle self.previous_gait_switch_toggle = gait_switch_toggle ####### Handle continuous commands ######## x_vel = msg["ly"] * self.config.max_x_velocity y_vel = msg["lx"] * -self.config.max_y_velocity command.horizontal_velocity = np.array([x_vel, y_vel]) command.yaw_rate = msg["rx"] * -self.config.max_yaw_rate message_rate = msg["message_rate"] message_dt = 1.0 / message_rate pitch = msg["ry"] * self.config.max_pitch deadbanded_pitch = deadband( pitch, self.config.pitch_deadband ) pitch_rate = clipped_first_order_filter( state.pitch, deadbanded_pitch, self.config.max_pitch_rate, self.config.pitch_time_constant, ) command.pitch = state.pitch + message_dt * pitch_rate height_movement = msg["dpady"] command.height = state.height - message_dt * self.config.z_speed * height_movement roll_movement = - msg["dpadx"] command.roll = state.roll + message_dt * self.config.roll_speed * roll_movement return command except UDPComms.timeout: if do_print: print("UDP Timed out") return Command() def set_color(self, color): joystick_msg = {"ps4_color": color} self.udp_publisher.send(joystick_msg)
3,985
Python
37.326923
116
0.59197
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/ActuatorControl.py
import os import sys import time class ActuatorControl: def __init__(self,pwm_number): self.pwm_number = pwm_number def updateDutyCycle(self,angle): duty_cycle = int((1.11*angle+50)*10000) return duty_cycle def updateActuatorAngle(self,angle): if self.pwm_number == 1: actuator_name = 'pwm1' elif self.pwm_number == 2: actuator_name = 'pwm2' elif self.pwm_number == 3: actuator_name = 'pwm3' duty_cycle = self.updateDutyCycle(angle) file_node = '/sys/class/pwm/pwmchip0/' + actuator_name+ '/duty_cycle' f = open(file_node, "w") f.write(str(duty_cycle)) #test = ActuatorControl(3) #time.sleep(10) #for index in range(30): # test.updateActuatorAngle(index*3) # time.sleep(0.1) # test.updateActuatorAngle(0)
856
Python
22.162162
77
0.600467
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/Utilities.py
import numpy as np def deadband(value, band_radius): return max(value - band_radius, 0) + min(value + band_radius, 0) def clipped_first_order_filter(input, target, max_rate, tau): rate = (target - input) / tau return np.clip(rate, -max_rate, max_rate)
268
Python
23.454543
68
0.671642
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/Controller.py
from src.Gaits import GaitController #from src.GaitScheme import GaitScheme from src.StanceController import StanceController from src.SwingLegController import SwingController from src.Utilities import clipped_first_order_filter from src.State import BehaviorState, State import numpy as np from transforms3d.euler import euler2mat, quat2euler from transforms3d.quaternions import qconjugate, quat2axangle from transforms3d.axangles import axangle2mat class Controller: """Controller and planner object """ def __init__( self, config, inverse_kinematics, ): self.config = config self.smoothed_yaw = 0.0 # for REST mode only self.inverse_kinematics = inverse_kinematics self.dance_active_state = False self.contact_modes = np.zeros(4) self.gait_controller = GaitController(self.config) #self.gait_controller = GaitScheme(1) #self.gait_controller.setCurrentGait('Trotting') self.swing_controller = SwingController(self.config) self.stance_controller = StanceController(self.config) self.hop_transition_mapping = {BehaviorState.REST: BehaviorState.HOP, BehaviorState.HOP: BehaviorState.FINISHHOP, BehaviorState.FINISHHOP: BehaviorState.REST, BehaviorState.TROT: BehaviorState.HOP} self.trot_transition_mapping = {BehaviorState.REST: BehaviorState.TROT, BehaviorState.TROT: BehaviorState.REST, BehaviorState.HOP: BehaviorState.TROT, BehaviorState.FINISHHOP: BehaviorState.TROT} self.activate_transition_mapping = {BehaviorState.DEACTIVATED: BehaviorState.REST, BehaviorState.REST: BehaviorState.DEACTIVATED} def dance_active(self,command): if command.dance_activate_event == True: if self.dance_active_state == False: self.dance_active_state = True elif self.dance_active_state == True: self.dance_active_state = False return True def step_gait(self, state, command): """Calculate the desired foot locations for the next timestep Returns ------- Numpy array (3, 4) Matrix of new foot locations. """ contact_modes = self.gait_controller.contacts(state.ticks) #if command.gait_switch_event == 1: # self.gait_controller.switchGait() #self.gait_controller.updateGaitScheme() #contact_modes = self.gait_controller.current_leg_state new_foot_locations = np.zeros((3, 4)) for leg_index in range(4): contact_mode = contact_modes[leg_index] foot_location = state.foot_locations[:, leg_index] if contact_mode == 1: new_location = self.stance_controller.next_foot_location(leg_index, state, command) else: swing_proportion = ( self.gait_controller.subphase_ticks(state.ticks) / self.config.swing_ticks ) #leg_progress = self.gait_controller.current_leg_progress #swing_proportion = leg_progress[leg_index] new_location = self.swing_controller.next_foot_location( swing_proportion, leg_index, state, command ) new_foot_locations[:, leg_index] = new_location return new_foot_locations, contact_modes def run(self, state, command,location,attitude,robot_speed): """Steps the controller forward one timestep Parameters ---------- controller : Controller Robot controller object. """ ########## Update operating state based on command ###### if command.activate_event: state.behavior_state = self.activate_transition_mapping[state.behavior_state] elif command.trot_event: state.behavior_state = self.trot_transition_mapping[state.behavior_state] elif command.hop_event: state.behavior_state = self.hop_transition_mapping[state.behavior_state] # check dance active event self.dance_active(command) if state.behavior_state == BehaviorState.TROT: state.foot_locations, contact_modes = self.step_gait( state, command, ) # Apply the desired body rotation rotated_foot_locations = ( euler2mat( command.roll, command.pitch, 0.0 ) @ state.foot_locations ) # Construct foot rotation matrix to compensate for body tilt (roll, pitch, yaw) = quat2euler(state.quat_orientation) correction_factor = 0.8 max_tilt = 0.4 roll_compensation = correction_factor * np.clip(-roll, -max_tilt, max_tilt) pitch_compensation = correction_factor * np.clip(-pitch, -max_tilt, max_tilt) rmat = euler2mat(roll_compensation, pitch_compensation, 0) rotated_foot_locations = rmat.T @ rotated_foot_locations state.joint_angles = self.inverse_kinematics( rotated_foot_locations, self.config ) elif state.behavior_state == BehaviorState.HOP: state.foot_locations = ( self.config.default_stance + np.array([0, 0, -0.03])[:, np.newaxis] ) state.joint_angles = self.inverse_kinematics( state.foot_locations, self.config ) elif state.behavior_state == BehaviorState.FINISHHOP: state.foot_locations = ( self.config.default_stance + np.array([0, 0, -0.105])[:, np.newaxis] ) state.joint_angles = self.inverse_kinematics( state.foot_locations, self.config ) elif state.behavior_state == BehaviorState.REST: yaw_proportion = command.yaw_rate / self.config.max_yaw_rate self.smoothed_yaw += ( self.config.dt * clipped_first_order_filter( self.smoothed_yaw, yaw_proportion * -self.config.max_stance_yaw, self.config.max_stance_yaw_rate, self.config.yaw_time_constant, ) ) # Set the foot locations to the default stance plus the standard height print('act:',self.dance_active_state) #self.dance_active_state = True if self.dance_active_state == False: state.foot_locations = (self.config.default_stance + np.array([0, 0, command.height])[:, np.newaxis]) # Apply the desired body rotation rotated_foot_locations = ( euler2mat( command.roll, command.pitch, self.smoothed_yaw, ) @ state.foot_locations ) else: location_buf = np.zeros((3, 4)) for index_i in range(3): for index_j in range(4): location_buf[index_i,index_j] = location[index_i][index_j] if (abs(robot_speed[0])<0.01) and (abs(robot_speed[1])<0.01): state.foot_locations = location_buf else: command.horizontal_velocity[0] = robot_speed[0] command.horizontal_velocity[1] = robot_speed[1] state.foot_locations, contact_modes = self.step_gait(state,command) # Apply the desired body rotation rotated_foot_locations = ( euler2mat( attitude[0], attitude[1], self.smoothed_yaw, ) @ state.foot_locations ) state.joint_angles = self.inverse_kinematics( rotated_foot_locations, self.config ) # Construct foot rotation matrix to compensate for body tilt (roll, pitch, yaw) = quat2euler(state.quat_orientation) correction_factor = 0.8 max_tilt = 0.4 roll_compensation = correction_factor * np.clip(-roll, -max_tilt, max_tilt) pitch_compensation = correction_factor * np.clip(-pitch, -max_tilt, max_tilt) rmat = euler2mat(roll_compensation, pitch_compensation, 0) rotated_foot_locations = rmat.T @ rotated_foot_locations state.joint_angles = self.inverse_kinematics( rotated_foot_locations, self.config ) state.ticks += 1 state.pitch = command.pitch state.roll = command.roll state.height = command.height def set_pose_to_default(self): state.foot_locations = ( self.config.default_stance + np.array([0, 0, self.config.default_z_ref])[:, np.newaxis] ) state.joint_angles = controller.inverse_kinematics( state.foot_locations, self.config )
9,316
Python
38.478813
205
0.566445
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/ServoCalibration.py
# WARNING: This file is machine generated. Edit at your own risk. import numpy as np MICROS_PER_RAD = 11.111 * 180.0 / np.pi
128
Python
17.428569
65
0.703125
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/MovementGroup.py
from src.MovementScheme import Movements def appendDanceMovement(): ''' #demo 1 dance_scheme = Movements('stand','SpeedDisable','AttitudeDisable','LegsEnable','ActuatorDisable') dance_scheme.setExitstate('Stand') dance_all_legs = [] dance_all_legs.append([[ 0.06,-0.05,-0.065]]) # leg1 dance_all_legs.append([[ 0.06, 0.05,-0.065]]) # leg2 dance_all_legs.append([[-0.06,-0.05,-0.065]]) # leg3 dance_all_legs.append([[-0.06, 0.05,-0.065]]) # leg4 dance_scheme.setInterpolationNumber(50) dance_scheme.setLegsSequence(dance_all_legs,'Forever',5) MovementLib.append(dance_scheme) # append dance ''' #demo 2 dance_scheme = Movements('push-up','SpeedEnable','AttitudeDisable','LegsEnable','ActuatorDisable') dance_scheme.setExitstate('Stand') dance_all_legs = [] dance_all_legs.append([[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.07],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04]]) # leg1 dance_all_legs.append([[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.07],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04]]) # leg2 dance_all_legs.append([[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.07],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04]]) # leg3 dance_all_legs.append([[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.07],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04]]) # leg4 dance_speed = [[0,0,0],[0,0,0],[0,0,0],[0.25,0,0,0],[0.25,0,0,0]] # speed_, speed_y, no_use dance_attitude = [[0,0,0],[10,0,0],[0,0,0]] # roll, pitch, yaw rate dance_scheme.setInterpolationNumber(70) dance_scheme.setLegsSequence(dance_all_legs,'Forever',1) dance_scheme.setSpeedSequence(dance_speed,'Forever',1) dance_scheme.setAttitudeSequence(dance_attitude,'Forever',1) MovementLib.append(dance_scheme) # append dance MovementLib = [] appendDanceMovement()
1,955
Python
38.918367
137
0.588235
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/HardwareInterface.py
import os import sys sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot/") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs]) from Mangdang import PWMController from pupper.Config import ServoParams, PWMParams #from __future__ import division import numpy as np class HardwareInterface: def __init__(self): self.pwm_params = PWMParams() self.servo_params = ServoParams() def set_actuator_postions(self, joint_angles): send_servo_commands(self.pwm_params, self.servo_params, joint_angles) def set_actuator_position(self, joint_angle, axis, leg): send_servo_command(self.pwm_params, self.servo_params, joint_angle, axis, leg) def pwm_to_duty_cycle(pulsewidth_micros, pwm_params): """Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin Parameters ---------- pulsewidth_micros : float Width of the pwm signal in microseconds pwm_params : PWMParams PWMParams object Returns ------- float PWM duty cycle corresponding to the pulse width """ pulsewidth_micros = int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range) if np.isnan(pulsewidth_micros): return 0 return int(np.clip(pulsewidth_micros, 0, 4096)) def angle_to_pwm(angle, servo_params, axis_index, leg_index): """Converts a desired servo angle into the corresponding PWM command Parameters ---------- angle : float Desired servo angle, relative to the vertical (z) axis servo_params : ServoParams ServoParams object axis_index : int Specifies which joint of leg to control. 0 is abduction servo, 1 is inner hip servo, 2 is outer hip servo. leg_index : int Specifies which leg to control. 0 is front-right, 1 is front-left, 2 is back-right, 3 is back-left. Returns ------- float PWM width in microseconds """ angle_deviation = ( angle - servo_params.neutral_angles[axis_index, leg_index] ) * servo_params.servo_multipliers[axis_index, leg_index] pulse_width_micros = ( servo_params.neutral_position_pwm + servo_params.micros_per_rad * angle_deviation ) return pulse_width_micros def angle_to_duty_cycle(angle, pwm_params, servo_params, axis_index, leg_index): duty_cycle_f = angle_to_pwm(angle, servo_params, axis_index, leg_index) * 1e3 if np.isnan(duty_cycle_f): return 0 return int(duty_cycle_f) def initialize_pwm(pi, pwm_params): pi.set_pwm_freq(pwm_params.freq) def send_servo_commands(pwm_params, servo_params, joint_angles): for leg_index in range(4): for axis_index in range(3): duty_cycle = angle_to_duty_cycle( joint_angles[axis_index, leg_index], pwm_params, servo_params, axis_index, leg_index, ) # write duty_cycle to pwm linux kernel node file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis_index, leg_index]) + "/duty_cycle" f = open(file_node, "w") f.write(str(duty_cycle)) def send_servo_command(pwm_params, servo_params, joint_angle, axis, leg): duty_cycle = angle_to_duty_cycle(joint_angle, pwm_params, servo_params, axis, leg) file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis, leg]) + "/duty_cycle" f = open(file_node, "w") f.write(str(duty_cycle)) def deactivate_servos(pi, pwm_params): for leg_index in range(4): for axis_index in range(3): pi.set_pwm(pwm_params.pins[axis_index, leg_index], 0, 0)
3,798
Python
33.225225
129
0.639547
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/Kinematics.py
import numpy as np from transforms3d.euler import euler2mat def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config): """Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration Parameters ---------- r_body_foot : [type] [description] leg_index : [type] [description] config : [type] [description] Returns ------- numpy array (3) Array of corresponding joint angles. """ (x, y, z) = r_body_foot # Distance from the leg origin to the foot, projected into the y-z plane R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5 # Distance from the leg's forward/back point of rotation to the foot R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5 # Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis # For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative. arccos_argument = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz arccos_argument = np.clip(arccos_argument, -0.99, 0.99) phi = np.arccos(arccos_argument) # Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis hip_foot_angle = np.arctan2(z, y) # Ab/adduction angle, relative to the positive y-axis abduction_angle = phi + hip_foot_angle # theta: Angle between the tilted negative z-axis and the hip-to-foot vector theta = np.arctan2(-x, R_hip_foot_yz) # Distance between the hip and foot R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5 # Angle between the line going from hip to foot and the link L1 arccos_argument = (config.LEG_L1 ** 2 + R_hip_foot ** 2 - config.LEG_L2 ** 2) / ( 2 * config.LEG_L1 * R_hip_foot ) arccos_argument = np.clip(arccos_argument, -0.99, 0.99) trident = np.arccos(arccos_argument) # Angle of the first link relative to the tilted negative z axis hip_angle = theta + trident # Angle between the leg links L1 and L2 arccos_argument = (config.LEG_L1 ** 2 + config.LEG_L2 ** 2 - R_hip_foot ** 2) / ( 2 * config.LEG_L1 * config.LEG_L2 ) arccos_argument = np.clip(arccos_argument, -0.99, 0.99) beta = np.arccos(arccos_argument) # Angle of the second link relative to the tilted negative z axis knee_angle = hip_angle - (np.pi - beta) return np.array([abduction_angle, hip_angle, knee_angle]) def four_legs_inverse_kinematics(r_body_foot, config): """Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions. Parameters ---------- r_body_foot : numpy array (3,4) Matrix of the body-frame foot positions. Each column corresponds to a separate foot. config : Config object Object of robot configuration parameters. Returns ------- numpy array (3,4) Matrix of corresponding joint angles. """ alpha = np.zeros((3, 4)) for i in range(4): body_offset = config.LEG_ORIGINS[:, i] alpha[:, i] = leg_explicit_inverse_kinematics( r_body_foot[:, i] - body_offset, i, config ) return alpha
3,324
Python
34.752688
136
0.639892
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/HardwareConfig.py
""" Per-robot configuration file that is particular to each individual robot, not just the type of robot. """ PS4_COLOR = {"red": 0, "blue": 0, "green": 255} PS4_DEACTIVATED_COLOR = {"red": 0, "blue": 0, "green": 50}
218
Python
30.28571
101
0.655963
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/Config.py
import numpy as np from pupper.ServoCalibration import MICROS_PER_RAD from pupper.HardwareConfig import PS4_COLOR, PS4_DEACTIVATED_COLOR from enum import Enum # TODO: put these somewhere else class PWMParams: def __init__(self): self.pins = np.array([[15, 12, 9, 6], [14, 11, 8, 5], [13, 10, 7, 4]]) self.range = 4096 ## ADC 12 bits self.freq = 250 ## PWM freq class ServoParams: def __init__(self): self.neutral_position_pwm = 1500 # Middle position self.micros_per_rad = MICROS_PER_RAD # Must be calibrated with open("/home/ubuntu/.hw_version", "r") as hw_f: hw_version = hw_f.readline() if hw_version == 'P1\n': nv_file = "/home/ubuntu/.nv_fle" else: nv_file = "/sys/bus/i2c/devices/3-0050/eeprom" # The neutral angle of the joint relative to the modeled zero-angle in degrees, for each joint try: with open(nv_file, "rb") as nv_f: arr1 = np.array(eval(nv_f.readline())) arr2 = np.array(eval(nv_f.readline())) matrix = np.append(arr1, arr2) arr3 = np.array(eval(nv_f.readline())) matrix = np.append(matrix, arr3) matrix.resize(3,4) print("Get nv calibration params: \n" , matrix) except: print("Error, get nv calibration params failed, use default value. Please calibrate your pupper !") matrix = np.array( [[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]] ) self.neutral_angle_degrees = matrix self.servo_multipliers = np.array( [[1, 1, -1, -1], [-1, 1, -1, 1], [-1, 1, -1, 1]] ) @property def neutral_angles(self): return self.neutral_angle_degrees * np.pi / 180.0 # Convert to radians class Configuration: def __init__(self): ################# CONTROLLER BASE COLOR ############## self.ps4_color = PS4_COLOR self.ps4_deactivated_color = PS4_DEACTIVATED_COLOR #################### COMMANDS #################### self.max_x_velocity = 0.20 self.max_y_velocity = 0.20 self.max_yaw_rate = 2 self.max_pitch = 20.0 * np.pi / 180.0 #################### MOVEMENT PARAMS #################### self.z_time_constant = 0.02 self.z_speed = 0.01 # maximum speed [m/s] self.pitch_deadband = 0.02 self.pitch_time_constant = 0.25 self.max_pitch_rate = 0.15 self.roll_speed = 0.16 # maximum roll rate [rad/s] 0.16 self.yaw_time_constant = 0.3 self.max_stance_yaw = 1.2 self.max_stance_yaw_rate = 1.5 #################### STANCE #################### self.delta_x = 0.059 self.delta_y = 0.050 self.x_shift = 0.00 self.default_z_ref = -0.08 #################### SWING ###################### self.z_coeffs = None self.z_clearance = 0.03 self.alpha = ( 0.5 # Ratio between touchdown distance and total horizontal stance movement ) self.beta = ( 0.5 # Ratio between touchdown distance and total horizontal stance movement ) #################### GAIT ####################### self.dt = 0.015 self.num_phases = 4 self.contact_phases = np.array( [[1, 1, 1, 0], [1, 0, 1, 1], [1, 0, 1, 1], [1, 1, 1, 0]] ) self.overlap_time = ( 0.09 # duration of the phase where all four feet are on the ground ) self.swing_time = ( 0.1 # duration of the phase when only two feet are on the ground ) ######################## GEOMETRY ###################### self.LEG_FB = 0.059 # front-back distance from center line to leg axis self.LEG_LR = 0.0235 # left-right distance from center line to leg plane self.LEG_L2 = 0.060 self.LEG_L1 = 0.050 self.ABDUCTION_OFFSET = 0.026 # distance from abduction axis to leg self.FOOT_RADIUS = 0.00 self.HIP_L = 0.0394 self.HIP_W = 0.0744 self.HIP_T = 0.0214 self.HIP_OFFSET = 0.0132 self.L = 0.176 self.W = 0.060 self.T = 0.045 self.LEG_ORIGINS = np.array( [ [self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB], [-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR], [0, 0, 0, 0], ] ) self.ABDUCTION_OFFSETS = np.array( [ -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, -self.ABDUCTION_OFFSET, self.ABDUCTION_OFFSET, ] ) ################### INERTIAL #################### self.FRAME_MASS = 0.200 # kg self.MODULE_MASS = 0.020 # kg self.LEG_MASS = 0.010 # kg self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4 # Compensation factor of 3 because the inertia measurement was just # of the carbon fiber and plastic parts of the frame and did not # include the hip servos and electronics self.FRAME_INERTIA = tuple( map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3)) ) self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5) leg_z = 1e-6 leg_mass = 0.010 leg_x = 1 / 12 * self.LEG_L1 ** 2 * leg_mass leg_y = leg_x self.LEG_INERTIA = (leg_x, leg_y, leg_z) @property def default_stance(self): return np.array( [ [ self.delta_x + self.x_shift, self.delta_x + self.x_shift, -self.delta_x + self.x_shift, -self.delta_x + self.x_shift, ], [-self.delta_y, self.delta_y, -self.delta_y, self.delta_y], [0, 0, 0, 0], ] ) ################## SWING ########################### @property def z_clearance(self): return self.__z_clearance @z_clearance.setter def z_clearance(self, z): self.__z_clearance = z # b_z = np.array([0, 0, 0, 0, self.__z_clearance]) # A_z = np.array( # [ # [0, 0, 0, 0, 1], # [1, 1, 1, 1, 1], # [0, 0, 0, 1, 0], # [4, 3, 2, 1, 0], # [0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0], # ] # ) # self.z_coeffs = solve(A_z, b_z) ########################### GAIT #################### @property def overlap_ticks(self): return int(self.overlap_time / self.dt) @property def swing_ticks(self): return int(self.swing_time / self.dt) @property def stance_ticks(self): return 2 * self.overlap_ticks + self.swing_ticks @property def phase_ticks(self): return np.array( [self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks] ) @property def phase_length(self): return 2 * self.overlap_ticks + 2 * self.swing_ticks class SimulationConfig: def __init__(self): self.XML_IN = "pupper.xml" self.XML_OUT = "pupper_out.xml" self.START_HEIGHT = 0.3 self.MU = 1.5 # coeff friction self.DT = 0.001 # seconds between simulation steps self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters # Joint params G = 220 # Servo gear ratio m_rotor = 0.016 # Servo rotor mass r_rotor = 0.005 # Rotor radius self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints # print("Servo armature", self.ARMATURE) NATURAL_DAMPING = 1.0 # Damping resulting from friction ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF self.REV_DAMPING = ( NATURAL_DAMPING + ELECTRICAL_DAMPING ) # Damping torque on the revolute joints # Servo params self.SERVO_REV_KP = 300 # Position gain [Nm/rad] # Force limits self.MAX_JOINT_TORQUE = 3.0 self.REVOLUTE_RANGE = 1.57
8,547
Python
33.329317
111
0.500058
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/PS4Joystick.py
import sys import time import subprocess import math from threading import Thread from collections import OrderedDict, deque from ds4drv.actions import ActionRegistry from ds4drv.backends import BluetoothBackend, HidrawBackend from ds4drv.config import load_options from ds4drv.daemon import Daemon from ds4drv.eventloop import EventLoop from ds4drv.exceptions import BackendError from ds4drv.action import ReportAction from ds4drv.__main__ import create_controller_thread class ActionShim(ReportAction): """ intercepts the joystick report""" def __init__(self, *args, **kwargs): super(ActionShim, self).__init__(*args, **kwargs) self.timer = self.create_timer(0.02, self.intercept) self.values = None self.timestamps = deque(range(10), maxlen=10) def enable(self): self.timer.start() def disable(self): self.timer.stop() self.values = None def load_options(self, options): pass def deadzones(self,values): deadzone = 0.14 if math.sqrt( values['left_analog_x'] ** 2 + values['left_analog_y'] ** 2) < deadzone: values['left_analog_y'] = 0.0 values['left_analog_x'] = 0.0 if math.sqrt( values['right_analog_x'] ** 2 + values['right_analog_y'] ** 2) < deadzone: values['right_analog_y'] = 0.0 values['right_analog_x'] = 0.0 return values def intercept(self, report): new_out = OrderedDict() for key in report.__slots__: value = getattr(report, key) new_out[key] = value for key in ["left_analog_x", "left_analog_y", "right_analog_x", "right_analog_y", "l2_analog", "r2_analog"]: new_out[key] = 2*( new_out[key]/255 ) - 1 new_out = self.deadzones(new_out) self.timestamps.append(new_out['timestamp']) if len(set(self.timestamps)) <= 1: self.values = None else: self.values = new_out return True class Joystick: def __init__(self): self.thread = None options = load_options() if options.hidraw: raise ValueError("HID mode not supported") backend = HidrawBackend(Daemon.logger) else: subprocess.run(["hciconfig", "hciX", "up"]) backend = BluetoothBackend(Daemon.logger) backend.setup() self.thread = create_controller_thread(1, options.controllers[0]) self.thread.controller.setup_device(next(backend.devices)) self.shim = ActionShim(self.thread.controller) self.thread.controller.actions.append(self.shim) self.shim.enable() self._color = (None, None, None) self._rumble = (None, None) self._flash = (None, None) # ensure we get a value before returning while self.shim.values is None: pass def close(self): if self.thread is None: return self.thread.controller.exit("Cleaning up...") self.thread.controller.loop.stop() def __del__(self): self.close() @staticmethod def map(val, in_min, in_max, out_min, out_max): """ helper static method that helps with rescaling """ in_span = in_max - in_min out_span = out_max - out_min value_scaled = float(val - in_min) / float(in_span) value_mapped = (value_scaled * out_span) + out_min if value_mapped < out_min: value_mapped = out_min if value_mapped > out_max: value_mapped = out_max return value_mapped def get_input(self): """ returns ordered dict with state of all inputs """ if self.thread.controller.error: raise IOError("Encountered error with controller") if self.shim.values is None: raise TimeoutError("Joystick hasn't updated values in last 200ms") return self.shim.values def led_color(self, red=0, green=0, blue=0): """ set RGB color in range 0-255""" color = (int(red),int(green),int(blue)) if( self._color == color ): return self._color = color self.thread.controller.device.set_led( *self._color ) def rumble(self, small=0, big=0): """ rumble in range 0-255 """ rumble = (int(small),int(big)) if( self._rumble == rumble ): return self._rumble = rumble self.thread.controller.device.rumble( *self._rumble ) def led_flash(self, on=0, off=0): """ flash led: on and off times in range 0 - 255 """ flash = (int(on),int(off)) if( self._flash == flash ): return self._flash = flash if( self._flash == (0,0) ): self.thread.controller.device.stop_led_flash() else: self.thread.controller.device.start_led_flash( *self._flash ) if __name__ == "__main__": j = Joystick() while 1: for key, value in j.get_input().items(): print(key,value) print() time.sleep(0.1)
5,123
Python
28.28
96
0.579934
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/mac_joystick.py
import os import pygame from UDPComms import Publisher os.environ["SDL_VIDEODRIVER"] = "dummy" drive_pub = Publisher(8830) arm_pub = Publisher(8410) pygame.display.init() pygame.joystick.init() # wait until joystick is connected while 1: try: pygame.joystick.Joystick(0).init() break except pygame.error: pygame.time.wait(500) # Prints the joystick's name JoyName = pygame.joystick.Joystick(0).get_name() print("Name of the joystick:") print(JoyName) # Gets the number of axes JoyAx = pygame.joystick.Joystick(0).get_numaxes() print("Number of axis:") print(JoyAx) while True: pygame.event.pump() forward = (pygame.joystick.Joystick(0).get_axis(3)) twist = (pygame.joystick.Joystick(0).get_axis(2)) on = (pygame.joystick.Joystick(0).get_button(5)) if on: print({'f':-150*forward,'t':-80*twist}) drive_pub.send({'f':-150*forward,'t':-80*twist}) else: drive_pub.send({'f':0,'t':0}) pygame.time.wait(100)
994
Python
22.139534
56
0.662978
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/setup.py
#!/usr/bin/env python from distutils.core import setup setup(name='PS4Joystick', version='2.0', py_modules=['PS4Joystick'], description='Interfaces with a PS4 joystick over Bluetooth', author='Michal Adamkiewicz', author_email='mikadam@stanford.edu', url='https://github.com/stanfordroboticsclub/JoystickUDP', )
356
Python
24.499998
66
0.679775
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/local_or_remote.py
import os import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) # Broadcom pin-numbering scheme GPIO.setup(21, GPIO.IN, pull_up_down=GPIO.PUD_UP) while 1: if not GPIO.input(21): print("eanbling joystick") os.system("sudo systemctl start ds4drv") os.system("sudo systemctl start joystick") #os.system("screen sudo python3 /home/pi/RoverCommand/joystick.py") else: os.system("sudo systemctl stop ds4drv") os.system("sudo systemctl stop joystick") print("not eanbling joystick") time.sleep(5)
566
Python
27.349999
75
0.673145
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/README.md
# PS4Joystick Code allowing the use of a DualShock (PS4 Joystick) over Bluetooth on Linux. Over USB comming soon. `mac_joystick.py` shows how to emulate something similar on macOS, but without the fancy features. Note: We have updated from the previous version so make sure you disable ds4drv from running automatically at startup as they will conflict. This method still requires [ds4drv](https://github.com/chrippa/ds4drv) however it doesn't run it as a separate service and then separately pull joystick data using Pygame. Instead it imports ds4drv directly which gives us much more control over the joystick behaviour. Specifically: - It will only pair to one joystick allowing us to run multiple robots at a time - Allows for launching joystick code via systemd at boot using `sudo systemctl enable joystick` - Can change joystick colors and using rumble directly from Python (can also access the touchpad and IMU!) - Is a much nicer interface than using Pygame, as the axes are actually named as opposed to arbitrarly numbered! The axis directions are consistant with Pygame. - Doesn't need $DISPLAY hacks to run on headless devices ### Usage Take a look at `rover_example.py` as it demonstrates most features. To implement this functionality to a new repository (say [PupperCommand](https://github.com/stanfordroboticsclub/PupperCommand)) you can just call `from PS4Joystick import Joystick` anywhere once you've installed the module. Replicate `joystick.service` in that repository. ### Install ``` sudo bash install.sh ``` ### macOS Sadly ds4drv doesn't work on Macs. But you can get some of the functionality by installing Pygame with `sudo pip3 install Pygame`. Take a look in `mac_joystick.py` for an example. Note this only works over USB (plug the controller in using a micro usb cable) and the mapping is different than using Pygame with ds4drv
1,873
Markdown
65.928569
317
0.789642
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PS4Joystick/rover_example.py
from UDPComms import Publisher from PS4Joystick import Joystick import time from enum import Enum drive_pub = Publisher(8830) arm_pub = Publisher(8410) j=Joystick() MODES = Enum('MODES', 'SAFE DRIVE ARM') mode = MODES.SAFE while True: values = j.get_input() if( values['button_ps'] ): if values['dpad_up']: mode = MODES.DRIVE j.led_color(red=255) elif values['dpad_right']: mode = MODES.ARM j.led_color(blue=255) elif values['dpad_down']: mode = MODES.SAFE j.led_color(green=255) # overwrite when swiching modes to prevent phantom motions values['dpad_down'] = 0 values['dpad_up'] = 0 values['dpad_right'] = 0 values['dpad_left'] = 0 if mode == MODES.DRIVE: forward_left = - values['left_analog_y'] forward_right = - values['right_analog_y'] twist = values['right_analog_x'] on_right = values['button_r1'] on_left = values['button_l1'] l_trigger = values['l2_analog'] if on_left or on_right: if on_right: forward = forward_right else: forward = forward_left slow = 150 fast = 500 max_speed = (fast+slow)/2 + l_trigger*(fast-slow)/2 out = {'f':(max_speed*forward),'t':-150*twist} drive_pub.send(out) print(out) else: drive_pub.send({'f':0,'t':0}) elif mode == MODES.ARM: r_forward = - values['right_analog_y'] r_side = values['right_analog_x'] l_forward = - values['left_analog_y'] l_side = values['left_analog_x'] r_shoulder = values['button_r1'] l_shoulder = values['button_l1'] r_trigger = values['r2_analog'] l_trigger = values['l2_analog'] square = values['button_square'] cross = values['button_cross'] circle = values['button_circle'] triangle = values['button_triangle'] PS = values['button_ps'] # hat directions could be reversed from previous version hat = [ values["dpad_up"] - values["dpad_down"], values["dpad_right"] - values["dpad_left"] ] reset = (PS == 1) and (triangle == 1) reset_dock = (PS==1) and (square ==1) target_vel = {"x": l_side, "y": l_forward, "z": (r_trigger - l_trigger)/2, "yaw": r_side, "pitch": r_forward, "roll": (r_shoulder - l_shoulder), "grip": cross - square, "hat": hat, "reset": reset, "resetdock":reset_dock, "trueXYZ": circle, "dock": triangle} print(target_vel) arm_pub.send(target_vel) elif mode == MODES.SAFE: # random stuff to demo color features triangle = values['button_triangle'] square = values['button_square'] j.rumble(small = 255*triangle, big = 255*square) r2 = values['r2_analog'] r2 = j.map( r2, -1, 1, 0 ,255) j.led_color( green = 255, blue = r2) else: pass time.sleep(0.1)
3,285
Python
26.847457
66
0.506849
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/stanford_pupper_Chandykunju Alex/package.xml
<package format="2"> <name>standford_pupper_description</name> <version>1.0.0</version> <description> <p>URDF Description package for standford_pupper</p> <p>This package contains configuration data, 3D models and launch files for standford_pupper robot</p> </description> <author>Chandy Alex</author> <maintainer email="chandyalex92@gmail.com" /> <license>BSD</license> <buildtool_depend>catkin</buildtool_depend> <depend>roslaunch</depend> <depend>robot_state_publisher</depend> <depend>rviz</depend> <depend>joint_state_publisher_gui</depend> <depend>gazebo</depend> <export> <architecture_independent /> </export> </package>
670
XML
30.952379
75
0.722388
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/stanford_pupper_Chandykunju Alex/README.md
# Stanford Pupper Robot Description (URDF) ## Overview This package contains a simplified robot description (URDF) of the [Stanford Pupper](https://stanfordstudentrobotics.org/pupper) developed by [Stanford Robotics club](https://github.com/stanfordroboticsclub/StanfordQuadruped). ## License This software is released under a [BSD 3-Clause license](LICENSE).
369
Markdown
23.666665
226
0.783198
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/CODE_OF_CONDUCT.md
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at mauricerahme2020@u.northwestern.edu. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
3,367
Markdown
42.740259
87
0.822097
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/CONTRIBUTING.md
# Contributing When contributing to this repository, please first discuss the change you wish to make via issue, [email](mauricerahme2020@u.northwestern.edu), or any other direct method with me. For those of you on the [Spot Micro Slack](https://spotmicroai-inviter.herokuapp.com/), contact me there (Maurice Rahme). Please be sure to follow the code of conduct. ## Examples of Contributions 1. New platform support (e.g. Gazebo, MuJoCo). 2. RL Agent addition (e.g. DDPG, PPO). 3. Simulation improvement (e.g. motor response in Pybullet) 4. Sensing capabilities in simulation (e.g. LIDAR, Camera) If in doubt, please talk to me, and I'll let you know if your idea will be helpful to the project. Some things are better served as issues, such as: ## Examples of Issues 1. Bugs. 2. Feature Requests. 3. Clarifications. 4. Platform support (e.g. something is not working in your specific environment). ## Pull Request Process 1. Fork this repository. 2. Create a new branch titled `your-username` 3. Once your changes are ready, please send me a link to your branch so that I can try it out (there will be unit tests in the future). 4. If I approve your change, you may merge to `spot` and submit a PR.
1,207
Markdown
43.740739
249
0.755592
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/readthedocs.yml
# .readthedocs.yml # Read the Docs configuration file # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details # Required version: 2 # Build documentation in the docs/ directory with Sphinx sphinx: configuration: docs/conf.py # Build documentation with MkDocs #mkdocs: # configuration: mkdocs.yml # Optionally build your docs in additional formats such as PDF formats: - pdf # Optionally set the version of Python and requirements required to build your docs python: version: 3.7 install: - requirements: docs/requirements.txt
563
YAML
22.499999
83
0.765542
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/toc.md
Table of Contents ================= * [Spot Mini Mini OpenAI Gym Environment](#spot-mini-mini-openai-gym-environment) * [Motivation](#motivation) * [Kinematics:](#kinematics) * [Reinforcement Learning](#reinforcement-learning) * [Stability on Difficult Terrain](#stability-on-difficult-terrain) * [Drift Correction](#drift-correction) * [Gait:](#gait) * [How To Run](#how-to-run) * [Dependencies](#dependencies) * [Joystick Control with ROS](#joystick-control-with-ros) * [Testing Environment (Non-Joystick)](#testing-environment-non-joystick) * [Reinforcement Learning Agent Evaluation](#reinforcement-learning-agent-evaluation) * [Using Different Terrain](#using-different-terrain) Created by [gh-md-toc](https://github.com/ekalinin/github-markdown-toc)
834
Markdown
40.749998
91
0.676259
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/README.md
Note: development for this project was haulted in November 2020 to respect my NDA with my employer. ## Spot Mini Mini OpenAI Gym Environment [![GitHub release](https://img.shields.io/github/release/moribots/spot_mini_mini.svg)](https://github.com/moribots/spot_mini_mini/releases) [![Documentation Status](https://readthedocs.org/projects/spot-mini-mini/badge/?version=latest)](https://spot-mini-mini.readthedocs.io/en/latest/?badge=latest) [![Maintenance](https://img.shields.io/badge/Maintained%3F-no-red.svg)](https://github.com/moribots/spot_mini_mini/graphs/commit-activity) [![PR](https://camo.githubusercontent.com/f96261621753dacf526590825b84f87ccb1db0e6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f5052732d77656c636f6d652d627269676874677265656e2e7376673f7374796c653d666c6174)](https://github.com/moribots/spot_mini_mini/pulls) [![Open Source Love png2](https://camo.githubusercontent.com/60dcf2177b53824e7912a6adfb3ff5e318d14ae4/68747470733a2f2f6261646765732e66726170736f66742e636f6d2f6f732f76312f6f70656e2d736f757263652e706e673f763d313033)](https://github.com/moribots) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/moribots/spot_mini_mini/blob/spot/LICENSE) <!-- ![SIK](spot_bullet/media/spot-mini-mini.gif) --> <p float="left"> <img src="spot_real/media/spot_hello.gif" width="670" /> </p> **Featured in [Robotics Weekly](https://weeklyrobotics.com/weekly-robotics-98) and [Mithi's Robotics Coursework](https://github.com/mithi/robotics-coursework/#hands-on-and-blogs)!** ## Motivation As part of the [Spot Micro](https://spotmicroai.readthedocs.io/en/latest/) community, I saw the need for a reliable and versatile simulator for those who wanted to try things out without risking damage to their robots. To that end, I developed my own in Pybullet which can also be used as a Gym environment for Reinforcement Learning tasks. <p float="left"> <img src="spot_bullet/media/spot_new_demo.gif" width="335" /> <img src="spot_real/media/full_control.gif" width="335" /> </p> You'll notice that there are gifs of the original `SpotMicro` as well a new version designed for added real world fidelity. The default branch simulates the new version, but you can work with `SpotMicro` in the [spotmicroai](https://github.com/moribots/spot_mini_mini/tree/spotmicroai) branch of this repo. The new version also has a more reliable URDF, with more accurate inertial calculations. If you don't need a Gym environment, that's okay too! `env_tester.py` works without RL or Gym, it is designed to accept any gait implementation, and provides a GUI for testing it out! In my case, I've implemented a 12-point Bezier gait. <!-- <p float="left"> <img src="spot_real/media/spot_demo.gif" width="670" /> </p> --> **Read the [docs](https://spot-mini-mini.readthedocs.io/en/latest/index.html)!** Table of Contents ----------------- * [Motivation](#motivation) * [Kinematics](#kinematics) * [D^2 Gait Modulation with Bezier Curves](#d2-gait-modulation-with-bezier-curves) * [Training](#Training) * [Real World Validation](#real-world-validation) * [Gait](#gait) * [How To Run](#how-to-run) * [Dependencies](#dependencies) * [Joystick Control with ROS](#joystick-control-with-ros) * [Testing Environment (Non-Joystick)](#testing-environment-non-joystick) * [Reinforcement Learning Agent Training](#reinforcement-learning-agent-training) * [Reinforcement Learning Agent Evaluation](#reinforcement-learning-agent-evaluation) * [Using Different Terrain](#using-different-terrain) * [Hardware](https://github.com/moribots/spot_mini_mini/tree/spot/spot_real) * [Assembly & Calibration](https://github.com/moribots/spot_mini_mini/tree/spot/spot_real/Calibration.md) * [Citing Spot Mini Mini](#citing-spot-mini-mini) * [Credits](#credits) ### Kinematics Body manipulation with [leg IK](https://www.researchgate.net/publication/320307716_Inverse_Kinematic_Analysis_Of_A_Quadruped_Robot) and [body IK](https://moribots.github.io/project/spot-mini-mini) descriptions. <img src="spot_bullet/media/spot_rpy.gif" alt="SIK" width="500"/> <img src="spot_real/media/rpy.gif" alt="SRIK" width="500"/> ### D^2 Gait Modulation with Bezier Curves I'm using this platform to validate a novel Reinforcement Learning method for locomotion by myself and my co-authors Matthew L. Elwin, Ian Abraham, and Todd D. Murphey. Instead of learning a gait from scratch, we propose using an existing scheme as a baseline over which we optimize via training. The method is called `D^2 Gait Modulation with Bezier Curves`. To learn more, visit our [website](https://sites.google.com/view/drgmbc) <p float="left"> <img src="spot_real/media/V_descent.gif" width="335" /> <img src="spot_real/media/A_descent.gif" width="335" /> </p> #### Training During training, simple Proportional controller was employed to deliver yaw correction as would be the case if the robot were teleoperated or able to localize itself. For increased policy robustness, the terrain, link masses and foot frictions are randomized on each environment reset. Here, the action space is 14-dimensional, consisting of `Clearance Height` (1), `Body Height` (1), and `Foot XYZ Residual` modulations (12). `Clearance Height` is treated through an exponential filter (`alpha = 0.7`), but all other actions are processed directly. These results were trained with only 149 epochs. Before training, the robot falls almost immediately: ![FALL](spot_bullet/media/spot_rough_falls.gif) After training, the robot successfully navigates the terrain: ![NO_FALL](spot_bullet/media/spot_rough_ARS.gif) What's even better, is that the same agent `#149` is able to adapt to unseen commands, making high-level system integration straightforward. Here it is being teleoperated using `Forward`, `Lateral`, and `Yaw` commands. ![UNIVERSAL](spot_bullet/media/spot_universal.gif) Here's an example of the new URDF being teleoperated with a trained agent on 2x higher terrain: ![UNIVERSAL2](spot_bullet/media/spot_new_universal.gif) #### Real World Validation Here are some experimental results where the agent is on the right. <p float="left"> <img src="spot_real/media/V2_3.gif" width="335" /> <img src="spot_real/media/T2_1.gif" width="335" /> </p> ### Gait Open-Loop Gait using 12-Point Bezier Curves based on [MIT Cheetah Paper](https://dspace.mit.edu/handle/1721.1/98270) with [modifications](https://spot-mini-mini.readthedocs.io/en/latest/source/spotmicro.GaitGenerator.html#spotmicro.GaitGenerator.Bezier.BezierGait.GetPhase) for low step velocity discontinuity. Forward and Lateral Motion: ![SLAT0](spot_bullet/media/spot_lat_logic.gif) Yaw logic based on [4-wheel steering car](http://www.inase.org/library/2014/santorini/bypaper/ROBCIRC/ROBCIRC-54.pdf): ![SYAW0](spot_bullet/media/spot_yaw_logic.gif) ## How To Run ### Dependencies * ROS Melodic * Gazebo * Pytorch * Pybullet * Gym * OpenCV * Scipy * Numpy ### Joystick Control with ROS First, you're going to need a joystick (okay, not really, but it's more fun if you have one). **Setting Up The Joystick:** * Get Number (you will see something like jsX): `ls /dev/input/` * Make available to ROS: `sudo chmod a+rw /dev/input/jsX` * Make sure `<param name="dev" type="string" value="/dev/input/jsX"/>` matches your setup in the launchfile Then simply: `roslaunch mini_ros spot_move.launch` You can ignore this msg: `[ERROR] [1591631380.406690714]: Couldn't open joystick force feedback!` It just means your controller is missing some functionality, but this package doesn't use it. **Controls:** Assuming you have a Logitech Gamepad F310: `A`: switch between stepping and RPY `X`: E-STOP (engage and disengage) **Stepping Mode**: * `Right Stick Up/Down`: Step Length * `Right Stick Left/Right`: Lateral Fraction * `Left Stick Up/Down`: Robot Height * `Left Stick Left/Right`: Yaw Rate * `Arrow Pad Up/Down` (DISCRETE): Step Height * `Arrow Pad Left/Right` (DISCRETE): Step Depth * `Bottom Right/Left Bumpers`: Step Velocity (modulate) * `Top Right/Left Bumpers`: reset all to default **Viewing Mode**: * `Right Stick Up/Down`: Pitch * `Right Stick Left/Right`: Roll * `Left Stick Up/Down`: Robot Height * `Left Stick Left/Right`: Yaw Changing `Step Velocity` while moving forward: ![SVMOD](mini_ros/media/stepvel_mod.gif) Changing `Step Length` while moving forward: ![SVMOD](mini_ros/media/steplen_mod.gif) Yaw In Place: Slightly push the `Right Stick` forward while pushing the `Left Stick` maximally in either direction: ![SVMOD](mini_ros/media/yaw_in_place.gif) ### Testing Environment (Non-Joystick) If you don't have a joystick, go to `spot_bullet/src` and do `./env_tester.py`. A Pybullet sim will open up for you with the same controls you would have on the joystick, except each is on its own scrollbar. You may also use the following optional arguments: ``` -h, --help show this help message and exit -hf, --HeightField Use HeightField -r, --DebugRack Put Spot on an Elevated Rack -p, --DebugPath Draw Spot's Foot Path -ay, --AutoYaw Automatically Adjust Spot's Yaw -ar, --AutoReset Automatically Reset Environment When Spot Falls ``` ### Reinforcement Learning Agent Training Go to `spot_bullet/src` and do `./spot_ars.py`. Models will be saved every `9th` episode to `spot_bullet/models/`. I will add some more arguments in the future to give you finer control of the heightfield mesh from the command line. ### Reinforcement Learning Agent Evaluation Go to `spot_bullet/src` and do `./spot_ars_eval.py`. You may also use the following optional arguments. Note that if you don't use the `-a` argument, no agent will be loaded, so you will be using the open-loop policy. For example, if you enter `149` after `-a`, you will see the first successful policy, but if you enter `2229`, you will see a much more aggressive policy. ``` -h, --help show this help message and exit -hf, --HeightField Use HeightField -r, --DebugRack Put Spot on an Elevated Rack -p, --DebugPath Draw Spot's Foot Path -gui, --GUI Control The Robot Yourself With a GUI -a, --AgentNum Agent Number To Load (followed by number) ``` ### Using Different Terrain Navigate to `spotmicro/heightfield.py` and take a look at `useProgrammatic` and `useTerrainFromPNG` (you can play around with the mesh scales for each) to experiment with different terrains. Make sure that the `spotBezierEnv` instance has `height_field=True` in `env_tester.py` and `spot_pybullet_interface` depending on whether you're using the joystick/ROS version. The same goes for the RL environments. Note: these were adapted from the [pybullet](https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/heightfield.py) source code. `useTerrainFromPNG` ![PNGT](spot_bullet/media/spot_png_terrain.png) `useProgrammatic` ![PROGT](spot_bullet/media/spot_prog_terrain.png) With this terrain type, I programmed in a randomizer that triggers upon reset. This, along with the body randomizer from `Pybullet's Minitaur` increases your RL Policy's robustness. ![RANDENV](spot_bullet/media/spot_random_terrain.gif) ## Citing Spot Mini Mini ``` @software{spotminimini2020github, author = {Maurice Rahme and Ian Abraham and Matthew Elwin and Todd Murphey}, title = {SpotMiniMini: Pybullet Gym Environment for Gait Modulation with Bezier Curves}, url = {https://github.com/moribots/spot_mini_mini}, version = {2.1.0}, year = {2020}, } ``` ## Credits * Original Spot Design and CAD files: [Spot Micro AI Community](https://spotmicroai.readthedocs.io/en/latest/) * Collaborator on `OpenQuadruped` design, including mechanical parts, custom PCB, and Teensy interface: [Adham Elarabawy](https://github.com/adham-elarabawy/OpenQuadruped) * OpenAI Gym and Heightfield Interface: [Minitaur Environment](https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/bullet/minitaur.py) * Deprecated URDF for earlier development: [Rex Gym](https://github.com/nicrusso7/rex-gym)
12,090
Markdown
47.558233
560
0.750538
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/spot_ars.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../../') from spotmicro.util.gui import GUI from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.spot_env_randomizer import SpotEnvRandomizer import time from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker # Multiprocessing package for python # Parallelization improvements based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py import multiprocessing as mp from multiprocessing import Pipe import os import argparse # ARGUMENTS descr = "Spot Mini Mini ARS Agent Trainer." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-nc", "--NoContactSensing", help="Disable Contact Sensing", action='store_true') parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') parser.add_argument("-s", "--Seed", help="Seed (Default: 0).") ARGS = parser.parse_args() # Messages for Pipe _RESET = 1 _CLOSE = 2 _EXPLORE = 3 def main(): """ The main() function. """ # Hold mp pipes mp.freeze_support() print("STARTING SPOT TRAINING ENV") seed = 0 if ARGS.Seed: seed = int(ARGS.Seed) print("SEED: {}".format(seed)) max_timesteps = 4e6 eval_freq = 1e1 save_model = True file_name = "spot_ars_" if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True if ARGS.DontRandomize: env_randomizer = None rand_name = "norand_" else: env_randomizer = SpotEnvRandomizer() rand_name = "rand_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=False, on_rack=False, height_field=height_field, draw_foot_path=False, contacts=contacts, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf = spot.WorldToFoot bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim, seed=seed) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot) agent_num = 0 if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) env.reset(agent.desired_velocity, agent.desired_rate) episode_reward = 0 episode_timesteps = 0 episode_num = 0 # Create mp pipes num_processes = policy.num_deltas processes = [] childPipes = [] parentPipes = [] # Store mp pipes for pr in range(num_processes): parentPipe, childPipe = Pipe() parentPipes.append(parentPipe) childPipes.append(childPipe) # Start multiprocessing # Start multiprocessing for proc_num in range(num_processes): p = mp.Process(target=ParallelWorker, args=(childPipes[proc_num], env, state_dim)) p.start() processes.append(p) print("STARTED SPOT TRAINING ENV") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout episode_reward, episode_timesteps = agent.train_parallel(parentPipes) t += episode_timesteps # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {:.2f} REWARD PER STEP: {:.2f}" .format(t + 1, episode_num, episode_timesteps, episode_reward, episode_reward / float(episode_timesteps))) # Store Results (concat) if episode_num == 0: res = np.array( [[episode_reward, episode_reward / float(episode_timesteps)]]) else: new_res = np.array( [[episode_reward, episode_reward / float(episode_timesteps)]]) res = np.concatenate((res, new_res)) # Also Save Results So Far (Overwrite) # Results contain 2D numpy array of total reward for each ep # and reward per timestep for each ep np.save( results_path + "/" + str(file_name) + rand_name + "seed" + str(seed), res) # Evaluate episode if (episode_num + 1) % eval_freq == 0: if save_model: agent.save(models_path + "/" + str(file_name) + str(episode_num)) episode_num += 1 # Close pipes and hence envs for parentPipe in parentPipes: parentPipe.send([_CLOSE, "pay2"]) for p in processes: p.join() if __name__ == '__main__': main()
6,299
Python
28.166667
101
0.600572
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/env_tester.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import copy import sys sys.path.append('../../') from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.util.gui import GUI from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.Kinematics.LieAlgebra import RPY from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.spot_env_randomizer import SpotEnvRandomizer # TESTING from spotmicro.OpenLoopSM.SpotOL import BezierStepper import time import os import argparse # ARGUMENTS descr = "Spot Mini Mini Environment Tester (No Joystick)." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-r", "--DebugRack", help="Put Spot on an Elevated Rack", action='store_true') parser.add_argument("-p", "--DebugPath", help="Draw Spot's Foot Path", action='store_true') parser.add_argument("-ay", "--AutoYaw", help="Automatically Adjust Spot's Yaw", action='store_true') parser.add_argument("-ar", "--AutoReset", help="Automatically Reset Environment When Spot Falls", action='store_true') parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') ARGS = parser.parse_args() def main(): """ The main() function. """ print("STARTING SPOT TEST ENV") seed = 0 max_timesteps = 4e6 # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) if ARGS.DebugRack: on_rack = True else: on_rack = False if ARGS.DebugPath: draw_foot_path = True else: draw_foot_path = False if ARGS.HeightField: height_field = True else: height_field = False if ARGS.DontRandomize: env_randomizer = None else: env_randomizer = SpotEnvRandomizer() env = spotBezierEnv(render=True, on_rack=on_rack, height_field=height_field, draw_foot_path=draw_foot_path, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) state = env.reset() g_u_i = GUI(env.spot.quadruped) spot = SpotModel() T_bf0 = spot.WorldToFoot T_bf = copy.deepcopy(T_bf0) bzg = BezierGait(dt=env._time_step) bz_step = BezierStepper(dt=env._time_step, mode=0) action = env.action_space.sample() FL_phases = [] FR_phases = [] BL_phases = [] BR_phases = [] FL_Elbow = [] yaw = 0.0 print("STARTED SPOT TEST ENV") t = 0 while t < (int(max_timesteps)): bz_step.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine( ) pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod = g_u_i.UserInput( ) # Update Swing Period bzg.Tswing = SwingPeriod yaw = env.return_yaw() P_yaw = 5.0 if ARGS.AutoYaw: YawRate += -yaw * P_yaw # print("YAW RATE: {}".format(YawRate)) # TEMP bz_step.StepLength = StepLength bz_step.LateralFraction = LateralFraction bz_step.YawRate = YawRate bz_step.StepVelocity = StepVelocity contacts = state[-4:] FL_phases.append(env.spot.LegPhases[0]) FR_phases.append(env.spot.LegPhases[1]) BL_phases.append(env.spot.LegPhases[2]) BR_phases.append(env.spot.LegPhases[3]) # Get Desired Foot Poses T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_bf0, T_bf, ClearanceHeight, PenetrationDepth, contacts) joint_angles = spot.IK(orn, pos, T_bf) FL_Elbow.append(np.degrees(joint_angles[0][-1])) # for i, (key, Tbf_in) in enumerate(T_bf.items()): # print("{}: \t Angle: {}".format(key, np.degrees(joint_angles[i]))) # print("-------------------------") env.pass_joint_angles(joint_angles.reshape(-1)) # Get External Observations env.spot.GetExternalObservations(bzg, bz_step) # Step state, reward, done, _ = env.step(action) # print("IMU Roll: {}".format(state[0])) # print("IMU Pitch: {}".format(state[1])) # print("IMU GX: {}".format(state[2])) # print("IMU GY: {}".format(state[3])) # print("IMU GZ: {}".format(state[4])) # print("IMU AX: {}".format(state[5])) # print("IMU AY: {}".format(state[6])) # print("IMU AZ: {}".format(state[7])) # print("-------------------------") if done: print("DONE") if ARGS.AutoReset: env.reset() # plt.plot() # # plt.plot(FL_phases, label="FL") # # plt.plot(FR_phases, label="FR") # # plt.plot(BL_phases, label="BL") # # plt.plot(BR_phases, label="BR") # plt.plot(FL_Elbow, label="FL ELbow (Deg)") # plt.xlabel("dt") # plt.ylabel("value") # plt.title("Leg Phases") # plt.legend() # plt.show() # time.sleep(1.0) t += 1 env.close() print(joint_angles) if __name__ == '__main__': main()
6,407
Python
27.864865
135
0.547214
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/spot_ars_eval.py
#!/usr/bin/env python import numpy as np import sys sys.path.append('../../') from ars_lib.ars import ARSAgent, Normalizer, Policy from spotmicro.util.gui import GUI from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.spot_env_randomizer import SpotEnvRandomizer import matplotlib.pyplot as plt import seaborn as sns sns.set() import os import argparse # ARGUMENTS descr = "Spot Mini Mini ARS Agent Evaluator." parser = argparse.ArgumentParser(description=descr) parser.add_argument("-hf", "--HeightField", help="Use HeightField", action='store_true') parser.add_argument("-nr", "--DontRender", help="Don't Render environment", action='store_true') parser.add_argument("-r", "--DebugRack", help="Put Spot on an Elevated Rack", action='store_true') parser.add_argument("-p", "--DebugPath", help="Draw Spot's Foot Path", action='store_true') parser.add_argument("-gui", "--GUI", help="Control The Robot Yourself With a GUI", action='store_true') parser.add_argument("-nc", "--NoContactSensing", help="Disable Contact Sensing", action='store_true') parser.add_argument("-a", "--AgentNum", help="Agent Number To Load") parser.add_argument("-dr", "--DontRandomize", help="Do NOT Randomize State and Environment.", action='store_true') parser.add_argument("-pp", "--PlotPolicy", help="Plot Policy Output after each Episode.", action='store_true') parser.add_argument("-ta", "--TrueAction", help="Plot Action as seen by the Robot.", action='store_true') parser.add_argument( "-save", "--SaveData", help="Save the Policy Output to a .npy file in the results folder.", action='store_true') parser.add_argument("-s", "--Seed", help="Seed (Default: 0).") ARGS = parser.parse_args() def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 if ARGS.Seed: seed = ARGS.Seed max_timesteps = 4e6 file_name = "spot_ars_" if ARGS.DebugRack: on_rack = True else: on_rack = False if ARGS.DebugPath: draw_foot_path = True else: draw_foot_path = False if ARGS.HeightField: height_field = True else: height_field = False if ARGS.NoContactSensing: contacts = False else: contacts = True if ARGS.DontRender: render = False else: render = True if ARGS.DontRandomize: env_randomizer = None else: env_randomizer = SpotEnvRandomizer() # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") if contacts: models_path = os.path.join(my_path, "../models/contact") else: models_path = os.path.join(my_path, "../models/no_contact") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=render, on_rack=on_rack, height_field=height_field, draw_foot_path=draw_foot_path, contacts=contacts, env_randomizer=env_randomizer) # Set seeds env.seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) env.reset() spot = SpotModel() bz_step = BezierStepper(dt=env._time_step) bzg = BezierGait(dt=env._time_step) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # to GUI or not to GUI if ARGS.GUI: gui = True else: gui = False # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, gui) agent_num = 0 if ARGS.AgentNum: agent_num = ARGS.AgentNum if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = np.inf policy = agent.policy env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") t = 0 while t < (int(max_timesteps)): episode_reward, episode_timesteps = agent.deployTG() t += episode_timesteps # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, episode_timesteps, episode_reward)) episode_num += 1 # Plot Policy Output if ARGS.PlotPolicy or ARGS.TrueAction or ARGS.SaveData: if ARGS.TrueAction: action_name = "robot_act" action = np.array(agent.true_action_history) else: action_name = "agent_act" action = np.array(agent.action_history) if ARGS.SaveData: if height_field: terrain_name = "rough_" else: terrain_name = "flat_" np.save( results_path + "/" + "policy_out_" + terrain_name + action_name, action) print("SAVED DATA") ClearHeight_act = action[:, 0] BodyHeight_act = action[:, 1] Residuals_act = action[:, 2:] plt.plot(ClearHeight_act, label='Clearance Height Mod', color='black') plt.plot(BodyHeight_act, label='Body Height Mod', color='darkviolet') # FL plt.plot(Residuals_act[:, 0], label='Residual: FL (x)', color='limegreen') plt.plot(Residuals_act[:, 1], label='Residual: FL (y)', color='lime') plt.plot(Residuals_act[:, 2], label='Residual: FL (z)', color='green') # FR plt.plot(Residuals_act[:, 3], label='Residual: FR (x)', color='lightskyblue') plt.plot(Residuals_act[:, 4], label='Residual: FR (y)', color='dodgerblue') plt.plot(Residuals_act[:, 5], label='Residual: FR (z)', color='blue') # BL plt.plot(Residuals_act[:, 6], label='Residual: BL (x)', color='firebrick') plt.plot(Residuals_act[:, 7], label='Residual: BL (y)', color='crimson') plt.plot(Residuals_act[:, 8], label='Residual: BL (z)', color='red') # BR plt.plot(Residuals_act[:, 9], label='Residual: BR (x)', color='gold') plt.plot(Residuals_act[:, 10], label='Residual: BR (y)', color='orange') plt.plot(Residuals_act[:, 11], label='Residual: BR (z)', color='coral') plt.xlabel("Epoch Iteration") plt.ylabel("Action Value") plt.title("Policy Output") plt.legend() plt.show() env.close() if __name__ == '__main__': main()
8,583
Python
29.119298
96
0.518467
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/sac_eval.py
#!/usr/bin/env python import numpy as np from sac_lib import SoftActorCritic, NormalizedActions, ReplayBuffer, PolicyNetwork from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import gym import torch import os import time def main(): """ The main() function. """ print("STARTING MINITAUR TD3") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 file_name = "mini_td3_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = NormalizedActions(MinitaurBulletEnv(render=True)) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) hidden_dim = 256 policy = PolicyNetwork(state_dim, action_dim, hidden_dim) replay_buffer_size = 1000000 replay_buffer = ReplayBuffer(replay_buffer_size) sac = SoftActorCritic(policy=policy, state_dim=state_dim, action_dim=action_dim, replay_buffer=replay_buffer) policy_num = 2239999 if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_critic"): print("Loading Existing Policy") sac.load(models_path + "/" + file_name + str(policy_num)) policy = sac.policy_net # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") for t in range(int(max_timesteps)): episode_timesteps += 1 # Deterministic Policy Action action = np.clip(policy.get_action(np.array(state)), -max_action, max_action) # rospy.logdebug("Selected Acton: {}".format(action)) # Perform action next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward # print("DT REWARD: {}".format(reward)) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 if __name__ == '__main__': main()
3,153
Python
26.911504
83
0.595623
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/td3_eval.py
#!/usr/bin/env python import numpy as np from td3_lib.td3 import ReplayBuffer, TD3Agent, evaluate_policy from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import gym import torch import os import time def main(): """ The main() function. """ print("STARTING MINITAUR TD3") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 file_name = "mini_td3_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=True) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) policy = TD3Agent(state_dim, action_dim, max_action) policy_num = 2239999 if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_critic"): print("Loading Existing Policy") policy.load(models_path + "/" + file_name + str(policy_num)) replay_buffer = ReplayBuffer() # Optionally load existing policy, replace 9999 with num buffer_number = 0 # BY DEFAULT WILL LOAD NOTHING, CHANGE THIS if os.path.exists(replay_buffer.buffer_path + "/" + "replay_buffer_" + str(buffer_number) + '.data'): print("Loading Replay Buffer " + str(buffer_number)) replay_buffer.load(buffer_number) print(replay_buffer.storage) # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") for t in range(int(max_timesteps)): episode_timesteps += 1 # Deterministic Policy Action action = np.clip(policy.select_action(np.array(state)), -max_action, max_action) # rospy.logdebug("Selected Acton: {}".format(action)) # Perform action next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward # print("DT REWARD: {}".format(reward)) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 if __name__ == '__main__': main()
3,213
Python
27.954955
78
0.602552
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/ars_eval.py
#!/usr/bin/env python import numpy as np from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker from mini_bullet.minitaur_gym_env import MinitaurBulletEnv import torch import os def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 4e6 file_name = "mini_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=True) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env) agent_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = 3000 policy = agent.policy # Evaluate untrained agent and init list for storage evaluations = [] env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") t = 0 while t < (int(max_timesteps)): # Maximum timesteps per rollout t += policy.episode_steps episode_timesteps += 1 episode_reward = agent.deploy() # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, policy.episode_steps, episode_reward)) # Reset environment evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 env.close() if __name__ == '__main__': main()
2,662
Python
25.63
76
0.622089
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/spot_sac_eval.py
#!/usr/bin/env python import numpy as np from sac_lib import SoftActorCritic, NormalizedActions, ReplayBuffer, PolicyNetwork import copy from gym import spaces import sys sys.path.append('../../') from spotmicro.GymEnvs.spot_bezier_env import spotBezierEnv from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.GaitGenerator.Bezier import BezierGait # TESTING from spotmicro.OpenLoopSM.SpotOL import BezierStepper import time import torch import os def main(): """ The main() function. """ print("STARTING SPOT SAC") # TRAINING PARAMETERS seed = 0 max_timesteps = 4e6 batch_size = 256 eval_freq = 1e4 save_model = True file_name = "spot_sac_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = spotBezierEnv(render=True, on_rack=False, height_field=False, draw_foot_path=False) env = NormalizedActions(env) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) hidden_dim = 256 policy = PolicyNetwork(state_dim, action_dim, hidden_dim) replay_buffer_size = 1000000 replay_buffer = ReplayBuffer(replay_buffer_size) sac = SoftActorCritic(policy=policy, state_dim=state_dim, action_dim=action_dim, replay_buffer=replay_buffer) policy_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(policy_num) + "_policy_net"): print("Loading Existing Policy") sac.load(models_path + "/" + file_name + str(policy_num)) policy = sac.policy_net # Evaluate untrained policy and init list for storage evaluations = [] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 max_t_per_ep = 5000 # State Machine for Random Controller Commands bz_step = BezierStepper(dt=0.01, mode=0) # Bezier Gait Generator bzg = BezierGait(dt=0.01) # Spot Model spot = SpotModel() T_bf0 = spot.WorldToFoot T_bf = copy.deepcopy(T_bf0) BaseClearanceHeight = bz_step.ClearanceHeight BasePenetrationDepth = bz_step.PenetrationDepth print("STARTED SPOT SAC") for t in range(int(max_timesteps)): contacts = state[-4:] t += 1 episode_timesteps += 1 pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine( ) env.spot.GetExternalObservations(bzg, bz_step) # Read UPDATED state based on controls and phase state = env.return_state() action = sac.policy_net.get_action(state) # Bezier params specced by action CD_SCALE = 0.002 SLV_SCALE = 0.01 StepLength += action[0] * CD_SCALE StepVelocity += action[1] * SLV_SCALE LateralFraction += action[2] * SLV_SCALE YawRate = action[3] ClearanceHeight += action[4] * CD_SCALE PenetrationDepth += action[5] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, bz_step.StepLength_LIMITS[0], bz_step.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, bz_step.StepVelocity_LIMITS[0], bz_step.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, bz_step.LateralFraction_LIMITS[0], bz_step.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, bz_step.YawRate_LIMITS[0], bz_step.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, bz_step.ClearanceHeight_LIMITS[0], bz_step.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, bz_step.PenetrationDepth_LIMITS[0], bz_step.PenetrationDepth_LIMITS[1]) contacts = state[-4:] # Get Desired Foot Poses T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_bf0, T_bf, ClearanceHeight, PenetrationDepth, contacts) # Add DELTA to XYZ Foot Poses RESIDUALS_SCALE = 0.05 # T_bf["FL"][3, :3] += action[6:9] * RESIDUALS_SCALE # T_bf["FR"][3, :3] += action[9:12] * RESIDUALS_SCALE # T_bf["BL"][3, :3] += action[12:15] * RESIDUALS_SCALE # T_bf["BR"][3, :3] += action[15:18] * RESIDUALS_SCALE T_bf["FL"][3, 2] += action[6] * RESIDUALS_SCALE T_bf["FR"][3, 2] += action[7] * RESIDUALS_SCALE T_bf["BL"][3, 2] += action[8] * RESIDUALS_SCALE T_bf["BR"][3, 2] += action[9] * RESIDUALS_SCALE joint_angles = spot.IK(orn, pos, T_bf) # Pass Joint Angles env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action state, reward, done, _ = env.step(action) episode_reward += reward # print("DT REWARD: {}".format(reward)) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False evaluations.append(episode_reward) episode_reward = 0 episode_timesteps = 0 episode_num += 1 env.close() if __name__ == '__main__': main()
6,449
Python
31.089552
127
0.575748
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/old_eval_scripts/tg_eval.py
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from ars_lib.ars import ARSAgent, Normalizer, Policy, ParallelWorker from mini_bullet.minitaur_gym_env import MinitaurBulletEnv from tg_lib.tg_policy import TGPolicy import time import torch import os def main(): """ The main() function. """ print("STARTING MINITAUR ARS") # TRAINING PARAMETERS # env_name = "MinitaurBulletEnv-v0" seed = 0 max_timesteps = 1e6 file_name = "mini_tg_ars_" # Find abs path to this file my_path = os.path.abspath(os.path.dirname(__file__)) results_path = os.path.join(my_path, "../results") models_path = os.path.join(my_path, "../models") if not os.path.exists(results_path): os.makedirs(results_path) if not os.path.exists(models_path): os.makedirs(models_path) env = MinitaurBulletEnv(render=True, on_rack=False) dt = env._time_step # TRAJECTORY GENERATOR movetype = "walk" # movetype = "trot" # movetype = "bound" # movetype = "pace" # movetype = "pronk" TG = TGPolicy(movetype=movetype, center_swing=0.0, amplitude_extension=0.2, amplitude_lift=0.4) TG_state_dim = len(TG.get_TG_state()) TG_action_dim = 5 # f_tg, Beta, alpha_tg, h_tg, intensity state_dim = env.observation_space.shape[0] + TG_state_dim print("STATE DIM: {}".format(state_dim)) action_dim = env.action_space.shape[0] + TG_action_dim print("ACTION DIM: {}".format(action_dim)) max_action = float(env.action_space.high[0]) print("RECORDED MAX ACTION: {}".format(max_action)) # Initialize Normalizer normalizer = Normalizer(state_dim) # Initialize Policy policy = Policy(state_dim, action_dim) # Initialize Agent with normalizer, policy and gym env agent = ARSAgent(normalizer, policy, env, TGP=TG) agent_num = raw_input("Policy Number: ") if os.path.exists(models_path + "/" + file_name + str(agent_num) + "_policy"): print("Loading Existing agent") agent.load(models_path + "/" + file_name + str(agent_num)) agent.policy.episode_steps = 1000 policy = agent.policy # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) env.reset() episode_reward = 0 episode_timesteps = 0 episode_num = 0 print("STARTED MINITAUR TEST SCRIPT") # Just to store correct action space action = env.action_space.sample() # Record extends for plot # LF_ext = [] # LB_ext = [] # RF_ext = [] # RB_ext = [] LF_tp = [] LB_tp = [] RF_tp = [] RB_tp = [] t = 0 while t < (int(max_timesteps)): action[:] = 0.0 # # Get Action from TG [no policies here] # action = TG.get_utg(action, alpha_tg, h_tg, intensity, # env.minitaur.num_motors) # LF_ext.append(action[env.minitaur.num_motors / 2]) # LB_ext.append(action[1 + env.minitaur.num_motors / 2]) # RF_ext.append(action[2 + env.minitaur.num_motors / 2]) # RB_ext.append(action[3 + env.minitaur.num_motors / 2]) # # Perform action # next_state, reward, done, _ = env.step(action) obs = agent.TGP.get_TG_state() # LF_tp.append(obs[0]) # LB_tp.append(obs[1]) # RF_tp.append(obs[2]) # RB_tp.append(obs[3]) # # Increment phase # TG.increment(dt, f_tg, Beta) # # time.sleep(1.0) # t += 1 # Maximum timesteps per rollout t += policy.episode_steps episode_timesteps += 1 episode_reward = agent.deployTG() # episode_reward = agent.train() # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t, episode_num, policy.episode_steps, episode_reward)) # Reset environment episode_reward = 0 episode_timesteps = 0 episode_num += 1 plt.plot(0) plt.plot(LF_tp, label="LF") plt.plot(LB_tp, label="LB") plt.plot(RF_tp, label="RF") plt.plot(RB_tp, label="RB") plt.xlabel("t") plt.ylabel("EXT") plt.title("Leg Extensions") plt.legend() plt.show() env.close() if __name__ == '__main__': main()
4,424
Python
25.981707
76
0.583635
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/td3_lib/td3.py
#!/usr/bin/env python import copy import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import gym import os # Twin Delayed Deterministic Policy Gradient # Algorithm Steps # 1. Initiailize Networks class Actor(nn.Module): """Initialize parameters and build model. An nn.Module contains layers, and a method forward(input)that returns the output. Weights (learnable params) are inherently defined here. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action max_action (float): highest action to take Return: action output of network with tanh activation """ def __init__(self, state_dim, action_dim, max_action): # Super calls the nn.Module Constructor super(Actor, self).__init__() # input layer self.fc1 = nn.Linear(state_dim, 256) # hidden layer self.fc2 = nn.Linear(256, 256) # output layer self.fc3 = nn.Linear(256, action_dim) # wrap from -max to +max self.max_action = max_action def forward(self, state): # You just have to define the forward function, # and the backward function (where gradients are computed) # is automatically defined for you using autograd. # Learnable params can be accessed using Actor.parameters # Here, we create the tensor architecture # state into layer 1 a = F.relu(self.fc1(state)) # layer 1 output into layer 2 a = F.relu(self.fc2(a)) # layer 2 output into layer 3 into tanh activation return self.max_action * torch.tanh(self.fc3(a)) class Critic(nn.Module): """Initialize parameters and build model. Args: state_dim (int): Dimension of each state action_dim (int): Dimension of each action Return: value output of network """ def __init__(self, state_dim, action_dim): # Super calls the nn.Module Constructor super(Critic, self).__init__() # Q1 architecture self.fc1 = nn.Linear(state_dim + action_dim, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) # Q2 architecture self.fc4 = nn.Linear(state_dim + action_dim, 256) self.fc5 = nn.Linear(256, 256) self.fc6 = nn.Linear(256, 1) def forward(self, state, action): # concatenate state and actions by adding rows # to form 1D input layer sa = torch.cat([state, action], 1) # s,a into input layer into relu activation q1 = F.relu(self.fc1(sa)) # l1 output into l2 into relu activation q1 = F.relu(self.fc2(q1)) # l2 output into l3 q1 = self.fc3(q1) # s,a into input layer into relu activation q2 = F.relu(self.fc4(sa)) # l4 output into l5 into relu activation q2 = F.relu(self.fc5(q2)) # l5 output into l6 q2 = self.fc6(q2) return q1, q2 def Q1(self, state, action): # Return Q1 for gradient Ascent on Actor # Note that only Q1 is used for Actor Update # concatenate state and actions by adding rows # to form 1D input layer sa = torch.cat([state, action], 1) # s,a into input layer into relu activation q1 = F.relu(self.fc1(sa)) # l1 output into l2 into relu activation q1 = F.relu(self.fc2(q1)) # l2 output into l3 q1 = self.fc3(q1) return q1 # https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py # Expects tuples of (state, next_state, action, reward, done) class ReplayBuffer(object): """Buffer to store tuples of experience replay""" def __init__(self, max_size=1000000): """ Args: max_size (int): total amount of tuples to store """ self.storage = [] self.max_size = max_size self.ptr = 0 my_path = os.path.abspath(os.path.dirname(__file__)) self.buffer_path = os.path.join(my_path, "../../replay_buffer") def add(self, data): """Add experience tuples to buffer Args: data (tuple): experience replay tuple """ if len(self.storage) == self.max_size: self.storage[int(self.ptr)] = data self.ptr = (self.ptr + 1) % self.max_size else: self.storage.append(data) def save(self, iterations): if not os.path.exists(self.buffer_path): os.makedirs(self.buffer_path) with open( self.buffer_path + '/' + 'replay_buffer_' + str(iterations) + '.data', 'wb') as filehandle: pickle.dump(self.storage, filehandle) def load(self, iterations): with open( self.buffer_path + '/' + 'replay_buffer_' + str(iterations) + '.data', 'rb') as filehandle: self.storage = pickle.load(filehandle) def sample(self, batch_size): """Samples a random amount of experiences from buffer of batch size NOTE: We don't delete samples here, only overwrite when max_size Args: batch_size (int): size of sample """ device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") ind = np.random.randint(0, len(self.storage), size=batch_size) states, actions, next_states, rewards, dones = [], [], [], [], [] for i in ind: s, a, s_, r, d = self.storage[i] states.append(np.array(s, copy=False)) state = torch.FloatTensor(np.array(states)).to(device) actions.append(np.array(a, copy=False)) action = torch.FloatTensor(np.array(actions)).to(device) next_states.append(np.array(s_, copy=False)) next_state = torch.FloatTensor(np.array(next_states)).to(device) rewards.append(np.array(r, copy=False)) reward = torch.FloatTensor(np.array(rewards).reshape(-1, 1)).to(device) dones.append(np.array(d, copy=False)) not_done = torch.FloatTensor( 1. - (np.array(dones).reshape(-1, 1))).to(device) return state, action, next_state, reward, not_done class TD3Agent(object): """Agent class that handles the training of the networks and provides outputs as actions Args: state_dim (int): state size action_dim (int): action size max_action (float): highest action to take device (device): cuda or cpu to process tensors env (env): gym environment to use batch_size(int): batch size to sample from replay buffer discount (float): discount factor tau (float): soft update for main networks to target networks """ def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2): self.device = torch.device( "cuda:1" if torch.cuda.is_available() else "cpu") self.actor = Actor(state_dim, action_dim, max_action).to(self.device) self.actor_target = copy.deepcopy(self.actor) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4) self.critic = Critic(state_dim, action_dim).to(self.device) self.critic_target = copy.deepcopy(self.critic) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4) self.max_action = max_action self.discount = discount self.tau = tau self.policy_noise = policy_noise self.noise_clip = noise_clip self.policy_freq = policy_freq self.total_it = 0 def select_action(self, state): """Select an appropriate action from the agent policy Args: state (array): current state of environment Returns: action (float): action clipped within action range """ # Turn float value into a CUDA Float Tensor state = torch.FloatTensor(state.reshape(1, -1)).to(self.device) action = self.actor(state).cpu().data.numpy().flatten() return action def train(self, replay_buffer, batch_size=100): """Train and update actor and critic networks Args: replay_buffer (ReplayBuffer): buffer for experience replay batch_size(int): batch size to sample from replay buffer\ Return: actor_loss (float): loss from actor network critic_loss (float): loss from critic network """ self.total_it += 1 # Sample replay buffer state, action, next_state, reward, not_done = replay_buffer.sample( batch_size) with torch.no_grad(): """ Autograd: if you set its attribute .requires_gras as True, (DEFAULT) it tracks all operations on it. When you finish your computation, call .backward() to have all gradients computed automatically. The gradient for this tensor is then accumulated into the .grad attribute. To prevent tracking history and using memory, wrap the code block in "with torch.no_grad()". This is heplful when evaluating a model as it may have trainable params with requires_grad=True (DEFAULT), but for which we don't need the gradients. Here, we don't want to track the acyclic graph's history when getting our next action because we DON'T want to train our actor in this step. We train our actor ONLY when we perform the periodic policy update. Could have done .detach() at target_Q = reward + not_done * self.discount * target_Q for the same effect """ # Select action according to policy and add clipped noise noise = (torch.randn_like(action) * self.policy_noise).clamp( -self.noise_clip, self.noise_clip) next_action = (self.actor_target(next_state) + noise).clamp( -self.max_action, self.max_action) # Compute the target Q value target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + not_done * self.discount * target_Q # Get current Q estimates current_Q1, current_Q2 = self.critic(state, action) # Compute critic loss # A loss function takes the (output, target) pair of inputs, # and computes a value that estimates how far away the output # is from the target. critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) # Optimize the critic # Zero the gradient buffers of all parameters self.critic_optimizer.zero_grad() # Backprops with random gradients # When we call loss.backward(), the whole graph is differentiated # w.r.t. the loss, and all Tensors in the graph that has # requires_grad=True (DEFAULT) will have their .grad Tensor # accumulated with the gradient. critic_loss.backward() # Does the update self.critic_optimizer.step() # Delayed policy updates if self.total_it % self.policy_freq == 0: # Compute actor losse actor_loss = -self.critic.Q1(state, self.actor(state)).mean() # Optimize the actor # Zero the gradient buffers self.actor_optimizer.zero_grad() # Differentiate the whole graph wrt loss actor_loss.backward() # Does the update self.actor_optimizer.step() # Update target networks (Critic 1, Critic 2, Actor) for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) def save(self, filename): torch.save(self.critic.state_dict(), filename + "_critic") torch.save(self.critic_optimizer.state_dict(), filename + "_critic_optimizer") torch.save(self.actor.state_dict(), filename + "_actor") torch.save(self.actor_optimizer.state_dict(), filename + "_actor_optimizer") def load(self, filename): self.critic.load_state_dict( torch.load(filename + "_critic", map_location=self.device)) self.critic_optimizer.load_state_dict( torch.load(filename + "_critic_optimizer", map_location=self.device)) self.actor.load_state_dict( torch.load(filename + "_actor", map_location=self.device)) self.actor_optimizer.load_state_dict( torch.load(filename + "_actor_optimizer", map_location=self.device)) # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def evaluate_policy(policy, env_name, seed, eval_episodes=10, render=False): """run several episodes using the best agent policy Args: policy (agent): agent to evaluate env (env): gym environment eval_episodes (int): how many test episodes to run render (bool): show training Returns: avg_reward (float): average reward over the number of evaluations """ eval_env = gym.make(env_name, render=render) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # if render: # eval_env.render() # sleep(0.01) action = policy.select_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print("Evaluation over {} episodes: {}".format(eval_episodes, avg_reward)) print("---------------------------------------") if render: eval_env.close() return avg_reward def trainer(env_name, seed, max_timesteps, start_timesteps, expl_noise, batch_size, eval_freq, save_model, file_name="best_avg"): """ Test Script on stock OpenAI Gym Envs """ if not os.path.exists("../results"): os.makedirs("../results") if not os.path.exists("../models"): os.makedirs("../models") env = gym.make(env_name) # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) policy = TD3Agent(state_dim, action_dim, max_action) replay_buffer = ReplayBuffer() # Evaluate untrained policy and init list for storage evaluations = [evaluate_policy(policy, env_name, seed, 1)] state = env.reset() done = False episode_reward = 0 episode_timesteps = 0 episode_num = 0 for t in range(int(max_timesteps)): episode_timesteps += 1 # Select action randomly or according to policy # Random Action - no training yet, just storing in buffer if t < start_timesteps: action = env.action_space.sample() else: # According to policy + Exploraton Noise action = (policy.select_action(np.array(state)) + np.random.normal( 0, max_action * expl_noise, size=action_dim)).clip( -max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float( done) if episode_timesteps < env._max_episode_steps else 0 # Store data in replay buffer replay_buffer.add((state, action, next_state, reward, done_bool)) state = next_state episode_reward += reward # Train agent after collecting sufficient data for buffer if t >= start_timesteps: policy.train(replay_buffer, batch_size) if done: # +1 to account for 0 indexing. # +0 on ep_timesteps since it will increment +1 even if done=True print( "Total T: {} Episode Num: {} Episode T: {} Reward: {}".format( t + 1, episode_num, episode_timesteps, episode_reward)) # Reset environment state, done = env.reset(), False episode_reward = 0 episode_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % eval_freq == 0: evaluations.append(evaluate_policy(policy, env_name, seed, 1)) np.save("../results/" + str(file_name) + str(t), evaluations) if save_model: policy.save("../models/" + str(file_name) + str(t)) if __name__ == "__main__": """ The Main Function """ trainer("BipedalWalker-v2", 0, 1e6, 1e4, 0.1, 100, 15e3, True)
18,049
Python
34.392157
82
0.57017
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/td3_lib/plot_reward.py
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': reward = np.load("../../results/plen_walk_gazebo_.npy") plt.figure(0) plt.autoscale(enable=True, axis='both', tight=None) plt.title('Dominant Foot Trajectories - SS') plt.ylabel('positon (mm)') plt.xlabel('timestep') plt.plot(reward, color='b', label="Reward") plt.legend() plt.show()
426
Python
21.473683
59
0.626761
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/ars_lib/ars.py
# from tg_lib.tg_policy import TGPolicy import pickle import numpy as np from scipy.signal import butter, filtfilt from spotmicro.GaitGenerator.Bezier import BezierGait from spotmicro.OpenLoopSM.SpotOL import BezierStepper from spotmicro.Kinematics.SpotKinematics import SpotModel from spotmicro.Kinematics.LieAlgebra import TransToRp import copy from spotmicro.util.gui import GUI np.random.seed(0) # Multiprocessing package for python # Parallelization improvements based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py # Messages for Pipes _RESET = 1 _CLOSE = 2 _EXPLORE = 3 _EXPLORE_TG = 4 # Params for TG CD_SCALE = 0.05 SLV_SCALE = 0.05 RESIDUALS_SCALE = 0.015 Z_SCALE = 0.05 # Filter actions alpha = 0.7 # Added this to avoid filtering residuals # -1 for all actions_to_filter = 14 # For auto yaw control P_yaw = 5.0 # Cummulative timestep exponential reward # cum_dt_exp = 1.1 cum_dt_exp = 0.0 def butter_lowpass_filter(data, cutoff, fs, order=2): """ Pass two subsequent datapoints in here to be filtered """ nyq = 0.5 * fs # Nyquist Frequency normal_cutoff = cutoff / nyq # Get the filter coefficients b, a = butter(order, normal_cutoff, btype='low', analog=False) y = filtfilt(b, a, data) return y def ParallelWorker(childPipe, env, nb_states): """ Function to deploy multiple ARS agents in parallel """ # nb_states = env.observation_space.shape[0] # common normalizer normalizer = Normalizer(nb_states) max_action = float(env.action_space.high[0]) _ = env.reset() n = 0 while True: n += 1 try: # Only block for short times to have keyboard exceptions be raised. if not childPipe.poll(0.001): continue message, payload = childPipe.recv() except (EOFError, KeyboardInterrupt): break if message == _RESET: _ = env.reset() childPipe.send(["reset ok"]) continue if message == _EXPLORE: # Payloads received by parent in ARSAgent.train() # [0]: normalizer, [1]: policy, [2]: direction, [3]: delta # we use local normalizer so no need for [0] (optional) # normalizer = payload[0] policy = payload[1] direction = payload[2] delta = payload[3] desired_velocity = payload[4] desired_rate = payload[5] state = env.reset(desired_velocity, desired_rate) sum_rewards = 0.0 timesteps = 0 done = False while not done and timesteps < policy.episode_steps: normalizer.observe(state) # Normalize State state = normalizer.normalize(state) action = policy.evaluate(state, delta, direction) # # Clip action between +-1 for execution in env # for a in range(len(action)): # action[a] = np.clip(action[a], -max_action, max_action) state, reward, done, _ = env.step(action) reward = max(min(reward, 1), -1) sum_rewards += reward timesteps += 1 childPipe.send([sum_rewards]) continue if message == _EXPLORE_TG: # Payloads received by parent in ARSAgent.train() # [0]: normalizer, [1]: policy, [2]: direction, [3]: delta # [4]: desired_velocity, [5]: desired_rate, [6]: Trajectory Gen # we use local normalizer so no need for [0] (optional) # normalizer = payload[0] policy = payload[1] direction = payload[2] delta = payload[3] desired_velocity = payload[4] desired_rate = payload[5] TGP = payload[6] smach = payload[7] spot = payload[8] state = env.reset() sum_rewards = 0.0 timesteps = 0 done = False T_bf = copy.deepcopy(spot.WorldToFoot) T_b0 = copy.deepcopy(spot.WorldToFoot) action = env.action_space.sample() action[:] = 0.0 old_act = action[:actions_to_filter] # For auto yaw control yaw = 0.0 while not done and timesteps < policy.episode_steps: # smach.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = smach.StateMachine( ) env.spot.GetExternalObservations(TGP, smach) # Read UPDATED state based on controls and phase state = env.return_state() normalizer.observe(state) # NOTE: Don't normalize contacts - must stay 0/1 state = normalizer.normalize(state) action = policy.evaluate(state, delta, direction) contacts = state[-4:] action = np.tanh(action) # EXP FILTER action[:actions_to_filter] = alpha * old_act + ( 1.0 - alpha) * action[:actions_to_filter] old_act = action[:actions_to_filter] ClearanceHeight += action[0] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, smach.StepLength_LIMITS[0], smach.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, smach.StepVelocity_LIMITS[0], smach.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, smach.LateralFraction_LIMITS[0], smach.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, smach.YawRate_LIMITS[0], smach.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, smach.ClearanceHeight_LIMITS[0], smach.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, smach.PenetrationDepth_LIMITS[0], smach.PenetrationDepth_LIMITS[1]) # For auto yaw control yaw = env.return_yaw() YawRate += -yaw * P_yaw # Get Desired Foot Poses if timesteps > 20: T_bf = TGP.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) else: T_bf = TGP.GenerateTrajectory(0.0, 0.0, 0.0, 0.1, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) action[:] = 0.0 action[2:] *= RESIDUALS_SCALE # Add DELTA to XYZ Foot Poses T_bf_copy = copy.deepcopy(T_bf) T_bf_copy["FL"][:3, 3] += action[2:5] T_bf_copy["FR"][:3, 3] += action[5:8] T_bf_copy["BL"][:3, 3] += action[8:11] T_bf_copy["BR"][:3, 3] += action[11:14] # Adjust Body Height with action! pos[2] += abs(action[1]) * Z_SCALE joint_angles = spot.IK(orn, pos, T_bf_copy) # Pass Joint Angles env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action next_state, reward, done, _ = env.step(action) sum_rewards += reward timesteps += 1 # Divide reward by timesteps for normalized reward + add exponential surival reward childPipe.send([(sum_rewards + timesteps**cum_dt_exp) / timesteps]) continue if message == _CLOSE: childPipe.send(["close ok"]) break childPipe.close() class Policy(): """ state --> action """ def __init__( self, state_dim, action_dim, # how much weights are changed each step learning_rate=0.03, # number of random expl_noise variations generated # each step # each one will be run for 2 epochs, + and - num_deltas=16, # used to update weights, sorted by highest rwrd num_best_deltas=16, # number of timesteps per episode per rollout episode_steps=5000, # weight of sampled exploration noise expl_noise=0.05, # for seed gen seed=0): # Tunable Hyperparameters self.learning_rate = learning_rate self.num_deltas = num_deltas self.num_best_deltas = num_best_deltas # there cannot be more best_deltas than there are deltas assert self.num_best_deltas <= self.num_deltas self.episode_steps = episode_steps self.expl_noise = expl_noise self.seed = seed np.random.seed(seed) self.state_dim = state_dim self.action_dim = action_dim # input/ouput matrix with weights set to zero # this is the perception matrix (policy) self.theta = np.zeros((action_dim, state_dim)) def evaluate(self, state, delta=None, direction=None): """ state --> action """ # if direction is None, deployment mode: takes dot product # to directly sample from (use) policy if direction is None: return self.theta.dot(state) # otherwise, add (+-) directed expl_noise before taking dot product (policy) # this is where the 2*num_deltas rollouts comes from elif direction == "+": return (self.theta + self.expl_noise * delta).dot(state) elif direction == "-": return (self.theta - self.expl_noise * delta).dot(state) def sample_deltas(self): """ generate array of random expl_noise matrices. Length of array = num_deltas matrix dimension: pxn where p=observation dim and n=action dim """ deltas = [] # print("SHAPE THING with *: {}".format(*self.theta.shape)) # print("SHAPE THING NORMALLY: ({}, {})".format(self.theta.shape[0], # self.theta.shape[1])) # print("ACTUAL SHAPE: {}".format(self.theta.shape)) # print("SHAPE OF EXAMPLE DELTA WITH *: {}".format( # np.random.randn(*self.theta.shape).shape)) # print("SHAPE OF EXAMPLE DELTA NOMRALLY: {}".format( # np.random.randn(self.theta.shape[0], self.theta.shape[1]).shape)) for _ in range(self.num_deltas): deltas.append( np.random.randn(self.theta.shape[0], self.theta.shape[1])) return deltas def update(self, rollouts, std_dev_rewards): """ Update policy weights (theta) based on rewards from 2*num_deltas rollouts """ step = np.zeros(self.theta.shape) for r_pos, r_neg, delta in rollouts: # how much to deviate from policy step += (r_pos - r_neg) * delta self.theta += self.learning_rate / (self.num_best_deltas * std_dev_rewards) * step class Normalizer(): """ this ensures that the policy puts equal weight upon each state component. """ # Normalizes the states def __init__(self, state_dim): """ Initialize state space (all zero) """ self.state = np.zeros(state_dim) self.mean = np.zeros(state_dim) self.mean_diff = np.zeros(state_dim) self.var = np.zeros(state_dim) def observe(self, x): """ Compute running average and variance clip variance >0 to avoid division by zero """ self.state += 1.0 last_mean = self.mean.copy() # running avg self.mean += (x - self.mean) / self.state # used to compute variance self.mean_diff += (x - last_mean) * (x - self.mean) # variance self.var = (self.mean_diff / self.state).clip(min=1e-2) def normalize(self, states): """ subtract mean state value from current state and divide by standard deviation (sqrt(var)) to normalize """ state_mean = self.mean state_std = np.sqrt(self.var) return (states - state_mean) / state_std class ARSAgent(): def __init__(self, normalizer, policy, env, smach=None, TGP=None, spot=None, gui=False): self.normalizer = normalizer self.policy = policy self.state_dim = self.policy.state_dim self.action_dim = self.policy.action_dim self.env = env self.max_action = float(self.env.action_space.high[0]) self.successes = 0 self.phase = 0 self.desired_velocity = 0.5 self.desired_rate = 0.0 self.flip = 0 self.increment = 0 self.scaledown = True self.type = "Stop" self.smach = smach if smach is not None: self.BaseClearanceHeight = self.smach.ClearanceHeight self.BasePenetrationDepth = self.smach.PenetrationDepth self.TGP = TGP self.spot = spot if gui: self.g_u_i = GUI(self.env.spot.quadruped) else: self.g_u_i = None self.action_history = [] self.true_action_history = [] # Deploy Policy in one direction over one whole episode # DO THIS ONCE PER ROLLOUT OR DURING DEPLOYMENT def deploy(self, direction=None, delta=None): state = self.env.reset(self.desired_velocity, self.desired_rate) sum_rewards = 0.0 timesteps = 0 done = False while not done and timesteps < self.policy.episode_steps: # print("STATE: ", state) # print("dt: {}".format(timesteps)) self.normalizer.observe(state) # Normalize State state = self.normalizer.normalize(state) action = self.policy.evaluate(state, delta, direction) # Clip action between +-1 for execution in env for a in range(len(action)): action[a] = np.clip(action[a], -self.max_action, self.max_action) # print("ACTION: ", action) state, reward, done, _ = self.env.step(action) # print("STATE: ", state) # Clip reward between -1 and 1 to prevent outliers from # distorting weights reward = np.clip(reward, -self.max_action, self.max_action) sum_rewards += reward timesteps += 1 # Divide rewards by timesteps for reward-per-step + exp survive rwd return (sum_rewards + timesteps**cum_dt_exp) / timesteps # Deploy Policy in one direction over one whole episode # DO THIS ONCE PER ROLLOUT OR DURING DEPLOYMENT def deployTG(self, direction=None, delta=None): state = self.env.reset() sum_rewards = 0.0 timesteps = 0 done = False # alpha = [] # h = [] # f = [] T_bf = copy.deepcopy(self.spot.WorldToFoot) T_b0 = copy.deepcopy(self.spot.WorldToFoot) self.action_history = [] self.true_action_history = [] action = self.env.action_space.sample() action[:] = 0.0 old_act = action[:actions_to_filter] # For auto yaw correction yaw = 0.0 while not done and timesteps < self.policy.episode_steps: # self.smach.ramp_up() pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = self.smach.StateMachine( ) if self.g_u_i: pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod = self.g_u_i.UserInput( ) self.TGP.Tswing = SwingPeriod self.env.spot.GetExternalObservations(self.TGP, self.smach) # Read UPDATED state based on controls and phase state = self.env.return_state() self.normalizer.observe(state) # Don't normalize contacts state = self.normalizer.normalize(state) action = self.policy.evaluate(state, delta, direction) # Action History self.action_history.append(np.tanh(action)) # Action History true_action = copy.deepcopy(np.tanh(action)) true_action[0] *= CD_SCALE true_action[1] = abs(true_action[1]) * Z_SCALE true_action[2:] *= RESIDUALS_SCALE self.true_action_history.append(true_action) action = np.tanh(action) # EXP FILTER action[:actions_to_filter] = alpha * old_act + ( 1.0 - alpha) * action[:actions_to_filter] old_act = action[:actions_to_filter] ClearanceHeight += action[0] * CD_SCALE # CLIP EVERYTHING StepLength = np.clip(StepLength, self.smach.StepLength_LIMITS[0], self.smach.StepLength_LIMITS[1]) StepVelocity = np.clip(StepVelocity, self.smach.StepVelocity_LIMITS[0], self.smach.StepVelocity_LIMITS[1]) LateralFraction = np.clip(LateralFraction, self.smach.LateralFraction_LIMITS[0], self.smach.LateralFraction_LIMITS[1]) YawRate = np.clip(YawRate, self.smach.YawRate_LIMITS[0], self.smach.YawRate_LIMITS[1]) ClearanceHeight = np.clip(ClearanceHeight, self.smach.ClearanceHeight_LIMITS[0], self.smach.ClearanceHeight_LIMITS[1]) PenetrationDepth = np.clip(PenetrationDepth, self.smach.PenetrationDepth_LIMITS[0], self.smach.PenetrationDepth_LIMITS[1]) contacts = copy.deepcopy(state[-4:]) # contacts = [0, 0, 0, 0] # print("CONTACTS: {}".format(contacts)) yaw = self.env.return_yaw() if not self.g_u_i: YawRate += -yaw * P_yaw # Get Desired Foot Poses if timesteps > 20: T_bf = self.TGP.GenerateTrajectory(StepLength, LateralFraction, YawRate, StepVelocity, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) else: T_bf = self.TGP.GenerateTrajectory(0.0, 0.0, 0.0, 0.1, T_b0, T_bf, ClearanceHeight, PenetrationDepth, contacts) action[:] = 0.0 action[2:] *= RESIDUALS_SCALE # Add DELTA to XYZ Foot Poses T_bf_copy = copy.deepcopy(T_bf) T_bf_copy["FL"][:3, 3] += action[2:5] T_bf_copy["FR"][:3, 3] += action[5:8] T_bf_copy["BL"][:3, 3] += action[8:11] T_bf_copy["BR"][:3, 3] += action[11:14] # Adjust Height! pos[2] += abs(action[1]) * Z_SCALE joint_angles = self.spot.IK(orn, pos, T_bf_copy) # Pass Joint Angles self.env.pass_joint_angles(joint_angles.reshape(-1)) # Perform action next_state, reward, done, _ = self.env.step(action) sum_rewards += reward timesteps += 1 self.TGP.reset() self.smach.reshuffle() self.smach.PenetrationDepth = self.BasePenetrationDepth self.smach.ClearanceHeight = self.BaseClearanceHeight return sum_rewards, timesteps def returnPose(self): return self.env.spot.GetBasePosition() def train(self): # Sample random expl_noise deltas print("-------------------------------") # print("Sampling Deltas") deltas = self.policy.sample_deltas() # Initialize +- reward list of size num_deltas positive_rewards = [0] * self.policy.num_deltas negative_rewards = [0] * self.policy.num_deltas # Execute 2*num_deltas rollouts and store +- rewards print("Deploying Rollouts") for i in range(self.policy.num_deltas): print("Rollout #{}".format(i + 1)) positive_rewards[i] = self.deploy(direction="+", delta=deltas[i]) negative_rewards[i] = self.deploy(direction="-", delta=deltas[i]) # Calculate std dev std_dev_rewards = np.array(positive_rewards + negative_rewards).std() # Order rollouts in decreasing list using cum reward as criterion unsorted_rollouts = [(positive_rewards[i], negative_rewards[i], deltas[i]) for i in range(self.policy.num_deltas)] # When sorting, take the max between the reward for +- disturbance sorted_rollouts = sorted( unsorted_rollouts, key=lambda x: max(unsorted_rollouts[0], unsorted_rollouts[1]), reverse=True) # Only take first best_num_deltas rollouts rollouts = sorted_rollouts[:self.policy.num_best_deltas] # Update Policy self.policy.update(rollouts, std_dev_rewards) # Execute Current Policy eval_reward = self.deploy() return eval_reward def train_parallel(self, parentPipes): """ Execute rollouts in parallel using multiprocessing library based on: # https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/ARS/ars.py """ # USE VANILLA OR TG POLICY if self.TGP is None: exploration = _EXPLORE else: exploration = _EXPLORE_TG # Initializing the perturbations deltas and the positive/negative rewards deltas = self.policy.sample_deltas() # Initialize +- reward list of size num_deltas positive_rewards = [0] * self.policy.num_deltas negative_rewards = [0] * self.policy.num_deltas smach = copy.deepcopy(self.smach) smach.ClearanceHeight = self.BaseClearanceHeight smach.PenetrationDepth = self.BasePenetrationDepth smach.reshuffle() if parentPipes: for i in range(self.policy.num_deltas): # Execute each rollout on a separate thread parentPipe = parentPipes[i] # NOTE: target for parentPipe specified in main_ars.py # (target is ParallelWorker fcn defined up top) parentPipe.send([ exploration, [ self.normalizer, self.policy, "+", deltas[i], self.desired_velocity, self.desired_rate, self.TGP, smach, self.spot ] ]) for i in range(self.policy.num_deltas): # Receive cummulative reward from each rollout positive_rewards[i] = parentPipes[i].recv()[0] for i in range(self.policy.num_deltas): # Execute each rollout on a separate thread parentPipe = parentPipes[i] parentPipe.send([ exploration, [ self.normalizer, self.policy, "-", deltas[i], self.desired_velocity, self.desired_rate, self.TGP, smach, self.spot ] ]) for i in range(self.policy.num_deltas): # Receive cummulative reward from each rollout negative_rewards[i] = parentPipes[i].recv()[0] else: raise ValueError( "Select 'train' method if you are not using multiprocessing!") # Calculate std dev std_dev_rewards = np.array(positive_rewards + negative_rewards).std() # Order rollouts in decreasing list using cum reward as criterion # take max between reward for +- disturbance as that rollout's reward # Store max between positive and negative reward as key for sort scores = { k: max(r_pos, r_neg) for k, ( r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards)) } indeces = sorted(scores.keys(), key=lambda x: scores[x], reverse=True)[:self.policy.num_deltas] # print("INDECES: ", indeces) rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in indeces] # Update Policy self.policy.update(rollouts, std_dev_rewards) # Execute Current Policy USING VANILLA OR TG if self.TGP is None: return self.deploy() else: return self.deployTG() def save(self, filename): """ Save the Policy :param filename: the name of the file where the policy is saved """ with open(filename + '_policy', 'wb') as filehandle: pickle.dump(self.policy.theta, filehandle) def load(self, filename): """ Load the Policy :param filename: the name of the file where the policy is saved """ with open(filename + '_policy', 'rb') as filehandle: self.policy.theta = pickle.load(filehandle)
26,330
Python
37.836283
148
0.536308
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/terrain_env_randomizer.py
"""Generates a random terrain at Minitaur gym environment reset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import os, inspect currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) parentdir = os.path.dirname(os.path.dirname(parentdir)) os.sys.path.insert(0, parentdir) import itertools import math import enum import numpy as np from pybullet_envs.minitaur.envs import env_randomizer_base _GRID_LENGTH = 15 _GRID_WIDTH = 10 _MAX_SAMPLE_SIZE = 30 _MIN_BLOCK_DISTANCE = 0.7 _MAX_BLOCK_LENGTH = _MIN_BLOCK_DISTANCE _MIN_BLOCK_LENGTH = _MAX_BLOCK_LENGTH / 2 _MAX_BLOCK_HEIGHT = 0.05 _MIN_BLOCK_HEIGHT = _MAX_BLOCK_HEIGHT / 2 class PoissonDisc2D(object): """Generates 2D points using Poisson disk sampling method. Implements the algorithm described in: http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf Unlike the uniform sampling method that creates small clusters of points, Poisson disk method enforces the minimum distance between points and is more suitable for generating a spatial distribution of non-overlapping objects. """ def __init__(self, grid_length, grid_width, min_radius, max_sample_size): """Initializes the algorithm. Args: grid_length: The length of the bounding square in which points are sampled. grid_width: The width of the bounding square in which points are sampled. min_radius: The minimum distance between any pair of points. max_sample_size: The maximum number of sample points around a active site. See details in the algorithm description. """ self._cell_length = min_radius / math.sqrt(2) self._grid_length = grid_length self._grid_width = grid_width self._grid_size_x = int(grid_length / self._cell_length) + 1 self._grid_size_y = int(grid_width / self._cell_length) + 1 self._min_radius = min_radius self._max_sample_size = max_sample_size # Flattern the 2D grid as an 1D array. The grid is used for fast nearest # point searching. self._grid = [None] * self._grid_size_x * self._grid_size_y # Generate the first sample point and set it as an active site. first_sample = np.array( np.random.random_sample(2)) * [grid_length, grid_width] self._active_list = [first_sample] # Also store the sample point in the grid. self._grid[self._point_to_index_1d(first_sample)] = first_sample def _point_to_index_1d(self, point): """Computes the index of a point in the grid array. Args: point: A 2D point described by its coordinates (x, y). Returns: The index of the point within the self._grid array. """ return self._index_2d_to_1d(self._point_to_index_2d(point)) def _point_to_index_2d(self, point): """Computes the 2D index (aka cell ID) of a point in the grid. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: x_index: The x index of the cell the point belongs to. y_index: The y index of the cell the point belongs to. """ x_index = int(point[0] / self._cell_length) y_index = int(point[1] / self._cell_length) return x_index, y_index def _index_2d_to_1d(self, index2d): """Converts the 2D index to the 1D position in the grid array. Args: index2d: The 2D index of a point (aka the cell ID) in the grid. Returns: The 1D position of the cell within the self._grid array. """ return index2d[0] + index2d[1] * self._grid_size_x def _is_in_grid(self, point): """Checks if the point is inside the grid boundary. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: Whether the point is inside the grid. """ return (0 <= point[0] < self._grid_length) and (0 <= point[1] < self._grid_width) def _is_in_range(self, index2d): """Checks if the cell ID is within the grid. Args: index2d: The 2D index of a point (aka the cell ID) in the grid. Returns: Whether the cell (2D index) is inside the grid. """ return (0 <= index2d[0] < self._grid_size_x) and (0 <= index2d[1] < self._grid_size_y) def _is_close_to_existing_points(self, point): """Checks if the point is close to any already sampled (and stored) points. Args: point: A 2D point (list) described by its coordinates (x, y). Returns: True iff the distance of the point to any existing points is smaller than the min_radius """ px, py = self._point_to_index_2d(point) # Now we can check nearby cells for existing points for neighbor_cell in itertools.product(xrange(px - 1, px + 2), xrange(py - 1, py + 2)): if not self._is_in_range(neighbor_cell): continue maybe_a_point = self._grid[self._index_2d_to_1d(neighbor_cell)] if maybe_a_point is not None and np.linalg.norm( maybe_a_point - point) < self._min_radius: return True return False def sample(self): """Samples new points around some existing point. Removes the sampling base point and also stores the new jksampled points if they are far enough from all existing points. """ active_point = self._active_list.pop() for _ in xrange(self._max_sample_size): # Generate random points near the current active_point between the radius random_radius = np.random.uniform(self._min_radius, 2 * self._min_radius) random_angle = np.random.uniform(0, 2 * math.pi) # The sampled 2D points near the active point sample = random_radius * np.array( [np.cos(random_angle), np.sin(random_angle)]) + active_point if not self._is_in_grid(sample): continue if self._is_close_to_existing_points(sample): continue self._active_list.append(sample) self._grid[self._point_to_index_1d(sample)] = sample def generate(self): """Generates the Poisson disc distribution of 2D points. Although the while loop looks scary, the algorithm is in fact O(N), where N is the number of cells within the grid. When we sample around a base point (in some base cell), new points will not be pushed into the base cell because of the minimum distance constraint. Once the current base point is removed, all future searches cannot start from within the same base cell. Returns: All sampled points. The points are inside the quare [0, grid_length] x [0, grid_width] """ while self._active_list: self.sample() all_sites = [] for p in self._grid: if p is not None: all_sites.append(p) return all_sites class TerrainType(enum.Enum): """The randomzied terrain types we can use in the gym env.""" RANDOM_BLOCKS = 1 TRIANGLE_MESH = 2 class MinitaurTerrainRandomizer(env_randomizer_base.EnvRandomizerBase): """Generates an uneven terrain in the gym env.""" def __init__(self, terrain_type=TerrainType.TRIANGLE_MESH, mesh_filename="terrain9735.obj", mesh_scale=None): """Initializes the randomizer. Args: terrain_type: Whether to generate random blocks or load a triangle mesh. mesh_filename: The mesh file to be used. The mesh will only be loaded if terrain_type is set to TerrainType.TRIANGLE_MESH. mesh_scale: the scaling factor for the triangles in the mesh file. """ self._terrain_type = terrain_type self._mesh_filename = mesh_filename self._mesh_scale = mesh_scale if mesh_scale else [1.0, 1.0, 0.3] def randomize_env(self, env): """Generate a random terrain for the current env. Args: env: A minitaur gym environment. """ if self._terrain_type is TerrainType.TRIANGLE_MESH: self._load_triangle_mesh(env) if self._terrain_type is TerrainType.RANDOM_BLOCKS: self._generate_convex_blocks(env) def _load_triangle_mesh(self, env): """Represents the random terrain using a triangle mesh. It is possible for Minitaur leg to stuck at the common edge of two triangle pieces. To prevent this from happening, we recommend using hard contacts (or high stiffness values) for Minitaur foot in sim. Args: env: A minitaur gym environment. """ env.pybullet_client.removeBody(env.ground_id) terrain_collision_shape_id = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_MESH, fileName=self._mesh_filename, flags=1, meshScale=self._mesh_scale) env.ground_id = env.pybullet_client.createMultiBody( baseMass=0, baseCollisionShapeIndex=terrain_collision_shape_id, basePosition=[0, 0, 0]) def _generate_convex_blocks(self, env): """Adds random convex blocks to the flat ground. We use the Possion disk algorithm to add some random blocks on the ground. Possion disk algorithm sets the minimum distance between two sampling points, thus voiding the clustering effect in uniform N-D distribution. Args: env: A minitaur gym environment. """ poisson_disc = PoissonDisc2D(_GRID_LENGTH, _GRID_WIDTH, _MIN_BLOCK_DISTANCE, _MAX_SAMPLE_SIZE) block_centers = poisson_disc.generate() for center in block_centers: # We want the blocks to be in front of the robot. shifted_center = np.array(center) - [2, _GRID_WIDTH / 2] # Do not place blocks near the point [0, 0], where the robot will start. if abs(shifted_center[0]) < 1.0 and abs(shifted_center[1]) < 1.0: continue half_length = np.random.uniform( _MIN_BLOCK_LENGTH, _MAX_BLOCK_LENGTH) / (2 * math.sqrt(2)) half_height = np.random.uniform(_MIN_BLOCK_HEIGHT, _MAX_BLOCK_HEIGHT) / 2 box_id = env.pybullet_client.createCollisionShape( env.pybullet_client.GEOM_BOX, halfExtents=[half_length, half_length, half_height]) env.pybullet_client.createMultiBody(baseMass=0, baseCollisionShapeIndex=box_id, basePosition=[ shifted_center[0], shifted_center[1], half_height ]) def _generate_height_field(self, env): random.seed(10) env.pybullet_client.configureDebugVisualizer( env.pybullet_client.COV_ENABLE_RENDERING, 0) terrainShape = env.pybullet_client.createCollisionShape( shapeType=env.pybullet_client.GEOM_HEIGHTFIELD, meshScale=[.1, .1, 24], fileName="heightmaps/wm_height_out.png") textureId = env.pybullet_client.loadTexture("gimp_overlay_out.png") terrain = env.pybullet_client.createMultiBody(0, terrainShape) env.pybullet_client.changeVisualShape(terrain, -1, textureUniqueId=textureId) env.pybullet_client.changeVisualShape(terrain, -1, rgbaColor=[1, 1, 1, 1])
12,192
Python
39.916107
85
0.602116
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/env_randomizer_base.py
"""Abstract base class for environment randomizer.""" import abc class EnvRandomizerBase(object): """Abstract base class for environment randomizer. An EnvRandomizer is called in environment.reset(). It will randomize physical parameters of the objects in the simulation. The physical parameters will be fixed for that episode and be randomized again in the next environment.reset(). """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def randomize_env(self, env): """Randomize the simulated_objects in the environment. Args: env: The environment to be randomized. """ pass
622
Python
23.919999
65
0.726688
renanmb/Omniverse_legged_robotics/URDF-Descriptions/OpenQuadruped/OpenQuadruped-spot_mini_mini-spot/spot_bullet/src/mini_bullet/minitaur.py
"""This file implements the functionalities of a minitaur using pybullet. """ import copy import math import numpy as np from . import motor import os INIT_POSITION = [0, 0, .2] INIT_ORIENTATION = [0, 0, 0, 1] KNEE_CONSTRAINT_POINT_RIGHT = [0, 0.005, 0.2] KNEE_CONSTRAINT_POINT_LEFT = [0, 0.01, 0.2] OVERHEAT_SHUTDOWN_TORQUE = 2.45 OVERHEAT_SHUTDOWN_TIME = 1.0 LEG_POSITION = ["front_left", "back_left", "front_right", "back_right"] MOTOR_NAMES = [ "motor_front_leftL_joint", "motor_front_leftR_joint", "motor_back_leftL_joint", "motor_back_leftR_joint", "motor_front_rightL_joint", "motor_front_rightR_joint", "motor_back_rightL_joint", "motor_back_rightR_joint" ] LEG_LINK_ID = [2, 3, 5, 6, 8, 9, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25] MOTOR_LINK_ID = [1, 4, 7, 10, 14, 17, 20, 23] FOOT_LINK_ID = [3, 6, 9, 12, 16, 19, 22, 25] BASE_LINK_ID = -1 class Minitaur(object): """The minitaur class that simulates a quadruped robot from Ghost Robotics. """ def __init__(self, pybullet_client, urdf_root=os.path.join(os.path.dirname(__file__), "../data"), time_step=0.01, self_collision_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=False, accurate_motor_model_enabled=False, motor_kp=0.7, motor_kd=0.02, torque_control_enabled=False, motor_overheat_protection=False, on_rack=False, kd_for_pd_controllers=0.3, desired_velocity=0.5, desired_rate=0.0): """Constructs a minitaur and reset it to the initial states. Args: pybullet_client: The instance of BulletClient to manage different simulations. urdf_root: The path to the urdf folder. time_step: The time step of the simulation. self_collision_enabled: Whether to enable self collision. motor_velocity_limit: The upper limit of the motor velocity. pd_control_enabled: Whether to use PD control for the motors. accurate_motor_model_enabled: Whether to use the accurate DC motor model. motor_kp: proportional gain for the accurate motor model motor_kd: derivative gain for the acurate motor model torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in minitaur.py for more details. on_rack: Whether to place the minitaur on rack. This is only used to debug the walking gait. In this mode, the minitaur's base is hanged midair so that its walking gait is clearer to visualize. kd_for_pd_controllers: kd value for the pd controllers of the motors. desired_velocity: additional observation space dimension for policy desired_rate: additional observation space dimension for policy """ # used to calculate minitaur acceleration self.prev_lin_twist = np.array([0, 0, 0]) self.prev_lin_acc = np.array([0, 0, 0]) self.num_motors = 8 self.num_legs = int(self.num_motors / 2) self._pybullet_client = pybullet_client self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._pd_control_enabled = pd_control_enabled self._motor_direction = [-1, -1, -1, -1, 1, 1, 1, 1] self._observed_motor_torques = np.zeros(self.num_motors) self._applied_motor_torques = np.zeros(self.num_motors) self._max_force = 3.5 self._accurate_motor_model_enabled = accurate_motor_model_enabled self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack if self._accurate_motor_model_enabled: self._kp = motor_kp self._kd = motor_kd self._motor_model = motor.MotorModel( torque_control_enabled=self._torque_control_enabled, kp=self._kp, kd=self._kd) elif self._pd_control_enabled: self._kp = 8 self._kd = kd_for_pd_controllers else: self._kp = 1 self._kd = 1 self.time_step = time_step self.desired_velocity = desired_velocity self.desired_rate = desired_rate self.Reset() def _RecordMassInfoFromURDF(self): self._base_mass_urdf = self._pybullet_client.getDynamicsInfo( self.quadruped, BASE_LINK_ID)[0] self._leg_masses_urdf = [] self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, LEG_LINK_ID[0])[0]) self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, MOTOR_LINK_ID[0])[0]) def _BuildJointNameToIdDict(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._joint_name_to_id = {} for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._joint_name_to_id[joint_info[1].decode( "UTF-8")] = joint_info[0] def _BuildMotorIdList(self): self._motor_id_list = [ self._joint_name_to_id[motor_name] for motor_name in MOTOR_NAMES ] def Reset(self, reload_urdf=True, desired_velocity=None, desired_rate=None): """Reset the minitaur to its initial states. Args: reload_urdf: Whether to reload the urdf file. If not, Reset() just place the minitaur back to its starting position. """ # UPDATE DESIRED VELOCITY AND RATE STATES if desired_velocity is not None: self.desired_velocity = desired_velocity if desired_rate is not None: self.desired_rate = desired_rate if reload_urdf: if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, INIT_POSITION, flags=self._pybullet_client.URDF_USE_SELF_COLLISION) else: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, INIT_POSITION) self._BuildJointNameToIdDict() self._BuildMotorIdList() self._RecordMassInfoFromURDF() self.ResetPose(add_constraint=True) if self._on_rack: self._pybullet_client.createConstraint( self.quadruped, -1, -1, -1, self._pybullet_client.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [0, 0, 1]) else: self._pybullet_client.resetBasePositionAndOrientation( self.quadruped, INIT_POSITION, INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.quadruped, [0, 0, 0], [0, 0, 0]) self.ResetPose(add_constraint=False) self._overheat_counter = np.zeros(self.num_motors) self._motor_enabled_list = [True] * self.num_motors\ def _SetMotorTorqueById(self, motor_id, torque): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.TORQUE_CONTROL, force=torque) def _SetDesiredMotorAngleById(self, motor_id, desired_angle): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle, positionGain=self._kp, velocityGain=self._kd, force=self._max_force) def _SetDesiredMotorAngleByName(self, motor_name, desired_angle): self._SetDesiredMotorAngleById(self._joint_name_to_id[motor_name], desired_angle) def ResetPose(self, add_constraint): """Reset the pose of the minitaur. Args: add_constraint: Whether to add a constraint at the joints of two feet. """ for i in range(self.num_legs): self._ResetPoseForLeg(i, add_constraint) def _ResetPoseForLeg(self, leg_id, add_constraint): """Reset the initial pose for the leg. Args: leg_id: It should be 0, 1, 2, or 3, which represents the leg at front_left, back_left, front_right and back_right. add_constraint: Whether to add a constraint at the joints of two feet. """ knee_friction_force = 0 half_pi = math.pi / 2.0 knee_angle = -2.1834 leg_position = LEG_POSITION[leg_id] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "L_joint"], self._motor_direction[2 * leg_id] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._motor_direction[2 * leg_id] * knee_angle, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "R_joint"], self._motor_direction[2 * leg_id + 1] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self._motor_direction[2 * leg_id + 1] * knee_angle, targetVelocity=0) if add_constraint: self._pybullet_client.createConstraint( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._pybullet_client.JOINT_POINT2POINT, [0, 0, 0], KNEE_CONSTRAINT_POINT_RIGHT, KNEE_CONSTRAINT_POINT_LEFT) if self._accurate_motor_model_enabled or self._pd_control_enabled: # Disable the default motor in pybullet. self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "L_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "R_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) else: self._SetDesiredMotorAngleByName( "motor_" + leg_position + "L_joint", self._motor_direction[2 * leg_id] * half_pi) self._SetDesiredMotorAngleByName( "motor_" + leg_position + "R_joint", self._motor_direction[2 * leg_id + 1] * half_pi) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "L_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "R_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) def GetBasePosition(self): """Get the position of minitaur's base. Returns: The position of minitaur's base. """ position, _ = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return position def GetBaseOrientation(self): """Get the orientation of minitaur's base, represented as quaternion. Returns: The orientation of minitaur's base. """ _, orientation = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return orientation def GetBaseTwitst(self): """Get the Twist of minitaur's base. Returns: The Twist of the minitaur's base. """ return self._pybullet_client.getBaseVelocity(self.quadruped) def GetActionDimension(self): """Get the length of the action list. Returns: The length of the action list. """ return self.num_motors def GetObservationUpperBound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. NOTE: Changed just like GetObservation() """ upper_bound = np.array([0.0] * self.GetObservationDimension()) # roll, pitch upper_bound[0:2] = np.pi / 2.0 # acc, rate in x,y,z upper_bound[2:8] = np.inf # 8:10 are velocity and rate bounds, min and max are +-10 # upper_bound[8:10] = 10 # NOTE: ORIGINAL BELOW # upper_bound[10:10 + self.num_motors] = math.pi # Joint angle. # upper_bound[self.num_motors + 10:2 * self.num_motors + 10] = ( # motor.MOTOR_SPEED_LIMIT) # Joint velocity. # upper_bound[2 * self.num_motors + 10:3 * self.num_motors + 10] = ( # motor.OBSERVED_TORQUE_LIMIT) # Joint torque. # upper_bound[3 * # self.num_motors:] = 1.0 # Quaternion of base orientation. # print("UPPER BOUND{}".format(upper_bound)) return upper_bound def GetObservationLowerBound(self): """Get the lower bound of the observation.""" return -self.GetObservationUpperBound() def GetObservationDimension(self): """Get the length of the observation list. Returns: The length of the observation list. """ return len(self.GetObservation()) def GetObservation(self): """Get the observations of minitaur. It includes the angles, velocities, torques and the orientation of the base. Returns: The observation list. observation[0:8] are motor angles. observation[8:16] are motor velocities, observation[16:24] are motor torques. observation[24:28] is the orientation of the base, in quaternion form. NOTE: DIVERGES FROM STOCK MINITAUR ENV. WILL LEAVE ORIGINAL COMMENTED For my purpose, the observation space includes Roll and Pitch, as well as acceleration and gyroscopic rate along the x,y,z axes. All of this information can be collected from an onboard IMU. The reward function will contain a hidden velocity reward (fwd, bwd) which cannot be measured and so is not included. For spinning, the gyroscopic z rate will be used as the (explicit) velocity reward. This version operates without motor torques, angles and velocities. Erwin Coumans' paper suggests a sparse observation space leads to higher reward """ observation = [] ori = self.GetBaseOrientation() # Get roll and pitch roll, pitch, _ = self._pybullet_client.getEulerFromQuaternion( [ori[0], ori[1], ori[2], ori[3]]) # Get linear accelerations and angular rates lt, ang_twist = self.GetBaseTwitst() lin_twist = np.array([lt[0], lt[1], lt[2]]) # Get linear accelerations lin_acc = self.prev_lin_twist - lin_twist # if lin_acc.all() == 0.0: # lin_acc = self.prev_lin_acc self.prev_lin_acc = lin_acc # print("LIN ACC: ", lin_acc) self.prev_lin_twist = lin_twist # order: roll, pitch, acc(x,y,z), gyro(x,y,z) observation.append(roll) observation.append(pitch) observation.extend(lin_acc.tolist()) observation.extend(list(ang_twist)) # velocity and rate # observation.append(self.desired_velocity) # observation.append(self.desired_rate) # NOTE: ORIGINAL BELOW # observation.extend(self.GetMotorAngles().tolist()) # observation.extend(self.GetMotorVelocities().tolist()) # observation.extend(self.GetMotorTorques().tolist()) # observation.extend(list(self.GetBaseOrientation())) return observation def ApplyAction(self, motor_commands): """Set the desired motor angles to the motors of the minitaur. The desired motor angles are clipped based on the maximum allowed velocity. If the pd_control_enabled is True, a torque is calculated according to the difference between current and desired joint angle, as well as the joint velocity. This torque is exerted to the motor. For more information about PD control, please refer to: https://en.wikipedia.org/wiki/PID_controller. Args: motor_commands: The eight desired motor angles. """ if self._motor_velocity_limit < np.inf: current_motor_angle = self.GetMotorAngles() motor_commands_max = (current_motor_angle + self.time_step * self._motor_velocity_limit) motor_commands_min = (current_motor_angle - self.time_step * self._motor_velocity_limit) motor_commands = np.clip(motor_commands, motor_commands_min, motor_commands_max) if self._accurate_motor_model_enabled or self._pd_control_enabled: q = self.GetMotorAngles() qdot = self.GetMotorVelocities() if self._accurate_motor_model_enabled: actual_torque, observed_torque = self._motor_model.convert_to_torque( motor_commands, q, qdot) if self._motor_overheat_protection: for i in range(self.num_motors): if abs(actual_torque[i]) > OVERHEAT_SHUTDOWN_TORQUE: self._overheat_counter[i] += 1 else: self._overheat_counter[i] = 0 if (self._overheat_counter[i] > OVERHEAT_SHUTDOWN_TIME / self.time_step): self._motor_enabled_list[i] = False # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = observed_torque # Transform into the motor space when applying the torque. self._applied_motor_torque = np.multiply( actual_torque, self._motor_direction) for motor_id, motor_torque, motor_enabled in zip( self._motor_id_list, self._applied_motor_torque, self._motor_enabled_list): if motor_enabled: self._SetMotorTorqueById(motor_id, motor_torque) else: self._SetMotorTorqueById(motor_id, 0) else: torque_commands = -self._kp * ( q - motor_commands) - self._kd * qdot # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = torque_commands # Transform into the motor space when applying the torque. self._applied_motor_torques = np.multiply( self._observed_motor_torques, self._motor_direction) for motor_id, motor_torque in zip(self._motor_id_list, self._applied_motor_torques): self._SetMotorTorqueById(motor_id, motor_torque) else: motor_commands_with_direction = np.multiply( motor_commands, self._motor_direction) for motor_id, motor_command_with_direction in zip( self._motor_id_list, motor_commands_with_direction): self._SetDesiredMotorAngleById(motor_id, motor_command_with_direction) def GetMotorAngles(self): """Get the eight motor angles at the current moment. Returns: Motor angles. """ motor_angles = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[0] for motor_id in self._motor_id_list ] motor_angles = np.multiply(motor_angles, self._motor_direction) return motor_angles def GetMotorVelocities(self): """Get the velocity of all eight motors. Returns: Velocities of all eight motors. """ motor_velocities = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[1] for motor_id in self._motor_id_list ] motor_velocities = np.multiply(motor_velocities, self._motor_direction) return motor_velocities def GetMotorTorques(self): """Get the amount of torques the motors are exerting. Returns: Motor torques of all eight motors. """ if self._accurate_motor_model_enabled or self._pd_control_enabled: return self._observed_motor_torques else: motor_torques = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[3] for motor_id in self._motor_id_list ] motor_torques = np.multiply(motor_torques, self._motor_direction) return motor_torques def ConvertFromLegModel(self, actions): """Convert the actions that use leg model to the real motor actions. Args: actions: The theta, phi of the leg model. actions are of form = [phi, phi, phi, phi, theta, theta, theta, theta] where phi = swing and theta = extension Returns: The eight desired motor angles that can be used in ApplyActions(). """ motor_angle = copy.deepcopy(actions) scale_for_singularity = 1 offset_for_singularity = 1.5 half_num_motors = int(self.num_motors / 2) quater_pi = math.pi / 4 for i in range(self.num_motors): action_idx = i // 2 forward_backward_component = ( -scale_for_singularity * quater_pi * (actions[action_idx + half_num_motors] + offset_for_singularity)) extension_component = (-1)**i * quater_pi * actions[action_idx] if i >= half_num_motors: extension_component = -extension_component motor_angle[i] = (math.pi + forward_backward_component + extension_component) return motor_angle def GetBaseMassFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def GetLegMassesFromURDF(self): """Get the mass of the legs from the URDF file.""" return self._leg_masses_urdf def SetBaseMass(self, base_mass): self._pybullet_client.changeDynamics(self.quadruped, BASE_LINK_ID, mass=base_mass) def SetLegMasses(self, leg_masses): """Set the mass of the legs. A leg includes leg_link and motor. All four leg_links have the same mass, which is leg_masses[0]. All four motors have the same mass, which is leg_mass[1]. Args: leg_masses: The leg masses. leg_masses[0] is the mass of the leg link. leg_masses[1] is the mass of the motor. """ for link_id in LEG_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=leg_masses[0]) for link_id in MOTOR_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=leg_masses[1]) def SetFootFriction(self, foot_friction): """Set the lateral friction of the feet. Args: foot_friction: The lateral friction coefficient of the foot. This value is shared by all four feet. """ for link_id in FOOT_LINK_ID: self._pybullet_client.changeDynamics(self.quadruped, link_id, lateralFriction=foot_friction) def SetBatteryVoltage(self, voltage): if self._accurate_motor_model_enabled: self._motor_model.set_voltage(voltage) def SetMotorViscousDamping(self, viscous_damping): if self._accurate_motor_model_enabled: self._motor_model.set_viscous_damping(viscous_damping)
25,949
Python
42.540268
85
0.582951