title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.DatetimeIndex.tz_localize
`pandas.DatetimeIndex.tz_localize` Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. ``` >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') ```
DatetimeIndex.tz_localize(tz, ambiguous='raise', nonexistent='raise')[source]# Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. This method can also be used to do the inverse – to create a time zone unaware object from an aware object. To that end, pass tz=None. Parameters tzstr, pytz.timezone, dateutil.tz.tzfile or NoneTime zone to convert timestamps to. Passing None will remove the time zone information preserving local time. ambiguous‘infer’, ‘NaT’, bool array, default ‘raise’When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled. ‘infer’ will attempt to infer fall dst-transition hours based on order bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) ‘NaT’ will return NaT where there are ambiguous times ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. nonexistent‘shift_forward’, ‘shift_backward, ‘NaT’, timedelta, default ‘raise’A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. ‘shift_forward’ will shift the nonexistent time forward to the closest existing time ‘shift_backward’ will shift the nonexistent time backward to the closest existing time ‘NaT’ will return NaT where there are nonexistent times timedelta objects will shift nonexistent times by the timedelta ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. Returns Same type as selfArray/Index converted to the specified time zone. Raises TypeErrorIf the Datetime Array/Index is tz-aware and tz is not None. See also DatetimeIndex.tz_convertConvert tz-aware DatetimeIndex from one time zone to another. Examples >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) With the tz=None, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq=None) Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.dt.tz_localize('CET', ambiguous='infer') 0 2018-10-28 01:30:00+02:00 1 2018-10-28 02:00:00+02:00 2 2018-10-28 02:30:00+02:00 3 2018-10-28 02:00:00+01:00 4 2018-10-28 02:30:00+01:00 5 2018-10-28 03:00:00+01:00 6 2018-10-28 03:30:00+01:00 dtype: datetime64[ns, CET] In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False])) 0 2018-10-28 01:20:00+02:00 1 2018-10-28 02:36:00+02:00 2 2018-10-28 03:46:00+01:00 dtype: datetime64[ns, CET] If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or ‘shift_forward’ or ‘shift_backwards’. >>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 0 2015-03-29 03:00:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 0 2015-03-29 01:59:59.999999999+01:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 0 2015-03-29 03:30:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw]
reference/api/pandas.DatetimeIndex.tz_localize.html
pandas.tseries.offsets.YearBegin.is_on_offset
`pandas.tseries.offsets.YearBegin.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
YearBegin.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.YearBegin.is_on_offset.html
pandas.tseries.offsets.FY5253.isAnchored
pandas.tseries.offsets.FY5253.isAnchored
FY5253.isAnchored()#
reference/api/pandas.tseries.offsets.FY5253.isAnchored.html
pandas.tseries.offsets.QuarterEnd
`pandas.tseries.offsets.QuarterEnd` DateOffset increments between Quarter end dates. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.QuarterEnd() Timestamp('2022-03-31 00:00:00') ```
class pandas.tseries.offsets.QuarterEnd# DateOffset increments between Quarter end dates. startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, … startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, … startingMonth = 3 corresponds to dates like 3/31/2007, 6/30/2007, … Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.QuarterEnd() Timestamp('2022-03-31 00:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. n nanos normalize rule_code startingMonth Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.QuarterEnd.html
pandas.Index.union
`pandas.Index.union` Form the union of two Index objects. ``` >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') ```
final Index.union(other, sort=None)[source]# Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype(‘object’) first. Changed in version 0.25.0. Parameters otherIndex or array-like sortbool or None, default NoneWhether to sort the resulting Index. None : Sort the result, except when self and other are equal. self or other has length 0. Some values in self or other cannot be compared. A RuntimeWarning is issued in this case. False : do not sort the result. Returns unionIndex Examples Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') MultiIndex case >>> idx1 = pd.MultiIndex.from_arrays( ... [[1, 1, 2, 2], ["Red", "Blue", "Red", "Blue"]] ... ) >>> idx1 MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue')], ) >>> idx2 = pd.MultiIndex.from_arrays( ... [[3, 3, 2, 2], ["Red", "Green", "Red", "Green"]] ... ) >>> idx2 MultiIndex([(3, 'Red'), (3, 'Green'), (2, 'Red'), (2, 'Green')], ) >>> idx1.union(idx2) MultiIndex([(1, 'Blue'), (1, 'Red'), (2, 'Blue'), (2, 'Green'), (2, 'Red'), (3, 'Green'), (3, 'Red')], ) >>> idx1.union(idx2, sort=False) MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue'), (3, 'Red'), (3, 'Green'), (2, 'Green')], )
reference/api/pandas.Index.union.html
pandas.core.window.rolling.Rolling.kurt
`pandas.core.window.rolling.Rolling.kurt` Calculate the rolling Fisher’s definition of kurtosis without bias. ``` >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 ```
Rolling.kurt(numeric_only=False, **kwargs)[source]# Calculate the rolling Fisher’s definition of kurtosis without bias. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also scipy.stats.kurtosisReference SciPy method. pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.kurtAggregating kurt for Series. pandas.DataFrame.kurtAggregating kurt for DataFrame. Notes A minimum of four periods is required for the calculation. Examples The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.kurt.html
pandas.Series.drop_duplicates
`pandas.Series.drop_duplicates` Return Series with duplicate values removed. ``` >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object ```
Series.drop_duplicates(*, keep='first', inplace=False)[source]# Return Series with duplicate values removed. Parameters keep{‘first’, ‘last’, False}, default ‘first’Method to handle dropping duplicates: ‘first’ : Drop duplicates except for the first occurrence. ‘last’ : Drop duplicates except for the last occurrence. False : Drop all duplicates. inplacebool, default FalseIf True, performs operation inplace and returns None. Returns Series or NoneSeries with duplicates dropped or None if inplace=True. See also Index.drop_duplicatesEquivalent method on Index. DataFrame.drop_duplicatesEquivalent method on DataFrame. Series.duplicatedRelated method on Series, indicating duplicate Series values. Series.uniqueReturn unique values as an array. Examples Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value False for parameter ‘keep’ discards all sets of duplicated entries. Setting the value of ‘inplace’ to True performs the operation inplace and returns None. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object
reference/api/pandas.Series.drop_duplicates.html
pandas.DataFrame.rfloordiv
`pandas.DataFrame.rfloordiv` Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.rfloordiv(other, axis='columns', level=None, fill_value=None)[source]# Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). Equivalent to other // dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, floordiv. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.rfloordiv.html
pandas.Timestamp.weekofyear
`pandas.Timestamp.weekofyear` Return the week number of the year. ``` >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.week 11 ```
Timestamp.weekofyear# Return the week number of the year. Examples >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.week 11
reference/api/pandas.Timestamp.weekofyear.html
pandas.tseries.offsets.BusinessHour.onOffset
pandas.tseries.offsets.BusinessHour.onOffset
BusinessHour.onOffset()#
reference/api/pandas.tseries.offsets.BusinessHour.onOffset.html
pandas.tseries.offsets.CustomBusinessMonthEnd.normalize
pandas.tseries.offsets.CustomBusinessMonthEnd.normalize
CustomBusinessMonthEnd.normalize#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.normalize.html
pandas.DataFrame.kurtosis
`pandas.DataFrame.kurtosis` Return unbiased kurtosis over requested axis. Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
DataFrame.kurtosis(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]# Return unbiased kurtosis over requested axis. Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1. Parameters axis{index (0), columns (1)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. **kwargsAdditional keyword arguments to be passed to the function. Returns Series or DataFrame (if level specified)
reference/api/pandas.DataFrame.kurtosis.html
pandas.core.groupby.GroupBy.head
`pandas.core.groupby.GroupBy.head` Return first n rows of each group. ``` >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], ... columns=['A', 'B']) >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(-1) A B 0 1 2 ```
final GroupBy.head(n=5)[source]# Return first n rows of each group. Similar to .apply(lambda x: x.head(n)), but it returns a subset of rows from the original DataFrame with original index and order preserved (as_index flag is ignored). Parameters nintIf positive: number of entries to include from start of each group. If negative: number of entries to exclude from end of each group. Returns Series or DataFrameSubset of original Series or DataFrame as determined by n. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. Examples >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], ... columns=['A', 'B']) >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(-1) A B 0 1 2
reference/api/pandas.core.groupby.GroupBy.head.html
pandas.DataFrame.items
`pandas.DataFrame.items` Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. ``` >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 ```
DataFrame.items()[source]# Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields labelobjectThe column names for the DataFrame being iterated over. contentSeriesThe column entries belonging to each label, as a Series. See also DataFrame.iterrowsIterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuplesIterate over DataFrame rows as namedtuples of the values. Examples >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64
reference/api/pandas.DataFrame.items.html
pandas.Timestamp.asm8
`pandas.Timestamp.asm8` Return numpy datetime64 format in nanoseconds. Examples ``` >>> ts = pd.Timestamp(2020, 3, 14, 15) >>> ts.asm8 numpy.datetime64('2020-03-14T15:00:00.000000000') ```
Timestamp.asm8# Return numpy datetime64 format in nanoseconds. Examples >>> ts = pd.Timestamp(2020, 3, 14, 15) >>> ts.asm8 numpy.datetime64('2020-03-14T15:00:00.000000000')
reference/api/pandas.Timestamp.asm8.html
pandas.tseries.offsets.QuarterEnd.is_year_start
`pandas.tseries.offsets.QuarterEnd.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
QuarterEnd.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.QuarterEnd.is_year_start.html
pandas.tseries.offsets.BusinessMonthEnd.freqstr
`pandas.tseries.offsets.BusinessMonthEnd.freqstr` Return a string representing the frequency. Examples ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
BusinessMonthEnd.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.BusinessMonthEnd.freqstr.html
pandas.tseries.offsets.QuarterBegin.apply_index
`pandas.tseries.offsets.QuarterBegin.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
QuarterBegin.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.QuarterBegin.apply_index.html
pandas.DataFrame.plot.line
`pandas.DataFrame.plot.line` Plot Series or DataFrame as lines. ``` >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() <AxesSubplot: ylabel='Density'> ```
DataFrame.plot.line(x=None, y=None, **kwargs)[source]# Plot Series or DataFrame as lines. This function is useful to plot lines using DataFrame’s values as coordinates. Parameters xlabel or position, optionalAllows plotting of one column versus another. If not specified, the index of the DataFrame is used. ylabel or position, optionalAllows plotting of one column versus another. If not specified, all numerical columns are used. colorstr, array-like, or dict, optionalThe color for each of the DataFrame’s columns. Possible values are: A single color string referred to by name, RGB or RGBA code,for instance ‘red’ or ‘#a98d19’. A sequence of color strings referred to by name, RGB or RGBAcode, which will be used for each column recursively. For instance [‘green’,’yellow’] each column’s line will be filled in green or yellow, alternatively. If there is only a single column to be plotted, then only the first color from the color list will be used. A dict of the form {column namecolor}, so that each column will becolored accordingly. For example, if your columns are called a and b, then passing {‘a’: ‘green’, ‘b’: ‘red’} will color lines for column a in green and lines for column b in red. New in version 1.1.0. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or np.ndarray of themAn ndarray is returned with one matplotlib.axes.Axes per column when subplots=True. See also matplotlib.pyplot.plotPlot y versus x as lines and/or markers. Examples >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() <AxesSubplot: ylabel='Density'> The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> Let’s repeat the same example, but specifying colors for each column (in this case, for each animal). >>> axes = df.plot.line( ... subplots=True, color={"pig": "pink", "horse": "#742802"} ... ) The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse')
reference/api/pandas.DataFrame.plot.line.html
pandas.DataFrame.from_dict
`pandas.DataFrame.from_dict` Construct DataFrame from dict of array-like or dicts. ``` >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d ```
classmethod DataFrame.from_dict(data, orient='columns', dtype=None, columns=None)[source]# Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters datadictOf the form {field : array-like} or {field : dict}. orient{‘columns’, ‘index’, ‘tight’}, default ‘columns’The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’]. New in version 1.4.0: ‘tight’ as an allowed value for the orient argument dtypedtype, default NoneData type to force, otherwise infer. columnslist, default NoneColumn labels to use when orient='index'. Raises a ValueError if used with orient='columns' or orient='tight'. Returns DataFrame See also DataFrame.from_recordsDataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrameDataFrame object creation using constructor. DataFrame.to_dictConvert the DataFrame to a dictionary. Examples By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify orient='index' to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the ‘index’ orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d Specify orient='tight' to create the DataFrame using a ‘tight’ format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4
reference/api/pandas.DataFrame.from_dict.html
pandas.DatetimeIndex.mean
`pandas.DatetimeIndex.mean` Return the mean value of the Array.
DatetimeIndex.mean(*args, **kwargs)[source]# Return the mean value of the Array. New in version 0.25.0. Parameters skipnabool, default TrueWhether to ignore any NaT elements. axisint, optional, default 0 Returns scalarTimestamp or Timedelta. See also numpy.ndarray.meanReturns the average of array elements along a given axis. Series.meanReturn the mean value in a Series. Notes mean is only defined for Datetime and Timedelta dtypes, not for Period.
reference/api/pandas.DatetimeIndex.mean.html
pandas.tseries.offsets.Easter.isAnchored
pandas.tseries.offsets.Easter.isAnchored
Easter.isAnchored()#
reference/api/pandas.tseries.offsets.Easter.isAnchored.html
Options and settings
Options and settings pandas has an options API configure and customize global behavior related to DataFrame display, data behavior and more. Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute: The API is composed of 5 relevant functions, available directly from the pandas namespace: get_option() / set_option() - get/set the value of a single option. reset_option() - reset one or more options to their default value.
Overview# pandas has an options API configure and customize global behavior related to DataFrame display, data behavior and more. Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute: In [1]: import pandas as pd In [2]: pd.options.display.max_rows Out[2]: 15 In [3]: pd.options.display.max_rows = 999 In [4]: pd.options.display.max_rows Out[4]: 999 The API is composed of 5 relevant functions, available directly from the pandas namespace: get_option() / set_option() - get/set the value of a single option. reset_option() - reset one or more options to their default value. describe_option() - print the descriptions of one or more options. option_context() - execute a codeblock with a set of options that revert to prior settings after execution. Note Developers can check out pandas/core/config_init.py for more information. All of the functions above accept a regexp pattern (re.search style) as an argument, to match an unambiguous substring: In [5]: pd.get_option("display.chop_threshold") In [6]: pd.set_option("display.chop_threshold", 2) In [7]: pd.get_option("display.chop_threshold") Out[7]: 2 In [8]: pd.set_option("chop", 4) In [9]: pd.get_option("display.chop_threshold") Out[9]: 4 The following will not work because it matches multiple option names, e.g. display.max_colwidth, display.max_rows, display.max_columns: In [10]: pd.get_option("max") --------------------------------------------------------------------------- OptionError Traceback (most recent call last) Cell In[10], line 1 ----> 1 pd.get_option("max") File ~/work/pandas/pandas/pandas/_config/config.py:263, in CallableDynamicDoc.__call__(self, *args, **kwds) 262 def __call__(self, *args, **kwds) -> T: --> 263 return self.__func__(*args, **kwds) File ~/work/pandas/pandas/pandas/_config/config.py:135, in _get_option(pat, silent) 134 def _get_option(pat: str, silent: bool = False) -> Any: --> 135 key = _get_single_key(pat, silent) 137 # walk the nested dict 138 root, k = _get_root(key) File ~/work/pandas/pandas/pandas/_config/config.py:123, in _get_single_key(pat, silent) 121 raise OptionError(f"No such keys(s): {repr(pat)}") 122 if len(keys) > 1: --> 123 raise OptionError("Pattern matched multiple keys") 124 key = keys[0] 126 if not silent: OptionError: 'Pattern matched multiple keys' Warning Using this form of shorthand may cause your code to break if new options with similar names are added in future versions. Available options# You can get a list of available options and their descriptions with describe_option(). When called with no argument describe_option() will print out the descriptions for all available options. In [11]: pd.describe_option() compute.use_bottleneck : bool Use the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True [default: True] [currently: True] compute.use_numba : bool Use the numba engine option for select operations if it is installed, the default is False Valid values: False,True [default: False] [currently: False] compute.use_numexpr : bool Use the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True [default: True] [currently: True] display.chop_threshold : float or None if set to a float value, all float values smaller than the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify : 'left'/'right' Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available. [default: 12] [currently: 12] display.date_dayfirst : boolean When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirst : boolean When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encoding : str/unicode Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: utf-8] [currently: utf8] display.expand_frame_repr : boolean Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple "pages" if its width exceeds `display.width`. [default: True] [currently: True] display.float_format : callable The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None] display.html.border : int A ``border=value`` attribute is inserted in the ``<table>`` tag for the DataFrame HTML repr. [default: 1] [currently: 1] display.html.table_schema : boolean Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False] display.html.use_mathjax : boolean When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True] [currently: True] display.large_repr : 'truncate'/'info' For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.latex.escape : bool This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True [default: True] [currently: True] display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True [default: False] [currently: False] display.latex.multicolumn : bool This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True] display.latex.multicolumn_format : bool This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l] display.latex.multirow : bool This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False] display.latex.repr : boolean Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False] display.max_categories : int This sets the maximum number of categories pandas should output when printing out a `Categorical` or a Series of dtype "category". [default: 8] [currently: 8] display.max_columns : int If max_cols is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 0] [currently: 0] display.max_colwidth : int or None The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. A 'None' value means unlimited. [default: 50] [currently: 50] display.max_dir_items : int The number of items that will be added to `dir(...)`. 'None' value means unlimited. Because dir is cached, changing this option will not immediately affect already existing dataframes until a column is deleted or added. This is for instance used to suggest columns from a dataframe to tab completion. [default: 100] [currently: 100] display.max_info_columns : int max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] display.max_info_rows : int or None df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785] display.max_rows : int If max_rows is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 60] display.max_seq_items : int or None When pretty-printing a long sequence, no more then `max_seq_items` will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usage : bool, string or None This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,'deep' [default: True] [currently: True] display.min_rows : int The numbers of rows to show in a truncated view (when `max_rows` is exceeded). Ignored when `max_rows` is set to None or 0. When set to None, follows the value of `max_rows`. [default: 10] [currently: 10] display.multi_sparse : boolean "sparsify" MultiIndex display (don't display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_html : boolean When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] display.pprint_nest_depth : int Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] display.precision : int Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to ``precision`` in :meth:`numpy.set_printoptions`. [default: 6] [currently: 6] display.show_dimensions : boolean or 'truncate' Whether to print out dimensions at the end of DataFrame repr. If 'truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.unicode.ambiguous_as_wide : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False] display.unicode.east_asian_width : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False] display.width : int Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.ods.reader : string The default Excel reader engine for 'ods' files. Available options: auto, odf. [default: auto] [currently: auto] io.excel.ods.writer : string The default Excel writer engine for 'ods' files. Available options: auto, odf. [default: auto] [currently: auto] io.excel.xls.reader : string The default Excel reader engine for 'xls' files. Available options: auto, xlrd. [default: auto] [currently: auto] io.excel.xls.writer : string The default Excel writer engine for 'xls' files. Available options: auto, xlwt. [default: auto] [currently: auto] (Deprecated, use `` instead.) io.excel.xlsb.reader : string The default Excel reader engine for 'xlsb' files. Available options: auto, pyxlsb. [default: auto] [currently: auto] io.excel.xlsm.reader : string The default Excel reader engine for 'xlsm' files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto] io.excel.xlsm.writer : string The default Excel writer engine for 'xlsm' files. Available options: auto, openpyxl. [default: auto] [currently: auto] io.excel.xlsx.reader : string The default Excel reader engine for 'xlsx' files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto] io.excel.xlsx.writer : string The default Excel writer engine for 'xlsx' files. Available options: auto, openpyxl, xlsxwriter. [default: auto] [currently: auto] io.hdf.default_format : format default format writing format, if None, then put will default to 'fixed' and append will default to 'table' [default: None] [currently: None] io.hdf.dropna_table : boolean drop ALL nan rows when appending to a table [default: False] [currently: False] io.parquet.engine : string The default parquet reader/writer engine. Available options: 'auto', 'pyarrow', 'fastparquet', the default is 'auto' [default: auto] [currently: auto] io.sql.engine : string The default sql reader/writer engine. Available options: 'auto', 'sqlalchemy', the default is 'auto' [default: auto] [currently: auto] mode.chained_assignment : string Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] mode.copy_on_write : bool Use new copy-view behaviour using Copy-on-Write. Defaults to False, unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable (if set to "1" for True, needs to be set before pandas is imported). [default: False] [currently: False] mode.data_manager : string Internal data manager type; can be "block" or "array". Defaults to "block", unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs to be set before pandas is imported). [default: block] [currently: block] mode.sim_interactive : boolean Whether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.string_storage : string The default storage for StringDtype. [default: python] [currently: python] mode.use_inf_as_na : boolean True means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False] mode.use_inf_as_null : boolean use_inf_as_null had been deprecated and will be removed in a future version. Use `use_inf_as_na` instead. [default: False] [currently: False] (Deprecated, use `mode.use_inf_as_na` instead.) plotting.backend : str The plotting backend to use. The default value is "matplotlib", the backend provided with pandas. Other backends can be specified by providing the name of the module that implements the backend. [default: matplotlib] [currently: matplotlib] plotting.matplotlib.register_converters : bool or 'auto'. Whether to register converters with matplotlib's units registry for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any converters that pandas overwrote. [default: auto] [currently: auto] styler.format.decimal : str The character representation for the decimal separator for floats and complex. [default: .] [currently: .] styler.format.escape : str, optional Whether to escape certain characters according to the given context; html or latex. [default: None] [currently: None] styler.format.formatter : str, callable, dict, optional A formatter object to be used as default within ``Styler.format``. [default: None] [currently: None] styler.format.na_rep : str, optional The string representation for values identified as missing. [default: None] [currently: None] styler.format.precision : int The precision for floats and complex numbers. [default: 6] [currently: 6] styler.format.thousands : str, optional The character representation for thousands separator for floats, int and complex. [default: None] [currently: None] styler.html.mathjax : bool If False will render special CSS classes to table attributes that indicate Mathjax will not be used in Jupyter Notebook. [default: True] [currently: True] styler.latex.environment : str The environment to replace ``\begin{table}``. If "longtable" is used results in a specific longtable environment format. [default: None] [currently: None] styler.latex.hrules : bool Whether to add horizontal rules on top and bottom and below the headers. [default: False] [currently: False] styler.latex.multicol_align : {"r", "c", "l", "naive-l", "naive-r"} The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe decorators can also be added to non-naive values to draw vertical rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells. [default: r] [currently: r] styler.latex.multirow_align : {"c", "t", "b"} The specifier for vertical alignment of sparsified LaTeX multirows. [default: c] [currently: c] styler.render.encoding : str The encoding used for output HTML and LaTeX files. [default: utf-8] [currently: utf-8] styler.render.max_columns : int, optional The maximum number of columns that will be rendered. May still be reduced to satsify ``max_elements``, which takes precedence. [default: None] [currently: None] styler.render.max_elements : int The maximum number of data-cell (<td>) elements that will be rendered before trimming will occur over columns, rows or both if needed. [default: 262144] [currently: 262144] styler.render.max_rows : int, optional The maximum number of rows that will be rendered. May still be reduced to satsify ``max_elements``, which takes precedence. [default: None] [currently: None] styler.render.repr : str Determine which output to use in Jupyter Notebook in {"html", "latex"}. [default: html] [currently: html] styler.sparse.columns : bool Whether to sparsify the display of hierarchical columns. Setting to False will display each explicit level element in a hierarchical key for each column. [default: True] [currently: True] styler.sparse.index : bool Whether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. [default: True] [currently: True] Getting and setting options# As described above, get_option() and set_option() are available from the pandas namespace. To change an option, call set_option('option regex', new_value). In [12]: pd.get_option("mode.sim_interactive") Out[12]: False In [13]: pd.set_option("mode.sim_interactive", True) In [14]: pd.get_option("mode.sim_interactive") Out[14]: True Note The option 'mode.sim_interactive' is mostly used for debugging purposes. You can use reset_option() to revert to a setting’s default value In [15]: pd.get_option("display.max_rows") Out[15]: 60 In [16]: pd.set_option("display.max_rows", 999) In [17]: pd.get_option("display.max_rows") Out[17]: 999 In [18]: pd.reset_option("display.max_rows") In [19]: pd.get_option("display.max_rows") Out[19]: 60 It’s also possible to reset multiple options at once (using a regex): In [20]: pd.reset_option("^display") option_context() context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the with block: In [21]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5): ....: print(pd.get_option("display.max_rows")) ....: print(pd.get_option("display.max_columns")) ....: 10 5 In [22]: print(pd.get_option("display.max_rows")) 60 In [23]: print(pd.get_option("display.max_columns")) 0 Setting startup options in Python/IPython environment# Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default IPython profile can be found at: $IPYTHONDIR/profile_default/startup More information can be found in the IPython documentation. An example startup script for pandas is displayed below: import pandas as pd pd.set_option("display.max_rows", 999) pd.set_option("display.precision", 5) Frequently used options# The following is a demonstrates the more frequently used display options. display.max_rows and display.max_columns sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis. In [24]: df = pd.DataFrame(np.random.randn(7, 2)) In [25]: pd.set_option("display.max_rows", 7) In [26]: df Out[26]: 0 1 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215 3 0.119209 -1.044236 4 -0.861849 -2.104569 5 -0.494929 1.071804 6 0.721555 -0.706771 In [27]: pd.set_option("display.max_rows", 5) In [28]: df Out[28]: 0 1 0 0.469112 -0.282863 1 -1.509059 -1.135632 .. ... ... 5 -0.494929 1.071804 6 0.721555 -0.706771 [7 rows x 2 columns] In [29]: pd.reset_option("display.max_rows") Once the display.max_rows is exceeded, the display.min_rows options determines how many rows are shown in the truncated repr. In [30]: pd.set_option("display.max_rows", 8) In [31]: pd.set_option("display.min_rows", 4) # below max_rows -> all rows shown In [32]: df = pd.DataFrame(np.random.randn(7, 2)) In [33]: df Out[33]: 0 1 0 -1.039575 0.271860 1 -0.424972 0.567020 2 0.276232 -1.087401 3 -0.673690 0.113648 4 -1.478427 0.524988 5 0.404705 0.577046 6 -1.715002 -1.039268 # above max_rows -> only min_rows (4) rows shown In [34]: df = pd.DataFrame(np.random.randn(9, 2)) In [35]: df Out[35]: 0 1 0 -0.370647 -1.157892 1 -1.344312 0.844885 .. ... ... 7 0.276662 -0.472035 8 -0.013960 -0.362543 [9 rows x 2 columns] In [36]: pd.reset_option("display.max_rows") In [37]: pd.reset_option("display.min_rows") display.expand_frame_repr allows for the representation of a DataFrame to stretch across pages, wrapped over the all the columns. In [38]: df = pd.DataFrame(np.random.randn(5, 10)) In [39]: pd.set_option("expand_frame_repr", True) In [40]: df Out[40]: 0 1 2 ... 7 8 9 0 -0.006154 -0.923061 0.895717 ... 1.340309 -1.170299 -0.226169 1 0.410835 0.813850 0.132003 ... -1.436737 -1.413681 1.607920 2 1.024180 0.569605 0.875906 ... -0.078638 0.545952 -1.219217 3 -1.226825 0.769804 -1.281247 ... 0.341734 0.959726 -1.110336 4 -0.619976 0.149748 -0.732339 ... 0.301624 -2.179861 -1.369849 [5 rows x 10 columns] In [41]: pd.set_option("expand_frame_repr", False) In [42]: df Out[42]: 0 1 2 3 4 5 6 7 8 9 0 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.226169 1 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920 2 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 -0.410001 -0.078638 0.545952 -1.219217 3 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 0.959726 -1.110336 4 -0.619976 0.149748 -0.732339 0.687738 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 In [43]: pd.reset_option("expand_frame_repr") display.large_repr displays a DataFrame that exceed max_columns or max_rows as a truncated frame or summary. In [44]: df = pd.DataFrame(np.random.randn(10, 10)) In [45]: pd.set_option("display.max_rows", 5) In [46]: pd.set_option("large_repr", "truncate") In [47]: df Out[47]: 0 1 2 ... 7 8 9 0 -0.954208 1.462696 -1.743161 ... 0.995761 2.396780 0.014871 1 3.357427 -0.317441 -1.236269 ... 0.380396 0.084844 0.432390 .. ... ... ... ... ... ... ... 8 -0.303421 -0.858447 0.306996 ... 0.476720 0.473424 -0.242861 9 -0.014805 -0.284319 0.650776 ... 1.613616 0.464000 0.227371 [10 rows x 10 columns] In [48]: pd.set_option("large_repr", "info") In [49]: df Out[49]: <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 928.0 bytes In [50]: pd.reset_option("large_repr") In [51]: pd.reset_option("display.max_rows") display.max_colwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis. In [52]: df = pd.DataFrame( ....: np.array( ....: [ ....: ["foo", "bar", "bim", "uncomfortably long string"], ....: ["horse", "cow", "banana", "apple"], ....: ] ....: ) ....: ) ....: In [53]: pd.set_option("max_colwidth", 40) In [54]: df Out[54]: 0 1 2 3 0 foo bar bim uncomfortably long string 1 horse cow banana apple In [55]: pd.set_option("max_colwidth", 6) In [56]: df Out[56]: 0 1 2 3 0 foo bar bim un... 1 horse cow ba... apple In [57]: pd.reset_option("max_colwidth") display.max_info_columns sets a threshold for the number of columns displayed when calling info(). In [58]: df = pd.DataFrame(np.random.randn(10, 10)) In [59]: pd.set_option("max_info_columns", 11) In [60]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 928.0 bytes In [61]: pd.set_option("max_info_columns", 5) In [62]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Columns: 10 entries, 0 to 9 dtypes: float64(10) memory usage: 928.0 bytes In [63]: pd.reset_option("max_info_columns") display.max_info_rows: info() will usually show null-counts for each column. For a large DataFrame, this can be quite slow. max_info_rows and max_info_cols limit this null check to the specified rows and columns respectively. The info() keyword argument null_counts=True will override this. In [64]: df = pd.DataFrame(np.random.choice([0, 1, np.nan], size=(10, 10))) In [65]: df Out[65]: 0 1 2 3 4 5 6 7 8 9 0 0.0 NaN 1.0 NaN NaN 0.0 NaN 0.0 NaN 1.0 1 1.0 NaN 1.0 1.0 1.0 1.0 NaN 0.0 0.0 NaN 2 0.0 NaN 1.0 0.0 0.0 NaN NaN NaN NaN 0.0 3 NaN NaN NaN 0.0 1.0 1.0 NaN 1.0 NaN 1.0 4 0.0 NaN NaN NaN 0.0 NaN NaN NaN 1.0 0.0 5 0.0 1.0 1.0 1.0 1.0 0.0 NaN NaN 1.0 0.0 6 1.0 1.0 1.0 NaN 1.0 NaN 1.0 0.0 NaN NaN 7 0.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 NaN 8 NaN NaN NaN 0.0 NaN NaN NaN NaN 1.0 NaN 9 0.0 NaN 0.0 NaN NaN 0.0 NaN 1.0 1.0 0.0 In [66]: pd.set_option("max_info_rows", 11) In [67]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 8 non-null float64 1 1 3 non-null float64 2 2 7 non-null float64 3 3 6 non-null float64 4 4 7 non-null float64 5 5 6 non-null float64 6 6 2 non-null float64 7 7 6 non-null float64 8 8 6 non-null float64 9 9 6 non-null float64 dtypes: float64(10) memory usage: 928.0 bytes In [68]: pd.set_option("max_info_rows", 5) In [69]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 10 columns): # Column Dtype --- ------ ----- 0 0 float64 1 1 float64 2 2 float64 3 3 float64 4 4 float64 5 5 float64 6 6 float64 7 7 float64 8 8 float64 9 9 float64 dtypes: float64(10) memory usage: 928.0 bytes In [70]: pd.reset_option("max_info_rows") display.precision sets the output display precision in terms of decimal places. In [71]: df = pd.DataFrame(np.random.randn(5, 5)) In [72]: pd.set_option("display.precision", 7) In [73]: df Out[73]: 0 1 2 3 4 0 -1.1506406 -0.7983341 -0.5576966 0.3813531 1.3371217 1 -1.5310949 1.3314582 -0.5713290 -0.0266708 -1.0856630 2 -1.1147378 -0.0582158 -0.4867681 1.6851483 0.1125723 3 -1.4953086 0.8984347 -0.1482168 -1.5960698 0.1596530 4 0.2621358 0.0362196 0.1847350 -0.2550694 -0.2710197 In [74]: pd.set_option("display.precision", 4) In [75]: df Out[75]: 0 1 2 3 4 0 -1.1506 -0.7983 -0.5577 0.3814 1.3371 1 -1.5311 1.3315 -0.5713 -0.0267 -1.0857 2 -1.1147 -0.0582 -0.4868 1.6851 0.1126 3 -1.4953 0.8984 -0.1482 -1.5961 0.1597 4 0.2621 0.0362 0.1847 -0.2551 -0.2710 display.chop_threshold sets the rounding threshold to zero when displaying a Series or DataFrame. This setting does not change the precision at which the number is stored. In [76]: df = pd.DataFrame(np.random.randn(6, 6)) In [77]: pd.set_option("chop_threshold", 0) In [78]: df Out[78]: 0 1 2 3 4 5 0 1.2884 0.2946 -1.1658 0.8470 -0.6856 0.6091 1 -0.3040 0.6256 -0.0593 0.2497 1.1039 -1.0875 2 1.9980 -0.2445 0.1362 0.8863 -1.3507 -0.8863 3 -1.0133 1.9209 -0.3882 -2.3144 0.6655 0.4026 4 0.3996 -1.7660 0.8504 0.3881 0.9923 0.7441 5 -0.7398 -1.0549 -0.1796 0.6396 1.5850 1.9067 In [79]: pd.set_option("chop_threshold", 0.5) In [80]: df Out[80]: 0 1 2 3 4 5 0 1.2884 0.0000 -1.1658 0.8470 -0.6856 0.6091 1 0.0000 0.6256 0.0000 0.0000 1.1039 -1.0875 2 1.9980 0.0000 0.0000 0.8863 -1.3507 -0.8863 3 -1.0133 1.9209 0.0000 -2.3144 0.6655 0.0000 4 0.0000 -1.7660 0.8504 0.0000 0.9923 0.7441 5 -0.7398 -1.0549 0.0000 0.6396 1.5850 1.9067 In [81]: pd.reset_option("chop_threshold") display.colheader_justify controls the justification of the headers. The options are 'right', and 'left'. In [82]: df = pd.DataFrame( ....: np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T, ....: columns=["A", "B", "C"], ....: dtype="float", ....: ) ....: In [83]: pd.set_option("colheader_justify", "right") In [84]: df Out[84]: A B C 0 0.1040 0.1 0.0 1 0.1741 0.5 0.0 2 -0.4395 0.4 0.0 3 -0.7413 0.8 0.0 4 -0.0797 0.4 0.0 5 -0.9229 0.3 0.0 In [85]: pd.set_option("colheader_justify", "left") In [86]: df Out[86]: A B C 0 0.1040 0.1 0.0 1 0.1741 0.5 0.0 2 -0.4395 0.4 0.0 3 -0.7413 0.8 0.0 4 -0.0797 0.4 0.0 5 -0.9229 0.3 0.0 In [87]: pd.reset_option("colheader_justify") Number formatting# pandas also allows you to set how numbers are displayed in the console. This option is not set through the set_options API. Use the set_eng_float_format function to alter the floating-point formatting of pandas objects to produce a particular format. In [88]: import numpy as np In [89]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True) In [90]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"]) In [91]: s / 1.0e3 Out[91]: a 303.638u b -721.084u c -622.696u d 648.250u e -1.945m dtype: float64 In [92]: s / 1.0e6 Out[92]: a 303.638n b -721.084n c -622.696n d 648.250n e -1.945u dtype: float64 Use round() to specifically control rounding of an individual DataFrame Unicode formatting# Warning Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required. Some East Asian countries use Unicode characters whose width corresponds to two Latin characters. If a DataFrame or Series contains these characters, the default output mode may not align them properly. In [93]: df = pd.DataFrame({"国籍": ["UK", "日本"], "名前": ["Alice", "しのぶ"]}) In [94]: df Out[94]: 国籍 名前 0 UK Alice 1 日本 しのぶ Enabling display.unicode.east_asian_width allows pandas to check each character’s “East Asian Width” property. These characters can be aligned properly by setting this option to True. However, this will result in longer render times than the standard len function. In [95]: pd.set_option("display.unicode.east_asian_width", True) In [96]: df Out[96]: 国籍 名前 0 UK Alice 1 日本 しのぶ In addition, Unicode characters whose width is “ambiguous” can either be 1 or 2 characters wide depending on the terminal setting or encoding. The option display.unicode.ambiguous_as_wide can be used to handle the ambiguity. By default, an “ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be 1. In [97]: df = pd.DataFrame({"a": ["xxx", "¡¡"], "b": ["yyy", "¡¡"]}) In [98]: df Out[98]: a b 0 xxx yyy 1 ¡¡ ¡¡ Enabling display.unicode.ambiguous_as_wide makes pandas interpret these characters’ widths to be 2. (Note that this option will only be effective when display.unicode.east_asian_width is enabled.) However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly: In [99]: pd.set_option("display.unicode.ambiguous_as_wide", True) In [100]: df Out[100]: a b 0 xxx yyy 1 ¡¡ ¡¡ Table schema display# DataFrame and Series will publish a Table Schema representation by default. This can be enabled globally with the display.html.table_schema option: In [101]: pd.set_option("display.html.table_schema", True) Only 'display.max_rows' are serialized and published.
user_guide/options.html
pandas.tseries.offsets.LastWeekOfMonth.is_quarter_start
`pandas.tseries.offsets.LastWeekOfMonth.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
LastWeekOfMonth.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.LastWeekOfMonth.is_quarter_start.html
pandas.core.groupby.GroupBy.__iter__
`pandas.core.groupby.GroupBy.__iter__` Groupby iterator.
GroupBy.__iter__()[source]# Groupby iterator. Returns Generator yielding sequence of (name, subsetted object) for each group
reference/api/pandas.core.groupby.GroupBy.__iter__.html
pandas.tseries.offsets.Hour.apply
pandas.tseries.offsets.Hour.apply
Hour.apply()#
reference/api/pandas.tseries.offsets.Hour.apply.html
pandas.tseries.offsets.BusinessDay.apply
pandas.tseries.offsets.BusinessDay.apply
BusinessDay.apply()#
reference/api/pandas.tseries.offsets.BusinessDay.apply.html
pandas.core.groupby.GroupBy.max
`pandas.core.groupby.GroupBy.max` Compute max of group values.
final GroupBy.max(numeric_only=False, min_count=- 1, engine=None, engine_kwargs=None)[source]# Compute max of group values. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. min_countint, default -1The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Returns Series or DataFrameComputed max of values within each group.
reference/api/pandas.core.groupby.GroupBy.max.html
pandas.Series.plot.box
`pandas.Series.plot.box` Make a box plot of the DataFrame columns. ``` >>> data = np.random.randn(25, 4) >>> df = pd.DataFrame(data, columns=list('ABCD')) >>> ax = df.plot.box() ```
Series.plot.box(by=None, **kwargs)[source]# Make a box plot of the DataFrame columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers. For further details see Wikipedia’s entry for boxplot. A consideration when using this chart is that the box and the whiskers can overlap, which is very common when plotting small sets of data. Parameters bystr or sequenceColumn in the DataFrame to group by. Changed in version 1.4.0: Previously, by is silently ignore and makes no groupings **kwargsAdditional keywords are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or numpy.ndarray of them See also DataFrame.boxplotAnother method to draw a box plot. Series.plot.boxDraw a box plot from a Series object. matplotlib.pyplot.boxplotDraw a box plot in matplotlib. Examples Draw a box plot from a DataFrame with four columns of randomly generated data. >>> data = np.random.randn(25, 4) >>> df = pd.DataFrame(data, columns=list('ABCD')) >>> ax = df.plot.box() You can also generate groupings if you specify the by parameter (which can take a column name, or a list or tuple of column names): Changed in version 1.4.0. >>> age_list = [8, 10, 12, 14, 72, 74, 76, 78, 20, 25, 30, 35, 60, 85] >>> df = pd.DataFrame({"gender": list("MMMMMMMMFFFFFF"), "age": age_list}) >>> ax = df.plot.box(column="age", by="gender", figsize=(10, 8))
reference/api/pandas.Series.plot.box.html
How to create new columns derived from existing columns?
How to create new columns derived from existing columns?
this tutorial: Air quality data For this tutorial, air quality data about \(NO_2\) is used, made available by OpenAQ and using the py-openaq package. The air_quality_no2.csv data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London. To raw data In [2]: air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True) In [3]: air_quality.head() Out[3]: station_antwerp station_paris station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN How to create new columns derived from existing columns?# I want to express the \(NO_2\) concentration of the station in London in mg/m\(^3\). (If we assume temperature of 25 degrees Celsius and pressure of 1013 hPa, the conversion factor is 1.882) In [4]: air_quality["london_mg_per_cubic"] = air_quality["station_london"] * 1.882 In [5]: air_quality.head() Out[5]: station_antwerp ... london_mg_per_cubic datetime ... 2019-05-07 02:00:00 NaN ... 43.286 2019-05-07 03:00:00 50.5 ... 35.758 2019-05-07 04:00:00 45.0 ... 35.758 2019-05-07 05:00:00 NaN ... 30.112 2019-05-07 06:00:00 NaN ... NaN [5 rows x 4 columns] To create a new column, use the [] brackets with the new column name at the left side of the assignment. Note The calculation of the values is done element-wise. This means all values in the given column are multiplied by the value 1.882 at once. You do not need to use a loop to iterate each of the rows! I want to check the ratio of the values in Paris versus Antwerp and save the result in a new column. In [6]: air_quality["ratio_paris_antwerp"] = ( ...: air_quality["station_paris"] / air_quality["station_antwerp"] ...: ) ...: In [7]: air_quality.head() Out[7]: station_antwerp ... ratio_paris_antwerp datetime ... 2019-05-07 02:00:00 NaN ... NaN 2019-05-07 03:00:00 50.5 ... 0.495050 2019-05-07 04:00:00 45.0 ... 0.615556 2019-05-07 05:00:00 NaN ... NaN 2019-05-07 06:00:00 NaN ... NaN [5 rows x 5 columns] The calculation is again element-wise, so the / is applied for the values in each row. Also other mathematical operators (+, -, *, /,…) or logical operators (<, >, ==,…) work element-wise. The latter was already used in the subset data tutorial to filter rows of a table using a conditional expression. If you need more advanced logic, you can use arbitrary Python code via apply(). I want to rename the data columns to the corresponding station identifiers used by OpenAQ. In [8]: air_quality_renamed = air_quality.rename( ...: columns={ ...: "station_antwerp": "BETR801", ...: "station_paris": "FR04014", ...: "station_london": "London Westminster", ...: } ...: ) ...: In [9]: air_quality_renamed.head() Out[9]: BETR801 FR04014 ... london_mg_per_cubic ratio_paris_antwerp datetime ... 2019-05-07 02:00:00 NaN NaN ... 43.286 NaN 2019-05-07 03:00:00 50.5 25.0 ... 35.758 0.495050 2019-05-07 04:00:00 45.0 27.7 ... 35.758 0.615556 2019-05-07 05:00:00 NaN 50.4 ... 30.112 NaN 2019-05-07 06:00:00 NaN 61.9 ... NaN NaN [5 rows x 5 columns] The rename() function can be used for both row labels and column labels. Provide a dictionary with the keys the current names and the values the new names to update the corresponding names. The mapping should not be restricted to fixed names only, but can be a mapping function as well. For example, converting the column names to lowercase letters can be done using a function as well: In [10]: air_quality_renamed = air_quality_renamed.rename(columns=str.lower) In [11]: air_quality_renamed.head() Out[11]: betr801 fr04014 ... london_mg_per_cubic ratio_paris_antwerp datetime ... 2019-05-07 02:00:00 NaN NaN ... 43.286 NaN 2019-05-07 03:00:00 50.5 25.0 ... 35.758 0.495050 2019-05-07 04:00:00 45.0 27.7 ... 35.758 0.615556 2019-05-07 05:00:00 NaN 50.4 ... 30.112 NaN 2019-05-07 06:00:00 NaN 61.9 ... NaN NaN [5 rows x 5 columns] To user guideDetails about column or row label renaming is provided in the user guide section on renaming labels. REMEMBER Create a new column by assigning the output to the DataFrame with a new column name in between the []. Operations are element-wise, no need to loop over rows. Use rename with a dictionary or function to rename row labels or column names. To user guideThe user guide contains a separate section on column addition and deletion.
getting_started/intro_tutorials/05_add_columns.html
pandas.core.window.expanding.Expanding.sem
`pandas.core.window.expanding.Expanding.sem` Calculate the expanding standard error of mean. Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. ``` >>> s = pd.Series([0, 1, 2, 3]) ```
Expanding.sem(ddof=1, numeric_only=False, *args, **kwargs)[source]# Calculate the expanding standard error of mean. Parameters ddofint, default 1Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.semAggregating sem for Series. pandas.DataFrame.semAggregating sem for DataFrame. Notes A minimum of one period is required for the calculation. Examples >>> s = pd.Series([0, 1, 2, 3]) >>> s.expanding().sem() 0 NaN 1 0.707107 2 0.707107 3 0.745356 dtype: float64
reference/api/pandas.core.window.expanding.Expanding.sem.html
pandas.core.window.rolling.Rolling.kurt
`pandas.core.window.rolling.Rolling.kurt` Calculate the rolling Fisher’s definition of kurtosis without bias. ``` >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 ```
Rolling.kurt(numeric_only=False, **kwargs)[source]# Calculate the rolling Fisher’s definition of kurtosis without bias. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also scipy.stats.kurtosisReference SciPy method. pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.kurtAggregating kurt for Series. pandas.DataFrame.kurtAggregating kurt for DataFrame. Notes A minimum of four periods is required for the calculation. Examples The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.kurt.html
pandas.tseries.offsets.QuarterBegin.kwds
`pandas.tseries.offsets.QuarterBegin.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
QuarterBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.QuarterBegin.kwds.html
pandas.tseries.offsets.BQuarterBegin.is_month_end
`pandas.tseries.offsets.BQuarterBegin.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
BQuarterBegin.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.BQuarterBegin.is_month_end.html
pandas.tseries.offsets.BusinessMonthBegin.is_year_start
`pandas.tseries.offsets.BusinessMonthBegin.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
BusinessMonthBegin.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.BusinessMonthBegin.is_year_start.html
pandas.api.types.is_interval
pandas.api.types.is_interval
pandas.api.types.is_interval()#
reference/api/pandas.api.types.is_interval.html
pandas.Timedelta.min
pandas.Timedelta.min
Timedelta.min = Timedelta('-106752 days +00:12:43.145224193')#
reference/api/pandas.Timedelta.min.html
pandas.tseries.offsets.QuarterEnd.is_month_end
`pandas.tseries.offsets.QuarterEnd.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
QuarterEnd.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.QuarterEnd.is_month_end.html
pandas.tseries.offsets.Day.is_year_start
`pandas.tseries.offsets.Day.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Day.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Day.is_year_start.html
pandas.tseries.offsets.Milli.is_anchored
`pandas.tseries.offsets.Milli.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
Milli.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.Milli.is_anchored.html
pandas.DataFrame.asof
`pandas.DataFrame.asof` Return the last row(s) without any NaNs before where. ``` >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64 ```
DataFrame.asof(where, subset=None)[source]# Return the last row(s) without any NaNs before where. The last row (for each element in where, if list) without any NaN is taken. In case of a DataFrame, the last row without NaN considering only the subset of columns (if not None) If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame Parameters wheredate or array-like of datesDate(s) before which the last row(s) are returned. subsetstr or array-like of str, default NoneFor DataFrame, if not None, only use these columns to check for NaNs. Returns scalar, Series, or DataFrameThe return can be: scalar : when self is a Series and where is a scalar Series: when self is a Series and where is an array-like, or when self is a DataFrame and where is a scalar DataFrame : when self is a DataFrame and where is an array-like Return scalar, Series, or DataFrame. See also merge_asofPerform an asof merge. Similar to left join. Notes Dates are assumed to be sorted. Raises if this is not the case. Examples A Series and a scalar where. >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64 >>> s.asof(20) 2.0 For a sequence where, a Series is returned. The first value is NaN, because the first element of where is before the first index value. >>> s.asof([5, 20]) 5 NaN 20 2.0 dtype: float64 Missing values are not considered. The following is 2.0, not NaN, even though NaN is at the index location for 30. >>> s.asof(30) 2.0 Take all columns into consideration >>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50], ... 'b': [None, None, None, None, 500]}, ... index=pd.DatetimeIndex(['2018-02-27 09:01:00', ... '2018-02-27 09:02:00', ... '2018-02-27 09:03:00', ... '2018-02-27 09:04:00', ... '2018-02-27 09:05:00'])) >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30'])) a b 2018-02-27 09:03:30 NaN NaN 2018-02-27 09:04:30 NaN NaN Take a single column into consideration >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30']), ... subset=['a']) a b 2018-02-27 09:03:30 30 NaN 2018-02-27 09:04:30 40 NaN
reference/api/pandas.DataFrame.asof.html
Series
Series Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series). Axes Series.index The index (axis labels) of the Series.
Constructor# Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series). Attributes# Axes Series.index The index (axis labels) of the Series. Series.array The ExtensionArray of the data backing this Series or Index. Series.values Return Series as ndarray or ndarray-like depending on the dtype. Series.dtype Return the dtype object of the underlying data. Series.shape Return a tuple of the shape of the underlying data. Series.nbytes Return the number of bytes in the underlying data. Series.ndim Number of dimensions of the underlying data, by definition 1. Series.size Return the number of elements in the underlying data. Series.T Return the transpose, which is by definition self. Series.memory_usage([index, deep]) Return the memory usage of the Series. Series.hasnans Return True if there are any NaNs. Series.empty Indicator whether Series/DataFrame is empty. Series.dtypes Return the dtype object of the underlying data. Series.name Return the name of the Series. Series.flags Get the properties associated with this pandas object. Series.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# Series.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. Series.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. Series.infer_objects() Attempt to infer better dtypes for object columns. Series.copy([deep]) Make a copy of this object's indices and data. Series.bool() Return the bool of a single element Series or DataFrame. Series.to_numpy([dtype, copy, na_value]) A NumPy ndarray representing the values in this Series or Index. Series.to_period([freq, copy]) Convert Series from DatetimeIndex to PeriodIndex. Series.to_timestamp([freq, how, copy]) Cast to DatetimeIndex of Timestamps, at beginning of period. Series.to_list() Return a list of the values. Series.__array__([dtype]) Return the values as a NumPy array. Indexing, iteration# Series.get(key[, default]) Get item from object for given key (ex: DataFrame column). Series.at Access a single value for a row/column label pair. Series.iat Access a single value for a row/column pair by integer position. Series.loc Access a group of rows and columns by label(s) or a boolean array. Series.iloc Purely integer-location based indexing for selection by position. Series.__iter__() Return an iterator of the values. Series.items() Lazily iterate over (index, value) tuples. Series.iteritems() (DEPRECATED) Lazily iterate over (index, value) tuples. Series.keys() Return alias for index. Series.pop(item) Return item and drops from series. Series.item() Return the first element of the underlying data as a Python scalar. Series.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# Series.add(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator add). Series.sub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator sub). Series.mul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator mul). Series.div(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.truediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.floordiv(other[, level, fill_value, axis]) Return Integer division of series and other, element-wise (binary operator floordiv). Series.mod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator mod). Series.pow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator pow). Series.radd(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator radd). Series.rsub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator rsub). Series.rmul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator rmul). Series.rdiv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rtruediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rfloordiv(other[, level, fill_value, ...]) Return Integer division of series and other, element-wise (binary operator rfloordiv). Series.rmod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator rmod). Series.rpow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator rpow). Series.combine(other, func[, fill_value]) Combine the Series with a Series or scalar according to func. Series.combine_first(other) Update null elements with value in the same location in 'other'. Series.round([decimals]) Round each value in a Series to the given number of decimals. Series.lt(other[, level, fill_value, axis]) Return Less than of series and other, element-wise (binary operator lt). Series.gt(other[, level, fill_value, axis]) Return Greater than of series and other, element-wise (binary operator gt). Series.le(other[, level, fill_value, axis]) Return Less than or equal to of series and other, element-wise (binary operator le). Series.ge(other[, level, fill_value, axis]) Return Greater than or equal to of series and other, element-wise (binary operator ge). Series.ne(other[, level, fill_value, axis]) Return Not equal to of series and other, element-wise (binary operator ne). Series.eq(other[, level, fill_value, axis]) Return Equal to of series and other, element-wise (binary operator eq). Series.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.dot(other) Compute the dot product between the Series and the columns of other. Function application, GroupBy & window# Series.apply(func[, convert_dtype, args]) Invoke function on values of Series. Series.agg([func, axis]) Aggregate using one or more operations over the specified axis. Series.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. Series.transform(func[, axis]) Call func on self producing a Series with the same axis shape as self. Series.map(arg[, na_action]) Map values of Series according to an input mapping or function. Series.groupby([by, axis, level, as_index, ...]) Group Series using a mapper or by a Series of columns. Series.rolling(window[, min_periods, ...]) Provide rolling window calculations. Series.expanding([min_periods, center, ...]) Provide expanding window calculations. Series.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Series.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. Computations / descriptive stats# Series.abs() Return a Series/DataFrame with absolute numeric value of each element. Series.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. Series.any(*[, axis, bool_only, skipna, level]) Return whether any element is True, potentially over an axis. Series.autocorr([lag]) Compute the lag-N autocorrelation. Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right. Series.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). Series.corr(other[, method, min_periods]) Compute correlation with other Series, excluding missing values. Series.count([level]) Return number of non-NA/null observations in the Series. Series.cov(other[, min_periods, ddof]) Compute covariance with Series, excluding missing values. Series.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. Series.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. Series.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. Series.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. Series.describe([percentiles, include, ...]) Generate descriptive statistics. Series.diff([periods]) First discrete difference of element. Series.factorize([sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. Series.kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis. Series.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. Series.max([axis, skipna, level, numeric_only]) Return the maximum of the values over the requested axis. Series.mean([axis, skipna, level, numeric_only]) Return the mean of the values over the requested axis. Series.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. Series.min([axis, skipna, level, numeric_only]) Return the minimum of the values over the requested axis. Series.mode([dropna]) Return the mode(s) of the Series. Series.nlargest([n, keep]) Return the largest n elements. Series.nsmallest([n, keep]) Return the smallest n elements. Series.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. Series.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.quantile([q, interpolation]) Return value at the given quantile. Series.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. Series.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. Series.skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis. Series.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. Series.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. Series.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. Series.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. Series.unique() Return unique values of Series object. Series.nunique([dropna]) Return number of unique elements in the object. Series.is_unique Return boolean if values in the object are unique. Series.is_monotonic (DEPRECATED) Return boolean if values in the object are monotonically increasing. Series.is_monotonic_increasing Return boolean if values in the object are monotonically increasing. Series.is_monotonic_decreasing Return boolean if values in the object are monotonically decreasing. Series.value_counts([normalize, sort, ...]) Return a Series containing counts of unique values. Reindexing / selection / label manipulation# Series.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. Series.drop([labels, axis, index, columns, ...]) Return Series with specified index labels removed. Series.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. Series.drop_duplicates(*[, keep, inplace]) Return Series with duplicate values removed. Series.duplicated([keep]) Indicate duplicate Series values. Series.equals(other) Test whether two objects contain the same elements. Series.first(offset) Select initial periods of time series data based on a date offset. Series.head([n]) Return the first n rows. Series.idxmax([axis, skipna]) Return the row label of the maximum value. Series.idxmin([axis, skipna]) Return the row label of the minimum value. Series.isin(values) Whether elements in Series are contained in values. Series.last(offset) Select final periods of time series data based on a date offset. Series.reindex(*args, **kwargs) Conform Series to new index with optional filling logic. Series.reindex_like(other[, method, copy, ...]) Return an object with matching indices as other object. Series.rename([index, axis, copy, inplace, ...]) Alter Series index labels or name. Series.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. Series.reset_index([level, drop, name, ...]) Generate a new DataFrame or Series with the index reset. Series.sample([n, frac, replace, weights, ...]) Return a random sample of items from an axis of object. Series.set_axis(labels, *[, axis, inplace, copy]) Assign desired index to given axis. Series.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. Series.tail([n]) Return the last n rows. Series.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Series.where(cond[, other, inplace, axis, ...]) Replace values where the condition is False. Series.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. Series.add_prefix(prefix) Prefix labels with string prefix. Series.add_suffix(suffix) Suffix labels with string suffix. Series.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. Missing data handling# Series.backfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. Series.bfill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='bfill'. Series.dropna(*[, axis, inplace, how]) Return a new Series with missing values removed. Series.ffill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. Series.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. Series.isna() Detect missing values. Series.isnull() Series.isnull is an alias for Series.isna. Series.notna() Detect existing (non-missing) values. Series.notnull() Series.notnull is an alias for Series.notna. Series.pad(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.replace([to_replace, value, inplace, ...]) Replace values given in to_replace with value. Reshaping, sorting# Series.argsort([axis, kind, order]) Return the integer indices that would sort the Series values. Series.argmin([axis, skipna]) Return int position of the smallest value in the Series. Series.argmax([axis, skipna]) Return int position of the largest value in the Series. Series.reorder_levels(order) Rearrange index levels using input order. Series.sort_values(*[, axis, ascending, ...]) Sort by the values. Series.sort_index(*[, axis, level, ...]) Sort Series by index labels. Series.swaplevel([i, j, copy]) Swap levels i and j in a MultiIndex. Series.unstack([level, fill_value]) Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. Series.explode([ignore_index]) Transform each element of a list-like to a row. Series.searchsorted(value[, side, sorter]) Find indices where elements should be inserted to maintain order. Series.ravel([order]) Return the flattened underlying data as an ndarray. Series.repeat(repeats[, axis]) Repeat elements of a Series. Series.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. Series.view([dtype]) Create a new view of the Series. Combining / comparing / joining / merging# Series.append(to_append[, ignore_index, ...]) (DEPRECATED) Concatenate two or more Series. Series.compare(other[, align_axis, ...]) Compare to another Series and show the differences. Series.update(other) Modify Series in place using values from passed Series. Time Series-related# Series.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. Series.asof(where[, subset]) Return the last row(s) without any NaNs before where. Series.shift([periods, freq, axis, fill_value]) Shift index by desired number of periods with an optional time freq. Series.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. Series.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. Series.resample(rule[, axis, closed, label, ...]) Resample time-series data. Series.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. Series.tz_localize(tz[, axis, level, copy, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Series.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). Series.between_time(start_time, end_time[, ...]) Select values between particular times of the day (e.g., 9:00-9:30 AM). Series.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. Series.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. Accessors# pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series that only apply to specific data types. Data Type Accessor Datetime, Timedelta, Period dt String str Categorical cat Sparse sparse Datetimelike properties# Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like Series.dt.<property>. Datetime properties# Series.dt.date Returns numpy array of python datetime.date objects. Series.dt.time Returns numpy array of datetime.time objects. Series.dt.timetz Returns numpy array of datetime.time objects with timezones. Series.dt.year The year of the datetime. Series.dt.month The month as January=1, December=12. Series.dt.day The day of the datetime. Series.dt.hour The hours of the datetime. Series.dt.minute The minutes of the datetime. Series.dt.second The seconds of the datetime. Series.dt.microsecond The microseconds of the datetime. Series.dt.nanosecond The nanoseconds of the datetime. Series.dt.week (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.weekofyear (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.dayofweek The day of the week with Monday=0, Sunday=6. Series.dt.day_of_week The day of the week with Monday=0, Sunday=6. Series.dt.weekday The day of the week with Monday=0, Sunday=6. Series.dt.dayofyear The ordinal day of the year. Series.dt.day_of_year The ordinal day of the year. Series.dt.quarter The quarter of the date. Series.dt.is_month_start Indicates whether the date is the first day of the month. Series.dt.is_month_end Indicates whether the date is the last day of the month. Series.dt.is_quarter_start Indicator for whether the date is the first day of a quarter. Series.dt.is_quarter_end Indicator for whether the date is the last day of a quarter. Series.dt.is_year_start Indicate whether the date is the first day of a year. Series.dt.is_year_end Indicate whether the date is the last day of the year. Series.dt.is_leap_year Boolean indicator if the date belongs to a leap year. Series.dt.daysinmonth The number of days in the month. Series.dt.days_in_month The number of days in the month. Series.dt.tz Return the timezone. Series.dt.freq Return the frequency object for this PeriodArray. Datetime methods# Series.dt.isocalendar() Calculate year, week, and day according to the ISO 8601 standard. Series.dt.to_period(*args, **kwargs) Cast to PeriodArray/Index at a particular frequency. Series.dt.to_pydatetime() Return the data as an array of datetime.datetime objects. Series.dt.tz_localize(*args, **kwargs) Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. Series.dt.tz_convert(*args, **kwargs) Convert tz-aware Datetime Array/Index from one time zone to another. Series.dt.normalize(*args, **kwargs) Convert times to midnight. Series.dt.strftime(*args, **kwargs) Convert to Index using specified date_format. Series.dt.round(*args, **kwargs) Perform round operation on the data to the specified freq. Series.dt.floor(*args, **kwargs) Perform floor operation on the data to the specified freq. Series.dt.ceil(*args, **kwargs) Perform ceil operation on the data to the specified freq. Series.dt.month_name(*args, **kwargs) Return the month names with specified locale. Series.dt.day_name(*args, **kwargs) Return the day names with specified locale. Period properties# Series.dt.qyear Series.dt.start_time Get the Timestamp for the start of the period. Series.dt.end_time Get the Timestamp for the end of the period. Timedelta properties# Series.dt.days Number of days for each element. Series.dt.seconds Number of seconds (>= 0 and less than 1 day) for each element. Series.dt.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. Series.dt.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Series.dt.components Return a Dataframe of the components of the Timedeltas. Timedelta methods# Series.dt.to_pytimedelta() Return an array of native datetime.timedelta objects. Series.dt.total_seconds(*args, **kwargs) Return total duration of each element expressed in seconds. String handling# Series.str can be used to access the values of the series as strings and apply several methods to it. These can be accessed like Series.str.<function/property>. Series.str.capitalize() Convert strings in the Series/Index to be capitalized. Series.str.casefold() Convert strings in the Series/Index to be casefolded. Series.str.cat([others, sep, na_rep, join]) Concatenate strings in the Series/Index with given separator. Series.str.center(width[, fillchar]) Pad left and right side of strings in the Series/Index. Series.str.contains(pat[, case, flags, na, ...]) Test if pattern or regex is contained within a string of a Series or Index. Series.str.count(pat[, flags]) Count occurrences of pattern in each string of the Series/Index. Series.str.decode(encoding[, errors]) Decode character string in the Series/Index using indicated encoding. Series.str.encode(encoding[, errors]) Encode character string in the Series/Index using indicated encoding. Series.str.endswith(pat[, na]) Test if the end of each string element matches a pattern. Series.str.extract(pat[, flags, expand]) Extract capture groups in the regex pat as columns in a DataFrame. Series.str.extractall(pat[, flags]) Extract capture groups in the regex pat as columns in DataFrame. Series.str.find(sub[, start, end]) Return lowest indexes in each strings in the Series/Index. Series.str.findall(pat[, flags]) Find all occurrences of pattern or regular expression in the Series/Index. Series.str.fullmatch(pat[, case, flags, na]) Determine if each string entirely matches a regular expression. Series.str.get(i) Extract element from each component at specified position or with specified key. Series.str.index(sub[, start, end]) Return lowest indexes in each string in Series/Index. Series.str.join(sep) Join lists contained as elements in the Series/Index with passed delimiter. Series.str.len() Compute the length of each element in the Series/Index. Series.str.ljust(width[, fillchar]) Pad right side of strings in the Series/Index. Series.str.lower() Convert strings in the Series/Index to lowercase. Series.str.lstrip([to_strip]) Remove leading characters. Series.str.match(pat[, case, flags, na]) Determine if each string starts with a match of a regular expression. Series.str.normalize(form) Return the Unicode normal form for the strings in the Series/Index. Series.str.pad(width[, side, fillchar]) Pad strings in the Series/Index up to width. Series.str.partition([sep, expand]) Split the string at the first occurrence of sep. Series.str.removeprefix(prefix) Remove a prefix from an object series. Series.str.removesuffix(suffix) Remove a suffix from an object series. Series.str.repeat(repeats) Duplicate each string in the Series or Index. Series.str.replace(pat, repl[, n, case, ...]) Replace each occurrence of pattern/regex in the Series/Index. Series.str.rfind(sub[, start, end]) Return highest indexes in each strings in the Series/Index. Series.str.rindex(sub[, start, end]) Return highest indexes in each string in Series/Index. Series.str.rjust(width[, fillchar]) Pad left side of strings in the Series/Index. Series.str.rpartition([sep, expand]) Split the string at the last occurrence of sep. Series.str.rstrip([to_strip]) Remove trailing characters. Series.str.slice([start, stop, step]) Slice substrings from each element in the Series or Index. Series.str.slice_replace([start, stop, repl]) Replace a positional slice of a string with another value. Series.str.split([pat, n, expand, regex]) Split strings around given separator/delimiter. Series.str.rsplit([pat, n, expand]) Split strings around given separator/delimiter. Series.str.startswith(pat[, na]) Test if the start of each string element matches a pattern. Series.str.strip([to_strip]) Remove leading and trailing characters. Series.str.swapcase() Convert strings in the Series/Index to be swapcased. Series.str.title() Convert strings in the Series/Index to titlecase. Series.str.translate(table) Map all characters in the string through the given mapping table. Series.str.upper() Convert strings in the Series/Index to uppercase. Series.str.wrap(width, **kwargs) Wrap strings in Series/Index at specified line width. Series.str.zfill(width) Pad strings in the Series/Index by prepending '0' characters. Series.str.isalnum() Check whether all characters in each string are alphanumeric. Series.str.isalpha() Check whether all characters in each string are alphabetic. Series.str.isdigit() Check whether all characters in each string are digits. Series.str.isspace() Check whether all characters in each string are whitespace. Series.str.islower() Check whether all characters in each string are lowercase. Series.str.isupper() Check whether all characters in each string are uppercase. Series.str.istitle() Check whether all characters in each string are titlecase. Series.str.isnumeric() Check whether all characters in each string are numeric. Series.str.isdecimal() Check whether all characters in each string are decimal. Series.str.get_dummies([sep]) Return DataFrame of dummy/indicator variables for Series. Categorical accessor# Categorical-dtype specific methods and attributes are available under the Series.cat accessor. Series.cat.categories The categories of this categorical. Series.cat.ordered Whether the categories have an ordered relationship. Series.cat.codes Return Series of codes as well as the index. Series.cat.rename_categories(*args, **kwargs) Rename categories. Series.cat.reorder_categories(*args, **kwargs) Reorder categories as specified in new_categories. Series.cat.add_categories(*args, **kwargs) Add new categories. Series.cat.remove_categories(*args, **kwargs) Remove the specified categories. Series.cat.remove_unused_categories(*args, ...) Remove categories which are not used. Series.cat.set_categories(*args, **kwargs) Set the categories to the specified new_categories. Series.cat.as_ordered(*args, **kwargs) Set the Categorical to be ordered. Series.cat.as_unordered(*args, **kwargs) Set the Categorical to be unordered. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the Series.sparse accessor. Series.sparse.npoints The number of non- fill_value points. Series.sparse.density The percent of non- fill_value points, as decimal. Series.sparse.fill_value Elements in data that are fill_value are not stored. Series.sparse.sp_values An ndarray containing the non- fill_value values. Series.sparse.from_coo(A[, dense_index]) Create a Series with sparse values from a scipy.sparse.coo_matrix. Series.sparse.to_coo([row_levels, ...]) Create a scipy.sparse.coo_matrix from a Series with MultiIndex. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in Series.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# Series.attrs is a dictionary for storing global metadata for this Series. Warning Series.attrs is considered experimental and may change without warning. Series.attrs Dictionary of global attributes of this dataset. Plotting# Series.plot is both a callable method and a namespace attribute for specific plotting methods of the form Series.plot.<kind>. Series.plot([kind, ax, figsize, ....]) Series plotting accessor and method Series.plot.area([x, y]) Draw a stacked area plot. Series.plot.bar([x, y]) Vertical bar plot. Series.plot.barh([x, y]) Make a horizontal bar plot. Series.plot.box([by]) Make a box plot of the DataFrame columns. Series.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. Series.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.line([x, y]) Plot Series or DataFrame as lines. Series.plot.pie(**kwargs) Generate a pie plot. Series.hist([by, ax, grid, xlabelsize, ...]) Draw histogram of the input series using matplotlib. Serialization / IO / conversion# Series.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Series.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. Series.to_dict([into]) Convert Series to {label -> value} dict or dict-like object. Series.to_excel(excel_writer[, sheet_name, ...]) Write object to an Excel sheet. Series.to_frame([name]) Convert Series to DataFrame. Series.to_xarray() Return an xarray object from the pandas object. Series.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. Series.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Series.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. Series.to_string([buf, na_rep, ...]) Render a string representation of the Series. Series.to_clipboard([excel, sep]) Copy object to the system clipboard. Series.to_latex([buf, columns, col_space, ...]) Render object to a LaTeX tabular, longtable, or nested table. Series.to_markdown([buf, mode, index, ...]) Print Series in Markdown-friendly format.
reference/series.html
pandas.tseries.offsets.BYearBegin.normalize
pandas.tseries.offsets.BYearBegin.normalize
BYearBegin.normalize#
reference/api/pandas.tseries.offsets.BYearBegin.normalize.html
pandas.tseries.offsets.DateOffset.kwds
`pandas.tseries.offsets.DateOffset.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
DateOffset.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.DateOffset.kwds.html
pandas.tseries.offsets.YearEnd.month
pandas.tseries.offsets.YearEnd.month
YearEnd.month#
reference/api/pandas.tseries.offsets.YearEnd.month.html
pandas.Series.filter
`pandas.Series.filter` Subset the dataframe rows or columns according to the specified index labels. ``` >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> df one two three mouse 1 2 3 rabbit 4 5 6 ```
Series.filter(items=None, like=None, regex=None, axis=None)[source]# Subset the dataframe rows or columns according to the specified index labels. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters itemslist-likeKeep labels from axis which are in items. likestrKeep labels from axis for which “like in label == True”. regexstr (regular expression)Keep labels from axis for which re.search(regex, label) == True. axis{0 or ‘index’, 1 or ‘columns’, None}, default NoneThe axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, ‘columns’ for DataFrame. For Series this parameter is unused and defaults to None. Returns same type as input object See also DataFrame.locAccess a group of rows and columns by label(s) or a boolean array. Notes The items, like, and regex parameters are enforced to be mutually exclusive. axis defaults to the info axis that is used when indexing with []. Examples >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> df one two three mouse 1 2 3 rabbit 4 5 6 >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6
reference/api/pandas.Series.filter.html
pandas.DataFrame.to_xarray
`pandas.DataFrame.to_xarray` Return an xarray object from the pandas object. Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. ``` >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 ```
DataFrame.to_xarray()[source]# Return an xarray object from the pandas object. Returns xarray.DataArray or xarray.DatasetData in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See also DataFrame.to_hdfWrite DataFrame to an HDF5 file. DataFrame.to_parquetWrite a DataFrame to the binary parquet format. Notes See the xarray docs Examples >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', ... 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df_multiindex = df_multiindex.set_index(['date', 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (date: 2, animal: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15
reference/api/pandas.DataFrame.to_xarray.html
DataFrame
DataFrame
Constructor# DataFrame([data, index, columns, dtype, copy]) Two-dimensional, size-mutable, potentially heterogeneous tabular data. Attributes and underlying data# Axes DataFrame.index The index (row labels) of the DataFrame. DataFrame.columns The column labels of the DataFrame. DataFrame.dtypes Return the dtypes in the DataFrame. DataFrame.info([verbose, buf, max_cols, ...]) Print a concise summary of a DataFrame. DataFrame.select_dtypes([include, exclude]) Return a subset of the DataFrame's columns based on the column dtypes. DataFrame.values Return a Numpy representation of the DataFrame. DataFrame.axes Return a list representing the axes of the DataFrame. DataFrame.ndim Return an int representing the number of axes / array dimensions. DataFrame.size Return an int representing the number of elements in this object. DataFrame.shape Return a tuple representing the dimensionality of the DataFrame. DataFrame.memory_usage([index, deep]) Return the memory usage of each column in bytes. DataFrame.empty Indicator whether Series/DataFrame is empty. DataFrame.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# DataFrame.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. DataFrame.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. DataFrame.infer_objects() Attempt to infer better dtypes for object columns. DataFrame.copy([deep]) Make a copy of this object's indices and data. DataFrame.bool() Return the bool of a single element Series or DataFrame. Indexing, iteration# DataFrame.head([n]) Return the first n rows. DataFrame.at Access a single value for a row/column label pair. DataFrame.iat Access a single value for a row/column pair by integer position. DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc Purely integer-location based indexing for selection by position. DataFrame.insert(loc, column, value[, ...]) Insert column into DataFrame at specified location. DataFrame.__iter__() Iterate over info axis. DataFrame.items() Iterate over (column name, Series) pairs. DataFrame.iteritems() (DEPRECATED) Iterate over (column name, Series) pairs. DataFrame.keys() Get the 'info axis' (see Indexing for more). DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples. DataFrame.lookup(row_labels, col_labels) (DEPRECATED) Label-based "fancy indexing" function for DataFrame. DataFrame.pop(item) Return item and drop from frame. DataFrame.tail([n]) Return the last n rows. DataFrame.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. DataFrame.get(key[, default]) Get item from object for given key (ex: DataFrame column). DataFrame.isin(values) Whether each element in the DataFrame is contained in values. DataFrame.where(cond[, other, inplace, ...]) Replace values where the condition is False. DataFrame.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. DataFrame.query(expr, *[, inplace]) Query the columns of a DataFrame with a boolean expression. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# DataFrame.add(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator add). DataFrame.sub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator sub). DataFrame.mul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator mul). DataFrame.div(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.truediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.floordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator floordiv). DataFrame.mod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator mod). DataFrame.pow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator pow). DataFrame.dot(other) Compute the matrix multiplication between the DataFrame and other. DataFrame.radd(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator radd). DataFrame.rsub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator rsub). DataFrame.rmul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator rmul). DataFrame.rdiv(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rtruediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rfloordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). DataFrame.rmod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator rmod). DataFrame.rpow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator rpow). DataFrame.lt(other[, axis, level]) Get Less than of dataframe and other, element-wise (binary operator lt). DataFrame.gt(other[, axis, level]) Get Greater than of dataframe and other, element-wise (binary operator gt). DataFrame.le(other[, axis, level]) Get Less than or equal to of dataframe and other, element-wise (binary operator le). DataFrame.ge(other[, axis, level]) Get Greater than or equal to of dataframe and other, element-wise (binary operator ge). DataFrame.ne(other[, axis, level]) Get Not equal to of dataframe and other, element-wise (binary operator ne). DataFrame.eq(other[, axis, level]) Get Equal to of dataframe and other, element-wise (binary operator eq). DataFrame.combine(other, func[, fill_value, ...]) Perform column-wise combine with another DataFrame. DataFrame.combine_first(other) Update null elements with value in the same location in other. Function application, GroupBy & window# DataFrame.apply(func[, axis, raw, ...]) Apply a function along an axis of the DataFrame. DataFrame.applymap(func[, na_action]) Apply a function to a Dataframe elementwise. DataFrame.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. DataFrame.agg([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.transform(func[, axis]) Call func on self producing a DataFrame with the same axis shape as self. DataFrame.groupby([by, axis, level, ...]) Group DataFrame using a mapper or by a Series of columns. DataFrame.rolling(window[, min_periods, ...]) Provide rolling window calculations. DataFrame.expanding([min_periods, center, ...]) Provide expanding window calculations. DataFrame.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Computations / descriptive stats# DataFrame.abs() Return a Series/DataFrame with absolute numeric value of each element. DataFrame.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. DataFrame.any(*[, axis, bool_only, skipna, ...]) Return whether any element is True, potentially over an axis. DataFrame.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). DataFrame.corr([method, min_periods, ...]) Compute pairwise correlation of columns, excluding NA/null values. DataFrame.corrwith(other[, axis, drop, ...]) Compute pairwise correlation. DataFrame.count([axis, level, numeric_only]) Count non-NA cells for each column or row. DataFrame.cov([min_periods, ddof, numeric_only]) Compute pairwise covariance of columns, excluding NA/null values. DataFrame.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. DataFrame.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. DataFrame.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. DataFrame.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. DataFrame.describe([percentiles, include, ...]) Generate descriptive statistics. DataFrame.diff([periods, axis]) First discrete difference of element. DataFrame.eval(expr, *[, inplace]) Evaluate a string describing operations on DataFrame columns. DataFrame.kurt([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. DataFrame.max([axis, skipna, level, ...]) Return the maximum of the values over the requested axis. DataFrame.mean([axis, skipna, level, ...]) Return the mean of the values over the requested axis. DataFrame.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. DataFrame.min([axis, skipna, level, ...]) Return the minimum of the values over the requested axis. DataFrame.mode([axis, numeric_only, dropna]) Get the mode(s) of each element along the selected axis. DataFrame.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. DataFrame.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.quantile([q, axis, numeric_only, ...]) Return values at the given quantile over requested axis. DataFrame.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal places. DataFrame.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. DataFrame.skew([axis, skipna, level, ...]) Return unbiased skew over requested axis. DataFrame.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. DataFrame.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. DataFrame.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. DataFrame.nunique([axis, dropna]) Count number of distinct elements in specified axis. DataFrame.value_counts([subset, normalize, ...]) Return a Series containing counts of unique rows in the DataFrame. Reindexing / selection / label manipulation# DataFrame.add_prefix(prefix) Prefix labels with string prefix. DataFrame.add_suffix(suffix) Suffix labels with string suffix. DataFrame.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. DataFrame.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). DataFrame.between_time(start_time, end_time) Select values between particular times of the day (e.g., 9:00-9:30 AM). DataFrame.drop([labels, axis, index, ...]) Drop specified labels from rows or columns. DataFrame.drop_duplicates([subset, keep, ...]) Return DataFrame with duplicate rows removed. DataFrame.duplicated([subset, keep]) Return boolean Series denoting duplicate rows. DataFrame.equals(other) Test whether two objects contain the same elements. DataFrame.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. DataFrame.first(offset) Select initial periods of time series data based on a date offset. DataFrame.head([n]) Return the first n rows. DataFrame.idxmax([axis, skipna, numeric_only]) Return index of first occurrence of maximum over requested axis. DataFrame.idxmin([axis, skipna, numeric_only]) Return index of first occurrence of minimum over requested axis. DataFrame.last(offset) Select final periods of time series data based on a date offset. DataFrame.reindex([labels, index, columns, ...]) Conform Series/DataFrame to new index with optional filling logic. DataFrame.reindex_like(other[, method, ...]) Return an object with matching indices as other object. DataFrame.rename([mapper, index, columns, ...]) Alter axes labels. DataFrame.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. DataFrame.reset_index([level, drop, ...]) Reset the index, or a level of it. DataFrame.sample([n, frac, replace, ...]) Return a random sample of items from an axis of object. DataFrame.set_axis(labels, *[, axis, ...]) Assign desired index to given axis. DataFrame.set_index(keys, *[, drop, append, ...]) Set the DataFrame index using existing columns. DataFrame.tail([n]) Return the last n rows. DataFrame.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. DataFrame.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Missing data handling# DataFrame.backfill(*[, axis, inplace, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.bfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.dropna(*[, axis, how, thresh, ...]) Remove missing values. DataFrame.ffill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. DataFrame.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. DataFrame.isna() Detect missing values. DataFrame.isnull() DataFrame.isnull is an alias for DataFrame.isna. DataFrame.notna() Detect existing (non-missing) values. DataFrame.notnull() DataFrame.notnull is an alias for DataFrame.notna. DataFrame.pad(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.replace([to_replace, value, ...]) Replace values given in to_replace with value. Reshaping, sorting, transposing# DataFrame.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. DataFrame.pivot(*[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. DataFrame.pivot_table([values, index, ...]) Create a spreadsheet-style pivot table as a DataFrame. DataFrame.reorder_levels(order[, axis]) Rearrange index levels using input order. DataFrame.sort_values(by, *[, axis, ...]) Sort by the values along either axis. DataFrame.sort_index(*[, axis, level, ...]) Sort object by labels (along an axis). DataFrame.nlargest(n, columns[, keep]) Return the first n rows ordered by columns in descending order. DataFrame.nsmallest(n, columns[, keep]) Return the first n rows ordered by columns in ascending order. DataFrame.swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex. DataFrame.stack([level, dropna]) Stack the prescribed level(s) from columns to index. DataFrame.unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index labels. DataFrame.swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately. DataFrame.melt([id_vars, value_vars, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. DataFrame.explode(column[, ignore_index]) Transform each element of a list-like to a row, replicating index values. DataFrame.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. DataFrame.to_xarray() Return an xarray object from the pandas object. DataFrame.T DataFrame.transpose(*args[, copy]) Transpose index and columns. Combining / comparing / joining / merging# DataFrame.append(other[, ignore_index, ...]) (DEPRECATED) Append rows of other to the end of caller, returning a new object. DataFrame.assign(**kwargs) Assign new columns to a DataFrame. DataFrame.compare(other[, align_axis, ...]) Compare to another DataFrame and show the differences. DataFrame.join(other[, on, how, lsuffix, ...]) Join columns of another DataFrame. DataFrame.merge(right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. DataFrame.update(other[, join, overwrite, ...]) Modify in place using non-NA values from another DataFrame. Time Series-related# DataFrame.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. DataFrame.asof(where[, subset]) Return the last row(s) without any NaNs before where. DataFrame.shift([periods, freq, axis, ...]) Shift index by desired number of periods with an optional time freq. DataFrame.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. DataFrame.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. DataFrame.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. DataFrame.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. DataFrame.resample(rule[, axis, closed, ...]) Resample time-series data. DataFrame.to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIndex. DataFrame.to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning of period. DataFrame.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. DataFrame.tz_localize(tz[, axis, level, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in DataFrame.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# DataFrame.attrs is a dictionary for storing global metadata for this DataFrame. Warning DataFrame.attrs is considered experimental and may change without warning. DataFrame.attrs Dictionary of global attributes of this dataset. Plotting# DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form DataFrame.plot.<kind>. DataFrame.plot([x, y, kind, ax, ....]) DataFrame plotting accessor and method DataFrame.plot.area([x, y]) Draw a stacked area plot. DataFrame.plot.bar([x, y]) Vertical bar plot. DataFrame.plot.barh([x, y]) Make a horizontal bar plot. DataFrame.plot.box([by]) Make a box plot of the DataFrame columns. DataFrame.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.hexbin(x, y[, C, ...]) Generate a hexagonal binning plot. DataFrame.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. DataFrame.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.line([x, y]) Plot Series or DataFrame as lines. DataFrame.plot.pie(**kwargs) Generate a pie plot. DataFrame.plot.scatter(x, y[, s, c]) Create a scatter plot with varying marker point size and color. DataFrame.boxplot([column, by, ax, ...]) Make a box plot from DataFrame columns. DataFrame.hist([column, by, grid, ...]) Make a histogram of the DataFrame's columns. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor. DataFrame.sparse.density Ratio of non-sparse points to total (dense) data points. DataFrame.sparse.from_spmatrix(data[, ...]) Create a new DataFrame from a scipy sparse matrix. DataFrame.sparse.to_coo() Return the contents of the frame as a sparse SciPy COO matrix. DataFrame.sparse.to_dense() Convert a DataFrame with sparse values to dense. Serialization / IO / conversion# DataFrame.from_dict(data[, orient, dtype, ...]) Construct DataFrame from dict of array-like or dicts. DataFrame.from_records(data[, index, ...]) Convert structured or record ndarray to DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. DataFrame.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. DataFrame.to_dict([orient, into]) Convert the DataFrame to a dictionary. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. DataFrame.to_gbq(destination_table[, ...]) Write a DataFrame to a Google BigQuery table. DataFrame.to_records([index, column_dtypes, ...]) Convert DataFrame to a NumPy record array. DataFrame.to_string([buf, columns, ...]) Render a DataFrame to a console-friendly tabular output. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. DataFrame.to_markdown([buf, mode, index, ...]) Print DataFrame in Markdown-friendly format. DataFrame.style Returns a Styler object. DataFrame.__dataframe__([nan_as_null, ...]) Return the dataframe interchange object implementing the interchange protocol.
reference/frame.html
pandas.DataFrame.replace
`pandas.DataFrame.replace` Replace values given in to_replace with value. ``` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 ```
DataFrame.replace(to_replace=None, value=_NoDefault.no_default, *, inplace=False, limit=None, regex=False, method=_NoDefault.no_default)[source]# Replace values given in to_replace with value. Values of the DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value. Parameters to_replacestr, regex, list, dict, Series, int, float, or NoneHow to find the values that will be replaced. numeric, str or regex: numeric: numeric values equal to to_replace will be replaced with value str: string exactly matching to_replace will be replaced with value regex: regexs matching to_replace will be replaced with value list of str, regex, or numeric: First, if to_replace and value are both lists, they must be the same length. Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. str, regex and numeric rules apply as above. dict: Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way, the optional value parameter should not be given. For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not be None in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The optional value parameter should not be specified to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. None: This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. valuescalar, dict, list, str, regex, default NoneValue to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplacebool, default FalseWhether to modify the DataFrame rather than creating a new one. limitint, default NoneMaximum size gap to forward or backward fill. regexbool or same types as to_replace, default FalseWhether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None. method{‘pad’, ‘ffill’, ‘bfill’}The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None. Changed in version 0.23.0: Added to DataFrame. Returns DataFrameObject after replacement. Raises AssertionError If regex is not a bool and to_replace is not None. TypeError If to_replace is not a scalar, array-like, dict, or None If to_replace is a dict and value is not a list, dict, ndarray, or Series If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced ValueError If a list or an ndarray is passed to to_replace and value but they are not the same length. See also DataFrame.fillnaFill NA values. DataFrame.whereReplace values based on boolean condition. Series.str.replaceSimple string replacement. Notes Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples Scalar `to_replace` and `value` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e List-like `to_replace` >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 3 1 3 2 3 3 4 4 5 dtype: int64 dict-like `to_replace` >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e Regular expression `to_replace` >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to understand the peculiarities of the to_replace parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None}, value=None, method=None): >>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object When value is not explicitly passed and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case. >>> s.replace('a') 0 10 1 10 2 10 3 b 4 b dtype: object On the other hand, if None is explicitly passed for value, it will be respected: >>> s.replace('a', None) 0 10 1 None 2 None 3 b 4 None dtype: object Changed in version 1.4.0: Previously the explicit None was silently ignored.
reference/api/pandas.DataFrame.replace.html
pandas.HDFStore.append
`pandas.HDFStore.append` Append to Table in file.
HDFStore.append(key, value, format=None, axes=None, index=True, append=True, complib=None, complevel=None, columns=None, min_itemsize=None, nan_rep=None, chunksize=None, expectedrows=None, dropna=None, data_columns=None, encoding=None, errors='strict')[source]# Append to Table in file. Node must already exist and be Table format. Parameters keystr value{Series, DataFrame} format‘table’ is the defaultFormat to use when storing object in HDFStore. Value can be one of: 'table'Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. indexbool, default TrueWrite DataFrame index as a column. appendbool, default TrueAppend the input data to the existing. data_columnslist of columns, or True, default NoneList of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here. min_itemsizedict of columns that specify minimum str sizes nan_repstr to use as str nan representation chunksizesize to chunk the writing expectedrowsexpected TOTAL row size of this table encodingdefault None, provide an encoding for str dropnabool, default False, optionalDo not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’. Notes Does not check if data being appended overlaps with existing data in the table, so be careful
reference/api/pandas.HDFStore.append.html
pandas.tseries.offsets.Micro.delta
pandas.tseries.offsets.Micro.delta
Micro.delta#
reference/api/pandas.tseries.offsets.Micro.delta.html
pandas.Series.cummin
`pandas.Series.cummin` Return cumulative minimum over a DataFrame or Series axis. ``` >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 ```
Series.cummin(axis=None, skipna=True, *args, **kwargs)[source]# Return cumulative minimum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative minimum. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargsAdditional keywords have no effect but might be accepted for compatibility with NumPy. Returns scalar or SeriesReturn cumulative minimum of scalar or Series. See also core.window.expanding.Expanding.minSimilar functionality but ignores NaN values. Series.minReturn the minimum over Series axis. Series.cummaxReturn cumulative maximum over Series axis. Series.cumminReturn cumulative minimum over Series axis. Series.cumsumReturn cumulative sum over Series axis. Series.cumprodReturn cumulative product over Series axis. Examples Series >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 To include NA values in the operation, use skipna=False >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 DataFrame >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis='index'. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 To iterate over columns and find the minimum in each row, use axis=1 >>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
reference/api/pandas.Series.cummin.html
pandas.tseries.offsets.Hour.is_quarter_end
`pandas.tseries.offsets.Hour.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
Hour.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.Hour.is_quarter_end.html
pandas.tseries.offsets.MonthEnd.is_anchored
`pandas.tseries.offsets.MonthEnd.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
MonthEnd.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.MonthEnd.is_anchored.html
pandas.tseries.offsets.Nano.is_quarter_start
`pandas.tseries.offsets.Nano.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
Nano.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.Nano.is_quarter_start.html
pandas.tseries.offsets.BQuarterBegin.isAnchored
pandas.tseries.offsets.BQuarterBegin.isAnchored
BQuarterBegin.isAnchored()#
reference/api/pandas.tseries.offsets.BQuarterBegin.isAnchored.html
pandas.tseries.offsets.YearEnd.nanos
pandas.tseries.offsets.YearEnd.nanos
YearEnd.nanos#
reference/api/pandas.tseries.offsets.YearEnd.nanos.html
pandas.tseries.offsets.CustomBusinessHour.apply
pandas.tseries.offsets.CustomBusinessHour.apply
CustomBusinessHour.apply()#
reference/api/pandas.tseries.offsets.CustomBusinessHour.apply.html
pandas.BooleanDtype
`pandas.BooleanDtype` Extension dtype for boolean data. ``` >>> pd.BooleanDtype() BooleanDtype ```
class pandas.BooleanDtype[source]# Extension dtype for boolean data. New in version 1.0.0. Warning BooleanDtype is considered experimental. The implementation and parts of the API may change without warning. Examples >>> pd.BooleanDtype() BooleanDtype Attributes None Methods None
reference/api/pandas.BooleanDtype.html
pandas.Series.str.isnumeric
`pandas.Series.str.isnumeric` Check whether all characters in each string are numeric. This is equivalent to running the Python string method str.isnumeric() for each element of the Series/Index. If a string has zero characters, False is returned for that check. ``` >>> s1 = pd.Series(['one', 'one1', '1', '']) ```
Series.str.isnumeric()[source]# Check whether all characters in each string are numeric. This is equivalent to running the Python string method str.isnumeric() for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns Series or Index of boolSeries or Index of boolean values with the same length as the original Series/Index. See also Series.str.isalphaCheck whether all characters are alphabetic. Series.str.isnumericCheck whether all characters are numeric. Series.str.isalnumCheck whether all characters are alphanumeric. Series.str.isdigitCheck whether all characters are digits. Series.str.isdecimalCheck whether all characters are decimal. Series.str.isspaceCheck whether all characters are whitespace. Series.str.islowerCheck whether all characters are lowercase. Series.str.isupperCheck whether all characters are uppercase. Series.str.istitleCheck whether all characters are titlecase. Examples Checks for Alphabetic and Numeric Characters >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool More Detailed Checks for Numeric Characters There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The s.str.isdigit method is the same as s3.str.isdecimal but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The s.str.isnumeric method is the same as s3.str.isdigit but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool Checks for Whitespace >>> s4 = pd.Series([' ', '\t\r\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool Checks for Character Case >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The s5.str.istitle method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool
reference/api/pandas.Series.str.isnumeric.html
pandas.tseries.offsets.CustomBusinessMonthEnd.rollback
`pandas.tseries.offsets.CustomBusinessMonthEnd.rollback` Roll provided date backward to next offset only if not on offset.
CustomBusinessMonthEnd.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.rollback.html
pandas.tseries.offsets.YearBegin.rule_code
pandas.tseries.offsets.YearBegin.rule_code
YearBegin.rule_code#
reference/api/pandas.tseries.offsets.YearBegin.rule_code.html
pandas.DataFrame.idxmin
`pandas.DataFrame.idxmin` Return index of first occurrence of minimum over requested axis. NA/null values are excluded. ``` >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) ```
DataFrame.idxmin(axis=0, skipna=True, numeric_only=False)[source]# Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. numeric_onlybool, default FalseInclude only float, int or boolean data. New in version 1.5.0. Returns SeriesIndexes of minima along the specified axis. Raises ValueError If the row/column is empty See also Series.idxminReturn index of the minimum element. Notes This method is the DataFrame version of ndarray.argmin. Examples Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use axis="columns". >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object
reference/api/pandas.DataFrame.idxmin.html
pandas.core.groupby.GroupBy.pad
`pandas.core.groupby.GroupBy.pad` Forward fill the values.
GroupBy.pad(limit=None)[source]# Forward fill the values. Deprecated since version 1.4: Use ffill instead. Parameters limitint, optionalLimit of how many values to fill. Returns Series or DataFrameObject with missing values filled.
reference/api/pandas.core.groupby.GroupBy.pad.html
pandas.tseries.offsets.Second.isAnchored
pandas.tseries.offsets.Second.isAnchored
Second.isAnchored()#
reference/api/pandas.tseries.offsets.Second.isAnchored.html
pandas.date_range
`pandas.date_range` Return a fixed frequency DatetimeIndex. Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy start <[=] x <[=] end, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of freq (if given as a frequency string) or that are valid for freq (if given as a pandas.tseries.offsets.DateOffset). (If exactly one of start, end, or freq is not specified, this missing parameter can be computed given periods, the number of timesteps in the range. See the note below.) ``` >>> pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') ```
pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=_NoDefault.no_default, inclusive=None, **kwargs)[source]# Return a fixed frequency DatetimeIndex. Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy start <[=] x <[=] end, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of freq (if given as a frequency string) or that are valid for freq (if given as a pandas.tseries.offsets.DateOffset). (If exactly one of start, end, or freq is not specified, this missing parameter can be computed given periods, the number of timesteps in the range. See the note below.) Parameters startstr or datetime-like, optionalLeft bound for generating dates. endstr or datetime-like, optionalRight bound for generating dates. periodsint, optionalNumber of periods to generate. freqstr or DateOffset, default ‘D’Frequency strings can have multiples, e.g. ‘5H’. See here for a list of frequency aliases. tzstr or tzinfo, optionalTime zone name for returning localized DatetimeIndex, for example ‘Asia/Hong_Kong’. By default, the resulting DatetimeIndex is timezone-naive. normalizebool, default FalseNormalize start/end dates to midnight before generating date range. namestr, default NoneName of the resulting DatetimeIndex. closed{None, ‘left’, ‘right’}, optionalMake the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None, the default). Deprecated since version 1.4.0: Argument closed has been deprecated to standardize boundary inputs. Use inclusive instead, to set each bound as closed or open. inclusive{“both”, “neither”, “left”, “right”}, default “both”Include boundaries; Whether to set each bound as closed or open. New in version 1.4.0. **kwargsFor compatibility. Has no effect on the result. Returns rngDatetimeIndex See also DatetimeIndexAn immutable container for datetimes. timedelta_rangeReturn a fixed frequency TimedeltaIndex. period_rangeReturn a fixed frequency PeriodIndex. interval_rangeReturn a fixed frequency IntervalIndex. Notes Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resulting DatetimeIndex will have periods linearly spaced elements between start and end (closed on both sides). To learn more about the frequency strings, please see this link. Examples Specifying the values The next four examples generate the same DatetimeIndex, but vary the combination of start, end and periods. Specify start and end, with the default daily frequency. >>> pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') Specify start and periods, the number of periods (days). >>> pd.date_range(start='1/1/2018', periods=8) DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') Specify end and periods, the number of periods (days). >>> pd.date_range(end='1/1/2018', periods=8) DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') Specify start, end, and periods; the frequency is generated automatically (linearly spaced). >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None) Other Parameters Changed the freq (frequency) to 'M' (month end frequency). >>> pd.date_range(start='1/1/2018', periods=5, freq='M') DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq='M') Multiples are allowed >>> pd.date_range(start='1/1/2018', periods=5, freq='3M') DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M') freq can also be specified as an Offset object. >>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3)) DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M') Specify tz to set the timezone. >>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo') DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00', '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00', '2018-01-05 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq='D') inclusive controls whether to include start and end that are on the boundary. The default, “both”, includes boundary points on either end. >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both") DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D') Use inclusive='left' to exclude end if it falls on the boundary. >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D') Use inclusive='right' to exclude start if it falls on the boundary, and similarly inclusive='neither' will exclude both start and end. >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
reference/api/pandas.date_range.html
pandas.DatetimeIndex.indexer_at_time
`pandas.DatetimeIndex.indexer_at_time` Return index locations of values at particular time of day.
DatetimeIndex.indexer_at_time(time, asof=False)[source]# Return index locations of values at particular time of day. Parameters timedatetime.time or strTime passed in either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”, “%I%M%S%p”). Returns np.ndarray[np.intp] See also indexer_between_timeGet index locations of values between particular times of day. DataFrame.at_timeSelect values at particular time of day.
reference/api/pandas.DatetimeIndex.indexer_at_time.html
pandas.tseries.offsets.BQuarterBegin.kwds
`pandas.tseries.offsets.BQuarterBegin.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
BQuarterBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BQuarterBegin.kwds.html
pandas.Index.ravel
`pandas.Index.ravel` Return an ndarray of the flattened values of the underlying data.
final Index.ravel(order='C')[source]# Return an ndarray of the flattened values of the underlying data. Returns numpy.ndarrayFlattened array. See also numpy.ndarray.ravelReturn a flattened array.
reference/api/pandas.Index.ravel.html
pandas.DataFrame.plot.density
`pandas.DataFrame.plot.density` Generate Kernel Density Estimate plot using Gaussian kernels. ``` >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() ```
DataFrame.plot.density(bw_method=None, ind=None, **kwargs)[source]# Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. Parameters bw_methodstr, scalar or callable, optionalThe method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See scipy.stats.gaussian_kde for more information. indNumPy array or int, optionalEvaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or numpy.ndarray of them See also scipy.stats.gaussian_kdeRepresentation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF. Examples Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default): >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = s.plot.kde(bw_method=0.3) >>> ax = s.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5]) For DataFrame, it works in the same way: >>> df = pd.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> ax = df.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = df.plot.kde(bw_method=0.3) >>> ax = df.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])
reference/api/pandas.DataFrame.plot.density.html
pandas.reset_option
`pandas.reset_option` Reset one or more options to their default value.
pandas.reset_option(pat) = <pandas._config.config.CallableDynamicDoc object># Reset one or more options to their default value. Pass “all” as argument to reset all options. Available options: compute.[use_bottleneck, use_numba, use_numexpr] display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format] display.html.[border, table_schema, use_mathjax] display.[large_repr] display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr] display.[max_categories, max_columns, max_colwidth, max_dir_items, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, min_rows, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions] display.unicode.[ambiguous_as_wide, east_asian_width] display.[width] io.excel.ods.[reader, writer] io.excel.xls.[reader, writer] io.excel.xlsb.[reader] io.excel.xlsm.[reader, writer] io.excel.xlsx.[reader, writer] io.hdf.[default_format, dropna_table] io.parquet.[engine] io.sql.[engine] mode.[chained_assignment, copy_on_write, data_manager, sim_interactive, string_storage, use_inf_as_na, use_inf_as_null] plotting.[backend] plotting.matplotlib.[register_converters] styler.format.[decimal, escape, formatter, na_rep, precision, thousands] styler.html.[mathjax] styler.latex.[environment, hrules, multicol_align, multirow_align] styler.render.[encoding, max_columns, max_elements, max_rows, repr] styler.sparse.[columns, index] Parameters patstr/regexIf specified only options matching prefix* will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns None Notes Please reference the User Guide for more information. The available options with its descriptions: compute.use_bottleneckboolUse the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True [default: True] [currently: True] compute.use_numbaboolUse the numba engine option for select operations if it is installed, the default is False Valid values: False,True [default: False] [currently: False] compute.use_numexprboolUse the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True [default: True] [currently: True] display.chop_thresholdfloat or Noneif set to a float value, all float values smaller than the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify‘left’/’right’Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available.[default: 12] [currently: 12] display.date_dayfirstbooleanWhen True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirstbooleanWhen True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encodingstr/unicodeDefaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: utf-8] [currently: utf-8] display.expand_frame_reprbooleanWhether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True] display.float_formatcallableThe callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None] display.html.borderintA border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1] display.html.table_schemabooleanWhether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False] display.html.use_mathjaxbooleanWhen True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True] [currently: True] display.large_repr‘truncate’/’info’For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.latex.escapeboolThis specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True [default: True] [currently: True] display.latex.longtable :boolThis specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True [default: False] [currently: False] display.latex.multicolumnboolThis specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True] display.latex.multicolumn_formatboolThis specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l] display.latex.multirowboolThis specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False] display.latex.reprbooleanWhether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False] display.max_categoriesintThis sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8] display.max_columnsintIf max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 0] [currently: 0] display.max_colwidthint or NoneThe maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. A ‘None’ value means unlimited. [default: 50] [currently: 50] display.max_dir_itemsintThe number of items that will be added to dir(…). ‘None’ value means unlimited. Because dir is cached, changing this option will not immediately affect already existing dataframes until a column is deleted or added. This is for instance used to suggest columns from a dataframe to tab completion. [default: 100] [currently: 100] display.max_info_columnsintmax_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] display.max_info_rowsint or Nonedf.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785] display.max_rowsintIf max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 60] display.max_seq_itemsint or NoneWhen pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usagebool, string or NoneThis specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True] display.min_rowsintThe numbers of rows to show in a truncated view (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows. [default: 10] [currently: 10] display.multi_sparseboolean“sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_htmlbooleanWhen True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] display.pprint_nest_depthintControls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] display.precisionintFloating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to precision in numpy.set_printoptions(). [default: 6] [currently: 6] display.show_dimensionsboolean or ‘truncate’Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.unicode.ambiguous_as_widebooleanWhether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False] display.unicode.east_asian_widthbooleanWhether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False] display.widthintWidth of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.ods.readerstringThe default Excel reader engine for ‘ods’ files. Available options: auto, odf. [default: auto] [currently: auto] io.excel.ods.writerstringThe default Excel writer engine for ‘ods’ files. Available options: auto, odf. [default: auto] [currently: auto] io.excel.xls.readerstringThe default Excel reader engine for ‘xls’ files. Available options: auto, xlrd. [default: auto] [currently: auto] io.excel.xls.writerstringThe default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [default: auto] [currently: auto] (Deprecated, use `` instead.) io.excel.xlsb.readerstringThe default Excel reader engine for ‘xlsb’ files. Available options: auto, pyxlsb. [default: auto] [currently: auto] io.excel.xlsm.readerstringThe default Excel reader engine for ‘xlsm’ files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto] io.excel.xlsm.writerstringThe default Excel writer engine for ‘xlsm’ files. Available options: auto, openpyxl. [default: auto] [currently: auto] io.excel.xlsx.readerstringThe default Excel reader engine for ‘xlsx’ files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto] io.excel.xlsx.writerstringThe default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl, xlsxwriter. [default: auto] [currently: auto] io.hdf.default_formatformatdefault format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None] io.hdf.dropna_tablebooleandrop ALL nan rows when appending to a table [default: False] [currently: False] io.parquet.enginestringThe default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fastparquet’, the default is ‘auto’ [default: auto] [currently: auto] io.sql.enginestringThe default sql reader/writer engine. Available options: ‘auto’, ‘sqlalchemy’, the default is ‘auto’ [default: auto] [currently: auto] mode.chained_assignmentstringRaise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] mode.copy_on_writeboolUse new copy-view behaviour using Copy-on-Write. Defaults to False, unless overridden by the ‘PANDAS_COPY_ON_WRITE’ environment variable (if set to “1” for True, needs to be set before pandas is imported). [default: False] [currently: False] mode.data_managerstringInternal data manager type; can be “block” or “array”. Defaults to “block”, unless overridden by the ‘PANDAS_DATA_MANAGER’ environment variable (needs to be set before pandas is imported). [default: block] [currently: block] mode.sim_interactivebooleanWhether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.string_storagestringThe default storage for StringDtype. [default: python] [currently: python] mode.use_inf_as_nabooleanTrue means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False] mode.use_inf_as_nullbooleanuse_inf_as_null had been deprecated and will be removed in a future version. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na instead.) plotting.backendstrThe plotting backend to use. The default value is “matplotlib”, the backend provided with pandas. Other backends can be specified by providing the name of the module that implements the backend. [default: matplotlib] [currently: matplotlib] plotting.matplotlib.register_convertersbool or ‘auto’.Whether to register converters with matplotlib’s units registry for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any converters that pandas overwrote. [default: auto] [currently: auto] styler.format.decimalstrThe character representation for the decimal separator for floats and complex. [default: .] [currently: .] styler.format.escapestr, optionalWhether to escape certain characters according to the given context; html or latex. [default: None] [currently: None] styler.format.formatterstr, callable, dict, optionalA formatter object to be used as default within Styler.format. [default: None] [currently: None] styler.format.na_repstr, optionalThe string representation for values identified as missing. [default: None] [currently: None] styler.format.precisionintThe precision for floats and complex numbers. [default: 6] [currently: 6] styler.format.thousandsstr, optionalThe character representation for thousands separator for floats, int and complex. [default: None] [currently: None] styler.html.mathjaxboolIf False will render special CSS classes to table attributes that indicate Mathjax will not be used in Jupyter Notebook. [default: True] [currently: True] styler.latex.environmentstrThe environment to replace \begin{table}. If “longtable” is used results in a specific longtable environment format. [default: None] [currently: None] styler.latex.hrulesboolWhether to add horizontal rules on top and bottom and below the headers. [default: False] [currently: False] styler.latex.multicol_align{“r”, “c”, “l”, “naive-l”, “naive-r”}The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe decorators can also be added to non-naive values to draw vertical rules, e.g. “|r” will draw a rule on the left side of right aligned merged cells. [default: r] [currently: r] styler.latex.multirow_align{“c”, “t”, “b”}The specifier for vertical alignment of sparsified LaTeX multirows. [default: c] [currently: c] styler.render.encodingstrThe encoding used for output HTML and LaTeX files. [default: utf-8] [currently: utf-8] styler.render.max_columnsint, optionalThe maximum number of columns that will be rendered. May still be reduced to satsify max_elements, which takes precedence. [default: None] [currently: None] styler.render.max_elementsintThe maximum number of data-cell (<td>) elements that will be rendered before trimming will occur over columns, rows or both if needed. [default: 262144] [currently: 262144] styler.render.max_rowsint, optionalThe maximum number of rows that will be rendered. May still be reduced to satsify max_elements, which takes precedence. [default: None] [currently: None] styler.render.reprstrDetermine which output to use in Jupyter Notebook in {“html”, “latex”}. [default: html] [currently: html] styler.sparse.columnsboolWhether to sparsify the display of hierarchical columns. Setting to False will display each explicit level element in a hierarchical key for each column. [default: True] [currently: True] styler.sparse.indexboolWhether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. [default: True] [currently: True]
reference/api/pandas.reset_option.html
pandas.tseries.offsets.FY5253.is_quarter_start
`pandas.tseries.offsets.FY5253.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
FY5253.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.FY5253.is_quarter_start.html
pandas.unique
`pandas.unique` Return unique values based on a hash table. ``` >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) ```
pandas.unique(values)[source]# Return unique values based on a hash table. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters values1d array-like Returns numpy.ndarray or ExtensionArrayThe return can be: Index : when the input is an Index Categorical : when the input is a Categorical dtype ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See also Index.uniqueReturn unique values from an Index. Series.uniqueReturn unique values of Series object. Examples >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)
reference/api/pandas.unique.html
pandas.tseries.offsets.BusinessMonthBegin.base
`pandas.tseries.offsets.BusinessMonthBegin.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
BusinessMonthBegin.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.BusinessMonthBegin.base.html
pandas.arrays.IntervalArray.from_breaks
`pandas.arrays.IntervalArray.from_breaks` Construct an IntervalArray from an array of splits. ``` >>> pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3]) <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, dtype: interval[int64, right] ```
classmethod IntervalArray.from_breaks(breaks, closed='right', copy=False, dtype=None)[source]# Construct an IntervalArray from an array of splits. Parameters breaksarray-like (1-dimensional)Left and right bounds for each interval. closed{‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’Whether the intervals are closed on the left-side, right-side, both or neither. copybool, default FalseCopy the data. dtypedtype or None, default NoneIf None, dtype will be inferred. Returns IntervalArray See also interval_rangeFunction to create a fixed frequency IntervalIndex. IntervalArray.from_arraysConstruct from a left and right array. IntervalArray.from_tuplesConstruct from a sequence of tuples. Examples >>> pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3]) <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, dtype: interval[int64, right]
reference/api/pandas.arrays.IntervalArray.from_breaks.html
pandas.core.resample.Resampler.mean
`pandas.core.resample.Resampler.mean` Compute mean of groups, excluding missing values. ``` >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) ```
Resampler.mean(numeric_only=_NoDefault.no_default, *args, **kwargs)[source]# Compute mean of groups, excluding missing values. Parameters numeric_onlybool, default TrueInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.4.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {{'nopython': True, 'nogil': False, 'parallel': False}} New in version 1.4.0. Returns pandas.Series or pandas.DataFrame See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. Examples >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) Groupby one column and return the mean of the remaining columns in each group. >>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.500000 Groupby two columns and return the mean of the remaining column. >>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2.0 4.0 1.0 2 3.0 1.0 5.0 2.0 Groupby one column and return the mean of only particular column in the group. >>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: float64
reference/api/pandas.core.resample.Resampler.mean.html
pandas.get_dummies
`pandas.get_dummies` Convert categorical variable into dummy/indicator variables. Data of which to get dummy indicators. ``` >>> s = pd.Series(list('abca')) ```
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)[source]# Convert categorical variable into dummy/indicator variables. Parameters dataarray-like, Series, or DataFrameData of which to get dummy indicators. prefixstr, list of str, or dict of str, default NoneString to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes. prefix_sepstr, default ‘_’If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix. dummy_nabool, default FalseAdd a column to indicate NaNs, if False NaNs are ignored. columnslist-like, default NoneColumn names in the DataFrame to be encoded. If columns is None then all the columns with object, string, or category dtype will be converted. sparsebool, default FalseWhether the dummy-encoded columns should be backed by a SparseArray (True) or a regular NumPy array (False). drop_firstbool, default FalseWhether to get k-1 dummies out of k categorical levels by removing the first level. dtypedtype, default np.uint8Data type for new columns. Only a single dtype is allowed. Returns DataFrameDummy-coded data. See also Series.str.get_dummiesConvert Series to dummy codes. from_dummies()Convert dummy codes to categorical DataFrame. Notes Reference the user guide for more examples. Examples >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 >>> pd.get_dummies(pd.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0
reference/api/pandas.get_dummies.html
pandas.tseries.offsets.DateOffset.kwds
`pandas.tseries.offsets.DateOffset.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
DateOffset.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.DateOffset.kwds.html
pandas.DataFrame.combine_first
`pandas.DataFrame.combine_first` Update null elements with value in the same location in other. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. The resulting dataframe contains the ‘first’ dataframe values and overrides the second one values where both first.loc[index, col] and second.loc[index, col] are not missing values, upon calling first.combine_first(second). ``` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 ```
DataFrame.combine_first(other)[source]# Update null elements with value in the same location in other. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. The resulting dataframe contains the ‘first’ dataframe values and overrides the second one values where both first.loc[index, col] and second.loc[index, col] are not missing values, upon calling first.combine_first(second). Parameters otherDataFrameProvided DataFrame to use to fill null values. Returns DataFrameThe result of combining the provided DataFrame with the other object. See also DataFrame.combinePerform series-wise operation on two DataFrames using a given function. Examples >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in other >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0
reference/api/pandas.DataFrame.combine_first.html
pandas.Period.ordinal
pandas.Period.ordinal
Period.ordinal#
reference/api/pandas.Period.ordinal.html
pandas.tseries.offsets.CustomBusinessDay.weekmask
pandas.tseries.offsets.CustomBusinessDay.weekmask
CustomBusinessDay.weekmask#
reference/api/pandas.tseries.offsets.CustomBusinessDay.weekmask.html
Resampling
Resampler objects are returned by resample calls: pandas.DataFrame.resample(), pandas.Series.resample(). Indexing, iteration# Resampler.__iter__() Groupby iterator. Resampler.groups Dict {group name -> group labels}. Resampler.indices Dict {group name -> group indices}. Resampler.get_group(name[, obj]) Construct DataFrame from group with provided name. Function application# Resampler.apply([func]) Aggregate using one or more operations over the specified axis. Resampler.aggregate([func]) Aggregate using one or more operations over the specified axis. Resampler.transform(arg, *args, **kwargs) Call function producing a like-indexed Series on each group. Resampler.pipe(func, *args, **kwargs) Apply a func with arguments to this Resampler object and return its result. Upsampling# Resampler.ffill([limit]) Forward fill the values. Resampler.backfill([limit]) (DEPRECATED) Backward fill the values. Resampler.bfill([limit]) Backward fill the new missing values in the resampled data. Resampler.pad([limit]) (DEPRECATED) Forward fill the values. Resampler.nearest([limit]) Resample by using the nearest value. Resampler.fillna(method[, limit]) Fill missing values introduced by upsampling. Resampler.asfreq([fill_value]) Return the values at the new freq, essentially a reindex. Resampler.interpolate([method, axis, limit, ...]) Interpolate values according to different methods. Computations / descriptive stats# Resampler.count() Compute count of group, excluding missing values. Resampler.nunique(*args, **kwargs) Return number of unique elements in the group. Resampler.first([numeric_only, min_count]) Compute the first non-null entry of each column. Resampler.last([numeric_only, min_count]) Compute the last non-null entry of each column. Resampler.max([numeric_only, min_count]) Compute max of group values. Resampler.mean([numeric_only]) Compute mean of groups, excluding missing values. Resampler.median([numeric_only]) Compute median of groups, excluding missing values. Resampler.min([numeric_only, min_count]) Compute min of group values. Resampler.ohlc(*args, **kwargs) Compute open, high, low and close values of a group, excluding missing values. Resampler.prod([numeric_only, min_count]) Compute prod of group values. Resampler.size() Compute group sizes. Resampler.sem([ddof, numeric_only]) Compute standard error of the mean of groups, excluding missing values. Resampler.std([ddof, numeric_only]) Compute standard deviation of groups, excluding missing values. Resampler.sum([numeric_only, min_count]) Compute sum of group values. Resampler.var([ddof, numeric_only]) Compute variance of groups, excluding missing values. Resampler.quantile([q]) Return value at the given quantile.
reference/resampling.html
null
pandas.io.formats.style.Styler.applymap
`pandas.io.formats.style.Styler.applymap` Apply a CSS-styling function elementwise. ``` >>> def color_negative(v, color): ... return f"color: {color};" if v < 0 else None >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) >>> df.style.applymap(color_negative, color='red') ```
Styler.applymap(func, subset=None, **kwargs)[source]# Apply a CSS-styling function elementwise. Updates the HTML representation with the result. Parameters funcfunctionfunc should take a scalar and return a string. subsetlabel, array-like, IndexSlice, optionalA valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit data to before applying the function. **kwargsdictPass along to func. Returns selfStyler See also Styler.applymap_indexApply a CSS-styling function to headers elementwise. Styler.apply_indexApply a CSS-styling function to headers level-wise. Styler.applyApply a CSS-styling function column-wise, row-wise, or table-wise. Notes The elements of the output of func should be CSS styles as strings, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string or None. Examples >>> def color_negative(v, color): ... return f"color: {color};" if v < 0 else None >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) >>> df.style.applymap(color_negative, color='red') Using subset to restrict application to a single column or multiple columns >>> df.style.applymap(color_negative, color='red', subset="A") ... >>> df.style.applymap(color_negative, color='red', subset=["A", "B"]) ... Using a 2d input to subset to select rows in addition to columns >>> df.style.applymap(color_negative, color='red', ... subset=([0,1,2], slice(None))) >>> df.style.applymap(color_negative, color='red', subset=(slice(0,5,2), "A")) ... See Table Visualization user guide for more details.
reference/api/pandas.io.formats.style.Styler.applymap.html
pandas.tseries.offsets.SemiMonthEnd.rule_code
pandas.tseries.offsets.SemiMonthEnd.rule_code
SemiMonthEnd.rule_code#
reference/api/pandas.tseries.offsets.SemiMonthEnd.rule_code.html
Input/output
Input/output
Pickling# read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Flat file# read_table(filepath_or_buffer, *[, sep, ...]) Read general delimited file into DataFrame. read_csv(filepath_or_buffer, *[, sep, ...]) Read a comma-separated values (csv) file into DataFrame. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. read_fwf(filepath_or_buffer, *[, colspecs, ...]) Read a table of fixed-width formatted lines into DataFrame. Clipboard# read_clipboard([sep]) Read text from clipboard and pass to read_csv. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. Excel# read_excel(io[, sheet_name, header, names, ...]) Read an Excel file into a pandas DataFrame. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. ExcelFile.parse([sheet_name, header, names, ...]) Parse specified sheet(s) into a DataFrame. Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet. ExcelWriter(path[, engine, date_format, ...]) Class for writing DataFrame objects into excel sheets. JSON# read_json(path_or_buf, *[, orient, typ, ...]) Convert a JSON string to pandas object. json_normalize(data[, record_path, meta, ...]) Normalize semi-structured JSON data into a flat table. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. build_table_schema(data[, index, ...]) Create a Table schema from data. HTML# read_html(io, *[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format. XML# read_xml(path_or_buffer, *[, xpath, ...]) Read XML document into a DataFrame object. DataFrame.to_xml([path_or_buffer, index, ...]) Render a DataFrame to an XML document. Latex# DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format. HDFStore: PyTables (HDF5)# read_hdf(path_or_buf[, key, mode, errors, ...]) Read from the store, close it if we opened it. HDFStore.put(key, value[, format, index, ...]) Store object in HDFStore. HDFStore.append(key, value[, format, axes, ...]) Append to Table in file. HDFStore.get(key) Retrieve pandas object stored in file. HDFStore.select(key[, where, start, stop, ...]) Retrieve pandas object stored in file, optionally based on where criteria. HDFStore.info() Print detailed information on the store. HDFStore.keys([include]) Return a list of keys corresponding to objects stored in HDFStore. HDFStore.groups() Return a list of all the top-level nodes. HDFStore.walk([where]) Walk the pytables group hierarchy for pandas objects. Warning One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing. Feather# read_feather(path[, columns, use_threads, ...]) Load a feather-format object from the file path. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. Parquet# read_parquet(path[, engine, columns, ...]) Load a parquet object from the file path, returning a DataFrame. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. ORC# read_orc(path[, columns]) Load an ORC object from the file path, returning a DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. SAS# read_sas(filepath_or_buffer, *[, format, ...]) Read SAS files stored as either XPORT or SAS7BDAT format files. SPSS# read_spss(path[, usecols, convert_categoricals]) Load an SPSS file from the file path, returning a DataFrame. SQL# read_sql_table(table_name, con[, schema, ...]) Read SQL database table into a DataFrame. read_sql_query(sql, con[, index_col, ...]) Read SQL query into a DataFrame. read_sql(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Google BigQuery# read_gbq(query[, project_id, index_col, ...]) Load data from Google BigQuery. STATA# read_stata(filepath_or_buffer, *[, ...]) Read Stata file into DataFrame. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. StataReader.data_label Return data label of Stata file. StataReader.value_labels() Return a nested dict associating each variable name to its value and label. StataReader.variable_labels() Return a dict associating each variable name with corresponding label. StataWriter.write_file() Export DataFrame object to Stata dta format.
reference/io.html
pandas.io.formats.style.Styler.set_table_attributes
`pandas.io.formats.style.Styler.set_table_attributes` Set the table attributes added to the <table> HTML element. ``` >>> df = pd.DataFrame(np.random.randn(10, 4)) >>> df.style.set_table_attributes('class="pure-table"') # ... <table class="pure-table"> ... ```
Styler.set_table_attributes(attributes)[source]# Set the table attributes added to the <table> HTML element. These are items in addition to automatic (by default) id attribute. Parameters attributesstr Returns selfStyler See also Styler.set_table_stylesSet the table styles included within the <style> HTML element. Styler.set_td_classesSet the DataFrame of strings added to the class attribute of <td> HTML elements. Examples >>> df = pd.DataFrame(np.random.randn(10, 4)) >>> df.style.set_table_attributes('class="pure-table"') # ... <table class="pure-table"> ...
reference/api/pandas.io.formats.style.Styler.set_table_attributes.html
pandas.core.resample.Resampler.get_group
`pandas.core.resample.Resampler.get_group` Construct DataFrame from group with provided name.
Resampler.get_group(name, obj=None)[source]# Construct DataFrame from group with provided name. Parameters nameobjectThe name of the group to get as a DataFrame. objDataFrame, default NoneThe DataFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used. Returns groupsame type as obj
reference/api/pandas.core.resample.Resampler.get_group.html
pandas.errors.DuplicateLabelError
`pandas.errors.DuplicateLabelError` Error raised when an operation would introduce duplicate labels. ``` >>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags( ... allows_duplicate_labels=False ... ) >>> s.reindex(['a', 'a', 'b']) Traceback (most recent call last): ... DuplicateLabelError: Index has duplicates. positions label a [0, 1] ```
exception pandas.errors.DuplicateLabelError[source]# Error raised when an operation would introduce duplicate labels. New in version 1.2.0. Examples >>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags( ... allows_duplicate_labels=False ... ) >>> s.reindex(['a', 'a', 'b']) Traceback (most recent call last): ... DuplicateLabelError: Index has duplicates. positions label a [0, 1]
reference/api/pandas.errors.DuplicateLabelError.html
pandas.core.groupby.DataFrameGroupBy.tshift
`pandas.core.groupby.DataFrameGroupBy.tshift` Shift the time index, using the index’s frequency if available. Deprecated since version 1.1.0: Use shift instead.
property DataFrameGroupBy.tshift[source]# Shift the time index, using the index’s frequency if available. Deprecated since version 1.1.0: Use shift instead. Parameters periodsintNumber of periods to move, can be positive or negative. freqDateOffset, timedelta, or str, default NoneIncrement to use from the tseries module or time rule expressed as a string (e.g. ‘EOM’). axis{0 or ‘index’, 1 or ‘columns’, None}, default 0Corresponds to the axis that contains the Index. For Series this parameter is unused and defaults to 0. Returns shiftedSeries/DataFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown
reference/api/pandas.core.groupby.DataFrameGroupBy.tshift.html
pandas.Series.resample
`pandas.Series.resample` Resample time-series data. Convenience method for frequency conversion and resampling of time series. The object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or the caller must pass the label of a datetime-like series/index to the on/level keyword parameter. ``` >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 ```
Series.resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start_day', offset=None, group_keys=_NoDefault.no_default)[source]# Resample time-series data. Convenience method for frequency conversion and resampling of time series. The object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or the caller must pass the label of a datetime-like series/index to the on/level keyword parameter. Parameters ruleDateOffset, Timedelta or strThe offset string or object representing target conversion. axis{0 or ‘index’, 1 or ‘columns’}, default 0Which axis to use for up- or down-sampling. For Series this parameter is unused and defaults to 0. Must be DatetimeIndex, TimedeltaIndex or PeriodIndex. closed{‘right’, ‘left’}, default NoneWhich side of bin interval is closed. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’. label{‘right’, ‘left’}, default NoneWhich bin edge label to label bucket with. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’. convention{‘start’, ‘end’, ‘s’, ‘e’}, default ‘start’For PeriodIndex only, controls whether to use the start or end of rule. kind{‘timestamp’, ‘period’}, optional, default NonePass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert it to a PeriodIndex. By default the input representation is retained. loffsettimedelta, default NoneAdjust the resampled time labels. Deprecated since version 1.1.0: You should add the loffset to the df.index after the resample. See below. baseint, default 0For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0. Deprecated since version 1.1.0: The new arguments that you should use are ‘offset’ or ‘origin’. onstr, optionalFor a DataFrame, column to use instead of index for resampling. Column must be datetime-like. levelstr or int, optionalFor a MultiIndex, level (name or number) to use for resampling. level must be datetime-like. originTimestamp or str, default ‘start_day’The timestamp on which to adjust the grouping. The timezone of origin must match the timezone of the index. If string, must be one of the following: ‘epoch’: origin is 1970-01-01 ‘start’: origin is the first value of the timeseries ‘start_day’: origin is the first day at midnight of the timeseries New in version 1.1.0. ‘end’: origin is the last value of the timeseries ‘end_day’: origin is the ceiling midnight of the last day New in version 1.3.0. offsetTimedelta or str, default is NoneAn offset timedelta added to the origin. New in version 1.1.0. group_keysbool, optionalWhether to include the group keys in the result index when using .apply() on the resampled object. Not specifying group_keys will retain values-dependent behavior from pandas 1.4 and earlier (see pandas 1.5.0 Release notes for examples). In a future version of pandas, the behavior will default to the same as specifying group_keys=False. New in version 1.5.0. Returns pandas.core.ResamplerResampler object. See also Series.resampleResample a Series. DataFrame.resampleResample a DataFrame. groupbyGroup Series by mapping, function, label, or list of labels. asfreqReindex a Series with the given frequency without grouping. Notes See the user guide for more. To learn more about the offset strings, please see this link. Examples Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the NaN values using the ffill method. >>> series.resample('30S').ffill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the NaN values using the bfill method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via apply >>> def custom_resampler(arraylike): ... return np.sum(arraylike) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or end of rule. Resample a year by quarter using ‘start’ convention. Values are assigned to the first quarter of the period. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64 Resample quarters by month using ‘end’ convention. Values are assigned to the last month of the period. >>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64 For DataFrame objects, the keyword on can be used to specify the column instead of the index for resampling. >>> d = {'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]} >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0 For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling needs to take place. >>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = {'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]} >>> df2 = pd.DataFrame( ... d2, ... index=pd.MultiIndex.from_product( ... [days, ['morning', 'afternoon']] ... ) ... ) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90 If you want to adjust the start of the bins based on a fixed timestamp: >>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00' >>> rng = pd.date_range(start, end, freq='7min') >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng) >>> ts 2000-10-01 23:30:00 0 2000-10-01 23:37:00 3 2000-10-01 23:44:00 6 2000-10-01 23:51:00 9 2000-10-01 23:58:00 12 2000-10-02 00:05:00 15 2000-10-02 00:12:00 18 2000-10-02 00:19:00 21 2000-10-02 00:26:00 24 Freq: 7T, dtype: int64 >>> ts.resample('17min').sum() 2000-10-01 23:14:00 0 2000-10-01 23:31:00 9 2000-10-01 23:48:00 21 2000-10-02 00:05:00 54 2000-10-02 00:22:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', origin='epoch').sum() 2000-10-01 23:18:00 0 2000-10-01 23:35:00 18 2000-10-01 23:52:00 27 2000-10-02 00:09:00 39 2000-10-02 00:26:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', origin='2000-01-01').sum() 2000-10-01 23:24:00 3 2000-10-01 23:41:00 15 2000-10-01 23:58:00 45 2000-10-02 00:15:00 45 Freq: 17T, dtype: int64 If you want to adjust the start of the bins with an offset Timedelta, the two following lines are equivalent: >>> ts.resample('17min', origin='start').sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64 >>> ts.resample('17min', offset='23h30min').sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64 If you want to take the largest Timestamp as the end of the bins: >>> ts.resample('17min', origin='end').sum() 2000-10-01 23:35:00 0 2000-10-01 23:52:00 18 2000-10-02 00:09:00 27 2000-10-02 00:26:00 63 Freq: 17T, dtype: int64 In contrast with the start_day, you can use end_day to take the ceiling midnight of the largest Timestamp as the end of the bins and drop the bins not containing data: >>> ts.resample('17min', origin='end_day').sum() 2000-10-01 23:38:00 3 2000-10-01 23:55:00 15 2000-10-02 00:12:00 45 2000-10-02 00:29:00 45 Freq: 17T, dtype: int64 To replace the use of the deprecated base argument, you can now use offset, in this example it is equivalent to have base=2: >>> ts.resample('17min', offset='2min').sum() 2000-10-01 23:16:00 0 2000-10-01 23:33:00 9 2000-10-01 23:50:00 36 2000-10-02 00:07:00 39 2000-10-02 00:24:00 24 Freq: 17T, dtype: int64 To replace the use of the deprecated loffset argument: >>> from pandas.tseries.frequencies import to_offset >>> loffset = '19min' >>> ts_out = ts.resample('17min').sum() >>> ts_out.index = ts_out.index + to_offset(loffset) >>> ts_out 2000-10-01 23:33:00 0 2000-10-01 23:50:00 9 2000-10-02 00:07:00 21 2000-10-02 00:24:00 54 2000-10-02 00:41:00 24 Freq: 17T, dtype: int64
reference/api/pandas.Series.resample.html
pandas.DataFrame.divide
`pandas.DataFrame.divide` Get Floating division of dataframe and other, element-wise (binary operator truediv). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.divide(other, axis='columns', level=None, fill_value=None)[source]# Get Floating division of dataframe and other, element-wise (binary operator truediv). Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.divide.html
pandas.Period.second
`pandas.Period.second` Get the second component of the Period. ``` >>> p = pd.Period("2018-03-11 13:03:12.050000") >>> p.second 12 ```
Period.second# Get the second component of the Period. Returns intThe second of the Period (ranges from 0 to 59). See also Period.hourGet the hour component of the Period. Period.minuteGet the minute component of the Period. Examples >>> p = pd.Period("2018-03-11 13:03:12.050000") >>> p.second 12
reference/api/pandas.Period.second.html
pandas.Series.mean
`pandas.Series.mean` Return the mean of the values over the requested axis.
Series.mean(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]# Return the mean of the values over the requested axis. Parameters axis{index (0)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. **kwargsAdditional keyword arguments to be passed to the function. Returns scalar or Series (if level specified)
reference/api/pandas.Series.mean.html
Extending pandas
Extending pandas
While pandas provides a rich set of methods, containers, and data types, your needs may not be fully satisfied. pandas offers a few options for extending pandas. Registering custom accessors# Libraries can use the decorators pandas.api.extensions.register_dataframe_accessor(), pandas.api.extensions.register_series_accessor(), and pandas.api.extensions.register_index_accessor(), to add additional “namespaces” to pandas objects. All of these follow a similar convention: you decorate a class, providing the name of attribute to add. The class’s __init__ method gets the object being decorated. For example: @pd.api.extensions.register_dataframe_accessor("geo") class GeoAccessor: def __init__(self, pandas_obj): self._validate(pandas_obj) self._obj = pandas_obj @staticmethod def _validate(obj): # verify there is a column latitude and a column longitude if "latitude" not in obj.columns or "longitude" not in obj.columns: raise AttributeError("Must have 'latitude' and 'longitude'.") @property def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot this array's data on a map, e.g., using Cartopy pass Now users can access your methods using the geo namespace: >>> ds = pd.DataFrame( ... {"longitude": np.linspace(0, 10), "latitude": np.linspace(0, 20)} ... ) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map This can be a convenient way to extend pandas objects without subclassing them. If you write a custom accessor, make a pull request adding it to our pandas ecosystem page. We highly recommend validating the data in your accessor’s __init__. In our GeoAccessor, we validate that the data contains the expected columns, raising an AttributeError when the validation fails. For a Series accessor, you should validate the dtype if the accessor applies only to certain dtypes. Extension types# Note The pandas.api.extensions.ExtensionDtype and pandas.api.extensions.ExtensionArray APIs were experimental prior to pandas 1.5. Starting with version 1.5, future changes will follow the pandas deprecation policy. pandas defines an interface for implementing data types and arrays that extend NumPy’s type system. pandas itself uses the extension system for some types that aren’t built into NumPy (categorical, period, interval, datetime with timezone). Libraries can define a custom array and data type. When pandas encounters these objects, they will be handled properly (i.e. not converted to an ndarray of objects). Many methods like pandas.isna() will dispatch to the extension type’s implementation. If you’re building a library that implements the interface, please publicize it on Extension data types. The interface consists of two classes. ExtensionDtype# A pandas.api.extensions.ExtensionDtype is similar to a numpy.dtype object. It describes the data type. Implementors are responsible for a few unique items like the name. One particularly important item is the type property. This should be the class that is the scalar type for your data. For example, if you were writing an extension array for IP Address data, this might be ipaddress.IPv4Address. See the extension dtype source for interface definition. pandas.api.extensions.ExtensionDtype can be registered to pandas to allow creation via a string dtype name. This allows one to instantiate Series and .astype() with a registered string name, for example 'category' is a registered string accessor for the CategoricalDtype. See the extension dtype dtypes for more on how to register dtypes. ExtensionArray# This class provides all the array-like functionality. ExtensionArrays are limited to 1 dimension. An ExtensionArray is linked to an ExtensionDtype via the dtype attribute. pandas makes no restrictions on how an extension array is created via its __new__ or __init__, and puts no restrictions on how you store your data. We do require that your array be convertible to a NumPy array, even if this is relatively expensive (as it is for Categorical). They may be backed by none, one, or many NumPy arrays. For example, pandas.Categorical is an extension array backed by two arrays, one for codes and one for categories. An array of IPv6 addresses may be backed by a NumPy structured array with two fields, one for the lower 64 bits and one for the upper 64 bits. Or they may be backed by some other storage type, like Python lists. See the extension array source for the interface definition. The docstrings and comments contain guidance for properly implementing the interface. ExtensionArray operator support# By default, there are no operators defined for the class ExtensionArray. There are two approaches for providing operator support for your ExtensionArray: Define each of the operators on your ExtensionArray subclass. Use an operator implementation from pandas that depends on operators that are already defined on the underlying elements (scalars) of the ExtensionArray. Note Regardless of the approach, you may want to set __array_priority__ if you want your implementation to be called when involved in binary operations with NumPy arrays. For the first approach, you define selected operators, e.g., __add__, __le__, etc. that you want your ExtensionArray subclass to support. The second approach assumes that the underlying elements (i.e., scalar type) of the ExtensionArray have the individual operators already defined. In other words, if your ExtensionArray named MyExtensionArray is implemented so that each element is an instance of the class MyExtensionElement, then if the operators are defined for MyExtensionElement, the second approach will automatically define the operators for MyExtensionArray. A mixin class, ExtensionScalarOpsMixin supports this second approach. If developing an ExtensionArray subclass, for example MyExtensionArray, can simply include ExtensionScalarOpsMixin as a parent class of MyExtensionArray, and then call the methods _add_arithmetic_ops() and/or _add_comparison_ops() to hook the operators into your MyExtensionArray class, as follows: from pandas.api.extensions import ExtensionArray, ExtensionScalarOpsMixin class MyExtensionArray(ExtensionArray, ExtensionScalarOpsMixin): pass MyExtensionArray._add_arithmetic_ops() MyExtensionArray._add_comparison_ops() Note Since pandas automatically calls the underlying operator on each element one-by-one, this might not be as performant as implementing your own version of the associated operators directly on the ExtensionArray. For arithmetic operations, this implementation will try to reconstruct a new ExtensionArray with the result of the element-wise operation. Whether or not that succeeds depends on whether the operation returns a result that’s valid for the ExtensionArray. If an ExtensionArray cannot be reconstructed, an ndarray containing the scalars returned instead. For ease of implementation and consistency with operations between pandas and NumPy ndarrays, we recommend not handling Series and Indexes in your binary ops. Instead, you should detect these cases and return NotImplemented. When pandas encounters an operation like op(Series, ExtensionArray), pandas will unbox the array from the Series (Series.array) call result = op(values, ExtensionArray) re-box the result in a Series NumPy universal functions# Series implements __array_ufunc__. As part of the implementation, pandas unboxes the ExtensionArray from the Series, applies the ufunc, and re-boxes it if necessary. If applicable, we highly recommend that you implement __array_ufunc__ in your extension array to avoid coercion to an ndarray. See the NumPy documentation for an example. As part of your implementation, we require that you defer to pandas when a pandas container (Series, DataFrame, Index) is detected in inputs. If any of those is present, you should return NotImplemented. pandas will take care of unboxing the array from the container and re-calling the ufunc with the unwrapped input. Testing extension arrays# We provide a test suite for ensuring that your extension arrays satisfy the expected behavior. To use the test suite, you must provide several pytest fixtures and inherit from the base test class. The required fixtures are found in https://github.com/pandas-dev/pandas/blob/main/pandas/tests/extension/conftest.py. To use a test, subclass it: from pandas.tests.extension import base class TestConstructors(base.BaseConstructorsTests): pass See https://github.com/pandas-dev/pandas/blob/main/pandas/tests/extension/base/__init__.py for a list of all the tests available. Compatibility with Apache Arrow# An ExtensionArray can support conversion to / from pyarrow arrays (and thus support for example serialization to the Parquet file format) by implementing two methods: ExtensionArray.__arrow_array__ and ExtensionDtype.__from_arrow__. The ExtensionArray.__arrow_array__ ensures that pyarrow knowns how to convert the specific extension array into a pyarrow.Array (also when included as a column in a pandas DataFrame): class MyExtensionArray(ExtensionArray): ... def __arrow_array__(self, type=None): # convert the underlying array values to a pyarrow Array import pyarrow return pyarrow.array(..., type=type) The ExtensionDtype.__from_arrow__ method then controls the conversion back from pyarrow to a pandas ExtensionArray. This method receives a pyarrow Array or ChunkedArray as only argument and is expected to return the appropriate pandas ExtensionArray for this dtype and the passed values: class ExtensionDtype: ... def __from_arrow__(self, array: pyarrow.Array/ChunkedArray) -> ExtensionArray: ... See more in the Arrow documentation. Those methods have been implemented for the nullable integer and string extension dtypes included in pandas, and ensure roundtrip to pyarrow and the Parquet file format. Subclassing pandas data structures# Warning There are some easier alternatives before considering subclassing pandas data structures. Extensible method chains with pipe Use composition. See here. Extending by registering an accessor Extending by extension type This section describes how to subclass pandas data structures to meet more specific needs. There are two points that need attention: Override constructor properties. Define original properties Note You can find a nice example in geopandas project. Override constructor properties# Each data structure has several constructor properties for returning a new data structure as the result of an operation. By overriding these properties, you can retain subclasses through pandas data manipulations. There are 3 possible constructor properties to be defined on a subclass: DataFrame/Series._constructor: Used when a manipulation result has the same dimension as the original. DataFrame._constructor_sliced: Used when a DataFrame (sub-)class manipulation result should be a Series (sub-)class. Series._constructor_expanddim: Used when a Series (sub-)class manipulation result should be a DataFrame (sub-)class, e.g. Series.to_frame(). Below example shows how to define SubclassedSeries and SubclassedDataFrame overriding constructor properties. class SubclassedSeries(pd.Series): @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(pd.DataFrame): @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries >>> s = SubclassedSeries([1, 2, 3]) >>> type(s) <class '__main__.SubclassedSeries'> >>> to_framed = s.to_frame() >>> type(to_framed) <class '__main__.SubclassedDataFrame'> >>> df = SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) >>> df A B C 0 1 4 7 1 2 5 8 2 3 6 9 >>> type(df) <class '__main__.SubclassedDataFrame'> >>> sliced1 = df[["A", "B"]] >>> sliced1 A B 0 1 4 1 2 5 2 3 6 >>> type(sliced1) <class '__main__.SubclassedDataFrame'> >>> sliced2 = df["A"] >>> sliced2 0 1 1 2 2 3 Name: A, dtype: int64 >>> type(sliced2) <class '__main__.SubclassedSeries'> Define original properties# To let original data structures have additional properties, you should let pandas know what properties are added. pandas maps unknown properties to data names overriding __getattribute__. Defining original properties can be done in one of 2 ways: Define _internal_names and _internal_names_set for temporary properties which WILL NOT be passed to manipulation results. Define _metadata for normal properties which will be passed to manipulation results. Below is an example to define two original properties, “internal_cache” as a temporary property and “added_property” as a normal property class SubclassedDataFrame2(pd.DataFrame): # temporary properties _internal_names = pd.DataFrame._internal_names + ["internal_cache"] _internal_names_set = set(_internal_names) # normal properties _metadata = ["added_property"] @property def _constructor(self): return SubclassedDataFrame2 >>> df = SubclassedDataFrame2({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) >>> df A B C 0 1 4 7 1 2 5 8 2 3 6 9 >>> df.internal_cache = "cached" >>> df.added_property = "property" >>> df.internal_cache cached >>> df.added_property property # properties defined in _internal_names is reset after manipulation >>> df[["A", "B"]].internal_cache AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache' # properties defined in _metadata are retained >>> df[["A", "B"]].added_property property Plotting backends# Starting in 0.25 pandas can be extended with third-party plotting backends. The main idea is letting users select a plotting backend different than the provided one based on Matplotlib. For example: >>> pd.set_option("plotting.backend", "backend.module") >>> pd.Series([1, 2, 3]).plot() This would be more or less equivalent to: >>> import backend.module >>> backend.module.plot(pd.Series([1, 2, 3])) The backend module can then use other visualization tools (Bokeh, Altair,…) to generate the plots. Libraries implementing the plotting backend should use entry points to make their backend discoverable to pandas. The key is "pandas_plotting_backends". For example, pandas registers the default “matplotlib” backend as follows. # in setup.py setup( # noqa: F821 ..., entry_points={ "pandas_plotting_backends": [ "matplotlib = pandas:plotting._matplotlib", ], }, ) More information on how to implement a third-party plotting backend can be found at https://github.com/pandas-dev/pandas/blob/main/pandas/plotting/__init__.py#L1.
development/extending.html
pandas.tseries.offsets.Minute.kwds
`pandas.tseries.offsets.Minute.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
Minute.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.Minute.kwds.html
pandas.DataFrame.empty
`pandas.DataFrame.empty` Indicator whether Series/DataFrame is empty. True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0. ``` >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True ```
property DataFrame.empty[source]# Indicator whether Series/DataFrame is empty. True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns boolIf Series/DataFrame is empty, return True, if not return False. See also Series.dropnaReturn series without null values. DataFrame.dropnaReturn DataFrame with labels on given axis omitted where (all or any) data are missing. Notes If Series/DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True >>> ser_empty = pd.Series({'A' : []}) >>> ser_empty A [] dtype: object >>> ser_empty.empty False >>> ser_empty = pd.Series() >>> ser_empty.empty True
reference/api/pandas.DataFrame.empty.html
pandas.DataFrame.to_json
`pandas.DataFrame.to_json` Convert the object to a JSON string. ``` >>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) ```
DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]# Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_bufstr, path object, file-like object, or None, default NoneString, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. orientstrIndication of expected JSON string format. Series: default is ‘index’ allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}. DataFrame: default is ‘columns’ allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}. The format of the JSON string: ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]} ‘records’ : list like [{column -> value}, … , {column -> value}] ‘index’ : dict like {index -> {column -> value}} ‘columns’ : dict like {column -> {index -> value}} ‘values’ : just the values array ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} Describing the data, where data component is like orient='records'. date_format{None, ‘epoch’, ‘iso’}Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For orient='table', the default is ‘iso’. For all other orients, the default is ‘epoch’. double_precisionint, default 10The number of decimal places to use when encoding floating point values. force_asciibool, default TrueForce encoded string to be ASCII. date_unitstr, default ‘ms’ (milliseconds)The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handlercallable, default NoneHandler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. linesbool, default FalseIf ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like. compressionstr or dict, default ‘infer’For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}. New in version 1.5.0: Added support for .tar files. Changed in version 1.4.0: Zstandard support. indexbool, default TrueWhether to include the index values in the JSON string. Not including the index (index=False) is only supported when orient is ‘split’ or ‘table’. indentint, optionalLength of whitespace used to indent each record. New in version 1.0.0. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. Returns None or strIf path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. See also read_jsonConvert a JSON string to pandas object. Notes The behavior of indent=0 varies from the stdlib, which does not indent the output but does insert newlines. Currently, indent=0 and the default indent=None are equivalent in pandas, though this may change in a future release. orient='table' contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema. Examples >>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) >>> result = df.to_json(orient="split") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] } Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding. >>> result = df.to_json(orient="records") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ] Encoding/decoding a Dataframe using 'index' formatted JSON: >>> result = df.to_json(orient="index") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } } Encoding/decoding a Dataframe using 'columns' formatted JSON: >>> result = df.to_json(orient="columns") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } } Encoding/decoding a Dataframe using 'values' formatted JSON: >>> result = df.to_json(orient="values") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ [ "a", "b" ], [ "c", "d" ] ] Encoding with Table Schema: >>> result = df.to_json(orient="table") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "1.4.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] }
reference/api/pandas.DataFrame.to_json.html
pandas.DataFrame.add_suffix
`pandas.DataFrame.add_suffix` Suffix labels with string suffix. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 ```
DataFrame.add_suffix(suffix)[source]# Suffix labels with string suffix. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters suffixstrThe string to add after each label. Returns Series or DataFrameNew Series or DataFrame with updated labels. See also Series.add_prefixPrefix row labels with string prefix. DataFrame.add_prefixPrefix column labels with string prefix. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
reference/api/pandas.DataFrame.add_suffix.html
Comparison with other tools
Comparison with other tools
Comparison with R / R libraries Quick reference Base R plyr reshape / reshape2 Comparison with SQL Copies vs. in place operations SELECT WHERE GROUP BY JOIN UNION LIMIT pandas equivalents for some SQL analytic and aggregate functions UPDATE DELETE Comparison with spreadsheets Data structures Data input / output Data operations String processing Merging Other considerations Comparison with SAS Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations Comparison with Stata Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations
getting_started/comparison/index.html
pandas.tseries.offsets.Hour.onOffset
pandas.tseries.offsets.Hour.onOffset
Hour.onOffset()#
reference/api/pandas.tseries.offsets.Hour.onOffset.html