text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class StableAudioAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def apply_partial_rotary_emb( self, x: torch.Tensor, freqs_cis: Tuple[torch.Tensor], ) -> torch.Tensor: from .embeddings import apply_rotary_emb rot_dim = freqs_cis[0].shape[-1] x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:] x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2) out = torch.cat((x_rotated, x_unrotated), dim=-1) return out def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) head_dim = query.shape[-1] // attn.heads kv_heads = key.shape[-1] // head_dim query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) if kv_heads != attn.heads: # if GQA or MQA, repeat the key/value heads to reach the number of query heads. heads_per_kv_head = attn.heads // kv_heads key = torch.repeat_interleave(key, heads_per_kv_head, dim=1) value = torch.repeat_interleave(value, heads_per_kv_head, dim=1) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if rotary_emb is not None: query_dtype = query.dtype key_dtype = key.dtype query = query.to(torch.float32) key = key.to(torch.float32) rot_dim = rotary_emb[0].shape[-1] query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:] query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) query = torch.cat((query_rotated, query_unrotated), dim=-1) if not attn.is_cross_attention: key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:] key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) key = torch.cat((key_rotated, key_unrotated), dim=-1) query = query.to(query_dtype) key = key.to(key_dtype) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
155,848
161,016
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
800
class HunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
161,019
164,910
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
801
class FusedHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // 2 key, value = torch.split(kv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
164,913
169,073
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
802
class PAGHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) # 1. Original Path batch_size, sequence_length, _ = ( hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) if encoder_hidden_states is None: encoder_hidden_states = hidden_states_org elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # 2. Perturbed Path if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
169,076
173,976
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
803
class PAGCFGHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) # 1. Original Path batch_size, sequence_length, _ = ( hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) if encoder_hidden_states is None: encoder_hidden_states = hidden_states_org elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # 2. Perturbed Path if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
173,979
178,988
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
804
class LuminaAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, query_rotary_emb: Optional[torch.Tensor] = None, key_rotary_emb: Optional[torch.Tensor] = None, base_sequence_length: Optional[int] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape # Get Query-Key-Value Pair query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query_dim = query.shape[-1] inner_dim = key.shape[-1] head_dim = query_dim // attn.heads dtype = query.dtype # Get key-value heads kv_heads = inner_dim // head_dim # Apply Query-Key Norm if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, kv_heads, head_dim) value = value.view(batch_size, -1, kv_heads, head_dim) # Apply RoPE if needed if query_rotary_emb is not None: query = apply_rotary_emb(query, query_rotary_emb, use_real=False) if key_rotary_emb is not None: key = apply_rotary_emb(key, key_rotary_emb, use_real=False) query, key = query.to(dtype), key.to(dtype) # Apply proportional attention if true if key_rotary_emb is None: softmax_scale = None else: if base_sequence_length is not None: softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale else: softmax_scale = attn.scale # perform Grouped-qurey Attention (GQA) n_rep = attn.heads // kv_heads if n_rep >= 1: key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, scale=softmax_scale ) hidden_states = hidden_states.transpose(1, 2).to(dtype) return hidden_states
class_definition
178,991
182,665
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
805
class FusedAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is currently 🧪 experimental in nature and can change in future. </Tip> """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // 2 key, value = torch.split(kv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
182,668
187,083
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
806
class CustomDiffusionXFormersAttnProcessor(nn.Module): r""" Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__( self, train_kv: bool = True, train_q_out: bool = False, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, attention_op: Optional[Callable] = None, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) else: query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states
class_definition
187,086
192,112
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
807
class CustomDiffusionAttnProcessor2_0(nn.Module): r""" Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled dot-product attention. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, train_kv: bool = True, train_q_out: bool = True, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states) else: query = attn.to_q(hidden_states) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() inner_dim = hidden_states.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states
class_definition
192,115
196,983
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
808
class SlicedAttnProcessor: r""" Processor for implementing sliced attention. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size: int): self.slice_size = slice_size def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
196,986
200,151
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
809
class SlicedAttnAddedKVProcessor: r""" Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size): self.slice_size = slice_size def __call__( self, attn: "Attention", hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states
class_definition
200,154
203,793
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
810
class SpatialNorm(nn.Module): """ Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. Args: f_channels (`int`): The number of channels for input to group normalization layer, and output of the spatial norm layer. zq_channels (`int`): The number of channels for the quantized vector as described in the paper. """ def __init__( self, f_channels: int, zq_channels: int, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: f_size = f.shape[-2:] zq = F.interpolate(zq, size=f_size, mode="nearest") norm_f = self.norm_layer(f) new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) return new_f
class_definition
203,796
204,884
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
811
class IPAdapterAttnProcessor(nn.Module): r""" Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
204,887
214,003
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
812
class IPAdapterAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapter for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 _current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
214,006
224,945
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
813
class IPAdapterXFormersAttnProcessor(torch.nn.Module): r""" Attention processor for IP-Adapter using xFormers. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__( self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0, attention_op: Optional[Callable] = None, ): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.FloatTensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # expand our mask's singleton query_tokens dimension: # [batch*heads, 1, key_tokens] -> # [batch*heads, query_tokens, key_tokens] # so that it can be added as a bias onto the attention scores that xformers computes: # [batch*heads, query_tokens, key_tokens] # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. _, query_tokens, _ = hidden_states.shape attention_mask = attention_mask.expand(-1, query_tokens, -1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if ip_hidden_states: if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate( zip(ip_adapter_masks, self.scale, ip_hidden_states) ): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: mask = mask.to(torch.float16) if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() _current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
224,948
236,018
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
814
class SD3IPAdapterJointAttnProcessor2_0(torch.nn.Module): """ Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with additional image-based information and timestep embeddings. Args: hidden_size (`int`): The number of hidden channels. ip_hidden_states_dim (`int`): The image feature dimension. head_dim (`int`): The number of head channels. timesteps_emb_dim (`int`, defaults to 1280): The number of input channels for timestep embedding. scale (`float`, defaults to 0.5): IP-Adapter scale. """ def __init__( self, hidden_size: int, ip_hidden_states_dim: int, head_dim: int, timesteps_emb_dim: int = 1280, scale: float = 0.5, ): super().__init__() # To prevent circular import from .normalization import AdaLayerNorm, RMSNorm self.norm_ip = AdaLayerNorm(timesteps_emb_dim, output_dim=ip_hidden_states_dim * 2, norm_eps=1e-6, chunk_dim=1) self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.norm_q = RMSNorm(head_dim, 1e-6) self.norm_k = RMSNorm(head_dim, 1e-6) self.norm_ip_k = RMSNorm(head_dim, 1e-6) self.scale = scale def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, ip_hidden_states: torch.FloatTensor = None, temb: torch.FloatTensor = None, ) -> torch.FloatTensor: """ Perform the attention computation, integrating image features (if provided) and timestep embeddings. If `ip_hidden_states` is `None`, this is equivalent to using JointAttnProcessor2_0. Args: attn (`Attention`): Attention instance. hidden_states (`torch.FloatTensor`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor`, *optional*): The encoder hidden states. attention_mask (`torch.FloatTensor`, *optional*): Attention mask. ip_hidden_states (`torch.FloatTensor`, *optional*): Image embeddings. temb (`torch.FloatTensor`, *optional*): Timestep embeddings. Returns: `torch.FloatTensor`: Output hidden states. """ residual = hidden_states batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) img_query = query img_key = key img_value = value if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # IP Adapter if self.scale != 0 and ip_hidden_states is not None: # Norm image features norm_ip_hidden_states = self.norm_ip(ip_hidden_states, temb=temb) # To k and v ip_key = self.to_k_ip(norm_ip_hidden_states) ip_value = self.to_v_ip(norm_ip_hidden_states) # Reshape ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Norm query = self.norm_q(img_query) img_key = self.norm_k(img_key) ip_key = self.norm_ip_k(ip_key) # cat img key = torch.cat([img_key, ip_key], dim=2) value = torch.cat([img_value, ip_value], dim=2) ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) ip_hidden_states = ip_hidden_states.transpose(1, 2).view(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + ip_hidden_states * self.scale # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
class_definition
236,021
242,929
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
815
class PAGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
242,932
246,962
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
816
class PAGCFGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) value = attn.to_v(hidden_states_ptb) hidden_states_ptb = value hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
class_definition
246,965
251,128
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
817
class SanaMultiscaleAttnProcessor2_0: r""" Processor for implementing multiscale quadratic attention. """ def __call__(self, attn: SanaMultiscaleLinearAttention, hidden_states: torch.Tensor) -> torch.Tensor: height, width = hidden_states.shape[-2:] if height * width > attn.attention_head_dim: use_linear_attention = True else: use_linear_attention = False residual = hidden_states batch_size, _, height, width = list(hidden_states.size()) original_dtype = hidden_states.dtype hidden_states = hidden_states.movedim(1, -1) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) hidden_states = torch.cat([query, key, value], dim=3) hidden_states = hidden_states.movedim(-1, 1) multi_scale_qkv = [hidden_states] for block in attn.to_qkv_multiscale: multi_scale_qkv.append(block(hidden_states)) hidden_states = torch.cat(multi_scale_qkv, dim=1) if use_linear_attention: # for linear attention upcast hidden_states to float32 hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states.reshape(batch_size, -1, 3 * attn.attention_head_dim, height * width) query, key, value = hidden_states.chunk(3, dim=2) query = attn.nonlinearity(query) key = attn.nonlinearity(key) if use_linear_attention: hidden_states = attn.apply_linear_attention(query, key, value) hidden_states = hidden_states.to(dtype=original_dtype) else: hidden_states = attn.apply_quadratic_attention(query, key, value) hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) hidden_states = attn.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1) if attn.norm_type == "rms_norm": hidden_states = attn.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = attn.norm_out(hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual return hidden_states
class_definition
251,131
253,361
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
818
class LoRAAttnProcessor: r""" Processor for implementing attention with LoRA. """ def __init__(self): pass
class_definition
253,364
253,495
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
819
class LoRAAttnProcessor2_0: r""" Processor for implementing attention with LoRA (enabled by default if you're using PyTorch 2.0). """ def __init__(self): pass
class_definition
253,498
253,681
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
820
class LoRAXFormersAttnProcessor: r""" Processor for implementing attention with LoRA using xFormers. """ def __init__(self): pass
class_definition
253,684
253,838
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
821
class LoRAAttnAddedKVProcessor: r""" Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder. """ def __init__(self): pass
class_definition
253,841
254,044
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
822
class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead." deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message) super().__init__()
class_definition
254,047
254,519
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
823
class SanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + 1e-15) hidden_states = hidden_states.flatten(1, 2).transpose(1, 2) hidden_states = hidden_states.to(original_dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
class_definition
254,522
256,123
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
824
class PAGCFGSanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
class_definition
256,126
258,181
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
825
class PAGIdentitySanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) if hidden_states_org.dtype in [torch.float16, torch.bfloat16]: hidden_states_org = hidden_states_org.float() hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
class_definition
258,184
260,271
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
null
826
class ControlNetOutput(ControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `ControlNetOutput` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetOutput`, instead." deprecate("diffusers.models.controlnet.ControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs)
class_definition
826
1,293
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet.py
null
827
class ControlNetModel(ControlNetModel): def __init__( self, in_channels: int = 4, conditioning_channels: int = 3, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str, ...] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: Optional[int] = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, encoder_hid_dim: Optional[int] = None, encoder_hid_dim_type: Optional[str] = None, attention_head_dim: Union[int, Tuple[int, ...]] = 8, num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, use_linear_projection: bool = False, class_embed_type: Optional[str] = None, addition_embed_type: Optional[str] = None, addition_time_embed_dim: Optional[int] = None, num_class_embeds: Optional[int] = None, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", projection_class_embeddings_input_dim: Optional[int] = None, controlnet_conditioning_channel_order: str = "rgb", conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), global_pool_conditions: bool = False, addition_embed_type_num_heads: int = 64, ): deprecation_message = "Importing `ControlNetModel` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetModel`, instead." deprecate("diffusers.models.controlnet.ControlNetModel", "0.34", deprecation_message) super().__init__( in_channels=in_channels, conditioning_channels=conditioning_channels, flip_sin_to_cos=flip_sin_to_cos, freq_shift=freq_shift, down_block_types=down_block_types, mid_block_type=mid_block_type, only_cross_attention=only_cross_attention, block_out_channels=block_out_channels, layers_per_block=layers_per_block, downsample_padding=downsample_padding, mid_block_scale_factor=mid_block_scale_factor, act_fn=act_fn, norm_num_groups=norm_num_groups, norm_eps=norm_eps, cross_attention_dim=cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, encoder_hid_dim=encoder_hid_dim, encoder_hid_dim_type=encoder_hid_dim_type, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, use_linear_projection=use_linear_projection, class_embed_type=class_embed_type, addition_embed_type=addition_embed_type, addition_time_embed_dim=addition_time_embed_dim, num_class_embeds=num_class_embeds, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, conditioning_embedding_out_channels=conditioning_embedding_out_channels, global_pool_conditions=global_pool_conditions, addition_embed_type_num_heads=addition_embed_type_num_heads, )
class_definition
1,296
5,228
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet.py
null
828
class ControlNetConditioningEmbedding(ControlNetConditioningEmbedding): def __init__(self, *args, **kwargs): deprecation_message = "Importing `ControlNetConditioningEmbedding` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding`, instead." deprecate("diffusers.models.controlnet.ControlNetConditioningEmbedding", "0.34", deprecation_message) super().__init__(*args, **kwargs)
class_definition
5,231
5,773
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet.py
null
829
class FlaxModelMixin(PushToHubMixin): r""" Base class for all Flax models. [`FlaxModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and saving models. - **config_name** ([`str`]) -- Filename to save a model to when calling [`~FlaxModelMixin.save_pretrained`]. """ config_name = CONFIG_NAME _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] _flax_internal_args = ["name", "parent", "dtype"] @classmethod def _from_config(cls, config, **kwargs): """ All context managers that the model should be initialized under go here. """ return cls(config, **kwargs) def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any: """ Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`. """ # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27 def conditional_cast(param): if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating): param = param.astype(dtype) return param if mask is None: return jax.tree_map(conditional_cast, params) flat_params = flatten_dict(params) flat_mask, _ = jax.tree_flatten(mask) for masked, key in zip(flat_mask, flat_params.keys()): if masked: param = flat_params[key] flat_params[key] = conditional_cast(param) return unflatten_dict(flat_params) def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on a TPU to explicitly convert the model parameters to bfloat16 precision to do full half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True` for params you want to cast, and `False` for those you want to skip. Examples: ```python >>> from diffusers import FlaxUNet2DConditionModel >>> # load model >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision >>> params = model.to_bf16(params) >>> # If you don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> flat_params = traverse_util.flatten_dict(params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> params = model.to_bf16(params, mask) ```""" return self._cast_floating_to(params, jnp.bfloat16, mask) def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `params` to `jax.numpy.float32`. This method can be used to explicitly convert the model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True` for params you want to cast, and `False` for those you want to skip. Examples: ```python >>> from diffusers import FlaxUNet2DConditionModel >>> # Download model and configuration from huggingface.co >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> # By default, the model params will be in fp32, to illustrate the use of this method, >>> # we'll first cast to fp16 and back to fp32 >>> params = model.to_f16(params) >>> # now cast back to fp32 >>> params = model.to_fp32(params) ```""" return self._cast_floating_to(params, jnp.float32, mask) def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `params` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on a GPU to explicitly convert the model parameters to float16 precision to do full half-precision training or to save weights in float16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True` for params you want to cast, and `False` for those you want to skip. Examples: ```python >>> from diffusers import FlaxUNet2DConditionModel >>> # load model >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> # By default, the model params will be in fp32, to cast these to float16 >>> params = model.to_fp16(params) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> flat_params = traverse_util.flatten_dict(params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> params = model.to_fp16(params, mask) ```""" return self._cast_floating_to(params, jnp.float16, mask) def init_weights(self, rng: jax.Array) -> Dict: raise NotImplementedError(f"init_weights method has to be implemented for {self}") @classmethod @validate_hf_hub_args def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype = jnp.float32, *model_args, **kwargs, ): r""" Instantiate a pretrained Flax model from a pretrained model configuration. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved using [`~FlaxModelMixin.save_pretrained`]. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified, all the computation will be performed with the given `dtype`. <Tip> This only specifies the dtype of the *computation* and does not influence the dtype of model parameters. If you wish to change the dtype of the model parameters, see [`~FlaxModelMixin.to_fp16`] and [`~FlaxModelMixin.to_bf16`]. </Tip> model_args (sequence of positional arguments, *optional*): All remaining positional arguments are passed to the underlying model's `__init__` method. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch checkpoint save file. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it is loaded) and initiate the model (for example, `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `kwargs` are directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done). - If a configuration is not provided, `kwargs` are first passed to the configuration class initialization function [`~ConfigMixin.from_config`]. Each key of the `kwargs` that corresponds to a configuration attribute is used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute are passed to the underlying model's `__init__` function. Examples: ```python >>> from diffusers import FlaxUNet2DConditionModel >>> # Download model and configuration from huggingface.co and cache. >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5") >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> model, params = FlaxUNet2DConditionModel.from_pretrained("./test/saved_model/") ``` If you get the error message below, you need to finetune the weights for your downstream task: ```bash Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` """ config = kwargs.pop("config", None) cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) from_pt = kwargs.pop("from_pt", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) user_agent = { "diffusers": __version__, "file_type": "model", "framework": "flax", } # Load config if we don't provide one if config is None: config, unused_kwargs = cls.load_config( pretrained_model_name_or_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, **kwargs, ) model, model_kwargs = cls.from_config(config, dtype=dtype, return_unused_kwargs=True, **unused_kwargs) # Load model pretrained_path_with_subfolder = ( pretrained_model_name_or_path if subfolder is None else os.path.join(pretrained_model_name_or_path, subfolder) ) if os.path.isdir(pretrained_path_with_subfolder): if from_pt: if not os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)): raise EnvironmentError( f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder} " ) model_file = os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)): # Load from a Flax checkpoint model_file = os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME) # Check if pytorch weights exist instead elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)): raise EnvironmentError( f"{WEIGHTS_NAME} file found in directory {pretrained_path_with_subfolder}. Please load the model" " using `from_pt=True`." ) else: raise EnvironmentError( f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " f"{pretrained_path_with_subfolder}." ) else: try: model_file = hf_hub_download( pretrained_model_name_or_path, filename=FLAX_WEIGHTS_NAME if not from_pt else WEIGHTS_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision, ) except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " "this model name. Check the model page at " f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n" f"{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your" " internet connection or see how to run the library in offline mode at" " 'https://huggingface.co/docs/transformers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." ) if from_pt: if is_torch_available(): from .modeling_utils import load_state_dict else: raise EnvironmentError( "Can't load the model in PyTorch format because PyTorch is not installed. " "Please, install PyTorch or use native Flax weights." ) # Step 1: Get the pytorch file pytorch_model_file = load_state_dict(model_file) # Step 2: Convert the weights state = convert_pytorch_state_dict_to_flax(pytorch_model_file, model) else: try: with open(model_file, "rb") as state_f: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: try: with open(model_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ") # make sure all arrays are stored as jnp.ndarray # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4: # https://github.com/google/flax/issues/1261 state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend="cpu")[0]), state) # flatten dicts state = flatten_dict(state) params_shape_tree = jax.eval_shape(model.init_weights, rng=jax.random.PRNGKey(0)) required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) shape_state = flatten_dict(unfreeze(params_shape_tree)) missing_keys = required_params - set(state.keys()) unexpected_keys = set(state.keys()) - required_params if missing_keys: logger.warning( f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. " "Make sure to call model.init_weights to initialize the missing weights." ) cls._missing_keys = missing_keys for key in state.keys(): if key in shape_state and state[key].shape != shape_state[key].shape: raise ValueError( f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " f"{state[key].shape} which is incompatible with the model shape {shape_state[key].shape}. " ) # remove unexpected keys to not be saved again for unexpected_key in unexpected_keys: del state[unexpected_key] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) return model, unflatten_dict(state) def save_pretrained( self, save_directory: Union[str, os.PathLike], params: Union[Dict, FrozenDict], is_main_process: bool = True, push_to_hub: bool = False, **kwargs, ): """ Save a model and its configuration file to a directory so that it can be reloaded using the [`~FlaxModelMixin.from_pretrained`] class method. Arguments: save_directory (`str` or `os.PathLike`): Directory to save a model and its configuration file to. Will be created if it doesn't exist. params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) private = kwargs.pop("private", None) create_pr = kwargs.pop("create_pr", False) token = kwargs.pop("token", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id model_to_save = self # Attach architecture to the config # Save the config if is_main_process: model_to_save.save_config(save_directory) # save model output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME) with open(output_model_file, "wb") as f: model_bytes = to_bytes(params) f.write(model_bytes) logger.info(f"Model weights saved in {output_model_file}") if push_to_hub: self._upload_folder( save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr, )
class_definition
1,466
26,953
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/modeling_flax_utils.py
null
830
class SD3ControlNetOutput(SD3ControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `SD3ControlNetOutput` from `diffusers.models.controlnet_sd3` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sd3 import SD3ControlNetOutput`, instead." deprecate("diffusers.models.controlnet_sd3.SD3ControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs)
class_definition
862
1,356
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sd3.py
null
831
class SD3ControlNetModel(SD3ControlNetModel): def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, extra_conditioning_channels: int = 0, ): deprecation_message = "Importing `SD3ControlNetModel` from `diffusers.models.controlnet_sd3` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sd3 import SD3ControlNetModel`, instead." deprecate("diffusers.models.controlnet_sd3.SD3ControlNetModel", "0.34", deprecation_message) super().__init__( sample_size=sample_size, patch_size=patch_size, in_channels=in_channels, num_layers=num_layers, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, joint_attention_dim=joint_attention_dim, caption_projection_dim=caption_projection_dim, pooled_projection_dim=pooled_projection_dim, out_channels=out_channels, pos_embed_max_size=pos_embed_max_size, extra_conditioning_channels=extra_conditioning_channels, )
class_definition
1,359
2,859
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sd3.py
null
832
class SD3MultiControlNetModel(SD3MultiControlNetModel): def __init__(self, *args, **kwargs): deprecation_message = "Importing `SD3MultiControlNetModel` from `diffusers.models.controlnet_sd3` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sd3 import SD3MultiControlNetModel`, instead." deprecate("diffusers.models.controlnet_sd3.SD3MultiControlNetModel", "0.34", deprecation_message) super().__init__(*args, **kwargs)
class_definition
2,862
3,376
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sd3.py
null
833
class FP32SiLU(nn.Module): r""" SiLU activation function with input upcasted to torch.float32. """ def __init__(self): super().__init__() def forward(self, inputs: torch.Tensor) -> torch.Tensor: return F.silu(inputs.float(), inplace=False).to(inputs.dtype)
class_definition
1,393
1,687
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
834
class GELU(nn.Module): r""" GELU activation function with tanh approximation support with `approximate="tanh"`. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) self.approximate = approximate def gelu(self, gate: torch.Tensor) -> torch.Tensor: if gate.device.type == "mps" and is_torch_version("<", "2.0.0"): # fp16 gelu not supported on mps before torch 2.0 return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) return F.gelu(gate, approximate=self.approximate) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states = self.gelu(hidden_states) return hidden_states
class_definition
1,690
2,887
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
835
class GEGLU(nn.Module): r""" A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__(self, dim_in: int, dim_out: int, bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) def gelu(self, gate: torch.Tensor) -> torch.Tensor: if gate.device.type == "mps" and is_torch_version("<", "2.0.0"): # fp16 gelu not supported on mps before torch 2.0 return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) return F.gelu(gate) def forward(self, hidden_states, *args, **kwargs): if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) hidden_states = self.proj(hidden_states) if is_torch_npu_available(): # using torch_npu.npu_geglu can run faster and save memory on NPU. return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0] else: hidden_states, gate = hidden_states.chunk(2, dim=-1) return hidden_states * self.gelu(gate)
class_definition
2,890
4,544
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
836
class SwiGLU(nn.Module): r""" A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU` but uses SiLU / Swish instead of GeLU. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__(self, dim_in: int, dim_out: int, bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) self.activation = nn.SiLU() def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states, gate = hidden_states.chunk(2, dim=-1) return hidden_states * self.activation(gate)
class_definition
4,547
5,375
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
837
class ApproximateGELU(nn.Module): r""" The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this [paper](https://arxiv.org/abs/1606.08415). Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__(self, dim_in: int, dim_out: int, bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) return x * torch.sigmoid(1.702 * x)
class_definition
5,378
6,089
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
838
class LinearActivation(nn.Module): def __init__(self, dim_in: int, dim_out: int, bias: bool = True, activation: str = "silu"): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) self.activation = get_activation(activation) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) return self.activation(hidden_states)
class_definition
6,092
6,495
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/activations.py
null
839
class MultiAdapter(ModelMixin): r""" MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to user-assigned weighting. This model inherits from [`ModelMixin`]. Check the superclass documentation for common methods such as downloading or saving. Args: adapters (`List[T2IAdapter]`, *optional*, defaults to None): A list of `T2IAdapter` model instances. """ def __init__(self, adapters: List["T2IAdapter"]): super(MultiAdapter, self).__init__() self.num_adapter = len(adapters) self.adapters = nn.ModuleList(adapters) if len(adapters) == 0: raise ValueError("Expecting at least one adapter") if len(adapters) == 1: raise ValueError("For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`") # The outputs from each adapter are added together with a weight. # This means that the change in dimensions from downsampling must # be the same for all adapters. Inductively, it also means the # downscale_factor and total_downscale_factor must be the same for all # adapters. first_adapter_total_downscale_factor = adapters[0].total_downscale_factor first_adapter_downscale_factor = adapters[0].downscale_factor for idx in range(1, len(adapters)): if ( adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor or adapters[idx].downscale_factor != first_adapter_downscale_factor ): raise ValueError( f"Expecting all adapters to have the same downscaling behavior, but got:\n" f"adapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\n" f"adapters[0].downscale_factor={first_adapter_downscale_factor}\n" f"adapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\n" f"adapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}" ) self.total_downscale_factor = first_adapter_total_downscale_factor self.downscale_factor = first_adapter_downscale_factor def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]: r""" Args: xs (`torch.Tensor`): A tensor of shape (batch, channel, height, width) representing input images for multiple adapter models, concatenated along dimension 1(channel dimension). The `channel` dimension should be equal to `num_adapter` * number of channel per image. adapter_weights (`List[float]`, *optional*, defaults to None): A list of floats representing the weights which will be multiplied by each adapter's output before summing them together. If `None`, equal weights will be used for all adapters. """ if adapter_weights is None: adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter) else: adapter_weights = torch.tensor(adapter_weights) accume_state = None for x, w, adapter in zip(xs, adapter_weights, self.adapters): features = adapter(x) if accume_state is None: accume_state = features for i in range(len(accume_state)): accume_state[i] = w * accume_state[i] else: for i in range(len(features)): accume_state[i] += w * features[i] return accume_state def save_pretrained( self, save_directory: Union[str, os.PathLike], is_main_process: bool = True, save_function: Callable = None, safe_serialization: bool = True, variant: Optional[str] = None, ): """ Save a model and its configuration file to a specified directory, allowing it to be re-loaded with the `[`~models.adapter.MultiAdapter.from_pretrained`]` class method. Args: save_directory (`str` or `os.PathLike`): The directory where the model will be saved. If the directory does not exist, it will be created. is_main_process (`bool`, optional, defaults=True): Indicates whether current process is the main process or not. Useful for distributed training (e.g., TPUs) and need to call this function on all processes. In this case, set `is_main_process=True` only for the main process to avoid race conditions. save_function (`Callable`): Function used to save the state dictionary. Useful for distributed training (e.g., TPUs) to replace `torch.save` with another method. Can also be configured using`DIFFUSERS_SAVE_MODE` environment variable. safe_serialization (`bool`, optional, defaults=True): If `True`, save the model using `safetensors`. If `False`, save the model with `pickle`. variant (`str`, *optional*): If specified, weights are saved in the format `pytorch_model.<variant>.bin`. """ idx = 0 model_path_to_save = save_directory for adapter in self.adapters: adapter.save_pretrained( model_path_to_save, is_main_process=is_main_process, save_function=save_function, safe_serialization=safe_serialization, variant=variant, ) idx += 1 model_path_to_save = model_path_to_save + f"_{idx}" @classmethod def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs): r""" Instantiate a pretrained `MultiAdapter` model from multiple pre-trained adapter models. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, set it back to training mode using `model.train()`. Warnings: *Weights from XXX not initialized from pretrained model* means that the weights of XXX are not pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning. *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, so those weights are discarded. Args: pretrained_model_path (`os.PathLike`): A path to a *directory* containing model weights saved using [`~diffusers.models.adapter.MultiAdapter.save_pretrained`], e.g., `./my_model_directory/adapter`. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype will be automatically derived from the model's weights. output_loading_info(`bool`, *optional*, defaults to `False`): Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more information about each option see [designing a device map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). max_memory (`Dict`, *optional*): A dictionary mapping device identifiers to their maximum memory. Default to the maximum memory available for each GPU and the available CPU RAM if unset. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading by not initializing the weights and only loading the pre-trained weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, setting this argument to `True` will raise an error. variant (`str`, *optional*): If specified, load weights from a `variant` file (*e.g.* pytorch_model.<variant>.bin). `variant` will be ignored when using `from_flax`. use_safetensors (`bool`, *optional*, defaults to `None`): If `None`, the `safetensors` weights will be downloaded if available **and** if`safetensors` library is installed. If `True`, the model will be forcibly loaded from`safetensors` weights. If `False`, `safetensors` is not used. """ idx = 0 adapters = [] # load adapter and append to list until no adapter directory exists anymore # first adapter has to be saved under `./mydirectory/adapter` to be compliant with `DiffusionPipeline.from_pretrained` # second, third, ... adapters have to be saved under `./mydirectory/adapter_1`, `./mydirectory/adapter_2`, ... model_path_to_load = pretrained_model_path while os.path.isdir(model_path_to_load): adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs) adapters.append(adapter) idx += 1 model_path_to_load = pretrained_model_path + f"_{idx}" logger.info(f"{len(adapters)} adapters loaded from {pretrained_model_path}.") if len(adapters) == 0: raise ValueError( f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}." ) return cls(adapters)
class_definition
879
11,115
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
840
class T2IAdapter(ModelMixin, ConfigMixin): r""" A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's architecture follows the original implementation of [Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97) and [AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235). This model inherits from [`ModelMixin`]. Check the superclass documentation for the common methods, such as downloading or saving. Args: in_channels (`int`, *optional*, defaults to `3`): The number of channels in the adapter's input (*control image*). Set it to 1 if you're using a gray scale image. channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The number of channels in each downsample block's output hidden state. The `len(block_out_channels)` determines the number of downsample blocks in the adapter. num_res_blocks (`int`, *optional*, defaults to `2`): Number of ResNet blocks in each downsample block. downscale_factor (`int`, *optional*, defaults to `8`): A factor that determines the total downscale factor of the Adapter. adapter_type (`str`, *optional*, defaults to `full_adapter`): Adapter type (`full_adapter` or `full_adapter_xl` or `light_adapter`) to use. """ @register_to_config def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 8, adapter_type: str = "full_adapter", ): super().__init__() if adapter_type == "full_adapter": self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor) elif adapter_type == "full_adapter_xl": self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor) elif adapter_type == "light_adapter": self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor) else: raise ValueError( f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or " "'full_adapter_xl' or 'light_adapter'." ) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This function processes the input tensor `x` through the adapter model and returns a list of feature tensors, each representing information extracted at a different scale from the input. The length of the list is determined by the number of downsample blocks in the Adapter, as specified by the `channels` and `num_res_blocks` parameters during initialization. """ return self.adapter(x) @property def total_downscale_factor(self): return self.adapter.total_downscale_factor @property def downscale_factor(self): """The downscale factor applied in the T2I-Adapter's initial pixel unshuffle operation. If an input image's dimensions are not evenly divisible by the downscale_factor then an exception will be raised. """ return self.adapter.unshuffle.downscale_factor
class_definition
11,118
14,674
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
841
class FullAdapter(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 8, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) self.body = nn.ModuleList( [ AdapterBlock(channels[0], channels[0], num_res_blocks), *[ AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True) for i in range(1, len(channels)) ], ] ) self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method processes the input tensor `x` through the FullAdapter model and performs operations including pixel unshuffling, convolution, and a stack of AdapterBlocks. It returns a list of feature tensors, each capturing information at a different stage of processing within the FullAdapter model. The number of feature tensors in the list is determined by the number of downsample blocks specified during initialization. """ x = self.unshuffle(x) x = self.conv_in(x) features = [] for block in self.body: x = block(x) features.append(x) return features
class_definition
14,694
16,356
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
842
class FullAdapterXL(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280, 1280], num_res_blocks: int = 2, downscale_factor: int = 16, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) self.body = [] # blocks to extract XL features with dimensions of [320, 64, 64], [640, 64, 64], [1280, 32, 32], [1280, 32, 32] for i in range(len(channels)): if i == 1: self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks)) elif i == 2: self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)) else: self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks)) self.body = nn.ModuleList(self.body) # XL has only one downsampling AdapterBlock. self.total_downscale_factor = downscale_factor * 2 def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method takes the tensor x as input and processes it through FullAdapterXL model. It consists of operations including unshuffling pixels, applying convolution layer and appending each block into list of feature tensors. """ x = self.unshuffle(x) x = self.conv_in(x) features = [] for block in self.body: x = block(x) features.append(x) return features
class_definition
16,359
18,092
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
843
class AdapterBlock(nn.Module): r""" An AdapterBlock is a helper model that contains multiple ResNet-like blocks. It is used in the `FullAdapter` and `FullAdapterXL` models. Args: in_channels (`int`): Number of channels of AdapterBlock's input. out_channels (`int`): Number of channels of AdapterBlock's output. num_res_blocks (`int`): Number of ResNet blocks in the AdapterBlock. down (`bool`, *optional*, defaults to `False`): If `True`, perform downsampling on AdapterBlock's input. """ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False): super().__init__() self.downsample = None if down: self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) self.in_conv = None if in_channels != out_channels: self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.resnets = nn.Sequential( *[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)], ) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes tensor x as input and performs operations downsampling and convolutional layers if the self.downsample and self.in_conv properties of AdapterBlock model are specified. Then it applies a series of residual blocks to the input tensor. """ if self.downsample is not None: x = self.downsample(x) if self.in_conv is not None: x = self.in_conv(x) x = self.resnets(x) return x
class_definition
18,095
19,773
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
844
class AdapterResnetBlock(nn.Module): r""" An `AdapterResnetBlock` is a helper model that implements a ResNet-like block. Args: channels (`int`): Number of channels of AdapterResnetBlock's input and output. """ def __init__(self, channels: int): super().__init__() self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.act = nn.ReLU() self.block2 = nn.Conv2d(channels, channels, kernel_size=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes input tensor x and applies a convolutional layer, ReLU activation, and another convolutional layer on the input tensor. It returns addition with the input tensor. """ h = self.act(self.block1(x)) h = self.block2(h) return h + x
class_definition
19,776
20,629
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
845
class LightAdapter(nn.Module): r""" See [`T2IAdapter`] for more information. """ def __init__( self, in_channels: int = 3, channels: List[int] = [320, 640, 1280], num_res_blocks: int = 4, downscale_factor: int = 8, ): super().__init__() in_channels = in_channels * downscale_factor**2 self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.body = nn.ModuleList( [ LightAdapterBlock(in_channels, channels[0], num_res_blocks), *[ LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True) for i in range(len(channels) - 1) ], LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True), ] ) self.total_downscale_factor = downscale_factor * (2 ** len(channels)) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: r""" This method takes the input tensor x and performs downscaling and appends it in list of feature tensors. Each feature tensor corresponds to a different level of processing within the LightAdapter. """ x = self.unshuffle(x) features = [] for block in self.body: x = block(x) features.append(x) return features
class_definition
20,650
22,049
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
846
class LightAdapterBlock(nn.Module): r""" A `LightAdapterBlock` is a helper model that contains multiple `LightAdapterResnetBlocks`. It is used in the `LightAdapter` model. Args: in_channels (`int`): Number of channels of LightAdapterBlock's input. out_channels (`int`): Number of channels of LightAdapterBlock's output. num_res_blocks (`int`): Number of LightAdapterResnetBlocks in the LightAdapterBlock. down (`bool`, *optional*, defaults to `False`): If `True`, perform downsampling on LightAdapterBlock's input. """ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False): super().__init__() mid_channels = out_channels // 4 self.downsample = None if down: self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1) self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)]) self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This method takes tensor x as input and performs downsampling if required. Then it applies in convolution layer, a sequence of residual blocks, and out convolutional layer. """ if self.downsample is not None: x = self.downsample(x) x = self.in_conv(x) x = self.resnets(x) x = self.out_conv(x) return x
class_definition
22,052
23,688
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
847
class LightAdapterResnetBlock(nn.Module): """ A `LightAdapterResnetBlock` is a helper model that implements a ResNet-like block with a slightly different architecture than `AdapterResnetBlock`. Args: channels (`int`): Number of channels of LightAdapterResnetBlock's input and output. """ def __init__(self, channels: int): super().__init__() self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.act = nn.ReLU() self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: r""" This function takes input tensor x and processes it through one convolutional layer, ReLU activation, and another convolutional layer and adds it to input tensor. """ h = self.act(self.block1(x)) h = self.block2(h) return h + x
class_definition
23,691
24,619
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/adapter.py
null
848
class SparseControlNetOutput(SparseControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `SparseControlNetOutput` from `diffusers.models.controlnet_sparsectrl` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sparsectrl import SparseControlNetOutput`, instead." deprecate("diffusers.models.controlnet_sparsectrl.SparseControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs)
class_definition
938
1,468
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sparsectrl.py
null
849
class SparseControlNetConditioningEmbedding(SparseControlNetConditioningEmbedding): def __init__(self, *args, **kwargs): deprecation_message = "Importing `SparseControlNetConditioningEmbedding` from `diffusers.models.controlnet_sparsectrl` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sparsectrl import SparseControlNetConditioningEmbedding`, instead." deprecate( "diffusers.models.controlnet_sparsectrl.SparseControlNetConditioningEmbedding", "0.34", deprecation_message ) super().__init__(*args, **kwargs)
class_definition
1,471
2,098
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sparsectrl.py
null
850
class SparseControlNetModel(SparseControlNetModel): def __init__( self, in_channels: int = 4, conditioning_channels: int = 4, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str, ...] = ( "CrossAttnDownBlockMotion", "CrossAttnDownBlockMotion", "CrossAttnDownBlockMotion", "DownBlockMotion", ), only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: Optional[int] = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 768, transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None, temporal_transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, attention_head_dim: Union[int, Tuple[int, ...]] = 8, num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, use_linear_projection: bool = False, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), global_pool_conditions: bool = False, controlnet_conditioning_channel_order: str = "rgb", motion_max_seq_length: int = 32, motion_num_attention_heads: int = 8, concat_conditioning_mask: bool = True, use_simplified_condition_embedding: bool = True, ): deprecation_message = "Importing `SparseControlNetModel` from `diffusers.models.controlnet_sparsectrl` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_sparsectrl import SparseControlNetModel`, instead." deprecate("diffusers.models.controlnet_sparsectrl.SparseControlNetModel", "0.34", deprecation_message) super().__init__( in_channels=in_channels, conditioning_channels=conditioning_channels, flip_sin_to_cos=flip_sin_to_cos, freq_shift=freq_shift, down_block_types=down_block_types, only_cross_attention=only_cross_attention, block_out_channels=block_out_channels, layers_per_block=layers_per_block, downsample_padding=downsample_padding, mid_block_scale_factor=mid_block_scale_factor, act_fn=act_fn, norm_num_groups=norm_num_groups, norm_eps=norm_eps, cross_attention_dim=cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, transformer_layers_per_mid_block=transformer_layers_per_mid_block, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, conditioning_embedding_out_channels=conditioning_embedding_out_channels, global_pool_conditions=global_pool_conditions, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, motion_max_seq_length=motion_max_seq_length, motion_num_attention_heads=motion_num_attention_heads, concat_conditioning_mask=concat_conditioning_mask, use_simplified_condition_embedding=use_simplified_condition_embedding, )
class_definition
2,101
5,903
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet_sparsectrl.py
null
851
class FlaxAttention(nn.Module): r""" A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762 Parameters: query_dim (:obj:`int`): Input hidden states dimension heads (:obj:`int`, *optional*, defaults to 8): Number of heads dim_head (:obj:`int`, *optional*, defaults to 64): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ query_dim: int heads: int = 8 dim_head: int = 64 dropout: float = 0.0 use_memory_efficient_attention: bool = False split_head_dim: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim_head * self.heads self.scale = self.dim_head**-0.5 # Weights were exported with old names {to_q, to_k, to_v, to_out} self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q") self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k") self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v") self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0") self.dropout_layer = nn.Dropout(rate=self.dropout) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def __call__(self, hidden_states, context=None, deterministic=True): context = hidden_states if context is None else context query_proj = self.query(hidden_states) key_proj = self.key(context) value_proj = self.value(context) if self.split_head_dim: b = hidden_states.shape[0] query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head)) key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head)) value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head)) else: query_states = self.reshape_heads_to_batch_dim(query_proj) key_states = self.reshape_heads_to_batch_dim(key_proj) value_states = self.reshape_heads_to_batch_dim(value_proj) if self.use_memory_efficient_attention: query_states = query_states.transpose(1, 0, 2) key_states = key_states.transpose(1, 0, 2) value_states = value_states.transpose(1, 0, 2) # this if statement create a chunk size for each layer of the unet # the chunk size is equal to the query_length dimension of the deepest layer of the unet flatten_latent_dim = query_states.shape[-3] if flatten_latent_dim % 64 == 0: query_chunk_size = int(flatten_latent_dim / 64) elif flatten_latent_dim % 16 == 0: query_chunk_size = int(flatten_latent_dim / 16) elif flatten_latent_dim % 4 == 0: query_chunk_size = int(flatten_latent_dim / 4) else: query_chunk_size = int(flatten_latent_dim) hidden_states = jax_memory_efficient_attention( query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4 ) hidden_states = hidden_states.transpose(1, 0, 2) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) else: # compute attentions if self.split_head_dim: attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states) else: attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states) attention_scores = attention_scores * self.scale attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2) # attend to values if self.split_head_dim: hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states) b = hidden_states.shape[0] hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head)) else: hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) hidden_states = self.proj_attn(hidden_states) return self.dropout_layer(hidden_states, deterministic=deterministic)
class_definition
4,896
10,607
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py
null
852
class FlaxBasicTransformerBlock(nn.Module): r""" A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in: https://arxiv.org/abs/1706.03762 Parameters: dim (:obj:`int`): Inner hidden states dimension n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate only_cross_attention (`bool`, defaults to `False`): Whether to only apply cross attention. dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. """ dim: int n_heads: int d_head: int dropout: float = 0.0 only_cross_attention: bool = False dtype: jnp.dtype = jnp.float32 use_memory_efficient_attention: bool = False split_head_dim: bool = False def setup(self): # self attention (or cross_attention if only_cross_attention is True) self.attn1 = FlaxAttention( self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype, ) # cross attention self.attn2 = FlaxAttention( self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype, ) self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, context, deterministic=True): # self attention residual = hidden_states if self.only_cross_attention: hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic) else: hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual # cross attention residual = hidden_states hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) hidden_states = hidden_states + residual # feed forward residual = hidden_states hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual return self.dropout_layer(hidden_states, deterministic=deterministic)
class_definition
10,610
13,912
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py
null
853
class FlaxTransformer2DModel(nn.Module): r""" A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in: https://arxiv.org/pdf/1506.02025.pdf Parameters: in_channels (:obj:`int`): Input number of channels n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head depth (:obj:`int`, *optional*, defaults to 1): Number of transformers block dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate use_linear_projection (`bool`, defaults to `False`): tbd only_cross_attention (`bool`, defaults to `False`): tbd dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. """ in_channels: int n_heads: int d_head: int depth: int = 1 dropout: float = 0.0 use_linear_projection: bool = False only_cross_attention: bool = False dtype: jnp.dtype = jnp.float32 use_memory_efficient_attention: bool = False split_head_dim: bool = False def setup(self): self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5) inner_dim = self.n_heads * self.d_head if self.use_linear_projection: self.proj_in = nn.Dense(inner_dim, dtype=self.dtype) else: self.proj_in = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.transformer_blocks = [ FlaxBasicTransformerBlock( inner_dim, self.n_heads, self.d_head, dropout=self.dropout, only_cross_attention=self.only_cross_attention, dtype=self.dtype, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, ) for _ in range(self.depth) ] if self.use_linear_projection: self.proj_out = nn.Dense(inner_dim, dtype=self.dtype) else: self.proj_out = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, context, deterministic=True): batch, height, width, channels = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height * width, channels) hidden_states = self.proj_in(hidden_states) else: hidden_states = self.proj_in(hidden_states) hidden_states = hidden_states.reshape(batch, height * width, channels) for transformer_block in self.transformer_blocks: hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) if self.use_linear_projection: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, width, channels) else: hidden_states = hidden_states.reshape(batch, height, width, channels) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states + residual return self.dropout_layer(hidden_states, deterministic=deterministic)
class_definition
13,915
18,016
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py
null
854
class FlaxFeedForward(nn.Module): r""" Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's [`FeedForward`] class, with the following simplifications: - The activation function is currently hardcoded to a gated linear unit from: https://arxiv.org/abs/2002.05202 - `dim_out` is equal to `dim`. - The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`]. Parameters: dim (:obj:`int`): Inner hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): # The second linear layer needs to be called # net_2 for now to match the index of the Sequential layer self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) self.net_2 = nn.Dense(self.dim, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): hidden_states = self.net_0(hidden_states, deterministic=deterministic) hidden_states = self.net_2(hidden_states) return hidden_states
class_definition
18,019
19,316
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py
null
855
class FlaxGEGLU(nn.Module): r""" Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim (:obj:`int`): Input hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim * 4 self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, deterministic=True): hidden_states = self.proj(hidden_states) hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2) return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)
class_definition
19,319
20,323
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py
null
856
class FlaxUpsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states
class_definition
667
1,324
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py
null
857
class FlaxDownsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), # padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states
class_definition
1,327
1,917
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py
null
858
class FlaxResnetBlock2D(nn.Module): in_channels: int out_channels: int = None dropout_prob: float = 0.0 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.dropout = nn.Dropout(self.dropout_prob) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, temb, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) temb = self.time_emb_proj(nn.swish(temb)) temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual
class_definition
1,920
4,020
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py
null
859
class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding with support for SD3 cropping. Args: height (`int`, defaults to `224`): The height of the image. width (`int`, defaults to `224`): The width of the image. patch_size (`int`, defaults to `16`): The size of the patches. in_channels (`int`, defaults to `3`): The number of input channels. embed_dim (`int`, defaults to `768`): The output dimension of the embedding. layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization. flatten (`bool`, defaults to `True`): Whether or not to flatten the output. bias (`bool`, defaults to `True`): Whether or not to use bias. interpolation_scale (`float`, defaults to `1`): The scale of the interpolation. pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding. pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding. """ def __init__( self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, layer_norm=False, flatten=True, bias=True, interpolation_scale=1, pos_embed_type="sincos", pos_embed_max_size=None, # For SD3 cropping ): super().__init__() num_patches = (height // patch_size) * (width // patch_size) self.flatten = flatten self.layer_norm = layer_norm self.pos_embed_max_size = pos_embed_max_size self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) if layer_norm: self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) else: self.norm = None self.patch_size = patch_size self.height, self.width = height // patch_size, width // patch_size self.base_size = height // patch_size self.interpolation_scale = interpolation_scale # Calculate positional embeddings based on max size or default if pos_embed_max_size: grid_size = pos_embed_max_size else: grid_size = int(num_patches**0.5) if pos_embed_type is None: self.pos_embed = None elif pos_embed_type == "sincos": pos_embed = get_2d_sincos_pos_embed( embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale, output_type="pt", ) persistent = True if pos_embed_max_size else False self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent) else: raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}") def cropped_pos_embed(self, height, width): """Crops positional embeddings for SD3 compatibility.""" if self.pos_embed_max_size is None: raise ValueError("`pos_embed_max_size` must be set for cropping.") height = height // self.patch_size width = width // self.patch_size if height > self.pos_embed_max_size: raise ValueError( f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." ) if width > self.pos_embed_max_size: raise ValueError( f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." ) top = (self.pos_embed_max_size - height) // 2 left = (self.pos_embed_max_size - width) // 2 spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1) spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :] spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1]) return spatial_pos_embed def forward(self, latent): if self.pos_embed_max_size is not None: height, width = latent.shape[-2:] else: height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size latent = self.proj(latent) if self.flatten: latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC if self.layer_norm: latent = self.norm(latent) if self.pos_embed is None: return latent.to(latent.dtype) # Interpolate or crop positional embeddings as needed if self.pos_embed_max_size: pos_embed = self.cropped_pos_embed(height, width) else: if self.height != height or self.width != width: pos_embed = get_2d_sincos_pos_embed( embed_dim=self.pos_embed.shape[-1], grid_size=(height, width), base_size=self.base_size, interpolation_scale=self.interpolation_scale, device=latent.device, output_type="pt", ) pos_embed = pos_embed.float().unsqueeze(0) else: pos_embed = self.pos_embed return (latent + pos_embed).to(latent.dtype)
class_definition
16,828
22,167
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
860
class LuminaPatchEmbed(nn.Module): """ 2D Image to Patch Embedding with support for Lumina-T2X Args: patch_size (`int`, defaults to `2`): The size of the patches. in_channels (`int`, defaults to `4`): The number of input channels. embed_dim (`int`, defaults to `768`): The output dimension of the embedding. bias (`bool`, defaults to `True`): Whether or not to use bias. """ def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True): super().__init__() self.patch_size = patch_size self.proj = nn.Linear( in_features=patch_size * patch_size * in_channels, out_features=embed_dim, bias=bias, ) def forward(self, x, freqs_cis): """ Patchifies and embeds the input tensor(s). Args: x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded. Returns: Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the frequency tensor(s). """ freqs_cis = freqs_cis.to(x[0].device) patch_height = patch_width = self.patch_size batch_size, channel, height, width = x.size() height_tokens, width_tokens = height // patch_height, width // patch_width x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute( 0, 2, 4, 1, 3, 5 ) x = x.flatten(3) x = self.proj(x) x = x.flatten(1, 2) mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device) return ( x, mask, [(height, width)] * batch_size, freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0), )
class_definition
22,170
24,142
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
861
class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, patch_size_t: Optional[int] = None, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_positional_embeddings: bool = True, use_learned_positional_embeddings: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.embed_dim = embed_dim self.sample_height = sample_height self.sample_width = sample_width self.sample_frames = sample_frames self.temporal_compression_ratio = temporal_compression_ratio self.max_text_seq_length = max_text_seq_length self.spatial_interpolation_scale = spatial_interpolation_scale self.temporal_interpolation_scale = temporal_interpolation_scale self.use_positional_embeddings = use_positional_embeddings self.use_learned_positional_embeddings = use_learned_positional_embeddings if patch_size_t is None: # CogVideoX 1.0 checkpoints self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) else: # CogVideoX 1.5 checkpoints self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim) self.text_proj = nn.Linear(text_embed_dim, embed_dim) if use_positional_embeddings or use_learned_positional_embeddings: persistent = use_learned_positional_embeddings pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) def _get_positional_embeddings( self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None ) -> torch.Tensor: post_patch_height = sample_height // self.patch_size post_patch_width = sample_width // self.patch_size post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 num_patches = post_patch_height * post_patch_width * post_time_compression_frames pos_embedding = get_3d_sincos_pos_embed( self.embed_dim, (post_patch_width, post_patch_height), post_time_compression_frames, self.spatial_interpolation_scale, self.temporal_interpolation_scale, device=device, output_type="pt", ) pos_embedding = pos_embedding.flatten(0, 1) joint_pos_embedding = pos_embedding.new_zeros( 1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False ) joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding) return joint_pos_embedding def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch_size, num_frames, channels, height, width = image_embeds.shape if self.patch_size_t is None: image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] else: p = self.patch_size p_t = self.patch_size_t image_embeds = image_embeds.permute(0, 1, 3, 4, 2) image_embeds = image_embeds.reshape( batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels ) image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3) image_embeds = self.proj(image_embeds) embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] if self.use_positional_embeddings or self.use_learned_positional_embeddings: if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height): raise ValueError( "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'." "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues." ) pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 if ( self.sample_height != height or self.sample_width != width or self.sample_frames != pre_time_compression_frames ): pos_embedding = self._get_positional_embeddings( height, width, pre_time_compression_frames, device=embeds.device ) else: pos_embedding = self.pos_embedding pos_embedding = pos_embedding.to(dtype=embeds.dtype) embeds = embeds + pos_embedding return embeds
class_definition
24,145
30,265
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
862
class CogView3PlusPatchEmbed(nn.Module): def __init__( self, in_channels: int = 16, hidden_size: int = 2560, patch_size: int = 2, text_hidden_size: int = 4096, pos_embed_max_size: int = 128, ): super().__init__() self.in_channels = in_channels self.hidden_size = hidden_size self.patch_size = patch_size self.text_hidden_size = text_hidden_size self.pos_embed_max_size = pos_embed_max_size # Linear projection for image patches self.proj = nn.Linear(in_channels * patch_size**2, hidden_size) # Linear projection for text embeddings self.text_proj = nn.Linear(text_hidden_size, hidden_size) pos_embed = get_2d_sincos_pos_embed( hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt" ) pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size) self.register_buffer("pos_embed", pos_embed.float(), persistent=False) def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor: batch_size, channel, height, width = hidden_states.shape if height % self.patch_size != 0 or width % self.patch_size != 0: raise ValueError("Height and width must be divisible by patch size") height = height // self.patch_size width = width // self.patch_size hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size) hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous() hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size) # Project the patches hidden_states = self.proj(hidden_states) encoder_hidden_states = self.text_proj(encoder_hidden_states) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) # Calculate text_length text_length = encoder_hidden_states.shape[1] image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1) text_pos_embed = torch.zeros( (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device ) pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...] return (hidden_states + pos_embed).to(hidden_states.dtype)
class_definition
30,268
32,737
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
863
class FluxPosEmbed(nn.Module): # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11 def __init__(self, theta: int, axes_dim: List[int]): super().__init__() self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] cos_out = [] sin_out = [] pos = ids.float() is_mps = ids.device.type == "mps" is_npu = ids.device.type == "npu" freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64 for i in range(n_axes): cos, sin = get_1d_rotary_pos_embed( self.axes_dim[i], pos[:, i], theta=self.theta, repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype, ) cos_out.append(cos) sin_out.append(sin) freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) return freqs_cos, freqs_sin
class_definition
50,167
51,329
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
864
class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True, ): super().__init__() self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) if cond_proj_dim is not None: self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) else: self.cond_proj = None self.act = get_activation(act_fn) if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) if post_act_fn is None: self.post_act = None else: self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample
class_definition
51,332
52,693
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
865
class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift self.scale = scale def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, scale=self.scale, ) return t_emb
class_definition
52,696
53,333
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
866
class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__( self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False ): super().__init__() self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.log = log self.flip_sin_to_cos = flip_sin_to_cos if set_W_to_weight: # to delete later del self.weight self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.weight = self.W del self.W def forward(self, x): if self.log: x = torch.log(x) x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi if self.flip_sin_to_cos: out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) else: out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return out
class_definition
53,336
54,361
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
867
class SinusoidalPositionalEmbedding(nn.Module): """Apply positional information to a sequence of embeddings. Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to them Args: embed_dim: (int): Dimension of the positional embedding. max_seq_length: Maximum sequence length to apply positional embeddings """ def __init__(self, embed_dim: int, max_seq_length: int = 32): super().__init__() position = torch.arange(max_seq_length).unsqueeze(1) div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)) pe = torch.zeros(1, max_seq_length, embed_dim) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): _, seq_length, _ = x.shape x = x + self.pe[:, :seq_length] return x
class_definition
54,364
55,344
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
868
class ImagePositionalEmbeddings(nn.Module): """ Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the height and width of the latent space. For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092 For VQ-diffusion: Output vector embeddings are used as input for the transformer. Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE. Args: num_embed (`int`): Number of embeddings for the latent pixels embeddings. height (`int`): Height of the latent image i.e. the number of height embeddings. width (`int`): Width of the latent image i.e. the number of width embeddings. embed_dim (`int`): Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings. """ def __init__( self, num_embed: int, height: int, width: int, embed_dim: int, ): super().__init__() self.height = height self.width = width self.num_embed = num_embed self.embed_dim = embed_dim self.emb = nn.Embedding(self.num_embed, embed_dim) self.height_emb = nn.Embedding(self.height, embed_dim) self.width_emb = nn.Embedding(self.width, embed_dim) def forward(self, index): emb = self.emb(index) height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height)) # 1 x H x D -> 1 x H x 1 x D height_emb = height_emb.unsqueeze(2) width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width)) # 1 x W x D -> 1 x 1 x W x D width_emb = width_emb.unsqueeze(1) pos_emb = height_emb + width_emb # 1 x H x W x D -> 1 x L xD pos_emb = pos_emb.view(1, self.height * self.width, -1) emb = emb + pos_emb[:, : emb.shape[1], :] return emb
class_definition
55,347
57,426
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
869
class LabelEmbedding(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. Args: num_classes (`int`): The number of classes. hidden_size (`int`): The size of the vector embeddings. dropout_prob (`float`): The probability of dropping a label. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob else: drop_ids = torch.tensor(force_drop_ids == 1) labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels: torch.LongTensor, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (self.training and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings
class_definition
57,429
58,841
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
870
class TextImageProjection(nn.Module): def __init__( self, text_embed_dim: int = 1024, image_embed_dim: int = 768, cross_attention_dim: int = 768, num_image_text_embeds: int = 10, ): super().__init__() self.num_image_text_embeds = num_image_text_embeds self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): batch_size = text_embeds.shape[0] # image image_text_embeds = self.image_embeds(image_embeds) image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1) # text text_embeds = self.text_proj(text_embeds) return torch.cat([image_text_embeds, text_embeds], dim=1)
class_definition
58,844
59,766
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
871
class ImageProjection(nn.Module): def __init__( self, image_embed_dim: int = 768, cross_attention_dim: int = 768, num_image_text_embeds: int = 32, ): super().__init__() self.num_image_text_embeds = num_image_text_embeds self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): batch_size = image_embeds.shape[0] # image image_embeds = self.image_embeds(image_embeds.to(self.image_embeds.weight.dtype)) image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1) image_embeds = self.norm(image_embeds) return image_embeds
class_definition
59,769
60,569
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
872
class IPAdapterFullImageProjection(nn.Module): def __init__(self, image_embed_dim=1024, cross_attention_dim=1024): super().__init__() from .attention import FeedForward self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu") self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): return self.norm(self.ff(image_embeds))
class_definition
60,572
61,013
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
873
class IPAdapterFaceIDImageProjection(nn.Module): def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1): super().__init__() from .attention import FeedForward self.num_tokens = num_tokens self.cross_attention_dim = cross_attention_dim self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu") self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): x = self.ff(image_embeds) x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) return self.norm(x)
class_definition
61,016
61,672
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
874
class CombinedTimestepLabelEmbeddings(nn.Module): def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob) def forward(self, timestep, class_labels, hidden_dtype=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) class_labels = self.class_embedder(class_labels) # (N, D) conditioning = timesteps_emb + class_labels # (N, D) return conditioning
class_definition
61,675
62,491
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
875
class CombinedTimestepTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) pooled_projections = self.text_embedder(pooled_projection) conditioning = timesteps_emb + pooled_projections return conditioning
class_definition
62,494
63,307
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
876
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, guidance, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) guidance_proj = self.time_proj(guidance) guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D) time_guidance_emb = timesteps_emb + guidance_emb pooled_projections = self.text_embedder(pooled_projection) conditioning = time_guidance_emb + pooled_projections return conditioning
class_definition
63,310
64,455
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
877
class CogView3CombinedTimestepSizeEmbeddings(nn.Module): def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256): super().__init__() self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim) self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward( self, timestep: torch.Tensor, original_size: torch.Tensor, target_size: torch.Tensor, crop_coords: torch.Tensor, hidden_dtype: torch.dtype, ) -> torch.Tensor: timesteps_proj = self.time_proj(timestep) original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1) crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1) target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1) # (B, 3 * condition_dim) condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim) condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim) conditioning = timesteps_emb + condition_emb return conditioning
class_definition
64,458
66,124
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
878
class HunyuanDiTAttentionPool(nn.Module): # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6 def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.permute(1, 0, 2) # NLC -> LNC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC x, _ = F.multi_head_attention_forward( query=x[:1], key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False, ) return x.squeeze(0)
class_definition
66,127
67,825
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
879
class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module): def __init__( self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048, use_style_cond_and_image_meta_size=True, ): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.pooler = HunyuanDiTAttentionPool( seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim ) # Here we use a default learned embedder layer for future extension. self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size if use_style_cond_and_image_meta_size: self.style_embedder = nn.Embedding(1, embedding_dim) extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim else: extra_in_dim = pooled_projection_dim self.extra_embedder = PixArtAlphaTextProjection( in_features=extra_in_dim, hidden_size=embedding_dim * 4, out_features=embedding_dim, act_fn="silu_fp32", ) def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256) # extra condition1: text pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024) if self.use_style_cond_and_image_meta_size: # extra condition2: image meta size embedding image_meta_size = self.size_proj(image_meta_size.view(-1)) image_meta_size = image_meta_size.to(dtype=hidden_dtype) image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536) # extra condition3: style embedding style_embedding = self.style_embedder(style) # (N, embedding_dim) # Concatenate all extra vectors extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1) else: extra_cond = torch.cat([pooled_projections], dim=1) conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D] return conditioning
class_definition
67,828
70,345
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
880
class LuminaCombinedTimestepCaptionEmbedding(nn.Module): def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256): super().__init__() self.time_proj = Timesteps( num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0 ) self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size) self.caption_embedder = nn.Sequential( nn.LayerNorm(cross_attention_dim), nn.Linear( cross_attention_dim, hidden_size, bias=True, ), ) def forward(self, timestep, caption_feat, caption_mask): # timestep embedding: time_freq = self.time_proj(timestep) time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype)) # caption condition embedding: caption_mask_float = caption_mask.float().unsqueeze(-1) caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1) caption_feats_pool = caption_feats_pool.to(caption_feat) caption_embed = self.caption_embedder(caption_feats_pool) conditioning = time_embed + caption_embed return conditioning
class_definition
70,348
71,697
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
881
class MochiCombinedTimestepCaptionEmbedding(nn.Module): def __init__( self, embedding_dim: int, pooled_projection_dim: int, text_embed_dim: int, time_embed_dim: int = 256, num_attention_heads: int = 8, ) -> None: super().__init__() self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0) self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim) self.pooler = MochiAttentionPool( num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim ) self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim) def forward( self, timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, hidden_dtype: Optional[torch.dtype] = None, ): time_proj = self.time_proj(timestep) time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype)) pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask) caption_proj = self.caption_proj(encoder_hidden_states) conditioning = time_emb + pooled_projections return conditioning, caption_proj
class_definition
71,700
73,038
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
882
class TextTimeEmbedding(nn.Module): def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64): super().__init__() self.norm1 = nn.LayerNorm(encoder_dim) self.pool = AttentionPooling(num_heads, encoder_dim) self.proj = nn.Linear(encoder_dim, time_embed_dim) self.norm2 = nn.LayerNorm(time_embed_dim) def forward(self, hidden_states): hidden_states = self.norm1(hidden_states) hidden_states = self.pool(hidden_states) hidden_states = self.proj(hidden_states) hidden_states = self.norm2(hidden_states) return hidden_states
class_definition
73,041
73,670
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
883
class TextImageTimeEmbedding(nn.Module): def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.text_proj = nn.Linear(text_embed_dim, time_embed_dim) self.text_norm = nn.LayerNorm(time_embed_dim) self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): # text time_text_embeds = self.text_proj(text_embeds) time_text_embeds = self.text_norm(time_text_embeds) # image time_image_embeds = self.image_proj(image_embeds) return time_image_embeds + time_text_embeds
class_definition
73,673
74,374
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
884
class ImageTimeEmbedding(nn.Module): def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) self.image_norm = nn.LayerNorm(time_embed_dim) def forward(self, image_embeds: torch.Tensor): # image time_image_embeds = self.image_proj(image_embeds) time_image_embeds = self.image_norm(time_image_embeds) return time_image_embeds
class_definition
74,377
74,866
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
885
class ImageHintTimeEmbedding(nn.Module): def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) self.image_norm = nn.LayerNorm(time_embed_dim) self.input_hint_block = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 32, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(32, 32, 3, padding=1), nn.SiLU(), nn.Conv2d(32, 96, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(96, 96, 3, padding=1), nn.SiLU(), nn.Conv2d(96, 256, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(256, 4, 3, padding=1), ) def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor): # image time_image_embeds = self.image_proj(image_embeds) time_image_embeds = self.image_norm(time_image_embeds) hint = self.input_hint_block(hint) return time_image_embeds, hint
class_definition
74,869
76,039
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
886
class AttentionPooling(nn.Module): # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54 def __init__(self, num_heads, embed_dim, dtype=None): super().__init__() self.dtype = dtype self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.num_heads = num_heads self.dim_per_head = embed_dim // self.num_heads def forward(self, x): bs, length, width = x.size() def shape(x): # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, -1, self.num_heads, self.dim_per_head) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs * self.num_heads, -1, self.dim_per_head) # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length) x = x.transpose(1, 2) return x class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype) x = torch.cat([class_token, x], dim=1) # (bs, length+1, width) # (bs*n_heads, class_token_length, dim_per_head) q = shape(self.q_proj(class_token)) # (bs*n_heads, length+class_token_length, dim_per_head) k = shape(self.k_proj(x)) v = shape(self.v_proj(x)) # (bs*n_heads, class_token_length, length+class_token_length): scale = 1 / math.sqrt(math.sqrt(self.dim_per_head)) weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) # (bs*n_heads, dim_per_head, class_token_length) a = torch.einsum("bts,bcs->bct", weight, v) # (bs, length+1, width) a = a.reshape(bs, -1, 1).transpose(1, 2) return a[:, 0, :] # cls_token
class_definition
76,042
78,320
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
887
class MochiAttentionPool(nn.Module): def __init__( self, num_attention_heads: int, embed_dim: int, output_dim: Optional[int] = None, ) -> None: super().__init__() self.output_dim = output_dim or embed_dim self.num_attention_heads = num_attention_heads self.to_kv = nn.Linear(embed_dim, 2 * embed_dim) self.to_q = nn.Linear(embed_dim, embed_dim) self.to_out = nn.Linear(embed_dim, self.output_dim) @staticmethod def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor: """ Pool tokens in x using mask. NOTE: We assume x does not require gradients. Args: x: (B, L, D) tensor of tokens. mask: (B, L) boolean tensor indicating which tokens are not padding. Returns: pooled: (B, D) tensor of pooled tokens. """ assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens. assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens. mask = mask[:, :, None].to(dtype=x.dtype) mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1) pooled = (x * mask).sum(dim=1, keepdim=keepdim) return pooled def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: r""" Args: x (`torch.Tensor`): Tensor of shape `(B, S, D)` of input tokens. mask (`torch.Tensor`): Boolean ensor of shape `(B, S)` indicating which tokens are not padding. Returns: `torch.Tensor`: `(B, D)` tensor of pooled tokens. """ D = x.size(2) # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L). attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L). attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L). # Average non-padding token features. These will be used as the query. x_pool = self.pool_tokens(x, mask, keepdim=True) # (B, 1, D) # Concat pooled features to input sequence. x = torch.cat([x_pool, x], dim=1) # (B, L+1, D) # Compute queries, keys, values. Only the mean token is used to create a query. kv = self.to_kv(x) # (B, L+1, 2 * D) q = self.to_q(x[:, 0]) # (B, D) # Extract heads. head_dim = D // self.num_attention_heads kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim)) # (B, 1+L, 2, H, head_dim) kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim) k, v = kv.unbind(2) # (B, H, 1+L, head_dim) q = q.unflatten(1, (self.num_attention_heads, head_dim)) # (B, H, head_dim) q = q.unsqueeze(2) # (B, H, 1, head_dim) # Compute attention. x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim) # Concatenate heads and run output. x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim) x = self.to_out(x) return x
class_definition
78,323
81,450
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
888
class GLIGENTextBoundingboxProjection(nn.Module): def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8): super().__init__() self.positive_len = positive_len self.out_dim = out_dim self.fourier_embedder_dim = fourier_freqs self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy if isinstance(out_dim, tuple): out_dim = out_dim[0] if feature_type == "text-only": self.linears = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) elif feature_type == "text-image": self.linears_text = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.linears_image = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) def forward( self, boxes, masks, positive_embeddings=None, phrases_masks=None, image_masks=None, phrases_embeddings=None, image_embeddings=None, ): masks = masks.unsqueeze(-1) # embedding position (it may includes padding as placeholder) xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C # learnable null embedding xyxy_null = self.null_position_feature.view(1, 1, -1) # replace padding with learnable null embedding xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null # positionet with text only information if positive_embeddings is not None: # learnable null embedding positive_null = self.null_positive_feature.view(1, 1, -1) # replace padding with learnable null embedding positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) # positionet with text and image information else: phrases_masks = phrases_masks.unsqueeze(-1) image_masks = image_masks.unsqueeze(-1) # learnable null embedding text_null = self.null_text_feature.view(1, 1, -1) image_null = self.null_image_feature.view(1, 1, -1) # replace padding with learnable null embedding phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) objs = torch.cat([objs_text, objs_image], dim=1) return objs
class_definition
82,086
85,757
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
889
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): """ For PixArt-Alpha. Reference: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 """ def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.use_additional_conditions = use_additional_conditions if use_additional_conditions: self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) if self.use_additional_conditions: resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype) aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1) conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1) else: conditioning = timesteps_emb return conditioning
class_definition
85,760
87,656
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
890
class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"): super().__init__() if out_features is None: out_features = hidden_size self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) if act_fn == "gelu_tanh": self.act_1 = nn.GELU(approximate="tanh") elif act_fn == "silu": self.act_1 = nn.SiLU() elif act_fn == "silu_fp32": self.act_1 = FP32SiLU() else: raise ValueError(f"Unknown activation function: {act_fn}") self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) def forward(self, caption): hidden_states = self.linear_1(caption) hidden_states = self.act_1(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states
class_definition
87,659
88,819
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
891
class IPAdapterPlusImageProjectionBlock(nn.Module): def __init__( self, embed_dims: int = 768, dim_head: int = 64, heads: int = 16, ffn_ratio: float = 4, ) -> None: super().__init__() from .attention import FeedForward self.ln0 = nn.LayerNorm(embed_dims) self.ln1 = nn.LayerNorm(embed_dims) self.attn = Attention( query_dim=embed_dims, dim_head=dim_head, heads=heads, out_bias=False, ) self.ff = nn.Sequential( nn.LayerNorm(embed_dims), FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False), ) def forward(self, x, latents, residual): encoder_hidden_states = self.ln0(x) latents = self.ln1(latents) encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2) latents = self.attn(latents, encoder_hidden_states) + residual latents = self.ff(latents) + latents return latents
class_definition
88,822
89,881
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
892
class IPAdapterPlusImageProjection(nn.Module): """Resampler of IP-Adapter Plus. Args: embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels, that is the same number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024. hidden_dims (int): The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads. Defaults to 16. num_queries (int): The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio of feedforward network hidden layer channels. Defaults to 4. """ def __init__( self, embed_dims: int = 768, output_dims: int = 1024, hidden_dims: int = 1280, depth: int = 4, dim_head: int = 64, heads: int = 16, num_queries: int = 8, ffn_ratio: float = 4, ) -> None: super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5) self.proj_in = nn.Linear(embed_dims, hidden_dims) self.proj_out = nn.Linear(hidden_dims, output_dims) self.norm_out = nn.LayerNorm(output_dims) self.layers = nn.ModuleList( [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)] ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass. Args: x (torch.Tensor): Input Tensor. Returns: torch.Tensor: Output Tensor. """ latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) for block in self.layers: residual = latents latents = block(x, latents, residual) latents = self.proj_out(latents) return self.norm_out(latents)
class_definition
89,884
91,907
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
893
class IPAdapterFaceIDPlusImageProjection(nn.Module): """FacePerceiverResampler of IP-Adapter Plus. Args: embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels, that is the same number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024. hidden_dims (int): The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads. Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio of feedforward network hidden layer channels. Defaults to 4. ffproj_ratio (float): The expansion ratio of feedforward network hidden layer channels (for ID embeddings). Defaults to 4. """ def __init__( self, embed_dims: int = 768, output_dims: int = 768, hidden_dims: int = 1280, id_embeddings_dim: int = 512, depth: int = 4, dim_head: int = 64, heads: int = 16, num_tokens: int = 4, num_queries: int = 8, ffn_ratio: float = 4, ffproj_ratio: int = 2, ) -> None: super().__init__() from .attention import FeedForward self.num_tokens = num_tokens self.embed_dim = embed_dims self.clip_embeds = None self.shortcut = False self.shortcut_scale = 1.0 self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio) self.norm = nn.LayerNorm(embed_dims) self.proj_in = nn.Linear(hidden_dims, embed_dims) self.proj_out = nn.Linear(embed_dims, output_dims) self.norm_out = nn.LayerNorm(output_dims) self.layers = nn.ModuleList( [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)] ) def forward(self, id_embeds: torch.Tensor) -> torch.Tensor: """Forward pass. Args: id_embeds (torch.Tensor): Input Tensor (ID embeds). Returns: torch.Tensor: Output Tensor. """ id_embeds = id_embeds.to(self.clip_embeds.dtype) id_embeds = self.proj(id_embeds) id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim) id_embeds = self.norm(id_embeds) latents = id_embeds clip_embeds = self.proj_in(self.clip_embeds) x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3]) for block in self.layers: residual = latents latents = block(x, latents, residual) latents = self.proj_out(latents) out = self.norm_out(latents) if self.shortcut: out = id_embeds + self.shortcut_scale * out return out
class_definition
91,910
94,912
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
894
class IPAdapterTimeImageProjectionBlock(nn.Module): """Block for IPAdapterTimeImageProjection. Args: hidden_dim (`int`, defaults to 1280): The number of hidden channels. dim_head (`int`, defaults to 64): The number of head channels. heads (`int`, defaults to 20): Parallel attention heads. ffn_ratio (`int`, defaults to 4): The expansion ratio of feedforward network hidden layer channels. """ def __init__( self, hidden_dim: int = 1280, dim_head: int = 64, heads: int = 20, ffn_ratio: int = 4, ) -> None: super().__init__() from .attention import FeedForward self.ln0 = nn.LayerNorm(hidden_dim) self.ln1 = nn.LayerNorm(hidden_dim) self.attn = Attention( query_dim=hidden_dim, cross_attention_dim=hidden_dim, dim_head=dim_head, heads=heads, bias=False, out_bias=False, ) self.ff = FeedForward(hidden_dim, hidden_dim, activation_fn="gelu", mult=ffn_ratio, bias=False) # AdaLayerNorm self.adaln_silu = nn.SiLU() self.adaln_proj = nn.Linear(hidden_dim, 4 * hidden_dim) self.adaln_norm = nn.LayerNorm(hidden_dim) # Set attention scale and fuse KV self.attn.scale = 1 / math.sqrt(math.sqrt(dim_head)) self.attn.fuse_projections() self.attn.to_k = None self.attn.to_v = None def forward(self, x: torch.Tensor, latents: torch.Tensor, timestep_emb: torch.Tensor) -> torch.Tensor: """Forward pass. Args: x (`torch.Tensor`): Image features. latents (`torch.Tensor`): Latent features. timestep_emb (`torch.Tensor`): Timestep embedding. Returns: `torch.Tensor`: Output latent features. """ # Shift and scale for AdaLayerNorm emb = self.adaln_proj(self.adaln_silu(timestep_emb)) shift_msa, scale_msa, shift_mlp, scale_mlp = emb.chunk(4, dim=1) # Fused Attention residual = latents x = self.ln0(x) latents = self.ln1(latents) * (1 + scale_msa[:, None]) + shift_msa[:, None] batch_size = latents.shape[0] query = self.attn.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) key, value = self.attn.to_kv(kv_input).chunk(2, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // self.attn.heads query = query.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) weight = (query * self.attn.scale) @ (key * self.attn.scale).transpose(-2, -1) weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) latents = weight @ value latents = latents.transpose(1, 2).reshape(batch_size, -1, self.attn.heads * head_dim) latents = self.attn.to_out[0](latents) latents = self.attn.to_out[1](latents) latents = latents + residual ## FeedForward residual = latents latents = self.adaln_norm(latents) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] return self.ff(latents) + residual
class_definition
94,915
98,351
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
895
class IPAdapterTimeImageProjection(nn.Module): """Resampler of SD3 IP-Adapter with timestep embedding. Args: embed_dim (`int`, defaults to 1152): The feature dimension. output_dim (`int`, defaults to 2432): The number of output channels. hidden_dim (`int`, defaults to 1280): The number of hidden channels. depth (`int`, defaults to 4): The number of blocks. dim_head (`int`, defaults to 64): The number of head channels. heads (`int`, defaults to 20): Parallel attention heads. num_queries (`int`, defaults to 64): The number of queries. ffn_ratio (`int`, defaults to 4): The expansion ratio of feedforward network hidden layer channels. timestep_in_dim (`int`, defaults to 320): The number of input channels for timestep embedding. timestep_flip_sin_to_cos (`bool`, defaults to True): Flip the timestep embedding order to `cos, sin` (if True) or `sin, cos` (if False). timestep_freq_shift (`int`, defaults to 0): Controls the timestep delta between frequencies between dimensions. """ def __init__( self, embed_dim: int = 1152, output_dim: int = 2432, hidden_dim: int = 1280, depth: int = 4, dim_head: int = 64, heads: int = 20, num_queries: int = 64, ffn_ratio: int = 4, timestep_in_dim: int = 320, timestep_flip_sin_to_cos: bool = True, timestep_freq_shift: int = 0, ) -> None: super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dim) / hidden_dim**0.5) self.proj_in = nn.Linear(embed_dim, hidden_dim) self.proj_out = nn.Linear(hidden_dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.layers = nn.ModuleList( [IPAdapterTimeImageProjectionBlock(hidden_dim, dim_head, heads, ffn_ratio) for _ in range(depth)] ) self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift) self.time_embedding = TimestepEmbedding(timestep_in_dim, hidden_dim, act_fn="silu") def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Forward pass. Args: x (`torch.Tensor`): Image features. timestep (`torch.Tensor`): Timestep in denoising process. Returns: `Tuple`[`torch.Tensor`, `torch.Tensor`]: The pair (latents, timestep_emb). """ timestep_emb = self.time_proj(timestep).to(dtype=x.dtype) timestep_emb = self.time_embedding(timestep_emb) latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) x = x + timestep_emb[:, None] for block in self.layers: latents = block(x, latents, timestep_emb) latents = self.proj_out(latents) latents = self.norm_out(latents) return latents, timestep_emb
class_definition
98,456
101,572
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
896
class MultiIPAdapterImageProjection(nn.Module): def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]): super().__init__() self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers) def forward(self, image_embeds: List[torch.Tensor]): projected_image_embeds = [] # currently, we accept `image_embeds` as # 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim] # 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim] if not isinstance(image_embeds, list): deprecation_message = ( "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning." ) deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False) image_embeds = [image_embeds.unsqueeze(1)] if len(image_embeds) != len(self.image_projection_layers): raise ValueError( f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}" ) for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers): batch_size, num_images = image_embed.shape[0], image_embed.shape[1] image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:]) image_embed = image_projection_layer(image_embed) image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:]) projected_image_embeds.append(image_embed) return projected_image_embeds
class_definition
101,575
103,574
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py
null
897
class ResnetBlockCondNorm2D(nn.Module): r""" A Resnet block that use normalization layer that incorporate conditioning information. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. groups_out (`int`, *optional*, default to None): The number of groups to use for the second normalization layer. if set to None, same as `groups`. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. time_embedding_norm (`str`, *optional*, default to `"ada_group"` ): The normalization layer for time embedding `temb`. Currently only support "ada_group" or "spatial". kernel (`torch.Tensor`, optional, default to None): FIR filter, see [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. use_in_shortcut (`bool`, *optional*, default to `True`): If `True`, add a 1x1 nn.conv2d layer for skip-connection. up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the `conv_shortcut` output. conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. If None, same as `out_channels`. """ def __init__( self, *, in_channels: int, out_channels: Optional[int] = None, conv_shortcut: bool = False, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, groups_out: Optional[int] = None, eps: float = 1e-6, non_linearity: str = "swish", time_embedding_norm: str = "ada_group", # ada_group, spatial output_scale_factor: float = 1.0, use_in_shortcut: Optional[bool] = None, up: bool = False, down: bool = False, conv_shortcut_bias: bool = True, conv_2d_out_channels: Optional[int] = None, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.up = up self.down = down self.output_scale_factor = output_scale_factor self.time_embedding_norm = time_embedding_norm if groups_out is None: groups_out = groups if self.time_embedding_norm == "ada_group": # ada_group self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) elif self.time_embedding_norm == "spatial": self.norm1 = SpatialNorm(in_channels, temb_channels) else: raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}") self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.time_embedding_norm == "ada_group": # ada_group self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) elif self.time_embedding_norm == "spatial": # spatial self.norm2 = SpatialNorm(out_channels, temb_channels) else: raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}") self.dropout = torch.nn.Dropout(dropout) conv_2d_out_channels = conv_2d_out_channels or out_channels self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) self.nonlinearity = get_activation(non_linearity) self.upsample = self.downsample = None if self.up: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = nn.Conv2d( in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias, ) def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) hidden_states = input_tensor hidden_states = self.norm1(hidden_states, temb) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states, temb) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor
class_definition
1,305
8,134
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet.py
null
898
class ResnetBlock2D(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. groups_out (`int`, *optional*, default to None): The number of groups to use for the second normalization layer. if set to None, same as `groups`. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" for a stronger conditioning with scale and shift. kernel (`torch.Tensor`, optional, default to None): FIR filter, see [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. use_in_shortcut (`bool`, *optional*, default to `True`): If `True`, add a 1x1 nn.conv2d layer for skip-connection. up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the `conv_shortcut` output. conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. If None, same as `out_channels`. """ def __init__( self, *, in_channels: int, out_channels: Optional[int] = None, conv_shortcut: bool = False, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, groups_out: Optional[int] = None, pre_norm: bool = True, eps: float = 1e-6, non_linearity: str = "swish", skip_time_act: bool = False, time_embedding_norm: str = "default", # default, scale_shift, kernel: Optional[torch.Tensor] = None, output_scale_factor: float = 1.0, use_in_shortcut: Optional[bool] = None, up: bool = False, down: bool = False, conv_shortcut_bias: bool = True, conv_2d_out_channels: Optional[int] = None, ): super().__init__() if time_embedding_norm == "ada_group": raise ValueError( "This class cannot be used with `time_embedding_norm==ada_group`, please use `ResnetBlockCondNorm2D` instead", ) if time_embedding_norm == "spatial": raise ValueError( "This class cannot be used with `time_embedding_norm==spatial`, please use `ResnetBlockCondNorm2D` instead", ) self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.up = up self.down = down self.output_scale_factor = output_scale_factor self.time_embedding_norm = time_embedding_norm self.skip_time_act = skip_time_act if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": self.time_emb_proj = nn.Linear(temb_channels, out_channels) elif self.time_embedding_norm == "scale_shift": self.time_emb_proj = nn.Linear(temb_channels, 2 * out_channels) else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) conv_2d_out_channels = conv_2d_out_channels or out_channels self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) self.nonlinearity = get_activation(non_linearity) self.upsample = self.downsample = None if self.up: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") else: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) else: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = nn.Conv2d( in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias, ) def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) if self.time_emb_proj is not None: if not self.skip_time_act: temb = self.nonlinearity(temb) temb = self.time_emb_proj(temb)[:, :, None, None] if self.time_embedding_norm == "default": if temb is not None: hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) elif self.time_embedding_norm == "scale_shift": if temb is None: raise ValueError( f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}" ) time_scale, time_shift = torch.chunk(temb, 2, dim=1) hidden_states = self.norm2(hidden_states) hidden_states = hidden_states * (1 + time_scale) + time_shift else: hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor
class_definition
8,137
16,939
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet.py
null
899