_id
stringlengths 8
8
| title
stringlengths 0
1.19k
| text
stringlengths 0
122k
| metadata
dict |
---|---|---|---|
nn09hh29 | Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations | BACKGROUND: In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. METHODOLOGY/PRINCIPAL FINDINGS: To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. CONCLUSION: Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770169/",
"pubmed_id": "19888418"
} |
7658dmvk | Multiplex primer prediction software for divergent targets | We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (∼3700 18-mers or ∼2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770652/",
"pubmed_id": "19759213"
} |
uvf5qzfd | Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation | Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have been reported to trigger IFN activation. The consensus is that intracellularly expressed short-hairpin RNAs (shRNAs) are less prone to IFN activation because they are not detected by the cell-surface receptors. In particular, lentiviral vector-mediated transduction of shRNAs has been reported to avoid IFN response. Here we identify a shRNA that potently activates the IFN pathway in human cells in a sequence- and 5′-triphosphate-dependent manner. In addition to suppressing its intended mRNA target, expression of the shRNA results in dimerization of interferon regulatory factor-3, activation of IFN promoters and secretion of biologically active IFNs into the extracellular medium. Delivery by lentiviral vector transduction did not avoid IFN activation by this and another, unrelated shRNA. We also demonstrated that retinoic-acid-inducible gene I, and not melanoma differentiation associated gene 5 or toll-like receptor 3, is the cytoplasmic sensor for intracellularly expressed shRNAs that trigger IFN activation. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770676/",
"pubmed_id": "19729514"
} |
cai6tqxq | The early diversification of influenza A/H1N1pdm | Background Since its initial detection in April 2009, the A/H1N1pdm influenza virus has spread rapidly in humans, with over 5,700 human deaths. However, little is known about the evolutionary dynamics of H1N1pdm and its geographic and temporal diversification. Methods Phylogenetic analysis was conducted upon the concatenated coding regions of whole-genome sequences from 290 H1N1pdm isolates sampled globally between April 1 – July 9, 2009, including relatively large samples from the US states of Wisconsin and New York. Results At least 7 phylogenetically distinct viral clades have disseminated globally and co-circulated in localities that experienced multiple introductions of H1N1pdm. The epidemics in New York and Wisconsin were dominated by two different clades, both phylogenetically distinct from the viruses first identified in California and Mexico, suggesting an important role for founder effects in determining local viral population structures. Conclusions Determining the global diversity of H1N1pdm is central to understanding the evolution and spatial spread of the current pandemic, and to predict its future impact on human populations. Our results indicate that H1N1pdm has already diversified into distinct viral lineages with defined spatial patterns. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773564/",
"pubmed_id": "20029664"
} |
tkxpjlyn | Immunoglobulin Superfamily Virus Receptors and the Evolution of Adaptive Immunity | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777377/",
"pubmed_id": "19956667"
} |
|
t74b5j2j | Peptide-Mediated Cellular Delivery of Oligonucleotide-Based Therapeutics In Vitro: Quantitative Evaluation of Overall Efficacy Employing Easy to Handle Reporter Systems | Cellular uptake of therapeutic oligonucleotides and subsequent intracellular trafficking to their target sites represents the major technical hurdle for the biological effectiveness of these potential drugs. Accordingly, laboratories worldwide focus on the development of suitable delivery systems. Among the different available non-viral systems like cationic polymers, cationic liposomes and polymeric nanoparticles, cell-penetrating peptides (CPPs) represent an attractive concept to bypass the problem of poor membrane permeability of these charged macromolecules. While uptake per se in most cases does not represent the main obstacle of nucleic acid delivery in vitro, it becomes increasingly apparent that intracellular trafficking is the bottleneck. As a consequence, in order to optimize a given delivery system, a side-by-side analysis of nucleic acid cargo internalized and the corresponding biological effect is required to determine the overall efficacy. In this review, we will concentrate on peptide-mediated delivery of siRNAs and steric block oligonucleotides and discuss different methods for quantitative assessment of the amount of cargo taken up and how to correlate those numbers with biological effects by applying easy to handle reporter systems. To illustrate current limitations of non-viral nucleic acid delivery systems, we present own data as an example and discuss options of how to enhance trafficking of molecules entrapped in cellular compartments. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778081/",
"pubmed_id": "19075740"
} |
p4exyu56 | Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA | Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM-associated clonally variant surface antigens (VSA). Pregnancy-specific VSA (VSA(PAM)), which include the PfEMP1 variant VAR2CSA, are targets of IgG-mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA-adhering IEs expressing VSA(PAM). Four reacted in Western blotting with high-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-ε domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSA(PAM), indicating that VAR2CSA is a primary target of naturally acquired PAM-specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779471/",
"pubmed_id": "17176260"
} |
dqqcajjd | The OptAIDS project: towards global halting of HIV/AIDS | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779497/",
"pubmed_id": "19922679"
} |
|
ugbwvy6j | Early Assessment of Anxiety and Behavioral Response to Novel Swine-Origin Influenza A(H1N1) | BACKGROUND: Since late April, 2009, a novel influenza virus A (H1N1), generally referred to as the “swine flu,” has spread around the globe and infected hundreds of thousands of people. During the first few days after the initial outbreak in Mexico, extensive media coverage together with a high degree of uncertainty about the transmissibility and mortality rate associated with the virus caused widespread concern in the population. The spread of an infectious disease can be strongly influenced by behavioral changes (e.g., social distancing) during the early phase of an epidemic, but data on risk perception and behavioral response to a novel virus is usually collected with a substantial delay or after an epidemic has run its course. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the results from an online survey that gathered data (n = 6,249) about risk perception of the Influenza A(H1N1) outbreak during the first few days of widespread media coverage (April 28 - May 5, 2009). We find that after an initially high level of concern, levels of anxiety waned along with the perception of the virus as an immediate threat. Overall, our data provide evidence that emotional status mediates behavioral response. Intriguingly, principal component analysis revealed strong clustering of anxiety about swine flu, bird flu and terrorism. All three of these threats receive a great deal of media attention and their fundamental uncertainty is likely to generate an inordinate amount of fear vis-a-vis their actual threat. CONCLUSIONS/SIGNIFICANCE: Our results suggest that respondents' behavior varies in predictable ways. Of particular interest, we find that affective variables, such as self-reported anxiety over the epidemic, mediate the likelihood that respondents will engage in protective behavior. Understanding how protective behavior such as social distancing varies and the specific factors that mediate it may help with the design of epidemic control strategies. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779851/",
"pubmed_id": "19997505"
} |
0pe8691t | Accurate noise projection for reduced stochastic epidemic models | We consider a stochastic susceptible-exposed-infected-recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780467/",
"pubmed_id": "20059206"
} |
eabho73n | Comparison of distance measures in spatial analytical modeling for health service planning | BACKGROUND: Several methodological approaches have been used to estimate distance in health service research. In this study, focusing on cardiac catheterization services, Euclidean, Manhattan, and the less widely known Minkowski distance metrics are used to estimate distances from patient residence to hospital. Distance metrics typically produce less accurate estimates than actual measurements, but each metric provides a single model of travel over a given network. Therefore, distance metrics, unlike actual measurements, can be directly used in spatial analytical modeling. Euclidean distance is most often used, but unlikely the most appropriate metric. Minkowski distance is a more promising method. Distances estimated with each metric are contrasted with road distance and travel time measurements, and an optimized Minkowski distance is implemented in spatial analytical modeling. METHODS: Road distance and travel time are calculated from the postal code of residence of each patient undergoing cardiac catheterization to the pertinent hospital. The Minkowski metric is optimized, to approximate travel time and road distance, respectively. Distance estimates and distance measurements are then compared using descriptive statistics and visual mapping methods. The optimized Minkowski metric is implemented, via the spatial weight matrix, in a spatial regression model identifying socio-economic factors significantly associated with cardiac catheterization. RESULTS: The Minkowski coefficient that best approximates road distance is 1.54; 1.31 best approximates travel time. The latter is also a good predictor of road distance, thus providing the best single model of travel from patient's residence to hospital. The Euclidean metric and the optimal Minkowski metric are alternatively implemented in the regression model, and the results compared. The Minkowski method produces more reliable results than the traditional Euclidean metric. CONCLUSION: Road distance and travel time measurements are the most accurate estimates, but cannot be directly implemented in spatial analytical modeling. Euclidean distance tends to underestimate road distance and travel time; Manhattan distance tends to overestimate both. The optimized Minkowski distance partially overcomes their shortcomings; it provides a single model of travel over the network. The method is flexible, suitable for analytical modeling, and more accurate than the traditional metrics; its use ultimately increases the reliability of spatial analytical models. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781002/",
"pubmed_id": "19895692"
} |
e523mnz1 | Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators | Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP. Further research is needed before any specific decontamination methods can be recommended. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781738/",
"pubmed_id": "19805391"
} |
m2k8lf7v | Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine | Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1) and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace strigilosa, Asparagus filicinus, Astilbe rivularis, Bergenia ciliata and Verbascum thapsus exhibited strong anti-influenza viral activity. Only the extracts of A. rivularis and B. ciliata demonstrated remarkable activity against both viruses. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781767/",
"pubmed_id": "18955262"
} |
ujquw0g8 | Predicting intention to treat HIV-infected patients among Tanzanian and Sudanese medical and dental students using the theory of planned behaviour - a cross sectional study | BACKGROUND: The HIV epidemic poses significant challenges to the low income countries in sub Saharan Africa (SSA), affecting the attrition rate among health care workers, their level of motivation, and absenteeism from work. Little is known about how to deal with deterioration of human resources in the health care systems. This study aimed to predict the intention to provide surgical treatment to HIV infected patients among medical- and dental students in Tanzania and Sudan using an extended version of the Theory of Planned Behaviour (TPB). METHODS: Four hundred and seventy five medical- and dental students at the University of Dar es Salaam (mean age, 25 yr) and 642 dental students attending 6 public and private dental faculties in Khartoum (mean age 21.7 yr) completed self-administered TPB questionnaires in 2005 and 2007, respectively. RESULTS: Both Tanzanian and Sudanese students demonstrated strong intentions to provide care for people with HIV and AIDS. Stepwise linear regression revealed that the TPB accounted for 51% (43% in Tanzania and Sudan) of the variance in intention across study sites. After having controlled for country and past behaviour, the TPB in terms of attitudes, subjective norms and perceived behavioural control accounted for 34% and moral norms for an additional 2,3% of the explainable variance in intention. Across both study sites, attitudes were the strongest predictor of intention followed in descending order by subjective norms, moral norms and perceived behavioural control. CONCLUSION: The TPB is applicable to students' care delivery intentions in the context of HIV and AIDS across the two SSA countries investigated. It is suggested that attitudes, subjective norms, moral norms and perceived behavioural control are key factors in students' willingness to treat AIDS and HIV infected patients and should be targets of interventions aimed at improving the quality of health care delivery in this context. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784770/",
"pubmed_id": "19930555"
} |
idffrnac | Pattern Recognition Receptor–Dependent Mechanisms of Acute Lung Injury | Acute lung injury (ALI) that clinically manifests as acute respiratory distress syndrome is caused by an uncontrolled systemic inflammatory response resulting from clinical events including sepsis, major surgery and trauma. Innate immunity activation plays a central role in the development of ALI. Innate immunity is activated through families of related pattern recognition receptors (PRRs), which recognize conserved microbial motifs or pathogen-associated molecular patterns (PAMPs). Toll-like receptors were the first major family of PRRs discovered in mammals. Recently, NACHT–leucine-rich repeat (LRR) receptors and retinoic acid–inducible gene–like receptors have been added to the list. It is now understood that in addition to recognizing infectious stimuli, both Toll-like receptors and NACHT-LRR receptors can also respond to endogenous molecules released in response to stress, trauma and cell damage. These molecules have been termed damage-associated molecular patterns (DAMPs). It has been clinically observed for a long time that infectious and noninfectious insults initiate inflammation, so confirmation of overlapping receptor-signal pathways of activation between PAMPs and DAMPs is no surprise. This review provides an overview of the PRR-dependent mechanisms of ALI and clinical implication. Modification of PRR pathways is likely to be a logical therapeutic target for ALI/acute respiratory distress syndrome. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785474/",
"pubmed_id": "19949486"
} |
a3tammig | Exposure of cats to low doses of FeLV: seroconversion as the sole parameter of infection | In felids, feline leukemia virus (FeLV) infection results in a variety of outcomes that range from abortive (virus readily eliminated and never detectable) to progressive infection (persistent viremia and viral shedding). Recently, a novel outcome was postulated for low FeLV infectious doses. Naïve cats exposed to faeces of persistently infected cats seroconverted, indicating infection, but remained negative for provirus and p27 antigen in blood. FeLV provirus was found in some tissues but not in the bone marrow, infection of which is usually considered a necessary stage for disease progression. To investigate the impact of low FeLV doses on young cats and to test the hypothesis that low dose exposure may lead to an unknown pathogenesis of infection without involvement of the bone marrow, 21 cats were infected oronasally with variable viral doses. Blood p27, proviral and viral loads were followed until week 20 post-infection. Tissue proviral loads were determined as well. The immune response was monitored by measuring FeLV whole virus and p45 antibodies; and feline oncornavirus-associated cell membrane antigen (FOCMA) assay. One cat showed regressive infection (transient antigenemia, persistent provirus-positivity, and seroconversion) with provirus only found in some organs at sacrifice. In 7 of the 20 remaining cats FOCMA assay positivity was the only sign of infection, while all other tests were negative. Overall, the results show that FeLV low dose exposure can result in seroconversion during a presumed abortive infection. Therefore, commonly used detection methods do not detect all FeLV-infected animals, possibly leading to an underestimation of the prevalence of infection. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789331/",
"pubmed_id": "19861115"
} |
0rq0wdpq | A large and accurate collection of peptidase cleavages in the MEROPS database | Peptidases are enzymes that hydrolyse peptide bonds in proteins and peptides. Peptidases are important in pathological conditions such as Alzheimer's disease, tumour and parasite invasion, and for processing viral polyproteins. The MEROPS database is an Internet resource containing information on peptidases, their substrates and inhibitors. The database now includes details of cleavage positions in substrates, both physiological and non-physiological, natural and synthetic. There are 39 118 cleavages in the collection; including 34 606 from a total of 10 513 different proteins and 2677 cleavages in synthetic substrates. The number of cleavages designated as ‘physiological’ is 13 307. The data are derived from 6095 publications. At least one substrate cleavage is known for 45% of the 2415 different peptidases recognized in the MEROPS database. The website now has three new displays: two showing peptidase specificity as a logo and a frequency matrix, the third showing a dynamically generated alignment between each protein substrate and its most closely related homologues. Many of the proteins described in the literature as peptidase substrates have been studied only in vitro. On the assumption that a physiologically relevant cleavage site would be conserved between species, the conservation of every site in terms of peptidase preference has been examined and a number have been identified that are not conserved. There are a number of cogent reasons why a site might not be conserved. Each poorly conserved site has been examined and a reason postulated. Some sites are identified that are very poorly conserved where cleavage is more likely to be fortuitous than of physiological relevance. This data-set is freely available via the Internet and is a useful training set for algorithms to predict substrates for peptidases and cleavage positions within those substrates. The data may also be useful for the design of inhibitors and for engineering novel specificities into peptidases. Database URL: http://merops.sanger.ac.uk | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790309/",
"pubmed_id": "20157488"
} |
5kapn32k | Efficient Assembly and Secretion of Recombinant Subviral Particles of the Four Dengue Serotypes Using Native prM and E Proteins | BACKGROUND: Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E. METHODOLOGY/PRINCIPAL FINDINGS: We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant. CONCLUSIONS/SIGNIFICANCE: Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790604/",
"pubmed_id": "20016834"
} |
yxtdqjay | Breaking the Waves: Modelling the Potential Impact of Public Health Measures to Defer the Epidemic Peak of Novel Influenza A/H1N1 | BACKGROUND: On June 11, 2009, the World Health Organization declared phase 6 of the novel influenza A/H1N1 pandemic. Although by the end of September 2009, the novel virus had been reported from all continents, the impact in most countries of the northern hemisphere has been limited. The return of the virus in a second wave would encounter populations that are still nonimmune and not vaccinated yet. We modelled the effect of control strategies to reduce the spread with the goal to defer the epidemic wave in a country where it is detected in a very early stage. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a deterministic SEIR model using the age distribution and size of the population of Germany based on the observed number of imported cases and the early findings for the epidemiologic characteristics described by Fraser (Science, 2009). We propose a two-step control strategy with an initial effort to trace, quarantine, and selectively give prophylactic treatment to contacts of the first 100 to 500 cases. In the second step, the same measures are focused on the households of the next 5,000 to 10,000 cases. As a result, the peak of the epidemic could be delayed up to 7.6 weeks if up to 30% of cases are detected. However, the cumulative attack rates would not change. Necessary doses of antivirals would be less than the number of treatment courses for 0.1% of the population. In a sensitivity analysis, both case detection rate and the variation of R0 have major effects on the resulting delay. CONCLUSIONS/SIGNIFICANCE: Control strategies that reduce the spread of the disease during the early phase of a pandemic wave may lead to a substantial delay of the epidemic. Since prophylactic treatment is only offered to the contacts of the first 10,000 cases, the amount of antivirals needed is still very limited. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791869/",
"pubmed_id": "20027293"
} |
oi9j5o0n | European Hedgehogs as Hosts for Borrelia spp., Germany | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792852/",
"pubmed_id": "17582907"
} |
|
2xvd5ogf | Expression of the VP2 Protein of Murine Norovirus by a Translation Termination-Reinitiation Strategy | BACKGROUND: Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the pentanucleotide UAA UG. PRINCIPAL FINDINGS: Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAA UG site. Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential stretch of bases complementary to 18S rRNA helix 26 (Motif 1). The relative position of Motif 1 with respect to the UAA UG site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to the initiation inhibitor edeine. CONCLUSIONS: The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF AUG is not a pre-requisite for efficient reinitiation of translation in this system. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793014/",
"pubmed_id": "20027307"
} |
ftxq9g7h | Interaction of the HIV-1 frameshift signal with the ribosome | Ribosomal frameshifting on viral RNAs relies on the mechanical properties of structural elements, often pseudoknots and more rarely stem-loops, that are unfolded by the ribosome during translation. In human immunodeficiency virus (HIV)-1 type B a long hairpin containing a three-nucleotide bulge is responsible for efficient frameshifting. This three-nucleotide bulge separates the hairpin in two domains: an unstable lower stem followed by a GC-rich upper stem. Toeprinting and chemical probing assays suggest that a hairpin-like structure is retained when ribosomes, initially bound at the slippery sequence, were allowed multiple EF-G catalyzed translocation cycles. However, while the upper stem remains intact the lower stem readily melts. After the first, and single step of translocation of deacylated tRNA to the 30 S P site, movement of the mRNA stem-loop in the 5′ direction is halted, which is consistent with the notion that the downstream secondary structure resists unfolding. Mechanical stretching of the hairpin using optical tweezers only allows clear identification of unfolding of the upper stem at a force of 12.8 ± 1.0 pN. This suggests that the lower stem is unstable and may indeed readily unfold in the presence of a translocating ribosome. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794165/",
"pubmed_id": "19812214"
} |
1rzcrkmt | Outdoor environments and human pathogens in air | Are pathogens in outdoor air a health issue at present or will they become a problem in the future? A working group called AirPath - Outdoor Environments and Human Pathogens in Air was set up in 2007 at University College London, UK with the aim of opening new discussion and creating a research network to investigate the science and impacts of outdoor pathogens. Our objective in this paper is to review and discuss the following areas: What is the source of human pathogens in outdoor air? What current, developing and future techniques do we need? Can we identify at-risk groups in relation to their activities and environments? How do we prepare for the anticipated challenges of environmental change and new and emerging diseases? And how can we control for and prevent pathogens in outdoor environments? We think that this work can benefit the wider research community and policy makers by providing a concise overview of various research aspects and considerations which may be important to their work. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796493/",
"pubmed_id": "20102582"
} |
ilhnluqc | Combination strategies for pandemic influenza response - a systematic review of mathematical modeling studies | BACKGROUND: Individual strategies in pandemic preparedness plans may not reduce the impact of an influenza pandemic. METHODS: We searched modeling publications through PubMed and associated references from 1990 to 30 September 2009. Inclusion criteria were modeling papers quantifying the effectiveness of combination strategies, both pharmaceutical and non-pharmaceutical. RESULTS: Nineteen modeling papers on combination strategies were selected. Four studies examined combination strategies on a global scale, 14 on single countries, and one on a small community. Stochastic individual-based modeling was used in nine studies, stochastic meta-population modeling in five, and deterministic compartmental modeling in another five. As part of combination strategies, vaccination was explored in eight studies, antiviral prophylaxis and/or treatment in 16, area or household quarantine in eight, case isolation in six, social distancing measures in 10 and air travel restriction in six studies. Two studies suggested a high probability of successful influenza epicenter containment with combination strategies under favorable conditions. During a pandemic, combination strategies delayed spread, reduced overall number of cases, and delayed and reduced peak attack rate more than individual strategies. Combination strategies remained effective at high reproductive numbers compared with single strategy. Global cooperative strategies, including redistribution of antiviral drugs, were effective in reducing the global impact and attack rates of pandemic influenza. CONCLUSION: Combination strategies increase the effectiveness of individual strategies. They include pharmaceutical (antiviral agents, antibiotics and vaccines) and non-pharmaceutical interventions (case isolation, quarantine, personal hygiene measures, social distancing and travel restriction). Local epidemiological and modeling studies are needed to validate efficacy and feasibility. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797001/",
"pubmed_id": "20003249"
} |
gbdaad4l | Let the sun shine in: effects of ultraviolet radiation on invasive pneumococcal disease risk in Philadelphia, Pennsylvania | BACKGROUND: Streptococcus pneumoniae is a common cause of community acquired pneumonia and bacteremia. Excess wintertime mortality related to pneumonia has been noted for over a century, but the seasonality of invasive pneumococcal disease (IPD) has been described relatively recently and is poorly understood. Improved understanding of environmental influence on disease seasonality has taken on new urgency due to global climate change. METHODS: We evaluated 602 cases of IPD reported in Philadelphia County, Pennsylvania, from 2002 to 2007. Poisson regression models incorporating seasonal smoothers were used to identify associations between weekly weather patterns and case counts. Associations between acute (day-to-day) environmental fluctuations and IPD occurrence were evaluated using a case-crossover approach. Effect modification across age and sex strata was explored, and meta-regression models were created using stratum-specific estimates for effect. RESULTS: IPD incidence was greatest in the wintertime, and spectral decomposition revealed a peak at 51.0 weeks, consistent with annual periodicity. After adjustment for seasonality, yearly increases in reporting, and temperature, weekly incidence was found to be associated with clear-sky UV index (IRR per unit increase in index: 0.70 [95% CI 0.54-0.91]). The effect of UV index was highest among young strata and decreased with age. At shorter time scales, only an association with increases in ambient sulphur oxides was linked to disease risk (OR for highest tertile of exposure 0.75, 95% CI 0.60 to 0.93). CONCLUSION: We confirmed the wintertime predominance of IPD in a major urban center. The major predictor of IPD in Philadelphia is extended periods of low UV radiation, which may explain observed wintertime seasonality. The mechanism of action of diminished light exposure on disease occurrence may be due to direct effects on pathogen survival or host immune function via altered 1,25-(OH)(2)-vitamin-D metabolism. These findings may suggest less diminution in future IPD risk with climate change than would be expected if wintertime seasonality was driven by temperature. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797517/",
"pubmed_id": "19961583"
} |
mszzo4o4 | Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection | BACKGROUND: Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection. METHODOLOGY/PRINCIPAL FINDINGS: However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5(−/−)). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5(−/−) mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5(−/−) BMDMs. CONCLUSIONS/SIGNIFICANCE: We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797616/",
"pubmed_id": "20062534"
} |
dp8971im | Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis) | The major histocompatibility complex (MHC) class I B gene/allelic repertoire was investigated in a pedigreed population of cynomolgus macaques of mixed Indonesian/Malaysian origin. The Mafa-B alleles detected in this cohort are mostly specific for a given geographic area, and only a small number of alleles appears to be shared with other populations. This suggests the fast evolution of Mafa-B alleles due to adaptation to new environments. In contrast to humans, the B locus in Old World monkeys displays extensive copy number variation. The Mafa-B and previously defined -A gene combinations segregate in families and thus allowed the definition of extended haplotypes. In many cases it was possible to assign a particular Mafa-I allele to one of these Mafa-A/B haplotypes as well. The presence of a large number of stable haplotypes in this cohort of animals, which was pedigreed for up to eight generations, looks promising for developing discriminative MHC typing tools that are less cumbersome. Furthermore, the discovery of 53 unreported Mafa-B sequences expands the lexicon of alleles significantly, and may help in understanding the complex organisation of the macaque B region. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802488/",
"pubmed_id": "19937015"
} |
imxe4jeo | In Vitro Viability and Cytotoxicity Testing and Same-Well Multi-Parametric Combinations for High Throughput Screening | In vitro cytotoxicity testing has become an integral aspect of drug discovery because it is a convenient, costeffective, and predictive means of characterizing the toxic potential of new chemical entities. The early and routine implementation of this testing is testament to its prognostic importance for humans. Although a plethora of assay chemistries and methods exist for 96-well formats, few are practical and sufficiently sensitive enough for application in high throughput screening (HTS). Here we briefly describe a handful of the currently most robust and validated HTS assays for accurate and efficient assessment of cytotoxic risk. We also provide guidance for successful HTS implementation and discuss unique merits and detractions inherent in each method. Lastly, we discuss the advantages of combining specific HTS compatible assays into multi-parametric, same-well formats. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802765/",
"pubmed_id": "20161834"
} |
c8snsa4z | Relapsing macrophage activating syndrome in a 15-year-old girl with Still's disease: a case report | INTRODUCTION: Macrophage activating syndrome is a severe, potentially life-threatening condition that may accompany Still's disease. It is characterized by fever, hepatosplenomegaly, lymphadenopathy, severe cytopenia, serious liver dysfunction, coagulopathy and neurologic involvement. The principal treatment for patients with this syndrome includes etoposide 150 mg/2 M twice a week for two weeks, dexamethasone 10 mg/2 M for two weeks and cyclosporine 3 mg/kg to 5 mg/kg for a longer period. Cases of relapse of macrophage activating syndrome are relatively rare. CASE PRESENTATION: We describe the case of a 15-year-old Iraqi girl with Still's disease who developed macrophage activating syndrome with acute respiratory distress syndrome that required resuscitation and mechanical ventilation. Following intensive treatment, including high dose steroids and cyclosporine, the patient improved significantly. Two weeks after cyclosporine was discontinued, however, she was readmitted with an acute relapse of macrophage activating syndrome manifested by spiking fever, arthralgias, maculopapular rash and leukocytosis. This time the patient recovered following the reintroduction of treatment with cyclosporine and the addition of mycophenolate mofetil (Cellcept). CONCLUSION: We believe that cyclosporine is a cornerstone for the treatment of Still's disease. We recommend continuing this medication for several weeks following the patient's clinical recovery in order to prevent macrophage activating syndrome relapses. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803809/",
"pubmed_id": "20062775"
} |
b1h8hweh | Multiple lung abscesses due to acinetobacter infection: a case report | Acinetobacter species are well-known causes of nosocomial infections. Recent increasing evidence emphasize on the role of these pathogens in community-acquired infections. We report a case of a 16-yr-old female with fever, sore throat, productive cough, malaise and the presence of lung consolidation with multiple abscesses on radiographic examination. The patient had no significant medical history. After a detailed diagnostic work-up the diagnosis of community acquired Acinetobacter pneumonia with multiple lung abscesses was made. The Acinetobacter stain was susceptible to a variety of antimicrobial agents and the patient's condition improved rapidly. A new computed tomography chest scan, three months later, confirmed full recovery. The presence of lung abscesses due to Acinetobacter infection is an extremely uncommon manifestation of the disease. This case underlines the emergent role which these, often multi-drug resistant, bacteria may play in the future, perhaps in community infections as well. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804000/",
"pubmed_id": "20062600"
} |
134qz0aw | A novel anti-mycobacterial function of mitogen-activated protein kinase phosphatase-1 | BACKGROUND: Mycobacterium tuberculosis (MTB) is a major cause of morbidity and mortality in the world. To combat against this pathogen, immune cells release cytokines including tumor necrosis factor-α (TNF-α), which is pivotal in the development of protective granulomas. Our previous results showed that Bacillus Calmette Guerin (BCG), a mycobacterium used as a model to investigate the immune response against MTB, stimulates the induction of TNF-α via mitogen-activated protein kinase (MAPK) in human blood monocytes. Since MAPK phosphatase-1 (MKP-1) is known to regulate MAPK activities, we examined whether MKP-1 plays a role in BCG-induced MAPK activation and cytokine expression. RESULTS: Primary human blood monocytes were treated with BCG and assayed for MKP-1 expression. Our results demonstrated that following exposure to BCG, there was an increase in the expression of MKP-1. Additionally, the induction of MKP-1 was regulated by p38 MAPK and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Surprisingly, when MKP-1 expression was blocked by its specific siRNA, there was a significant decrease in the levels of phospho-MAPK (p38 MAPK and ERK1/2) and TNF-α inducible by BCG. CONCLUSIONS: Since TNF-α is pivotal in granuloma formation, the results indicated an unexpected positive function of MKP-1 against mycobacterial infection as opposed to its usual phosphatase activity. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804704/",
"pubmed_id": "20017901"
} |
piusm60c | Localization of Low-Density Detergent-Resistant Membrane Proteins in Intact and Acrosome-Reacted Mouse Sperm | Mammalian sperm become fertile after completing capacitation, a process associated with cholesterol loss and changes in the biophysical properties of the sperm membranes that prepares the sperm to undergo the acrosome reaction. Different laboratories have hypothesized that cholesterol efflux can influence the extent and/or movement of lipid raft microdomains. In a previous study, our laboratory investigated the identity of sperm proteins putatively associated with rafts. After extraction with Triton X-100 and ultracentrifugation in sucrose gradients, proteins distributing to the light buoyant-density fractions were cored from polyacrylamide gels and microsequenced. In this study, a subset of these proteins (TEX101, basigin, hexokinase 1, facilitated glucose transporter 3, IZUMO, and SPAM1) and other molecules known to be enriched in membrane rafts (caveolin 2, flotillin 1, flotillin 2, and the ganglioside GM3) were selected to investigate their localization in the sperm and their behavior during capacitation and the acrosome reaction. These molecules localize to multiple sperm domains, including the acrosomal cap (IZUMO, caveolin 2, and flotillin 2), equatorial segment (GM3), cytoplasmic droplet (TEX101), midpiece (basigin, facilitated glucose transporter 3, and flotillin 2), and principal piece (facilitated glucose transporter 3). Some of these markers modified their immunofluorescence pattern after sperm incubation under capacitating conditions, and these changes correlated with the occurrence of the acrosome reaction. While GM3 and caveolin 2 were not detected after the acrosome reaction, flotillin 2 was found in the equatorial segment of acrosome-reacted sperm, and IZUMO distributed along the sperm head, reaching the post- and para-acrosomal areas. Taking into consideration the requirement of the acrosome reaction for sperm to become fusogenic, these results suggest that membrane raft dynamics may have a role in sperm-egg membrane interaction. | {
"url": "https://academic.oup.com/biolreprod/article-pdf/80/5/897/10571849/biolreprod0897.pdf",
"pubmed_id": "19144954"
} |
a7oqm956 | Global Expression Profiling in Epileptogenesis: Does It Add to the Confusion? | Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805866/",
"pubmed_id": "19243383"
} |
zwgnkegf | Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots | [Image: see text] RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1−stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson−Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808147/",
"pubmed_id": "19921809"
} |
jgxbpy4j | Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells | Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808258/",
"pubmed_id": "19812395"
} |
d08buwtu | Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals | BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808385/",
"pubmed_id": "20098712"
} |
8y8ho2x5 | Recode-2: new design, new search tools, and many more genes | ‘Recoding’ is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of ‘standard’ genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.ie | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808893/",
"pubmed_id": "19783826"
} |
sbnnh2mm | ViralORFeome: an integrated database to generate a versatile collection of viral ORFs | Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808970/",
"pubmed_id": "20007148"
} |
hxjxczyr | Clinical review: Primary influenza viral pneumonia | Primary influenza pneumonia has a high mortality rate during pandemics, not only in immunocompromised individuals and patients with underlying comorbid conditions, but also in young healthy adults. Clinicians should maintain a high index of suspicion for this diagnosis in patients presenting with influenza-like symptoms that progress quickly (2 to 5 days) to respiratory distress and extensive pulmonary involvement. The sensitivity of rapid diagnostic techniques in identifying infections with the pandemic 2009 H1N1v influenza strain is currently suboptimal. The most reliable real-time reverse transcriptase-polymerase chain reaction molecular testing is available in limited clinical settings. Despite 6 months of pandemic circulation, most novel H1N1v pandemic strains remain susceptible to oseltamivir. Ensuring an appropriate oxygenation and ventilation strategy, as well as prompt initiation of antiviral therapy, is essential in management. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811908/",
"pubmed_id": "20085663"
} |
zqcu10rp | Calculating the potential for within-flight transmission of influenza A (H1N1) | BACKGROUND: Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. METHODS: We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. RESULTS: The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. CONCLUSIONS: Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N1, could cause several simultaneous outbreaks. These results imply that, during a pandemic, quarantining passengers who travel in Economy on long-haul flights could potentially be an important control strategy. Notably, our results show that quarantining passengers who travel First Class would be unlikely to be an effective control strategy. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813231/",
"pubmed_id": "20034378"
} |
hwjkbpqp | Abstracts from the 11th International Congress of Behavioral Medicine | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816237/",
"pubmed_id": "19856109"
} |
|
094d0rn6 | IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity | The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1(−/−) mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1(−/−) mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816698/",
"pubmed_id": "20140199"
} |
stgri6y6 | Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report | BACKGROUND: Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. CASE PRESENTATION: A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. CONCLUSIONS: The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818646/",
"pubmed_id": "20064229"
} |
36bfeoqv | Mathematical Modeling of the Effectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1) | On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1) a pandemic. With limited supplies of antivirals and vaccines, countries and individuals are looking at other ways to reduce the spread of pandemic (H1N1) 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1) cases by 20%. We can conclude from our model that, if worn properly, facemasks are an effective intervention strategy in reducing the spread of pandemic (H1N1) 2009. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818714/",
"pubmed_id": "20161764"
} |
sk9lud0o | Correcting the Actual Reproduction Number: A Simple Method to Estimate R(0) from Early Epidemic Growth Data | The basic reproduction number, R(0), a summary measure of the transmission potential of an infectious disease, is estimated from early epidemic growth rate, but a likelihood-based method for the estimation has yet to be developed. The present study corrects the concept of the actual reproduction number, offering a simple framework for estimating R(0) without assuming exponential growth of cases. The proposed method is applied to the HIV epidemic in European countries, yielding R(0) values ranging from 3.60 to 3.74, consistent with those based on the Euler-Lotka equation. The method also permits calculating the expected value of R(0) using a spreadsheet. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819789/",
"pubmed_id": "20195446"
} |
h3yxymh3 | Using Satellite Images of Environmental Changes to Predict Infectious Disease Outbreaks | Recent events clearly illustrate a continued vulnerability of large populations to infectious diseases, which is related to our changing human-constructed and natural environments. A single person with multidrug-resistant tuberculosis in 2007 provided a wake-up call to the United States and global public health infrastructure, as the health professionals and the public realized that today’s ease of airline travel can potentially expose hundreds of persons to an untreatable disease associated with an infectious agent. Ease of travel, population increase, population displacement, pollution, agricultural activity, changing socioeconomic structures, and international conflicts worldwide have each contributed to infectious disease events. Today, however, nothing is larger in scale, has more potential for long-term effects, and is more uncertain than the effects of climate change on infectious disease outbreaks, epidemics, and pandemics. We discuss advances in our ability to predict these events and, in particular, the critical role that satellite imaging could play in mounting an effective response. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819876/",
"pubmed_id": "19788799"
} |
fmgnavfq | Clinical Assessment and Improved Diagnosis of Bocavirus-induced Wheezing in Children, Finland | Human bocavirus (HBoV) is a widespread respiratory virus. To improve diagnostic methods, we conducted immunoglobulin (Ig) G and IgM enzyme immunoassays with recombinant virus–like particles of HBoV as antigen. Acute-phase and follow-up serum samples from 258 wheezing children and single serum samples from 115 healthy adults in Finland were examined. Our assays had a sensitivity of 97% and a specificity of 99.5%. Of adults, 96% had immunity; none had an acute infection. Of 48 children with serologically diagnosed acute HBoV infections, 45 were viremic and 35 had virus in nasopharyngeal aspirates (NPAs). Of 39 HBoV NPA PCR–positive children co-infected with another virus, 64% had a serologically verified HBoV infection. HBoV caused illness of longer duration than rhinovirus and of equal severity to that of respiratory syncytial virus. Among children with bronchiolitis, >25% had acute HBoV infections. Accurate HBoV diagnosis requires serologic analysis or PCR of serum; PCR of NPAs alone is insufficient. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819894/",
"pubmed_id": "19788810"
} |
k58gx6sf | Evidence that Gag facilitates HIV-1 envelope association both in GPI-enriched plasma membrane and detergent resistant membranes and facilitates envelope incorporation onto virions in primary CD4(+ )T cells | HIV-1 particle assembly mediated by viral Gag protein occurs predominantly at plasma membrane. While colocalization of HIV-1 envelope with lipid rich microenvironment have been shown in T cells, the significance of viral proteins modulating envelope association in such microdomains in plasma membrane enriched in glycosylphosphatidylinositol-anchored proteins in primary CD4(+ )T cells that are natural targets of HIV-1 is poorly understood. Here we show that in primary CD4(+ )T cells that are natural targets of HIV-1 in vivo, Gag modulates HIV-1 envelope association with GM1 ganglioside and CD59 rich cellular compartments as well as with detergent resistant membranes. Our data strengthen evidence that Gag-Env interaction is important in envelope association with lipid rafts containing GPI-anchored proteins for efficient assembly onto mature virions resulting in productive infection of primary CD4(+ )T cells. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820015/",
"pubmed_id": "20064199"
} |
5l48fvx2 | Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice | The influenza A nucleoprotein (NP) is an attractive target for avian flu vaccine development because of its high conversancy in the evolutionary chain of the virus. Here we identified two novel HLA-A*0201 restricted NP epitopes, named H5N1 NP373-381 AMDSNTLEL (NP373) and NP458-466 FQGRGVFEL (NP458), using computational bioinformatic analysis. The NP peptides showed a high binding affinity to HLA-A*0201 on T2 cells, and were able to induce the activation of the cytotoxic T cells in the human peripheral blood mononuclear cells. We examined the potential of using NP373 and NP458 peptide sequences supplemented with a single-chain trimer as potential DNA vaccine candidates in an HHD transgenic mouse model. A gene gun delivery system was used for administrating the vaccine candidates into the animals. The results from cytotoxicity and ELISPOT assays indicated that a significant amount of IFN-γ was secreted by the T cells of the vaccinated mice, and the T cells were able to eliminate the corresponding peptide-loaded T2 cells. The discovery of these novel immunogenic NP peptides provides valuable information for avian flu vaccine design and construction. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820229/",
"pubmed_id": "19941812"
} |
um0ds7dh | Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model | Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821766/",
"pubmed_id": "20003910"
} |
mxjtj5c0 | Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information | BACKGROUND: The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. METHODS: In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. RESULTS: Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. CONCLUSION: This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822734/",
"pubmed_id": "20092628"
} |
mgj9zfft | Pneumonitis as A Consequence of (Peg)Interferon-Ribavirin Combination Therapy for Hepatitis C: a Review of the Literature | Combination of peginterferon and ribavirin is the current therapy for chronic hepatitis C infection (HCV). Interstitial pneumonitis is a rare side-effect of HCV therapy and is an important cause of dose reduction or discontinuation, impairing success of antiviral therapy. We performed a review of the literature in order to present diagnostic modalities and possible treatments for pneumonitis and to offer guidelines. We searched for cases where pneumonitis as a side-effect of HCV treatment was documented. First we performed a literature search via PubMed and Web of Science interface and second we searched three drug toxicity databases. We systematically analyzed all case reports with respect to clinical manifestations, type of treatment, and outcome. A literature search revealed 19 articles, containing 25 case descriptions, while we traced 33 cases from the drug toxicity databases. Pneumonitis presented with any of the combination of fever, dyspnea, and cough and can arise with any type of (conventional or pegylated) interferon. Mortality secondary to pneumonitis was seen in 7% of cases, exclusively with peginterferon α-2b. In most cases therapy was discontinued and steroids were started. Interferon-induced pneumonitis during HCV treatment is a severe complication and should be recognized in order to prevent further pulmonary damage and/or death. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822957/",
"pubmed_id": "19399621"
} |
u3yvpcnr | HIV-related restrictions on entry, residence and stay in the WHO European Region: a survey | BACKGROUND: Back in 1987, the World Health Organization (WHO) concluded that the screening of international travellers was an ineffective way to prevent the spread of HIV. However, some countries still restrict the entrance and/or residency of foreigners with an HIV infection. HIV-related travel restrictions have serious implications for individual and public health, and violate internationally recognized human rights. In this study, we reviewed the current situation regarding HIV-related travel restrictions in the 53 countries of the WHO European Region. METHODS: We retrieved the country-specific information chiefly from the Global Database on HIV Related Travel Restrictions at hivtravel.org. We simplified and standardized the database information to enable us to create an overview and compare countries. Where data was outdated, unclear or contradictory, we contacted WHO HIV focal points in the countries or appropriate non-governmental organizations. The United States Bureau of Consular Affairs website was also used to confirm and complement these data. RESULTS: Our review revealed that there are no entry restrictions for people living with HIV in 51 countries in the WHO European Region. In 11 countries, foreigners living with HIV applying for long-term stays will not be granted a visa. These countries are: Andorra, Armenia, Cyprus (denies access for non-European Union citizens), Hungary, Kazakhstan, Moldova, the Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan. In Uzbekistan, an HIV-positive foreigner cannot even enter the country, and in Georgia, we were not able to determine whether there were any HIV-related travel restrictions due to a lack of information. CONCLUSIONS: In 32% of the countries in the European Region, either there are some kind of HIV-related travel restrictions or we were unable to determine if such restrictions are in force. Most of these countries defend restrictions as being justified by public health concerns. However, there is no evidence that denying HIV-positive foreigners access to a country is effective in protecting public health. Governments should revise legislation on HIV-related travel restrictions. In the meantime, a joint effort is needed to draw attention to the continuing discrimination and stigmatization of people living with HIV that takes place in those European Region countries where such laws and policies are still in force. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823611/",
"pubmed_id": "20205784"
} |
z76vjkxg | Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro | The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21(st) century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825274/",
"pubmed_id": "20179772"
} |
54f3q2o5 | Successful treatment of HIV-associated multicentric Castleman's disease and multiple organ failure with rituximab and supportive care: a case report | INTRODUCTION: Multicentric Castleman's Disease (MCD), a lymphoproliferative disorder associated with Human Herpes Virus-8 (HHV-8) infection, is increasing in incidence amongst HIV patients. This condition is associated with lymphadenopathy, polyclonal gammopathy, hepato-splenomegaly and systemic symptoms. A number of small studies have demonstrated the efficacy of the anti-CD20 monoclonal antibody, rituximab, in treating this condition. CASE PRESENTATION: We report the case of a 46 year old Zambian woman who presented with pyrexia, diarrhoea and vomiting, confusion, lymphadenopathy, and renal failure. She rapidly developed multiple organ failure following the initiation of treatment of MCD with rituximab. Following admission to intensive care (ICU), she received prompt multi-organ support. After 21 days on the ICU she returned to the haematology medical ward, and was discharged in remission from her disease after 149 days in hospital. CONCLUSION: Rituximab, the efficacy of which has thus far been examined predominantly in patients outside the ICU, in conjunction with extensive organ support was effective treatment for MCD with associated multiple organ failure. There is, to our knowledge, only one other published report of its successful use in an ICU setting, where it was combined with cyclophosphamide, adriamycin and prednisolone. Reports such as ours support the notion that critically unwell patients with HIV and haematological disease can benefit from intensive care. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825517/",
"pubmed_id": "20205844"
} |
96xoj10p | Attenuated Salmonella choleraesuis-mediated RNAi targeted to conserved regions against foot-and-mouth disease virus in guinea pigs and swine | In this study, specific sequences within three genes (3D, VP4 and 2B) of the foot-and-mouth disease virus (FMDV) genome were determined to be effective RNAi targets. These sequences are highly conserved among different serotype viruses based on sequence analysis. Small interfering RNA (siRNA)-expressing plasmids (p3D-NT19, p3D-NT56, pVP4-NT19, pVP4-NT65 and p2B-NT25) were constructed to express siRNA targeting 3D, VP4 and 2B, respectively. The antiviral potential of these siRNA for various FMDV isolates was investigated in baby hamster kidney (BHK-21) cells and suckling mice. The results show that these siRNA inhibited virus yield 10- to 300-fold for different FMDV isolates of serotype O and serotype Asia I at 48 h post infection in BHK-21 cells compared to control cells. In suckling mice, p3D-NT56 and p2B-NT25 delayed the death of mice. Twenty percent to 40% of the animals that received a single siRNA dose survived 5 days post infection with serotype O or serotype Asia I. We used an attenuated Salmonella choleraesuis (C500) vaccine strain, to carry the plasmid that expresses siRNA directed against the polymerase gene 3D (p3D-NT56) of FMDV. We used guinea pigs to evaluate the inhibitory effects of recombinant S. cho (p3D-NT56/S. cho) on FMDV infection. The results show that 80% of guinea pigs inoculated with 10(9) CFU of p3D-NT56/S. cho and challenged 36 h later with 50 ID(50) of homologous FMDV were protected. We also measured the antiviral activity of p3D-NT56/S. cho in swine. The results indicate that 100% of the animals treated with 5 × 10(9) CFU of p3D-NT56/S. cho were protected in 9 days. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826090/",
"pubmed_id": "20167192"
} |
67oorg1b | Community acquired methicillin-resistant Staphylococcus aureus pneumonia leading to rhabdomyolysis: a case report | Community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) is considered an underreported entity in India. In this case report, the authors describe a thirty-five year old immunocompetent male presenting with severe respiratory distress requiring intubation. On further work up, a CT thorax showed features consistent with necrotizing pneumonia. The morphology and sensitivity pattern of the organism found in the bronchoalveolar lavage fluid and blood culture were consistent with MRSA. The patient's stay in the hospital was complicated by acute renal failure due to rhabdomyolysis with CPK levels of 9995 U/L. The patient was started on dialysis and improved there after. This case brings to light that CA-MRSA is becoming a problem in developing nations where antibiotics are frequently used empirically with little laboratory guidance. It also is a rare reporting of rhabdomyolysis due to CA-MRSA. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831021/",
"pubmed_id": "20205915"
} |
howix091 | Binding of Herpes Simplex Virus Type-1 Virions Leads to the Induction of Intracellular Signalling in the Absence of Virus Entry | The envelope of HSV-1 contains a number of glycoproteins, four of which are essential for virus entry. Virus particles lacking gB, gD, gH or gL are entry-defective, although these viruses retain the ability to bind to the plasma membrane via the remaining glycoproteins. Soluble forms of gD have been shown to trigger the nuclear translocation of the NF-κB transcriptional complex in addition to stimulating the production of Type I interferon. By taking advantage of the entry-defective phenotype of glycoprotein-deficient HSV-1 virus particles, the results presented here show that binding of virions to cellular receptors on the plasma membrane is sufficient to stimulate a change in cellular gene expression. Preliminary microarray studies, validated by quantitative real-time PCR, identified the differential expression of cellular genes associated with the NF-κB, PI3K/Akt, Jak/Stat and related Jak/Src pathways by virions lacking gB or gH but not gD. Gene induction occurred at a few particles per cell, corresponding to physiological conditions during primary infection. Reporter assay studies determined that NF-κB transcriptional activity is stimulated within an hour of HSV-1 binding, peaks between two and three hours post-binding and declines to background levels by five hours after induction. The immediate, transient nature of these signalling events suggests that HSV-1 glycoproteins, particularly gD, may alter the cellular environment pre-entry so as to condition the cell for viral replication. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832691/",
"pubmed_id": "20221426"
} |
0tqwjdhd | Seasonal influenza risk in hospital healthcare workers is more strongly associated with household than occupational exposures: results from a prospective cohort study in Berlin, Germany, 2006/07 | BACKGROUND: Influenza immunisation for healthcare workers is encouraged to protect their often vulnerable patients but also due to a perceived higher risk for influenza. We aimed to compare the risk of influenza infection in healthcare workers in acute hospital care with that in non-healthcare workers over the same season. METHODS: We conducted a prospective, multicentre cohort study during the 2006/07 influenza season in Berlin, Germany. Recruited participants gave serum samples before and after the season, and completed questionnaires to determine their relevant exposures and possible confounding factors. The main outcome measure was serologically confirmed influenza infection (SCII), defined as a fourfold or greater rise in haemagglutination inhibition antibody titres to a circulating strain of influenza (with post-season titre at least 1:40). Weekly mobile phone text messages were used to prompt participants to report respiratory illnesses during the influenza season. A logistic regression model was used to assess the influence of potential risk factors. RESULTS: We recruited 250 hospital healthcare workers (mean age 35.7 years) and 486 non-healthcare workers (mean age 39.2 years) from administrative centres, blood donors and colleges. Overall SCII attack rate was 10.6%. Being a healthcare worker was not a risk factor for SCII (relative risk 1.1, p = 0.70). The final multivariate model had three significant factors: living with children (odds ratio [OR] 3.7, p = 0.005), immunization (OR 0.50, p = 0.02), and - among persons living in households without children - ownership of a car (OR 3.0, p = 0.02). Living with three or more children (OR 13.8, p < 0.01) was a greater risk than living with one or two children (OR 5.3, p = 0.02). 30% of participants with SCII reported no respiratory illness. Healthcare workers were at slightly higher risk of reporting any respiratory infection than controls (adjusted OR 1.3, p = 0.04, n = 850). CONCLUSIONS: Our results suggest that healthcare workers in hospitals do not have a higher risk of influenza than non-healthcare workers, although their risk of any respiratory infection is slightly raised. Household contacts seem to be more important than exposure to patients. Car ownership is a surprise finding which needs further exploration. Asymptomatic infections are common, accounting for around a third of serologically confirmed infections. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836320/",
"pubmed_id": "20067628"
} |
ni6iyzdn | Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features | BACKGROUND: Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. METHODS/PRINCIPAL FINDINGS: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. CONCLUSION/SIGNIFICANCE: Our results indicate that the network prediction system thus established is quite promising and encouraging. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836373/",
"pubmed_id": "20300175"
} |
8gnn6l4b | An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of −1 ribosomal frameshifting | An efficient −1 programmed ribosomal frameshifting (PRF) signal requires an RNA slippery sequence and a downstream RNA stimulator, and the hairpin-type pseudoknot is the most common stimulator. However, a pseudoknot is not sufficient to promote −1 PRF. hTPK-DU177, a pseudoknot derived from human telomerase RNA, shares structural similarities with several −1 PRF pseudoknots and is used to dissect the roles of distinct structural features in the stimulator of −1 PRF. Structure-based mutagenesis on hTPK-DU177 reveals that the −1 PRF efficiency of this stimulator can be modulated by sequential removal of base–triple interactions surrounding the helical junction. Further analysis of the junction-flanking base triples indicates that specific stem–loop interactions and their relative positions to the helical junction play crucial roles for the −1 PRF activity of this pseudoknot. Intriguingly, a bimolecular pseudoknot approach based on hTPK-DU177 reveals that continuing triplex structure spanning the helical junction, lacking one of the loop-closure features embedded in pseudoknot topology, can stimulate −1 PRF. Therefore, the triplex structure is an essential determinant for the DU177 pseudoknot to stimulate −1 PRF. Furthermore, it suggests that −1 PRF, induced by an in-trans RNA via specific base–triple interactions with messenger RNAs, can be a plausible regulatory function for non-coding RNAs. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836554/",
"pubmed_id": "20007152"
} |
zuvy8htp | Early Days of Food and Environmental Virology | In July 1962, the author joined the Food Research Institute (FRI), then at the University of Chicago, to become its food virologist. There was a limited record of waterborne viral disease outbreaks at the time; recorded data on foodborne outbreaks were fewer still. Laboratory environmental (water and wastewater) virology was in its infancy, and food virology was in gestation. Detection of viruses was most often attempted by inoculation of primary primate cell cultures, with observation for plaque formation or cytopathic effects. Focus was initially on enteroviruses and reoviruses. Environmental and food samples had to be liquefied if not already in liquid form; clarified to remove solids, bacteria, and fungi; and concentrated to a volume that could be tested in cell culture. Cytotoxicity was also a concern. Studies at the FRI and some other laboratories addressed all of these challenges. The FRI group was the World Health Organization’s Collaborating Center for Food Virology for many years. Other topics studied were virus inactivation as functions of temperature, time, matrix, disinfectants, and microbial action; peroral and ex-vivo infectivity; and the suitability of various virus surrogates for environmental monitoring and inactivation experiments. Detection of noroviruses and hepatitis A virus required molecular methods, most often RT-PCR. When it was found that inactivated virus often gave the same RT-PCR signal as that of infectious virus, sample treatments were sought, which would prevent false-positive test results. Many laboratories around the world have taken up food and environmental virology since 1962, with the result that a dedicated journal has been launched. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837245/",
"pubmed_id": "20234839"
} |
25v5mr3c | Mitigation Approaches to Combat the Flu Pandemic | Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15(th) June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation. The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with its effective implementation at national, state and local levels. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840954/",
"pubmed_id": "20300402"
} |
sw4wtxdk | NSs Encoded by Groundnut Bud Necrosis Virus Is a Bifunctional Enzyme | Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV- tomato (Karnataka) [1] was over-expressed in E. coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5′ (β, γ imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP. Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5′ RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5′ α phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5′ α phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5′ phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841200/",
"pubmed_id": "20305786"
} |
soi3bn6y | Mortality among patients with tuberculosis requiring intensive care: a retrospective cohort study | BACKGROUND: To describe the characteristics of patients with tuberculosis (TB) requiring intensive care and to identify the factors that predicts in-hospital mortality in a city of a developing country with intermediate-to-high TB endemicity. METHODS: We conducted a retrospective, cohort study, between November 2005 and November 2007. The patients with TB requiring intensive care were included. Predictors of mortality were assessed. The primary outcome was the in-hospital mortality. RESULTS: During the study period, 67 patients with TB required intensive care. Of them, 62 (92.5%) had acute respiratory failure and required mechanical ventilation. Forty-four (65.7%) patients died. Coinfection with human immunodeficiency virus was present in 46 (68.7%) patients. Early intensive care unit admission and ventilator-associated pneumonia were independently associated with the in-hospital mortality. CONCLUSIONS: In this study we found a high mortality rate in TB patients requiring intensive care, especially in those with an early ICU admission. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843613/",
"pubmed_id": "20205952"
} |
6wu024ng | Comparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret | Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843722/",
"pubmed_id": "20352112"
} |
vexwisnz | The Impact of Contact Tracing in Clustered Populations | The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in addition to contact tracing, standard “mass action” models are generally inadequate. To consider the impact of mutual contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space. This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks. In this way we contribute to the general theory of network-based interventions against infectious disease. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845652/",
"pubmed_id": "20361048"
} |
8trsa6o6 | Serological Profiling of a Candida albicans Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia | Candida albicans in the immunocompetent host is a benign member of the human microbiota. Though, when host physiology is disrupted, this commensal-host interaction can degenerate and lead to an opportunistic infection. Relatively little is known regarding the dynamics of C. albicans colonization and pathogenesis. We developed a C. albicans cell surface protein microarray to profile the immunoglobulin G response during commensal colonization and candidemia. The antibody response from the sera of patients with candidemia and our negative control groups indicate that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans. This report also identifies cell surface antigens that are specific to different phases (i.e. acute, early and mid convalescence) of candidemia. We identified a set of thirteen cell surface antigens capable of distinguishing acute candidemia from healthy individuals and uninfected hospital patients with commensal colonization. Interestingly, a large proportion of these cell surface antigens are involved in either oxidative stress or drug resistance. In addition, we identified 33 antigenic proteins that are enriched in convalescent sera of the candidemia patients. Intriguingly, we found within this subset an increase in antigens associated with heme-associated iron acquisition. These findings have important implications for the mechanisms of C. albicans colonization as well as the development of systemic infection. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845659/",
"pubmed_id": "20361054"
} |
epkw6222 | DNA Vaccines: Developing New Strategies against Cancer | Due to their rapid and widespread development, DNA vaccines have entered into a variety of human clinical trials for vaccines against various diseases including cancer. Evidence that DNA vaccines are well tolerated and have an excellent safety profile proved to be of advantage as many clinical trials combines the first phase with the second, saving both time and money. It is clear from the results obtained in clinical trials that such DNA vaccines require much improvement in antigen expression and delivery methods to make them sufficiently effective in the clinic. Similarly, it is clear that additional strategies are required to activate effective immunity against poorly immunogenic tumor antigens. Engineering vaccine design for manipulating antigen presentation and processing pathways is one of the most important aspects that can be easily handled in the DNA vaccine technology. Several approaches have been investigated including DNA vaccine engineering, co-delivery of immunomodulatory molecules, safe routes of administration, prime-boost regimen and strategies to break the immunosuppressive networks mechanisms adopted by malignant cells to prevent immune cell function. Combined or single strategies to enhance the efficacy and immunogenicity of DNA vaccines are applied in completed and ongoing clinical trials, where the safety and tolerability of the DNA platform are substantiated. In this review on DNA vaccines, salient aspects on this topic going from basic research to the clinic are evaluated. Some representative DNA cancer vaccine studies are also discussed. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846346/",
"pubmed_id": "20368780"
} |
d2mb2b3d | TLR agonist–Stat3 siRNA conjugates: cell-specific gene silencing and enhanced antitumor immune responses | Efficient delivery of siRNA to specific cell populations in vivo remains a formidable challenge to its successful therapeutic application. We describe a novel siRNA-based approach – synthetically linking siRNA to an oligonucleotide TLR9 agonist – that targets and silences genes in TLR9(+) myeloid cells and B cells, both of which are key components of the tumor microenvironment. Because Stat3 in tumor-associated immune cells suppresses antitumor immune responses and hinders TLR9-induced immune stimulation, we tested CpG-Stat3siRNA conjugates for anti-tumor effects. When injected locally at the tumor site or systemically through an intravenous route, the CpG-Stat3siRNA conjugates access tumor-associated dendritic cells, macrophages and B cells, inhibit Stat3 expression, leading to activation of tumor-associated immune cells, and ultimately potent anti-tumor immune responses. Our findings demonstrate the potential of TLR agonist-siRNA conjugates for targeted gene silencing coupled with TLR stimulation and immune activation in the tumor microenvironment. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846721/",
"pubmed_id": "19749770"
} |
o4k7auph | Rapid Accumulation of Virulent Rift Valley Fever Virus in Mice from an Attenuated Virus Carrying a Single Nucleotide Substitution in the M RNA | BACKGROUND: Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates. METHODOLOGY/PRINCIPAL FINDINGS: Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice. CONCLUSIONS/SIGNIFICANCE: These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848673/",
"pubmed_id": "20376320"
} |
cwzpb8fu | Confronting Potential Influenza A (H5N1) Pandemic with Better Vaccines | Influenza A (H5N1) viruses are strong candidates for causing the next influenza pandemic if they acquire the ability for efficient human-to-human transmission. A major public health goal is to make efficacious vaccines against these viruses by using novel approaches, including cell-culture system, reverse genetics, and adjuvant development. Important consideration for the strategy includes preparation of vaccines from a currently circulating strain to induce broad-spectrum immunity toward newly emerged human H5 strains. This strategy would be a good solution early in a pandemic until an antigenically matched and approved vaccine is produced. The concept of therapeutic vaccines (e.g., antidisease vaccine) directed at diminishing the cytokine storm frequently seen in subtype H5N1–infected persons is underscored. Better understanding of host–virus interaction is essential to identify tools to produce effective vaccines against influenza (H5N1). | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851514/",
"pubmed_id": "18258000"
} |
ge5iri3v | Global Public Health Security | National public health institutes will play a key role in implementation of the revised International Health Regulations. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851539/",
"pubmed_id": "18257985"
} |
lkoyrv3s | Dynamics and Control of Diseases in Networks with Community Structure | The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851561/",
"pubmed_id": "20386735"
} |
zizfgz7d | Generation of Human CEACAM1 Transgenic Mice and Binding of Neisseria Opa Protein to Their Neutrophils | BACKGROUND: Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens. PRINCIPAL FINDINGS: Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils. CONCLUSION: These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852402/",
"pubmed_id": "20404914"
} |
cge5uve3 | TUBERCULOUS SARCOIDOSIS: DOES IT EXIST? | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853046/",
"pubmed_id": "20396660"
} |
|
q26f8pv4 | DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model | RNA pseudoknots are functional structure elements with key roles in viral and cellular processes. Prediction of a pseudoknotted minimum free energy structure is an NP-complete problem. Practical algorithms for RNA structure prediction including restricted classes of pseudoknots suffer from high runtime and poor accuracy for longer sequences. A heuristic approach is to search for promising pseudoknot candidates in a sequence and verify those. Afterwards, the detected pseudoknots can be further analysed using bioinformatics or laboratory techniques. We present a novel pseudoknot detection method called DotKnot that extracts stem regions from the secondary structure probability dot plot and assembles pseudoknot candidates in a constructive fashion. We evaluate pseudoknot free energies using novel parameters, which have recently become available. We show that the conventional probability dot plot makes a wide class of pseudoknots including those with bulged stems manageable in an explicit fashion. The energy parameters now become the limiting factor in pseudoknot prediction. DotKnot is an efficient method for long sequences, which finds pseudoknots with higher accuracy compared to other known prediction algorithms. DotKnot is accessible as a web server at http://dotknot.csse.uwa.edu.au. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853144/",
"pubmed_id": "20123730"
} |
y6di4ver | Risk of Importing Zoonotic Diseases through Wildlife Trade, United States | The United States is the world’s largest wildlife importer, and imported wild animals represent a potential source of zoonotic pathogens. Using data on mammals imported during 2000–2005, we assessed their potential to host 27 selected risk zoonoses and created a risk assessment that could inform policy making for wildlife importation and zoonotic disease surveillance. A total of 246,772 mammals in 190 genera (68 families) were imported. The most widespread agents of risk zoonoses were rabies virus (in 78 genera of mammals), Bacillus anthracis (57), Mycobacterium tuberculosis complex (48), Echinococcus spp. (41), and Leptospira spp. (35). Genera capable of harboring the greatest number of risk zoonoses were Canis and Felis (14 each), Rattus (13), Equus (11), and Macaca and Lepus (10 each). These findings demonstrate the myriad opportunities for zoonotic pathogens to be imported and suggest that, to ensure public safety, immediate proactive changes are needed at multiple levels. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857234/",
"pubmed_id": "19891857"
} |
sboumuy9 | Architecture of a nascent viral fusion pore | Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky' fusion to the observed prefusion structures is discussed. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857459/",
"pubmed_id": "20168302"
} |
igo8c5kb | The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1 | Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19(th) century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858710/",
"pubmed_id": "20421950"
} |
gzxu7nkh | China's Engagement with Global Health Diplomacy: Was SARS a Watershed? | As part of the PLoS Medicine series on Global Health Diplomacy, Lai-Han Chan and colleagues provide a case study of China's growing engagement in global health diplomacy following the SARS epidemic. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860492/",
"pubmed_id": "20436959"
} |
lfvso15k | Electron Tomography Reveals the Steps in Filovirus Budding | The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861712/",
"pubmed_id": "20442788"
} |
hd12p867 | Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy | Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864512/",
"pubmed_id": "20454584"
} |
sbxqwfmy | Elevation of Intact and Proteolytic Fragments of Acute Phase Proteins Constitutes the Earliest Systemic Antiviral Response in HIV-1 Infection | The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI) exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, β-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA) occurred as early as 5–7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha–1-antitrypsin (AAT), termed virus inhibitory peptide (VIRIP), was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865525/",
"pubmed_id": "20463814"
} |
se4unhi8 | Synthesis and Pharmacological Evaluation of Schiff Bases of 4-(2-Aminophenyl)-Morpholines | In the present study, a novel series of 4-(2-aminophenyl)morpholines were synthesized and characterized by IR, (1)H-NMR, (13)C NMR and mass spectral analysis. The synthesized compounds were screened for analgesic (100 and 200 mg/kg), antiinflammatory (200 and 400 mg/kg), antibacterial (Bacillus subtilis, Bacillus cereus, Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli) and antifungal (Candida albicans and Aspergillus niger) activities. The minimum inhibitory concentrations of the compounds were also ascertained by agar streak dilution method. N-benzylidine-2-morpholoino benzenamine (1) and N-(3-nitro benzylidine)-2-morpholino benzenamine (3) exhibited significant analgesic, antiinflammatory and antimicrobial activities. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865815/",
"pubmed_id": "20502549"
} |
a0pzw26l | Proper Distance Metrics for Phylogenetic Analysis Using Complete Genomes without Sequence Alignment | A shortcoming of most correlation distance methods based on the composition vectors without alignment developed for phylogenetic analysis using complete genomes is that the “distances” are not proper distance metrics in the strict mathematical sense. In this paper we propose two new correlation-related distance metrics to replace the old one in our dynamical language approach. Four genome datasets are employed to evaluate the effects of this replacement from a biological point of view. We find that the two proper distance metrics yield trees with the same or similar topologies as/to those using the old “distance” and agree with the tree of life based on 16S rRNA in a majority of the basic branches. Hence the two proper correlation-related distance metrics proposed here improve our dynamical language approach for phylogenetic analysis. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869232/",
"pubmed_id": "20480005"
} |
th0wddvc | A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1 | BACKGROUND: The highly pathogenic avian influenza (HPAI) virus H5N1 causes multi-organ disease and death in poultry, resulting in significant economic losses in the poultry industry. In addition, it poses a major public health threat as it can be transmitted directly from infected poultry to humans with very high (60%) mortality rate. Effective vaccination against HPAI H5N1 would protect commercial poultry and would thus provide an important control measure by reducing the likelihood of bird-to-bird and bird-to-human transmission. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we evaluated the vaccine potential of recombinant soluble trimeric subtype 5 hemagglutinin (sH5(3)) produced in mammalian cells. The secreted, purified sH5(3) was biologically active as demonstrated by its binding to ligands in a sialic acid-dependent manner. It was shown to protect chickens, in a dose-dependent manner, against a lethal challenge with H5N1 after a single vaccination. Protected animals did not shed challenge virus as determined by a quantitative RT-PCR on RNA isolated from trachea and cloaca swabs. Also in mice, vaccination with sH5(3) provided complete protection against challenge with HPAI H5N1. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that sH5(3) constitutes an attractive vaccine antigen for protection of chickens and mammals against HPAI H5N1. As these recombinant soluble hemagglutinin preparations can be produced with high yields and with relatively short lead time, they enable a rapid response to circulating and potentially pandemic influenza viruses. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871037/",
"pubmed_id": "20498717"
} |
fec4kt20 | Hospital Triage System for Adult Patients Using an Influenza-Like Illness Scoring System during the 2009 Pandemic—Mexico | BACKGROUND: Pandemic influenza A (H1N1) virus emerged during 2009. To help clinicians triage adults with acute respiratory illness, a scoring system for influenza-like illness (ILI) was implemented at Hospital Civil de Guadalajara, Mexico. METHODS: A medical history, laboratory and radiology results were collected on emergency room (ER) patients with acute respiratory illness to calculate an ILI-score. Patients were evaluated for admission by their ILI-score and clinicians' assessment of risk for developing complications. Nasal and throat swabs were collected from intermediate and high-risk patients for influenza testing by RT-PCR. The disposition and ILI-score of those oseltamivir-treated versus untreated, clinical characteristics of 2009 pandemic influenza A (H1N1) patients versus test-negative patients were compared by Pearson's Χ(2), Fisher's Exact, and Wilcoxon rank-sum tests. RESULTS: Of 1840 ER patients, 230 were initially hospitalized (mean ILI-score = 15), and the rest were discharged, including 286 ambulatory patients given oseltamivir (median ILI-score = 11), and 1324 untreated (median ILI-score = 5). Fourteen (1%) untreated patients returned, and 3 were hospitalized on oseltamivir (median ILI-score = 19). Of 371 patients tested by RT-PCR, 104 (28%) had pandemic influenza and 42 (11%) had seasonal influenza A detected. Twenty (91%) of 22 imaged hospitalized pandemic influenza patients had bilateral infiltrates compared to 23 (38%) of 61 imaged hospital test-negative patients (p<0.001). One patient with confirmed pandemic influenza presented 6 days after symptom onset, required mechanical ventilation, and died. CONCLUSIONS: The triaging system that used an ILI-score complimented clinicians' judgment of who needed oseltamivir and inpatient care and helped hospital staff manage a surge in demand for services. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871038/",
"pubmed_id": "20498718"
} |
34sy55hi | Acute Encephalopathy Associated with Influenza A Infection in Adults | We report acute encephalopathy associated with influenza A infection in 3 adults. We detected high cerebrospinal fluid (CSF) and plasma concentrations of CXCL8/IL-8 and CCL2/MCP-1 (CSF/plasma ratios >3), and interleukin-6, CXCL10/IP-10, but no evidence of viral neuroinvasion. Patients recovered without sequelae. Hyperactivated cytokine response may play a role in pathogenesis. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874350/",
"pubmed_id": "20031062"
} |
1rhy8td0 | Large-scale evolutionary surveillance of the 2009 H1N1 influenza A virus using resequencing arrays | In April 2009, a new influenza A (H1N1 2009) virus emerged that rapidly spread around the world. While current variants of this virus have caused widespread disease, particularly in vulnerable groups, there remains the possibility that future variants may cause increased virulence, drug resistance or vaccine escape. Early detection of these virus variants may offer the chance for increased containment and potentially prevention of the virus spread. We have developed and field-tested a resequencing kit that is capable of interrogating all eight segments of the 2009 influenza A(H1N1) virus genome and its variants, with added focus on critical regions such as drug-binding sites, structural components and mutation hotspots. The accompanying base-calling software (EvolSTAR) introduces novel methods that utilize neighbourhood hybridization intensity profiles and substitution bias of probes on the microarray for mutation confirmation and recovery of ambiguous base queries. Our results demonstrate that EvolSTAR is highly accurate and has a much improved call rate. The high throughput and short turn-around time from sample to sequence and analysis results (30 h for 24 samples) makes this kit an efficient large-scale evolutionary biosurveillance tool. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874996/",
"pubmed_id": "20185568"
} |
yvgzkt8a | Journals, Academics, and Pandemics | In the wake of the SARS epidemic and the H1N1 pandemic, the PLoS Medicine editors ask whether journal publishing is an efficient enough mechanism for information sharing. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876121/",
"pubmed_id": "20520802"
} |
wcyv6w47 | Age groups and spread of influenza: implications for vaccination strategy | BACKGROUND: The unpredictable nature of the potentially devastating impact of 2009 pH1N1 influenza pandemic highlights the need for pandemic preparedness planning, where modeling studies could be most useful for simulations of possible future scenarios. METHODS: A compartmental model with pre-symptomatic and asymptomatic influenza infections is proposed which incorporates age groups as well as intervention measures such as age-specific vaccination, in order to study spread of influenza in a community. RESULTS: We derive the basic reproduction number and other effective reproduction numbers under various intervention measures. For illustration, we make use of the Pneumonia and Influenza (P&I) mortality data and vaccination data of the very young (age 0-2) and the very old (age >64) during 2004-2005 Taiwan winter influenza season to fit our model and to compute the relevant reproduction numbers. The reproduction number for this winter flu season is estimated to be slightly above one (~1.0001). CONCLUSIONS: Comparatively large errors in fitting the P&I mortality data of the elderly (>64) were observed shortly after winter school closings in January, which may indicate the impact of younger, more active age groups transmitting influenza to other age groups outside of the school settings; in particular, to the elderly in the households. Pre-symptomatic infections seemed to have little effect on the model fit, while asymptomatic infection by asymptomatic infectives has a more pronounced impact on the model fit for the elderly mortality, perhaps indicating a larger role in disease transmission by asymptomatic infection. Simulations indicate that the impact of vaccination on the disease incidence might not be fully revealed in the change (or the lack thereof) in the effective reproduction number with interventions, but could still be substantial. The estimated per contact transmission probability for susceptible elderly is significantly higher than that of any other age group, perhaps highlighting the vulnerability of the elderly due to close contacts with their caretakers from other age groups. The relative impact of targeting the very young and the very old for vaccination was weakened by their relative inactivity, thus giving evidence of the lack of impact of vaccinating these two groups on the overall transmissibility of the disease in the community. This further underscores the need for morbidity-based strategy to prevent elderly mortality. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876165/",
"pubmed_id": "20429954"
} |
8d4f4gmw | Effects of Internal Border Control on Spread of Pandemic Influenza | We investigated the capacity of internal border control to limit influenza spread in an emergent pandemic in the context of Australia, a country with a low-population density and geopolitical boundaries that may facilitate restrictions. Mathematical models were used to study the time delay between epidemics in 2 population centers when travel restrictions were imposed. The models demonstrated that population size, travel rates, and places where travelers reside can strongly influence delay. The model simulations suggested that moderate delays in geographic spread may be possible with stringent restrictions and a low reproduction number, but results will be sensitive to the reproduction number and timing of restrictions. Model limitations include the absence of further importations and additional control measures. Internal border control may have a role in protecting domestic centers early in a pandemic, when importations are sparse. Our results may be useful for policymakers. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878213/",
"pubmed_id": "18214176"
} |
wg6nh1vt | Extracorporeal life support for management of refractory cardiac or respiratory failure: initial experience in a tertiary centre | INTRODUCTION: Extracorporeal Life Support (ECLS) and extracorporeal membrane oxygenation (ECMO) have been indicated as treatment for acute respiratory and/or cardiac failure. Here we describe our first year experience of in-hospital ECLS activity, the operative algorithm and the protocol for centralization of adult patients from district hospitals. METHODS: At a tertiary referral trauma center (Careggi Teaching Hospital, Florence, Italy), an ECLS program was developed from 2008 by the Emergency Department and Heart and Vessel Department ICUs. The ECLS team consists of an intensivist, a cardiac surgeon, a cardiologist and a perfusionist, all trained in ECLS technique. ECMO support was applied in case of severe acute respiratory distress syndrome (ARDS) not responsive to conventional treatments. The use of veno-arterial (V-A) ECLS for cardiac support was reserved for cases of cardiac shock refractory to standard treatment and cardiac arrests not responding to conventional resuscitation. RESULTS: A total of 21 patients were treated with ECLS during the first year of activity. Among them, 13 received ECMO for ARDS (5 H1N1-virus related), with a 62% survival. In one case of post-traumatic ARDS, V-A ECLS support permitted multiple organ donation after cerebral death was confirmed. Patients treated with V-A ECLS due to cardiogenic shock (N = 4) had a survival rate of 50%. No patients on V-A ECLS support after cardiac arrest survived (N = 4). CONCLUSIONS: In our centre, an ECLS Service was instituted over a relatively limited period of time. A strict collaboration between different specialists can be regarded as a key feature to efficiently implement the process. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879235/",
"pubmed_id": "20487571"
} |
sfshosp0 | How necessary is a fast testkit for mitigation of pandemic flu? | It is widely feared that a novel, highly pathogenic, human transmissible influenza virus may evolve that could cause the next global pandemic. Mitigating the spread of such an influenza pandemic would require not only the timely administration of antiviral drugs to those infected, but also the implementation of suitable intervention policies for stunting the spread of the virus. Towards this end, mathematical modelling and simulation studies are crucial as they allow us to evaluate the predicted effectiveness of the various intervention policies before enforcing them. Diagnosis plays a vital role in the overall pandemic management framework by detecting and distinguishing the pathogenic strain from the less threatening seasonal strains and other influenza-like illnesses. This allows treatment and intervention to be deployed effectively, given limited antiviral supplies and other resources. However, the time required to design a fast and accurate testkit for novel strains may limit the role of diagnosis. Herein, we aim to investigate the cost and effectiveness of different diagnostic methods using a stochastic agent-based city-scale model, and then address the issue of whether conventional testing approaches, when used with appropriate intervention policies, can be as effective as fast testkits in containing a pandemic outbreak. We found that for mitigation purposes, fast and accurate testkits are not necessary as long as sufficient medication is given, and are generally recommended only when used with extensive contact tracing and prophylaxis. Additionally, in the event of insufficient medication and fast testkits, the use of slower, conventional testkits together with proper isolation policies while waiting for the diagnostic results can be an equally effective substitute. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880075/",
"pubmed_id": "20022897"
} |
waf4n6u8 | Rotavirus Structural Proteins and dsRNA Are Required for the Human Primary Plasmacytoid Dendritic Cell IFNα Response | Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNα and β) correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV), have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs) with either live or inactivated RRV induces substantial IFNα production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNα production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNα by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNα induction in primary human pDCs by a dsRNA virus, while simultaneously demonstrating impaired IFNα production in primary human cells in which RRV replicates. Rotavirus infection of primary human pDCs provides a powerful experimental system for the study of mechanisms underlying pDC-mediated innate immunity to viral infection and reveals a potentially novel dsRNA-dependent pathway of IFNα induction. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880586/",
"pubmed_id": "20532161"
} |
chd9ezba | Role of CD14 in lung inflammation and infection | This article is one of ten reviews selected from the Yearbook of Intensive Care and Emergency Medicine 2010 (Springer Verlag) and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/yearbook. Further information about the Yearbook of Intensive Care and Emergency Medicine is available from http://www.springer.com/series/2855. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887102/",
"pubmed_id": "20236452"
} |
unotv53r | Non-invasive ventilation for critically ill patients with pandemic H1N1 2009 influenza A virus infection | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887117/",
"pubmed_id": "20346097"
} |
|
o2kzb94o | Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen | BACKGROUND: Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively. CONCLUSIONS/SIGNIFICANCE: Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887847/",
"pubmed_id": "20585451"
} |
01wsevuu | Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins | BACKGROUND: Myeloperoxidase (MPO), an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl) from H(2)O(2 )and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. FINDINGS: This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV) glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. CONCLUSIONS: Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide. | {
"url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887905/",
"pubmed_id": "20525179"
} |